WO2024176599A1 - Circuit board manufacturing method, circuit board, and power module - Google Patents
Circuit board manufacturing method, circuit board, and power module Download PDFInfo
- Publication number
- WO2024176599A1 WO2024176599A1 PCT/JP2023/045775 JP2023045775W WO2024176599A1 WO 2024176599 A1 WO2024176599 A1 WO 2024176599A1 JP 2023045775 W JP2023045775 W JP 2023045775W WO 2024176599 A1 WO2024176599 A1 WO 2024176599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bonding layer
- circuit board
- plate
- silicon nitride
- laminate
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000010949 copper Substances 0.000 claims abstract description 96
- 229910052802 copper Inorganic materials 0.000 claims abstract description 95
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 93
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 93
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 81
- 238000005219 brazing Methods 0.000 claims abstract description 65
- 239000000463 material Substances 0.000 claims abstract description 55
- 238000010438 heat treatment Methods 0.000 claims abstract description 34
- 239000002131 composite material Substances 0.000 claims abstract description 30
- 125000006850 spacer group Chemical group 0.000 claims abstract description 21
- 229910052709 silver Inorganic materials 0.000 claims description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 31
- 229910052799 carbon Inorganic materials 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 17
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 14
- 229910000048 titanium hydride Inorganic materials 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000003475 lamination Methods 0.000 claims description 3
- 238000005304 joining Methods 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 description 34
- 239000002184 metal Substances 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 16
- 239000004332 silver Substances 0.000 description 16
- 238000009826 distribution Methods 0.000 description 15
- 239000010936 titanium Substances 0.000 description 14
- 229910052719 titanium Inorganic materials 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 239000010703 silicon Substances 0.000 description 12
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 11
- 239000000945 filler Substances 0.000 description 11
- 238000003825 pressing Methods 0.000 description 11
- 239000011135 tin Substances 0.000 description 11
- 210000000078 claw Anatomy 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 238000005238 degreasing Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 238000013507 mapping Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- -1 oxides Chemical class 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910021341 titanium silicide Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910000816 inconels 718 Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000010019 resist printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
Definitions
- the present disclosure relates to a method for manufacturing a circuit board, a circuit board, and a power module.
- Circuit boards mounted on electronic devices are manufactured by joining a ceramic plate and a metal plate with a brazing material.
- the objects are fixed with a pressure jig, and pressure is applied to promote the reaction between the brazing material and the ceramic plate.
- Patent Document 1 discloses a pressure jig that uses a spring washer.
- this disclosure provides a circuit board with high joining strength and a manufacturing method thereof. It also provides a power module having such a circuit board.
- One aspect of the present disclosure provides the following method for manufacturing a circuit board.
- a method for manufacturing a circuit board comprising the steps of: preparing a plurality of composites each comprising a silicon nitride plate, a copper plate, and a brazing material layer that bonds the silicon nitride plate and the copper plate; preparing a laminate by placing a spacer between a pair of the composites; heating the laminate at a temperature range of 370 to 420°C for 3.5 hours or more to degrease the brazing material layer; and heating the laminate to bond the silicon nitride plate and the copper plate with the brazing material layer.
- the laminate is heated at a temperature range of 370 to 420°C for 3.5 hours or more. This allows the carbon from the organic binder in the brazing material layer to be sufficiently removed, and promotes the reaction between the brazing material layer and the silicon nitride plate. This allows the brazing material layer and the silicon nitride plate to react sufficiently and with high uniformity without variation. As a result, a circuit board with high bonding strength can be obtained.
- the method for manufacturing the circuit board described above in [1] may be the following [2] or [3].
- the composite is further pressurized using a pressing tool. This further promotes the reaction between the brazing material layer and the silicon nitride plate, resulting in a circuit board with even higher bonding strength.
- the brazing material layer contains Ag, Cu, TiH2 , and Sn. Such a composition of the brazing material layer makes it easier for a titanium nitride layer to form between the silicon nitride plate and the brazing material layer during heating. Therefore, a circuit board with even higher bonding strength can be obtained.
- One aspect of the present disclosure provides the following circuit board:
- a circuit board comprising a silicon nitride plate, a copper plate, and a bonding layer bonding the silicon nitride plate and the copper plate, the bonding layer having, from the silicon nitride plate side, a first bonding layer containing titanium nitride, a second bonding layer containing Si, and a third bonding layer containing Ag, in that order, and when the carbon content in the first bonding layer is C1 atomic % and the carbon content in the third bonding layer is C3 atomic %, the average value of C1/C3 is 0.5 or less.
- the circuit board of [4] above has an average C1/C3 value of 0.5 or less, so the carbon derived from the binder in the first bonding layer is sufficiently removed.
- the first bonding layer, the second bonding layer, and the third bonding layer are sufficiently formed. Therefore, the bonding strength between the silicon nitride plate and the copper plate can be increased.
- the manufacturing method for the circuit board described above in [4] may be any one of the following [5] to [7].
- the difference between the maximum and minimum thicknesses of the first bonding layer is 70 nm or less.
- the first bonding layer is sufficiently formed without variation over a wide range. Therefore, the bonding strength between the silicon nitride plate and the copper plate can be sufficiently high.
- the second bonding layer has a thickness of 50 nm or more. In such a circuit board, the second bonding layer is formed with a sufficient thickness, so that the bonding strength between the silicon nitride plate and the copper plate can be sufficiently high.
- t1/t2 is 5 or less.
- the first bonding layer and the second bonding layer are formed in a well-balanced manner. Therefore, the bonding strength between the silicon nitride plate and the copper plate can be made sufficiently high.
- One aspect of the present disclosure provides the following power module:
- a power module comprising a circuit board described in any one of [4] to [7] above and a semiconductor element electrically connected to the copper plate of the circuit board.
- the power module has high bonding strength between the silicon nitride plate and the copper plate of the circuit board. Therefore, the power module has excellent durability.
- the present disclosure can provide a circuit board with high bonding strength and a manufacturing method thereof. It can also provide a power module having such a circuit board.
- FIG. 5A to 5C are cross-sectional views of an example of a laminate for explaining a process in a method for manufacturing a circuit board.
- FIG. FIG. 2 is a plan view of the structure with a portion of the pressing jig cut away.
- FIG. 2 is a front view of the structure with a portion of the pressing jig cut away.
- FIG. 2 is a side view of the structure with a portion of the pressing jig cut away.
- 7 is a cross-sectional view of the structure shown in FIG. 4 taken along line VII-VII.
- 13 is a cross-sectional view of the structure showing a state in which the pressure plate is raised and the spring washer is restored to its original state.
- FIG. 9 is an enlarged cross-sectional view showing a portion of the composite body and the spacer of FIG. 8 .
- FIG. 1A is an STEM image of a cross section of a circuit board in Example 1.
- FIG. 1B is an STEM image of a cross section of a circuit board in Comparative Example 1.
- 1A is a diagram showing the distribution of titanium element by EDX analysis of a cross section in Example 1.
- FIG. 1B is a diagram showing the distribution of silicon element by EDX analysis of a cross section in Example 1.
- 1A is a diagram showing the distribution of silver element by EDX analysis of a cross section in Example 1
- FIG. 1B is a diagram showing the distribution of copper element by EDX analysis of a cross section in Example 1.
- 1A is a diagram showing the distribution of titanium elements by EDX analysis of a cross section of the circuit board in Comparative Example 1.
- FIG. 1B is a diagram showing the distribution of silicon elements by EDX analysis of a cross section of the circuit board in Comparative Example 1.
- 1A is a diagram showing the distribution of silver and copper elements by EDX analysis of a cross section of the circuit board in Comparative Example 1; 1 is an EDX line profile in Example 1.
- 1A is a photograph showing the state when the copper plate is peeled off from the circuit board in Example 1.
- FIG. 1B is a photograph showing the state when the copper plate is peeled off from the circuit board in Comparative Example 1.
- 1A is an SEM image of the peeled surface when the copper plate is peeled off from the circuit board in Example 1.
- FIG. 1B is an SEM image of the peeled surface after the copper plate is peeled off from the circuit board in Comparative Example 1.
- 1A is a diagram showing the distribution of silicon elements by EDX analysis of the peeled surface when the copper plate is peeled off from the circuit board in Example 1.
- FIG. 1B is a diagram showing the distribution of silicon elements by EDX analysis of the peeled surface after the copper plate is peeled off from the circuit board in Comparative Example 1.
- the manufacturing method of a circuit board according to one embodiment includes the steps of (a) (see Figure 1) of manufacturing a plurality of composites 40 each including a silicon nitride plate 10, a copper plate 50, and a brazing material layer 30 that bonds them together, (b) (see Figure 2) of placing a spacer 70 between a pair of composites 40 to manufacture a laminate 80, (c) of heating the laminate 80 to degrease the brazing material layer, (d) of heating the laminate 80 to bond the silicon nitride plate 10 and the copper plate 50 with the brazing material layer 30 to obtain a joint, and (e) of manufacturing a circuit board from the joint.
- the silicon nitride plate 10 may be made of a silicon nitride sintered body obtained by sintering silicon nitride powder.
- the shape of the silicon nitride plate 10 is not particularly limited as long as it is plate-like.
- the thickness of the silicon nitride plate 10 may be, for example, 0.2 to 2 mm, or 0.32 to 1.1 mm.
- the copper plate 50 is not particularly limited in shape as long as it can be bonded to the main surface of the silicon nitride plate 10.
- the thickness of the copper plate 50 may be, for example, 0.1 to 1.2 mm, or may be 0.2 to 1.0 mm.
- the copper plate 50 may have a plating film on its surface.
- a dividing line may be formed on the main surface of the silicon nitride plate 10.
- a laser beam may be irradiated onto the main surface of the silicon nitride plate 10 to provide a scribe line as the dividing line.
- the laser beam to be irradiated include a carbon dioxide laser and a YAG laser.
- the brazing material applied to the main surface of the silicon nitride plate 10 may contain, for example, silver, copper, tin, active metals, metal compounds containing these as constituent elements, an organic solvent, and an organic binder.
- the viscosity of the brazing material may be, for example, 5 to 20 Pa ⁇ s.
- the organic solvent content in the brazing material may be, for example, 5 to 25 mass %, and the organic binder content may be, for example, 2 to 15 mass %.
- the brazing filler metal may contain silver in the form of a metal element or a metal compound (alloy), and may contain, in addition to silver, one or more metals selected from the group consisting of copper, tin, and active metals.
- the two or more metals may be in the form of an alloy.
- the active metal may contain one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium.
- the silver content in the brazing filler metal may be 45 to 95 mass% or 50 to 95 mass% in terms of Ag.
- the total silver and copper content in the brazing filler metal may be 65 to 100 mass%, 70 to 99 mass%, or 90 to 98 mass% in terms of Ag and Cu, respectively.
- the content of the active metal in the brazing filler metal may be 0.5 to 8 parts by mass per 100 parts by mass of the total of Ag and Cu. By making the content of the active metal 0.5 parts by mass or more, it is possible to improve the bond between the silicon nitride plate and the brazing filler metal. On the other hand, by making the content of the active metal 8 parts by mass or less, it is possible to suppress the formation of a brittle alloy layer at the bonded interface.
- the above metals contained in the brazing material may be contained as nitrides, oxides, carbides, or hydrides.
- the brazing material may contain titanium nitride and/or titanium hydride (TiH 2 ). This allows the bonding strength between the silicon nitride plate 10 and the copper plate 50 to be sufficiently high.
- TiH 2 titanium nitride and/or titanium hydride
- the content of TiH 2 relative to a total of 100 parts by mass of Ag and Cu may be, for example, 1 to 8 parts by mass.
- the tin content in the brazing filler metal may be 0.5 to 6 parts by mass per 100 parts by mass of the total of Ag and Cu. By making the tin content 0.5 parts by mass or more, it is possible to improve the bond between the silicon nitride plate 10 and the brazing filler metal. On the other hand, by making the tin content 5 parts by mass or less, it is possible to prevent the formation of a brittle alloy layer at the bonding interface.
- a brazing material is applied to the main surface of the silicon nitride plate 10 by a roll coater method, a screen printing method, a transfer method, or the like, and then dried to provide one or more brazing material layers 30.
- the brazing material layer 30 may contain, for example, Ag, Cu, TiH2 , and Sn.
- the brazing material layer 30 may be provided at a position where the copper plate 50 is joined to the silicon nitride plate 10. After the brazing material layer 30 is formed, the silicon nitride plate 10 and the copper plate 50 are laminated with the brazing material layer 30 sandwiched therebetween to produce a plurality of composite bodies 40.
- step (b) the composite 40 and the spacer 70 are laminated so as to be adjacent to each other in the lamination direction to produce a laminate 80.
- a commercially available carbon plate may be used for the spacer 70.
- the density of the carbon plate may be 1.6 to 1.9 g/cm 3.
- the thickness of the carbon plate may be 0.5 to 1.0 mm.
- the surface roughness Ra may be 5 to 10 ⁇ m.
- the spacer 70 and the composite 40 may be repeatedly laminated in any number to form the laminate 80.
- the number of composites 40 and spacers 70 to be laminated is not particularly limited, and may be adjusted depending on the size of the heating furnace to be used. By laminating in this manner, a plurality of composites 40 can be heated at once to efficiently produce a bonded body.
- the laminate 80 may be heated while being pressurized in the stacking direction.
- An example of a method for pressurizing the laminate 80 is described below with reference to Figures 3, 4, 5, 6, 7, and 8.
- the structure 90 in Figure 3 includes a pressurizing jig 1 and a laminate 80 sandwiched between a base plate 2 and a cover plate 3 of the pressurizing jig 1.
- the laminate 80 is formed by alternately stacking a plurality of spacers 70 and a plurality of composites 40.
- the laminate 80 is rectangular in plan view, but may have other shapes.
- a spacer 70 is disposed between the laminate 80 and the pressurizing jig 1.
- the spacer 70 also has the function of preventing bonding between the composites 40 and bonding between the composites 40 and the pressurizing jig 1.
- the pressing jig 1 comprises a plate-shaped base plate 2 (foundation portion) on which the laminate 80 is placed, and a cover plate 3 (cover portion) arranged opposite the base plate 2.
- the cover plate 3 and the base plate 2 sandwich the laminate 80.
- the pressing jig 1 also comprises a plurality of spring washers 4 arranged on the cover plate 3, and a pressing plate 5 (pressing portion) arranged on the spring washers 4.
- the pressing jig 1 also has a pressing structure 6 that compresses the spring washers 4 with the pressing plate 5 to pressurize the laminate 80.
- the base plate 2 is, for example, rectangular, and has an area that extends beyond the laminate 80 in a plan view, i.e., a protruding area 2a that does not overlap the laminate 80.
- a protruding area 2a of the base plate 2 multiple (for example, two) pillars 8 (pillar portions) are erected along the short sides of the base plate 2.
- the pillars 8 are also arranged opposite each other on both sides of the longitudinal direction (left-right direction) of the base plate 2, and the laminate 80 is arranged between a pair of pillars 8 facing each other on the left and right.
- An engagement hole 8a is formed in the upper part of the pillar 8, through which a locking claw 9 is inserted.
- the cover plate 3 has a rectangular shape corresponding to the shape of the laminate 80, and has one surface 3a (hereinafter referred to as the "lower surface”) and the other surface 3b (hereinafter referred to as the "upper surface”) as shown in Figs. 5 and 7.
- the lower surface 3a is flat and abuts against the spacer 70 arranged closer to the cover plate 3.
- the upper surface 3b has a plurality of counterbores 3c formed therein, and the spring washer 4 is housed in each counterbores 3c.
- the depth of the counterbores 3c may be a dimension such that the entire spring washer 4 is housed therein when the helical spring washer 4 is compressed and flattened.
- the counterbores 3c are donut-shaped (annular) in plan view, and the annular spring washer 4 is housed therein, preventing the spring washer 4 from shifting out of position.
- the counterbores 3c function as positioning portions for the spring washer 4.
- the pressure plate 5 has a surplus area 5a that faces the protruding area 2a of the base plate 2 in a plan view.
- a post through hole 5b through which the post 8 passes is formed in the surplus area 5a.
- a storage groove 5c is provided on the upper surface of the surplus area 5a so as to pass through the post through hole 5b.
- the locking claw 9 fits into the storage groove 5c.
- the pressure plate 5 is placed so as to overlap the cover plate 3, and is further pressed down so as to abut against the spring washer 4.
- a support 8 is passed through the support through hole 5b provided in the excess area 5a of the pressure plate 5.
- the upper part of the support 8 protrudes above the support through hole 5b.
- An engagement hole 8a is provided in the upper part of the support 8, and a locking claw 9 (locking portion) is inserted into the engagement hole 8a.
- the locking claw 9 passes through the engagement hole 8a from the lateral direction and locks the pressure plate 5 by abutting against the surface (upper surface) of the pressure plate 5 opposite the surface (lower surface) that abuts against the spring washer 4.
- a storage groove 5c corresponding to the outer shape of the locking claw 9 is formed in the upper surface of the pressure plate 5, and the locking claw 9 slides along the storage groove 5c.
- the pressure structure 6 in this embodiment is configured to include at least the pressure plate 5, the support 8, the engagement hole 8a, and the locking claw 9.
- the spring washer 4 is formed of, for example, an alloy such as Inconel 750 or Inconel 718, silicon nitride, or a carbon composite.
