[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024076190A1 - 폐 기관지 특이적 유전자 전달이 가능한 아데노부속바이러스 벡터 - Google Patents

폐 기관지 특이적 유전자 전달이 가능한 아데노부속바이러스 벡터 Download PDF

Info

Publication number
WO2024076190A1
WO2024076190A1 PCT/KR2023/015391 KR2023015391W WO2024076190A1 WO 2024076190 A1 WO2024076190 A1 WO 2024076190A1 KR 2023015391 W KR2023015391 W KR 2023015391W WO 2024076190 A1 WO2024076190 A1 WO 2024076190A1
Authority
WO
WIPO (PCT)
Prior art keywords
aav1
capsid protein
mutant
vector
aav
Prior art date
Application number
PCT/KR2023/015391
Other languages
English (en)
French (fr)
Inventor
장재형
김유진
Original Assignee
주식회사 글루진테라퓨틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 글루진테라퓨틱스 filed Critical 주식회사 글루진테라퓨틱스
Publication of WO2024076190A1 publication Critical patent/WO2024076190A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0083Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the administration regime
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/007Vectors comprising a special translation-regulating system cell or tissue specific

Definitions

  • the present invention relates to mutants of the adeno-accessory virus (AAV) capsid protein, and in particular, recombinant viral vectors containing mutants of the AAV1 capsid protein are useful for the expression of transgenes in the lung bronchioles when delivered by aerosol through the bronchial tubes. do.
  • AAV adeno-accessory virus
  • AAV is a non-pathogenic virus that has no side effects on infiltrated infected cells and has a low probability of causing mutations in the target cell's genetic information, so it has excellent safety compared to other gene therapy technologies.
  • Adeno-Associated Virus is a non-enveloped, single-stranded DNA virus that can infect both dividing and non-dividing cells. AAV can replicate only in the presence of a helper virus and is non-pathogenic to humans. With these characteristics, it is a useful method of introducing genes into various cells and is used as a useful vector for gene therapy.
  • Serotype 2 is a serotype that has been widely studied for a long time and can infect a variety of cells.
  • Serotype 1 AAV1
  • serotype 5 AAV5
  • serotype 6 AAV6
  • AAV6 has a high efficiency of gene introduction into the retina, etc., and into the heart, muscle, liver, etc.
  • bronchitis and bronchiectasis are major diseases that occur in the lung bronchi.
  • bronchiectasis can cause complications such as hemoptysis (a symptom of coughing up blood or blood-mixed sputum), persistent difficulty breathing, and respiratory failure. Therefore, quick diagnosis and treatment are required.
  • Hemoptysis is a representative complication of bronchiectasis that can be potentially life-threatening, and bronchial artery embolization or surgical treatment may be considered to control hemoptysis.
  • the present inventors have made diligent efforts to solve the above problems, and as a result, a new adeno-accessory virus targeting the lung bronchi ( The present invention was completed by developing a protein variant using the AAV) serotype 1 capsid as the basic skeleton.
  • the purpose of the present invention is to provide mutants of the AAV1 capsid protein to improve the efficiency of gene introduction into target tissues or cells by recombinant AAV and/or to improve the efficiency of genetic information expression.
  • Another object of the present invention is to provide a nucleic acid encoding a mutant of the AAV1 capsid protein.
  • Another object of the present invention is to provide a recombinant AAV1 vector containing nucleic acid encoding a mutant of the AAV1 capsid protein.
  • Another object of the present invention is to provide a pharmaceutical composition containing the recombinant AAV1 vector.
  • Another object of the present invention is to provide a gene delivery system containing the recombinant AAV1 vector.
  • the present invention relates to mutants of the adeno-accessory virus serotype 1 (AAV1) capsid protein.
  • AAV1 adeno-accessory virus serotype 1
  • AAV adeno-associated virus
  • AAV refers to all adeno-associated viruses used in gene therapy, including their derivatives, viral subtypes, and naturally occurring and recombinant forms.
  • Various serotypes of AAV can be used as recombinant gene transfer viruses to transduce many different cell types.
  • TR native terminal repeats
  • Rep proteins and capsid subunits are known in the art. These sequences can be found in the literature or in public databases such as GenBank. For example, see GenBank registration numbers NC_002077 (AAV-1), AF063497 (AAV-1).
  • serotype refers to a subdivision of AAV that can be identified by serological or DNA sequencing methods and distinguished by its antigenic properties.
  • capsid refers to a protein encoded by the cap gene present in the genome of a virus and which constitutes the outer shell of the virus.
  • the wild-type AAV genome, or cap gene encodes three types of capsid proteins (VP1, VP2, and VP3).
  • the wild-type AAV1 capsid protein contains the amino acid sequence represented by SEQ ID NO:1.
