[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024034667A1 - 移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置 - Google Patents

移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置 Download PDF

Info

Publication number
WO2024034667A1
WO2024034667A1 PCT/JP2023/029303 JP2023029303W WO2024034667A1 WO 2024034667 A1 WO2024034667 A1 WO 2024034667A1 JP 2023029303 W JP2023029303 W JP 2023029303W WO 2024034667 A1 WO2024034667 A1 WO 2024034667A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
time
mobile
mobile object
mobile body
Prior art date
Application number
PCT/JP2023/029303
Other languages
English (en)
French (fr)
Inventor
真成 野村
真 服部
博崇 大貫
雅幸 砂本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2024034667A1 publication Critical patent/WO2024034667A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a mobile object management method, a management program, a storage medium, and an information processing device.
  • Electrically assisted bicycles are known in which the pedal force of the crank pedal is assisted by the power of a motor (for example, Patent Document 1).
  • Various sensors are attached to moving objects such as electrically assisted bicycles, making it possible to obtain various information while riding.
  • the electrically assisted bicycle described in Patent Document 1 is equipped with various sensors that can obtain information such as crank pedal depression force, motor output, and vehicle speed.
  • Such electrically assisted bicycles are controlled based on the values of various sensors so that the pedal effort of the crank pedal can be appropriately assisted by the power of the motor.
  • the running environment and running conditions of a moving object vary depending on the location where the moving object is running, and the user (for example, a driver) may not notice any abnormality in the moving object. Furthermore, if the user continues to use the mobile object without noticing the abnormality, the user may become accustomed to the state where the abnormality is occurring, and there is a risk that it will be delayed in noticing the abnormality in the mobile object. Therefore, it is preferable to be able to appropriately understand abnormalities in the moving object.
  • the present invention provides a method for managing a moving object, a management program, a storage medium, and an information processing device that can appropriately grasp abnormalities in the moving object based on information acquired from various sensors installed in the moving object. .
  • the present invention A method for managing a mobile object, obtaining first information correlating to movement energy or movement loss while the mobile object is moving through a first geographic location at a first time; obtaining, at a second time subsequent to the first time, second information correlating to movement energy or loss while the mobile object is moving through the first geographic location; Comparing the first information and the second information at a third time after the second time.
  • the present invention A mobile object management program, obtaining first information correlating to movement energy or movement loss while the mobile object is moving through a first geographic location at a first time; obtaining, at a second time subsequent to the first time, second information correlating to movement energy or loss while the mobile object is moving through the first geographic location; A computer is caused to perform a step of comparing the first information and the second information at a third time after the second time.
  • the present invention It is a computer-readable storage medium that stores the above-mentioned management program.
  • the present invention a first acquisition unit that acquires first information correlated to movement energy or movement loss when the mobile object is moving through a first geographical location at a first time; a second acquisition, at a second time subsequent to the first time, acquiring second information correlated to movement energy or loss while the mobile object is moving through the first geographic location; Department and a comparison unit that compares the first information and the second information acquired by the first acquisition unit and the second acquisition unit at a third time after the second time;
  • An information processing device comprising:
  • the present invention A method for managing a mobile object, obtaining, at a fifth time, third information correlated to vibrations occurring in the mobile body while the mobile body is moving through a second geographic location; At a sixth time after the fifth time, acquiring fourth information correlated to vibrations generated in the mobile body while the mobile body is moving in the second geographical position. and, Comparing the third information and the fourth information at a seventh time after the sixth time, (A) Further comprising the step of executing at least one of (i) to (iii) at an eighth time after the seventh time when the third information and the fourth information are different.
  • the present invention A mobile object management program, obtaining, at a fifth time, third information correlated to vibrations occurring in the mobile body while the mobile body is moving through a second geographic location; At a sixth time after the fifth time, acquiring fourth information correlated to vibrations occurring in the mobile body while the mobile body is moving in the second geographical position.
  • the present invention a third acquisition unit that acquires third information correlated to vibrations occurring in the mobile body while the mobile body is moving in the second geographical position at a fifth time; At a sixth time after the fifth time, acquiring fourth information correlated to vibrations occurring in the mobile body while the mobile body is moving in the second geographical position.
  • An information processing device comprising: The information processing device includes: (A) When the third information and the fourth information are different, executing at least one of (i) to (iii) at an eighth time after the seventh time: (i) determining that an abnormality has occurred in the moving object; (ii) generating information for suppressing or prohibiting the movement of the mobile object; (iii) generating information for notifying at least one of the user, manufacturer, owner, and manager of the mobile body that an abnormality has occurred in the mobile body; Or (B) When the third information and the fourth information are not different, performing at least one of (iv) to (vi) at an eighth time after the seventh time: (iv) determining that the mobile object is normal; (v) generating information for permitting movement of the mobile object; (vi) Generating information for notifying at least one of the user, manufacturer, owner, and manager of the
  • abnormalities in a moving body can be appropriately determined.
  • FIG. 1 is a side view of an electric bicycle 10 according to each embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a mechanism for transmitting power around the power unit 20, the crankshaft 83, and the rear wheel 78.
  • 2 is a diagram illustrating electrical paths and communication paths of a power unit 20, a battery 2, and a control circuit 40 in the electric bicycle 10.
  • FIG. It is a graph showing the relationship between the assist ratio of the electric bicycle 10 and the vehicle speed, showing the difference in the assist ratio depending on the mode.
  • FIG. 4 is a functional block diagram of a control circuit 40 that is an example of the information processing device of the present invention. It is a flowchart of comparison point determination processing of a 1st embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a mechanism for transmitting power around the power unit 20, the crankshaft 83, and the rear wheel 78.
  • 2 is a diagram illustrating electrical paths and communication paths of a power unit 20, a battery 2, and a control circuit 40
  • FIG. 2 is a diagram showing an example of a route that the electric bicycle 10 travels on a daily basis.
  • FIG. 3 is a flow diagram of comparison processing according to the first embodiment of the present invention. This is a table that summarizes driving data obtained when driving on road A on a daily basis by measurement date. It is a graph showing the results of determination of normality and/or abnormality when the comparison process of the first embodiment is performed based on driving data acquired when driving on road A on a daily basis. It is a graph which shows the result of determination of normality and/or abnormality when the comparison process of the 1st modification was performed based on the driving
  • the electric bicycle 10 is electrically connected to a front wheel 73, a rear wheel 78, a bicycle frame 67, and a power unit 20 that drives the rear wheel 78.
  • This electrically assisted bicycle includes a battery unit 4 and is configured to be able to output assist force generated by a power unit 20.
  • the bicycle frame 67 includes a head pipe 68 at the front end, a down pipe 69 extending backward from the head pipe 68 from the front of the vehicle body to the rear, and a support pipe 66 fixed to the rear end of the down pipe 69 and extending left and right (see FIG. 2). ), a seat post 71 rising upward from the support pipe 66, and a pair of left and right rear forks 70 extending rearward from the support pipe 66.
  • a front fork 72 is steerably supported on the head pipe 68, and a front wheel 73 is pivotally supported at the lower end of the front fork 72. Further, a rear wheel 78 serving as a driving wheel is pivotally supported between the rear ends of a pair of left and right rear forks 70 extending rearward from the seat post 71.
  • the front wheel 73 and the rear wheel 78 have tire portions 73a and 78a, respectively.
  • the tire parts 73a and 78a have tubes in which air is sealed, and air is injected into the tubes of the tire parts 73a and 78a by an inflator (not shown).
  • a steering handle 74 is provided at the upper end of the front fork 72.
  • the steering handle 74 is provided with a mobile terminal holder 6 that holds a mobile terminal 8 (see FIG. 3) owned by a passenger (for example, a driver).
  • a passenger for example, a driver
  • the mobile terminal holder 6 is not necessarily required, and the mobile terminal 8 may be attached to (stored in) the passenger himself or to the passenger's clothing (clothes, bag).
  • a support shaft 75 having a seat 76 at its upper end is attached to the seat post 71 so that the vertical position of the seat 76 can be adjusted.
  • a battery unit 4 that supplies power to the power unit 20 is removably fixed to the down pipe 69.
  • the battery unit 4 includes a pedestal 3 attached to the upper surface of the down pipe 69, and a battery 2 that is detachably attached to the pedestal 3 and has a plurality of cells inside.
  • FIG. 3 is a diagram illustrating the electrical paths and communication paths of the power unit 20, battery 2, and control circuit 40 in the electric bicycle 10.
  • the control circuit 40 includes, for example, a CPU (Central Processing Unit) that can execute various calculations, a RAM (Random Access Memory) used as a work area for the CPU, and a ROM (Read Only Memory) that stores various information. A storage medium.
  • the control circuit 40 calculates the torque generated by the motor M of the power unit 20 so that an assist force determined by the pedal depression force described below and an assist ratio according to the vehicle speed of the electric bicycle 10 is generated.
  • the assist ratio is the ratio of the force used to supplement the pedal effort using the motor to the pedal effort on the crank pedal.
  • the motor M operates according to the CPU 22 of the power unit 20 that receives the calculation result (drive request) from the control circuit 40.
  • the converter DC/DC steps down the supplied DC voltage as direct current and connects it to a control circuit 40, an inertial measurement unit (IMU in the figure) 41, a memory 42, a GNSS (Global Navigation Satellite System) 43, and A power supply voltage for the BLE (Bluetooth Low Energy (registered trademark)) communication device 44 is generated.
  • IMU in the figure
  • GNSS Global Navigation Satellite System
  • BLE Bluetooth Low Energy
  • the inertial measurement device 41 is, for example, a 9-axis sensor that has the functions of a 3-axis acceleration sensor, a 3-axis angular velocity sensor, and a 3-axis orientation sensor, and detects the mounting posture of the control circuit 40.
  • GNSS 43 acquires position information of electric bicycle 10.
  • the memory 42 is, for example, an SD card, and temporarily or permanently holds information about the electric bicycle 10, riding data, and the like.
  • the travel data includes position information acquired by the GNSS 43 and information acquired by the inertial measurement device 41 and various sensors SE1 to SE4 described later.
  • the BLE communication device 44 is a communication device for BT connection (Bluetooth communication) with the mobile terminal 8 and the like.
  • power from the battery 2 is supplied to the motor M of the power unit 20 via the power lines 51 and 55, and from the power unit 20 to the converter via the power lines 56 and 52.
  • the step-down power is supplied to the control circuit 40, the inertial measurement device 41, the GNSS 43, the memory 42, and the BLE communication device 44 via DC/DC.
  • a power-on signal is sent to the power unit 20 via the signal lines 53 and 57.
  • the CPU 22 of the power unit 20 is activated.
  • the electric assist function capable of outputting the assist force generated by the power unit 20 becomes effective.
  • the power unit 20 starts, information is exchanged between the power unit 20 and the control circuit 40 via the signal lines 54 and 58, and information is exchanged between the control circuit 40 and the mobile terminal 8 etc. via the BLE communication device. It becomes possible.
  • crank pedals 79 are connected to the left and right ends of a crankshaft 83 that coaxially passes through the support pipe 66 of the bicycle frame 67.
  • the pedal force applied by the occupant to the crank pedal 79 (hereinafter referred to as pedal pedal force) is transmitted to the crankshaft 83 and input to the endless chain 82 via the drive sprocket 80.
  • the chain 82 is wound around a driving sprocket 80 and a driven sprocket 81 provided on the axle of the rear wheel 78.
  • the output shaft 21 of the motor M and the crankshaft 83 are arranged in parallel.
  • the crankshaft 83 is rotatably supported inside a cylindrical sleeve 26 via a first one-way clutch 28, and a motor output gear 21a provided on the output shaft 21 of the motor M is provided on the outer peripheral side of the sleeve 26.
  • a driven gear 26a and a drive sprocket 80 that mesh with the drive sprocket 80 are fixed. Therefore, the torque of the motor M is transmitted to the drive sprocket 80 via the motor output gear 21a, the driven gear 26a, and the sleeve 26. That is, the motor M is provided in parallel with the crank pedal 79.
  • a second one-way clutch 32 is provided between the driven sprocket 81 and the rear wheel 78.
  • the crank pedal 79 when the crank pedal 79 is pedaled in the forward direction (also referred to as the forward rotation direction or forward direction), the first one-way clutch 28 is engaged and the crankshaft 83 rotates in the forward direction. Power is transmitted to the driving sprocket 80 via the sleeve 26 and further transmitted to the driven sprocket 81 via the chain 82. At this time, the second one-way clutch 32 is also engaged, so that the forward rotational power transmitted to the driven sprocket 81 is transmitted to the rear wheel 78.
  • crank pedal 79 when the crank pedal 79 is pedaled in the reverse direction (also referred to as the reverse rotation direction or reverse direction), the first one-way clutch 28 is not engaged, and the reverse rotational power of the crankshaft 83 is not transmitted to the sleeve 26 and the crankshaft is rotated.
  • the shaft 83 idles.
  • forward rotational power in the forward direction forward rotation direction
  • the second one-way clutch 32 does not engage, and the rear wheel 78
  • the forward rotational power is not transmitted to the driven sprocket 81. Therefore, the rear wheel 78 rotates relative to the driven sprocket 81.
  • reverse rotational power in the reverse direction reverse rotation direction
  • the reverse rotation power of 78 is transmitted to a driven sprocket 81 and further transmitted to a driving sprocket 80 via a chain 82.
  • the power unit 20 is provided with a motor rotation speed sensor SE1 that detects the rotation speed of the motor M.
  • the motor rotation speed sensor SE1 is composed of a magnet and a Hall IC provided on the outer periphery of the output shaft 21 of the motor M.
  • the sleeve 26 is provided with a torque sensor SE2 that detects a pedal torque value Tq generated by pedal depression force.
  • the torque sensor SE2 is a magnetic displacement detection type torque sensor disposed on the outer periphery of the sleeve 26.
  • the control circuit 40 that controls the power unit 20 calculates the pedal force from the pedal torque value Tq that is the output value of the torque sensor SE2, and calculates the pedal force according to the pedal force and the speed of the electric bicycle 10 (hereinafter also referred to as vehicle speed).
  • the motor M is controlled by PWM (Pulse Width Modulation) so that an assist force determined by the assist ratio is generated.
  • the rear fork 70 is provided with a rear wheel rotation speed sensor SE3.
  • the rear wheel rotation speed sensor SE3 is, for example, a magnetic detection sensor, and detects a magnetic pulse when a magnet attached to a spoke of the rear wheel 78 passes through the sensor.
  • the rear wheel rotation speed sensor SE3 transmits the detected magnetic pulse as a vehicle speed pulse to the control circuit 40, and the control circuit 40 calculates the vehicle speed from the pulse interval.
  • the vehicle speed is V [km/h] and the circumference of the rear wheel 78 is Ct [m]
  • the vehicle speed V [km/h] is expressed by the following equation (1).
  • V [km/h] ⁇ Ct [m] / magnetic pulse interval (s) ⁇ x 3600/1000 (1)
  • a cadence sensor SE4 is attached around the drive sprocket 80. Since the drive sprocket 80 rotates together with the crank pedal 79 when the first one-way clutch 28 is engaged, the rotation of the drive sprocket 80 can be considered as the rotation of the crank pedal 79.
  • Cadence sensor SE4 is, for example, a magnetic detection sensor.
  • the drive sprocket 80 is provided with eight magnets evenly spaced in the circumferential direction, and the cadence sensor SE4 detects magnetic pulses when the magnets pass the sensor.
  • the cadence sensor SE4 transmits the detected magnetic pulse as a cadence pulse (cadence-related information) to a control circuit 40, which will be described later, and the control circuit 40 calculates a cadence indicating the speed of rotation (movement) of the crank pedal 79 from the pulse interval. do.
  • the cadence pulse is detected eight times per revolution of the crank pedal 79. Therefore, the cadence C [rpm] is expressed by the following equation (2).
  • the driving sprocket 80 is connected to the driven gear 26a via the sleeve 26, when the gear diameter of the driven gear 26a is the same as the gear diameter of the motor output gear 21a, the driving sprocket 80 and the motor output gear 21a are connected to each other. The number of rotations will be the same. Therefore, when the motor output gear 21a and the driven gear 26a have the same gear diameter, the cadence C can also be acquired by the motor rotation speed sensor SE1. Further, the cadence C may be obtained in parallel by both the cadence sensor SE4 and the motor rotation speed sensor SE1.
  • the electric bicycle 10 may include multiple assist modes.
  • the electric bicycle 10 has a normal assist mode, a strong assist mode with a higher assist ratio than the normal assist mode, and a weak assist mode with a lower assist ratio than the normal assist mode as assist modes selectable by the rider.
  • the generated torque in the strong assist mode is set to the upper limit torque or a value near the upper limit torque
  • the generated torque in the normal assist mode is made smaller than the generated torque in the strong assist mode
  • the generated torque in the weak assist mode is set to a value close to the upper limit torque.
  • the torque is set to be even smaller than the torque generated in the normal assist mode.
  • the three assist modes can be easily set by using one of them as a reference, and by multiplying the generated torque in the reference mode by a coefficient, the generated torque in the other modes is set.
  • the driving force of the electric bicycle 10 can be considered as the sum of acceleration resistance, air resistance, rolling loss, internal loss, and slope resistance. That is, assuming that the driving force is F, the acceleration resistance is ma, the air resistance is A ⁇ V 2 , the rolling loss is ⁇ 1, the internal loss is ⁇ 2, and the slope resistance is mgsin ⁇ , the driving force F is expressed by the following equation (3).
  • m [kg] is the weight of the vehicle body and occupants
  • a [m/s 2 ] is the acceleration of the vehicle body
  • a [m 2 ] is the frontal projected area of the vehicle body and occupants
  • ⁇ [N/(m 2 ⁇ (km /h) 2 )] is the air resistance coefficient
  • V [km/h] is the vehicle speed as described above
  • g [m/s 2 ] is the gravitational acceleration
  • ⁇ [rad] is the inclination angle of the road.
  • Acceleration resistance and air resistance change depending on driving conditions such as acceleration and vehicle speed.
  • the rolling loss changes depending on, for example, the air pressure of the tire portions 73a, 78a, and the lower the air pressure, the larger the rolling loss.
  • the internal loss increases, for example, when parts such as the chain 82 and the gears 21a and 26a wear out or when the grease runs out.
  • Gradient resistance is determined by geographical conditions such as topography.
  • An increase in rolling loss and/or internal loss means that something is wrong with the electric bicycle 10, that is, there is a possibility that the electric bicycle 10 is malfunctioning or may malfunction early. Therefore, in order to appropriately manage the electric bicycle 10, it is desirable to understand the increase in rolling loss and/or internal loss.
  • the management method in this embodiment is performed under conditions in which the influences of acceleration resistance, air resistance, and slope resistance described above are considered to be equal, that is, under conditions in which running conditions and geographical conditions are considered to be equal, the electric bicycle 10 is
  • the information that correlates to the moving energy when the electric bicycle 10 is traveling at a different time is compared with the information that correlates to the moving energy when the electric bicycle 10 is traveling at a different time.