- the spring washer 4 is in an uncompressed state when it is not in contact with the cover plate 3 (see FIG. 8).
- the spring washer 4 is an example of a compression spring that is wound in a spiral shape without overlapping and has both ends 4a and 4b spaced apart. More specifically, the spring washer 4 has a C-shape, and both ends 4a and 4b are spaced apart from each other and are offset in the axial direction (for example, vertical direction) assuming a spiral shape.
- one end that is in contact with the bottom of the countersink 3c is the lower end 4a, and the other end on the opposite side is the upper end 4b.
- the spring washer 4 is compressed by the pressure structure 6 through the cover plate 3, the lower end 4a and the upper end 4b approach each other, the spiral shape of the spring washer 4 is eliminated, and the spring washer 4 becomes substantially flat (see Figure 7).
- the multiple spring washers 4 are arranged so as to fit inside the outer edge 3x of the cover plate 3 without protruding beyond the outer edge 3x of the cover plate 3.
- the multiple spring washers 4 are also arranged along the outer edge 3x of the cover plate 3.
- the outer edge 3x of the cover plate 3 according to this embodiment is rectangular.
- Three spring washers 4 are arranged in a row along each short side of the outer edge 3x, and five spring washers 4 are arranged in a row along each long side.
- the multiple spring washers 4 are arranged at equal intervals. Specifically, a total of 15 spring washers 4 are arranged in three rows and five columns (multiple rows and multiple columns), and all of the spring washers 4 are arranged at equal intervals. By arranging the spring washers 4 at equal intervals, it becomes easier for the cover plate 3 to apply uniform pressure to the laminate 80. Note that only the multiple spring washers 4 arranged along the outer edge 3x of the cover plate 3 may be arranged at equal intervals. Furthermore, when the center of the cover plate 3 is defined in a plan view, the multiple spring washers 4 may be arranged so as to be point symmetrical with respect to this center.
- a separation region 4x is formed between the lower end 4a and upper end 4b of the spring washer 4 (between both ends).
- the multiple spring washers 4 are arranged so that the separation region 4x faces the outer edge 3x of the cover plate 3.
- the spring washer 4 is assumed to be ring-shaped in a plan view, the spring washer 4 is arranged so that the separation region 4x is closer to the outer edge 3x of the cover plate 3 than the center point of the ring.
- a line is assumed to connect the separation regions 4x of the multiple spring washers 4, this line is arranged to run along the outer edge 3x of the cover plate 3.
- FIG. 9 shows an enlarged cross section of the laminated structure of the composite 40 and the spacer 70 in FIG. 8 along the lamination direction.
- the spacer 70, the laminate 80, and the spacer 70 are laminated in this order from the base plate 2 toward the cover plate 3.
- the laminate 80 is formed by laminating a pair of composites 40 so as to sandwich the spacer 70.
- the composite 40 is formed by laminating a pair of copper plates 50 so as to sandwich the silicon nitride plate 10 with the brazing material layer 30 interposed therebetween.
- the laminate 80 may be formed by repeatedly laminating any number of composites 40 and spacers 70.
- This laminated structure makes it possible to suppress the variation in reaction when the laminate 80 is heated in steps (c) and (d) while being pressurized, and to obtain a joint having high joint strength.
- the number of spacers 70 and composites 40 constituting the laminate 80 is not particularly limited.
- Step (c) is a step of degreasing the carbon in the brazing material layer 30.
- the heating temperature in the degreasing step is 370 to 420°C, may be 380 to 415°C, or may be 390 to 410°C.
- the heating time at the above heating temperature is 3.5 hours or more, or may be 3.75 hours or more. From the viewpoint of shortening the time required for the entire manufacturing process, the heating time may be 5 hours or less, or may be 4.5 hours or less.
- carbon derived from the organic binder contained in the brazing material layer 30 can be thermally decomposed and reduced. The reaction between carbon and titanium during heating in step (d) can be suppressed, and the generation of titanium nitride and titanium silicide can be sufficiently promoted.
- the atmosphere in the heating furnace may be an inert gas such as nitrogen, and may be under reduced pressure below atmospheric pressure or under vacuum.
- the heating furnace may be of a continuous type that continuously produces multiple composites 40, or may be of a batch type that produces one or multiple composites 40.
- the heating temperature in step (d) may be 700 to 900° C. or 750 to 850° C. from the viewpoint of promoting the reaction.
- the heating time may be 3 hours or less or 2 hours or less.
- the pressure in the furnace during heating may be any of normal pressure, reduced pressure, and vacuum. From the viewpoint of promoting the reaction, the pressure in the furnace may be 10 ⁇ 2 to 10 ⁇ 7 Pa.
- the heating rate in the heating furnace in steps (c) and (d) may be 70 to 120°C/min, or may be 80 to 110°C/min. By keeping the heating rate within this range, the time required for the entire manufacturing process can be sufficiently shortened. In addition, the temperature reduction rate after heating may also be in the same range as the above heating rate.
- an annealing step may be performed.
- the annealing temperature in the annealing step may be 400 to 650°C, or 500 to 600°C.
- the annealing time at the annealing temperature may be 1.5 to 3.0 hours, or 2.0 to 2.5 hours.
- the bonded body may be removed from the pressure jig.
- step (e) resist printing and etching are performed on the resulting bonded body to obtain the circuit board 100 shown in FIG. 10.
- the carbon in the brazing material layer 30 has been sufficiently removed, so that the bonding layer 20 has a first bonding layer 21, a second bonding layer 22, and a third bonding layer 23. Therefore, the bonding strength between the silicon nitride plate 10 and the copper plate 50 in the circuit board 100 can be sufficiently high.
- the bonded body obtained in step (d) may be used as the circuit board 100 as is.
- the circuit board 100 has a pair of copper plates 50 on both sides of the silicon nitride plate 10, and has a bonding layer 20 that bonds each main surface of the silicon nitride plate 10 to the main surface of the copper plate 50.
- the bonding layer 20 has, from the silicon nitride plate 10 side, a first bonding layer 21, a second bonding layer 22, and a third bonding layer 23, in this order.
- the shape of the circuit board 100 is not particularly limited, and it may be an aggregate board, or an individual board obtained by dividing an aggregate board.
- the thickness of the circuit board may be 0.9 to 2.7 mm, or 1.3 to 2.2 mm.
- the bonding layer 20 has, from the silicon nitride plate 10 side, a first bonding layer 21 containing titanium nitride, a second bonding layer 22 containing Si, and a third bonding layer 23 containing Ag, in that order, and when the carbon content in the first bonding layer is C1 atomic % and the carbon content in the third bonding layer is C3 atomic %, the average value of C1/C3 is 0.5 or less.
- the carbon in the first bonding layer 21 is sufficiently reduced, and the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be increased.
- the bonding layer 20 is a layer having a first bonding layer 21, a second bonding layer 22, and a third bonding layer 23.
- the bonding layer 20 contains titanium, silver, and silicon elements.
- the bonding layer 20 may further contain one or two metals selected from the group consisting of copper, tin, and an active metal.
- the two or more metals may be an alloy.
- the active metal may contain one or two or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium.
- the silver contained in the bonding layer 20 may be contained in the bonding layer 20 as an alloy, such as an Ag-Cu eutectic alloy.
- the silver content in the bonding layer 20 may be 60-95 mass% in Ag equivalent.
- the silver and copper contents in the bonding layer 20 may be 75-100 mass%, 85-99 mass%, or 90-98 mass% in Ag and Cu equivalent, respectively. This makes it possible to sufficiently reduce the residual stress in the bonding layer 20 while improving the density of the bonding layer 20.
- the content of the active metal in the bonding layer 20 may be 0.5 to 5 parts by mass per 100 parts by mass of Ag and Cu combined. By making the content of the active metal 0.5 parts by mass or more, it is possible to improve the bond between the silicon nitride plate 10 and the bonding layer 20. On the other hand, by making the content of the active metal 5 parts by mass or less, it is possible to suppress the formation of a brittle alloy layer at the bonding interface.
- the metal contained in the bonding layer 20 may be contained as a nitride, oxide, carbide or hydride.
- the bonding layer 20 may contain titanium nitride and/or titanium hydride (TiH 2 ). This allows the silicon nitride plate 10 and the bonding layer 20 to react sufficiently to form the first bonding layer 21, the second bonding layer 22, and the third bonding layer 23. This allows the bonding strength between the silicon nitride plate 10 and the copper plate 50 to be sufficiently high.
- the content of TiH 2 relative to a total of 100 parts by mass of Ag and Cu may be, for example, 1 to 8 parts by mass.
- the elements contained in the bonding layer 20 can be identified and quantified by the following procedure.
- a cross section of the circuit board is observed, for example, with a scanning transmission electron microscope (STEM).
- STEM scanning transmission electron microscope
- EDX energy dispersive X-ray analyzer
- the cross section in this disclosure refers to a cross section perpendicular to the main surface of the silicon nitride plate 10 on which the bonding layer 20 is provided, and passing through the bonding layer 20.
- the first bonding layer 21 is a layer containing titanium nitride.
- the titanium nitride content may be 50 to 90 atomic %, 55 to 85 atomic %, or 60 to 80 atomic %.
- the titanium element and the nitrogen element may be detected in the first bonding layer 21 in greater amounts than the second bonding layer 22 and the third bonding layer 23. That is, the first bonding layer 21 may have a higher titanium nitride content than the second bonding layer 22 and the third bonding layer 23.
- the titanium nitride phase contained in the first bonding layer 21 may be formed in a layer along the contact surface between the silicon nitride plate 10 and the first bonding layer 21.
- the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be further increased.
- the fact that the titanium nitride phase is formed in a layer along the contact surface between the silicon nitride plate 10 and the first bonding layer 21 can be confirmed by analyzing a cross section, for example, with an electron beam microanalyzer (EPMA).
- EPMA electron beam microanalyzer
- the thickness of the first bonding layer 21 can be determined as the length of the line at which titanium and nitrogen elements are detected with a content of 10 atomic % or more.
- the titanium and nitrogen elements contained in the first bonding layer 21 may be 10 to 45 atomic %, or 20 to 40 atomic %.
- the thickness of the first bonding layer 21 may be 100 to 300 nm, or 150 to 250 nm.
- the difference between the maximum and minimum thicknesses of the first bonding layer 21 may be 70 nm or less, 50 nm or less, or 45 nm or less.
- the first bonding layer 21 contains a sufficient amount of titanium nitride, and the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be improved.
- the average thickness t1 of the first bonding layer 21 can be calculated as the average thickness value measured at five or more lines.
- the average thickness t1 of the first bonding layer 21 may be 175 to 235 nm, 180 to 230 nm, or 190 to 220 nm.
- the second bonding layer 22 is a layer containing Si.
- the Si originates from the silicon nitride plate 10, and when the silicon nitride plate 10 and the copper plate 50 are heat-bonded via the brazing material layer 30, it is believed that the silicon nitride reacts with the titanium in the brazing material layer 30 due to heating, forming the second bonding layer 22 as a layer containing titanium silicide.
- the Si content of the second bonding layer 22 may be 10-40 atomic %, or 20-30 atomic %.
- the second bonding layer 22 with a Si content in this range is formed by a sufficient reaction between the silicon nitride plate 10 and the titanium in the brazing material layer 30. This allows the bonding strength between the silicon nitride plate 10 and the copper plate 50 to be sufficiently improved.
- the second bonding layer 22 may be formed so as to isolate the first bonding layer 21 from the third bonding layer 23. That is, the second bonding layer 22 may be formed over the entire area between the first bonding layer 21 and the third bonding layer 23.
- Such a second bonding layer 22 is formed by the reaction between silicon nitride and titanium in the brazing material layer 30 progressing sufficiently when the silicon nitride plate 10 and the copper plate 50 are heat-bonded via the brazing material layer 30. Therefore, the bonding strength between the silicon nitride plate 10 and the copper plate 50 of the circuit board 100 can be improved.
- the thickness of the second bonding layer 22 can be determined as the length of the line detected when the Si content is 10 atomic % or more.
- the thickness of the second bonding layer 22 may be 50 nm or more, 50 to 120 nm, 60 to 110 nm, or 80 to 100 nm.
- the average thickness t2 of the second bonding layer 22 can be determined by calculating the average thickness measured at five or more lines.
- the average thickness t2 of the second bonding layer 22 may be 60 to 100 nm, or 70 to 90 nm.
- a second bonding layer 22 having an average thickness t2 in this range is formed by the progress of the reaction between the silicon nitride plate 10 and the brazing material layer 30. Such a second bonding layer 22 can sufficiently increase the bonding strength between the silicon nitride plate 10 and the copper plate 50.
- the ratio (t1/t2) of the average thickness t1 of the first bonding layer 21 to the average thickness t2 of the second bonding layer 22 may be 5 or less, 4 or less, or 3 or less. By having (t1/t2) within this range, the first bonding layer 21 and the second bonding layer 22 are formed in a balanced manner, and the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be sufficiently high.
- the lower limit of the above ratio may be 1.0 or 1.5.
- the third bonding layer 23 is a layer containing Ag.
- the silver element in the third bonding layer 23 may be 20 to 90 atomic %, or may be 30 to 80 atomic %.
- the thickness of the third bonding layer 23 may be 1.0 to 2.0 ⁇ m, or may be 1.2 to 1.7 ⁇ m.
- the bonding layer 20 contains carbon derived from the organic binder, and the average value of the ratio (C1/C3) of the carbon content (C1) contained in the first bonding layer 21 to the carbon content (C3) contained in the third bonding layer 23 is 0.5 or less. From the viewpoint of sufficiently reducing the carbon contained in the first bonding layer 21, the average value of (C1/C3) may be 0.45 or less, or may be 0.4 or less. When the average value of (C1/C3) is in this range, the thickness of the first bonding layer 21 becomes sufficiently large. As a result, the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be sufficiently high. The lower limit of the above ratio may be 0.2 or 0.3.
- the average value of (C1/C3) is calculated as follows.
- (C3) and (C1) are measured on five or more lines, and (C1/C3) is calculated from each measured value.
- the above average value is calculated from five or more (C1/C3) values.
- each of the five or more (C1/C3) values may be 0.5 or less, 0.45 or less, or 0.4 or less.
- the bond strength between the silicon nitride plate 10 and the copper plate 50 can be determined in accordance with JIS K 6854-1:1999 "Adhesives - Peel Adhesion Strength Test Method” by peeling the copper plate 50 vertically upward at 90 degrees from the circuit board 100 and measuring the strength at the time of peeling.
- the bond strength may be 500-800 N/cm, or 600-700 N/cm or more.
- a circuit board 100 with such bond strength reduces variation in bond strength on the circuit board 100, and can stabilize the quality of the circuit board 100.
- the circuit board 100 may be used to manufacture a power module.
- the power module can be manufactured by mounting a semiconductor element electrically connected to the copper plate of the circuit board using solder and wire bonding, etc., and housing the circuit board and the semiconductor element in the housing space of the housing, and then sealing with resin.
- the present disclosure is not limited to the above-described embodiments.
- the structures and shapes of the metal plates and joints joined to each of the pair of main surfaces of the silicon nitride plate may be different from each other.
- the present disclosure may be a circuit board in which a joining layer and a copper plate are provided on only one main surface of the silicon nitride plate.
- the brazing material contained Ag, Cu, TiH 2 , and Sn.
- the mass ratio of Ag to Cu was 9: 1.
- the brazing material contained 5 parts by mass of Sn and 3.5 parts by mass of TiH 2 with respect to 100 parts by mass of Ag and Cu in total.
- the brazing filler metal was applied to the main surface of the silicon nitride plate by screen printing (mesh number: 150) and dried to form a brazing filler metal layer.
- the application area of the brazing filler metal layer was the same as the area of the main surface of the copper plate to be joined to the silicon nitride plate.
- the thickness of the applied brazing filler metal layer was 0.03 mm.
- the copper plate was placed on top of the silicon nitride plate so that the brazing material layer was in contact with the main surface of the copper plate, creating a composite. In this way, 20 composites of silicon nitride plate, brazing material layer, and copper plate were created.
- a pair of carbon plates (thickness: 0.5 mm, density: 1.8 g/cm 3 ) were placed between adjacent composites to prepare a laminate. As shown in FIG. 9 , spacers were placed on both main surfaces of the laminate and fixed with a pressure jig.
- the laminate fixed by the pressure tool was heated to 400°C at a heating rate of 100°C/min in a vacuum ( 10-3 Pa), and degreasing was performed at 400°C for 3.5 hours. Thereafter, the temperature was raised from 400°C to 750°C at a heating rate of 100°C/min in an atmosphere of 10-3 Pa, and heating was performed at 750°C for 3 hours. Thereafter, the temperature was lowered to 600°C at a temperature drop rate of 100°C/min, and an annealing process was performed in which the temperature was held at 600°C for 2 hours. After cooling, the bonded body was removed from the pressure tool.
- circuit board evaluation ⁇ Elemental mapping of the layer state of the cross section of a circuit board>
- the cross section along the thickness direction of the obtained circuit board was observed at a magnification of 25,000 times using a scanning transmission electron microscope (STEM, Hitachi High-Tech Corporation, product name: HD-2700).
- the observed cross section was subjected to elemental mapping of Ti, Si, Ag, and Cu at an acceleration voltage of 200 kV using an energy dispersive X-ray analyzer (EDX, Oxford, product name: XMAXN 100TLE).
