[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021049646A1 - 車両、及び動力伝達機構の異常監視方法 - Google Patents

車両、及び動力伝達機構の異常監視方法 Download PDF

Info

Publication number
WO2021049646A1
WO2021049646A1 PCT/JP2020/034576 JP2020034576W WO2021049646A1 WO 2021049646 A1 WO2021049646 A1 WO 2021049646A1 JP 2020034576 W JP2020034576 W JP 2020034576W WO 2021049646 A1 WO2021049646 A1 WO 2021049646A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear ratio
vehicle
transmission mechanism
power transmission
related information
Prior art date
Application number
PCT/JP2020/034576
Other languages
English (en)
French (fr)
Inventor
真成 野村
真 服部
博崇 大貫
雅幸 砂本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN202080064180.3A priority Critical patent/CN114401889B/zh
Priority to US17/599,170 priority patent/US11511827B2/en
Priority to EP20862596.2A priority patent/EP4029769A4/en
Priority to JP2021513491A priority patent/JP6960558B2/ja
Priority to BR112022004243A priority patent/BR112022004243A2/pt
Publication of WO2021049646A1 publication Critical patent/WO2021049646A1/ja
Priority to ZA2022/02929A priority patent/ZA202202929B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M25/08Actuators for gearing speed-change mechanisms specially adapted for cycles with electrical or fluid transmitting systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/70Rider propelled cycles with auxiliary electric motor power-driven at single endless flexible member, e.g. chain, between cycle crankshaft and wheel axle, the motor engaging the endless flexible member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M25/00Actuators for gearing speed-change mechanisms specially adapted for cycles
    • B62M2025/003Actuators for gearing speed-change mechanisms specially adapted for cycles with gear indicating means, e.g. a display