  • traveling outputs P[W] when the electric bicycle 10 is traveling at different times are compared.
  • the running output P[W] is represented by the sum of the output P_pedal due to the pedal depression force from the occupant and the output P_motor due to the torque generated by the motor M.
  • the output P_pedal is calculated based on data detected by a sensor etc. provided on the electric bicycle 10, for example, a pedal torque value Tq obtained from the torque sensor SE2, a cadence sensor SE4, and/or a motor rotation speed sensor SE1. This is a measured value (also referred to as a human torque measured value) calculated by the following equation (4) based on the cadence C.
  • the output P_motor is an instruction value (also referred to as a motor output instruction value) that the control circuit 40 instructs the motor M based on the measured human torque value and the assist ratio.
  • the running output P[W] is calculated by multiplying the driving force F[N] by the radius [m] of the driving wheel (in this embodiment, the rear wheel 78), and then adding the tire end torque [N ⁇ m] to the driving wheel It is obtained by multiplying the rotation speed of the rear wheel 78. That is, since the traveling output P[W] increases as the driving force increases as described above, the traveling output P[W] increases when the electric bicycle 10 is traveling at different times under conditions where the traveling conditions and geographical conditions can be considered to be equal. By comparing the outputs P, it is possible to understand the increase in rolling loss and/or internal loss. Thereby, it can be determined whether the electric bicycle 10 is in a normal state or in a state where an abnormality has occurred.
  • driving data includes position information and route information acquired by GNSS 43, information acquired from each sensor SE1 to SE4 and inertial measurement device 41, and driving output P calculated from these information. means data.
  • driving output P does not include the motor output instruction value and is a human torque measurement value.
  • the method for managing the electric bicycle 10 includes a comparison point determination process that determines a geographical position to be a comparison point, and travel data when the electric bicycle 10 is traveling at a certain time at the comparison point and travel data when the electric bicycle 10 is traveling at a different time. This includes a comparison process for comparing the driving data when the vehicle is running.
  • the management method is executed by the control circuit 40, for example.
  • the control circuit 40 includes a movement information acquisition section 410, a comparison section 420, an abnormality determination section 430, a notification/notification control section 440, and a movement control section 450.
  • the comparison unit 420 includes a comparison point determination unit 421 and a movement information comparison unit 422. These have functions for executing the management method, and will be explained together with the management method.
  • the comparison point determination unit 421 determines a comparison point from the route that the electric bicycle 10 travels on a daily basis (for example, a commuting route or a school route). By fixing the comparison point, the above-mentioned geographical conditions can be made equal. Further, since the comparison point is a point where the electric bicycle 10 travels on a daily basis, it is possible to obtain travel data at the comparison point on a daily basis and to understand changes in the travel data in detail.
  • a daily basis for example, a commuting route or a school route.
  • the comparison point determination unit 421 searches for a route that the electric bicycle 10 routinely travels based on the position information of the electric bicycle 10 acquired by the GNSS 43 (step S100).
  • the comparison point determination unit 421 refers to past travel routes stored in the memory 42 and searches for a route that the electric bicycle 10 travels on a daily basis.
  • the position information of the electric bicycle 10 may be acquired by the GPS function of the mobile terminal 8.
  • the comparison point determination unit 421 searches for a road on which the electric bicycle 10 can ride stably among the roads included in the route on which the electric bicycle 10 travels on a daily basis (step S102).
  • a road on which the electric bicycle 10 can run stably is, for example, a road that includes a section on which the electric bicycle 10 can ride at a constant speed for a predetermined period of time (for example, 5 seconds). This is a road that is judged to be frequently traveled at a high speed.
  • the comparison point determination unit 421 determines the road searched in step S102 on which the electric bicycle 10 can run stably as a comparison point (step S104). On such roads, variations in vehicle speed between measurements are small, making it easy to compare travel data when the electric bicycle 10 is traveling at different times.
  • FIG. 7 is a diagram showing an example of a route that the electric bicycle 10 travels on a daily basis.
  • the route shown in FIG. 7 includes four roads A to D. Note that the route may be indoors or outdoors.
  • the road A is a substantially horizontal road, more specifically, a straight, substantially horizontal road with few obstacles (for example, traffic lights) that impede the stable running of the electric bicycle 10.
  • Road B is a road with many traffic lights.
  • Road B the electric bicycle 10 repeatedly starts and stops, so its speed fluctuates many times and is often unable to run stably.
  • Road C is, for example, a road in front of a station with a lot of pedestrian traffic.
  • road C as on road B, the electric bicycle 10 repeatedly starts and stops, so its speed fluctuates many times, and it is often unable to run stably.
  • Road D is an uphill road.
  • Road D has a large gradient resistance, so it is less susceptible to fluctuation factors such as wind and vehicle weight. Therefore, similarly to the road A, the electric bicycle 10 can travel stably every time it travels.
  • road A and/or road D are determined as comparison points.
  • FIG. 8 shows an example of the flow of the comparison process.
  • the movement information acquisition unit 410 acquires travel data when the electric bicycle 10 is traveling at a comparison point (for example, road A) at a certain time (step S200). For example, each time the electric bicycle 10 travels through a comparison point, the traveling data is stored in the memory 42 together with the comparison point, date and time, and selected assist mode. Note that the movement information acquisition unit 410 may acquire travel data for the entire route including the comparison point, or may acquire travel data only when traveling at the comparison point.
  • the movement information comparison unit 422 determines whether the assist mode when the electric bicycle 10 is traveling at the comparison point is the same as the assist mode when the electric bicycle 10 was traveling at the comparison point in the past. (Step S201).
  • the assist mode is the same as the past assist mode (step S201: YES)
  • the process advances to step S202.
  • the assist mode may differ from the previous assist mode.
  • the assist mode is different from the past assist mode (step S201: NO)
  • the movement information comparison unit 422 does not use the travel data acquired in step S200 as a comparison target, and ends the comparison process.
  • the movement information comparison unit 422 compares the vehicle speed V when the electric bicycle 10 is traveling at the comparison point with the reference vehicle speed Vref (step S202).
  • the reference vehicle speed Vref is, for example, the average value of vehicle speeds V acquired in the past at the comparison point. Further, the reference vehicle speed Vref is preferably a predetermined vehicle speed or less (for example, 20 km/h or less) in consideration of disturbances such as air resistance.
  • step S202 When the vehicle speed V and the reference vehicle speed Vref are substantially the same, the driving conditions can be considered to be equal (step S202: YES), so the movement information comparison unit 422 adopts the driving data acquired in step S200 as a comparison target (step S204). .
  • step S202: NO since the driving conditions are different when the vehicle speed V and the reference vehicle speed Vref are different (step S202: NO), the movement information comparison unit 422 does not adopt the driving data acquired in step S200 as a comparison target, and ends the comparison process. .
  • the fact that the vehicle speed V and the reference vehicle speed Vref are substantially the same does not necessarily have to be strictly the same, but it is sufficient that the vehicle speed V and the reference vehicle speed Vref are within a preset fluctuation range. By setting the condition that the vehicle speed V is within the fluctuation range of the reference vehicle speed Vref, it is possible to perform an appropriate comparison of driving conditions.
  • the movement information comparison unit 422 compares the driving output P (specifically, the latest driving output P acquired in step S200) and the past driving output (also referred to as reference output) Pref. Compare (step S206).
  • the past driving output Pref may be one piece of data selected from the driving outputs acquired in the past at the comparison point, or it may be a value (for example, an average value) based on multiple driving outputs acquired in the past. good.
  • the running output P is information that correlates to the moving energy when the electric bicycle 10 is moving
  • An increase in rolling loss and/or internal loss can be ascertained.
  • the rolling loss can be improved by using the sensors SE1 to SE4 and GNSS43 without providing a sensor (for example, an air pressure sensor that measures the air pressure of the tire parts 73a, 78a) for directly measuring the increase in rolling loss and/or internal loss. It is possible to grasp the increase in loss and/or internal loss.
  • the abnormality determination unit 430 determines that the electric bicycle 10 is normal (step S208). Note that the fact that the traveling output P is substantially the same as the reference output Pref does not necessarily have to be strictly the same, and it is sufficient that the traveling output P is within a preset fluctuation range.
  • the notification/notification control unit 440 generates information that notifies the rider (i.e., the user) of the electric bicycle 10 that the electric bicycle 10 is normal, and generates information to notify the rider (i.e., the user) of the electric bicycle 10 that the electric bicycle 10 is normal, and the electric bicycle 10 is activated by voice, screen display, etc. via the mobile terminal 8, for example. It is notified that the bicycle 10 is normal (step S210). Thereby, the rider can recognize that the electric bicycle 10 is normal.
  • the notification/notification control unit 440 may also cause a lamp (not shown) provided on the electric bicycle 10 to emit light (e.g., emit green light) to notify the rider that the electric bicycle 10 is normal.
  • the "notification" be notified when the degree of urgency is low and there is a request from the notification destination.
  • the notification destination is not limited to the rider who is the user; if the user of the electric bicycle 10 and the owner are different, the owner of the electric bicycle 10 may be notified, or the manufacturer or manager of the electric bicycle 10 may be notified. may be notified.
  • step S210 may be executed before step S212. Further, step S210 and/or step S212 may be omitted.
  • the abnormality determination unit 430 determines that an abnormality has occurred in the electric bicycle 10 (step S214).
  • the notification/notification control unit 440 generates information for notifying the rider who is the user of the electric bicycle 10 that something unusual has occurred in the electric bicycle 10, and generates information via audio or screen display via the mobile terminal 8, for example. etc., to notify that an abnormality has occurred in the electric bicycle 10 (step S216).
  • the notification/notification control unit 440 may also cause a lamp (not shown) provided on the electric bicycle 10 to emit light (e.g., emit light in red) to notify the rider that something unusual has occurred in the electric bicycle 10. .
  • "notification" has a high degree of urgency, and it is preferable to notify even if there is no request from the notification destination.
  • the notification destination is not limited to the rider; if the user and owner of the electric bicycle 10 are different, the notification may be made to the owner of the electric bicycle 10, or the manufacturer or manager of the electric bicycle 10. It's okay.
  • the notification/notification control unit 440 can prompt the user to carry out appropriate maintenance (for example, inflating the bicycle or replacing parts).
  • appropriate maintenance for example, inflating the bicycle or replacing parts.
  • the motor M assists the rider, so there is a possibility that the rider may continue riding without noticing the abnormality. maintenance can be encouraged.
  • the movement control unit 450 generates information for suppressing or prohibiting the electric bicycle 10 from traveling, suppresses or prohibits the electric bicycle 10 from traveling (step S218), and ends the comparison process. Specifically, a command to reduce the driving force output from the motor M or a command to stop the output from the motor M is generated to suppress the running of the electric bicycle 10. Thereby, it is possible to avoid using the electric bicycle 10 in a state where something abnormal has occurred.
  • step S218 may be executed before step S216. Further, step S216 and/or step S218 may be omitted.
  • FIGS. 9 and 10 are examples showing part of the travel data obtained when the electric bicycle 10 is traveling at a comparison point (for example, road A in FIG. 7) for each measurement date. It is assumed that, based on past travel data, the reference vehicle speed Vref when the electric bicycle 10 is traveling stably on the road A is 10 km/h. Furthermore, the assist mode and driving output P on April 1st are used as a reference in the comparison process, that is, the reference output Pref is set as 200W.
  • the assist mode on April 5th is the same as the assist mode on April 1st (step S201: YES), and the vehicle speed V is 10 km/h, which matches the reference vehicle speed Vref (step S202: YES).
  • the day's travel data is to be compared (step S204). Since the traveling output P on April 5 is not different from the reference output Pref on April 1, that is, the same (step S206: YES), the abnormality determination unit 430 determines that the electric bicycle 10 is normal (step S208). Then, the notification/notification control unit 440 and the movement control unit 450 control notification and movement permission (steps S210 and S212).
  • the normal assist mode is selected, which is different from the weak assist mode on April 1st (step S201: NO), so it does not match the driving conditions on April 1st. Even if you compare the driving output P on April 7th with the reference output Pref on April 1st, the driving conditions do not match, so it is difficult to identify the cause of the increase in the driving output P on April 7th. . In other words, the assist ratio on April 7th was larger than the assist ratio on April 1st, so the running output P increased, or the running output P increased due to an increase in rolling loss and/or internal loss. It is difficult to determine which Therefore, the driving data for April 7th is not subject to comparison.
  • the vehicle speed V is 15 km/h, which does not match the reference vehicle speed Vref (step S202: NO), and does not match the driving conditions on April 1st. Even if you compare the running output P on April 10th with the reference output Pref on April 1st, the running conditions do not match, so it is difficult to identify the cause of the increase in the running output P on April 10th. . In other words, to identify whether the running output P has increased because the occupant is pedaling the crank pedal 79 faster than usual, or whether the running output P has increased due to an increase in rolling loss and/or internal loss. is difficult. Therefore, the travel data on April 10th is not subject to comparison.
  • the assist mode on April 15th and April 20th is the same as the assist mode on April 1st (step S201: YES), and the vehicle speed V is 10 km/h, which matches the reference vehicle speed Vref (step S202: YES), the travel data on April 15th and April 20th will be compared (step S204). Comparing the running data on April 15th and April 20th, these running outputs P are larger than the reference output Pref on April 1st. Since the traveling output P is increased even though the vehicle is traveling on the same road and at the same vehicle speed, it is presumed that the rolling loss and/or internal loss are increased. Here, as shown in FIG.
  • the abnormality determination unit 430 finds that the running output P has increased from relatively short-term (several months) running data, it determines that the rolling loss is increasing. It may be estimated. At this time, the increase in rolling loss is considered to be due to a decrease in the amount of air in the tire portions 73a, 78a (in other words, the air pressure is decreasing), so the abnormality determination unit 430 determines that the tire portions 73a, 78a, It may be estimated that the air amount at 78a has decreased.
  • the abnormality determination unit 430 determines that an abnormality has occurred in the electric bicycle 10 (step S214). More specifically, the abnormality determination unit 430 may determine that the air amount has decreased in the tire portions 73a and 78a. Then, the notification/notification control unit 440 and the movement control unit 450 control the suppression or prohibition of traveling and the notification that the air amount has decreased in the tire portions 73a and 78a (steps S216 and S218).
  • comparison process may be executed each time travel data is acquired at a comparison point, or may be executed at regular intervals.
  • step S206 the abnormality determination unit 430 determines that an abnormality has occurred in the electric bicycle 10 when the movement information comparison unit 422 determines that the traveling output P is different from the reference output Pref a predetermined number of times (for example, twice) or more. You may judge.
  • the movement information comparison unit 422 determines that the travel output P on April 15th is greater than the reference output Pref on April 1st, and When determining that the output value is larger than the output Pref, the abnormality determination unit 430 determines that an abnormality has occurred in the electric bicycle 10.
  • the abnormality determination unit 430 may determine that an abnormality has occurred in the electric bicycle 10 when the traveling output P is larger than the reference output Pref by a predetermined increase amount ⁇ P or more.
  • the predetermined increase amount ⁇ P can be set arbitrarily. In the following, it is assumed that the predetermined increase amount ⁇ P is 20% of the reference output Pref.
  • abnormality determination is performed based on the predetermined increase amount ⁇ P, it is determined that the electric bicycle 10 is normal compared to the case where it is determined that there is an abnormality in the electric bicycle 10 when the traveling output P is different from the reference output Pref.
  • the width becomes wider, and excessive abnormality judgments can be suppressed.
  • traveling output P and the reference output Pref are different, it is determined that there is an abnormality in the electric bicycle 10, and when the traveling output P and the reference output Pref are different, and the traveling output is lower than the standard output Pref It may be determined that an abnormality has occurred in the electric bicycle 10 when the increase amount ⁇ P is greater than or equal to the increase amount ⁇ P.
  • "Abnormality” means that there is a high probability that the condition is different from normal conditions, and "abnormality” refers to a state of "abnormality” that is clearly different from normal conditions and requires repair, etc. means.
  • the abnormality determination unit 430 may also determine that the air amount has increased in the tire portions 73a and 78a. For example, in FIG. 10, if the running output on April 20th is decreased compared to the running output on April 15th, the abnormality determination unit 430 determines that an increase in the amount of air has occurred in the tire portions 73a and 78a. You may judge.
  • the notification/notification control unit 440 generates information for notifying the rider of the electric bicycle 10 that the air amount has increased in the tire portions 73a and 78a, and sends the information via the mobile terminal 8, for example.
  • the notification that the amount of air has increased in the tire portions 73a, 78a may be notified by audio, screen display, or the like.
  • the notification destination is not limited to the user of the electric bicycle 10; if the user and the owner are different, the owner of the electric bicycle 10 may be notified, or the manufacturer or manager of the electric bicycle 10 may also be notified. Good too. This allows the owner, manufacturer, and manager to understand that the electric bicycle 10 is being appropriately managed by the user.
  • step S206 of the comparison process information (traveling output P) correlated with moving energy is compared.
  • a comparison may be made with information correlated with the information.
  • the information correlated with the vibration is, for example, the magnitude of the vertical acceleration acquired by the inertial measurement device 41, and is information included in the travel data.
  • information correlated to vibration will also be simply referred to as vibration.
  • FIG. 13 is an example of a change over time in vibrations generated in the electric bicycle 10 (specifically, the magnitude of vertical acceleration correlated with the vibrations).
  • the tire parts 73a and 78a are hard and difficult to absorb the unevenness of the ground, so the vibration of the electric bicycle 10 is large (April 1st, April 5th).
  • the tire portions 73a and 78a become softer, making it easier to absorb the unevenness of the ground, and the vibrations of the electric bicycle 10 are reduced (April 10th, April 15th).
  • ground reaction force is applied to the tire parts 73a and 78a in addition to the tubes filled with air, and the vibrations of the electric bicycle 10 increase (April 20).
  • FIG. 14 shows an example of the flow of comparison processing in the second embodiment.
  • the movement information acquisition unit 410 further acquires vibrations that occur in the electric bicycle 10 while the electric bicycle 10 is traveling at the comparison point.
  • the movement information comparison unit 422 compares the vibration to be compared (specifically, the latest vibration) with the past vibration (step S207). .