- the STEM image of Example 1 is shown in FIG. 11(A), and the results of elemental mapping are shown in FIG. 12(A), FIG. 12(B), FIG. 13(A), and FIG. 13(B).
- FIG. 11(B The STEM image of Comparative Example 1 is shown in FIG. 11(B), and the results of elemental mapping are shown in FIG. 14(A), FIG. 14(B), FIG. 15(A), and FIG. 15(B).
- Figures 12(A) and 14(A) show the distribution of titanium element
- Figures 12(B) and 14(B) show the distribution of silicon element
- Figures 13(A) and 15(A) show the distribution of silver element
- Figures 13(B) and 15(B) show the distribution of copper element.
- Example 1 The results of the STEM images and element mapping showed that in Example 1, the second bonding layer 22 was interposed between the first bonding layer 21 and the third bonding layer 23 so as to isolate them (see Figures 12(A), 12(B), and 13(A)).
- Comparative Example 1 the second bonding layer 22A was confirmed, but unlike the second bonding layer 22, the second bonding layer 22A was a discontinuous layer, and there were portions where the first bonding layer 21 and the third bonding layer 23 were in direct contact (see Figures 14(A), 14(B), and 15(A)).
- the line profile was performed at five arbitrary points in the STEM image, and the thicknesses of the first bonding layer 21 and the second bonding layer 22 were measured in the same manner.
- five arbitrary points were selected from the part where the second bonding layer 22A was formed and measured.
- the average value t1 of the thickness of the first bonding layer 21 and the average value t2 of the thickness of the second bonding layer at the five measured points were calculated, and t1/t2 was calculated.
- Table 1 also shows the maximum value, minimum value, and difference between the measured thicknesses of the bonding layers.
- Example 1 the second bonding layer was shown to be thicker than in Comparative Example 1. This indicates that the reaction between the silicon nitride plate and the brazing material layer due to heating has progressed sufficiently. Furthermore, the second bonding layer in the circuit board of Example 1 had a sufficiently large thickness, and the difference between the maximum and minimum values was also sufficiently small. This result confirmed that the reaction between the silicon nitride plate and the brazing material layer due to heating has progressed sufficiently with high uniformity.
- the atomic % of C (carbon) (C1) of the first bonding layer 21 was measured at a position 100 nm away from the position where titanium element was first detected at 10 atomic % or more along the line toward the copper plate 50 side, measured from the silicon nitride plate 10 side.
- the atomic % of C (carbon) (C3) of the third bonding layer 23 was measured at a position 1000 nm away from the position where it was first detected along the line toward the copper plate 50 side, measured from the position where it was first detected.
- Example 1 It was confirmed that in Example 1, the amount of carbon detected in the first bonding layer relative to the third bonding layer was less than in Comparative Example 1. Therefore, it was shown that in Example 1, the carbon derived from the binder in the first bonding layer was reduced by degreasing for a long time at high temperature. Therefore, it is considered that the reaction between carbon and titanium was suppressed, and the reaction between nitrogen derived from silicon nitride and titanium progressed sufficiently.
- Example 1 and Comparative Example 1 the copper plate bonded to the silicon nitride plate was pulled vertically upward using a tensile tester, and the bonding strength was measured at the time when the copper plate peeled off from the silicon nitride plate as shown in Figures 17(A) and 17(B).
- the stage of the tensile tester used was FGS-100VC manufactured by Nidec-Shimpo Corporation.
- the force gauge used was FGP-20 manufactured by Nidec-Shimpo Corporation.
- the peeling speed was 50 mm/min.
- the results were 650 N/cm in Example 1 and 450 N/cm in Comparative Example 1.
- SEM images of the peeled surface and elemental analysis by EDX of the fractured cross section were performed. The elemental analysis conditions were the same as those described above.
- FIG. 17(A) The appearance photograph of the copper plate of Example 1 when peeled off is shown in FIG. 17(A).
- the result of SEM image observation of the peeled surface of Example 1 is shown in FIG. 18(A).
- the result of elemental analysis by EDX of Example 1 is shown in FIG. 19(A).
- the appearance photograph of the copper plate of Comparative Example 1 when peeled off is shown in FIG. 17(B).
- the result of SEM image observation of the peeled surface of Comparative Example 1 is shown in FIG. 18(B).
- FIG. 19(B) The black parts 101 in FIG. 18(A) and FIG. 18(B) represent the parts containing silicon element, and the gray parts 105 represent the parts containing silver element.
- each dot of the dotted pattern part 102 in FIG. 19(A) and FIG. 19(B) represents the parts containing silicon element, and the black parts 106 represent the parts containing silver element.
- Example 1 From Figures 18(A), 18(B), 19(A), and 19(B), in Example 1, a large amount of silicon element was attached to the peeled surface, causing fracture near the silicon nitride plate 10. In contrast, in Comparative Example 1, the amount of silicon element attached to the peeled surface was less than in Example 1, and it was confirmed that interfacial peeling occurred between the third bonding layer 23 and the copper plate 50. In Example 1, more silicon element was attached to the peeled surface than in Comparative Example 1, and the bonding strength was also higher as described above. From these results, it was found that in the circuit board of Example 1, the first bonding layer and the second bonding layer were sufficiently formed, and therefore the silicon nitride plate 10 and the bonding layer 20 were bonded more firmly than in Comparative Example 1.
- the present disclosure provides a method for manufacturing a circuit board having high bonding strength, and a circuit board. It also provides a power module using such a circuit board.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Products (AREA)
Abstract
This circuit board manufacturing method comprises: a step for preparing a plurality of composite bodies each including a silicon nitride plate, a copper plate, and a brazing material layer that bonds the silicon nitride plate and the copper plate; a step for preparing a laminate by arranging a spacer between a pair of composite bodies; a step for debinding the brazing material layer by heating the laminate at the temperature range of 370-420°C for 3.5 hours or longer; and a step for joining the silicon nitride plate and the copper plate using the brazing material layer by heating the laminate.
Description
本開示は、回路基板の製造方法、回路基板、及びパワーモジュールに関する。
The present disclosure relates to a method for manufacturing a circuit board, a circuit board, and a power module.
電子デバイスに搭載される回路基板は、セラミック板と金属板とをろう材を介して接合することで製造される。接合時に、対象物を加圧治具により固定し、加圧することでろう材とセラミック板との反応を促進させている。特許文献1はスプリングワッシャを用いた加圧治具が開示されている。
Circuit boards mounted on electronic devices are manufactured by joining a ceramic plate and a metal plate with a brazing material. When joining, the objects are fixed with a pressure jig, and pressure is applied to promote the reaction between the brazing material and the ceramic plate. Patent Document 1 discloses a pressure jig that uses a spring washer.
加圧治具を用いてセラミック板と金属板とを接合する際に、加圧方向とは垂直方向において圧力の分布にばらつきが生じる。これによって、ろう材とセラミック板との反応の進行度合いにばらつきが生じ、接合強度が低下する。そこで、本開示では、高い接合強度を有する回路基板及びその製造方法を提供する。また、このような回路基板を有するパワーモジュールを提供する。
When a ceramic plate and a metal plate are joined using a pressure jig, the pressure distribution varies in the direction perpendicular to the pressure direction. This causes variation in the progress of the reaction between the brazing material and the ceramic plate, reducing the joining strength. Therefore, this disclosure provides a circuit board with high joining strength and a manufacturing method thereof. It also provides a power module having such a circuit board.
本開示の一側面は、以下の回路基板の製造方法を提供する。
One aspect of the present disclosure provides the following method for manufacturing a circuit board.
[1]窒化ケイ素板と、銅板と、前記窒化ケイ素板と前記銅板とを接着するろう材層と、を備える複数の複合体を作製する工程と、スペーサを一対の前記複合体の間に配置して積層体を作製する工程と、前記積層体を370~420℃の温度範囲で3.5時間以上加熱して、前記ろう材層を脱脂する工程と、前記積層体を加熱して前記窒化ケイ素板と前記銅板とを前記ろう材層で接合する工程と、を有する、回路基板の製造方法。
[1] A method for manufacturing a circuit board, comprising the steps of: preparing a plurality of composites each comprising a silicon nitride plate, a copper plate, and a brazing material layer that bonds the silicon nitride plate and the copper plate; preparing a laminate by placing a spacer between a pair of the composites; heating the laminate at a temperature range of 370 to 420°C for 3.5 hours or more to degrease the brazing material layer; and heating the laminate to bond the silicon nitride plate and the copper plate with the brazing material layer.
上記回路基板の製造方法は、積層体を370~420℃の温度範囲で、3.5時間以上加熱する。このため、ろう材層中の有機バインダ由来の炭素を十分に除去し、ろう材層と窒化ケイ素板との反応を促進することができる。これによって、ろう材層と窒化ケイ素板とがばらつきなく高い均一性で十分に反応する。その結果、高い接合強度を有する回路基板を得ることができる。
In the manufacturing method of the circuit board, the laminate is heated at a temperature range of 370 to 420°C for 3.5 hours or more. This allows the carbon from the organic binder in the brazing material layer to be sufficiently removed, and promotes the reaction between the brazing material layer and the silicon nitride plate. This allows the brazing material layer and the silicon nitride plate to react sufficiently and with high uniformity without variation. As a result, a circuit board with high bonding strength can be obtained.
上記[1]の回路基板の製造方法は、以下の[2]又は[3]であってもよい。
The method for manufacturing the circuit board described above in [1] may be the following [2] or [3].
[2]前記積層体を加熱する前記工程では、加圧治具を用いて、積層方向に沿って前記積層体を加圧した状態で加熱する、[1]に記載の回路基板の製造方法。
[3]前記ろう材層は、Ag、Cu、TiH2及びSnを含む、[1]又は[2]に記載の回路基板の製造方法。 [2] The method for manufacturing a circuit board described in [1], in the step of heating the laminate, a pressure tool is used to heat the laminate while it is pressed in the stacking direction.
[3] The method for manufacturing a circuit board according to [1] or [2], wherein the brazing material layer contains Ag, Cu, TiH2 and Sn.
[3]前記ろう材層は、Ag、Cu、TiH2及びSnを含む、[1]又は[2]に記載の回路基板の製造方法。 [2] The method for manufacturing a circuit board described in [1], in the step of heating the laminate, a pressure tool is used to heat the laminate while it is pressed in the stacking direction.
[3] The method for manufacturing a circuit board according to [1] or [2], wherein the brazing material layer contains Ag, Cu, TiH2 and Sn.
上記[2]の回路基板の製造方法では、加圧治具を用いて複合体をさらに加圧する。これにより、ろう材層と窒化ケイ素板との反応がより促進される、その結果、一層高い接合強度を有する回路基板を得ることができる。上記[3]の回路基板の製造方法は、ろう材層がAg、Cu、TiH2及びSnを含む。ろう材層がこのような組成であることによって、加熱時に窒化ケイ素板とろう材層との間に窒化チタン層が形成されやすくなる。したがって、一層高い接合強度を有する回路基板を得ることができる。
In the method for producing a circuit board described above in [2], the composite is further pressurized using a pressing tool. This further promotes the reaction between the brazing material layer and the silicon nitride plate, resulting in a circuit board with even higher bonding strength. In the method for producing a circuit board described above in [3], the brazing material layer contains Ag, Cu, TiH2 , and Sn. Such a composition of the brazing material layer makes it easier for a titanium nitride layer to form between the silicon nitride plate and the brazing material layer during heating. Therefore, a circuit board with even higher bonding strength can be obtained.
本開示の一側面は、以下の回路基板を提供する。
One aspect of the present disclosure provides the following circuit board:
[4]窒化ケイ素板と、銅板と、前記窒化ケイ素板と前記銅板とを接合する接合層と、を備える回路基板であって、前記接合層が、前記窒化ケイ素板側から、窒化チタンを含む第1接合層と、Siを含む第2接合層と、Agを含む第3接合層とをこの順に有し、前記第1接合層中の炭素の含有量をC1原子%、前記第3接合層中の炭素の含有量をC3原子%としたときに、C1/C3の平均値が0.5以下である、回路基板。
[4] A circuit board comprising a silicon nitride plate, a copper plate, and a bonding layer bonding the silicon nitride plate and the copper plate, the bonding layer having, from the silicon nitride plate side, a first bonding layer containing titanium nitride, a second bonding layer containing Si, and a third bonding layer containing Ag, in that order, and when the carbon content in the first bonding layer is C1 atomic % and the carbon content in the third bonding layer is C3 atomic %, the average value of C1/C3 is 0.5 or less.
上記[4]の回路基板は、C1/C3の平均値が0.5以下であるため、第1接合層中のバインダ由来の炭素を十分に除去できている。このような回路基板では、第1接合層、第2接合層、及び第3接合層が十分に形成されている。したがって、窒化ケイ素板と銅板との接合強度を高くすることができる。
The circuit board of [4] above has an average C1/C3 value of 0.5 or less, so the carbon derived from the binder in the first bonding layer is sufficiently removed. In such a circuit board, the first bonding layer, the second bonding layer, and the third bonding layer are sufficiently formed. Therefore, the bonding strength between the silicon nitride plate and the copper plate can be increased.
上記[4]の回路基板の製造方法は、以下の[5]~[7]のいずれか一つであってもよい。
The manufacturing method for the circuit board described above in [4] may be any one of the following [5] to [7].
[5]前記第1接合層の厚さの最大値と最小値の差が70nm以下である[4]に記載の回路基板。
[6]前記第2接合層の厚さが50nm以上である、[4]又は[5]に記載の回路基板。
[7]前記第1接合層の厚さの平均値をt1、前記第2接合層の厚さの平均値をt2としたときに、t1/t2が5以下である、[4]~[6]のいずれか一つに記載の回路基板。 [5] The circuit board according to [4], wherein the difference between the maximum and minimum thicknesses of the first bonding layer is 70 nm or less.
[6] The circuit board according to [4] or [5], wherein the second bonding layer has a thickness of 50 nm or more.
[7] The circuit board according to any one of [4] to [6], wherein t1/t2 is 5 or less, when the average thickness of the first bonding layer is t1 and the average thickness of the second bonding layer is t2.
[6]前記第2接合層の厚さが50nm以上である、[4]又は[5]に記載の回路基板。
[7]前記第1接合層の厚さの平均値をt1、前記第2接合層の厚さの平均値をt2としたときに、t1/t2が5以下である、[4]~[6]のいずれか一つに記載の回路基板。 [5] The circuit board according to [4], wherein the difference between the maximum and minimum thicknesses of the first bonding layer is 70 nm or less.
[6] The circuit board according to [4] or [5], wherein the second bonding layer has a thickness of 50 nm or more.
[7] The circuit board according to any one of [4] to [6], wherein t1/t2 is 5 or less, when the average thickness of the first bonding layer is t1 and the average thickness of the second bonding layer is t2.
上記[5]の回路基板は、第1接合層の厚さの最大値と最小値の差が70nm以下である。第1接合層がこのような厚さである回路基板では、第1接合層が広い範囲でばらつきなく十分に形成されている。したがって、窒化ケイ素板と銅板との接合強度を十分に高くすることができる。上記[6]の回路基板は、第2接合層の厚さが50nm以上である。このような回路基板では、第2接合層が十分な厚さで形成されているため、窒化ケイ素板と銅板との接合強度を十分に高くすることができる。
In the circuit board of [5] above, the difference between the maximum and minimum thicknesses of the first bonding layer is 70 nm or less. In a circuit board having a first bonding layer of such a thickness, the first bonding layer is sufficiently formed without variation over a wide range. Therefore, the bonding strength between the silicon nitride plate and the copper plate can be sufficiently high. In the circuit board of [6] above, the second bonding layer has a thickness of 50 nm or more. In such a circuit board, the second bonding layer is formed with a sufficient thickness, so that the bonding strength between the silicon nitride plate and the copper plate can be sufficiently high.
上記[7]の回路基板は、第1接合層の厚さの平均値t1、第2接合層の厚さの平均値をt2としたときに、t1/t2が5以下である。第1接合層の厚さの平均値及び第2接合層の厚さの平均値がこの範囲である回路基板は、第1接合層と第2接合層がバランスよく形成されている。したがって、窒化ケイ素板と銅板の接合強度を十分に高くすることができる。
In the circuit board of [7] above, when the average thickness of the first bonding layer is t1 and the average thickness of the second bonding layer is t2, t1/t2 is 5 or less. In a circuit board in which the average thickness of the first bonding layer and the average thickness of the second bonding layer are in this range, the first bonding layer and the second bonding layer are formed in a well-balanced manner. Therefore, the bonding strength between the silicon nitride plate and the copper plate can be made sufficiently high.
本開示の一側面は、以下のパワーモジュールを提供する。
One aspect of the present disclosure provides the following power module:
[8]上記[4]~[7]のいずれか一つに記載の回路基板と、前記回路基板の前記銅板に電気的に接続された半導体素子と、を備えるパワーモジュール。
[8] A power module comprising a circuit board described in any one of [4] to [7] above and a semiconductor element electrically connected to the copper plate of the circuit board.
上記パワーモジュールは、回路基板の窒化ケイ素板と銅板の接合強度が高い。したがって、上記パワーモジュールは耐久性に優れる。
The power module has high bonding strength between the silicon nitride plate and the copper plate of the circuit board. Therefore, the power module has excellent durability.