Definitions

  • the present invention relates to an abnormality monitoring method for a vehicle and a power transmission mechanism.
  • Patent Document 1 An electrically assisted bicycle that assists the pedaling force of a crank pedal with the power of a motor is known (for example, Patent Document 1).
  • the upper limit of the assist force and the upper limit of the assist ratio with respect to the vehicle speed are stipulated by law.
  • Japanese law stipulates as follows.
  • the upper limit of the assist ratio with respect to the vehicle speed is 2 up to the vehicle speed of 10 km / h, and the vehicle speed is from 10 km / h to 24 km / h. It is required to gradually reduce the assist ratio from 2 to 0 in the period up to h. It is assumed that the electrically power assisted bicycle will be sold as a completed vehicle. That is, by selling the electrically power assisted bicycle as a completed vehicle, it has the following features.
  • the torque sensor is built into the assist unit and is difficult to modify or repair.
  • the vehicle speed is estimated by incorporating a pulsar in the wheel or the gear portion of the drive system, and estimating the vehicle speed from the rotation speed, the gear ratio of the transmission, and the circumference of the wheel. At this time, it is difficult to change the wheel size (larger diameter), and it is difficult to modify or repair the drive system.
  • the finished vehicle guarantees that the assist ratio will not deviate from the regulations by pretending the vehicle speed.
  • Patent Document 2 describes an electric assist unit that can be retrofitted without making major design changes to an existing bicycle frame.
  • the retrofit electric assist unit can easily change the relationship between the rotation speed of the motor or crank and the vehicle speed by changing the setting of the bicycle to be attached or the electric assist unit, thereby assisting.
  • compliance with the laws and regulations of the ratio cannot be guaranteed. It should be noted that this can occur not only in electric bicycles but also in vehicles whose assist ratio with respect to vehicle speed is stipulated by law.
  • a vehicle that can comply with the assist ratio with respect to the vehicle speed even when the entire or part of the power transmission mechanism is retrofitted or replaced, and the vehicle is regulated by retrofitting or replacing the whole or part of the power transmission mechanism.
  • an abnormality monitoring method of a power transmission mechanism capable of determining a state that does not conform to the above.
  • the first invention is The input section where the power to drive the vehicle is input, and An output unit that outputs the power input to the input unit and A vehicle comprising a power transmission mechanism for transmitting the power input to the input unit to the output unit.
  • the first gear ratio related information which is the information related to the gear ratio of the transmission section which is the whole or a part of the power transmission mechanism acquired in the first time, and the first gear ratio related information.
  • Based on the second gear ratio related information which is the information related to the gear ratio of the transmission section acquired in the second time after the first time. The abnormality of the power transmission mechanism is determined, or the drive using the power transmission mechanism is suppressed or prohibited.
  • the second invention is An input unit to which the power to drive the vehicle is input, an output unit to output the power input to the input unit, and an output unit.
  • a vehicle comprising a power transmission mechanism for transmitting the power input to the input unit to the output unit.
  • First speed information which is the speed of the vehicle, obtained based on the gear ratio of the transmission section which is the whole or a part of the power transmission mechanism acquired in advance and the rotational state amount of the input unit.
  • the second speed information which is the speed of the vehicle acquired without using the gear ratio, The abnormality of the power transmission mechanism is determined, or the drive using the power transmission mechanism is suppressed or prohibited.
  • the third invention is It is a method of monitoring abnormalities of the power transmission mechanism mounted on the vehicle.
  • the step of acquiring the first gear ratio related information which is the information related to the gear ratio of the transmission section which is the whole or a part of the power transmission mechanism and
  • the step of acquiring the second gear ratio related information which is the information related to the gear ratio of the transmission section and Based on the first gear ratio related information and the second gear ratio related information, a step of determining an abnormality of the power transmission mechanism or suppressing or prohibiting driving using the power transmission mechanism is performed. Be prepared.
  • a state in which a vehicle does not comply with laws and regulations by determining an abnormality of the whole or a part of the power transmission mechanism, or suppressing or prohibiting driving using the whole or a part of the power transmission mechanism. Can be avoided.
  • the electric bicycle 10 includes a front wheel 73, a rear wheel 78, a bicycle frame 67, a battery 2, and an electric assist unit 20 that generates an assist force by the power supplied by the battery 2.
  • the electric assist bicycle is provided so that the assist force generated by the electric assist unit 20 can be output.
  • the bicycle frame 67 includes a head pipe 68 at the front end, a down pipe 69 extending rearward from the head pipe 68 from the front to the rear of the vehicle body, and a support pipe 66 fixed to the rear end of the down pipe 69 and extending to the left and right (see FIG. 2). ), A seat post 71 that rises upward from the support pipe 66, and a pair of left and right rear forks 70 that extend rearward from the support pipe 66.
  • a front fork 72 is operably supported by the head pipe 68, and a front wheel 73 is pivotally supported at the lower end of the front fork 72.
  • a steering handle 74 is provided at the upper end of the front fork 72.
  • a rear wheel 78 as a driving wheel is pivotally supported between the rear ends of a pair of left and right rear forks 70 extending rearward from the seat post 71.
  • a support shaft 75 having a seat 76 at the upper end is attached to the seat post 71 so that the vertical position of the seat 76 can be adjusted.
  • a battery 2 that supplies power to the electric assist unit 20 is detachably fixed to the front part of the seat post 71 below the seat 76.
  • a pair of crank pedals 79 are connected to the left and right ends of the crankshaft 83 that coaxially penetrates the support pipe 66 of the bicycle frame 67.
  • the pedaling force applied to the crank pedal 79 is transmitted to the crankshaft 83 and input to the endless chain 82 via the drive sprocket 80.
  • the chain 82 is wound around a drive sprocket 80 and a driven sprocket 81 provided on the axle of the rear wheel 78.
  • the electric assist unit 20 is configured such that the motor M and the crankshaft 83 are unitized and can be retrofitted around the support pipe 66 of the bicycle frame 67. Therefore, the user takes the non-electric bicycle already owned or newly owned to a specific manufacturer, seller, repairer (hereinafter referred to as a manufacturer, etc.), and the manufacturer, etc. already exists.
  • the non-electric bicycle can be electrified by removing the crank shaft of the above and attaching the electric assist unit 20 and the battery 2.
  • the user may borrow the electric assist unit 20 from the owner of the electrified bicycle and use it.
  • the output shaft 21 of the motor M and the crankshaft 83 are arranged in parallel inside the case 24.
  • the crankshaft 83 is rotatably supported inside a tubular sleeve 26 via a first one-way clutch 28, and a motor output gear 21a provided on the output shaft 21 of the motor M on the outer peripheral side of the sleeve 26.
  • the driven gear 26a and the drive sprocket 80 that mesh with the drive sprocket 80 are fixed. Therefore, the torque of the motor M is transmitted to the drive sprocket 80 via the motor output gear 21a, the driven gear 26a, and the sleeve 26.
  • a second one-way clutch 32 is provided between the driven sprocket 81 and the rear wheel 78.
  • the first one-way clutch 28 is engaged and the forward rotation power of the crankshaft 83 is a sleeve. It is transmitted to the drive sprocket 80 via 26, and further to the driven sprocket 81 via the chain 82. At this time, the second one-way clutch 32 is also engaged, so that the forward rotational power transmitted to the driven sprocket 81 is transmitted to the rear wheels 78.
  • crank pedal 79 when the crank pedal 79 is rowed in the reverse direction (also referred to as the reverse rotation direction), the first one-way clutch 28 does not engage, the reverse rotation power of the crankshaft 83 is not transmitted to the sleeve 26, and the crankshaft 83 It spins.
  • the forward rotation power in the forward direction (forward rotation direction) is input from the rear wheel 78, for example, when pushing the electric bicycle 10 in the forward direction, the second one-way clutch 32 does not engage and the rear wheel 78 does not engage.
  • the forward rotation power of is not transmitted to the driven sprocket 81. Therefore, the rear wheel 78 rotates relative to the driven sprocket 81.
  • the reverse rotation power in the reverse direction (reverse rotation direction) is input from the rear wheel 78 as in the case of pushing the electric bicycle 10 in the reverse direction, the second one-way clutch 32 engages with the rear wheel.
  • the reverse rotation power of 78 is transmitted to the driven sprocket 81, and further transmitted to the drive sprocket 80 via the chain 82. Further, since the first one-way clutch 28 is also engaged at this time, the reverse rotation power transmitted to the drive sprocket 80 is transmitted to the crankshaft 83 and the crank pedal 79, and the crankshaft 83 and the crank pedal 79 rotate in the reverse direction. ..
  • the electric assist unit 20 is provided with a motor rotation speed sensor SE1 that detects the rotation speed of the motor M. Further, the sleeve 26 is provided with a torque sensor SE2 that detects a torque value Tq generated by a force for the driver to step on the crank pedal 79 (hereinafter, pedal stepping force).
  • the motor rotation speed sensor SE1 is composed of a magnet and a Hall IC provided on the outer peripheral portion of the output shaft 21 of the motor M.
  • the torque sensor SE2 is composed of a magnetostrictive torque sensor arranged on the outer peripheral portion of the sleeve 26.
  • the gear ratio between the motor output gear 21a and the driven gear 26a is set to 1, and the rotation speed of the motor M and the rotation speed of the sleeve 26 are always the same. Therefore, the output value of the motor rotation speed sensor SE1 can be regarded as the rotation speed of the sleeve 26.
  • the rear wheel 78 is provided with a rear wheel rotation speed sensor SE3 that acquires the rotation speed of the rear wheel 78.
  • the control device 40 that controls the electric assist unit 20 includes a motor control unit 41 (see FIGS. 3 to 5) that controls the motor M, and the motor control unit 41 starts from a torque value Tq that is an output value of the torque sensor SE2.
  • the force for the driver to step on the crank pedal 79 (hereinafter referred to as the pedal stepping force) is calculated, and the motor M is PWMed so that the assist force determined by the pedal stepping force and the assist ratio according to the vehicle speed of the electrically power assisted bicycle 1 is generated. Control.
  • the gear ratio is the rotation speed of the output unit with respect to the rotation speed of the input unit.
  • the rotation speed of the input unit is the rotation speed of the sleeve 26
  • the rotation speed of the output unit is the rotation speed of the rear wheel 78.
  • the gear ratio between the motor output gear 21a and the driven gear 26a is 1, the rotation speed of the sleeve 26 is equal to the rotation speed of the motor M detected by the motor rotation speed sensor SE1. Further, the rotation speed of the sleeve 26 is equal to the rotation speed of the crankshaft 83 when the first one-way clutch 28 is engaged.
  • the rotation of the sleeve 26 is changed by the difference in outer diameter between the driving sprocket 80 and the driven sprocket 81, and further changed by a switching transmission 30 arbitrarily provided between the driven sprocket 81 and the rear wheel 78.
  • the rotation speed of the sleeve 26, which is the rotation speed of the input unit, is Ni [rpm]
  • the rotation speed of the rear wheel 78 which is the rotation speed of the output unit, is No [rpm]
  • the gear ratio between the drive sprocket 80 and the driven sprocket 81 is Rg.
  • the rotation speed No. [rpm] of the rear wheels 78 is represented by the following equation (1).
  • the gear ratio Rg between the drive sprocket 80 and the driven sprocket 81 is as follows (2), where the outer diameter of the drive sprocket 80 is D [m] and the outer diameter of the driven sprocket 81 is d [m]. ) Is expressed by the formula.
  • the gear ratio Rt of the switching transmission 30 is appropriately set.
  • the composite gear ratio Rc is the gear ratio Rg between the drive sprocket 80 and the driven sprocket 81 as shown in the equation (3). It is represented by the multiplication of the gear ratio Rt of the switching transmission 30.
  • Rt 1.
  • the rotation speed No. [rpm] of the rear wheel 78 is the rotation speed Ni [rpm] of the sleeve 26 and the combined gear ratio Rc of the power transmission mechanism T. It is expressed by the following equation (4).
  • the speed of the electric bicycle 10 (hereinafter referred to as the vehicle speed) No'[km]. / H] is represented by the following equation (5).
  • the traveling distance L [m] is expressed by the following equation (6). expressed.
  • the number of teeth (front cog) of the drive sprocket 80 is 44, and the number of teeth of the driven sprocket 81 (rear cog) is 13.
  • the ratio Rc is 3.38, and the rotation speed No. [rpm] of the rear wheel 78 of the formula (4) is represented by the following formula (7).
  • the combined gear ratio Rc of the reference electric bicycle (base of FIG. 8) shown in FIG. 8 is 3.38, and the circumference Ct of the rear wheel 78 is 2096 ⁇ 10 -3 [m], so (6). ),
  • the traveling distance L [m] that the electric bicycle 10 travels while the sleeve 26 of the electric bicycle 10 makes one rotation is represented by the following equation (9).
  • the motor control unit 41 is pre-programmed by the manufacturer or the like so that the electric bicycle 10 complies with the regulations.
  • the upper limit of the assist ratio is 2 and the vehicle speed is 10 [km / h] up to a vehicle speed of 10 [km / h]. ]
  • the motor control unit 41 of the control device 40 has an assist ratio shown by a alternate long and short dash line (base of FIG. 8) so as not to exceed the Japanese legal regulation (solid line). It is programmed in.
  • a predetermined margin width (with respect to the upper limit of the assist ratio) is used in the region of less than 10 [km / h] and the region of 10 [km / h] to 24 [km / h]. Margin) is set to be secured.
  • the electric bicycle 10 to which the electric assist unit 20 is retrofitted is relatively easy to modify or repair, and the electric bicycle 10 is erroneously incompatible with the regulations.
  • the diameter of the drive sprocket 80 is increased (Fr diameter is increased in FIG. 8)
  • the diameter of the driven sprocket 81 is reduced (Rr diameter is reduced in FIG. 8)
  • the diameter of the rear wheel 78 is increased (FIG. 8). Due to the larger diameter of the wheel), there is a risk that it will not comply with the regulations.
  • the state in which the electric bicycle 10 does not comply with the regulations is monitored by the abnormality determination process of the power transmission mechanism shown below.
  • the control device 40 that performs the abnormality determination process is at the time of assembling the above-mentioned motor control unit 41 and the electric assist unit 20 in the first time (hereinafter, referred to as the assembling time).
  • the memory 42 that stores the first gear ratio related information which is the information related to the gear ratio of the transmission section as a whole of the power transmission mechanism T acquired in), and the first memory 42 that acquires the first gear ratio related information from the memory 42.
  • Second speed change which is information related to the speed change ratio of the transmission section after a predetermined time (hereinafter, after assembly) from the time when the gear ratio related information acquisition unit 43 and the electric assist unit 20 which is the second time are assembled.