  • the reduction in vibration is presumed to be due to the reduction in the amount of air in the tire portions 73a, 78a.
  • the increase in rolling loss can be ascertained by using sensors SE1 to SE4 and GNSS43 without providing a sensor to directly measure the increase in rolling loss (for example, an air pressure sensor that measures the air pressure of the tire portions 73a and 78a). can do.
  • the abnormality determination unit 430 determines that the electric bicycle 10 is normal (step S208). . Note that the fact that the vibration to be compared is substantially the same as the past vibration does not necessarily have to be strictly the same, but only needs to be within a preset fluctuation range.
  • the notification/notification control unit 440 generates information to notify the rider etc. that the electric bicycle 10 is normal, and indicates that the electric bicycle 10 is normal by, for example, voice or screen display via the mobile terminal 8. This is notified (step S210).
  • the movement control unit 450 generates information for permitting the electric bicycle 10 to travel, permits the electric bicycle 10 to travel (step S212), and ends this comparison process. Note that steps S210 and S212 are the same as those in the first embodiment, so detailed explanations will be omitted.
  • the abnormality determination unit 430 determines that an abnormality has occurred in the electric bicycle 10 (step S214). Specifically, when the vibration to be compared has decreased compared to the past vibration, the abnormality determination unit 430 determines that the air amount in the tire portions 73a and 78a of the front wheels 73 and/or the rear wheels 78 has decreased. It is determined that there is.
  • the notification/notification control unit 440 generates information for notifying the rider or the like that something unusual has occurred in the electric bicycle 10, and displays the information on the electric bicycle 10 by voice, screen display, etc. via the mobile terminal 8, for example. (Step S216).
  • the movement control unit 450 generates information for suppressing or prohibiting the electric bicycle 10 from traveling, suppresses or prohibits the electric bicycle 10 from traveling (step S218), and ends the comparison process. Note that steps S216 and S218 are the same as those in the first embodiment, so detailed explanations will be omitted.
  • the abnormality determination unit 430 may estimate that the air amount in the tire portions 73a and 78a has decreased. Thereby, it is possible to grasp the increase in rolling loss caused by the decrease in the amount of air in the tire portions 73a and 78a.
  • the abnormality determination unit 430 determines whether or not an abnormality has occurred in the electric bicycle 10 based on the comparison of information correlated to the vibrations occurring in the electric bicycle 10.
  • the present invention is not limited to this. do not have.
  • the abnormality determination unit 430 may determine whether or not an abnormality has occurred in the electric bicycle 10 based on a comparison of information correlated to movement energy and a comparison of information correlated to vibrations generated in the electric bicycle 10. good.
  • the movement information comparison unit 422 compares the travel output P to be compared with the past travel output, and also compares the vibration to be compared with the past vibrations. Then, the abnormality determining unit 430 determines that an abnormality has occurred in the electric bicycle 10 when the traveling output P to be compared is different from the past traveling output and the vibration to be compared is different from the past vibrations. .
  • the abnormality determination unit 430 determines that the travel output P on April 15th is different from the reference output Pref on April 1st. . Furthermore, when the movement information comparison unit 422 compares the vibrations on April 15th and the vibrations on April 1st, the vibrations on April 15th are smaller than the vibrations on April 1st, so It is determined that the vibration is different from the vibration on April 1st. Based on this determination result, the abnormality determination unit 430 determines that an abnormality has occurred in the electric bicycle 10. Specifically, the abnormality determination unit 430 determines that the amount of air in the tire portions 73a, 78a has decreased.
  • the notification/notification control unit 440 determines that an abnormality has occurred in the electric bicycle 10. Generates information for notifying the rider, etc., and notifies the electric bicycle 10 that something is wrong with the electric bicycle 10 by, for example, audio or screen display via the mobile terminal 8 (step S216).
  • the movement control unit 450 generates information for suppressing or prohibiting the electric bicycle 10 from traveling, suppresses or prohibits the electric bicycle 10 from traveling (step S218), and ends the comparison process.
  • the abnormality determination unit 430 can determine the accuracy with which the abnormality has occurred. An abnormality in the electric bicycle 10 can be determined when the electric bicycle 10 is higher. Additionally, the abnormality determining unit 430 can reduce erroneous determinations of abnormalities in the electric bicycle 10. Further, the notification/notification control unit 440 can reduce false notifications to passengers and the like.
  • the comparison of the information correlated to the vibrations generated in the electric bicycle 10 does not necessarily need to be performed at the comparison point where the information correlated to the movement energy was compared.
  • the comparison of information correlated to movement energy may be performed based on travel data acquired on road A
  • the comparison of information correlated to vibration may be performed based on travel data acquired on road D.
  • an increase in rolling loss and/or internal loss was determined based on relatively short-term (several months) driving data, but in addition to this, an increase in rolling loss and/or internal loss was determined based on relatively short-term (several months) running data.
  • An increase in rolling loss and/or internal loss may be ascertained based on travel data from 2010).
  • FIG. 15 shows an example of a long-term change in the running output P of the electric bicycle 10.
  • the rolling loss decreases and the running output P becomes smaller. It is presumed that such a short-term increase in running output P is caused by a decrease in the amount of air in the tire portions 73a, 78a, that is, an increase in rolling loss.
  • the running output P_2024 after air injection in 2024 is larger than the running output P_2022 after air injection in 2022. It is presumed that such a long-term increase in running output P is caused not by rolling loss caused by air pressure but by internal loss caused by deterioration of parts and the like.
  • the method of managing the electric bicycle 10 described in each of the above embodiments can be realized, for example, by executing a management program prepared in advance on a computer (processor).
  • This management program is stored in a computer-readable storage medium, and is executed by being read from the storage medium.
  • the management program may be provided in a form stored in a non-transitory storage medium such as a flash memory, or may be provided via a network such as the Internet.
  • the electric bicycle 10 is illustrated as the mobile object, the present invention is not limited to this, and a non-electric bicycle may be used.
  • the moving object may be a tricycle or a four-wheel vehicle other than a two-wheel vehicle.
  • the moving object does not need to have wheels, and may be, for example, a ship or an aircraft.
  • the management method of the present invention was executed by the control circuit 40, but the present invention is not limited thereto.
  • it may be executed by an external server (not shown) that can communicate with the electric bicycle 10 and/or the mobile terminal 8, or may be executed by the mobile terminal 8.
  • the external server or mobile terminal 8 may include a movement information acquisition section 410, a comparison section 420, an abnormality determination section 430, a notification/notification control section 440, and a movement control section 450.
  • all functions do not need to be executed by the control circuit 40, the external server, or the mobile terminal 8, and some functions may be executed across a plurality of devices.
  • the comparison point is determined based on route information acquired by the electric bicycle 10 traveling on a daily basis, but the present invention is not limited to this.
  • a large amount of travel data acquired from a large number of moving objects may be stored in an external server or the like, and a road on which the electric bicycle 10 can stably travel may be searched for based on the travel data, and a comparison point may be determined.
  • the travel output P expressed as the sum of the human torque measurement value and the motor output instruction value was taken as an example of information correlated to the movement energy of the moving object, but the information is not limited to this.
  • the information correlated to the movement energy of the mobile object may be a human torque measurement value.
  • the information (specifically, the traveling output P) correlated with the travel energy of the electric bicycle 10 when the electric bicycle 10 is traveling at different times was compared.
  • Information correlating to the movement loss when the electric bicycle 10 is traveling at a certain time may be compared with information correlating to the movement loss when the electric bicycle 10 is traveling at a different time.
  • rolling loss and internal loss included in the driving force F may be compared.
  • the running output P [W] is calculated by multiplying the tire end torque [N ⁇ m] obtained by multiplying the driving force F [N] by the radius [m] of the driving wheels, by the number of rotations of the driving wheels. can get.
  • the rolling loss and internal loss which are part of the driving force F, are also part of the traveling output P, so similarly to the traveling output P, the movement loss when the electric bicycle 10 is traveling at different times It is also possible to determine abnormalities in the electric bicycle 10 by comparing information correlated with the loss.
  • a method for managing a mobile object (electric bicycle 10), Obtaining first information (traveling output P) correlated to movement energy or movement loss when the mobile object is moving on a first geographical location (road A or road D) at a first time. (Step S200) and At a second time after the first time, second information (traveling output P) correlated to movement energy or movement loss when the mobile object is moving in the first geographical position. a step of acquiring (step S200); A method for managing a mobile object, comprising the step of comparing the first information and the second information at a third time after the second time (step S206).
  • the mobile object can be appropriately managed.
  • step S208 has: (iv) determining that the mobile object is normal (step S208); (v) generating information for permitting movement of the mobile object (step S212); (vi) generating information for notifying at least one of the user, manufacturer, owner, and manager of the mobile body that the mobile body is normal (step S210); How to manage your body.
  • step (A) of (2) it is possible to determine whether or not an abnormality has occurred in the moving body by step (i), and it is possible to determine whether or not an abnormality has occurred in the moving body by step (ii). This can prevent the vehicle from being used, and step (iii) can prompt the user or the like to perform appropriate maintenance on the movable body. Also, according to (2) (B), it is possible to determine whether the moving object is normal in step (iv), and it is possible to use the moving object in a normal state in step (v). By step (vi), the user can recognize that the moving object is normal.
  • the moving object is a vehicle having wheels (front wheels 73, rear wheels 78).
  • the first geographical location is a substantially horizontal road (road A) among the travel paths on which the vehicle travels.
  • the first geographical location is an uphill road (road D) among the travel roads on which the vehicle travels.
  • the variation in movement conditions for each measurement is small, so the first information and second information correlated to the movement energy or movement loss acquired on an uphill road can be easily compared.
  • the mobile object management method according to any one of (3) to (5),
  • the wheel has a pneumatic tire portion (tire portions 73a, 78a),
  • Step S200 The mobile object management method according to any one of (1) to (8), At a fifth time, acquiring third information (vibration) that correlates with vibrations that occur in the mobile body while the mobile body is moving on the second geographical location (road A or road D). (Step S200) and At a sixth time after the fifth time, fourth information (vibration) correlated to vibrations generated in the mobile body while the mobile body is moving in the second geographical position. a step of acquiring (step S200); A method for managing a mobile object, comprising the step of comparing the third information and the fourth information at a seventh time after the sixth time (step S207).
  • the third and fourth information correlated to vibrations when a moving object is moving at different times at the same geographical location are compared, so the increase in loss of the moving object can be grasped. can do. Therefore, the mobile object can be appropriately managed.
  • (10) The method for managing a mobile object according to (9), (A) Further comprising the step of executing at least one of (i) to (iii) at an eighth time after the seventh time when the third information and the fourth information are different. : (i) It is determined that an abnormality has occurred in the mobile object (step S214); (ii) generating information for suppressing or prohibiting movement of the mobile object (step S218); (iii) Generate information for notifying at least one of the user, manufacturer, owner, and manager of the mobile object that an abnormality has occurred in the mobile object (step S216).
  • step (i) of (10) it is possible to determine whether or not an abnormality has occurred in the moving body by step (i), and it is possible to determine whether or not an abnormality has occurred in the moving body by step (ii). This can prevent the vehicle from being used, and step (iii) can prompt the user or the like to perform appropriate maintenance on the movable body.
  • step (iv) it is possible to determine whether the moving object is normal in step (iv), and it is possible to use the moving object in a normal state in step (v).
  • step (vi) the user can recognize that the moving object is normal.
  • the mobile object management method according to (10),
  • the mobile body is a vehicle having wheels (front wheels 73, rear wheels 78),
  • the wheel has a pneumatic tire portion (tire portions 73a, 78a),
  • the third information and the fourth information are different and the fourth information indicates that the vibration is reduced with respect to the third information
  • step (11) it is possible to determine whether or not the air amount has decreased in the tire through step (i), and it is possible to determine whether or not the air amount has decreased in the tire through step (ii).
  • the mobile body can be prevented from being used, and the step (iii) can prompt the user to perform appropriate maintenance on the mobile body.
  • abnormalities in a moving object are determined based on both a comparison of information correlated to movement energy or movement loss and a comparison of information correlated to vibrations generated in the moving object.
  • the accuracy of determination can be increased. Therefore, it is possible to reduce erroneous determinations of abnormalities in the moving body, and to reduce erroneous notifications to passengers and the like.
  • velocity is a concept that includes a vector quantity that also takes into consideration the moving direction of the moving object, and a scalar quantity.
  • the mobile object management method according to (13), comprising: A method for managing a moving object, wherein the speed is a speed below a predetermined threshold.
  • a management program for a mobile object (electric bicycle 10), First information (traveling output P) that correlates with movement energy or movement loss when the mobile object (electric bicycle 10) is moving on the first geographical location (road A or road D) at the first time.
  • a step of acquiring (step S200); At a second time after the first time, second information (traveling output P) correlated to movement energy or movement loss when the mobile object is moving in the first geographical position is provided.
  • step of acquiring (step S200) A mobile body management program for causing a computer to execute a step (step S206) of comparing the first information and the second information at a third time after the second time.
  • the mobile object can be appropriately managed.
  • First information (running a first acquisition unit (movement information acquisition unit 410) that acquires the output P); At a second time after the first time, second information (traveling output P) correlated to movement energy or movement loss when the mobile object is moving in the first geographical position is provided.
  • a second acquisition unit (movement information acquisition unit 410) that acquires;
  • a comparison unit (comparison unit 420) that compares the first information and the second information acquired by the first acquisition unit and the second acquisition unit at a third time after the second time; and,
  • An information processing device (control circuit 40).
  • the mobile object can be appropriately managed.
  • a method for managing a mobile object comprising: At a fifth time, acquiring third information (vibration) that correlates with vibrations that occur in the mobile body while the mobile body is moving on the second geographical location (road A or road D). (Step S200) and At a sixth time after the fifth time, fourth information (vibration) correlated to vibrations generated in the mobile body while the mobile body is moving in the second geographical position. a step of acquiring (step S200); a step of comparing the third information and the fourth information at a seventh time after the sixth time (step S207), (A) Further comprising the step of executing at least one of (i) to (iii) at an eighth time after the seventh time when the third information and the fourth information are different.
  • step S214 It is determined that an abnormality has occurred in the mobile object (step S214); (ii) generating information for suppressing or prohibiting movement of the mobile object (step S218); (iii) Generate information for notifying at least one of the user, manufacturer, owner, and manager of the mobile object that an abnormality has occurred in the mobile object (step S216).
  • the third and fourth information correlated to vibrations when a moving object is moving at different times at the same geographical location are compared, so the increase in loss of the moving object can be grasped. can do. Then, based on the comparison of the vibrations of the moving object, a determination is made as to whether something is abnormal or normal, so that the moving object can be appropriately managed.
  • a management program for a mobile object (electric bicycle 10), At a fifth time, acquiring third information (vibration) that correlates with vibrations that occur in the mobile body while the mobile body is moving on the second geographical location (road A or road D). (Step S200) and At a sixth time after the fifth time, fourth information (vibration) correlated to vibrations generated in the mobile body while the mobile body is moving in the second geographical position.
  • step S200 a step of acquiring (step S200); causing the computer to execute a step (step S207) of comparing the third information and the fourth information at a seventh time after the sixth time; (A) When the third information and the fourth information are different, performing at least one of (i) to (iii) at an eighth time after the seventh time: (i) It is determined that an abnormality has occurred in the mobile object (step S214); (ii) generating information for suppressing or prohibiting movement of the mobile object (step S218); (iii) Generate information for notifying at least one of the user, manufacturer, owner, and manager of the mobile object that an abnormality has occurred in the mobile object (step S216).
  • step S208 determines that the mobile object is normal
  • step S210 generating information for permitting movement of the mobile object
  • step S212 generating information for notifying at least one of the user, manufacturer, owner, and manager of the mobile object that the mobile object is normal
  • step S212 A mobile object management program for causing the computer to further execute the following.
  • the third and fourth information correlated to vibrations when a moving object is moving at different times at the same geographical location are compared, so the increase in loss of the moving object can be grasped. can do. Then, based on the comparison of the vibrations of the moving object, a determination is made as to whether something is abnormal or normal, so that the moving object can be appropriately managed.
  • the information processing device includes: (A) When the third information and the fourth information are different, executing at least one of (i) to (iii) at an eighth time after the seventh time: (i) It is determined that an abnormality has occurred in the mobile object (step S214); (ii) generating information for suppressing or prohibiting movement of the mobile object (step S218); (iii) Generate information for notifying at least one of the user, manufacturer, owner, and manager of the mobile object that an abnormality has occurred in the mobile object (step S216).
  • step S208 determines that the mobile object is normal
  • step S210 generating information for permitting movement of the mobile object
  • step S212 generating information for notifying at least one of the user, manufacturer, owner, and manager of the mobile object that the mobile object is normal
  • step S212 Information processing device.
  • the third and fourth information correlated to vibrations when a moving object is moving at different times at the same geographical location are compared, so the increase in loss of the moving object can be grasped. can do. Then, based on the comparison of the vibrations of the moving object, a determination is made as to whether something is abnormal or normal, so that the moving object can be appropriately managed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