本開示は、高い接合強度を有する回路基板及びその製造方法を提供することができる。また、このような回路基板を有するパワーモジュールを提供することができる。
The present disclosure can provide a circuit board with high bonding strength and a manufacturing method thereof. It can also provide a power module having such a circuit board.
以下、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。本開示に明示される数値範囲の上限値又は下限値は、実施例に示されるいずれかの値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせてもよい。本開示において例示する材料又は成分は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。また、説明に使用される上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。
Below, an embodiment of the present disclosure will be described. However, the following embodiment is an example for explaining the present disclosure, and is not intended to limit the present disclosure to the following content. The upper or lower limit of the numerical range specified in this disclosure may be replaced with any value shown in the examples. Furthermore, the upper and lower limit values described individually may be combined in any combination. Unless otherwise specified, the materials or components exemplified in this disclosure may be used alone or in combination of two or more types. In the description, the same elements or elements having the same functions are given the same reference numerals, and duplicate descriptions are omitted. Furthermore, the positional relationships such as up, down, left, and right used in the description shall be based on the positional relationships shown in the drawings, unless otherwise specified.
一実施形態に係る回路基板の製造方法を、図1~9を参照しながら以下に説明する。本実施形態に係る回路基板の製造方法は、窒化ケイ素板10と、銅板50と、これらを接着するろう材層30と、を備える複数の複合体40を作製する工程(a)(図1参照)と、スペーサ70を、一対の複合体40の間に配置して積層体80を作製する工程(b)(図2参照)と、積層体80を加熱してろう材層を脱脂する工程(c)と、積層体80を加熱して窒化ケイ素板10と銅板50とをろう材層30で接合して接合体を得る工程(d)と、接合体から回路基板を作製する工程(e)と、を有する。
The manufacturing method of a circuit board according to one embodiment will be described below with reference to Figures 1 to 9. The manufacturing method of a circuit board according to this embodiment includes the steps of (a) (see Figure 1) of manufacturing a plurality of composites 40 each including a silicon nitride plate 10, a copper plate 50, and a brazing material layer 30 that bonds them together, (b) (see Figure 2) of placing a spacer 70 between a pair of composites 40 to manufacture a laminate 80, (c) of heating the laminate 80 to degrease the brazing material layer, (d) of heating the laminate 80 to bond the silicon nitride plate 10 and the copper plate 50 with the brazing material layer 30 to obtain a joint, and (e) of manufacturing a circuit board from the joint.
工程(a)において、窒化ケイ素板10は、窒化ケイ素粉末を焼結した窒化ケイ素焼結体により作製されるものであってよい。窒化ケイ素板10の形状は板状であれば特に制限されない。窒化ケイ素板10の厚さは、例えば0.2~2mmであってよく、0.32~1.1mmであってもよい。
In step (a), the silicon nitride plate 10 may be made of a silicon nitride sintered body obtained by sintering silicon nitride powder. The shape of the silicon nitride plate 10 is not particularly limited as long as it is plate-like. The thickness of the silicon nitride plate 10 may be, for example, 0.2 to 2 mm, or 0.32 to 1.1 mm.
銅板50は、窒化ケイ素板10の主面に接合できる形状であれば特に制限されない。銅板50の厚さは、例えば0.1~1.2mmであってよく、0.2~1.0mmであってもよい。銅板50は表面にめっき膜を有していてもよい。
The copper plate 50 is not particularly limited in shape as long as it can be bonded to the main surface of the silicon nitride plate 10. The thickness of the copper plate 50 may be, for example, 0.1 to 1.2 mm, or may be 0.2 to 1.0 mm. The copper plate 50 may have a plating film on its surface.
窒化ケイ素板10の主面には区画線を形成してもよい。例えば、窒化ケイ素板10の主面にレーザー光を照射して、区画線としてスクライブラインを設けてもよい。照射するレーザー光としては、例えば、炭酸ガスレーザー及びYAGレーザー等が挙げられる。このようなレーザー源からレーザー光を間欠的に照射することによって、区画線となるスクライブラインを形成する。このような区画線は、接合体を分割する際の切断線として利用することができる。
A dividing line may be formed on the main surface of the silicon nitride plate 10. For example, a laser beam may be irradiated onto the main surface of the silicon nitride plate 10 to provide a scribe line as the dividing line. Examples of the laser beam to be irradiated include a carbon dioxide laser and a YAG laser. By intermittently irradiating the laser beam from such a laser source, a scribe line that serves as the dividing line is formed. Such a dividing line can be used as a cutting line when dividing the bonded body.
窒化ケイ素板10の主面に塗布するろう材は、例えば、銀、銅、錫、活性金属、及びこれらを構成元素とする金属化合物、有機溶媒、並びに有機バインダ等を含有してよい。ろう材の粘度は、例えば5~20Pa・sであってよい。ろう材における有機溶媒の含有量は、例えば、5~25質量%、有機バインダの含有量は、例えば、2~15質量%であってよい。
The brazing material applied to the main surface of the silicon nitride plate 10 may contain, for example, silver, copper, tin, active metals, metal compounds containing these as constituent elements, an organic solvent, and an organic binder. The viscosity of the brazing material may be, for example, 5 to 20 Pa·s. The organic solvent content in the brazing material may be, for example, 5 to 25 mass %, and the organic binder content may be, for example, 2 to 15 mass %.
ろう材は、金属単体又は金属化合物(合金)の形態で、銀を含んでよく、銀に加えて、銅、錫、及び活性金属からなる群より選ばれる一種又は二種以上の金属を含有してよい。二種以上の金属は合金となっていてもよい。活性金属は、チタン、ハフニウム、ジルコニウム、及びニオブからなる群より選ばれる一種又は二種以上を含んでいてよい。ろう材における銀の含有量は、Ag換算で45~95質量%であってよく、50~95質量%であってもよい。ろう材における銀及び銅の合計含有量は、それぞれAg及びCuに換算して65~100質量%であってよく、70~99質量%であってよく、90~98質量%であってもよい。
The brazing filler metal may contain silver in the form of a metal element or a metal compound (alloy), and may contain, in addition to silver, one or more metals selected from the group consisting of copper, tin, and active metals. The two or more metals may be in the form of an alloy. The active metal may contain one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium. The silver content in the brazing filler metal may be 45 to 95 mass% or 50 to 95 mass% in terms of Ag. The total silver and copper content in the brazing filler metal may be 65 to 100 mass%, 70 to 99 mass%, or 90 to 98 mass% in terms of Ag and Cu, respectively.
ろう材における活性金属の含有量は、Ag及びCuの合計100質量部に対して、0.5~8質量部であってよい。活性金属の含有量を0.5質量部以上とすることで、窒化ケイ素板とろう材との接合性を向上することができる。一方、活性金属の含有量を8質量部以下とすることで、接合界面に脆弱な合金層が形成されることを抑制できる。
The content of the active metal in the brazing filler metal may be 0.5 to 8 parts by mass per 100 parts by mass of the total of Ag and Cu. By making the content of the active metal 0.5 parts by mass or more, it is possible to improve the bond between the silicon nitride plate and the brazing filler metal. On the other hand, by making the content of the active metal 8 parts by mass or less, it is possible to suppress the formation of a brittle alloy layer at the bonded interface.
ろう材に含有される上記金属は、窒化物、酸化物、炭化物又は水素化物として含まれていてもよい。一例として、ろう材は、窒化チタン及び/又は水素化チタン(TiH2)を含んでいてよい。これによって、窒化ケイ素板10と銅板50との接合強度を十分に高くすることができる。AgとCuの合計100質量部に対するTiH2の含有量は例えば1~8質量部であってよい。
The above metals contained in the brazing material may be contained as nitrides, oxides, carbides, or hydrides. As an example, the brazing material may contain titanium nitride and/or titanium hydride (TiH 2 ). This allows the bonding strength between the silicon nitride plate 10 and the copper plate 50 to be sufficiently high. The content of TiH 2 relative to a total of 100 parts by mass of Ag and Cu may be, for example, 1 to 8 parts by mass.
ろう材における錫の含有量は、Ag及びCuの合計100質量部に対して、0.5~6質量部であってよい。錫の含有量を0.5質量部以上とすることで、窒化ケイ素板10とろう材との接合性を向上することができる。一方、錫の含有量を5質量部以下とすることで、接合界面に脆弱な合金層が形成されることを抑制できる。
The tin content in the brazing filler metal may be 0.5 to 6 parts by mass per 100 parts by mass of the total of Ag and Cu. By making the tin content 0.5 parts by mass or more, it is possible to improve the bond between the silicon nitride plate 10 and the brazing filler metal. On the other hand, by making the tin content 5 parts by mass or less, it is possible to prevent the formation of a brittle alloy layer at the bonding interface.
窒化ケイ素板10の主面に、ロールコーター法、スクリーン印刷法、又は転写法等の方法によってろう材を塗布及び乾燥して一つ又は複数のろう材層30を設ける。ろう材層30は、例えば、Ag、Cu、TiH2及びSnを含んでいてもよい。ろう材層30は、窒化ケイ素板10に銅板50が接合される位置に設ければよい。ろう材層30を形成したら、ろう材層30を挟むようにして窒化ケイ素板10と銅板50とを積層して複数の複合体40を作製する。
A brazing material is applied to the main surface of the silicon nitride plate 10 by a roll coater method, a screen printing method, a transfer method, or the like, and then dried to provide one or more brazing material layers 30. The brazing material layer 30 may contain, for example, Ag, Cu, TiH2 , and Sn. The brazing material layer 30 may be provided at a position where the copper plate 50 is joined to the silicon nitride plate 10. After the brazing material layer 30 is formed, the silicon nitride plate 10 and the copper plate 50 are laminated with the brazing material layer 30 sandwiched therebetween to produce a plurality of composite bodies 40.
工程(b)では、図2に示すように複合体40と、スペーサ70とが積層方向に隣接するように積層し、積層体80を作製する。スペーサ70には市販の炭素製プレートを使用してもよい。炭素製プレートの密度は1.6~1.9g/cm3であってもよい。炭素製プレートの厚さは0.5~1.0mmであってもよい。面粗度Raは5~10μmであってもよい。スペーサ70及び複合体40は、任意の個数を繰り返して積層して積層体80を形成してもよい。積層する複合体40及びスペーサ70の個数は特に制限されず、使用する加熱炉のサイズによって調節してもよい。このように積層することで、複数の複合体40を一度に加熱して、効率的に接合体を作製することができる。
In step (b), as shown in FIG. 2, the composite 40 and the spacer 70 are laminated so as to be adjacent to each other in the lamination direction to produce a laminate 80. A commercially available carbon plate may be used for the spacer 70. The density of the carbon plate may be 1.6 to 1.9 g/cm 3. The thickness of the carbon plate may be 0.5 to 1.0 mm. The surface roughness Ra may be 5 to 10 μm. The spacer 70 and the composite 40 may be repeatedly laminated in any number to form the laminate 80. The number of composites 40 and spacers 70 to be laminated is not particularly limited, and may be adjusted depending on the size of the heating furnace to be used. By laminating in this manner, a plurality of composites 40 can be heated at once to efficiently produce a bonded body.
積層体80は、積層方向に加圧されながら加熱されてもよい。積層体80を加圧する方法の一例を、図3、図4、図5、図6、図7、及び図8を参照して以下に説明する。図3の構造体90は、加圧治具1と、加圧治具1のベースプレート2とカバープレート3の間に挟まれた積層体80とを備える。積層体80は、複数のスペーサ70及び複数の複合体40が交互に重ねられて構成される。積層体80は平面視で矩形であるが、他の形状であってもよい。積層体80と加圧治具1との間にはスペーサ70が配置されている。スペーサ70は、複合体40同士の接合及び複合体40と加圧治具1との接合を阻止する機能も有する。
The laminate 80 may be heated while being pressurized in the stacking direction. An example of a method for pressurizing the laminate 80 is described below with reference to Figures 3, 4, 5, 6, 7, and 8. The structure 90 in Figure 3 includes a pressurizing jig 1 and a laminate 80 sandwiched between a base plate 2 and a cover plate 3 of the pressurizing jig 1. The laminate 80 is formed by alternately stacking a plurality of spacers 70 and a plurality of composites 40. The laminate 80 is rectangular in plan view, but may have other shapes. A spacer 70 is disposed between the laminate 80 and the pressurizing jig 1. The spacer 70 also has the function of preventing bonding between the composites 40 and bonding between the composites 40 and the pressurizing jig 1.
図3に示すように、加圧治具1は、積層体80が載置される板状のベースプレート2(土台部)と、ベースプレート2に対向して配置されたカバープレート3(カバー部)とを備えている。カバープレート3とベースプレート2は、積層体80を挟持する。また、加圧治具1は、カバープレート3上に配置された複数のスプリングワッシャ4と、スプリングワッシャ4上に配置された加圧プレート5(加圧部)とを備えている。また、加圧治具1は、加圧プレート5によってスプリングワッシャ4を圧縮して積層体80を加圧する加圧構造6を有する。
As shown in FIG. 3, the pressing jig 1 comprises a plate-shaped base plate 2 (foundation portion) on which the laminate 80 is placed, and a cover plate 3 (cover portion) arranged opposite the base plate 2. The cover plate 3 and the base plate 2 sandwich the laminate 80. The pressing jig 1 also comprises a plurality of spring washers 4 arranged on the cover plate 3, and a pressing plate 5 (pressing portion) arranged on the spring washers 4. The pressing jig 1 also has a pressing structure 6 that compresses the spring washers 4 with the pressing plate 5 to pressurize the laminate 80.
ベースプレート2は、例えば矩形状であり、平面視で積層体80からはみ出た領域、つまり積層体80に重なっていない張出領域2aを有する。ベースプレート2の張出領域2aには、ベースプレート2の短辺に沿うように複数(例えば、二本)の支柱8(支柱部)が立設されている。また、支柱8は、ベースプレート2の長手方向(左右方向)の両側で対向して配置されており、左右で対向する一対の支柱8同士の間に積層体80が配置されている。支柱8の上部には、係止爪9が挿通される係合孔8aが形成されている。
The base plate 2 is, for example, rectangular, and has an area that extends beyond the laminate 80 in a plan view, i.e., a protruding area 2a that does not overlap the laminate 80. In the protruding area 2a of the base plate 2, multiple (for example, two) pillars 8 (pillar portions) are erected along the short sides of the base plate 2. The pillars 8 are also arranged opposite each other on both sides of the longitudinal direction (left-right direction) of the base plate 2, and the laminate 80 is arranged between a pair of pillars 8 facing each other on the left and right. An engagement hole 8a is formed in the upper part of the pillar 8, through which a locking claw 9 is inserted.
カバープレート3は、積層体80の形状に対応した矩形状であり、図5及び図7に示すように、一方の表面3a(以下、「下面」と称する)と他方の表面3b(以下、「上面」と称する)とを有する。下面3aは平坦面であり、カバープレート3寄りに配置されるスペーサ70に当接する。図3に示すように、上面3bには、複数の座ぐり3cが形成されており、各座ぐり3c内にはスプリングワッシャ4が収納される。座ぐり3cの深さは、例えば螺旋状のスプリングワッシャ4が圧縮されて平坦になった際に、スプリングワッシャ4の全体が収まる程度の寸法であってよい。座ぐり3cは、平面視でドーナツ状(環状)を呈し、平面視で環状のスプリングワッシャ4が収まり、スプリングワッシャ4の位置ずれを防止する。座ぐり3cは、スプリングワッシャ4の位置決め部として機能する。
The cover plate 3 has a rectangular shape corresponding to the shape of the laminate 80, and has one surface 3a (hereinafter referred to as the "lower surface") and the other surface 3b (hereinafter referred to as the "upper surface") as shown in Figs. 5 and 7. The lower surface 3a is flat and abuts against the spacer 70 arranged closer to the cover plate 3. As shown in Fig. 3, the upper surface 3b has a plurality of counterbores 3c formed therein, and the spring washer 4 is housed in each counterbores 3c. The depth of the counterbores 3c may be a dimension such that the entire spring washer 4 is housed therein when the helical spring washer 4 is compressed and flattened. The counterbores 3c are donut-shaped (annular) in plan view, and the annular spring washer 4 is housed therein, preventing the spring washer 4 from shifting out of position. The counterbores 3c function as positioning portions for the spring washer 4.
図5に示すように、加圧プレート5は、平面視でベースプレート2の張出領域2aに対向する余剰領域5aを有する。余剰領域5aには、図3及び図4に示すように、支柱8が貫通する支柱貫通孔5bが形成されている。余剰領域5aの上面には、支柱貫通孔5bを通るように収納溝5cが設けられている。収納溝5cには、係止爪9が収まる。
As shown in FIG. 5, the pressure plate 5 has a surplus area 5a that faces the protruding area 2a of the base plate 2 in a plan view. As shown in FIG. 3 and FIG. 4, a post through hole 5b through which the post 8 passes is formed in the surplus area 5a. A storage groove 5c is provided on the upper surface of the surplus area 5a so as to pass through the post through hole 5b. The locking claw 9 fits into the storage groove 5c.