  • a second gear ratio related information acquisition unit 44 that acquires ratio-related information, an abnormality determination unit 45 that determines an abnormal state of the power transmission mechanism T, and a notification unit 46 that notifies an abnormal state of the power transmission mechanism T, etc. Be prepared.
  • acquisition is a concept that includes acquisition, calculation, estimation, and detection.
  • FIG. 3 is a functional block diagram of the first example.
  • the above-mentioned composite gear ratio Rc is used as the first gear ratio related information and the second gear ratio related information.
  • the composite gear ratio Rc of the power transmission mechanism T when the manufacturer or the like assembles the electric assist unit 20 to the memory 42 (hereinafter, the composite gear ratio Rc at the time of assembly is referred to as a composite gear ratio Rc1. ) Is memorized.
  • the reference compound gear ratio Rc1 is obtained by the above equation (4). That is, it is calculated from the rotation speed Ni [rpm] of the input unit and the rotation speed No [rpm] of the output unit when the electric assist unit 20 is assembled.
  • the rotation speed Ni [rpm] of the input unit and the rotation speed No [rpm] of the output unit are detected by a rotation speed sensor or the like.
  • the rotation speed of the motor M is used as the rotation speed Ni [rpm] of the input unit, and the rotation speed of the rear wheel 78 is used as the rotation speed No [rpm] of the output unit.
  • the rotation speed of the motor M is detected by the motor rotation speed sensor SE1
  • the rotation speed of the rear wheels 78 is detected by the rear wheel rotation speed sensor SE3.
  • the first gear ratio related information acquisition unit 43 acquires the reference composite gear ratio Rc1 from the memory 42.
  • the second gear ratio related information acquisition unit 44 includes the rotation speed Ni [rpm] of the motor M and the rotation speed No. [rpm] of the rear wheel 78, which is the rotation speed of the output unit, after the electric assist unit 20 is assembled. , Is acquired, and the composite gear ratio Rc of the power transmission mechanism T (hereinafter, the composite gear ratio Rc after assembling the electric assist unit 20 is referred to as the current composite gear ratio Rc2) is calculated.
  • the abnormality determination unit 45 compares the reference composite gear ratio Rc1 acquired by the first gear ratio related information acquisition unit 43 with the current composite gear ratio Rc2 calculated by the second gear ratio related information acquisition unit 44, and presents it.
  • the composite gear ratio Rc2 is larger than the reference composite gear ratio Rc1
  • the abnormality of the power transmission mechanism T is determined.
  • the torque value Tq detected by the torque sensor SE2 is input to the abnormality determination unit 45.
  • the abnormality determination unit 45 does not perform an abnormality determination when the torque value is zero. This is because the gear ratio of the power transmission mechanism T cannot be accurately obtained if the abnormality determination of the electric assist unit 20 is performed when the torque due to the pedal pedal force or the driving force of the motor M is not acting.
  • the torque value Tq of the torque sensor SE2 is larger than zero, the determination accuracy can be improved by performing an abnormality determination of the power transmission mechanism T or the like.
  • the control device 40 may control the motor M so that the driving force is output from the motor M to the extent that the second one-way clutch 32 is engaged.
  • the notification unit 46 displays a caution to the driver or notifies the manufacturer or the owner when there is an abnormality such as the power transmission mechanism T not complying with the regulations.
  • the driver can be made to recognize that the power transmission mechanism T is in a state of non-compliance with laws and regulations.
  • the manufacturer or the owner can recognize that the power transmission mechanism T may have been modified or repaired so as to be in a state of non-compliance with the regulations.
  • the notification unit 46 pays attention to the driver and / or owns the manufacturer, etc., not only when the power transmission mechanism T has the above abnormality but also when the current composite gear ratio Rc2 is smaller than the reference composite gear ratio Rc1. You may notify the person.
  • the motor control unit 41 can suppress or prohibit the drive of the motor M when there is an abnormality such as the power transmission mechanism T not conforming to the regulations. By suppressing or prohibiting the drive of the motor M, it is possible to prevent the electric bicycle 10 from traveling in a state in which it does not comply with the regulations. Suppressing the drive of the motor M means, for example, controlling so that only a small driving force can be output from the motor M. Further, the motor control unit 41 may control to output the driving force from the motor M within a range that does not deviate from the regulations, based on the current combined gear ratio Rc2.
  • FIG. 4A is a functional block diagram of the second example.
  • the above-mentioned vehicle speed No'[km / h] is used as the first gear ratio related information and the second gear ratio related information.
  • the vehicle speed No'[km / h] (hereinafter, the vehicle speed No'at the time of assembly is referred to as the reference vehicle speed No'1).
  • the reference vehicle speed No. 1 is obtained by the above equation (5). That is, the reference vehicle speed No. 1 is the rotation speed Ni [rpm] of the motor M (hereinafter, the rotation speed of the motor M at this time is referred to as Ni1 [rpm]) and the reference composite gear ratio Rc1 of the power transmission mechanism T. , Calculated from the peripheral length Ct [m] of the rear wheel 78.
  • the reference compound gear ratio Rc1 is calculated from the rotation speed Ni [rpm] of the motor M and the rotation speed No [rpm] of the rear wheels 78 based on the equation (4), as in the first example.
  • the first gear ratio related information acquisition unit 43 acquires the reference vehicle speed No'1 [km / h] from the memory 42.
  • the second gear ratio related information acquisition unit 44 uses the actual vehicle speed No. ′, which is the actual vehicle speed of the electric bicycle 10 when the rotation speed of the motor M is Ni1 [rpm], as the speed information after assembling the electric assist unit 20. 2 [km / h] is acquired.
  • the actual vehicle speed No. 2 [km / h] is determined from the receiver 11 when the electric bicycle 10 is provided with the receiver 11 for acquiring the speed information transmitted from the Global Positioning System (GPS). Can be obtained.
  • GPS Global Positioning System
  • the actual vehicle speed No. 2 [km / h] can also be acquired from the speed information transmitted from GPS using the mobile terminal owned by the driver.
  • the actual vehicle speed No. 2 [km / h] is the speed information obtained from the measuring device 12 when the electric bicycle 10 is equipped with the measuring device 12 such as a cycle computer instead of the speed information obtained from the GPS. May be obtained from. That is, the actual vehicle speed No'2 [km / h] is the vehicle speed No'[km / h] acquired without using the reference vehicle speed No'1 [km / h].
  • the abnormality determination unit 45 has a reference vehicle speed No'1 [km / h] acquired by the first gear ratio related information acquisition unit 43 and an actual vehicle speed No'2 [km / h] acquired by the second gear ratio related information acquisition unit 44. km / h] is compared, and when the actual vehicle speed No'2 [km / h] is larger than the reference vehicle speed No'1 [km / h], the abnormality of the power transmission mechanism T is determined.
  • the torque value Tq detected by the torque sensor SE2 is input to the abnormality determination unit 45, and the abnormality determination is not performed when the torque value is zero, which is the same as in the first example.
  • the functions of the notification unit 46 and the motor control unit 41 are the same as those in the first example.
  • the vehicle speed No'[km / h] When the vehicle speed No'[km / h] is used as the first gear ratio related information and the second gear ratio related information, the vehicle speed No'[km / h] also includes the component of the circumference Ct of the rear wheels 78. It is possible to determine both the abnormality caused by increasing the diameter of the rear wheel 78 and the abnormality caused by reducing the diameter of the rear wheel 78.
  • FIG. 4B is a functional block diagram of a modified example of the second example.
  • the second gear ratio related information acquisition unit 44 rotates the motor M after assembling the electric assist unit 20, which is the same as when the reference vehicle speed No. 1 [km / h] is calculated.
  • the number was Ni1 [rpm]
  • it was necessary to acquire the actual vehicle speed No'2 [km / h] which is the actual vehicle speed of the electric bicycle 10.
  • the second gear ratio related information acquisition unit 44 is the following equation (10) which is a modification of the above equation (5) regardless of the rotation speed Ni [rpm] of the motor M after the electric assist unit 20 is assembled.
  • the current combined gear ratio Rc2 can be obtained from.
  • the second gear ratio related information acquisition unit 44 acquires the peripheral length Ct [m] of the rear wheels 78 from the memory 42, and acquires the rotation speed Ni [rpm] of the motor M from the motor rotation speed sensor SE1. Then, the actual vehicle speed No'2 [km / h] is acquired as the speed information from the GPS or the measuring device 12, and the current combined gear ratio Rc2 is calculated from the equation (10).
  • the abnormality determination unit 45 compares the reference composite gear ratio Rc1 stored in the memory 42 with the current composite gear ratio Rc2 calculated by the second gear ratio related information acquisition unit 44, and compares the current composite gear ratio Rc2 with the current composite gear ratio Rc2. May determine the abnormality of the power transmission mechanism T when is larger than the reference compound gear ratio Rc1.
  • the torque value Tq detected by the torque sensor SE2 is input to the abnormality determination unit 45, and the abnormality determination is not performed when the torque value is zero, which is the same as in the first example.
  • the functions of the notification unit 46 and the motor control unit 41 are the same as those in the first example.
  • the vehicle speed No'[km / h] for calculating the current composite gear ratio Rc2 includes the component of the circumference Ct of the rear wheels 78, so that the rear wheels 78 are rear. It is possible to determine both the abnormality caused by increasing the diameter of the wheel 78 and the abnormality caused by reducing the diameter of the rear wheel 78.
  • FIG. 5 is a functional block diagram of the third example.
  • the above-mentioned traveling distance L [m] is used as the first gear ratio related information and the second gear ratio related information.
  • the manufacturer or the like stores the traveling distance L [m] (hereinafter, the traveling distance L at the time of assembly is referred to as the reference traveling distance L1) at the time of assembling the electric assist unit 20 in the memory 42.
  • the reference traveling distance L1 [m] is calculated from the reference compound gear ratio Rc1 and the peripheral length Ct [m] of the rear wheels 78 based on the equation (6). Since the reference compound gear ratio Rc1 has been described in the first example, the description thereof will be omitted here.
  • the first gear ratio related information acquisition unit 43 acquires the reference traveling distance L1 [m] from the memory 42.
  • the second gear ratio related information acquisition unit 44 uses the traveling distance L [m] (hereinafter, the traveling distance L after assembling the electric assist unit 20 as the actual traveling distance) as the moving distance information after assembling the electric assist unit 20. L2) is acquired.
  • the actual traveling distance L2 [m] is acquired from the receiver 11 when the electric bicycle 10 is provided with the receiver 11 for acquiring the movement distance information transmitted from the Global Positioning System (GPS). obtain. Further, the actual traveling distance L2 [m] can also be acquired from the moving distance information transmitted from GPS using the mobile terminal owned by the driver.
  • GPS Global Positioning System
  • the actual traveling distance L2 [m] is obtained from the moving distance information obtained from the measuring device 12 when the electric bicycle 10 is equipped with the measuring device 12 such as a cycle computer instead of the moving distance information obtained from the GPS. May be obtained. That is, the actual traveling distance L2 [m] is the traveling distance L acquired without using the reference traveling distance L1.
  • the abnormality determination unit 45 determines the reference traveling distance L1 [m] acquired by the first gear ratio related information acquisition unit 43 and the actual traveling distance L2 [m] acquired by the second gear ratio related information acquisition unit 44. By comparison, when the actual traveling distance L2 [m] is larger than the reference traveling distance L1 [m], the abnormality of the power transmission mechanism T is determined.
  • the torque value Tq detected by the torque sensor SE2 is input to the abnormality determination unit 45, and the abnormality determination is not performed when the torque value is zero, which is the same as in the first example.
  • the functions of the notification unit 46 and the motor control unit 41 are the same as those in the first example.
  • the traveling distance L [m] When the traveling distance L [m] is used as the first gear ratio related information and the second gear ratio related information, the traveling distance L [m] includes the component of the peripheral length Ct of the rear wheels 78, and therefore the rear wheels 78. It is possible to determine both the abnormality due to the increase in diameter and the abnormality due to the decrease in diameter of the rear wheel 78.
  • FIGS. 6 and 7 The reference value setting process and the abnormality determination process of the power transmission mechanism will be described with reference to the first example (FIG. 3), but the second example (FIG. 4A), the modified example of the second example (FIG. 4B), and the third example. The same can be performed for (FIG. 5).
  • the reference value setting process is a process of acquiring the reference compound gear ratio Rc1 which is the compound gear ratio Rc at the time of assembling the electric assist unit 20 for the abnormality determination process of the power transmission mechanism to be performed later.
  • the manufacturer and the like row the electric bicycle 10 and measure the rotation speed Ni [rpm] of the motor M (S11), and also measure the rotation speed No. [rpm] of the rear wheel 78. (S12). These measurements may be performed by rowing on the roller stand (cycle trainer) without moving the electric bicycle 10, or may actually be performed by running the electric bicycle 10.
  • the reference compound gear ratio Rc1 obtained in step S13 is stored in the memory 42 of the control device 40 by the manufacturer or the like.
  • the reference compound gear ratio Rc1 does not necessarily have to be stored in the memory 42 of the control device 40, and may be stored in a server accessible to the manufacturer or the like. By storing in the memory 42 of the control device 40, the reference composite gear ratio Rc1 can be acquired regardless of the communication environment.
  • the abnormality determination process of the power transmission mechanism is a process of determining an abnormality of the power transmission mechanism T after assembling the electric assist unit 20, and the power transmission mechanism T is in a state of non-compliance with regulations after the assembly of the electric assist unit 20. Is a process to detect.
  • the control device 40 waits for the elapse of a predetermined control time while the electric bicycle 10 is running (S21), measures the rotation speed Ni [rpm] of the motor M (S22), and then after The rotation speed No. [rpm] of the ring 78 is measured (S23). Subsequently, from the rotation speed Ni [rpm] of the motor M measured in step S22 and the rotation speed No. [rpm] of the rear wheels 78 measured in step S23, the current composite is based on the above equation (4). The gear ratio Rc2 is calculated (S24).