移動体の管理方法は、第1の時間に、移動体が第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第1情報を取得するステップ(S200)と、第1の時間よりも後の第2の時間に、移動体が第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報を取得するステップ(S200)と、第2の時間よりも後の第3の時間に、第1情報と第2情報と、を比較するステップ(S206)と、を有する。

Description

移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置
 本発明は、移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置に関する。
 クランクペダルの踏力をモータの動力でアシストする電動アシスト自転車が知られている(例えば、特許文献1)。電動アシスト自転車のような移動体には、様々なセンサが取り付けられ、走行時に様々な情報を取得可能となっている。
 例えば、特許文献1に記載の電動アシスト自転車には、クランクペダルの踏力やモータの出力、車速などを取得可能な各種センサが設けられている。このような電動アシスト自転車は、各種センサの値に基づき、クランクペダルの踏力をモータの動力で適切にアシストできるように制御されている。
国際公開第2021/049646号
 ところで、電動アシスト自転車等の移動体は、異変が生じている状態(例えば、タイヤの空気圧が低くなった状態や、部品が劣化した状態)で走行すると、走行抵抗が大きくなり快適に走行できない場合がある。また、そのような状態で走行し続けると故障に繋がる虞もある。
 移動体の走行環境や走行状態は走行場所によって異なり、使用者(例えば運転者)が移動体の異変に気付かないことがある。さらには、異変に気付かずに移動体を使用し続けると、使用者は異変が生じている状態に慣れてしまい、移動体の異変に気付くのが遅れてしまう虞がある。したがって、移動体の異変を適切に把握できることが好ましい。
 本発明は、移動体に設けられた各種センサから取得した情報に基づき、移動体の異変を適切に把握することができる移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置を提供する。
 本発明は、
 移動体の管理方法であって、
 第1の時間に、前記移動体が第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第1情報を取得するステップと、
 前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報を取得するステップと、
 前記第2の時間よりも後の第3の時間に、前記第1情報と前記第2情報と、を比較するステップと、を有する。
 また、本発明は、
 移動体の管理プログラムであって、
 第1の時間に、前記移動体が第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第1情報を取得するステップと、
 前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報を取得するステップと、
 前記第2の時間よりも後の第3の時間に、前記第1情報と前記第2情報と、を比較するステップと、をコンピュータに実行させる。
 また、本発明は、
 上記管理プログラムを記憶した、コンピュータが読み取り可能な記憶媒体である。
 また、本発明は、
 第1の時間に、移動体が第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第1情報を取得する第1取得部と、
 前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報を取得する第2取得部と、
 前記第2の時間よりも後の第3の時間に、前記第1取得部及び前記第2取得部が取得した前記第1情報と前記第2情報と、を比較する比較部と、
 を備える、情報処理装置である。
 また、本発明は、
 移動体の管理方法であって、
 第5の時間に、前記移動体が第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第3情報を取得するステップと、
 前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報を取得するステップと、
 前記第6の時間よりも後の第7の時間に、前記第3情報と前記第4情報と、を比較するステップと、を有し、
 (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
  (i)前記移動体に異変が生じていると判定する;
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、
 又は、
 (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行するステップをさらに有する:
  (iv)前記移動体が正常であると判定する;
  (v)前記移動体の移動を許可するための情報を生成する;
  (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する。
 また、本発明は、
 移動体の管理プログラムであって、
 第5の時間に、前記移動体が第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第3情報を取得するステップと、
 前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報を取得するステップと、
 前記第6の時間よりも後の第7の時間に、前記第3情報と前記第4情報と、を比較するステップと、をコンピュータに実行させ、
 (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行するステップ:
  (i)前記移動体に異変が生じていると判定する;
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、
 又は、
 (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行するステップ:
  (iv)前記移動体が正常であると判定する;
  (v)前記移動体の移動を許可するための情報を生成する;
  (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する、
 をさらに前記コンピュータに実行させる。
 また、本発明は、
 第5の時間に、移動体が第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第3情報を取得する第3取得部と、
 前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報を取得する第4取得部と、
 前記第6の時間よりも後の第7の時間に、前記第3取得部及び前記第4取得部が取得した前記第3情報と前記第4情報と、を比較する比較部と、
 を備える、情報処理装置であって、
 前記情報処理装置は、
 (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行する:
  (i)前記移動体に異変が生じていると判定する;
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、
 又は、
 (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行する:
  (iv)前記移動体が正常であると判定する;
  (v)前記移動体の移動を許可するための情報を生成する;
  (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する。
 本発明によれば、移動体の異変を適切に判定することができる。
本発明の各実施形態の電動自転車10の側面図である。 動力ユニット20やクランク軸83、後輪78の周辺における、動力を伝達する機構を示す模式図である。 電動自転車10における、動力ユニット20、バッテリ2、及び制御回路40の電気経路と通信経路を説明する図である。 モードによるアシスト比の違いを示す、電動自転車10のアシスト比と車速との関係を示すグラフである。 本発明の情報処理装置の一例である制御回路40の機能ブロック図である。 本発明の第1実施形態の比較地点決定処理のフロー図である。 電動自転車10が日常的に走行する経路の一例を示す図である。 本発明の第1実施形態の比較処理のフロー図である。 道路Aを日常的に走行した際に取得した走行データを測定日毎にまとめた表である。 道路Aを日常的に走行した際に取得した走行データに基づき第1実施形態の比較処理を行った場合において、正常及び/又は異変の判定の結果を示すグラフである。 道路Aを日常的に走行した際に取得した走行データに基づき第1変形例の比較処理を行った場合において、正常及び/又は異変の判定の結果を示すグラフである。 道路Aを日常的に走行した際に取得した走行データに基づき第2変形例の比較処理を行った場合において、正常及び/又は異変の判定の結果を示すグラフである。 電動自転車10の振動及びタイヤ部73a、78aの空気圧の経時変化の一例を示すグラフである。 本発明の第2実施形態の比較処理のフロー図である。 電動自転車10の走行出力Pの長期的な経時変化の一例を示すグラフである。
《第1実施形態》
 以下、本発明の移動体の管理方法の第1実施形態として、電動自転車の管理方法を例に図面を参照して説明する。
[電動自転車の構造]
 電動自転車10は、図1及び図2に示すように、前輪73と、後輪78と、自転車フレーム67と、後輪78を駆動する動力ユニット20と、動力ユニット20と電気的に接続されるバッテリユニット4と、を備え、動力ユニット20が発生するアシスト力が出力可能に構成された電動アシスト自転車である。
 自転車フレーム67は、前端のヘッドパイプ68と、ヘッドパイプ68から後下りに車体前方から後方へ延びるダウンパイプ69と、ダウンパイプ69の後端に固着されて左右に延びる支持パイプ66(図2参照)と、支持パイプ66から上方に立ち上がるシートポスト71と、支持パイプ66から後方側に延出される左右一対のリヤフォーク70と、を備える。
 ヘッドパイプ68にはフロントフォーク72が操向可能に支承され、フロントフォーク72の下端に前輪73が軸支されている。また、シートポスト71から後方側に延出される左右一対のリヤフォーク70の後端間には、駆動輪としての後輪78が軸支されている。
 前輪73及び後輪78は、それぞれタイヤ部73a及び78aを有する。タイヤ部73a及び78aは、内部に空気が封入されるチューブを有し、不図示の空気入れ装置によってタイヤ部73a及び78aのチューブに空気が注入される。
 フロントフォーク72の上端には操向ハンドル74が設けられている。操向ハンドル74には、乗員(例えば運転者)が所有する携帯端末8(図3参照)を保持する携帯端末ホルダ6が設けられている。なお、携帯端末ホルダ6は必ずしも必要ではなく、携帯端末8は、乗員自体、乗員の装着物(衣服、バッグ)に装着(収納)されていてもよい。シートポスト71には、上端にシート76を備える支持軸75が、シート76の上下位置を調整可能として装着されている。
 ダウンパイプ69には、動力ユニット20へ電力を供給するバッテリユニット4が着脱可能に固定されている。より詳しく説明すると、バッテリユニット4は、ダウンパイプ69の上面に取り付けられる台座3と、台座3に対し着脱可能に設けられ、内部に複数のセルを有するバッテリ2と、を備える。
 図3は、電動自転車10における、動力ユニット20、バッテリ2、及び制御回路40の電気経路と通信経路を説明する図である。
 制御回路40は、例えば、各種演算を実行可能なCPU(Central Processing Unit)と、CPUのワークエリアとして使用されるRAM(Random Access Memory)と、各種情報を記憶するROM(Read Only Memory)等の記憶媒体と、を備える。制御回路40は、後述のペダル踏力と電動自転車10の車速に応じたアシスト比とによって定められるアシスト力が発生するように、動力ユニット20のモータMから発生させるトルクを演算する。ここで、アシスト比は、クランクペダルの踏力に対する、モータを用いて踏力を補う力の比率である。
 これにより、モータMは、制御回路40からの演算結果(駆動要求)を受けた動力ユニット20のCPU22に従って動作する。コンバータDC/DCは、供給される直流電圧を直流のまま降圧して制御回路40、慣性計測装置(Inertial Measurement Unit、図中のIMU)41、メモリ42、GNSS(Global Navigation Satellite System)43、及びBLE(Bluetooth Low Energy(登録商標))通信装置44の電源電圧を生成する。
 慣性計測装置41は、例えば、3軸加速度センサ、3軸角速度センサ、及び3軸方位センサの機能をあわせもつ9軸センサであり、制御回路40の搭載姿勢を検出する。GNSS43は、電動自転車10の位置情報を取得する。メモリ42は、例えばSDカードであり、電動自転車10の情報、走行データ等を一時的又は永続的に保持する。走行データは、GNSS43により取得した位置情報と、慣性計測装置41や後述する各種センサSE1~SE4により取得した情報とを含む。BLE通信装置44は、携帯端末8等とBT接続(Bluetooth通信)するための通信装置である。
 このように構成された電気系統及び通信系統では、バッテリ2からの電力が電力線51、55を介して動力ユニット20のモータMに供給されるとともに、電力線56、52を介して動力ユニット20からコンバータDC/DCを介して降圧された電力が制御回路40、慣性計測装置41、GNSS43、メモリ42、及びBLE通信装置44に供給される。そして、制御回路40に電力が供給された状態で、電源スイッチ又は携帯端末8を介して動力ユニット20の起動要求があると、信号線53、57を介して動力ユニット20にパワーオン信号が発信され、動力ユニット20のCPU22が起動する。これにより、動力ユニット20が発生するアシスト力が出力可能な電動アシスト機能が有効となる。動力ユニット20が起動すると、信号線54、58を介して動力ユニット20と制御回路40とで情報交換が行われるとともに、BLE通信装置を介して制御回路40と携帯端末8等とで情報交換が可能となる。
 図1及び図2に戻って、自転車フレーム67の支持パイプ66を同軸に貫通するクランク軸83の左端及び右端には一対のクランクペダル79が連結される。乗員からクランクペダル79に加えられた踏力(以下、ペダル踏力)はクランク軸83へ伝達され、駆動スプロケット80を介して無端状のチェーン82へ入力される。チェーン82は、駆動スプロケット80と、後輪78の車軸に設けられた従動スプロケット81とに巻掛けられている。
 動力ユニット20は、モータMの出力軸21と、クランク軸83とが平行に配置される。クランク軸83は、筒状のスリーブ26の内側に第1ワンウェイクラッチ28を介して回転自在に支持されており、このスリーブ26の外周側にモータMの出力軸21に設けられたモータ出力ギヤ21aと噛み合う従動ギヤ26a及び駆動スプロケット80が固定されている。したがって、モータMのトルクが、モータ出力ギヤ21a、従動ギヤ26a、及びスリーブ26を介して駆動スプロケット80に伝達される。即ち、モータMは、クランクペダル79と並列に設けられている。
 また、従動スプロケット81と後輪78との間には第2ワンウェイクラッチ32が設けられている。
 このように構成された電動自転車10では、クランクペダル79を前進方向(正回転方向、順方向とも称す)に漕いだ場合には、第1ワンウェイクラッチ28が係合してクランク軸83の正回転動力がスリーブ26を介して駆動スプロケット80に伝達され、さらにチェーン82を介して従動スプロケット81に伝達される。このとき第2ワンウェイクラッチ32も係合することで、従動スプロケット81に伝達された正回転動力が、後輪78に伝達される。
 一方、クランクペダル79を後進方向(逆回転方向、逆方向とも称す)に漕いだ場合には、第1ワンウェイクラッチ28が係合せず、クランク軸83の逆回転動力がスリーブ26に伝達されずクランク軸83が空転する。
 また、例えば電動自転車10を前進方向に押し進める場合のように、後輪78から前進方向(正回転方向)の正回転動力が入力される場合、第2ワンウェイクラッチ32が係合せず、後輪78の正回転動力が従動スプロケット81に伝達されない。そのため、後輪78は、従動スプロケット81に対し相対回転する。一方、電動自転車10を後進方向に押し進める場合のように、後輪78から後進方向(逆回転方向)の逆回転動力が入力される場合には、第2ワンウェイクラッチ32が係合して後輪78の逆回転動力が従動スプロケット81に伝達され、さらにチェーン82を介して駆動スプロケット80に伝達される。また、このとき第1ワンウェイクラッチ28も係合することから、駆動スプロケット80に伝達された逆回転動力が、クランク軸83及びクランクペダル79に伝達されてクランク軸83及びクランクペダル79が逆回転する。
 動力ユニット20には、モータMの回転速度を検知するモータ回転数センサSE1が設けられている。モータ回転数センサSE1は、モータMの出力軸21の外周部に設けられた磁石及びホールICから構成される。
 スリーブ26には、ペダル踏力によって発生するペダルトルク値Tqを検知するトルクセンサSE2が設けられている。トルクセンサSE2は、スリーブ26の外周部に配設された磁気変位検出式のトルクセンサから構成される。
 動力ユニット20を制御する制御回路40は、トルクセンサSE2の出力値であるペダルトルク値Tqからペダル踏力を算出し、このペダル踏力と電動自転車10の速度(以下、車速とも称する。)に応じたアシスト比とによって定められるアシスト力が発生するように、モータMをPWM(Pulse Width Modulation)制御する。
 リヤフォーク70には、後輪回転数センサSE3が設けられている。後輪回転数センサSE3は、例えば磁気検知センサであり、後輪78のスポークに取り付けられた磁石がセンサを通過するときの磁気パルスを検知する。後輪回転数センサSE3は検知した磁気パルスを車速パルスとして制御回路40に送信し、制御回路40はそのパルス間隔から車速を計算する。一般に、後輪78に取り付けられる磁石は1個なので、磁気パルスは後輪78の1回転につき1回検出される。このため、車速V[km/h]、後輪78の周長Ct[m]とすると、車速V[km/h]は以下の(1)式で表される。