加圧プレート5は、カバープレート3に重ねるように配置され、更に、スプリングワッシャ4に当接するように押し下げられる。加圧プレート5を押し下げる際、加圧プレート5の余剰領域5aに設けられた支柱貫通孔5bには支柱8が通される。支柱8の上部は支柱貫通孔5bの上方に突き出る。支柱8の上部には、係合孔8aが設けられており、係合孔8aには係止爪9(係止部)が挿通される。係止爪9は、横方向から係合孔8aを貫通すると共に、加圧プレート5のスプリングワッシャ4に当接する側の表面(下面)とは反対側の表面(上面)に当接して加圧プレート5を係止する。加圧プレート5の上面には、係止爪9の外形に対応する収納溝5cが形成されており、係止爪9は収納溝5cに沿ってスライドする。
The pressure plate 5 is placed so as to overlap the cover plate 3, and is further pressed down so as to abut against the spring washer 4. When the pressure plate 5 is pressed down, a support 8 is passed through the support through hole 5b provided in the excess area 5a of the pressure plate 5. The upper part of the support 8 protrudes above the support through hole 5b. An engagement hole 8a is provided in the upper part of the support 8, and a locking claw 9 (locking portion) is inserted into the engagement hole 8a. The locking claw 9 passes through the engagement hole 8a from the lateral direction and locks the pressure plate 5 by abutting against the surface (upper surface) of the pressure plate 5 opposite the surface (lower surface) that abuts against the spring washer 4. A storage groove 5c corresponding to the outer shape of the locking claw 9 is formed in the upper surface of the pressure plate 5, and the locking claw 9 slides along the storage groove 5c.
係止爪9が加圧プレート5を係止すると、加圧プレート5は上方への移動を規制される。加圧プレート5の移動の規制により、スプリングワッシャ4の復元が阻止され、スプリングワッシャ4は圧縮状態で保持される。本実施形態に係る加圧構造6は、少なくとも加圧プレート5、支柱8、係合孔8a及び係止爪9を備えて構成されている。
When the locking claw 9 locks the pressure plate 5, the pressure plate 5 is restricted from moving upward. By restricting the movement of the pressure plate 5, the spring washer 4 is prevented from returning to its original position, and the spring washer 4 is held in a compressed state. The pressure structure 6 in this embodiment is configured to include at least the pressure plate 5, the support 8, the engagement hole 8a, and the locking claw 9.
スプリングワッシャ4は、例えば、インコネル750又はインコネル718等の合金、窒化ケイ素、或いはカーボンコンポジット等によって形成されている。スプリングワッシャ4は、例えば、カバープレート3に当接していない状態で非圧縮状態である(図8参照)。スプリングワッシャ4は、重なることなく螺旋状に巻かれ、且つ両端部4a、4bが離隔している圧縮バネの一例である。より具体的に説明すると、スプリングワッシャ4はC字状の形状を呈し、両端部4a、4bは、互いに離隔すると共に、螺旋状を仮定した場合の軸線方向(例えば上下方向)にずれている。ここで、カバープレート3の座ぐり3c内で、座ぐり3cの底に当接している一方の端部を下端部4aとし、反対側の他方の端部を上端部4bとする。スプリングワッシャ4は、カバープレート3を介し、加圧構造6によって圧縮されると下端部4aと上端部4bは近接し、スプリングワッシャ4の螺旋状は解消され、実質的に平坦な形状になる(図7参照)。
The spring washer 4 is formed of, for example, an alloy such as Inconel 750 or Inconel 718, silicon nitride, or a carbon composite. The spring washer 4 is in an uncompressed state when it is not in contact with the cover plate 3 (see FIG. 8). The spring washer 4 is an example of a compression spring that is wound in a spiral shape without overlapping and has both ends 4a and 4b spaced apart. More specifically, the spring washer 4 has a C-shape, and both ends 4a and 4b are spaced apart from each other and are offset in the axial direction (for example, vertical direction) assuming a spiral shape. Here, within the countersink 3c of the cover plate 3, one end that is in contact with the bottom of the countersink 3c is the lower end 4a, and the other end on the opposite side is the upper end 4b. When the spring washer 4 is compressed by the pressure structure 6 through the cover plate 3, the lower end 4a and the upper end 4b approach each other, the spiral shape of the spring washer 4 is eliminated, and the spring washer 4 becomes substantially flat (see Figure 7).
複数のスプリングワッシャ4は、カバープレート3の外縁3xからはみ出すことなく、カバープレート3の外縁3xよりも内側に収まるように配置されている。また、複数のスプリングワッシャ4は、カバープレート3の外縁3xに沿って配置されている。例えば、本実施形態に係るカバープレート3の外縁3xは矩形状である。スプリングワッシャ4は、外縁3xの各短辺に沿って3個が並んで配置されており、各長辺に沿って5個のスプリングワッシャ4が並んで配置されている。複数のスプリングワッシャ4をカバープレート3の外縁3xに沿って配置することにより、カバープレート3を介して積層体80を均一に加圧し易くなる。
The multiple spring washers 4 are arranged so as to fit inside the outer edge 3x of the cover plate 3 without protruding beyond the outer edge 3x of the cover plate 3. The multiple spring washers 4 are also arranged along the outer edge 3x of the cover plate 3. For example, the outer edge 3x of the cover plate 3 according to this embodiment is rectangular. Three spring washers 4 are arranged in a row along each short side of the outer edge 3x, and five spring washers 4 are arranged in a row along each long side. By arranging the multiple spring washers 4 along the outer edge 3x of the cover plate 3, it becomes easier to apply uniform pressure to the laminate 80 via the cover plate 3.
複数のスプリングワッシャ4は、等間隔で配置されている。具体的には、複数のスプリングワッシャ4は、3行、5列(複数行、複数列)となるように計15個が配置されており、全てのスプリングワッシャ4は等間隔で配置されている。スプリングワッシャ4を等間隔で配置することにより、カバープレート3によって積層体80を均一に加圧し易くなる。なお、カバープレート3の外縁3xに沿って配置されている複数のスプリングワッシャ4のみを等間隔で配置するようにしてもよい。また、平面視でカバープレート3の中心を規定した場合に、この中心を基準にして点対称となるように複数のスプリングワッシャ4を配置するようにしてもよい。
The multiple spring washers 4 are arranged at equal intervals. Specifically, a total of 15 spring washers 4 are arranged in three rows and five columns (multiple rows and multiple columns), and all of the spring washers 4 are arranged at equal intervals. By arranging the spring washers 4 at equal intervals, it becomes easier for the cover plate 3 to apply uniform pressure to the laminate 80. Note that only the multiple spring washers 4 arranged along the outer edge 3x of the cover plate 3 may be arranged at equal intervals. Furthermore, when the center of the cover plate 3 is defined in a plan view, the multiple spring washers 4 may be arranged so as to be point symmetrical with respect to this center.
スプリングワッシャ4の下端部4aと上端部4bとの間(両端部同士の間)には離隔領域4xが形成されている。複数のスプリングワッシャ4は、離隔領域4xがカバープレート3の外縁3xに面するように配置されている。つまり、スプリングワッシャ4を平面視でリング状と仮定した場合に、スプリングワッシャ4は、離隔領域4xがリング状の中心点よりもカバープレート3の外縁3xに近い位置となるように配置されている。更に補足すると、複数のスプリングワッシャ4の各離隔領域4xを結ぶような線を仮定した場合に、この線は、カバープレート3の外縁3xに沿うように配置されている。
A separation region 4x is formed between the lower end 4a and upper end 4b of the spring washer 4 (between both ends). The multiple spring washers 4 are arranged so that the separation region 4x faces the outer edge 3x of the cover plate 3. In other words, if the spring washer 4 is assumed to be ring-shaped in a plan view, the spring washer 4 is arranged so that the separation region 4x is closer to the outer edge 3x of the cover plate 3 than the center point of the ring. To further add, if a line is assumed to connect the separation regions 4x of the multiple spring washers 4, this line is arranged to run along the outer edge 3x of the cover plate 3.
スプリングワッシャ4が圧縮された際、スプリングワッシャ4は、離隔領域4xを挟んで対向する下端部4aと上端部4bとにおける反発力(加圧力)が最も大きくなる。この離隔領域4xがカバープレート3の外縁3xに面するように配置することで、カバープレート3の外縁3xに沿った部分を確実に抑え込みやすくなり、カバープレート3を介して積層体80を均一に加圧し易くなる。
When the spring washer 4 is compressed, the repulsive force (pressure) is greatest at the lower end 4a and upper end 4b, which face each other across the separation area 4x. By arranging this separation area 4x to face the outer edge 3x of the cover plate 3, it becomes easier to reliably hold down the portion along the outer edge 3x of the cover plate 3, and it becomes easier to apply uniform pressure to the laminate 80 via the cover plate 3.
図9は、図8の複合体40及びスペーサ70の積層構造の積層方向に沿う断面の一部を拡大して示している。図9では、ベースプレート2からカバープレート3に向かって、スペーサ70、積層体80、スペーサ70がこの順に積層されている。積層体80は一対の複合体40でスペーサ70を挟むように積層したものである。複合体40は、一対の銅板50がろう材層30を介して、窒化ケイ素板10を挟むように積層したものである。積層体80は、複合体40とスペーサ70を任意の個数を繰り返し積層して構成されてもよい。このような積層構造であることによって、積層体80を加圧したまま工程(c)及び工程(d)で加熱する際に、反応のばらつきを抑え、高い接合強度を有する接合体を得ることができる。なお、積層体80を構成するスペーサ70及び複合体40の個数は特に限定されない。
9 shows an enlarged cross section of the laminated structure of the composite 40 and the spacer 70 in FIG. 8 along the lamination direction. In FIG. 9, the spacer 70, the laminate 80, and the spacer 70 are laminated in this order from the base plate 2 toward the cover plate 3. The laminate 80 is formed by laminating a pair of composites 40 so as to sandwich the spacer 70. The composite 40 is formed by laminating a pair of copper plates 50 so as to sandwich the silicon nitride plate 10 with the brazing material layer 30 interposed therebetween. The laminate 80 may be formed by repeatedly laminating any number of composites 40 and spacers 70. This laminated structure makes it possible to suppress the variation in reaction when the laminate 80 is heated in steps (c) and (d) while being pressurized, and to obtain a joint having high joint strength. The number of spacers 70 and composites 40 constituting the laminate 80 is not particularly limited.
工程(c)は、ろう材層30中の炭素を脱脂する工程である。脱脂する工程の加熱温度は、370~420℃であり、380~415℃であってもよく、390~410℃であってもよい。また、上記加熱温度における加熱時間は3.5時間以上であり、3.75時間以上であってもよい。また、全体の製造工程にかかる時間を短縮する観点から上記加熱時間は5時間以下であってもよく、4.5時間以下であってもよい。脱脂する工程では、ろう材層30に含まれる有機バインダ由来の炭素を熱分解して低減することができる。工程(d)での加熱時における炭素とチタンの反応を抑制し、窒化チタン及びケイ化チタンの生成を十分に進行させることができる。
Step (c) is a step of degreasing the carbon in the brazing material layer 30. The heating temperature in the degreasing step is 370 to 420°C, may be 380 to 415°C, or may be 390 to 410°C. The heating time at the above heating temperature is 3.5 hours or more, or may be 3.75 hours or more. From the viewpoint of shortening the time required for the entire manufacturing process, the heating time may be 5 hours or less, or may be 4.5 hours or less. In the degreasing step, carbon derived from the organic binder contained in the brazing material layer 30 can be thermally decomposed and reduced. The reaction between carbon and titanium during heating in step (d) can be suppressed, and the generation of titanium nitride and titanium silicide can be sufficiently promoted.
加熱炉内の雰囲気は窒素等の不活性ガスであってよく、大気圧未満の減圧下で行ってもよく、真空下で行ってもよい。加熱炉は、複数の複合体40を連続的に製造する連続式のものであってもよいし、一つ又は複数の複合体40をバッチ式で製造するものであってもよい。
The atmosphere in the heating furnace may be an inert gas such as nitrogen, and may be under reduced pressure below atmospheric pressure or under vacuum. The heating furnace may be of a continuous type that continuously produces multiple composites 40, or may be of a batch type that produces one or multiple composites 40.
工程(d)での加熱温度は、反応を促進する観点から、700~900℃であってもよく、750~850℃であってもよい。加熱時間は3時間以下であってもよく、2時間以下であってもよい。加熱時の炉内の圧力は、常圧、減圧、真空のいずれであってもよい。反応を促進する観点から、炉内の圧力は10-2~10-7Paであってもよい。
The heating temperature in step (d) may be 700 to 900° C. or 750 to 850° C. from the viewpoint of promoting the reaction. The heating time may be 3 hours or less or 2 hours or less. The pressure in the furnace during heating may be any of normal pressure, reduced pressure, and vacuum. From the viewpoint of promoting the reaction, the pressure in the furnace may be 10 −2 to 10 −7 Pa.
工程(c)及び工程(d)での加熱炉内の昇温速度は70~120℃/minであってよく、80~110℃/minであってもよい。昇温速度がこの範囲であることにより、全体の製造工程にかかる時間を十分に短縮することができる。また、加熱後の降温速度についても上記昇温速度と同様の範囲であってよい。
The heating rate in the heating furnace in steps (c) and (d) may be 70 to 120°C/min, or may be 80 to 110°C/min. By keeping the heating rate within this range, the time required for the entire manufacturing process can be sufficiently shortened. In addition, the temperature reduction rate after heating may also be in the same range as the above heating rate.
工程(d)の後、アニール工程を行ってよい。アニール工程におけるアニール温度は400~650℃であってよく、500~600℃であってよい。アニール温度におけるアニール時間は、1.5~3.0時間であってもよく、2.0~2.5時間であってよい。冷却後、加圧治具から接合体を取り外してもよい。アニール工程を行うことで、積層体80の加熱による歪みを軽減し、ヒートサイクル特性に十分に優れる回路基板を作製することができる。
After step (d), an annealing step may be performed. The annealing temperature in the annealing step may be 400 to 650°C, or 500 to 600°C. The annealing time at the annealing temperature may be 1.5 to 3.0 hours, or 2.0 to 2.5 hours. After cooling, the bonded body may be removed from the pressure jig. By performing the annealing step, it is possible to reduce distortion of the laminate 80 due to heating, and to produce a circuit board with sufficiently excellent heat cycle characteristics.
工程(e)では、得られた接合体にレジスト印刷及びエッチングを行い、図10に示す回路基板100を得る。回路基板100は、ろう材層30の炭素を十分に除去していることから、接合層20が第1接合層21、第2接合層22、及び第3接合層23を有する。したがって、回路基板100における窒化ケイ素板10と銅板50との接合強度を十分に高くすることができる。なお、工程(d)で得られた接合体をそのまま回路基板100として使用してもよい。
In step (e), resist printing and etching are performed on the resulting bonded body to obtain the circuit board 100 shown in FIG. 10. In the circuit board 100, the carbon in the brazing material layer 30 has been sufficiently removed, so that the bonding layer 20 has a first bonding layer 21, a second bonding layer 22, and a third bonding layer 23. Therefore, the bonding strength between the silicon nitride plate 10 and the copper plate 50 in the circuit board 100 can be sufficiently high. The bonded body obtained in step (d) may be used as the circuit board 100 as is.
回路基板100は、上述の窒化ケイ素板10の両方の面上に一対の銅板50を有し、窒化ケイ素板10の各主面と銅板50の主面とを接合する接合層20を有する。接合層20は、窒化ケイ素板10側から、第1接合層21と、第2接合層22と、第3接合層23とをこの順に有する。
The circuit board 100 has a pair of copper plates 50 on both sides of the silicon nitride plate 10, and has a bonding layer 20 that bonds each main surface of the silicon nitride plate 10 to the main surface of the copper plate 50. The bonding layer 20 has, from the silicon nitride plate 10 side, a first bonding layer 21, a second bonding layer 22, and a third bonding layer 23, in this order.
回路基板100の形状は特に限定されず、集合基板であってもよく、集合基板を分割することにより得られる個片基板であってもよい。回路基板の厚さは0.9~2.7mmであってよく、1.3~2.2mmであってもよい。
The shape of the circuit board 100 is not particularly limited, and it may be an aggregate board, or an individual board obtained by dividing an aggregate board. The thickness of the circuit board may be 0.9 to 2.7 mm, or 1.3 to 2.2 mm.
接合層20は、窒化ケイ素板10側から、窒化チタンを含む第1接合層21と、Siを含む第2接合層22と、Agを含む第3接合層23とをこの順に有し、第1接合層中の炭素の含有量をC1原子%、前記第3接合層中の炭素の含有量をC3原子%としたときに、C1/C3の平均値が0.5以下である。このような接合層20を有する回路基板100は、第1接合層21の炭素が十分に低減されており、窒化ケイ素板10と、銅板50との接合強度を高くすることができる。
The bonding layer 20 has, from the silicon nitride plate 10 side, a first bonding layer 21 containing titanium nitride, a second bonding layer 22 containing Si, and a third bonding layer 23 containing Ag, in that order, and when the carbon content in the first bonding layer is C1 atomic % and the carbon content in the third bonding layer is C3 atomic %, the average value of C1/C3 is 0.5 or less. In a circuit board 100 having such a bonding layer 20, the carbon in the first bonding layer 21 is sufficiently reduced, and the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be increased.