  • the reference composite gear ratio Rc1 stored in the memory 42 is compared with the current composite gear ratio Rc2 (S24), and if the current composite gear ratio Rc2 is equal to or less than the reference composite gear ratio Rc1 (YES in S25). ), It is determined (normal determination) that the power transmission mechanism T is in a legally compliant state (S26). On the other hand, if the current composite gear ratio Rc2 is not equal to or less than the reference composite gear ratio Rc1, that is, if the current composite gear ratio Rc2 is larger than the reference composite gear ratio Rc1 (NO in S25), then the torque value Tq acting on the sleeve 26 is measured. (S27), and it is determined whether or not the torque value Tq is zero (S28).
  • the abnormal duration WT the elapsed time after the provisional abnormal state is detected.
  • the measurement is performed (S31), and it is detected whether or not the abnormal duration WT is within the predetermined time Trim (S32).
  • S31 the elapsed time after the provisional abnormal state is detected.
  • S32 the elapsed time after the provisional abnormal state is detected.
  • S33 the control process is performed.
  • step S32 if the abnormal duration WT exceeds the predetermined time Tlim (NO in S32), it is determined that the power transmission mechanism T is permanently in a non-compliant state (permanent abnormal state). Then (S34), an abnormality response action is taken (S35).
  • the abnormality response action includes the above-mentioned warning display to the driver by the notification unit 46, notification to the manufacturer and the owner, and suppression or prohibition of driving of the motor M by the motor control unit 41.
  • control device 40 may update the assist control program based on the current combined gear ratio Rc2 obtained in step S24.
  • the motor M is controlled by the program newly set based on the power transmission mechanism T after the modification / repair, so that the electric bicycle 10 is returned from the state in which it does not comply with the regulations to the state in which it complies with the regulations. be able to.
  • step S24 when the current composite gear ratio Rc2 is equal to or less than the reference composite gear ratio Rc1 (YES in S25), the power transmission mechanism T is in a legally compliant state, but the current composite gear ratio Rc2 and the reference composite gear ratio Rc1 When and is deviated by a predetermined value or more, it may be determined as another abnormal state in which the gear ratio is changed.
  • step S28 it is determined whether or not the torque value Tq acting on the sleeve 26 is zero, but it may be determined whether or not the torque value generated by the motor M is zero.
  • the torque sensor SE2 may acquire the torque on the downstream side of the first one-way clutch 28.
  • the present invention is not limited to the above embodiment, and can be appropriately modified, improved, and the like.
  • FIG. 9 is a schematic view of the power transmission mechanism T of the first modification.
  • the power transmission mechanism T of the first modification includes a switching transmission device 30 capable of switching the gear ratio between the driven sprocket 81 and the second one-way clutch 32.
  • the gear ratio of the power transmission mechanism T of the first modification is a value obtained by multiplying the gear ratio determined by the number of teeth (cogs) of the drive sprocket 80 and the driven sprocket 81 with the gear ratio of the switching transmission 30.
  • the abnormality determination of the power transmission mechanism T can be performed by the above-mentioned reference value setting process and the abnormality determination process of the power transmission mechanism.
  • the information stored in the memory 42 in the reference value setting process is the reference compound gear ratio when the switching transmission 30 is the gear with the largest gear ratio. It is Rc1.
  • the gear ratio gradually increases to one, two, and three
  • the motor M is controlled according to a predetermined program
  • the first and second speeds are changed.
  • the alternate long and short dash line of T1 in FIG. 10 and the alternate long and short dash line of T2 in the gears the state of conforming to the regulations is maintained, but in the three gears, as shown by the dotted line of T3 in FIG.
  • the reference composite gear ratio Rc1 is set based on the gear ratio in the case where the switching transmission 30 is the gear ratio having the largest gear ratio. Therefore, it is possible to more accurately determine the state in which the electric bicycle 10 does not conform to the regulations.
  • FIG. 11 is a schematic view of the power transmission mechanism T of the second modification.
  • the gear ratio between the motor output gear 21a and the driven gear 26a is set to 1, and the rotation speed of the sleeve 26 and the rotation speed of the motor M are configured to match.
  • the rotation speed of the motor M does not match the rotation speed of the motor M, and a predetermined shift is performed between the motor output gear 21a and the driven gear 26a.
  • the electric assist unit 20 has an output shaft 21 of the motor M, an idle shaft 22, and a crankshaft 83, which are arranged in parallel inside the case 24.
  • the crankshaft 83 is rotatably supported inside a tubular sleeve 26 via a first one-way clutch 28, and a driven gear 26a and a drive sprocket 80 are fixed to the outer peripheral side of the sleeve 26.
  • the idle shaft 22 is provided with an intermediate driven gear 22a that meshes with the motor output gear 21a provided on the output shaft 21 of the motor M, and an intermediate drive gear 22b that meshes with the driven gear 26a provided on the crank shaft 83.
  • the torque of the motor M is transmitted to the drive sprocket 80 via the motor output gear 21a, the intermediate driven gear 22a, the idle shaft 22, the intermediate drive gear 22b, the driven gear 26a, and the sleeve 26.
  • the combined gear ratio Rc of the power transmission mechanism T of the second modification is the gear ratio between the drive sprocket 80 and the driven sprocket 81, the gear ratio from the motor output gear 21a to the driven gear 26a, and the gear shifting of the switching transmission 30. It is the value obtained by multiplying the ratio by.
  • the rotation speed sensor is arranged on the sleeve 26, and the gear ratio from the sleeve 26 to the rear wheel 78, that is, the gear ratio between the drive sprocket 80 and the driven sprocket 81, and the switching shift. Based on the gear ratio information related to the gear ratio multiplied by the gear ratio of the device 30, the above-mentioned reference value setting process and abnormality determination process of the power transmission mechanism may be performed.
  • the abnormality determination of the power transmission mechanism T is not limited to the gear ratio information related to the overall gear ratio of the power transmission mechanism T, but is based on a part of the gear ratio of the power transmission mechanism T from the sleeve 26 to the rear wheels 78. Then, the above-mentioned reference value setting process and the abnormality determination process of the power transmission mechanism may be performed.
  • the output shaft 21 of the motor M and the crankshaft 83 were arranged in parallel, but in the third modified example shown in FIG. As described above, the output shaft 21 of the motor M may be arranged perpendicular to the crankshaft 83.
  • the power of the motor M is transmitted to the idle shaft 22 by, for example, a bevel gear mechanism or the like.
  • FIG. 13 is a schematic view of the power transmission mechanism T of the fourth modification.
  • the chain 82 is wound around the drive sprocket 80, the motor output gear 21a of the motor M, and the driven sprocket 81 provided on the axle of the rear wheel 78.
  • the power of the motor M is directly transmitted to the chain 82.
  • the electric bicycle 10 has been illustrated as a vehicle, but the present invention is not limited to this, and a two-wheeled vehicle without input from the crank pedal 79, a tricycle other than the two-wheeled vehicle, or a four-wheeled vehicle may be used.
  • An input unit into which the power for driving the vehicle (electric bicycle 10) is input, and An output unit (rear wheel 78) that outputs the power input to the input unit, and A vehicle comprising a power transmission mechanism (power transmission mechanism T) for transmitting the power input to the input unit to the output unit.
  • First gear ratio related information reference composite gear ratio Rc1, reference vehicle speed
  • reference composite gear ratio Rc reference vehicle speed
  • Second gear ratio related information (current composite gear ratio Rc2, actual vehicle speed No.) which is information related to the gear ratio (composite gear ratio Rc) of the transmission section acquired in the second time after the first time.
  • ′ 2 actual traveling distance L2
  • the gear ratio related information changes due to non-conforming modification / repair, etc.
  • the first gear ratio related information and the second gear ratio related information before and after the non-conforming modification / repair are used.
  • a vehicle further comprising a storage unit (memory 42) for storing the first gear ratio related information.
  • the vehicle since the vehicle is provided with a storage unit for storing the first gear ratio related information, the first gear ratio related information can be acquired regardless of the communication environment.
  • a vehicle further comprising a second gear ratio related information acquisition unit (second gear ratio related information acquisition unit 44) for acquiring the second gear ratio related information.
  • the vehicle since the vehicle further includes a gear ratio-related information acquisition unit that acquires the second gear ratio-related information, it is possible to acquire the second gear ratio-related information while the vehicle is running.
  • the second gear ratio related information acquisition unit is a vehicle that acquires traveling information (actual vehicle speed No. 2, actual travel distance L2) from the global positioning system.
  • driving information can be acquired by using the global positioning system.
  • a vehicle further comprising a receiver (receiver 11) for acquiring the traveling information transmitted from the global positioning system.
  • driving information transmitted from the global positioning system can be acquired even if the driver does not have a receiver.
  • the vehicle according to (3) A measuring device (measuring device 12) for measuring the traveling information of the vehicle is further provided.
  • the second gear ratio related information acquisition unit is a vehicle that acquires traveling information (actual vehicle speed No. 2, actual traveling distance L2) from the measuring device.
  • driving information can be acquired from the vehicle speed measuring device without using the global positioning system.
  • the vehicle according to any one of (1) to (6).
  • the first gear ratio related information and the second gear ratio related information include the gear ratio of the power transmission mechanism (composite gear ratio Rc), the speed of the vehicle (vehicle speed No'), or the input unit makes one rotation.
  • the vehicle is regulated by comparing the gear ratio of the power transmission mechanism before and after the non-conforming modification / repair, the speed of the vehicle, or the traveling distance of the vehicle during one rotation of the input unit. It is possible to easily detect a state that does not conform to. Further, since the speed of the vehicle and the traveling distance that the vehicle travels while the input unit makes one rotation include a component of the circumference of the output unit, an abnormality when the diameter of the output unit is increased and the diameter of the output unit are reduced. The abnormality in the case can also be determined.
  • the vehicle according to (7) The first gear ratio related information and the second gear ratio related information are the speeds of the vehicle, that is, the vehicle.
  • a power acquisition unit (torque sensor SE2) for acquiring the power input to the input unit is further provided.
  • the vehicle is a vehicle that determines an abnormality of the power transmission mechanism or suppresses or prohibits driving using the power transmission mechanism when the power acquired by the power acquisition unit is greater than zero.
  • the gear ratio may not be accurately acquired. Therefore, the power acquired by the power acquisition unit is less than zero.
  • the determination accuracy can be improved by determining the abnormality of the power transmission mechanism.
  • crankshaft into which the pedaling force of the occupant is input
  • a motor that assists the pedaling force
  • An input shaft shaft (sleeve 26) into which the power of the motor is input and
  • a one-way clutch first one-way clutch 28 interposed between the crankshaft and the input shaft
  • the power acquisition unit is a vehicle provided to acquire power on the downstream side of the one-way clutch.
  • the power acquisition unit is provided on the downstream side of the one-way clutch, so that a high determination is made based on the power input of the motor. It is possible to accurately determine an abnormality in the power transmission mechanism.
  • the power transmission mechanism includes a switching transmission (switching transmission 30) capable of switching the gear ratio.
  • the first gear ratio related information is gear ratio related information in the case where the switching transmission has the gear ratio having the largest gear ratio, that is, a vehicle.
  • the gear ratio related information in the case where the switching transmission is the gear gear having the largest gear ratio is related to the first gear ratio.
  • the vehicle according to any one of (1) to (11).
  • the vehicle determines an abnormality of the power transmission mechanism when the second gear ratio related information indicates that the gear ratio of the power transmission mechanism has increased with respect to the first gear ratio related information.
  • the vehicle according to any one of (1) to (12).
  • the vehicle is configured to be able to determine an abnormality in the power transmission mechanism.
  • the vehicle is a vehicle that displays a caution when determining an abnormality in the power transmission mechanism.
  • the vehicle according to any one of (1) to (13).
  • the vehicle is configured to be able to determine an abnormality in the power transmission mechanism.
  • the vehicle is a vehicle that notifies at least one of a user, an owner, a manufacturer, a seller, and a repairer when determining an abnormality in the power transmission mechanism.
  • the user or the like can recognize that the power transmission mechanism has been modified or repaired so as to be in a state of non-compliance with the regulations.
  • An input unit into which the power for driving the vehicle (electric bicycle 10) is input, an output unit (rear wheel 78) in which the power input to the input unit is output, and A vehicle comprising a power transmission mechanism (power transmission mechanism T) for transmitting the power input to the input unit to the output unit.
  • the speed of the vehicle obtained in advance based on the gear ratio (reference composite gear ratio Rc1) of the transmission section which is the whole or a part of the power transmission mechanism and the rotational state amount (rotation speed Ni) of the input unit.
  • the first speed information (reference vehicle speed No. 1), which is the vehicle speed No. 1)
  • Based on the second speed information (actual vehicle speed No. 2), which is the speed (vehicle speed No. '2) of the vehicle acquired without using the gear ratio, A vehicle that determines an abnormality in the power transmission mechanism or suppresses or prohibits driving using the power transmission mechanism.
  • the gear ratio related information changes due to non-conforming modification / repair, etc., it is based on the first speed information and the second speed information which are the speed information before and after the non-conforming modification / repair.
  • the first gear ratio related information and the second gear ratio related information which are the gear ratio related information before and after the non-conforming modification / repair, are used.
  • Electric bicycle (vehicle) 11 Receiver 12 Measuring device 26 Sleeve (input section) 28 1st one-way clutch (one-way clutch) 30 Switching transmission 42 Memory (storage unit) 44 2nd gear ratio related information acquisition unit 78 Rear wheel (output unit) 83 Crankshaft M Motor T Power transmission mechanism SE2 Torque sensor (power acquisition unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