  • the present invention relates to a mutant of the adeno-associated virus serotype 1 (AAV1) capsid protein, wherein the mutant has the amino acid sequence of SEQ ID NO: 1 of the wild-type AAV1 capsid protein at positions 326, 452, and 456. Mutants of the AAV1 capsid protein are provided in which amino acids at one or more positions are substituted.
  • AAV1 capsid protein adeno-associated virus serotype 1
  • the present invention relates to a mutant of the adeno-associated virus serotype 1 (AAV1) capsid protein, wherein the mutant is a wild-type AAV1 capsid protein wherein the threonine at position 326 in the amino acid sequence of SEQ ID NO: 1 is replaced with alanine. and a mutant of the AAV1 capsid protein in which glutamine at position 452 is replaced with proline.
  • AAV1 adeno-associated virus serotype 1
  • the present invention relates to a mutant of the adeno-associated virus serotype 1 (AAV1) capsid protein, wherein alanine at position 456 in the amino acid sequence of SEQ ID NO: 1 of the wild-type AAV1 capsid protein is substituted with threonine. Contains mutants of the AAV1 capsid protein.
  • AAV1 adeno-associated virus serotype 1
  • the mutant of the AAV1 capsid protein according to the present invention comprises or consists of the amino acid sequence represented by SEQ ID NO: 2 or 3.
  • mutant of the AAV1 capsid protein represented by SEQ ID NO: 2 was named #3-32, and mutant of the AAV1 capsid protein represented by SEQ ID NO: 3 was named #3-65.
  • wild type used in the present invention refers to the type most commonly seen in wild populations among species.
  • wild type refers to the phenotype or entity that is considered basic.
  • the wild type is also called the normal type as a nickname.
  • a mutant refers to a protein, virus, cell, entity, etc. in which a mutated gene appears as a characteristic change.
  • “mutant” may refer to the gene itself that caused the mutation.
  • the invention includes nucleic acids encoding mutants of the AAV1 capsid protein.
  • the nucleic acids of the invention encode mutants of the AAV1 capsid protein.
  • the nucleic acid of the present invention is produced by substituting at least one base with another base in the base sequence of the nucleic acid (cap gene) encoding the AAV1 capsid protein.
  • the nucleic acid of the present invention may exist in the form of DNA, but in some cases, it may be in the form of RNA or a chimera of DNA and RNA. Additionally, the nucleic acid of the present invention also includes complementary nucleic acid (e.g., cDNA).
  • the nucleic acid of the present invention may be single-stranded or double-stranded, but is preferably double-stranded.
  • the present invention is not particularly limited to a nucleic acid encoding a mutant of the AAV1 capsid protein consisting of the amino acid sequence shown in SEQ ID NO: 2 or 3, but in one embodiment, the nucleic acid having the base sequence shown in SEQ ID NO: 4 or 5 is It is exemplified.
  • Nucleic acids of the invention may be operably linked with appropriate control sequences.
  • Control sequences include promoter sequences, polyadenylation signals, transcription termination sequences, upstream regulatory domains, internal ribosome entry sites (IRES), enhancers, etc.
  • Promoter sequences include inducible promoter sequences and constitutive promoter sequences.
  • the control sequence may be native to the AAV from which the capsid protein is derived, may be exogenous, may be a natural sequence, or may be a synthetic sequence.
  • Recombinant DNA capable of expressing a mutant of the AAV1 capsid protein containing the nucleic acid of the present invention is also included in the present invention.
  • the recombinant DNA is useful for delivering nucleic acids of the invention to cells in vitro, ex vivo and in vivo, and for conferring upon those cells the ability to express mutants of the AAV1 capsid protein. And the cells into which the nucleic acid of the present invention has been delivered are also useful for producing recombinant AAV particles.
  • the recombinant DNA can be used to deliver or introduce the nucleic acid of the present invention, especially into eukaryotic cells, preferably animal cells, more preferably mammalian cells.
  • recombinant DNA can be produced by retaining the nucleic acid of the present invention in DNA used as a vector.
  • DNA used as a vector for example, plasmids, phages, transposons, cosmids, episomal DNA, viral genomes, etc. can be used.
  • a packaging plasmid can be produced by carrying a nucleic acid (cap gene) encoding a mutant of the AAV1 capsid protein of the present invention in a plasmid.
  • the packaging plasmid may further comprise any nucleic acid sequence, such as a nucleic acid encoding a replicase (Rep) protein (rep gene).
  • the rep gene can be added to AAV2-derived Rep.
  • recombinant DNA containing the nucleic acid of the present invention can be produced by substituting at least one base in the PLA2 domain coding region with another base.
  • packaging plasmid includes packaging plasmids carrying a cap gene, and preferably packaging plasmids carrying a cap gene and a rep gene.