接合層20は、第1接合層21、第2接合層22、及び第3接合層23を有する層である。接合層20は、チタン元素、銀元素、及びケイ素元素を含む。接合層20は、さらに銅、錫、及び活性金属からなる群より選ばれる一種又は二種を含有してよい。二種以上の金属は合金となっていてもよい。活性金属は、チタン、ハフニウム、ジルコニウム、及びニオブからなる群より選ばれる一種又は二種以上含んでいてよい。
The bonding layer 20 is a layer having a first bonding layer 21, a second bonding layer 22, and a third bonding layer 23. The bonding layer 20 contains titanium, silver, and silicon elements. The bonding layer 20 may further contain one or two metals selected from the group consisting of copper, tin, and an active metal. The two or more metals may be an alloy. The active metal may contain one or two or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium.
接合層20に含まれる銀は、例えばAg-Cu共晶合金等の合金として接合層20に含まれていてもよい。接合層20における銀の含有量は、Ag換算で60~95質量%であってよい。接合層20における銀及び銅の含有量は、それぞれAg及びCuに換算して75~100質量%であってよく、85~99質量%であってよく、90~98質量%であってもよい。これによって、接合層20における残留応力を十分に低減しつつ、接合層20の緻密性を向上することができる。
The silver contained in the bonding layer 20 may be contained in the bonding layer 20 as an alloy, such as an Ag-Cu eutectic alloy. The silver content in the bonding layer 20 may be 60-95 mass% in Ag equivalent. The silver and copper contents in the bonding layer 20 may be 75-100 mass%, 85-99 mass%, or 90-98 mass% in Ag and Cu equivalent, respectively. This makes it possible to sufficiently reduce the residual stress in the bonding layer 20 while improving the density of the bonding layer 20.
接合層20における活性金属の含有量は、Ag及びCuの合計100質量部に対して、0.5~5質量部であってよい。活性金属の含有量を0.5質量部以上とすることで、窒化ケイ素板10と接合層20との接合性を向上することができる。一方、活性金属の含有量を5質量部以下とすることで、接合界面に脆弱な合金層が形成されることを抑制できる。
The content of the active metal in the bonding layer 20 may be 0.5 to 5 parts by mass per 100 parts by mass of Ag and Cu combined. By making the content of the active metal 0.5 parts by mass or more, it is possible to improve the bond between the silicon nitride plate 10 and the bonding layer 20. On the other hand, by making the content of the active metal 5 parts by mass or less, it is possible to suppress the formation of a brittle alloy layer at the bonding interface.
接合層20に含有される上記金属は、窒化物、酸化物、炭化物又は水素化物として含まれていてもよい。一例として、接合層20は、窒化チタン及び/又は水素化チタン(TiH2)を含んでいてよい。これによって、窒化ケイ素板10と接合層20を十分に反応させて、第1接合層21、第2接合層22、及び第3接合層23を形成することができる。これによって、窒化ケイ素板10と銅板50との接合強度を十分に高くすることができる。接合層20において、AgとCuの合計100質量部に対するTiH2の含有量は例えば1~8質量部であってよい。
The metal contained in the bonding layer 20 may be contained as a nitride, oxide, carbide or hydride. As an example, the bonding layer 20 may contain titanium nitride and/or titanium hydride (TiH 2 ). This allows the silicon nitride plate 10 and the bonding layer 20 to react sufficiently to form the first bonding layer 21, the second bonding layer 22, and the third bonding layer 23. This allows the bonding strength between the silicon nitride plate 10 and the copper plate 50 to be sufficiently high. In the bonding layer 20, the content of TiH 2 relative to a total of 100 parts by mass of Ag and Cu may be, for example, 1 to 8 parts by mass.
接合層20に含まれる元素は、以下の手順で同定、及び定量を行うことができる。まず、回路基板の断面を、例えば走査型透過電子顕微鏡(STEM)により観察する。断面の画像において、窒化ケイ素板10から銅板50側に向かい、窒化ケイ素板10の主面に直交するラインに沿って、エネルギー分散型X線分析装置(EDX)による分析を行う。これによって各元素の分布をラインプロファイルとして検出し、定量することができる。ここで、本開示における断面とは、接合層20が設けられる窒化ケイ素板10の主面に直交し、接合層20を通る断面である。
The elements contained in the bonding layer 20 can be identified and quantified by the following procedure. First, a cross section of the circuit board is observed, for example, with a scanning transmission electron microscope (STEM). In the image of the cross section, analysis is performed with an energy dispersive X-ray analyzer (EDX) along a line perpendicular to the main surface of the silicon nitride plate 10, from the silicon nitride plate 10 toward the copper plate 50. This allows the distribution of each element to be detected as a line profile and quantified. Here, the cross section in this disclosure refers to a cross section perpendicular to the main surface of the silicon nitride plate 10 on which the bonding layer 20 is provided, and passing through the bonding layer 20.
第1接合層21は、窒化チタンを含む層である。窒化チタンの含有量は50~90原子%であってよく、55~85原子%であってよく、60~80原子%であってよい。第1接合層21中のチタン元素及び窒素元素は、第2接合層22及び第3接合層23よりも多く検出されてもよい。すなわち、第1接合層21は、第2接合層22及び第3接合層23よりも窒化チタンの含有量が高くてもよい。
The first bonding layer 21 is a layer containing titanium nitride. The titanium nitride content may be 50 to 90 atomic %, 55 to 85 atomic %, or 60 to 80 atomic %. The titanium element and the nitrogen element may be detected in the first bonding layer 21 in greater amounts than the second bonding layer 22 and the third bonding layer 23. That is, the first bonding layer 21 may have a higher titanium nitride content than the second bonding layer 22 and the third bonding layer 23.
第1接合層21に含まれる窒化チタン相は、窒化ケイ素板10と第1接合層21との接触面に沿って層状に形成されていてもよい。窒化チタン相が窒化ケイ素板10と第1接合層21との接触面に層状に連なって形成されることによって、窒化ケイ素板10と銅板50との接合強度を一層高くすることができる。窒化チタン相が窒化ケイ素板10と第1接合層21との接触面に沿って層状に形成されていることは、例えば電子線マイクロアナライザ(EPMA)によって断面を分析することで確認することができる。
The titanium nitride phase contained in the first bonding layer 21 may be formed in a layer along the contact surface between the silicon nitride plate 10 and the first bonding layer 21. By forming the titanium nitride phase in a continuous layer along the contact surface between the silicon nitride plate 10 and the first bonding layer 21, the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be further increased. The fact that the titanium nitride phase is formed in a layer along the contact surface between the silicon nitride plate 10 and the first bonding layer 21 can be confirmed by analyzing a cross section, for example, with an electron beam microanalyzer (EPMA).
第1接合層21の厚さは、チタン元素及び窒素元素が含有量10原子%以上で検出されるラインの長さとして求めることができる。第1接合層21に含まれるチタン元素及び窒素元素の含有量は、10~45原子%であってもよく、20~40原子%であってよい。
The thickness of the first bonding layer 21 can be determined as the length of the line at which titanium and nitrogen elements are detected with a content of 10 atomic % or more. The titanium and nitrogen elements contained in the first bonding layer 21 may be 10 to 45 atomic %, or 20 to 40 atomic %.
第1接合層21の厚さは、100~300nmであってよく、150~250nmであってよい。第1接合層21の厚さの最大値と最小値の差は、70nm以下であってよく、50nm以下であってもよく、45nm以下であってもよい。第1接合層21の厚さの最大値と最小値の差がこの範囲であることによって、第1接合層21に窒化チタンが十分に含まれ、窒化ケイ素板10と銅板50との接合強度を向上させることができる。第1接合層21の厚さの平均値t1は、5つ以上のラインで測定した厚さの平均値として求めることができる。第1接合層21の厚さの平均値t1は、175~235nmであってよく、180~230nmであってよく、190~220nmであってよい。
The thickness of the first bonding layer 21 may be 100 to 300 nm, or 150 to 250 nm. The difference between the maximum and minimum thicknesses of the first bonding layer 21 may be 70 nm or less, 50 nm or less, or 45 nm or less. When the difference between the maximum and minimum thicknesses of the first bonding layer 21 is within this range, the first bonding layer 21 contains a sufficient amount of titanium nitride, and the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be improved. The average thickness t1 of the first bonding layer 21 can be calculated as the average thickness value measured at five or more lines. The average thickness t1 of the first bonding layer 21 may be 175 to 235 nm, 180 to 230 nm, or 190 to 220 nm.
第2接合層22はSiを含む層である。Siは窒化ケイ素板10由来であり、窒化ケイ素板10と銅板50を、ろう材層30を介して加熱接着させる際、加熱により窒化ケイ素とろう材層30中のチタンが反応し、ケイ化チタンを含む層として第2接合層22を形成すると考えられる。
The second bonding layer 22 is a layer containing Si. The Si originates from the silicon nitride plate 10, and when the silicon nitride plate 10 and the copper plate 50 are heat-bonded via the brazing material layer 30, it is believed that the silicon nitride reacts with the titanium in the brazing material layer 30 due to heating, forming the second bonding layer 22 as a layer containing titanium silicide.
第2接合層22のSiの含有量は、10~40原子%であってよく、20~30原子%であってよい。Siの含有量がこの範囲である第2接合層22は、窒化ケイ素板10と、ろう材層30中のチタンとの反応が十分に進行して形成されたものである。このため、窒化ケイ素板10と銅板50の接合強度を十分に向上することができる。
The Si content of the second bonding layer 22 may be 10-40 atomic %, or 20-30 atomic %. The second bonding layer 22 with a Si content in this range is formed by a sufficient reaction between the silicon nitride plate 10 and the titanium in the brazing material layer 30. This allows the bonding strength between the silicon nitride plate 10 and the copper plate 50 to be sufficiently improved.
第2接合層22は、第1接合層21と第3接合層23の間を遮断するように形成されていてもよい。すなわち、第2接合層22は、第1接合層21と第3接合層23との間の全体にわたって形成されていてもよい。このような第2接合層22は、窒化ケイ素板10と銅板50を、ろう材層30を介して加熱接着させる際に、窒化ケイ素とろう材層30中のチタンとの反応が十分に進行することによって形成されている。したがって、回路基板100の窒化ケイ素板10と銅板50との接合強度を向上することができる。
The second bonding layer 22 may be formed so as to isolate the first bonding layer 21 from the third bonding layer 23. That is, the second bonding layer 22 may be formed over the entire area between the first bonding layer 21 and the third bonding layer 23. Such a second bonding layer 22 is formed by the reaction between silicon nitride and titanium in the brazing material layer 30 progressing sufficiently when the silicon nitride plate 10 and the copper plate 50 are heat-bonded via the brazing material layer 30. Therefore, the bonding strength between the silicon nitride plate 10 and the copper plate 50 of the circuit board 100 can be improved.
第2接合層22の厚さは、Siが含有量10原子%以上で検出されるラインの長さとして求めることができる。第2接合層22の厚さは、50nm以上であってよく、50~120nmであってよく、60~110nmであってよく、80~100nmであってもよい。第2接合層22の厚さがこのような範囲であることによって、窒化ケイ素と接合層中のチタンとの反応が十分に進行し、窒化ケイ素板と銅板の接合強度を向上させることができる。
The thickness of the second bonding layer 22 can be determined as the length of the line detected when the Si content is 10 atomic % or more. The thickness of the second bonding layer 22 may be 50 nm or more, 50 to 120 nm, 60 to 110 nm, or 80 to 100 nm. By having the thickness of the second bonding layer 22 in such a range, the reaction between the silicon nitride and the titanium in the bonding layer can proceed sufficiently, improving the bonding strength between the silicon nitride plate and the copper plate.
第2接合層22の厚さの平均値t2は、5つ以上のラインで測定した厚さの平均値を計算して求めることができる。第2接合層22の厚さの平均値t2は、60~100nmであってよく、70~90nmであってよい。第2接合層22の厚さの平均値t2がこの範囲にある第2接合層22は、窒化ケイ素板10とろう材層30との反応が進行することによって形成される。このような第2接合層22は、窒化ケイ素板10と銅板50との接合強度を十分に高くすることができる。
The average thickness t2 of the second bonding layer 22 can be determined by calculating the average thickness measured at five or more lines. The average thickness t2 of the second bonding layer 22 may be 60 to 100 nm, or 70 to 90 nm. A second bonding layer 22 having an average thickness t2 in this range is formed by the progress of the reaction between the silicon nitride plate 10 and the brazing material layer 30. Such a second bonding layer 22 can sufficiently increase the bonding strength between the silicon nitride plate 10 and the copper plate 50.
第2接合層22の厚さの平均値t2に対する、第1接合層21の厚さの平均値t1の比(t1/t2)は、5以下であってよく、4以下であってよく、3以下であってもよい。(t1/t2)がこの範囲内であることによって、第1接合層21と第2接合層22がバランスよく形成され、窒化ケイ素板10と銅板50の接合強度を十分に高くすることができる。上記比の下限は、1.0であってよく、1.5であってよい。
The ratio (t1/t2) of the average thickness t1 of the first bonding layer 21 to the average thickness t2 of the second bonding layer 22 may be 5 or less, 4 or less, or 3 or less. By having (t1/t2) within this range, the first bonding layer 21 and the second bonding layer 22 are formed in a balanced manner, and the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be sufficiently high. The lower limit of the above ratio may be 1.0 or 1.5.
第3接合層23は、Agを含む層である。第3接合層23中の銀元素は、20~90原子%であってもよく、30~80原子%であってよい。第3接合層23の厚さは、1.0~2.0μmであってよく、1.2~1.7μmであってよい。
The third bonding layer 23 is a layer containing Ag. The silver element in the third bonding layer 23 may be 20 to 90 atomic %, or may be 30 to 80 atomic %. The thickness of the third bonding layer 23 may be 1.0 to 2.0 μm, or may be 1.2 to 1.7 μm.
接合層20は、有機バインダ由来の炭素を含み、第3接合層23に含まれる炭素の含有量(C3)に対する、第1接合層21に含まれる炭素の含有量(C1)の比(C1/C3)の平均値は、0.5以下である。第1接合層21に含まれる炭素を十分に低減する観点から、(C1/C3)の平均値は0.45以下であってよく、0.4以下であってもよい。(C1/C3)の平均値がこの範囲であることによって、第1接合層21の厚さが十分に大きくなる。その結果、窒化ケイ素板10と銅板50との接合強度を十分に高くすることができる。上記比の下限は、0.2であってよく、0.3であってよい。(C1/C3)の平均値は、次のようにして求める。5つ以上のラインで(C3)及び(C1)を測定し、各測定値から(C1/C3)を計算する。5つ以上の(C1/C3)の値から上記平均値を求める。なお、5つ以上の(C1/C3)の各値が0.5以下であってよく、0.45以下であってよく、0.4以下であってもよい。
The bonding layer 20 contains carbon derived from the organic binder, and the average value of the ratio (C1/C3) of the carbon content (C1) contained in the first bonding layer 21 to the carbon content (C3) contained in the third bonding layer 23 is 0.5 or less. From the viewpoint of sufficiently reducing the carbon contained in the first bonding layer 21, the average value of (C1/C3) may be 0.45 or less, or may be 0.4 or less. When the average value of (C1/C3) is in this range, the thickness of the first bonding layer 21 becomes sufficiently large. As a result, the bonding strength between the silicon nitride plate 10 and the copper plate 50 can be sufficiently high. The lower limit of the above ratio may be 0.2 or 0.3. The average value of (C1/C3) is calculated as follows. (C3) and (C1) are measured on five or more lines, and (C1/C3) is calculated from each measured value. The above average value is calculated from five or more (C1/C3) values. In addition, each of the five or more (C1/C3) values may be 0.5 or less, 0.45 or less, or 0.4 or less.
窒化ケイ素板10と銅板50の接合強度は、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」に準拠して、銅板50を回路基板100から90°鉛直上方向に引きはがし、剥離した際の強度を測定して求めることができる。接合強度は、500~800N/cmであってよく、600~700N/cm以上であってよい。このような接合強度を有する回路基板100は、回路基板100上での接合強度のばらつきが抑えられ、回路基板100の品質を安定させることができる。
The bond strength between the silicon nitride plate 10 and the copper plate 50 can be determined in accordance with JIS K 6854-1:1999 "Adhesives - Peel Adhesion Strength Test Method" by peeling the copper plate 50 vertically upward at 90 degrees from the circuit board 100 and measuring the strength at the time of peeling. The bond strength may be 500-800 N/cm, or 600-700 N/cm or more. A circuit board 100 with such bond strength reduces variation in bond strength on the circuit board 100, and can stabilize the quality of the circuit board 100.
回路基板100を用いて、パワーモジュールを製造してもよい。パワーモジュールは、回路基板の銅板上に、ハンダとワイヤボンディング等を用いて電気的に接続された半導体素子を搭載し、回路基板及び半導体素子を筐体の収容空間内に収容したうえで樹脂封止を行って製造することができる。
The circuit board 100 may be used to manufacture a power module. The power module can be manufactured by mounting a semiconductor element electrically connected to the copper plate of the circuit board using solder and wire bonding, etc., and housing the circuit board and the semiconductor element in the housing space of the housing, and then sealing with resin.
以上、本開示の実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、窒化ケイ素板の一対の主面のそれぞれに接合される金属板及び接合部の構造及び形状は、互いに異なっていてもよい。また、窒化ケイ素板の一方の主面のみに接合層及び銅板が設けられた回路基板であってもよい。
Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments. For example, the structures and shapes of the metal plates and joints joined to each of the pair of main surfaces of the silicon nitride plate may be different from each other. Also, the present disclosure may be a circuit board in which a joining layer and a copper plate are provided on only one main surface of the silicon nitride plate.