電動自転車10は、電動自転車10を駆動する動力が入力されるスリーブ26と、後輪78と、スリーブ26に入力された動力を後輪78に伝達する動力伝達機構Tと、を備える。電動自転車10は、第1の時間に取得した動力伝達機構Tの参照複合変速比Rc1と、第1の時間よりも後の第2の時間に取得した動力伝達機構Tの現複合変速比Rc2と、に基づいて、動力伝達機構Tの異常を判定する、又は、動力伝達機構Tを利用した駆動を抑制する若しくは禁止する。

Description

車両、及び動力伝達機構の異常監視方法
 本発明は、車両、及び動力伝達機構の異常監視方法に関する。
 クランクペダルの踏力をモータの動力でアシストする電動アシスト自転車が知られている(例えば、特許文献1)。電動アシスト自転車では、アシスト力の上限値、及び車速に対するアシスト比の上限値が法規で定められている。例えば、日本の法規では、以下のように定められている。
「24キロメートル毎時未満の速度で自転車を走行させることとなる場合において、人の力に対する原動機を用いて人の力を補う力の比率が、(1)又は(2)に掲げる速度の区分に応じそれぞれ(1)又は(2)に定める数値以下であること。
 (1) 10キロメートル毎時未満の速度: 2
 (2) 10キロメートル毎時以上24キロメートル毎時未満の速度: 走行速度をキロメートル毎時で表した数値から10を減じて得た数値を7で除したものを2から減じた数値」
 即ち、日本の法規では、車速に対するアシスト比の上限値として、図8の太い実線で示すように、車速が10km/hまではアシスト比の上限値が2で、車速が10km/hから24km/hまでの間にアシスト比を2から0まで漸減させることが求められる。電動アシスト自転車は完成車として販売することが前提となっている。即ち、電動アシスト自転車を完成車として販売することで、以下の特徴を有する。
 (A)トルクセンサはアシストユニットに内蔵されており改造・改修が困難である。(B)車速は車輪あるいは駆動系ギヤ部にパルサーを内蔵し、その回転数と変速のギヤ比及び車輪の周長から車速を推定している。この際、車輪サイズの変更(大径化)が困難であり、かつ駆動系の改造・改修が困難である。
 完成車では、これらの特徴を前提として、車速を偽ってアシスト比が法規から逸脱することが無いことを保証している。
 一方で、既存の自転車フレームに後付け可能な電動アシストユニットも存在する。例えば、特許文献2には、既存の自転車フレームに大きな設計変更を加えることなく後付け可能な電動アシストユニットが記載されている。
日本国特開平11-005583号公報 日本国特開2001-039377号公報
 後付け可能な電動アシストユニットにおいても当然に法規を遵守する必要がある。トルクセンサは後付け電動アシストユニットに内蔵されるためアシスト力を変更することは考えにくい。一方で、後付け電動アシストユニットは、取付対象の自転車、又は電動アシストユニットのセッティングを変更することにより、モータやクランクの回転数と車速との間の関係を容易に変更可能であり、それによってアシスト比の法規準拠を保証できなくなるおそれがある。なお、このことは、電動自転車に限らず、法規で車速に対するアシスト比が定められた車両においても起こり得る。
 本発明は、動力伝達機構の全体又は一部が後付け又は交換された場合であっても車速に対するアシスト比を遵守可能な車両、及び動力伝達機構の全体又は一部が後付け又は交換により車両が法規に適合しない状態を判定可能な動力伝達機構の異常監視方法を提供する。
 第1発明は、
 車両を駆動する動力が入力される入力部と、
 前記入力部に入力された動力を出力する出力部と、
 前記入力部に入力された前記動力を前記出力部に伝達する動力伝達機構と、を備える、車両であって、
 第1の時間に取得した前記動力伝達機構の全体又は一部である伝達区間の変速比に関連する情報である第1変速比関連情報と、
 前記第1の時間よりも後の第2の時間に取得した前記伝達区間の変速比に関連する情報である第2変速比関連情報と、に基づいて、
 前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止する。
 第2発明は、
 車両を駆動する動力が入力される入力部と
 前記入力部に入力された動力を出力する出力部と、
 前記入力部に入力された前記動力を前記出力部に伝達する動力伝達機構と、を備える、車両であって、
 前もって取得した前記動力伝達機構の全体又は一部である伝達区間の変速比と前記入力部の回転状態量とに基づいて求めた前記車両の速度である第1速度情報と、
 前記変速比を用いずに取得した前記車両の速度である第2速度情報と、に基づいて、
 前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止する。
 第3発明は、
 車両に搭載される動力伝達機構の異常監視方法であって、
 第1の時間に、前記動力伝達機構の全体又は一部である伝達区間の変速比に関連する情報である第1変速比関連情報を取得するステップと、
 前記第1の時間よりも後の第2の時間に、前記伝達区間の変速比に関連する情報である第2変速比関連情報を取得するステップと、
 前記第1変速比関連情報と前記第2変速比関連情報とに基づいて、前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止するステップと、を備える。
 本発明によれば、動力伝達機構の全体又は一部の異常を判定する、又は、動力伝達機構の全体又は一部を利用した駆動を抑制する若しくは禁止することで、車両が法規に適合しない状態を回避することができる。
本発明の一実施形態の電動自転車の側面図である。 一実施形態の電動アシストユニットを含む動力伝達機構の模式図である。 第1例の制御装置の機能ブロック図である。 第2例の制御装置の機能ブロック図である。 第2例の変形例の制御装置の機能ブロック図である。 第3例の制御装置の機能ブロック図である。 参照値設定処理の制御フロー図である。 動力伝達機構の異常判定処理の制御フロー図である。 電動アシスト自転車のアシスト比と車速との関係を示すグラフである。 第1変形例の動力伝達機構の模式図である。 切替変速装置における、電動アシスト自転車のアシスト比への影響を説明するグラフである。 第2変形例の動力伝達機構の模式図である。 第3変形例の動力伝達機構の模式図である。 第4変形例の動力伝達機構の模式図である。
 以下、本発明の車両の一実施形態としての電動自転車について図面を参照しながら説明する。
<車両構造>
 電動自転車10は、図1に示すように、前輪73と、後輪78と、自転車フレーム67と、バッテリ2と、バッテリ2により供給される電力によってアシスト力を発生する電動アシストユニット20と、を備え、電動アシストユニット20が発生するアシスト力が出力可能に構成された電動アシスト自転車である。
 自転車フレーム67は、前端のヘッドパイプ68と、ヘッドパイプ68から後下りに車体前方から後方へ延びるダウンパイプ69と、ダウンパイプ69の後端に固着されて左右に延びる支持パイプ66(図2参照)と、支持パイプ66から上方に立ち上がるシートポスト71と、支持パイプ66から後方側に延出される左右一対のリヤフォーク70と、を備える。
 ヘッドパイプ68にはフロントフォーク72が操向可能に支承され、フロントフォーク72の下端に前輪73が軸支されている。フロントフォーク72の上端には操向ハンドル74が設けられている。シートポスト71から後方側に延出される左右一対のリヤフォーク70の後端間には、駆動輪としての後輪78が軸支されている。シートポスト71には、上端にシート76を備える支持軸75が、シート76の上下位置を調整可能として装着されている。
 シート76の下方でシートポスト71の前部には、電動アシストユニット20へ電力を供給するバッテリ2が着脱可能に固定されている。
 自転車フレーム67の支持パイプ66を同軸に貫通するクランク軸83の左端及び右端には一対のクランクペダル79が連結される。クランクペダル79に加えられた踏力はクランク軸83へ伝達され、駆動スプロケット80を介して無端状のチェーン82へ入力される。チェーン82は、駆動スプロケット80と、後輪78の車軸に設けられた従動スプロケット81とに巻掛けられている。
 電動アシストユニット20は、図1及び図2に示すように、モータMとクランク軸83とがユニット化され、自転車フレーム67の支持パイプ66周りに後付け可能に構成される。したがって、ユーザーは既に所有する、又は新たに所有する非電動自転車を特定の製造者、販売者、修理者(以下、製造者等と称する。)のところに持って行って、製造者等が既設のクランク軸を取り外し電動アシストユニット20及びバッテリ2を取り付けることで、非電動自転車を電動化することができる。また、ユーザーは電動アシストユニット20が後付けされて電動化された自転車の所有者から借り受けて使用してもよい。
 電動アシストユニット20は、モータMの出力軸21と、クランク軸83とがケース24の内部に平行に配置される。クランク軸83は、筒状のスリーブ26の内側に第1ワンウェイクラッチ28を介して回転自在に支持されており、このスリーブ26の外周側にモータMの出力軸21に設けられたモータ出力ギヤ21aと噛み合う従動ギヤ26a及び駆動スプロケット80が固定されている。したがって、モータMのトルクが、モータ出力ギヤ21a、従動ギヤ26a、及びスリーブ26を介して駆動スプロケット80に伝達される。
 また、従動スプロケット81と後輪78との間には第2ワンウェイクラッチ32が設けられている。
 このように構成された電動自転車10では、クランクペダル79を前進方向(正回転方向とも称す)に漕いだ場合には、第1ワンウェイクラッチ28が係合してクランク軸83の正回転動力がスリーブ26を介して駆動スプロケット80に伝達され、さらにチェーン82を介して従動スプロケット81に伝達される。このとき第2ワンウェイクラッチ32も係合することで、従動スプロケット81に伝達された正回転動力が、後輪78に伝達される。
 一方、クランクペダル79を後進方向(逆回転方向とも称す)に漕いだ場合には、第1ワンウェイクラッチ28が係合せず、クランク軸83の逆回転動力がスリーブ26に伝達されずクランク軸83が空転する。
 また、例えば電動自転車10を前進方向に押し進める場合のように、後輪78から前進方向(正回転方向)の正回転動力が入力される場合、第2ワンウェイクラッチ32が係合せず、後輪78の正回転動力が従動スプロケット81に伝達されない。そのため、後輪78は、従動スプロケット81に対し相対回転する。一方、電動自転車10を後進方向に押し進める場合のように、後輪78から後進方向(逆回転方向)の逆回転動力が入力される場合には、第2ワンウェイクラッチ32が係合して後輪78の逆回転動力が従動スプロケット81に伝達され、さらにチェーン82を介して駆動スプロケット80に伝達される。また、このとき第1ワンウェイクラッチ28も係合することから、駆動スプロケット80に伝達された逆回転動力が、クランク軸83及びクランクペダル79に伝達されてクランク軸83及びクランクペダル79が逆回転する。
 電動アシストユニット20には、モータMの回転速度を検知するモータ回転数センサSE1が設けられている。また、スリーブ26には運転者がクランクペダル79を踏む力(以下、ペダル踏力)によって発生するトルク値Tqを検知するトルクセンサSE2が設けられている。モータ回転数センサSE1は、モータMの出力軸21の外周部に設けられた磁石及びホールICから構成される。トルクセンサSE2は、スリーブ26の外周部に配設された磁歪式のトルクセンサから構成される。なお、本実施形態では、説明を簡単にするため、モータ出力ギヤ21aと従動ギヤ26aとのギヤ比を1とし、モータMの回転数とスリーブ26の回転数とは常に一致するものとする。したがって、モータ回転数センサSE1の出力値は、スリーブ26の回転数と見なすことができる。後輪78には、後輪78の回転数を取得する後輪回転数センサSE3が設けられている。
 電動アシストユニット20を制御する制御装置40は、モータMを制御するモータ制御部41(図3~図5参照)を備え、モータ制御部41は、トルクセンサSE2の出力値であるトルク値Tqから運転者がクランクペダル79を踏む力(以下、ペダル踏力)を算出し、このペダル踏力と電動アシスト自転車1の車速に応じたアシスト比とによって定められるアシスト力が発生するように、モータMをPWM制御する。
 ここで、電動自転車10の各部材の回転数の関係と変速比とについて説明する。
 一般的に変速比は、入力部の回転数に対する出力部の回転数である。電動自転車10では、入力部の回転数がスリーブ26の回転数であり、出力部の回転数が後輪78の回転数である。本実施形態では、モータ出力ギヤ21aと従動ギヤ26aとのギヤ比を1としているため、スリーブ26の回転数は、モータ回転数センサSE1で検出されるモータMの回転数と等しい。また、スリーブ26の回転数は、第1ワンウェイクラッチ28が係合した状態ではクランク軸83の回転数と等しい。
 スリーブ26の回転は、駆動スプロケット80と従動スプロケット81との外径の違いにより変速され、さらに従動スプロケット81と後輪78との間に任意的に設けられる切替変速装置30によってさらに変速される。これらがスリーブ26に入力された動力を後輪78に伝達する動力伝達機構Tを構成する。
 入力部の回転数であるスリーブ26の回転数をNi[rpm]、出力部の回転数である後輪78の回転数をNo[rpm]、駆動スプロケット80と従動スプロケット81との変速比をRg、切替変速装置30の変速比をRtとすると、後輪78の回転数No[rpm]は以下の(1)式で表される。
 No[rpm]=Ni[rpm]×Rg×Rt      (1)
 (1)式において、駆動スプロケット80と従動スプロケット81との変速比Rgは、駆動スプロケット80の外径をD[m]、従動スプロケット81の外径をd[m]とすると、以下の(2)式で表される。
 Rg=πD/πd=D/d               (2)
 切替変速装置30の変速比Rtは、適宜設定される。
 また、動力伝達機構Tの変速比(以下、複合変速比と称する)Rcとすると、複合変速比Rcは、(3)式のように、駆動スプロケット80と従動スプロケット81との変速比Rgと、切替変速装置30の変速比Rtと、の乗算で表される。なお、本実施形態のように、切替変速装置30が設けられていない電動自転車10では、Rt=1である。
 Rc=Rg×Rt                   (3)
 (3)式を用いて(1)式を書き換えると、後輪78の回転数No[rpm]は、スリーブ26の回転数Ni[rpm]と、動力伝達機構Tの複合変速比Rcと、を用いて、以下の(4)式で表される。
 No[rpm]=Ni[rpm]×Rc         (4)
 また、(4)式の後輪78の回転数No[rpm]と、後輪78の周長Ct[m]とを用いると、電動自転車10の速度(以下、車速と称する)No′[km/h]は、以下の(5)式で表される。
 No′[km/h]=Ni[rpm]×Rc×Ct[m]×60/1000                           (5)
 さらに、入力部であるスリーブ26が1回転する間に電動自転車10が進む距離(以下、進行距離と称する)をL[m]とすると、進行距離L[m]は以下の(6)式で表される。
 L[m]=Rc×Ct[m]              (6)
 図8に示す基準となる電動自転車(図8のベース)を想定した場合、駆動スプロケット80の歯数(フロントコグ)が44、従動スプロケット81の歯数(リアコグ)が13であるので、複合変速比Rcは、3.38となり、(4)式の後輪78の回転数No[rpm]は、以下の(7)式で表される。
 No[rpm]=Ni[rpm]×3.38       (7)
 また、図8に示す基準となる電動自転車(図8のベース)の後輪78の周長Ctは2096×10-3[m]なので、(5)式の電動自転車10の車速No′[km/h]は、以下の(8)式で表される。
 No′[km/h]=Ni[rpm]×3.38×(2096×10-3[m])×60/1000                                   (8)
 さらに、図8に示す基準となる電動自転車(図8のベース)の複合変速比Rcは、3.38であり、後輪78の周長Ctは2096×10-3[m]なので、(6)式の電動自転車10のスリーブ26が1回転する間に電動自転車10が進む進行距離L[m]は、以下の(9)式で表される。
 L[m]=3.38×2096×10-3[m]≒7084×10-3
                                                      (9)