 V[km/h]={Ct[m]/磁気パルス間隔(s)}×3600/1000 (1)
 駆動スプロケット80の周辺には、ケイデンスセンサSE4が取り付けられている。駆動スプロケット80は、第1ワンウェイクラッチ28の係合時にクランクペダル79と一体に回転するため、駆動スプロケット80の回転は、クランクペダル79の回転と見なすことができる。ケイデンスセンサSE4は、例えば磁気検知センサである。駆動スプロケット80には、周方向に均等に8個の磁石が設けられており、ケイデンスセンサSE4は、磁石がセンサを通過するときの磁気パルスを検知する。ケイデンスセンサSE4は検知した磁気パルスをケイデンスパルス(ケイデンス関連情報)として後述する制御回路40に送信し、制御回路40はそのパルス間隔からクランクペダル79の回転(運動)の速さを示すケイデンスを計算する。ケイデンスパルスはクランクペダル79の1回転につき8回検出される。このため、ケイデンスC[rpm]は以下の(2)式で表される。
 C[rpm]={1/(8×磁気パルス間隔(s))}×60 (2)
 なお、駆動スプロケット80はスリーブ26を介して従動ギヤ26aに連結されているので、従動ギヤ26aのギヤ径がモータ出力ギヤ21aのギヤ径と同一であるとき、駆動スプロケット80及びモータ出力ギヤ21aの回転数は同一となる。したがって、モータ出力ギヤ21a及び従動ギヤ26aが同一のギヤ径であるとき、モータ回転数センサSE1によりケイデンスCを取得することもできる。また、ケイデンスセンサSE4及びモータ回転数センサSE1の両方で並列にケイデンスCを取得してもよい。
[電動アシスト機能]
 日本における電動自転車に課される法規の法規では、図4の実線で示されるように、車速が10km/hまではアシスト比の上限値が2で、車速が10km/hから24km/hまでの間にアシスト比を2から0まで漸減させる必要がある。そのため、電動アシスト機能が有効である状態では、制御回路40は、日本の法規制(実線)に対し、これを超えないようなアシスト比となるようにプログラムされている。
 電動自転車10は、複数のアシストモードを備えていてもよい。例えば、電動自転車10は、乗員の選択可能なアシストモードとして、通常アシストモードと、通常アシストモードよりもアシスト比の高い強アシストモードと、通常アシストモードよりもアシスト比の低い弱アシストモードと、を備える。この場合、図4に示すように、強アシストモードにおける発生トルクを上限トルク又は上限トルク近傍の値とし、通常アシストモードの発生トルクを強アシストモードにおける発生トルクよりも小さくし、弱アシストモードの発生トルクを通常アシストモードにおける発生トルクよりもさらに小さくなるように設定する。三つのアシストモードはいずれかを基準にして、他のモードの発生トルクは基準のモードの発生トルクに係数をかけたものとすることで簡易に設定することができる。
[移動体の管理方法]
 続いて、電動自転車10が正常な状態であるか又は異変が生じている状態であるかを把握し、電動自転車10を適切に管理する方法について説明する。
 先ず、電動自転車10の走行に必要な駆動力について説明する。電動自転車10の駆動力は、加速抵抗、空気抵抗、転がり損失、内部損失、及び勾配抵抗の和と考えられ得る。すなわち、駆動力をF、加速抵抗をma、空気抵抗をAλV、転がり損失をμ1、内部損失をμ2、勾配抵抗をmgsinθとすると、駆動力Fは以下の(3)式で表される。
 F[N]=ma+AλV+μ1+μ2+mgsinθ (3)
 ここで、m[kg]は車体及び乗員の重量、a[m/s]は車体の加速度、A[m]は車体及び乗員の前面投影面積、λ[N/(m・(km/h))]は空気抵抗係数、V[km/h]は前述のとおり車速、g[m/s]は重力加速度、θ[rad]は道路の傾斜角度である。
 加速抵抗及び空気抵抗は、例えば加速度や車速等の走行条件により変化する。転がり損失は、例えばタイヤ部73a、78aの空気圧により変化し、空気圧が低くなると転がり損失は大きくなる。内部損失は、例えばチェーン82や各ギヤ21a、26a等の部品が摩耗したりグリスが切れたりすることにより大きくなる。勾配抵抗は、地形等の地理的条件により定まる。
 転がり損失及び/又は内部損失の増大は、電動自転車10に異変が生じていることを意味し、すなわち、電動自転車10が故障している又は早期に故障し得る可能性がある。したがって、電動自転車10を適切に管理するためには、転がり損失及び/又は内部損失の増大を把握することが望ましい。
 本実施形態における管理方法は、上述した加速抵抗、空気抵抗、及び勾配抵抗の影響が等しいとみなせる条件下、すなわち、走行条件及び地理的条件が等しいとみなせる条件下において、電動自転車10がある時間に走行しているときの移動エネルギに相関する情報と、電動自転車10が別の時間に走行しているとき移動エネルギに相関する情報と、を比較する。
 本実施形態では、移動エネルギに相関する情報の一例として、電動自転車10が異なる時間に走行しているときの走行出力P[W]を比較する。走行出力P[W]は、乗員からのペダル踏力による出力P_pedalとモータMの発生トルクによる出力P_motorとの和で表される。出力P_pedalは、電動自転車10に設けられたセンサ等が検知したデータに基づき算出され、例えば、トルクセンサSE2から得られたペダルトルク値TqとケイデンスセンサSE4及び/又はモータ回転数センサSE1から得られたケイデンスCとに基づき以下の(4)式で算出される測定値(人力トルク測定値とも称する)である。
 P_pedal[W]=2π×Tq[N・m]×C[rpm]/60                                (4)
 出力P_motorは、制御回路40が人力トルク測定値とアシスト比とに基づいてモータMに指示する指示値(モータ出力指示値とも称する)である。
 ところで、走行出力P[W]は、駆動力F[N]に駆動輪(本実施形態では後輪78)の半径[m]を掛けて得られるタイヤ端トルク[N・m]に、駆動輪(後輪78)の回転数を掛けることで得られる。すなわち、走行出力P[W]は上述した駆動力の増大に伴って大きくなるので、走行条件及び地理的条件が等しいとみなせる条件下において、電動自転車10が異なる時間に移動しているときの走行出力Pを比較することにより、転がり損失及び/又は内部損失の増大を把握できる。これにより、電動自転車10が正常な状態であるか又は異変が生じている状態であるかを判定することができる。
 以下、本実施形態における管理方法について、より詳しく説明する。なお、以下の説明において、走行データは、GNSS43により取得した位置情報及び経路情報や、各センサSE1~SE4や慣性計測装置41から取得される情報、これらの情報から算出される走行出力Pを含むデータを意味する。また、以下では、電動自転車10のアシスト走行時に走行出力Pを比較する例を説明するが、これに限られず、アシスト走行を行わない場合であってもよい。この場合、走行出力Pはモータ出力指示値を含まず、人力トルク測定値となる。
 電動自転車10の管理方法は、比較地点となる地理的位置を決定する比較地点決定処理と、比較地点において電動自転車10がある時間に走行しているときの走行データと別の時間に走行しているときの走行データとを比較する比較処理とを含む。
 管理方法は、例えば制御回路40により実行される。制御回路40は、図5に示すように、移動情報取得部410と、比較部420と、異変判定部430と、報知/通知制御部440と、移動制御部450と、を備える。また、比較部420は、比較地点決定部421と、移動情報比較部422と、を備える。これらは、管理方法を実行するための機能を有し、管理方法と併せて説明する。
 比較地点決定処理では、比較地点決定部421が、電動自転車10が日常的に走行する経路(例えば、通勤経路や通学経路)から比較地点を決定する。比較地点を固定することにより、前述の地理的条件を等しくすることができる。また、比較地点は電動自転車10が日常的に走行する地点であるため、比較地点における走行データを日常的に取得して、走行データの変化を細かに把握することができる。
 比較地点決定処理のフローの一例を図6に示す。先ず、比較地点決定部421は、GNSS43により取得された電動自転車10の位置情報を基づき、電動自転車10が日常的に走行する経路を探索する(ステップS100)。比較地点決定部421は、メモリ42に記憶された過去の走行経路を参照して電動自転車10が日常的に走行する経路を探索する。なお、電動自転車10の位置情報は、携帯端末8のGPS機能により取得してもよい。
 次に、比較地点決定部421は、電動自転車10が日常的に走行する経路に含まれる道路のうち、安定走行可能な道路を探索する(ステップS102)。電動自転車10が安定走行可能な道路とは、例えば所定時間(例えば5秒間)一定の速度で走行可能な区間を含む道路であって、過去に取得した複数の走行データから電動自転車10が一定の速度で走行する頻度が高いと判断される道路である。
 次に、比較地点決定部421は、ステップS102で探索した電動自転車10が安定走行可能な道路を、比較地点として決定する(ステップS104)。このような道路では、測定毎の車速のばらつきが小さく、電動自転車10が異なる時間に走行しているときの走行データを比較しやすい。
 図7は、電動自転車10が日常的に走行する経路の一例を示した図である。図7に示す経路は、4つの道路A~Dを含む。なお、経路は屋内外を問わない。
 道路Aは、略水平路、より具体的には、電動自転車10の安定走行を妨げるもの(例えば、信号)が少ない直線状の略水平路である。道路Aでは、電動自転車10は走行の度に安定走行可能である。道路Bは、信号が多い道路である。道路Bでは、電動自転車10は発進と停止を繰り返すので速度の変動回数が多く、安定走行できないことが多い。道路Cは、例えば人通りの多い駅前の道路である。道路Cでは、道路Bと同様に、電動自転車10は発進と停止を繰り返すので速度の変動回数が多く、安定走行できないことが多い。道路Dは、登坂路である。道路Dでは、勾配抵抗が大きいので風や車両重量等の変動要因の影響を受けにくい。したがって、道路Aと同様に、電動自転車10が走行の度に安定走行可能である。図7の一例では、道路A及び/又は道路Dを、比較地点として決定する。
 続いて、比較処理について説明する。
 比較処理のフローの一例を図8に示す。先ず、移動情報取得部410は、電動自転車10がある時間に比較地点(例えば道路A)を走行しているときの走行データを取得する(ステップS200)。走行データは、例えば電動自転車10が比較地点を走行する度に、比較地点や日時、選択されたアシストモードと共にメモリ42に記憶される。なお、移動情報取得部410は、比較地点を含む経路全体の走行データを取得してもよいし、比較地点を走行しているときのみに走行データを取得してもよい。
 走行データを取得した後、移動情報比較部422は、電動自転車10が比較地点を走行しているときのアシストモードが、電動自転車10が過去に比較地点を走行したときのアシストモードと同じか否かを判定する(ステップS201)。アシストモードが過去のアシストモードと同じであるときは(ステップS201:YES)、ステップS202に進む。同じ場所を走行するときには、乗員は同じアシストモードを選択する傾向が強く、アシストモードを変えない乗員も少なくないものの、アシストモードが過去のアシストモードと異なることもある。アシストモードが過去のアシストモードと異なるときは(ステップS201:NO)、移動情報比較部422はステップS200で取得した走行データを比較対象に採用せず、比較処理を終了する。
 移動情報比較部422は、電動自転車10が比較地点を走行しているときの車速Vと、基準車速Vrefとを比較する(ステップS202)。基準車速Vrefは、例えば、比較地点における過去に取得した車速Vの平均値である。また、基準車速Vrefは、例えば空気抵抗等の外乱を鑑み、所定の車速以下(例えば、20km/h以下)であることが好ましい。
 車速Vと基準車速Vrefとが略同一であるとき走行条件が等しいとみなせるので(ステップS202:YES)、移動情報比較部422はステップS200で取得した走行データを比較対象に採用する(ステップS204)。一方、車速Vと基準車速Vrefとが異なるとき走行条件が異なるので(ステップS202:NO)、移動情報比較部422はステップS200で取得した走行データを比較対象に採用せず、比較処理を終了する。なお、車速Vと基準車速Vrefとが略同一であるとは、厳密に同一である必要はなく、予め設定された変動幅以内に収まっていればよい。車速Vが基準車速Vrefの変動幅以内に収まっていることを条件とすることで、走行条件の適切な比較を行うことができる。
 次に、移動情報比較部422は、比較対象となる走行出力P(具体的には、ステップS200で取得した最新の走行出力P)と、過去の走行出力(基準出力とも称する)Prefと、を比較する(ステップS206)。過去の走行出力Prefは、比較地点において、過去に取得した走行出力の中から選んだ一つのデータでもよいし、過去に取得した複数の走行出力に基づいた値(例えば平均値)であってもよい。
 走行出力Pは、電動自転車10が移動しているときの移動エネルギに相関する情報であるので、同一の比較地点且つ同一の走行条件における走行出力Pと過去の走行出力Prefを比較することで、転がり損失及び/又は内部損失の増大を把握することができる。また、転がり損失及び/又は内部損失の増大を直接測定するためのセンサ(例えば、タイヤ部73a、78aの空気圧を測定する空気圧センサ)を設けることなく、センサSE1~SE4及びGNSS43を利用して転がり損失及び/又は内部損失の増大を把握することができる。
 走行出力Pが基準出力Prefと異ならない、すなわち、略同一であるとき(ステップS206:YES)、異変判定部430は電動自転車10が正常であると判定する(ステップS208)。なお、走行出力Pが基準出力Prefと略同一であるとは、厳密に同一である必要はなく、予め設定された変動幅以内に収まっていればよい。
 報知/通知制御部440は、電動自転車10が正常であることを電動自転車10の乗員(すなわち使用者)に通知する情報を生成して、例えば携帯端末8を介して音声や画面表示等によって電動自転車10が正常であることを通知する(ステップS210)。これにより、乗員は、電動自転車10が正常であることを認識できる。また、報知/通知制御部440は、電動自転車10に設けられた不図示のランプ等を発光(例えば緑色で発光)させて乗員に電動自転車10が正常であることを通知してもよい。ここで「通知」は、緊急度が低く、通知先から要求があった場合に知らせることが好ましい。なお、通知先は使用者である乗員に限られず、電動自転車10の使用者と所有者が異なる場合は電動自転車10の所有者に通知してもよいし、電動自転車10の製造者や管理者に通知してもよい。
 さらに、移動制御部450は、電動自転車10の走行を許可するための情報を生成し、電動自転車10の走行を許可し(ステップS212)、本比較処理を終了する。なお、ステップS210をステップS212より先に実行してもよい。また、ステップS210及び/又はステップS212を省略してもよい。
 走行出力Pが基準出力Prefと異なるとき(ステップS206:NO)、異変判定部430は電動自転車10に異変が生じていると判定する(ステップS214)。
 報知/通知制御部440は、電動自転車10に異変が生じていることを電動自転車10の使用者である乗員に報知するための情報を生成して、例えば携帯端末8を介して音声や画面表示等によって電動自転車10に異変が生じていることを報知する(ステップS216)。また、報知/通知制御部440は、電動自転車10に設けられた不図示のランプ等を発光(例えば赤色で発光)させて乗員に電動自転車10に異変が生じていることを報知してもよい。ここで「報知」は、緊急度が高く、報知先からの要求が無くても知らせることが好ましい。なお、報知先は乗員に限られず、電動自転車10の使用者と所有者が異なる場合は電動自転車10の所有者に報知してもよいし、電動自転車10の製造者や管理者にも報知してもよい。
 報知/通知制御部440が電動自転車10に生じている異変を報知することにより、使用者等に適切な整備(例えば、空気入れや部品交換)を行うよう促すことができる。特に、電動自転車10では、異変により走行抵抗が大きくなってもモータMによりアシストされるので、乗員が異変に気付くことなく走行してしまう可能性もあるが、上述の報知により使用者等に適切に整備を促すことができる。
 さらに、移動制御部450は、電動自転車10の走行を抑制又は禁止するための情報を生成して、電動自転車10の走行を抑制又は禁止し(ステップS218)、比較処理を終了する。具体的には、モータMから出力する駆動力を小さくする指令やモータMからの出力を停止する指令を生成して、電動自転車10の走行を抑制する。これにより、電動自転車10に異変が生じている状態で使用されることを回避することができる。なお、ステップS218をステップS216より先に実行してもよい。また、ステップS216及び/又はステップS218を省略してもよい。
 図9及び図10は、電動自転車10が比較地点(例えば、図7における道路A)を走行しているときに取得した走行データの一部を測定日毎に示した一例である。なお、過去の走行データから、電動自転車10が道路Aを安定走行しているときの基準車速Vrefは10km/hであるとする。また、4月1日のアシストモード及び走行出力Pを比較処理における基準とし、すなわち基準出力Pref=200Wとする。
 4月5日では、4月1日におけるアシストモードと同一であり(ステップS201:YES)、且つ車速Vは10km/hであり基準車速Vrefに一致するので(ステップS202:YES)、4月5日の走行データは比較対象となる(ステップS204)。4月5日の走行出力Pは4月1日における基準出力Prefに異ならない、すなわち同じであるため(ステップS206:YES)、異変判定部430は電動自転車10が正常であると判定する(ステップS208)。そして、報知/通知制御部440及び移動制御部450は、通知や移動許可の制御を実行する(ステップS210、S212)。