  • the method of introducing a base substitution into a nucleic acid can be carried out by a known method and is not particularly limited, but a commercially available reagent, for example, the Mutagenesis Basal Kit (TAKARA BIO INC.), is used, and is included in the kit. This can be achieved by performing PCR according to the instructions.
  • a commercially available reagent for example, the Mutagenesis Basal Kit (TAKARA BIO INC.)
  • TAKARA BIO INC. the Mutagenesis Basal Kit
  • the present invention provides a recombinant AAV1 vector containing nucleic acid encoding the AAV1 capsid protein variant.
  • the recombinant AAV vector of the present invention is useful for gene introduction into target cells.
  • the genes introduced by the recombinant AAV vector of the present invention are strongly expressed in the target cells.
  • AAV vector refers to any of many tissue types, such as brain, heart, lung, skeletal muscle, liver, kidney, spleen, or pancreas, including or derived from components of adeno-associated virus (AAV). refers to any vector suitable for infecting mammalian cells, including human cells, whether in vitro or in vivo.
  • AAV vector may be used to refer to an AAV-type viral particle (or virion) that contains at least a nucleic acid molecule encoding a protein of interest.
  • AAV virus or “AAV virus particle” or “rAAV vector particle” refers to a rAAV vector containing at least one AAV capsid protein (e.g., all capsid proteins of wild-type AAV) and a polynucleotide encapsidated in the rAAV vector. It refers to a virus particle composed of.
  • the particle contains a heterologous polynucleotide (i.e., a polynucleotide other than the wild-type AAV genome, such as a transgene delivered to a mammalian cell), it is typically referred to as an “rAAV vector particle” or simply “rAAV vector.” Therefore, the production of rAAV particles necessarily involves the production of rAAV because these vectors are contained within rAAV particles.
  • Packaging refers to the series of intracellular events that result in the assembly and endocytosis of AAV particles into the capsid.
  • AAV rep and cap genes refer to polynucleotide sequences that encode replication and capsid import proteins of adeno-associated viruses.
  • AAV rep and cap are referred to herein as AAV “packaging genes.”
  • helper virus for AAV refers to a virus that allows AAV (e.g., wild-type AAV) to replicate and be packaged by mammalian cells.
  • a variety of such helper viruses for AAV are known in the art, including adenovirus, rpesvirus, and poxviruses such as vaccinia.
  • Adenovirus type 5 of subgroup C is the most commonly used, but adenoviruses include a number of different subgroups. Numerous adenoviruses of human, non-human mammalian and avian origin are known and are available from depositories such as ATCC.
  • Viruses of the herpes family include, for example, herpes simplex viruses (HSV) and Epstein-Barr viruses (EBV), as well as cytomegaloviruses (CMV) and pseudorabies viruses. : PRV); These are also available from depositories such as ATCC.
  • HSV herpes simplex viruses
  • EBV Epstein-Barr viruses
  • CMV cytomegaloviruses
  • PRV pseudorabies viruses
  • Helper virus function(s) refers to the function(s) encoded in the helper virus genome that allows AAV replication and packaging (along with other requirements for replication and packaging described herein).
  • helper virus function can be provided in a variety of ways, including by providing a helper virus or by providing a polynucleotide sequence encoding the essential function(s) to the producer cell, for example, in trans. You can. For example, a plasmid or other expression vector containing nucleotide sequences encoding one or more adenovirus proteins is transfected into producer cells along with the rAAV vector.
  • the AAV1 vector according to the invention has an improved transduction profile for target tissues compared to an AAV1 vector containing wild-type capsid protein. That is, the AAV1 vector according to the present invention has a clear tissue targeting ability (eg, tissue tropism).
  • tissue targeting ability eg, tissue tropism
  • tropism refers to the specificity of the AAV capsid protein present in an AAV virus particle to infect or transduce a specific type of cell or tissue.
  • the tropism of an AAV capsid for a particular type of cell or tissue can be determined using standard assays well known in the art, such as those disclosed in the Examples herein, including AAV1 capsid proteins to infect or transfect a particular type of cell or tissue. This can be determined by measuring the ability of the AAV vector particles to be introduced.
  • tropism refers to the ability of an AAV vector or virion to infect one or more specific cell types, but may also include whether the vector functions to transduce cells into one or more specific cell types; That is, tropism is optional and desirable after preferential introduction of the AAV vector or virion into a specific cell or tissue type(s) and/or preferential interaction with the cell surface that facilitates entry into the specific cell or tissue type(s).
  • expression e.g. transcription and sometimes translation
  • transduction refers to the ability of an AAV vector or virion to infect one or more specific cell types; In other words, transduction means introducing an AAV vector or virion into a cell and transferring the genetic material contained in the AAV vector or virion to the cell to obtain expression from the vector genome. In some, but not all, cases, transduction and tropism may be correlated.