 モータ制御部41は、製造者等によって、予め電動自転車10が法規に適合するようにプログラムされている。日本の法規では、図8の実線(図10の実線Pも同様)で示されるように、車速が10[km/h]まではアシスト比の上限値が2で、車速が10[km/h]から24[km/h]までの間にアシスト比を2から0まで漸減させる必要がある。制御装置40のモータ制御部41は、例えば、図8に示すように、日本の法規制(実線)に対し、これを超えないように一点鎖線(図8のベース)で示すアシスト比となるようにプログラムされている。なお、図8の一点鎖線で示す例では、10[km/h]未満の領域及び10[km/h]から24[km/h]の領域でアシスト比の上限に対して所定の余裕幅(マージン)が確保されるよう設定されている。
 しかしながら、電動アシストユニット20が予め組み込まれた完成車と違い、電動アシストユニット20が後付けされた電動自転車10では改造・改修が比較的容易で、電動自転車10が誤って法規に適合しない状態になることが想定される。例えば、駆動スプロケット80が大径化されたり(図8のFr大径化)、従動スプロケット81が小径化されたり(図8のRr小径化)、後輪78が大径化される(図8のホイール大径化)ことで、法規に適合しない状態になるおそれがある。
 このような電動自転車10が法規に適合しない状態が放置されることを回避するため、以下で示す動力伝達機構の異常判定処理によって、電動自転車10が法規に適合しない状態が監視される。
<制御装置>
 異常判定処理を行う制御装置40は、図3~図5に示すように、上記したモータ制御部41と、第1の時間である電動アシストユニット20の組付け時(以下、組付け時と称する)に取得した動力伝達機構Tの全体である伝達区間の変速比に関連する情報である第1変速比関連情報を記憶するメモリ42と、メモリ42から第1変速比関連情報を取得する第1変速比関連情報取得部43と、第2の時間のである電動アシストユニット20の組付け時より所定時間後(以下、組付け後)のその伝達区間の変速比に関連する情報である第2変速比関連情報を取得する第2変速比関連情報取得部44と、動力伝達機構Tの異常状態を判定する異常判定部45と、動力伝達機構Tの異常状態等を報知する報知部46と、を備える。なお、取得とは、入手、算出、推定、検出を含む概念である。
(第1例)
 図3は、第1例の機能ブロック図である。第1例では、第1変速比関連情報及び第2変速比関連情報として、上記した複合変速比Rcが用いられる。
 第1例では、製造者等がメモリ42に電動アシストユニット20の組付け時における、動力伝達機構Tの複合変速比Rc(以下、組付け時の複合変速比Rcを参照複合変速比Rc1と称する)を記憶させる。参照複合変速比Rc1は、上記した(4)式で求められる。即ち、電動アシストユニット20の組付け時における入力部の回転数Ni[rpm]と、出力部の回転数No[rpm]と、から算出される。入力部の回転数Ni[rpm]及び出力部の回転数No[rpm]は、回転数センサ等によって検出される。以下の説明では、入力部の回転数Ni[rpm]としてモータMの回転数を用い、出力部の回転数No[rpm]として後輪78の回転数を用いる。本実施形態では、モータMの回転数はモータ回転数センサSE1で検出され、後輪78の回転数は後輪回転数センサSE3で検出される。
 第1変速比関連情報取得部43は、メモリ42から参照複合変速比Rc1を取得する。第2変速比関連情報取得部44は、電動アシストユニット20の組付け後における、モータMの回転数Ni[rpm]と、出力部の回転数である後輪78の回転数No[rpm]と、を取得し、動力伝達機構Tの複合変速比Rc(以下、電動アシストユニット20の組付け後の複合変速比Rcを現複合変速比Rc2と称する)を算出する。
 異常判定部45は、第1変速比関連情報取得部43で取得された参照複合変速比Rc1と、第2変速比関連情報取得部44で算出された現複合変速比Rc2とを比較し、現複合変速比Rc2が参照複合変速比Rc1より大きい場合に動力伝達機構Tの異常を判定する。ここで、異常判定部45には、トルクセンサSE2によって検出されるトルク値Tqが入力される。異常判定部45は、トルク値が零の場合に異常判定を行わない。これは、ペダル踏力又はモータMの駆動力によるトルクが作用していないときに電動アシストユニット20の異常判定を行うと動力伝達機構Tの変速比を正確に取得できないためである。トルクセンサSE2のトルク値Tqが零より大きいときに動力伝達機構Tの異常判定等を行うことで、判定精度をあげることができる。
 なお、トルクセンサSE2のトルク値Tqが零より大きければよく、ペダル踏力及びモータMの駆動力の少なくとも一方が、必ずしも後輪78まで伝達される必要はなく、第2ワンウェイクラッチ32が係合する程度に出力されていればよい。逆にいうと、異常判定処理時に、制御装置40は、第2ワンウェイクラッチ32が係合する程度にモータMから駆動力が出力するようにモータMを制御してもよい。
 報知部46は、動力伝達機構Tが法規に適合しないなどの異常があった際に、運転者への注意表示を行ったり、製造者等や所有者へ報知したりする。運転者への注意表示をすることで、動力伝達機構Tが法規不適合状態であることを運転者に認識させることができる。また、製造者等や所有者へ報知することで、動力伝達機構Tが法規不適合状態となる改造・改修が行われた可能性があることを製造者や所有者が認識することができる。報知部46は、動力伝達機構Tに上記の異常があった際に限らず、現複合変速比Rc2が参照複合変速比Rc1より小さい場合にも、運転者に注意及び/又は製造者等や所有者に報知するようにしてもよい。
 モータ制御部41は、動力伝達機構Tが法規に適合しないなどの異常があった際に、モータMの駆動を抑制する又は禁止することができる。モータMの駆動を抑制する又は禁止することで、電動自転車10が法規に適合しない状態で走行されることを回避できる。モータMの駆動を抑制するとは、例えば、モータMから小さな駆動力しか出力できないように制御することをいう。また、モータ制御部41は、現複合変速比Rc2に基づいて、法規を逸脱しない範囲でモータMから駆動力を出力するように制御してもよい。
(第2例)
 図4Aは、第2例の機能ブロック図である。第2例では、第1変速比関連情報及び第2変速比関連情報として、上記した車速No′[km/h]が用いられる。
 第2例では、製造者等がメモリ42に電動アシストユニット20の組付け時における、車速No′[km/h](以下、組付け時の車速No′を参照車速No′1と称する)を記憶させる。参照車速No′1は、上記した(5)式で求められる。即ち、参照車速No′1は、モータMの回転数Ni[rpm](以下、このときのモータMの回転数をNi1[rpm]と称する)と、動力伝達機構Tの参照複合変速比Rc1と、後輪78の周長Ct[m]と、から算出される。参照複合変速比Rc1は、第1例と同様に、(4)式に基づいてモータMの回転数Ni[rpm]と、後輪78の回転数No[rpm]と、から算出される。
 第1変速比関連情報取得部43は、メモリ42から参照車速No′1[km/h]を取得する。第2変速比関連情報取得部44は、電動アシストユニット20の組付け後の速度情報として、モータMの回転数がNi1[rpm]のときにおける電動自転車10の実際の車速である実車速No′2[km/h]を取得する。実車速No′2[km/h]は、電動自転車10が、全地球測位システム(GPS:Global Positioning System)から送信される速度情報を取得する受信機11を備えている場合、受信機11から取得され得る。また、実車速No′2[km/h]は、運転者が所有する携帯端末を用いてGPSから送信される速度情報からも取得され得る。さらに、実車速No′2[km/h]は、GPSから得られる速度情報の代わりに、電動自転車10にサイクルコンピュータ等の測定装置12が搭載されている場合、測定装置12から得られる速度情報から取得されてもよい。即ち、実車速No′2[km/h]は、参照車速No′1[km/h]を用いずに取得した車速No′[km/h]である。
 異常判定部45は、第1変速比関連情報取得部43で取得された参照車速No′1[km/h]と、第2変速比関連情報取得部44で取得された実車速No′2[km/h]とを比較し、実車速No′2[km/h]が参照車速No′1[km/h]より大きい場合に動力伝達機構Tの異常を判定する。異常判定部45には、トルクセンサSE2によって検出されるトルク値Tqが入力され、トルク値が零の場合に異常判定を行わない点は、第1例と同様である。報知部46及びモータ制御部41の機能は第1例と同様である。第1変速比関連情報及び第2変速比関連情報として車速No′[km/h]が用いられる場合、車速No′[km/h]は、後輪78の周長Ctの成分も含むので、後輪78の大径化による異常も後輪78の小径化による異常も判定することができる。
(第2例の変形例)
 図4Bは、第2例の変形例の機能ブロック図である。上記した第2例では、第2変速比関連情報取得部44は、参照車速No′1[km/h]を算出したときと同じである、電動アシストユニット20の組付け後においてモータMの回転数がNi1[rpm]のとき、電動自転車10の実際の車速である実車速No′2[km/h]を取得する必要があった。しかしながら、第2変速比関連情報取得部44は、電動アシストユニット20の組付け後においてモータMの回転数Ni[rpm]に関わらず、上記した(5)式を変形した以下の(10)式から現複合変速比Rc2を取得することができる。
 Rc=No′[km/h]×1/Ni[rpm]×1/Ct[m]×1000/60                       (10)
 具体的には、第2変速比関連情報取得部44は、メモリ42から後輪78の周長Ct[m]を取得し、モータ回転数センサSE1からモータMの回転数Ni[rpm]を取得し、GPSや測定装置12から速度情報として実車速No′2[km/h]を取得し、(10)式から現複合変速比Rc2を算出する。
 そして、異常判定部45は、メモリ42に記憶されていた参照複合変速比Rc1と、第2変速比関連情報取得部44で算出された現複合変速比Rc2とを比較し、現複合変速比Rc2が参照複合変速比Rc1より大きい場合に動力伝達機構Tの異常を判定してもよい。異常判定部45には、トルクセンサSE2によって検出されるトルク値Tqが入力され、トルク値が零の場合に異常判定を行わない点は、第1例と同様である。報知部46及びモータ制御部41の機能は第1例と同様である。(10)式から得られる現複合変速比Rc2が用いられる場合、現複合変速比Rc2を算出するための車速No′[km/h]は後輪78の周長Ctの成分を含むので、後輪78の大径化による異常も後輪78の小径化による異常も判定することができる。
 また、本変形例によれば、電動アシストユニット20の組付け後においてモータMの回転数Ni[rpm]に関わらず、動力伝達機構Tの異常を判定することができる。
(第3例)
 図5は、第3例の機能ブロック図である。第3例では、第1変速比関連情報及び第2変速比関連情報として、上記した進行距離L[m]が用いられる。
 第3例では、製造者等がメモリ42に電動アシストユニット20の組付け時における、進行距離L[m](以下、組付け時の進行距離Lを参照進行距離L1と称する)を記憶させる。参照進行距離L1[m]は、(6)式に基づいて参照複合変速比Rc1と、後輪78の周長Ct[m]と、から算出される。参照複合変速比Rc1については、第1例で説明したとおりであるのでここでは説明を省略する。
 第1変速比関連情報取得部43は、メモリ42から参照進行距離L1[m]を取得する。第2変速比関連情報取得部44は、電動アシストユニット20の組付け後の移動距離情報として、進行距離L[m](以下、電動アシストユニット20の組付け後の進行距離Lを実進行距離L2と称する)を取得する。実進行距離L2[m]は、電動自転車10が、全地球測位システム(GPS:Global Positioning System)から送信される移動距離情報を取得する受信機11を備えている場合、受信機11から取得され得る。また、実進行距離L2[m]は、運転者が所有する携帯端末を用いてGPSから送信される移動距離情報からも取得され得る。さらに、実進行距離L2[m]は、GPSから得られる移動距離情報の代わりに、電動自転車10にサイクルコンピュータ等の測定装置12が搭載されている場合、測定装置12から得られる移動距離情報から取得されてもよい。即ち、実進行距離L2[m]は、参照進行距離L1を用いずに取得した進行距離Lである。
 異常判定部45は、第1変速比関連情報取得部43で取得された参照進行距離L1[m]と、第2変速比関連情報取得部44で取得された実進行距離L2[m]とを比較し、実進行距離L2[m]が参照進行距離L1[m]より大きい場合に動力伝達機構Tの異常を判定する。異常判定部45には、トルクセンサSE2によって検出されるトルク値Tqが入力され、トルク値が零の場合に異常判定を行わない点は、第1例と同様である。報知部46及びモータ制御部41の機能は第1例と同様である。第1変速比関連情報及び第2変速比関連情報として進行距離L[m]が用いられる場合、進行距離L[m]は、後輪78の周長Ctの成分を含むので、後輪78の大径化による異常も後輪78の小径化による異常も判定することができる。
 以下、制御装置40が行う参照値設定処理及び動力伝達機構の異常判定処理について図6及び図7を参照しながら説明する。参照値設定処理及び動力伝達機構の異常判定処理では、第1例(図3)を用いて説明するが、第2例(図4A)、図2例の変形例(図4B)、第3例(図5)についても同様に行うことができる。
<参照値設定処理>
 参照値設定処理は、後に行われる動力伝達機構の異常判定処理のために、電動アシストユニット20の組付け時における複合変速比Rcである参照複合変速比Rc1を取得する処理である。
 図6に示すように、先ず、製造者等は、電動自転車10を漕いでモータMの回転数Ni[rpm]を測定するとともに(S11)、後輪78の回転数No[rpm]を測定する(S12)。これらの測定は、ローラー台(サイクルトレーナー)の上で、電動自転車10を移動させずに漕いで行ってもよく、実際に電動自転車10を走行して行ってもよい。
 続いて、ステップS11で得られたモータMの回転数Ni[rpm]と、ステップS12で得られた後輪78の回転数No[rpm]とを用いて、上記した(4)式から参照複合変速比Rc1を算出する(S13)。
 ステップS13で得られた参照複合変速比Rc1は、製造者等により制御装置40のメモリ42に記憶される。なお、この参照複合変速比Rc1は、必ずしも制御装置40のメモリ42に記憶される必要はなく、製造者等がアクセス可能なサーバーに記憶されてもよい。制御装置40のメモリ42に記憶しておくことで、通信環境によらず参照複合変速比Rc1を取得することができる。
<動力伝達機構の異常判定処理>
 動力伝達機構の異常判定処理は、電動アシストユニット20の組付け後に、動力伝達機構Tの異常を判定する処理であり、電動アシストユニット20の組付け後に動力伝達機構Tが法規不適合状態であることを検出する処理である。
 制御装置40は、図7に示すように、電動自転車10の走行中において所定の制御時間の経過を待って(S21)、モータMの回転数Ni[rpm]を測定するとともに(S22)、後輪78の回転数No[rpm]を測定する(S23)。続いて、ステップS22で測定されたモータMの回転数Ni[rpm]と、ステップS23で測定された後輪78の回転数No[rpm]とから、上記した(4)式に基づいて現複合変速比Rc2を算出する(S24)。
 続いて、メモリ42に記憶されていた参照複合変速比Rc1と、現複合変速比Rc2とを比較して(S24)、現複合変速比Rc2が参照複合変速比Rc1以下であれば(S25のYES)、動力伝達機構Tが法規適合状態であると判定(正常判定)する(S26)。一方、現複合変速比Rc2が参照複合変速比Rc1以下でない、即ち、現複合変速比Rc2が参照複合変速比Rc1より大きければ(S25のNO)、続いてスリーブ26に作用するトルク値Tqを測定し(S27)、トルク値Tqが零であるか否かを判定する(S28)。
 その結果、トルク値Tqが零の場合(S28のYES)、異常判定を保留し(S29)、制御フローはステップS22に戻る。また、トルク値Tqが零でない場合(S28のNO)、即ち、スリーブ26にペダル踏力又はモータMの駆動力によるトルクが入力されている場合、動力伝達機構Tが暫定的に法規不適合状態である(暫定的な異常状態)と判定する(S30)。