 4月7日では、通常アシストモードが選択されており、4月1日における弱アシストモードと異なるので(ステップS201:NO)、4月1日での走行条件と一致しない。4月7日の走行出力Pを4月1日の基準出力Prefと比較したとしても走行条件が一致していないので、4月7日において走行出力Pが大きくなった原因を特定することは難しい。換言すると、4月7日におけるアシスト比が4月1日のアシスト比よりも大きいので走行出力Pが大きくなったのか、又は、転がり損失及び/又は内部損失の増大により走行出力Pが大きくなったのかを特定することが難しい。したがって、4月7日の走行データは比較対象とならない。
 4月10日では、車速Vは15km/hであり基準車速Vrefに一致せず(ステップS202:NO)、4月1日での走行条件と一致しない。4月10日の走行出力Pを4月1日の基準出力Prefと比較したとしても走行条件が一致していないので、4月10日において走行出力Pが大きくなった原因を特定することは難しい。換言すると、乗員が通常よりもクランクペダル79を速く漕いでいるので走行出力Pが大きくなったのか、又は、転がり損失及び/又は内部損失の増大により走行出力Pが大きくなったのかを特定することが難しい。したがって、4月10日の走行データは比較対象とならない。
 4月15日及び4月20日では、4月1日におけるアシストモードと同一であり(ステップS201:YES)、且つ、車速Vは10km/hであり基準車速Vrefに一致するので(ステップS202:YES)、4月15日及び4月20日の走行データは比較対象となる(ステップS204)。4月15日及び4月20日の走行データを比較すると、これらの走行出力Pは4月1日における基準出力Prefよりも大きい。同じ道路でかつ同じ車速で走行しているのにもかかわらず走行出力Pが大きくなっていることから、転がり損失及び/又は内部損失が大きくなっていることが推定される。ここで、図10に示すように、異変判定部430は、比較的短期(数か月)の走行データから走行出力Pが増加していることが分かったとき、転がり損失が増大していると推定してもよい。このとき、転がり損失の増大はタイヤ部73a、78aの空気量減少が生じている(換言すると、空気圧が低下している)ことが原因とも考えられるので、異変判定部430は、タイヤ部73a、78aの空気量減少が生じていると推定してもよい。
 4月15日及び4月20日の走行出力Pと基準出力Prefは異なるため(ステップS206:NO)、異変判定部430は電動自転車10に異変が生じていると判定する(ステップS214)。異変判定部430は、より具体的に、タイヤ部73a、78aに空気量減少が生じていると判定してもよい。そして、報知/通知制御部440及び移動制御部450は、走行の抑制又は禁止や、タイヤ部73a、78aに空気量減少が生じていることの報知の制御を行う(ステップS216、S218)。
 なお、上述した比較処理は、比較地点で走行データを取得する度に実行してもよいし、一定の期間毎に実行してもよい。
<第1変形例>
 ステップS206において、異変判定部430は、走行出力Pが基準出力Prefと異なると移動情報比較部422が所定の回数(例えば2回)以上判定したときに、電動自転車10に異変が生じていると判定してもよい。
 図11に示す走行出力Pに関する情報は図10と同様であるが、4月15日の走行出力Pが4月1日の基準出力Prefと異なると判定したことのみでは、異変判定部430は、電動自転車10に異変が生じていると判定していない。具体的には、図11に示すように、移動情報比較部422が4月15日の走行出力Pが4月1日における基準出力Prefよりも大きいと判定し、且つ、4月20日における基準出力Prefよりも大きいと判定したとき、異変判定部430は、電動自転車10に異変が生じていると判定する。
 走行出力Pが基準出力Prefと異なるとの判定を複数回行ったときに、電動自転車10に異変が生じていると判定するので、1回のみの判定で異変を判定する場合と比べて、過剰な異変判定を抑制できる。
<第2変形例>
 ステップS206において、異変判定部430は、走行出力Pが基準出力Prefよりも所定の増加量ΔP以上大きいときに、電動自転車10に異変が生じていると判定してもよい。所定の増加量ΔPは、任意に設定することができる。以下では、所定の増加量ΔPが基準出力Prefの20%であるとする。
 図12に示す走行出力P及び空気圧の推定に関する情報は図10と同様であるが、判定結果は第2変形例の方法に基づく。具体的には、4月15日では、走行出力Pは基準出力Prefとは異なるものの、走行出力Pの4月1日からの増加量は20Wであり、所定の増加量ΔP=200W×20%=40Wよりも小さいため、異変判定部430は、電動自転車10が正常であると判定する。一方、4月20日では、走行出力Pの4月1日からの増加量は40Wであり、所定の増加量ΔP(=40W)以上であるため、異変判定部430は、電動自転車10に異変が生じていると判定する。
 所定の増加量ΔPに基づいて異変判定を行うので、走行出力Pが基準出力Prefと異なるときに電動自転車10に異変が生じていると判定する場合と比べて、正常であるとの判定を行う幅が広くなり、過剰な異変判定を抑制できる。
 なお、走行出力Pと基準出力Prefとが異なるときに電動自転車10に異変が生じていると判定し、走行出力Pと基準出力Prefとが異なるとき、かつ、走行出力が基準出力Prefよりも所定の増加量ΔP以上大きいときに電動自転車10に異常が生じていると判定してもよい。「異変」は、正常時とは異なる状態である蓋然性が高いことを意味し、「異常」は、「異変」の状態のうち正常時とは明らかに異なり修理等の必要がある状態のことを意味する。
<第3変形例>
 電動自転車10の使用者等がタイヤ部73a、78aの内部に空気を注入した場合、タイヤ部73a、78aに空気量増加が生じ、比較対象となる走行出力Pが過去の走行出力に対して減少することもある。
 そこで、異変判定部430は、走行出力Pが過去の走行出力に対して減少していると判定するとき、タイヤ部73a、78aに空気量増加が生じていると判定してもよい。例えば、図10において仮に4月20日の走行出力が4月15日の走行出力に対して減少している場合、異変判定部430は、タイヤ部73a、78aに空気量増加が生じていると判定してもよい。
 報知/通知制御部440は、タイヤ部73a、78aに空気量増加が生じていることを電動自転車10の使用者である乗員に通知するための情報を生成して、例えば携帯端末8を介して音声や画面表示等によってタイヤ部73a、78aに空気量増加が生じていることを通知してもよい。通知先は電動自転車10の使用者に限られず、使用者と所有者が異なる場合は電動自転車10の所有者に通知してもよいし、電動自転車10の製造者や管理者にも通知してもよい。これにより、電動自転車10が使用者により適切に管理されていることを、所有者や、製造者、管理者は把握することができる。
《第2実施形態》
 第1実施形態では、比較処理のステップS206において移動エネルギに相関する情報(走行出力P)の比較を行った。これに換えて又は加えて、電動自転車10がある時間に走行しているときに電動自転車10に生じた振動に相関する情報と別の時間に走行しているときに電動自転車10に生じた振動に相関する情報との比較を行ってもよい。振動に相関する情報は、例えば慣性計測装置41により取得される上下方向の加速度の大きさであり、走行データに含まれる情報である。以下では、振動に相関する情報を単に振動とも称する。
 図13は、電動自転車10に生じた振動(具体的には、振動に相関する上下方向の加速度の大きさ)の経時変化の一例である。空気圧が適切圧であり比較的高いときは、タイヤ部73a、78aは固く地面の凹凸を吸収しにくいため、電動自転車10の振動は大きい(4月1日、4月5日)。時間経過と共に空気圧が低下すると、タイヤ部73a、78aは軟らかくなることで地面の凹凸を吸収し易くなり、電動自転車10の振動は減少する(4月10日、4月15日)。さらに空気圧が低下すると、タイヤ部73a、78aは、空気が封入されているチューブ以外にも接地反力が加わることとなり電動自転車10の振動は大きくなる(4月20日)。
 図14は、第2実施形態における比較処理のフローの一例を示す。第2実施形態では、ステップS200において、移動情報取得部410は、比較地点を電動自転車10が走行しているときに電動自転車10に生じた振動をさらに取得する。
 第1実施形態と同様のステップS201、S202、S204の後、移動情報比較部422は、比較対象となる振動(具体的には、最新の振動)と過去の振動とを比較する(ステップS207)。前述のとおり、振動の減少は、タイヤ部73a、78aの空気量減少と推定される。同一の比較地点且つ同一の走行条件における振動を比較することで、タイヤ部73a、78aの空気量減少に起因する転がり損失の増大を把握することができる。また、転がり損失の増大を直接測定するためのセンサ(例えば、タイヤ部73a、78aの空気圧を測定する空気圧センサ)を設けることなく、センサSE1~SE4及びGNSS43を利用して転がり損失の増大を把握することができる。
 比較対象となる振動が過去の振動と異ならないとき、すなわち、変化がなく略同一であるとき(ステップS207:NO)、異変判定部430は電動自転車10が正常であると判定する(ステップS208)。なお、比較対象となる振動が過去の振動と略同一であるとは、厳密に同一である必要はなく、予め設定された変動幅以内に収まっていればよい。
 そして、報知/通知制御部440は、電動自転車10が正常であることを乗員等に通知する情報を生成して、例えば携帯端末8を介して音声や画面表示等によって電動自転車10が正常であることを通知する(ステップS210)。
 さらに、移動制御部450は、電動自転車10の走行を許可するための情報を生成し、電動自転車10の走行を許可し(ステップS212)、本比較処理を終了する。なお、ステップS210、S212は、第1実施形態と同様であるので詳細な説明は省略する。
 比較対象となる振動が過去の振動と異なるとき(ステップS207:YES)、異変判定部430は電動自転車10に異変が生じていると判定する(ステップS214)。具体的には、比較対象となる振動が過去の振動に対して減少しているとき、異変判定部430は、前輪73及び/又は後輪78のタイヤ部73a、78aの空気量減少が生じていると判定する。
 そして、報知/通知制御部440は、電動自転車10に異変が生じていることを乗員等に報知するための情報を生成して、例えば携帯端末8を介して音声や画面表示等によって電動自転車10に異変が生じていることを報知する(ステップS216)。
 さらに、移動制御部450は、電動自転車10の走行を抑制又は禁止するための情報を生成して、電動自転車10の走行を抑制又は禁止し(ステップS218)、比較処理を終了する。なお、ステップS216、S218は、第1実施形態と同様であるので詳細な説明は省略する。
 例えば、図13の走行データが道路Aで得られた場合において、移動情報比較部422が4月15日の振動と4月1日の振動とを比較するとき、4月15日の振動は4月1日の振動よりも小さいので、異変判定部430は、タイヤ部73a、78aの空気量減少が生じていると推定してもよい。これにより、タイヤ部73a、78aの空気量減少に起因する転がり損失の増大を把握できる。
 なお、図13の4月15日から4月20日のように、電動自転車10の振動が減少から増加に転じた後に振動が所定値以上になったとき、異変判定部430は、タイヤ部73a、78aの空気圧が電動自転車10の走行を控えるべき領域に入ったこと、換言すると、空気圧が電動自転車10の走行を控えるべき領域まで低下したことを判定してもよい。
<変形例>
 前述した第2実施形態では、電動自転車10に生じた振動に相関する情報の比較に基づいて、異変判定部430は電動自転車10に異変が生じているか否かについて判定したが、これに限られない。異変判定部430は、移動エネルギに相関する情報の比較と、電動自転車10に生じた振動に相関する情報の比較とに基づいて、電動自転車10に異変が生じているか否かについて判定してもよい。
 移動情報比較部422は、比較対象となる走行出力Pと過去の走行出力とを比較し、且つ、比較対象となる振動と過去の振動とを比較する。そして、異変判定部430は、比較対象となる走行出力Pが過去の走行出力と異なり、かつ、比較対象となる振動が過去の振動と異なるとき、電動自転車10に異変が生じていると判定する。
 例えば、図10及び図12の走行データが道路Aで得られた場合において、先ず、異変判定部430は、4月15日の走行出力Pが4月1日の基準出力Prefと異なると判定する。さらに、移動情報比較部422が4月15日の振動と4月1日の振動とを比較するとき、4月15日の振動は4月1日の振動よりも小さいので、4月15日の振動が4月1日の振動と異なると判定する。この判定結果に基づき、異変判定部430は、電動自転車10に異変が生じていると判定する。具体的には、異変判定部430は、タイヤ部73a、78aの空気量減少が生じていると判定する。
 また、比較対象となる走行出力Pが過去の走行出力と異なり、かつ、比較対象となる振動が過去の振動と異なるとき、報知/通知制御部440は、電動自転車10に異変が生じていることを乗員等に報知するための情報を生成して、例えば携帯端末8を介して音声や画面表示等によって電動自転車10に異変が生じていることを報知する(ステップS216)。
 また、移動制御部450は、電動自転車10の走行を抑制又は禁止するための情報を生成して、電動自転車10の走行を抑制又は禁止し(ステップS218)、比較処理を終了する。
 移動エネルギに相関する情報の比較と電動自転車10に生じた振動に相関する情報の比較との両方に基づいて電動自転車10の異変を判定するので、異変判定部430は、異変が生じた確度がより高いときに電動自転車10の異変を判定できる。また、異変判定部430は、電動自転車10の異変の誤判定を減らすことができる。さらに、報知/通知制御部440は、乗員等への誤報知を減らすことができる。
 なお、電動自転車10に生じた振動に相関する情報の比較は、必ずしも移動エネルギに相関する情報の比較を行った比較地点で行う必要はない。例えば、移動エネルギに相関する情報の比較は道路Aで取得した走行データに基づいて行い、振動に相関する情報の比較は道路Dで取得した走行データに基づいて行ってもよい。
《第3実施形態》
 第1実施形態及び第2実施形態では、比較的短期(数か月)の走行データに基づいて、転がり損失及び/又は内部損失の増大を把握したが、これに加えて、比較的長期(数年)の走行データに基づいて、転がり損失及び/又は内部損失の増大を把握してもよい。
 図15は、電動自転車10の走行出力Pの長期的な経時変化の一例を示す。図15に示すように、走行出力Pが短期的に大きくなったときにタイヤ部73a、78aに空気を注入して空気量を増加させると、転がり損失が減少し、走行出力Pは小さくなる。このような短期的な走行出力Pの増加は、タイヤ部73a、78aの空気量の減少、すなわち、転がり損失の増大が原因であると推定される。
 一方、長期的に見ると、例えば、2024年における空気注入後の走行出力P_2024は、2022年における空気注入後の走行出力P_2022よりも大きくなっている。このような長期的な走行出力Pの増加は、空気圧に起因する転がり損失ではなく、部品の劣化等に起因する内部損失が原因であると推定される。
 このように、短期的な走行出力Pのみではなく、長期的な走行出力Pの変化を見ることで、特別なセンサを設けることなく、走行出力Pの増加の原因をより詳細に推定することができる。
 上記の各実施形態で説明した電動自転車10の管理方法は、例えば、予め用意された管理プログラムをコンピュータ(プロセッサ)で実行することにより実現できる。本管理プログラムは、コンピュータが読み取り可能な記憶媒体に記憶され、記憶媒体から読み出されることによって実行される。また、本管理プログラムは、フラッシュメモリ等の非一過性の記憶媒体に記憶された形で提供されてもよいし、インターネット等のネットワークを介して提供されてもよい。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 例えば、移動体として電動自転車10を例示したが、これに限らず、非電動自転車であってもよい。また、移動体は、二輪車以外の三輪車、四輪車であってもよい。また、移動体は、車輪を有していなくてもよく、例えば船舶や航空機であってもよい。
 前述の実施形態では、本発明の管理方法は、制御回路40により実行されたが、これに限られない。例えば、電動自転車10及び又は携帯端末8と通信可能な外部サーバー(不図示)により実行されてもよいし、携帯端末8により実行されてもよい。換言すると、外部サーバーや携帯端末8が、移動情報取得部410と、比較部420と、異変判定部430と、報知/通知制御部440と、移動制御部450と、を備えてもよい。また、全ての機能が制御回路40や外部サーバー、又は携帯端末8で実行される必要はなく、複数の装置にまたがって一部の機能が実行されてもよい。
 前述の実施形態では、比較地点決定処理において、電動自転車10が日常的に走行して取得した経路の情報に基づいて比較地点を決定したが、これに限られない。例えば、多数の移動体から取得した多数の走行データを外部サーバー等に蓄積し、これらの走行データから電動自転車10が安定走行可能な道路を探索し、比較地点を決定してもよい。
 前述の第1実施形態では、移動体の移動エネルギに相関する情報として、人力トルク測定値とモータ出力指示値との和で表される走行出力Pを一例として挙げたがこれに限られない。移動体の移動エネルギに相関する情報は、人力トルク測定値であってもよい。
 前述の第1実施形態では、電動自転車10が異なる時間に走行しているときの電動自転車10の移動エネルギに相関する情報(具体的には、走行出力P)の比較を行ったが、これに限られない。電動自転車10がある時間に走行しているときの移動損失に相関する情報と、電動自転車10が別の時間に走行しているときの移動損失に相関する情報との比較を行ってもよい。例えば、移動損失に相関する情報の一例として、駆動力Fに含まれる転がり損失や内部損失を比較してもよい。上述のとおり、走行出力P[W]は、駆動力F[N]に駆動輪の半径[m]を掛けて得られるタイヤ端トルク[N・m]に、駆動輪の回転数を掛けることで得られる。すなわち、駆動力Fの一部である転がり損失や内部損失の移動損失は走行出力Pの一部でもあるので、走行出力Pと同様に、電動自転車10が異なる時間に走行しているときの移動損失に相関する情報を比較することによっても、電動自転車10の異変等を判定することができる。
 また、本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 移動体(電動自転車10)の管理方法であって、
 第1の時間に、前記移動体が第1の地理的位置(道路A又は道路D)を移動しているときの移動エネルギ又は移動損失に相関する第1情報(走行出力P)を取得するステップ(ステップS200)と、