実施例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
The contents of this disclosure will be explained in more detail with reference to examples, but this disclosure is not limited to the following examples.
(実施例1)
[回路基板の作製]
厚さ0.32mmの窒化ケイ素板、銅板(サイズ:縦×横×厚さ=170mm×120mm×0.8mm)及びろう材を準備した。銅板は打ち抜き加工によって得た。 Example 1
[Preparation of circuit board]
A silicon nitride plate having a thickness of 0.32 mm, a copper plate (size: length×width×thickness=170 mm×120 mm×0.8 mm), and a brazing material were prepared. The copper plate was obtained by punching.
[回路基板の作製]
厚さ0.32mmの窒化ケイ素板、銅板(サイズ:縦×横×厚さ=170mm×120mm×0.8mm)及びろう材を準備した。銅板は打ち抜き加工によって得た。 Example 1
[Preparation of circuit board]
A silicon nitride plate having a thickness of 0.32 mm, a copper plate (size: length×width×thickness=170 mm×120 mm×0.8 mm), and a brazing material were prepared. The copper plate was obtained by punching.
ろう材は、Ag、Cu、TiH2、Snを含んでいた。AgとCuの質量比は9:1であった。ろう材は、AgとCuの合計100質量部に対し、Snを5質量部、及びTiH2を3.5質量部含んでいた。
The brazing material contained Ag, Cu, TiH 2 , and Sn. The mass ratio of Ag to Cu was 9: 1. The brazing material contained 5 parts by mass of Sn and 3.5 parts by mass of TiH 2 with respect to 100 parts by mass of Ag and Cu in total.
窒化ケイ素板の主面に、スクリーン印刷(メッシュ数:150)でろう材を塗布して乾燥しろう材層を形成した。ろう材層の塗布面積は、窒化ケイ素板と接合される銅板の主面の面積と同じとした。塗布したろう材層の厚さは0.03mmとした。
The brazing filler metal was applied to the main surface of the silicon nitride plate by screen printing (mesh number: 150) and dried to form a brazing filler metal layer. The application area of the brazing filler metal layer was the same as the area of the main surface of the copper plate to be joined to the silicon nitride plate. The thickness of the applied brazing filler metal layer was 0.03 mm.
ろう材層を形成した後、窒化ケイ素板の上に、ろう材層と銅板の主面とが接するようにして銅板を重ね、複合体を作製した。このようにして、窒化ケイ素板、ろう材層、及び銅板の複合体を20枚作製した。
After forming the brazing material layer, the copper plate was placed on top of the silicon nitride plate so that the brazing material layer was in contact with the main surface of the copper plate, creating a composite. In this way, 20 composites of silicon nitride plate, brazing material layer, and copper plate were created.
一対の炭素製プレート(厚さ:0.5mm、密度:1.8g/cm3)を隣り合う上記複合体の間に1枚ずつ配置して積層体を作製した。図9に示すように積層体の両主面上にスペーサを配置し、加圧治具によって固定した。
A pair of carbon plates (thickness: 0.5 mm, density: 1.8 g/cm 3 ) were placed between adjacent composites to prepare a laminate. As shown in FIG. 9 , spacers were placed on both main surfaces of the laminate and fixed with a pressure jig.
加圧治具で固定したまま、加圧治具によって固定した上記積層体を、真空中(10-3Pa)で、100℃/minの昇温速度で400℃まで昇温させ、400℃で3.5時間の脱脂を行った。その後、10-3Paの雰囲気下で400℃から100℃/minの昇温速度で750℃まで昇温し、750℃で3時間の加熱を行った。その後、100℃/minの降温速度で600℃まで降温し、600℃で2時間保持するアニール工程を行った。冷却後、加圧治具から接合体を取り外した。このようにして、窒化ケイ素板と銅板が、接合層を介して接合した接合体を作製した。エッチングによって作製した接合体における銅板の一部を除去して回路基板を作製した。このようにして実施例1の回路基板を得た。
While being fixed by the pressure tool, the laminate fixed by the pressure tool was heated to 400°C at a heating rate of 100°C/min in a vacuum ( 10-3 Pa), and degreasing was performed at 400°C for 3.5 hours. Thereafter, the temperature was raised from 400°C to 750°C at a heating rate of 100°C/min in an atmosphere of 10-3 Pa, and heating was performed at 750°C for 3 hours. Thereafter, the temperature was lowered to 600°C at a temperature drop rate of 100°C/min, and an annealing process was performed in which the temperature was held at 600°C for 2 hours. After cooling, the bonded body was removed from the pressure tool. In this way, a bonded body in which a silicon nitride plate and a copper plate were bonded via a bonding layer was produced. A part of the copper plate in the bonded body produced by etching was removed to produce a circuit board. In this way, the circuit board of Example 1 was obtained.
(比較例1)
脱脂を350℃、3時間で行ったこと以外は、実施例1と同一の手順で回路基板を作製した。 (Comparative Example 1)
A circuit board was produced in the same manner as in Example 1, except that degreasing was carried out at 350° C. for 3 hours.
脱脂を350℃、3時間で行ったこと以外は、実施例1と同一の手順で回路基板を作製した。 (Comparative Example 1)
A circuit board was produced in the same manner as in Example 1, except that degreasing was carried out at 350° C. for 3 hours.
[回路基板の評価]
<回路基板の断面の層状態の元素マッピング>
得られた回路基板の厚さ方向に沿う断面を走査型透過電子顕微鏡(STEM、株式会社日立ハイテク製、商品名:HD-2700)を用いて25000倍の倍率で観察した。観察した断面に対して、エネルギー分散型X線分析装置(EDX、Oxford製、商品名:XMAXN 100TLE)を用いて、加速電圧200kVでTi、Si、Ag、及びCuの元素マッピングを行った。実施例1のSTEM像を図11(A)に示し、元素マッピングの結果を図12(A)、図12(B)、図13(A)、図13(B)に示した。比較例1のSTEM像を図11(B)に示し、元素マッピングの結果を図14(A)、図14(B)、図15(A)、図15(B)に示した。図12(A)及び図14(A)はチタン元素の分布を示し、図12(B)及び図14(B)はケイ素元素の分布を示している。また、図13(A)及び図15(A)は銀元素の分布を示し、図13(B)及び図15(B)は銅元素の分布を示している。 [Circuit board evaluation]
<Elemental mapping of the layer state of the cross section of a circuit board>
The cross section along the thickness direction of the obtained circuit board was observed at a magnification of 25,000 times using a scanning transmission electron microscope (STEM, Hitachi High-Tech Corporation, product name: HD-2700). The observed cross section was subjected to elemental mapping of Ti, Si, Ag, and Cu at an acceleration voltage of 200 kV using an energy dispersive X-ray analyzer (EDX, Oxford, product name: XMAXN 100TLE). The STEM image of Example 1 is shown in FIG. 11(A), and the results of elemental mapping are shown in FIG. 12(A), FIG. 12(B), FIG. 13(A), and FIG. 13(B). The STEM image of Comparative Example 1 is shown in FIG. 11(B), and the results of elemental mapping are shown in FIG. 14(A), FIG. 14(B), FIG. 15(A), and FIG. 15(B). Figures 12(A) and 14(A) show the distribution of titanium element, Figures 12(B) and 14(B) show the distribution of silicon element, Figures 13(A) and 15(A) show the distribution of silver element, and Figures 13(B) and 15(B) show the distribution of copper element.
<回路基板の断面の層状態の元素マッピング>
得られた回路基板の厚さ方向に沿う断面を走査型透過電子顕微鏡(STEM、株式会社日立ハイテク製、商品名:HD-2700)を用いて25000倍の倍率で観察した。観察した断面に対して、エネルギー分散型X線分析装置(EDX、Oxford製、商品名:XMAXN 100TLE)を用いて、加速電圧200kVでTi、Si、Ag、及びCuの元素マッピングを行った。実施例1のSTEM像を図11(A)に示し、元素マッピングの結果を図12(A)、図12(B)、図13(A)、図13(B)に示した。比較例1のSTEM像を図11(B)に示し、元素マッピングの結果を図14(A)、図14(B)、図15(A)、図15(B)に示した。図12(A)及び図14(A)はチタン元素の分布を示し、図12(B)及び図14(B)はケイ素元素の分布を示している。また、図13(A)及び図15(A)は銀元素の分布を示し、図13(B)及び図15(B)は銅元素の分布を示している。 [Circuit board evaluation]
<Elemental mapping of the layer state of the cross section of a circuit board>
The cross section along the thickness direction of the obtained circuit board was observed at a magnification of 25,000 times using a scanning transmission electron microscope (STEM, Hitachi High-Tech Corporation, product name: HD-2700). The observed cross section was subjected to elemental mapping of Ti, Si, Ag, and Cu at an acceleration voltage of 200 kV using an energy dispersive X-ray analyzer (EDX, Oxford, product name: XMAXN 100TLE). The STEM image of Example 1 is shown in FIG. 11(A), and the results of elemental mapping are shown in FIG. 12(A), FIG. 12(B), FIG. 13(A), and FIG. 13(B). The STEM image of Comparative Example 1 is shown in FIG. 11(B), and the results of elemental mapping are shown in FIG. 14(A), FIG. 14(B), FIG. 15(A), and FIG. 15(B). Figures 12(A) and 14(A) show the distribution of titanium element, Figures 12(B) and 14(B) show the distribution of silicon element, Figures 13(A) and 15(A) show the distribution of silver element, and Figures 13(B) and 15(B) show the distribution of copper element.
STEM像と元素マッピングの結果、実施例1では第2接合層22は第1接合層21と第3接合層23を遮断するように介在していた(図12(A)、図12(B)、図13(A)参照)。一方、比較例1では、第2接合層22Aが確認されたが、第2接合層22と異なり、第2接合層22Aは不連続な層であり、第1接合層21と第3接合層23が直接接していた部分があった(図14(A)、図14(B)、図15(A)参照)。
The results of the STEM images and element mapping showed that in Example 1, the second bonding layer 22 was interposed between the first bonding layer 21 and the third bonding layer 23 so as to isolate them (see Figures 12(A), 12(B), and 13(A)). On the other hand, in Comparative Example 1, the second bonding layer 22A was confirmed, but unlike the second bonding layer 22, the second bonding layer 22A was a discontinuous layer, and there were portions where the first bonding layer 21 and the third bonding layer 23 were in direct contact (see Figures 14(A), 14(B), and 15(A)).
<第1接合層21と第2接合層22の厚さ測定>
上記のSTEM像において、窒化ケイ素板から銅板へ向かうラインに沿ってEDX分析による各元素のラインプロファイルを測定した。実施例1におけるEDX分析の結果を図16に示した。図16において、チタン元素及び窒素元素がそれぞれ10原子%以上検出されるラインの長さを第1接合層21の厚さとした。また、チタン元素及びケイ素元素が10原子%以上検出されるラインの長さを第2接合層22の厚さとした。ラインプロファイルはSTEM像において任意の5箇所で行い、それぞれ同様の方法で第1接合層21及び第2接合層22の厚さを測定した。比較例1では第2接合層22Aが形成される部分から任意の5箇所を選択して測定した。測定した5箇所における第1接合層21の厚さの平均値t1及び第2接合層の厚さの平均値t2を算出し、t1/t2を算出した。測定結果を表1に示した。また、表1には、測定した接合層の厚さの最大値、最小値、及びこれらの差も示した。 <Measurement of Thickness ofFirst Bonding Layer 21 and Second Bonding Layer 22>
In the above STEM image, the line profile of each element was measured by EDX analysis along the line from the silicon nitride plate to the copper plate. The result of the EDX analysis in Example 1 is shown in FIG. 16. In FIG. 16, the length of the line where titanium element and nitrogen element are detected at 10 atomic % or more was defined as the thickness of thefirst bonding layer 21. In addition, the length of the line where titanium element and silicon element are detected at 10 atomic % or more was defined as the thickness of the second bonding layer 22. The line profile was performed at five arbitrary points in the STEM image, and the thicknesses of the first bonding layer 21 and the second bonding layer 22 were measured in the same manner. In Comparative Example 1, five arbitrary points were selected from the part where the second bonding layer 22A was formed and measured. The average value t1 of the thickness of the first bonding layer 21 and the average value t2 of the thickness of the second bonding layer at the five measured points were calculated, and t1/t2 was calculated. The measurement results are shown in Table 1. Table 1 also shows the maximum value, minimum value, and difference between the measured thicknesses of the bonding layers.
上記のSTEM像において、窒化ケイ素板から銅板へ向かうラインに沿ってEDX分析による各元素のラインプロファイルを測定した。実施例1におけるEDX分析の結果を図16に示した。図16において、チタン元素及び窒素元素がそれぞれ10原子%以上検出されるラインの長さを第1接合層21の厚さとした。また、チタン元素及びケイ素元素が10原子%以上検出されるラインの長さを第2接合層22の厚さとした。ラインプロファイルはSTEM像において任意の5箇所で行い、それぞれ同様の方法で第1接合層21及び第2接合層22の厚さを測定した。比較例1では第2接合層22Aが形成される部分から任意の5箇所を選択して測定した。測定した5箇所における第1接合層21の厚さの平均値t1及び第2接合層の厚さの平均値t2を算出し、t1/t2を算出した。測定結果を表1に示した。また、表1には、測定した接合層の厚さの最大値、最小値、及びこれらの差も示した。 <Measurement of Thickness of
In the above STEM image, the line profile of each element was measured by EDX analysis along the line from the silicon nitride plate to the copper plate. The result of the EDX analysis in Example 1 is shown in FIG. 16. In FIG. 16, the length of the line where titanium element and nitrogen element are detected at 10 atomic % or more was defined as the thickness of the
実施例1は、比較例1よりも第2接合層の厚さが大きいことが示された。したがって、加熱による窒化ケイ素板とろう材層との反応が十分に進行していることが示された。また、実施例1の回路基板における第2接合層は十分に大きな厚さを有しており、最大値と最小値の差も十分に小さかった。この結果から、加熱による窒化ケイ素板とろう材層との反応が高い均一性で十分に進行していることが確認された。
In Example 1, the second bonding layer was shown to be thicker than in Comparative Example 1. This indicates that the reaction between the silicon nitride plate and the brazing material layer due to heating has progressed sufficiently. Furthermore, the second bonding layer in the circuit board of Example 1 had a sufficiently large thickness, and the difference between the maximum and minimum values was also sufficiently small. This result confirmed that the reaction between the silicon nitride plate and the brazing material layer due to heating has progressed sufficiently with high uniformity.
<第1接合層21と第3接合層23に含まれるC(炭素)の比率>
上記のラインプロファイルにおいて、銀元素が40原子%以上検出される部分を第3接合層23とした。窒化ケイ素板10側から測定してチタン元素が10原子%以上最初に検出された位置から上記ラインに沿って銅板50側に100nm離れた位置の第1接合層21のC(炭素)(C1)の原子%を測定した。また、上記の最初に検出された位置から上記ラインに沿って銅板50側に1000nm離れた位置の第3接合層23のC(炭素)(C3)の原子%を測定した。さらにそれぞれの測定値からC(炭素)の比(C1/C3)を算出した。炭素の原子%の測定は、互いに異なる5箇所のラインを任意に選択してライン毎に行った。結果を表2に示した。また、表2には、測定した炭素の原子%及び算出した(C1)/(C3)の平均値、最大値、最小値、及び最大値と最小値との差も示した。 <Ratio of C (carbon) contained infirst bonding layer 21 and third bonding layer 23>
In the above line profile, the portion where silver element is detected at 40 atomic % or more was determined as thethird bonding layer 23. The atomic % of C (carbon) (C1) of the first bonding layer 21 was measured at a position 100 nm away from the position where titanium element was first detected at 10 atomic % or more along the line toward the copper plate 50 side, measured from the silicon nitride plate 10 side. In addition, the atomic % of C (carbon) (C3) of the third bonding layer 23 was measured at a position 1000 nm away from the position where it was first detected along the line toward the copper plate 50 side, measured from the position where it was first detected. Furthermore, the ratio of C (carbon) (C1/C3) was calculated from each measured value. The measurement of the atomic % of carbon was performed for each line by arbitrarily selecting five different lines. The results are shown in Table 2. Table 2 also shows the measured atomic % of carbon and the average value, maximum value, minimum value, and difference between the maximum value and the minimum value of the calculated (C1)/(C3).
上記のラインプロファイルにおいて、銀元素が40原子%以上検出される部分を第3接合層23とした。窒化ケイ素板10側から測定してチタン元素が10原子%以上最初に検出された位置から上記ラインに沿って銅板50側に100nm離れた位置の第1接合層21のC(炭素)(C1)の原子%を測定した。また、上記の最初に検出された位置から上記ラインに沿って銅板50側に1000nm離れた位置の第3接合層23のC(炭素)(C3)の原子%を測定した。さらにそれぞれの測定値からC(炭素)の比(C1/C3)を算出した。炭素の原子%の測定は、互いに異なる5箇所のラインを任意に選択してライン毎に行った。結果を表2に示した。また、表2には、測定した炭素の原子%及び算出した(C1)/(C3)の平均値、最大値、最小値、及び最大値と最小値との差も示した。 <Ratio of C (carbon) contained in
In the above line profile, the portion where silver element is detected at 40 atomic % or more was determined as the
実施例1は、比較例1よりも第3接合層に対する第1接合層中の炭素の検出量が少ないことが確認された。したがって、実施例1では長時間、且つ高温での脱脂により、第1接合層中のバインダ由来の炭素が低減されていることが示された。したがって、炭素とチタンの反応が抑制され、窒化ケイ素由来の窒素とチタンの反応が十分に進行していると考えられる。
It was confirmed that in Example 1, the amount of carbon detected in the first bonding layer relative to the third bonding layer was less than in Comparative Example 1. Therefore, it was shown that in Example 1, the carbon derived from the binder in the first bonding layer was reduced by degreasing for a long time at high temperature. Therefore, it is considered that the reaction between carbon and titanium was suppressed, and the reaction between nitrogen derived from silicon nitride and titanium progressed sufficiently.