 動力伝達機構Tが暫定的に法規不適合状態である(暫定的な異常状態)と判定された場合、暫定的な異常状態と検出された後の経過時間(以下、異常継続時間WTと称する)を計測し(S31)、異常継続時間WTが所定時間Tlim内かどうかを検出する(S32)。その結果、異常継続時間WTが所定時間Tlim内であれば(S32のYES)、動力伝達機構Tが一時的に法規不適合状態である(一時的な異常状態)と判定し(S33)、制御処理はステップS22に戻る。一方、ステップS32において、異常継続時間WTが所定時間Tlimを超えていれば(S32のNO)、動力伝達機構Tが永続的に法規不適合状態である(永続的な異常状態)であるとして異常判定し(S34)、異常対応アクションを行う(S35)。
 異常対応アクションは、上記した報知部46による運転者への注意表示、製造者等や所有者への報知、モータ制御部41によるモータMの駆動の抑制又は禁止を含む。
 また、異常対応アクションとして、制御装置40は、ステップS24で得られた現複合変速比Rc2に基づいてアシスト制御のプログラムを更新してもよい。これにより、更新後には改造・改修後の動力伝達機構Tに基づいて新たに設定されたプログラムによってモータMが制御されるので、電動自転車10が法規に適合しない状態から法規に適合した状態に戻すことができる。
 また、ステップS24で、現複合変速比Rc2が参照複合変速比Rc1以下(S25のYES)の場合は、動力伝達機構Tが法規適合状態ではあるが、現複合変速比Rc2と参照複合変速比Rc1とが所定以上乖離しているときには、変速比に変化が生じている他の異常状態と判定してもよい。
 また、ステップS28では、スリーブ26に作用するトルク値Tqが零であるか否かを判定したが、モータMが発生しているトルク値が零であるか否かを判定してもよい。言い換えると、クランクペダル79が設けられたクランク軸83をトルク流れ方向において最上流側とした場合に、トルクセンサSE2は第1ワンウェイクラッチ28よりも下流側のトルクを取得してもよい。
 なお、本発明は、上記実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 図9は、第1変形例の動力伝達機構Tの模式図である。
 第1変形例の動力伝達機構Tは、従動スプロケット81と第2ワンウェイクラッチ32との間に変速比を切り替え可能な切替変速装置30を含む。
 したがって、第1変形例の動力伝達機構Tの変速比は、駆動スプロケット80及び従動スプロケット81の歯数(コグ)によって決まる変速比と切替変速装置30の変速比とを乗算した値となる。このように、切替変速装置30を含む動力伝達機構Tであっても、上記した参照値設定処理及び動力伝達機構の異常判定処理により、動力伝達機構Tの異常判定を行うことができる。
 なお、動力伝達機構Tが切替変速装置30を含む場合、参照値設定処理においてメモリ42に記憶される情報は、切替変速装置30が最も大きな変速比である変速段である場合における参照複合変速比Rc1である。例えば、3段の切替変速装置30において、1段、2段、3段と次第に変速比が大きくなる場合に、予め定められたプログラムに沿ってモータMを制御すると、1段及び2段の変速段においては図10のT1の一点鎖線、T2の二点鎖線で示すように、法規に適合している状態が維持されるが、3段の変速段においては図10のT3の点線で示すように、法規に適合しない事態が生じ得る。動力伝達機構Tが変速比を切り替え可能な切替変速装置30を含む場合、切替変速装置30が最も大きな変速比である変速段である場合における変速比に基づいて参照複合変速比Rc1を設定することで、電動自転車10が法規に適合しない状態をより精度よく判定することができる。
 図11は、第2変形例の動力伝達機構Tの模式図である。
 上記実施形態では、モータ出力ギヤ21aと従動ギヤ26aとのギヤ比を1とし、スリーブ26の回転数とモータMの回転数とが一致するように構成したが、第2変形例では、スリーブ26の回転数とモータMの回転数とが一致せず、モータ出力ギヤ21aと従動ギヤ26aとの間で所定の変速が行われる。
 具体的に説明すると、電動アシストユニット20は、モータMの出力軸21と、アイドル軸22と、クランク軸83と、を有し、これらがケース24の内部に平行に配置される。クランク軸83は、筒状のスリーブ26の内側に第1ワンウェイクラッチ28を介して回転自在に支持されており、このスリーブ26の外周側に従動ギヤ26a及び駆動スプロケット80が固定されている。アイドル軸22には、モータMの出力軸21に設けられたモータ出力ギヤ21aと噛み合う中間従動ギヤ22aと、クランク軸83に設けられた従動ギヤ26aと噛み合う中間駆動ギヤ22bと、が設けられ、モータMのトルクが、モータ出力ギヤ21a、中間従動ギヤ22a、アイドル軸22、中間駆動ギヤ22b、従動ギヤ26a、及びスリーブ26を介して駆動スプロケット80に伝達される。
 この第2変形例の動力伝達機構Tの複合変速比Rcは、駆動スプロケット80と従動スプロケット81との変速比と、モータ出力ギヤ21aから従動ギヤ26aまでの変速比と、切替変速装置30の変速比と、を乗算した値となる。
 このような動力伝達機構Tの異常判定では、回転数センサをスリーブ26に配置し、スリーブ26から後輪78までの変速比、即ち、駆動スプロケット80と従動スプロケット81との変速比と、切替変速装置30の変速比と、を乗算した値に関連する変速比情報に基づいて、上記した参照値設定処理及び動力伝達機構の異常判定処理を行ってもよい。
 また、動力伝達機構Tの異常判定では、動力伝達機構Tの全体の変速比に関連する変速比情報に限らず、スリーブ26から後輪78までの動力伝達機構Tの一部の変速比に基づいて、上記した参照値設定処理及び動力伝達機構の異常判定処理を行ってもよい。
 なお、上記実施形態及び第1、第2変形例の電動アシストユニット20では、モータMの出力軸21と、クランク軸83とが平行に配置されていたが、図12で示す第3変形例のように、モータMの出力軸21が、クランク軸83に対し垂直に配置されてもよい。モータMの動力は、例えば、傘歯車機構等によりアイドル軸22に動力が伝達される。
 図13は、第4変形例の動力伝達機構Tの模式図である。
 第4変形例の動力伝達機構Tは、図13に示すように、チェーン82が、駆動スプロケット80、モータMのモータ出力ギヤ21a、及び後輪78の車軸に設けられた従動スプロケット81に巻掛けられ、モータMの動力が直接にチェーン82に伝達されるように構成されている。このような動力伝達機構Tであっても、上記した参照値設定処理及び動力伝達機構の異常判定処理により、動力伝達機構Tの異常判定を行うことができる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 例えば、車両として電動自転車10を例示したが、これに限らず、クランクペダル79からの入力のない二輪車、二輪車以外の三輪車、四輪車であってもよい。
 また、本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 車両(電動自転車10)を駆動する動力が入力される入力部(スリーブ26)と、
 前記入力部に入力された動力を出力する出力部(後輪78)と、
 前記入力部に入力された前記動力を前記出力部に伝達する動力伝達機構(動力伝達機構T)と、を備える、車両であって、
 第1の時間に取得した前記動力伝達機構の全体又は一部である伝達区間の変速比(複合変速比Rc)に関連する情報である第1変速比関連情報(参照複合変速比Rc1、参照車速No′1、参照進行距離L1)と、
 前記第1の時間よりも後の第2の時間に取得した前記伝達区間の変速比(複合変速比Rc)に関連する情報である第2変速比関連情報(現複合変速比Rc2、実車速No′2、実進行距離L2)と、に基づいて、
 前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止する、車両。
 (1)によれば、不適合な改造・改修等により変速比関連情報に変化が生じた場合、不適合な改造・改修の前後の変速比関連情報である第1変速比関連情報と第2変速比関連情報とに基づいて、動力伝達機構の異常を判定する、又は、動力伝達機構を利用した駆動を抑制する若しくは禁止することで、車両が法規に適合しない状態を回避できる。
 (2) (1)に記載の車両であって、
 前記第1変速比関連情報を記憶する記憶部(メモリ42)をさらに備える、車両。
 (2)によれば、車両が第1変速比関連情報を記憶する記憶部を備えるので、通信環境によらず第1変速比関連情報を取得することができる。
 (3) (1)又は(2)に記載の車両であって、
 前記第2変速比関連情報を取得する第2変速比関連情報取得部(第2変速比関連情報取得部44)をさらに備える、車両。
 (3)によれば、車両は第2変速比関連情報を取得する変速比関連情報取得部をさらに備えるので、車両の走行中に第2変速比関連情報を取得することができる。
 (4) (3)に記載の車両であって、
 前記第2変速比関連情報取得部は、全地球測位システムから走行情報(実車速No′2、実進行距離L2)を取得する、車両。
 (4)によれば、全地球測位システムを利用することで走行情報を取得することができる。
 (5) (4)に記載の車両であって、
 前記全地球測位システムから送信される前記走行情報を取得する受信機(受信機11)をさらに備える、車両。
 (5)によれば、運転者が受信機を所持していなくても全地球測位システムから送信される走行情報を取得できる。
 (6) (3)に記載の車両であって、
 前記車両の走行情報を測定する測定装置(測定装置12)をさらに備え、
 前記第2変速比関連情報取得部は、前記測定装置から走行情報(実車速No′2、実進行距離L2)を取得する、車両。
 (6)によれば、全地球測位システムを利用してなくても車速測定装置から走行情報を取得することができる。
 (7) (1)~(6)のいずれかに記載の車両であって、
 前記第1変速比関連情報及び前記第2変速比関連情報は、前記動力伝達機構の変速比(複合変速比Rc)、前記車両の速度(車速No′)、又は、前記入力部が1回転する間に前記車両が進む進行距離(進行距離L)である、車両。
 (7)によれば、不適合な改造・改修の前後の動力伝達機構の変速比、車両の速度、又は、入力部が1回転する間に車両が進む進行距離を比較することで、車両が法規に適合しない状態を容易に検出することができる。また、車両の速度、及び入力部が1回転する間に車両が進む進行距離は、出力部の周長の成分を含むので、出力部を大径化した場合の異常及び出力部を小径化した場合の異常も判定することができる。
 (8) (7)に記載の車両であって、
 前記第1変速比関連情報及び前記第2変速比関連情報は、前記車両の速度である、車両。
 (8)によれば、不適合な改造・改修の前後の車速を比較することで、車両が法規に適合しない状態を容易に検出することができる。また、車速は、出力部の周長の成分を含むので、出力部を大径化した場合の異常も判定することができる。
 (9) (1)~(8)のいずれかに記載の車両であって、
 前記入力部に入力される動力を取得する動力取得部(トルクセンサSE2)をさらに備え、
 前記車両は、前記動力取得部が取得した前記動力が零より大きいとき、前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止する、車両。
 (9)によれば、入力部に動力が作用していないときに動力伝達機構の異常判定等を行うと変速比を正確に取得できない場合があるため、動力取得部が取得した動力が零より大きいときに動力伝達機構の異常判定等を行うことで、判定精度をあげることができる。
 (10) (9)に記載の車両であって、
 乗員の踏力が入力されるクランク軸(クランク軸83)と、
 前記踏力をアシストするモータ(モータM)と、
 前記モータの動力が入力される入力軸(スリーブ26)と、
 前記クランク軸と前記入力軸との間に介装されるワンウェイクラッチ(第1ワンウェイクラッチ28)と、をさらに備え、
 前記動力取得部は、前記ワンウェイクラッチよりも下流側の動力を取得するよう設けられている車両。
 (10)によれば、クランク軸をトルク流れ方向において最上流側とする電動アシスト車両において、ワンウェイクラッチよりも下流側に動力取得部が設けられるので、モータの動力の入力に基づいて、高い判定精度で動力伝達機構の異常判定等を行うことができる。
 (11) (1)~(10)のいずれかに記載の車両であって、
 前記動力伝達機構は、変速比を切り替え可能な切替変速装置(切替変速装置30)を含み、
 前記第1変速比関連情報は、前記切替変速装置が最も大きな変速比である変速段である場合における変速比関連情報である、車両。
 (11)によれば、動力伝達機構が変速比を切り替え可能な切替変速装置を含む場合、切替変速装置が最も大きな変速比である変速段である場合における変速比関連情報を第1変速比関連情報とすることで、車両が法規に適合しない状態をより精度よく判定することができる。
 (12) (1)~(11)のいずれかに記載の車両であって、
 前記車両は、前記第2変速比関連情報が前記第1変速比関連情報に対して、前記動力伝達機構の変速比が増えたことを示すとき、前記動力伝達機構の異常を判定する、車両。
 (12)によれば、動力伝達機構の変速比が減ったときには、車両が法規に適合しない状態とはならないので、動力伝達機構の変速比が増えたときに異常を判定することで、車両が法規に適合しない状態を適切に判定することができる。
 (13) (1)~(12)のいずれかに記載の車両であって、
 前記車両は、前記動力伝達機構の異常を判定可能に構成され、
 前記車両は、前記動力伝達機構の異常を判定したとき、注意表示を行う、車両。
 (13)によれば、動力伝達機構が法規不適合状態であることを乗員に認識させることができる。
 (14) (1)~(13)のいずれかに記載の車両であって、
 前記車両は、前記動力伝達機構の異常を判定可能に構成され、
 前記車両は、前記動力伝達機構の異常を判定したとき、使用者、所有者、製造者、販売者、修理者、の少なくとも一つに報知する、車両。
 (14)によれば、動力伝達機構が法規不適合状態となる改造・改修が行われたことを使用者等が認識することができる。
 (15) 車両(電動自転車10)を駆動する動力が入力される入力部(スリーブ26)と
 前記入力部に入力された動力を出力する出力部(後輪78)と、
 前記入力部に入力された前記動力を前記出力部に伝達する動力伝達機構(動力伝達機構T)と、を備える、車両であって、
 前もって取得した前記動力伝達機構の全体又は一部である伝達区間の変速比(参照複合変速比Rc1)と前記入力部の回転状態量(回転数Ni)とに基づいて求めた前記車両の速度(車速No′)である第1速度情報(参照車速No′1)と、
 前記変速比を用いずに取得した前記車両の速度(車速No′)である第2速度情報(実車速No′2)と、に基づいて、
 前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止する、車両。
 (15)によれば、不適合な改造・改修等により変速比関連情報に変化が生じた場合、不適合な改造・改修の前後の速度情報である第1速度情報と第2速度情報とに基づいて、動力伝達機構の異常を判定する、又は、動力伝達機構を利用した駆動を抑制する若しくは禁止することで、車両が法規に適合しない状態を回避できる。
 (16) 車両(電動自転車10)に搭載される動力伝達機構(動力伝達機構T)の異常監視方法であって、
 第1の時間に、前記動力伝達機構の全体又は一部である伝達区間の変速比(複合変速比Rc)に関連する情報である第1変速比関連情報(参照複合変速比Rc1、参照車速No′1、参照進行距離L1)を取得するステップと、
 前記第1の時間よりも後の第2の時間に、前記伝達区間の変速比(複合変速比Rc)に関連する情報である第2変速比関連情報(現複合変速比Rc2、実車速No′2、実進行距離L2)を取得するステップと、
 前記第1変速比関連情報と前記第2変速比関連情報とに基づいて、前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止するステップと、を備える、動力伝達機構の異常監視方法。
 (16)によれば、不適合な改造・改修等により変速比関連情報に変化が生じた場合、不適合な改造・改修の前後の変速比関連情報である第1変速比関連情報と第2変速比関連情報とに基づいて、動力伝達機構の異常を判定する、又は、動力伝達機構を利用した駆動を抑制する若しくは禁止することで、車両が法規に適合しない状態を回避できる。
 なお、本出願は、2019年9月11日出願の日本特許出願(特願2019-165698)に基づくものであり、その内容は本出願の中に参照として援用される。
10 電動自転車(車両)
11 受信機
12 測定装置
26 スリーブ(入力部)
28 第1ワンウェイクラッチ(ワンウェイクラッチ)
30 切替変速装置
42 メモリ(記憶部)
44 第2変速比関連情報取得部
78 後輪(出力部)
83 クランク軸
M モータ
T 動力伝達機構
SE2 トルクセンサ(動力取得部)