 前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報(走行出力P)を取得するステップ(ステップS200)と、
 前記第2の時間よりも後の第3の時間に、前記第1情報と前記第2情報と、を比較するステップ(ステップS206)と、を有する、移動体の管理方法。
 (1)によれば、同じ地理的位置において、移動体が異なる時間に移動しているときの移動エネルギ又は移動損失に相関する第1情報と第2情報とを比較するので、移動体の損失の増大を把握することができる。したがって、移動体を適切に管理することができる。
 (2) (1)に記載の移動体の管理方法であって、
 (A) 前記第1情報と前記第2情報とが異なるときに、前記第3の時間よりも後の第4の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
  (i)前記移動体に異変が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する(ステップS216)、
 又は、
 (B) 前記第1情報と前記第2情報とが異ならないときに、前記第3の時間よりも後の第4の時間に(iv)~(vi)の少なくとも一つを実行するステップをさらに有する:
  (iv)前記移動体が正常であると判定する(ステップS208);
  (v)前記移動体の移動を許可するための情報を生成する(ステップS212);
  (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する(ステップS210)、移動体の管理方法。
 (2)の(A)によれば、(i)のステップにより移動体に異変が生じているか否かを判定することができ、(ii)のステップにより異変が生じている状態で移動体が使用されることを回避でき、(iii)のステップにより使用者等に移動体に対して適切な整備を行うよう促すことができる。また、(2)の(B)によれば、(iv)のステップにより移動体が正常であるか否かを判定することができ、(v)のステップにより移動体が正常である状態で使用することを許可でき、(vi)のステップにより使用者等は移動体が正常であることを認識できる。
 (3) (1)又は(2)に記載の移動体の管理方法であって、
 前記移動体は、車輪(前輪73、後輪78)を有する車両である、移動体の管理方法。
 (3)によれば、車輪を有する車両を適切に管理することができる。
 (4) (3)に記載の移動体の管理方法であって、
 前記第1の地理的位置は、前記車両が走行する走行路のうち略水平路(道路A)である、移動体の管理方法。
 (4)によれば、略水平路では測定毎の移動条件のばらつきが小さいので、略水平路で取得した移動エネルギ又は移動損失に相関する第1情報及び第2情報は、比較しやすいものとなる。
 (5) (3)に記載の移動体の管理方法であって、
 前記第1の地理的位置は、前記車両が走行する走行路のうち登坂路(道路D)である、移動体の管理方法。
 (5)によれば、登坂路では測定毎の移動条件のばらつきが小さいので、登坂路で取得した移動エネルギ又は移動損失に相関する第1情報及び第2情報は、比較しやすいものとなる。
 (6) (3)から(5)のいずれかに記載の移動体の管理方法であって、
 前記車輪は空気入りタイヤ部(タイヤ部73a、78a)を有し、
 (A) 前記第1情報と前記第2情報とが異なるときに、前記第3の時間よりも後の第4の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
  (i)前記移動体に異変が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する(ステップS216)、移動体の管理方法。
 (6)によれば、第1情報及び第2情報の比較に基づき、異変判定等を行うので、移動体を適切に管理することができる。
 (7) (6)に記載の移動体の管理方法であって、
 前記第1情報と前記第2情報とが異なり、前記第2情報が前記第1情報に対して前記移動エネルギ又は前記移動損失が増加していることを示すときに、
 前記第4の時間に(i)~(iii)の少なくとも一つを実行する:
  (i)前記タイヤ部に空気量減少が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記タイヤ部に空気量減少が生じていることを報知するための情報を生成する(ステップS218)、移動体の管理方法。
 (7)によれば、第1情報及び第2情報の比較に基づき、タイヤ部に空気量減少が生じているかの判定等を行うので、移動体を適切に管理することができる。
 (8) (6)又は(7)に記載の移動体の管理方法であって、
 前記第1情報と前記第2情報とが異なり、前記第2情報が前記第1情報に対して前記移動エネルギ又は前記移動損失が減少していることを示すときに、
 前記第4の時間に(vii)及び(viii)のうち少なくとも一方を実行する:
  (vii)前記タイヤ部に空気量増加が生じていると判定する;
  (viii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記タイヤ部に空気量増加が生じていることを通知するための情報を生成する、移動体の管理方法。
 (8)によれば、第1情報及び第2情報の比較に基づき、タイヤ部に空気量増加が生じているかの判定等を行うので、移動体を適切に管理することができる。
 (9) (1)から(8)のいずれかに記載の移動体の管理方法であって、
 第5の時間に、前記移動体が第2の地理的位置(道路A又は道路D)を移動しているときに前記移動体に生じた振動に相関する第3情報(振動)を取得するステップ(ステップS200)と、
 前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報(振動)を取得するステップ(ステップS200)と、
 前記第6の時間よりも後の第7の時間に、前記第3情報と前記第4情報と、を比較するステップ(ステップS207)と、を有する、移動体の管理方法。
 (9)によれば、同じ地理的位置において、移動体が異なる時間に移動しているときの振動に相関する第3情報と第4情報とを比較するので、移動体の損失の増大を把握することができる。したがって、移動体を適切に管理することができる。
 (10) (9)に記載の移動体の管理方法であって、
 (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
  (i)前記移動体に異変が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する(ステップS216)、
 又は、
 (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行するステップをさらに有する:
  (iv)前記移動体が正常であると判定する(ステップS208);
  (v)前記移動体の移動を許可するための情報を生成する(ステップS212);
  (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する(ステップS210)、移動体の管理方法。
 (10)の(A)によれば、(i)のステップにより移動体に異変が生じているか否かを判定することができ、(ii)のステップにより異変が生じている状態で移動体が使用されることを回避でき、(iii)のステップにより使用者等に移動体に対して適切な整備を行うよう促すことができる。また、(10)の(B)によれば、(iv)のステップにより移動体が正常であるか否かを判定することができ、(v)のステップにより移動体が正常である状態で使用することを許可でき、(vi)のステップにより使用者等は移動体が正常であることを認識できる。
 (11) (10)に記載の移動体の管理方法であって、
 前記移動体は、車輪(前輪73、後輪78)を有する車両であって、
 前記車輪は空気入りタイヤ部(タイヤ部73a、78a)を有し、
 前記第3情報と前記第4情報とが異なり、前記第4情報が前記第3情報に対して前記振動が減少していることを示すときに、
 前記第8の時間に(i)~(iii)の少なくとも一つを実行する:
  (i)前記タイヤ部に空気量減少が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記タイヤ部に空気量減少が生じていることを報知するための情報を生成する(ステップS216)、移動体の管理方法。
 (11)によれば、(i)のステップによりタイヤ部に空気量減少が生じているか否かを判定することができ、(ii)のステップによりタイヤ部に空気量減少が生じている状態で移動体が使用されることを回避でき、(iii)のステップにより使用者等に移動体に対して適切な整備を行うよう促すことができる。
 (12) (9)から(11)のいずれかに記載の移動体の管理方法であって、
 前記第3の時間及び前記第7の時間よりも後の第9の時間に、
 前記第3の時間に比較した前記第1情報と前記第2情報とが異なり、かつ、前記第7の時間に比較した前記第3情報と前記第4情報とが異なるときに、
 (i)~(iii)の少なくとも一つを実行するステップをさらに有する:
  (i)前記移動体に異変が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する(ステップS216)、移動体の管理方法。
 (12)によれば、移動エネルギ又は移動損失に相関する情報の比較と、移動体に生じた振動に相関する情報の比較と、の両方に基づいて移動体の異変を判定するので、異変の判定の確度を高めることができる。よって、移動体の異変の誤判定が減り、乗員等への誤報知を減らすことができる。
 (13) (1)から(12)のいずれかに記載の移動体の管理方法であって、
 前記第1の時間に前記移動体が前記第1の地理的位置を移動しているときの速度と、前記第2の時間に前記移動体が前記第1の地理的位置を移動しているときの速度とは略同一である、移動体の管理方法。
 (13)によれば、移動条件が等しいので、移動条件を等しくして適切な比較を行うことができる。なお、「速度」とは、移動体の移動方向も考慮したベクトル量と、スカラー量と含む概念である。
 (14) (13)に記載の移動体の管理方法であって、
 前記速度は所定の閾値以下の速度である、移動体の管理方法。
 (14)によれば、空気抵抗等の外乱が少ない移動条件下で、適切な比較を行うことができる。
 (15) 移動体(電動自転車10)の管理プログラムであって、
 第1の時間に、移動体(電動自転車10)が第1の地理的位置(道路A又は道路D)を移動しているときの移動エネルギ又は移動損失に相関する第1情報(走行出力P)を取得するステップ(ステップS200)と、
 前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報(走行出力P)を取得するステップ(ステップS200)と、
 前記第2の時間よりも後の第3の時間に、前記第1情報と前記第2情報と、を比較するステップ(ステップS206)と、をコンピュータに実行させるための、移動体の管理プログラム。
 (15)によれば、同じ地理的位置において、移動体が異なる時間に移動しているときの移動エネルギ又は移動損失に相関する第1情報と第2情報とを比較するので、移動体の損失の増大を把握することができる。したがって、移動体を適切に管理することができる。
 (16) (15)に記載の管理プログラムを記憶した、コンピュータが読み取り可能な記憶媒体。
 (16)によれば、(15)に記載の管理プログラムをコンピュータで実行することを可能にする。
 (17) 第1の時間に、移動体(電動自転車10)が第1の地理的位置(道路A又は道路D)を移動しているときの移動エネルギ又は移動損失に相関する第1情報(走行出力P)を取得する第1取得部(移動情報取得部410)と、
 前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報(走行出力P)を取得する第2取得部(移動情報取得部410)と、
 前記第2の時間よりも後の第3の時間に、前記第1取得部及び前記第2取得部が取得した前記第1情報と前記第2情報と、を比較する比較部(比較部420)と、
 を備える、情報処理装置(制御回路40)。
 (17)によれば、同じ地理的位置において、移動体が異なる時間に移動しているときの移動エネルギ又は移動損失に相関する第1情報と第2情報とを比較するので、移動体の損失の増大を把握することができる。したがって、移動体を適切に管理することができる。
 (18) 移動体(電動自転車10)の管理方法であって、
 第5の時間に、前記移動体が第2の地理的位置(道路A又は道路D)を移動しているときに前記移動体に生じた振動に相関する第3情報(振動)を取得するステップ(ステップS200)と、
 前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報(振動)を取得するステップ(ステップS200)と、
 前記第6の時間よりも後の第7の時間に、前記第3情報と前記第4情報と、を比較するステップ(ステップS207)と、を有し、
 (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
  (i)前記移動体に異変が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する(ステップS216)、
 又は、
 (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行するステップをさらに有する:
  (iv)前記移動体が正常であると判定する(ステップS208);
  (v)前記移動体の移動を許可するための情報を生成する(ステップS212);
  (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する(ステップS210)、移動体の管理方法。
 (18)によれば、同じ地理的位置において、移動体が異なる時間に移動しているときの振動に相関する第3情報と第4情報とを比較するので、移動体の損失の増大を把握することができる。そして、移動体の振動の比較に基づき、異変や正常の判定等を行うので、移動体を適切に管理することができる。
 (19) 移動体(電動自転車10)の管理プログラムであって、
 第5の時間に、前記移動体が第2の地理的位置(道路A又は道路D)を移動しているときに前記移動体に生じた振動に相関する第3情報(振動)を取得するステップ(ステップS200)と、
 前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報(振動)を取得するステップ(ステップS200)と、
 前記第6の時間よりも後の第7の時間に、前記第3情報と前記第4情報と、を比較するステップ(ステップS207)と、をコンピュータに実行させ、
 (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行するステップ:
  (i)前記移動体に異変が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する(ステップS216)、
 又は、
 (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行するステップ:
  (iv)前記移動体が正常であると判定する(ステップS208);
  (v)前記移動体の移動を許可するための情報を生成する(ステップS210);
  (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する(ステップS212)、
 をさらに前記コンピュータに実行させるための、移動体の管理プログラム。
 (19)によれば、同じ地理的位置において、移動体が異なる時間に移動しているときの振動に相関する第3情報と第4情報とを比較するので、移動体の損失の増大を把握することができる。そして、移動体の振動の比較に基づき、異変や正常の判定等を行うので、移動体を適切に管理することができる。
 (20) 第5の時間に、移動体が第2の地理的位置(道路A又は道路D)を移動しているときに前記移動体に生じた振動に相関する第3情報(振動)を取得する第3取得部(移動情報取得部410)と、
 前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報(振動)を取得する第4取得部(移動情報取得部410)と、
 前記第6の時間よりも後の第7の時間に、前記第3取得部及び前記第4取得部が取得した前記第3情報と前記第4情報と、を比較する比較部(比較部420)と、
 を備える情報処理装置であって、
 前記情報処理装置は、
 (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行する:
  (i)前記移動体に異変が生じていると判定する(ステップS214);
  (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する(ステップS218);
  (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する(ステップS216)、
 又は、
 (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行する:
  (iv)前記移動体が正常であると判定する(ステップS208);
  (v)前記移動体の移動を許可するための情報を生成する(ステップS210);
  (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する(ステップS212)、
 情報処理装置。
 (20)によれば、同じ地理的位置において、移動体が異なる時間に移動しているときの振動に相関する第3情報と第4情報とを比較するので、移動体の損失の増大を把握することができる。そして、移動体の振動の比較に基づき、異変や正常の判定等を行うので、移動体を適切に管理することができる。
 なお、本出願は、2022年8月12日出願の日本特許出願(特願2022-128927)に基づくものであり、その内容は本出願の中に参照として援用される。
10 電動自転車(移動体)
40 制御回路(情報処理装置)
410 移動情報取得部(第1取得部~第4取得部)
420 比較部
73 前輪(車輪)
73a タイヤ部
78 後輪(車輪)
78a タイヤ部