<銅板の接合強度及び接合状態>
実施例1及び比較例1において、窒化ケイ素板に接合した銅板を、引張試験機を用いて鉛直上方に引っ張り、図17(A)及び図17(B)に示すように銅板が窒化ケイ素板から剥離した時点での接合強度を測定した。引張試験機のステージは日本電産シンポ株式会社のFGS―100VCを用いた。フォースゲージは日本電産シンポ株式会社のFGP-20を用いた。剥離速度は50mm/分で実施した。その結果、実施例1では650N/cm、比較例1では450N/cmであった。さらに、剥離面のSEM像観察と、破断断面のEDXによる元素分析を行った。元素分析の条件は上述の条件と同じである。 <Bonding strength and bonding state of copper plates>
In Example 1 and Comparative Example 1, the copper plate bonded to the silicon nitride plate was pulled vertically upward using a tensile tester, and the bonding strength was measured at the time when the copper plate peeled off from the silicon nitride plate as shown in Figures 17(A) and 17(B). The stage of the tensile tester used was FGS-100VC manufactured by Nidec-Shimpo Corporation. The force gauge used was FGP-20 manufactured by Nidec-Shimpo Corporation. The peeling speed was 50 mm/min. The results were 650 N/cm in Example 1 and 450 N/cm in Comparative Example 1. Furthermore, SEM images of the peeled surface and elemental analysis by EDX of the fractured cross section were performed. The elemental analysis conditions were the same as those described above.
実施例1及び比較例1において、窒化ケイ素板に接合した銅板を、引張試験機を用いて鉛直上方に引っ張り、図17(A)及び図17(B)に示すように銅板が窒化ケイ素板から剥離した時点での接合強度を測定した。引張試験機のステージは日本電産シンポ株式会社のFGS―100VCを用いた。フォースゲージは日本電産シンポ株式会社のFGP-20を用いた。剥離速度は50mm/分で実施した。その結果、実施例1では650N/cm、比較例1では450N/cmであった。さらに、剥離面のSEM像観察と、破断断面のEDXによる元素分析を行った。元素分析の条件は上述の条件と同じである。 <Bonding strength and bonding state of copper plates>
In Example 1 and Comparative Example 1, the copper plate bonded to the silicon nitride plate was pulled vertically upward using a tensile tester, and the bonding strength was measured at the time when the copper plate peeled off from the silicon nitride plate as shown in Figures 17(A) and 17(B). The stage of the tensile tester used was FGS-100VC manufactured by Nidec-Shimpo Corporation. The force gauge used was FGP-20 manufactured by Nidec-Shimpo Corporation. The peeling speed was 50 mm/min. The results were 650 N/cm in Example 1 and 450 N/cm in Comparative Example 1. Furthermore, SEM images of the peeled surface and elemental analysis by EDX of the fractured cross section were performed. The elemental analysis conditions were the same as those described above.
実施例1の銅板の剥離時の外観写真をそれぞれ図17(A)に示した。実施例1の剥離面のSEM像観察の結果を図18(A)に示した。実施例1のEDXによる元素分析の結果をそれぞれ図19(A)に示した。同様に、比較例1の銅板の剥離時の外観写真を図17(B)に示した。比較例1の剥離面のSEM像観察の結果を図18(B)に示した。比較例1のEDXによる元素分析の結果を図19(B)に示した。図18(A)及び図18(B)の黒色部101は、ケイ素元素が含まれている部分を表し、灰色部105は銀元素が含まれている部分を表している。一方、図19(A)及び図19(B)の点状模様部102の各点はケイ素元素が含まれている部分を表し、黒色部106は銀元素が含まれている部分を表している。
The appearance photograph of the copper plate of Example 1 when peeled off is shown in FIG. 17(A). The result of SEM image observation of the peeled surface of Example 1 is shown in FIG. 18(A). The result of elemental analysis by EDX of Example 1 is shown in FIG. 19(A). Similarly, the appearance photograph of the copper plate of Comparative Example 1 when peeled off is shown in FIG. 17(B). The result of SEM image observation of the peeled surface of Comparative Example 1 is shown in FIG. 18(B). The result of elemental analysis by EDX of Comparative Example 1 is shown in FIG. 19(B). The black parts 101 in FIG. 18(A) and FIG. 18(B) represent the parts containing silicon element, and the gray parts 105 represent the parts containing silver element. Meanwhile, each dot of the dotted pattern part 102 in FIG. 19(A) and FIG. 19(B) represents the parts containing silicon element, and the black parts 106 represent the parts containing silver element.
図18(A)、図18(B)、図19(A)、及び図19(B)より、実施例1では、剥離面にケイ素元素が多く付着していることから、窒化ケイ素板10付近での破断が起こっていた。これに対し、比較例1では剥離面に付着するケイ素元素が実施例1よりも少なく、第3接合層23と銅板50との間での界面剥離が起こっていることが確認された。実施例1は比較例1よりも剥離面にケイ素元素が多く付着し、上述のとおり接合強度も高くなっていた。これらの結果から、実施例1の回路基板は、第1接合層及び第2接合層が十分に形成されていることで、窒化ケイ素板10と接合層20とが比較例1よりも強固に接合していることがわかった。
From Figures 18(A), 18(B), 19(A), and 19(B), in Example 1, a large amount of silicon element was attached to the peeled surface, causing fracture near the silicon nitride plate 10. In contrast, in Comparative Example 1, the amount of silicon element attached to the peeled surface was less than in Example 1, and it was confirmed that interfacial peeling occurred between the third bonding layer 23 and the copper plate 50. In Example 1, more silicon element was attached to the peeled surface than in Comparative Example 1, and the bonding strength was also higher as described above. From these results, it was found that in the circuit board of Example 1, the first bonding layer and the second bonding layer were sufficiently formed, and therefore the silicon nitride plate 10 and the bonding layer 20 were bonded more firmly than in Comparative Example 1.
本開示によれば、高い接合強度を有する回路基板の製造方法、及び回路基板が提供される。また、このような回路基板を用いたパワーモジュールが提供される。
The present disclosure provides a method for manufacturing a circuit board having high bonding strength, and a circuit board. It also provides a power module using such a circuit board.
1…加圧治具、2…ベースプレート、3…カバープレート、3x…外縁、4…スプリングワッシャ、4a…下端部、4b…上端部、4x…離隔領域、5…加圧プレート、5b…支柱貫通孔、6…加圧構造、8…支柱部(支柱)9…係止爪(係止部)、8a…係合孔、10…窒化ケイ素板、20…接合層、21…第1接合層、22…第2接合層、23…第3接合層、50…銅板、30…ろう材層、40…複合体、70…スペーサ、80…積層体、90…構造体、100…回路基板、101,106…黒色部、102…点状模様部、105…灰色部。
1...pressure jig, 2...base plate, 3...cover plate, 3x...outer edge, 4...spring washer, 4a...lower end, 4b...upper end, 4x...separation area, 5...pressure plate, 5b...post through hole, 6...pressure structure, 8...post portion (post) 9...locking claw (locking portion), 8a...engagement hole, 10...silicon nitride plate, 20...bonding layer, 21...first bonding layer, 22...second bonding layer, 23...third bonding layer, 50...copper plate, 30...brazing material layer, 40...composite, 70...spacer, 80...laminated body, 90...structure, 100...circuit board, 101, 106...black portion, 102...dot pattern portion, 105...gray portion.
1...pressure jig, 2...base plate, 3...cover plate, 3x...outer edge, 4...spring washer, 4a...lower end, 4b...upper end, 4x...separation area, 5...pressure plate, 5b...post through hole, 6...pressure structure, 8...post portion (post) 9...locking claw (locking portion), 8a...engagement hole, 10...silicon nitride plate, 20...bonding layer, 21...first bonding layer, 22...second bonding layer, 23...third bonding layer, 50...copper plate, 30...brazing material layer, 40...composite, 70...spacer, 80...laminated body, 90...structure, 100...circuit board, 101, 106...black portion, 102...dot pattern portion, 105...gray portion.
Claims (8)
- 窒化ケイ素板と、銅板と、前記窒化ケイ素板と前記銅板とを接着するろう材層と、を備える複数の複合体を作製する工程と、
スペーサを一対の前記複合体の間に配置して積層体を作製する工程と、
前記積層体を370~420℃の温度範囲で3.5時間以上加熱して、前記ろう材層を脱脂する工程と、
前記積層体を加熱して前記窒化ケイ素板と前記銅板とを前記ろう材層で接合する工程と、を有する、回路基板の製造方法。 A step of producing a plurality of composite bodies including a silicon nitride plate, a copper plate, and a brazing material layer bonding the silicon nitride plate and the copper plate;
A step of placing a spacer between a pair of the composite bodies to prepare a laminate;
heating the laminate at a temperature in the range of 370 to 420° C. for 3.5 hours or more to degrease the brazing material layer;
and heating the laminate to bond the silicon nitride plate and the copper plate with the brazing material layer. - 前記積層体を加熱する前記工程では、加圧治具を用いて、積層方向に沿って前記積層体を加圧した状態で加熱する、請求項1に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 1, wherein in the step of heating the laminate, the laminate is heated while being pressed in the lamination direction using a pressure tool.
- 前記ろう材層は、Ag、Cu、TiH2及びSnを含む、請求項1又は2に記載の回路基板の製造方法。 The method for manufacturing a circuit board according to claim 1 or 2, wherein the brazing material layer contains Ag, Cu, TiH2 and Sn.
- 窒化ケイ素板と、銅板と、前記窒化ケイ素板と前記銅板とを接合する接合層と、を備える回路基板であって、
前記接合層が、前記窒化ケイ素板側から、窒化チタンを含む第1接合層と、Siを含む第2接合層と、Agを含む第3接合層とをこの順に有し、
前記第1接合層中の炭素の含有量をC1原子%、前記第3接合層中の炭素の含有量をC3原子%としたときに、C1/C3の平均値が0.5以下である、回路基板。 A circuit board comprising a silicon nitride plate, a copper plate, and a bonding layer that bonds the silicon nitride plate and the copper plate,
the bonding layer includes, from the silicon nitride plate side, a first bonding layer containing titanium nitride, a second bonding layer containing Si, and a third bonding layer containing Ag, in this order;
A circuit board, wherein when the carbon content in the first bonding layer is C1 atomic % and the carbon content in the third bonding layer is C3 atomic %, an average value of C1/C3 is 0.5 or less. - 前記第1接合層の厚さの最大値と最小値の差が70nm以下である、請求項4に記載の回路基板。 The circuit board according to claim 4, wherein the difference between the maximum and minimum thicknesses of the first bonding layer is 70 nm or less.
- 前記第2接合層の厚さが50nm以上である、請求項4に記載の回路基板。 The circuit board according to claim 4, wherein the thickness of the second bonding layer is 50 nm or more.
- 前記第1接合層の厚さの平均値をt1、前記第2接合層の厚さの平均値をt2としたときに、t1/t2が5以下である、請求項4に記載の回路基板。 The circuit board according to claim 4, wherein t1/t2 is 5 or less, where t1 is the average thickness of the first bonding layer and t2 is the average thickness of the second bonding layer.
- 請求項4~7のいずれか一項に記載の回路基板と、前記回路基板の前記銅板に電気的に接続された半導体素子と、を備えるパワーモジュール。
A power module comprising: the circuit board according to any one of claims 4 to 7; and a semiconductor element electrically connected to the copper plate of the circuit board.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-027579 | 2023-02-24 | ||
JP2023027579 | 2023-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024176599A1 true WO2024176599A1 (en) | 2024-08-29 |
Family
ID=92500955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/045775 WO2024176599A1 (en) | 2023-02-24 | 2023-12-20 | Circuit board manufacturing method, circuit board, and power module |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024176599A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999015478A1 (en) * | 1997-09-19 | 1999-04-01 | Japan Science And Technology Corporation | Brazing structure and metallized structure |
WO2013002407A1 (en) * | 2011-06-30 | 2013-01-03 | 日立金属株式会社 | Brazing filler metal, brazing filler metal paste, ceramic circuit substrate, ceramic master circuit substrate, and power semiconductor module |
WO2018003845A1 (en) * | 2016-06-30 | 2018-01-04 | 三菱マテリアル株式会社 | Copper-ceramic joined body, and insulation circuit substrate |
WO2021015122A1 (en) * | 2019-07-23 | 2021-01-28 | 日本碍子株式会社 | Bonded substrate, and method for manufacturing bonded substrate |
JP2021143120A (en) * | 2020-03-10 | 2021-09-24 | 日立金属株式会社 | Ceramic circuit board and its manufacturing method |
WO2021200866A1 (en) * | 2020-03-30 | 2021-10-07 | デンカ株式会社 | Circuit board, joined body, and methods for producing same |
WO2021235387A1 (en) * | 2020-05-20 | 2021-11-25 | 株式会社 東芝 | Joined body, ceramic copper circuit substrate, and semiconductor device |
JP2022106195A (en) * | 2021-01-06 | 2022-07-19 | デンカ株式会社 | Pressurizing device |
-
2023
- 2023-12-20 WO PCT/JP2023/045775 patent/WO2024176599A1/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999015478A1 (en) * | 1997-09-19 | 1999-04-01 | Japan Science And Technology Corporation | Brazing structure and metallized structure |
WO2013002407A1 (en) * | 2011-06-30 | 2013-01-03 | 日立金属株式会社 | Brazing filler metal, brazing filler metal paste, ceramic circuit substrate, ceramic master circuit substrate, and power semiconductor module |
WO2018003845A1 (en) * | 2016-06-30 | 2018-01-04 | 三菱マテリアル株式会社 | Copper-ceramic joined body, and insulation circuit substrate |
WO2021015122A1 (en) * | 2019-07-23 | 2021-01-28 | 日本碍子株式会社 | Bonded substrate, and method for manufacturing bonded substrate |
JP2021143120A (en) * | 2020-03-10 | 2021-09-24 | 日立金属株式会社 | Ceramic circuit board and its manufacturing method |
WO2021200866A1 (en) * | 2020-03-30 | 2021-10-07 | デンカ株式会社 | Circuit board, joined body, and methods for producing same |
WO2021235387A1 (en) * | 2020-05-20 | 2021-11-25 | 株式会社 東芝 | Joined body, ceramic copper circuit substrate, and semiconductor device |
JP2022106195A (en) * | 2021-01-06 | 2022-07-19 | デンカ株式会社 | Pressurizing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7951467B2 (en) | Cladding material and its manufacturing method, press-forming method, and heat sink using cladding material | |
US20090283309A1 (en) | Ceramic-metal bonded body, method for manufacturing the bonded body and semi-conductor device using the bonded body | |
JP2017501883A (en) | Method for manufacturing a metal ceramic substrate | |
JP4014528B2 (en) | Heat spreader module manufacturing method and heat spreader module | |
CN108430690B (en) | Bonding material, bonding method using the same, and bonding structure | |
EP1862298A1 (en) | Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure | |
WO2013145843A1 (en) | Thermoelectric conversion module and method for manufacturing same | |
JP2860037B2 (en) | Method of manufacturing heat dissipation board for semiconductor device | |
JP4104253B2 (en) | Board integrated structure | |
JP6908173B2 (en) | Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method | |
JPH06268117A (en) | Heat radiating substrate for semiconductor device and its manufacture | |
EP1400300B1 (en) | Layered heat-resistant alloy plate and method of producing the same | |
WO2024176599A1 (en) | Circuit board manufacturing method, circuit board, and power module | |
WO2024176598A1 (en) | Circuit board and power module | |
JP6786090B2 (en) | Heat dissipation plate material | |
JP4350753B2 (en) | Heat sink member and manufacturing method thereof | |
DE102020111698A1 (en) | Method for producing a metal-ceramic substrate and a metal-ceramic substrate produced by such a method | |
WO2022224949A1 (en) | Copper/ceramic bonded body and insulated circuit board | |
WO2023188670A1 (en) | Circuit board and manufacturing method therefor | |
JP2986531B2 (en) | Manufacturing method of aluminum nitride substrate bonded with copper | |
JP7535198B2 (en) | Circuit board, manufacturing method thereof, and power module | |
WO2023286860A1 (en) | Copper/ceramic bonded body and insulated circuit board | |
WO2023008565A1 (en) | Copper/ceramic bonded body and insulated circuit board | |
WO2023190253A1 (en) | Printed circuit board and manufacturing method therefor, and power module | |
WO2023286857A1 (en) | Copper/ceramic assembly and insulating circuit substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23924243 Country of ref document: EP Kind code of ref document: A1 |