Claims (16)

  1.  車両を駆動する動力が入力される入力部と、
     前記入力部に入力された動力を出力する出力部と、
     前記入力部に入力された前記動力を前記出力部に伝達する動力伝達機構と、を備える、車両であって、
     第1の時間に取得した前記動力伝達機構の全体又は一部である伝達区間の変速比に関連する情報である第1変速比関連情報と、
     前記第1の時間よりも後の第2の時間に取得した前記伝達区間の変速比に関連する情報である第2変速比関連情報と、に基づいて、
     前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止する、車両。
  2.  請求項1に記載の車両であって、
     前記第1変速比関連情報を記憶する記憶部をさらに備える、車両。
  3.  請求項1又は2に記載の車両であって、
     前記第2変速比関連情報を取得する第2変速比関連情報取得部をさらに備える、車両。
  4.  請求項3に記載の車両であって、
     前記第2変速比関連情報取得部は、全地球測位システムから走行情報を取得する、車両。
  5.  請求項4に記載の車両であって、
     前記全地球測位システムから送信される前記走行情報を取得する受信機をさらに備える、車両。
  6.  請求項3に記載の車両であって、
     前記車両の走行情報を測定する測定装置をさらに備え、
     前記第2変速比関連情報取得部は、前記測定装置から走行情報を取得する、車両。
  7.  請求項1~6のいずれか一項に記載の車両であって、
     前記第1変速比関連情報及び前記第2変速比関連情報は、前記動力伝達機構の変速比、前記車両の速度、又は、前記入力部が1回転する間に前記車両が進む進行距離である、車両。
  8.  請求項7に記載の車両であって、
     前記第1変速比関連情報及び前記第2変速比関連情報は、前記車両の速度である、車両。
  9.  請求項1~8のいずれか一項に記載の車両であって、
     前記入力部に入力される動力を取得する動力取得部をさらに備え、
     前記車両は、前記動力取得部が取得した前記動力が零より大きいとき、前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止する、車両。
  10.  請求項9に記載の車両であって、
     乗員の踏力が入力されるクランク軸と、
     前記踏力をアシストするモータと、
     前記モータの動力が入力される入力軸と、
     前記クランク軸と前記入力軸との間に介装されるワンウェイクラッチと、をさらに備え、
     前記動力取得部は、前記ワンウェイクラッチよりも下流側の動力を取得するよう設けられている、車両。
  11.  請求項1~10のいずれか一項に記載の車両であって、
     前記動力伝達機構は、変速比を切り替え可能な切替変速装置を含み、
     前記第1変速比関連情報は、前記切替変速装置が最も大きな変速比である変速段である場合における変速比関連情報である、車両。
  12.  請求項1~11のいずれか一項に記載の車両であって、
     前記車両は、前記第2変速比関連情報が前記第1変速比関連情報に対して、前記動力伝達機構の変速比が増えたことを示すとき、前記動力伝達機構の異常を判定する、車両。
  13.  請求項1~12のいずれか一項に記載の車両であって、
     前記車両は、前記動力伝達機構の異常を判定可能に構成され、
     前記車両は、前記動力伝達機構の異常を判定したとき、注意表示を行う、車両。
  14.  請求項1~13のいずれか一項に記載の車両であって、
     前記車両は、前記動力伝達機構の異常を判定可能に構成され、
     前記車両は、前記動力伝達機構の異常を判定したとき、使用者、所有者、製造者、販売者、修理者、の少なくとも一つに報知する、車両。
  15.  車両を駆動する動力が入力される入力部と
     前記入力部に入力された動力を出力する出力部と、
     前記入力部に入力された前記動力を前記出力部に伝達する動力伝達機構と、を備える、車両であって、
     前もって取得した前記動力伝達機構の全体又は一部である伝達区間の変速比と前記入力部の回転状態量とに基づいて求めた前記車両の速度である第1速度情報と、
     前記変速比を用いずに取得した前記車両の速度である第2速度情報と、に基づいて、
     前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止する、車両。
  16.  車両に搭載される動力伝達機構の異常監視方法であって、
     第1の時間に、前記動力伝達機構の全体又は一部である伝達区間の変速比に関連する情報である第1変速比関連情報を取得するステップと、
     前記第1の時間よりも後の第2の時間に、前記伝達区間の変速比に関連する情報である第2変速比関連情報を取得するステップと、
     前記第1変速比関連情報と前記第2変速比関連情報とに基づいて、前記動力伝達機構の異常を判定する、又は、前記動力伝達機構を利用した駆動を抑制する若しくは禁止するステップと、を備える、動力伝達機構の異常監視方法。
PCT/JP2020/034576 2019-09-11 2020-09-11 車両、及び動力伝達機構の異常監視方法 WO2021049646A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080064180.3A CN114401889B (zh) 2019-09-11 2020-09-11 车辆及动力传递机构的异常监控方法
US17/599,170 US11511827B2 (en) 2019-09-11 2020-09-11 Vehicle and method for monitoring abnormality of power transmission mechanism
EP20862596.2A EP4029769A4 (en) 2019-09-11 2020-09-11 VEHICLE AND METHOD FOR MONITORING ANOMALIES IN A MOTOR-POWER TRANSMISSION MECHANISM
JP2021513491A JP6960558B2 (ja) 2019-09-11 2020-09-11 車両、及び動力伝達機構の異常監視方法
BR112022004243A BR112022004243A2 (pt) 2019-09-11 2020-09-11 Veículo e método para monitorar anormalidade do mecanismo de transmissão de potência
ZA2022/02929A ZA202202929B (en) 2019-09-11 2022-03-10 Vehicle and method for monitoring abnormality in motive power transmission mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-165698 2019-09-11
JP2019165698 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021049646A1 true WO2021049646A1 (ja) 2021-03-18

Family

ID=74865774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034576 WO2021049646A1 (ja) 2019-09-11 2020-09-11 車両、及び動力伝達機構の異常監視方法

Country Status (7)

Country Link
US (1) US11511827B2 (ja)
EP (1) EP4029769A4 (ja)
JP (1) JP6960558B2 (ja)
CN (1) CN114401889B (ja)
BR (1) BR112022004243A2 (ja)
WO (1) WO2021049646A1 (ja)
ZA (1) ZA202202929B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191285A1 (ja) * 2021-03-10 2022-09-15 本田技研工業株式会社 車両の管理方法
WO2023033061A1 (ja) * 2021-09-01 2023-03-09 本田技研工業株式会社 車両
WO2023171800A1 (ja) * 2022-03-10 2023-09-14 本田技研工業株式会社 車両の管理方法、車両の管理プログラム、記憶媒体、及び情報処理装置
WO2024014431A1 (ja) * 2022-07-11 2024-01-18 本田技研工業株式会社 変速段推定方法、変速段推定装置、変速段推定プログラム、及び、記憶媒体
WO2024034667A1 (ja) * 2022-08-12 2024-02-15 本田技研工業株式会社 移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022211598B4 (de) 2022-11-03 2024-05-29 Zf Friedrichshafen Ag Antriebsanordnung für ein Fahrrad oder Pedelec
DE102023200460B3 (de) * 2023-01-23 2024-06-06 Zf Friedrichshafen Ag Verfahren und System zur Erkennung einer Manipulation von Geschwindigkeitsdaten eines Elektrofahrrads, Steuereinrichtung, sowie Elektrofahrrad

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072164A (ja) * 1993-06-18 1995-01-06 Yamaha Motor Co Ltd 電動モータ付き乗り物
JPH115583A (ja) 1998-05-25 1999-01-12 Honda Motor Co Ltd 駆動力補助装置付き自転車
JP2001039377A (ja) 1999-05-25 2001-02-13 Honda Motor Co Ltd 電動補助自転車ならびにその電動補助ユニット
JP2015223996A (ja) * 2014-05-29 2015-12-14 株式会社シマノ 自転車用の変速制御装置、電動アシストシステム、および、自転車用の変速制御方法
JP2017024532A (ja) * 2015-07-21 2017-02-02 株式会社シマノ 自転車の制御装置およびこの制御装置を備える自転車のアシスト装置
JP2019517414A (ja) * 2016-05-30 2019-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 電動自転車の電動モータを制御する制御方法及び装置
JP2019165698A (ja) 2018-03-26 2019-10-03 日本製粉株式会社 過熱水蒸気を使用した焼成済み冷凍フラットブレッドの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109983A (ja) 1995-10-19 1997-04-28 Seiko Epson Corp 駆動力補助装置
JPH09175474A (ja) * 1995-12-27 1997-07-08 Suzuki Motor Corp 電動自転車
JP3440729B2 (ja) 1996-12-06 2003-08-25 松下電器産業株式会社 電気自転車
JP2001122183A (ja) 1999-10-25 2001-05-08 Yamaha Motor Co Ltd 電動補助車両の自走防止装置
JP3770390B2 (ja) * 2002-09-19 2006-04-26 株式会社シマノ 自転車用変速制御装置
ITMI20121279A1 (it) * 2012-07-23 2014-01-24 Campagnolo Srl Metodo per controllare elettronicamente un cambio di bicicletta e cambio di bicicletta servoassistito elettronicamente
JP6228442B2 (ja) * 2012-12-14 2017-11-08 ヤマハ発動機株式会社 駆動ユニット及び電動補助自転車
US8882618B2 (en) * 2013-01-29 2014-11-11 Shimano Inc. Rear derailleur
US10017225B2 (en) * 2014-10-08 2018-07-10 Shimano Inc. Bicycle transmission control device
JP6427433B2 (ja) 2015-02-03 2018-11-21 マイクロスペース株式会社 モータ駆動装置
DE102015210503A1 (de) * 2015-06-09 2016-12-15 Sram Deutschland Gmbh Hinterrad-Ritzelanordnung für ein Fahrrad, insbesondere ein Pedelec
JP6636732B2 (ja) * 2015-06-30 2020-01-29 株式会社シマノ 自転車の制御システム
ITUB20152302A1 (it) * 2015-07-20 2017-01-20 Campagnolo Srl Sistema elettronico di bicicletta
JPWO2017047333A1 (ja) * 2015-09-17 2018-07-05 日本電産株式会社 パワーアシスト装置および当該パワーアシスト装置を備えた車両
US9840305B1 (en) * 2016-05-30 2017-12-12 Shimano Inc. Bicycle control device and bicycle control system
WO2018101150A1 (ja) * 2016-12-01 2018-06-07 ヤマハ発動機株式会社 鞍乗型車両
JP6826917B2 (ja) 2017-03-09 2021-02-10 ヤマハ発動機株式会社 電動補助車両
US11110992B2 (en) * 2019-06-04 2021-09-07 Shimano Inc. Bicycle transmission control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072164A (ja) * 1993-06-18 1995-01-06 Yamaha Motor Co Ltd 電動モータ付き乗り物
JPH115583A (ja) 1998-05-25 1999-01-12 Honda Motor Co Ltd 駆動力補助装置付き自転車
JP2001039377A (ja) 1999-05-25 2001-02-13 Honda Motor Co Ltd 電動補助自転車ならびにその電動補助ユニット
JP2015223996A (ja) * 2014-05-29 2015-12-14 株式会社シマノ 自転車用の変速制御装置、電動アシストシステム、および、自転車用の変速制御方法
JP2017024532A (ja) * 2015-07-21 2017-02-02 株式会社シマノ 自転車の制御装置およびこの制御装置を備える自転車のアシスト装置
JP2019517414A (ja) * 2016-05-30 2019-06-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 電動自転車の電動モータを制御する制御方法及び装置
JP2019165698A (ja) 2018-03-26 2019-10-03 日本製粉株式会社 過熱水蒸気を使用した焼成済み冷凍フラットブレッドの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022191285A1 (ja) * 2021-03-10 2022-09-15 本田技研工業株式会社 車両の管理方法
WO2023033061A1 (ja) * 2021-09-01 2023-03-09 本田技研工業株式会社 車両
WO2023171800A1 (ja) * 2022-03-10 2023-09-14 本田技研工業株式会社 車両の管理方法、車両の管理プログラム、記憶媒体、及び情報処理装置
WO2024014431A1 (ja) * 2022-07-11 2024-01-18 本田技研工業株式会社 変速段推定方法、変速段推定装置、変速段推定プログラム、及び、記憶媒体
WO2024034667A1 (ja) * 2022-08-12 2024-02-15 本田技研工業株式会社 移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置

Also Published As

Publication number Publication date
EP4029769A1 (en) 2022-07-20
JPWO2021049646A1 (ja) 2021-09-30
BR112022004243A2 (pt) 2022-05-31
CN114401889B (zh) 2024-01-09
EP4029769A4 (en) 2022-11-16
US11511827B2 (en) 2022-11-29
CN114401889A (zh) 2022-04-26
JP6960558B2 (ja) 2021-11-05
US20220089251A1 (en) 2022-03-24
ZA202202929B (en) 2024-05-30

Similar Documents

Publication Publication Date Title
JP6960558B2 (ja) 車両、及び動力伝達機構の異常監視方法
CN103359251B (zh) 自行车用控制装置以及自行车的控制方法
US9376163B2 (en) Driving unit and battery-assisted bicycle
US11685471B2 (en) Shifting system for human-powered vehicle
JP6679404B2 (ja) 駆動ユニット及び電動補助自転車
JP5607225B1 (ja) 自転車用制御装置
JP2022103608A (ja) 人力駆動車用の制御装置および人力駆動車用の制御システム
JP7497214B2 (ja) 制御装置および変速システム
JP4229718B2 (ja) 電動補助車両の補助力制御装置
JP7266987B2 (ja) 人力駆動車用の制御装置および人力駆動車用の制御方法
JP7160617B2 (ja) 制御装置および変速システム
JP4583490B1 (ja) 電動補助自転車
KR20150009354A (ko) 전기 자전거의 모터 제어 시스템 및 그 제어방법
JPH0834384A (ja) 電動モータ付き乗り物
JP2022118267A (ja) 制御装置および変速システム
JP7125889B2 (ja) 人力駆動車用制御装置
WO2024014431A1 (ja) 変速段推定方法、変速段推定装置、変速段推定プログラム、及び、記憶媒体
JP7184554B2 (ja) 人力駆動車用駆動装置およびその制御方法
JP2906020B2 (ja) アシストモータ付き自転車におけるアシスト力制御方法
WO2024058227A1 (ja) 車両、情報処理装置、制御方法、制御プログラム、及び記憶媒体
EP4306399A1 (en) Vehicle control method
JP2023047987A (ja) 車両
JP2019105169A (ja) 二輪車用パワーユニットのエンジン始動装置及びその制御方法
JP2024141043A (ja) 情報処理方法、情報処理プログラム、記憶媒体、及び、情報処理装置
TW202340029A (zh) 人力驅動車用的控制裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021513491

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022004243

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020862596

Country of ref document: EP

Effective date: 20220411

ENP Entry into the national phase

Ref document number: 112022004243

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220308