Claims (20)

  1.  移動体の管理方法であって、
     第1の時間に、前記移動体が第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第1情報を取得するステップと、
     前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報を取得するステップと、
     前記第2の時間よりも後の第3の時間に、前記第1情報と前記第2情報と、を比較するステップと、を有する、移動体の管理方法。
  2.  請求項1に記載の移動体の管理方法であって、
     (A) 前記第1情報と前記第2情報とが異なるときに、前記第3の時間よりも後の第4の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
      (i)前記移動体に異変が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、
     又は、
     (B) 前記第1情報と前記第2情報とが異ならないときに、前記第3の時間よりも後の第4の時間に(iv)~(vi)の少なくとも一つを実行するステップをさらに有する:
      (iv)前記移動体が正常であると判定する;
      (v)前記移動体の移動を許可するための情報を生成する;
      (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する、移動体の管理方法。
  3.  請求項1又は2に記載の移動体の管理方法であって、
     前記移動体は、車輪を有する車両である、移動体の管理方法。
  4.  請求項3に記載の移動体の管理方法であって、
     前記第1の地理的位置は、前記車両が走行する走行路のうち略水平路である、移動体の管理方法。
  5.  請求項3に記載の移動体の管理方法であって、
     前記第1の地理的位置は、前記車両が走行する走行路のうち登坂路である、移動体の管理方法。
  6.  請求項3から5のいずれか一項に記載の移動体の管理方法であって、
     前記車輪は空気入りタイヤ部を有し、
     (A) 前記第1情報と前記第2情報とが異なるときに、前記第3の時間よりも後の第4の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
      (i)前記移動体に異変が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、移動体の管理方法。
  7.  請求項6に記載の移動体の管理方法であって、
     前記第1情報と前記第2情報とが異なり、前記第2情報が前記第1情報に対して前記移動エネルギ又は前記移動損失が増加していることを示すときに、
     前記第4の時間に(i)~(iii)の少なくとも一つを実行する:
      (i)前記タイヤ部に空気量減少が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記タイヤ部に空気量減少が生じていることを報知するための情報を生成する、移動体の管理方法。
  8.  請求項6又は7に記載の移動体の管理方法であって、
     前記第1情報と前記第2情報とが異なり、前記第2情報が前記第1情報に対して前記移動エネルギ又は前記移動損失が減少していることを示すときに、
     前記第4の時間に(vii)及び(viii)のうち少なくとも一方を実行する:
      (vii)前記タイヤ部に空気量増加が生じていると判定する;
      (viii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記タイヤ部に空気量増加が生じていることを通知するための情報を生成する、移動体の管理方法。
  9.  請求項1から8のいずれか一項に記載の移動体の管理方法であって、
     第5の時間に、前記移動体が第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第3情報を取得するステップと、
     前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報を取得するステップと、
     前記第6の時間よりも後の第7の時間に、前記第3情報と前記第4情報と、を比較するステップと、を有する、移動体の管理方法。
  10.  請求項9に記載の移動体の管理方法であって、
     (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
      (i)前記移動体に異変が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、
     又は、
     (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行するステップをさらに有する:
      (iv)前記移動体が正常であると判定する;
      (v)前記移動体の移動を許可するための情報を生成する;
      (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する、移動体の管理方法。
  11.  請求項10に記載の移動体の管理方法であって、
     前記移動体は、車輪を有する車両であって、
     前記車輪は空気入りタイヤ部を有し、
     前記第3情報と前記第4情報とが異なり、前記第4情報が前記第3情報に対して前記振動が減少していることを示すときに、
     前記第8の時間に(i)~(iii)の少なくとも一つを実行する:
      (i)前記タイヤ部に空気量減少が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記タイヤ部に空気量減少が生じていることを報知するための情報を生成する、移動体の管理方法。
  12.  請求項9から11のいずれか一項に記載の移動体の管理方法であって、
     前記第3の時間及び前記第7の時間よりも後の第9の時間に、
     前記第3の時間に比較した前記第1情報と前記第2情報とが異なり、かつ、前記第7の時間に比較した前記第3情報と前記第4情報とが異なるときに、
     (i)~(iii)の少なくとも一つを実行するステップをさらに有する:
      (i)前記移動体に異変が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、移動体の管理方法。
  13.  請求項1から12のいずれか一項に記載の移動体の管理方法であって、
     前記第1の時間に前記移動体が前記第1の地理的位置を移動しているときの速度と、前記第2の時間に前記移動体が前記第1の地理的位置を移動しているときの速度とは略同一である、移動体の管理方法。
  14.  請求項13に記載の移動体の管理方法であって、
     前記速度は所定の閾値以下の速度である、移動体の管理方法。
  15.  移動体の管理プログラムであって、
     第1の時間に、前記移動体が第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第1情報を取得するステップと、
     前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報を取得するステップと、
     前記第2の時間よりも後の第3の時間に、前記第1情報と前記第2情報と、を比較するステップと、をコンピュータに実行させるための、移動体の管理プログラム。
  16.  請求項15に記載の管理プログラムを記憶した、コンピュータが読み取り可能な記憶媒体。
  17.  第1の時間に、移動体が第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第1情報を取得する第1取得部と、
     前記第1の時間よりも後の第2の時間に、前記移動体が前記第1の地理的位置を移動しているときの移動エネルギ又は移動損失に相関する第2情報を取得する第2取得部と、
     前記第2の時間よりも後の第3の時間に、前記第1取得部及び前記第2取得部が取得した前記第1情報と前記第2情報と、を比較する比較部と、
     を備える、情報処理装置。
  18.  移動体の管理方法であって、
     第5の時間に、前記移動体が第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第3情報を取得するステップと、
     前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報を取得するステップと、
     前記第6の時間よりも後の第7の時間に、前記第3情報と前記第4情報と、を比較するステップと、を有し、
     (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行するステップをさらに有する:
      (i)前記移動体に異変が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、
     又は、
     (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行するステップをさらに有する:
      (iv)前記移動体が正常であると判定する;
      (v)前記移動体の移動を許可するための情報を生成する;
      (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する、移動体の管理方法。
  19.  移動体の管理プログラムであって、
     第5の時間に、前記移動体が第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第3情報を取得するステップと、
     前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報を取得するステップと、
     前記第6の時間よりも後の第7の時間に、前記第3情報と前記第4情報と、を比較するステップと、をコンピュータに実行させ、
     (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行するステップ:
      (i)前記移動体に異変が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、
     又は、
     (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行するステップ:
      (iv)前記移動体が正常であると判定する;
      (v)前記移動体の移動を許可するための情報を生成する;
      (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する、
     をさらに前記コンピュータに実行させるための、移動体の管理プログラム。
  20.  第5の時間に、移動体が第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第3情報を取得する第3取得部と、
     前記第5の時間よりも後の第6の時間に、前記移動体が前記第2の地理的位置を移動しているときに前記移動体に生じた振動に相関する第4情報を取得する第4取得部と、
     前記第6の時間よりも後の第7の時間に、前記第3取得部及び前記第4取得部が取得した前記第3情報と前記第4情報と、を比較する比較部と、
     を備える、情報処理装置であって、
     前記情報処理装置は、
     (A) 前記第3情報と前記第4情報とが異なるときに、前記第7の時間よりも後の第8の時間に(i)~(iii)の少なくとも一つを実行する:
      (i)前記移動体に異変が生じていると判定する;
      (ii)前記移動体の移動を抑制する若しくは禁止するための情報を生成する;
      (iii)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体に異変が生じていることを報知するための情報を生成する、
     又は、
     (B) 前記第3情報と前記第4情報とが異ならないときに、前記第7の時間よりも後の第8の時間に(iv)~(vi)の少なくとも一つを実行する:
      (iv)前記移動体が正常であると判定する;
      (v)前記移動体の移動を許可するための情報を生成する;
      (vi)前記移動体の使用者、製造者、所有者、及び管理者のうちの少なくとも一つに、前記移動体が正常であることを通知するための情報を生成する、
     情報処理装置。
PCT/JP2023/029303 2022-08-12 2023-08-10 移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置 WO2024034667A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-128927 2022-08-12
JP2022128927 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024034667A1 true WO2024034667A1 (ja) 2024-02-15

Family

ID=89851617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029303 WO2024034667A1 (ja) 2022-08-12 2023-08-10 移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置

Country Status (1)

Country Link
WO (1) WO2024034667A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230588A (ja) * 1994-02-18 1995-08-29 Sumitomo Electric Ind Ltd タイヤ空気圧低下警報装置
JP2004251786A (ja) * 2003-02-20 2004-09-09 Denso Corp 運転技術評価装置、運転技術評価システムおよびプログラム
JP2008133798A (ja) * 2006-11-29 2008-06-12 Hitachi Ltd 車両のエネルギ伝達診断装置
WO2011030398A1 (ja) * 2009-09-08 2011-03-17 パイオニア株式会社 燃費表示装置、燃費表示方法及び燃費表示プログラム
JP2011203116A (ja) * 2010-03-25 2011-10-13 Toyota Motor Corp 車両用異常予測装置及び方法
JP2018178837A (ja) * 2017-04-11 2018-11-15 トヨタ自動車株式会社 内燃機関の制御装置
WO2021049646A1 (ja) * 2019-09-11 2021-03-18 本田技研工業株式会社 車両、及び動力伝達機構の異常監視方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230588A (ja) * 1994-02-18 1995-08-29 Sumitomo Electric Ind Ltd タイヤ空気圧低下警報装置
JP2004251786A (ja) * 2003-02-20 2004-09-09 Denso Corp 運転技術評価装置、運転技術評価システムおよびプログラム
JP2008133798A (ja) * 2006-11-29 2008-06-12 Hitachi Ltd 車両のエネルギ伝達診断装置
WO2011030398A1 (ja) * 2009-09-08 2011-03-17 パイオニア株式会社 燃費表示装置、燃費表示方法及び燃費表示プログラム
JP2011203116A (ja) * 2010-03-25 2011-10-13 Toyota Motor Corp 車両用異常予測装置及び方法
JP2018178837A (ja) * 2017-04-11 2018-11-15 トヨタ自動車株式会社 内燃機関の制御装置
WO2021049646A1 (ja) * 2019-09-11 2021-03-18 本田技研工業株式会社 車両、及び動力伝達機構の異常監視方法

Similar Documents

Publication Publication Date Title
JP6960558B2 (ja) 車両、及び動力伝達機構の異常監視方法
TW201823093A (zh) 電動輔助系統及電動輔助車輛
EP1886913A2 (en) Electrically assisted bicycle
US11124266B2 (en) Human-powered vehicle control device
US20110238250A1 (en) System control apparatus for a mobile body, and mobile body therewith
US11383790B2 (en) Human-powered vehicle control device
US20220274669A1 (en) Human-powered vehicle control device
JP6174750B2 (ja) 自転車用制御装置
US11401003B2 (en) Human-powered vehicle control device
JP2011240919A (ja) 電動アシスト自転車
JP2005143169A (ja) 電動車両
US11597471B2 (en) Human-powered vehicle control device
TW201922559A (zh) 人力驅動車輛用控制裝置
JP2023087061A (ja) 人力駆動車用制御装置
JP7266987B2 (ja) 人力駆動車用の制御装置および人力駆動車用の制御方法
WO2024034667A1 (ja) 移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置
JP7497214B2 (ja) 制御装置および変速システム
US11440617B2 (en) Human-powered vehicle control device and human-powered vehicle transmission system
JP2020055420A (ja) 制御装置および変速システム
JP2013035430A (ja) 自動二輪車
WO2024014431A1 (ja) 変速段推定方法、変速段推定装置、変速段推定プログラム、及び、記憶媒体
WO2024058227A1 (ja) 車両、情報処理装置、制御方法、制御プログラム、及び記憶媒体
JP7575992B2 (ja) 人力駆動車用制御装置、人力駆動車用制御システム、制御方法、および、コンピュータプログラム
JP2024141043A (ja) 情報処理方法、情報処理プログラム、記憶媒体、及び、情報処理装置
US11807331B2 (en) Human-powered vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852629

Country of ref document: EP

Kind code of ref document: A1