  • AAV described herein comprises amino acid modifications in one or more capsid proteins that confer new or enhanced tissue tropism properties.
  • the AAV1 variant according to the invention targets the lung bronchi.
  • pulmonary bronchial tropism refers to tropism toward the pulmonary bronchi.
  • the lung bronchial tropism of the peptide-modified hybrid AAV capsid protein is at least 5%, 10%, 20%, 30%, 40%, 50% compared to the lung bronchial tropism of the wild-type AAV capsid protein without the peptide. additionally increased by % or more.
  • the present invention includes a pharmaceutical composition containing the recombinant AAV1 vector.
  • the composition may further include a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include water, phosphate buffered saline, emulsions such as oil/water emulsions, and wetting agents. Compositions containing such carriers are described in Remington's Pharmaceutical Sciences, current Ed., Mack Publishing Co., Easton Pa. 18042, USA; A. Gennaro (2000) “Remington: The Science and Practice of Pharmacy”, 20th edition, Lippincott, Williams, &Wilkins; Pharmaceutical Dosage Forms and Drug Delivery Systems (1999) H. C.
  • the pharmaceutical composition according to the present invention may be a pharmaceutical composition for preventing or treating diseases related to lung bronchi, specifically bronchitis or bronchiectasis.
  • treatment refers to any treatment performed on a subject for the purpose of reversing, alleviating, ameliorating, inhibiting or delaying or preventing the progression, development, severity or recurrence of disease-related syndromes, complications, symptoms or biochemical signs.
  • treatment refers to any type of intervention or process or administration of an active agent to a subject.Treatment may be directed to a subject with a disease or to a subject without a disease (e.g., prophylactically).
  • the present invention includes a method for preventing or treating diseases related to lung bronchi, specifically bronchitis or bronchiectasis, comprising administering a therapeutically effective amount of the pharmaceutical composition to a subject.
  • administration refers to the physical introduction of a therapeutic agent or a composition containing a therapeutic agent into a subject using any of a variety of methods and delivery systems known to those skilled in the art.
  • Preferred routes of administration for the antibodies described herein include respiratory, intravenous, intraperitoneal, intramuscular, subcutaneous, spinal, intravitreal, or other parenteral routes of administration, for example, by injection or infusion.
  • parenteral administration generally refers to modes of administration other than enteral and topical administration by injection, including, but not limited to, airway, intravenous, intraperitoneal, intramuscular, intraarterial, and intrathecal administration.
  • the AAV vector of the present invention is capable of specifically delivering genes to the bronchial tubes by administering it in the form of an aerosol to the respiratory tract.
  • the term “therapeutically effective amount” refers to a drug alone that is effective in “treating” a disease or disorder in a subject or reducing the risk, potential, likelihood, or occurrence of the disease or disorder (e.g., lung bronchial disease). Or refers to the amount of a drug combined with another therapeutic agent.
  • a “therapeutically effective amount” includes an amount of a drug or therapeutic agent that provides some improvement or benefit to a subject having or at risk of having a disease or disorder (e.g., pulmonary hypertension as disclosed herein).
  • a “therapeutically effective amount” reduces the risk, potential, likelihood or occurrence of a disease or disorder, or provides some relief, relief, and/or reduces at least one indicator (e.g., a lung bronchial disease); /or an amount that reduces at least one clinical symptom of the disease or disorder.
  • at least one indicator e.g., a lung bronchial disease
  • the term “subject” includes any human or non-human animal.
  • non-human animal includes all vertebrates, including mammals and non-mammals such as non-human primates, sheep, dogs, cattle, chickens, amphibians, reptiles, etc.
  • the present invention includes a drug delivery system containing the recombinant AAV1 vector.
  • the composition may further include a known pharmaceutically acceptable carrier for use for the above purposes.
  • the AAV1 vector of the present invention shows tropism toward the lung bronchioles and has the ability to specifically express genes in the lung bronchioles, so it can be used as a delivery vehicle to deliver drugs to the lung bronchioles. Specifically, it can be used as an AAV1 vaccine against infectious agents that infect the respiratory tract.
  • Existing vaccines injected through a vein have the disadvantage of reducing the possibility of antibody production in the lungs or respiratory tract as they spread throughout the body.
  • the gene is delivered using the vector of the present invention, the vaccine is delivered in the airway area where infectious agents first encounter it. By increasing gene expression efficiency, mucosal immunity can be increased compared to existing vaccines.
  • the present invention relates to a recombinant AAV1 capsid variant that specifically targets the lung bronchi and has high-efficiency gene delivery ability.
  • the recombinant viral vector containing nucleic acid encoding a mutant of the AAV1 capsid protein is delivered in an aerosol state through the bronchial tubes. It is useful for the expression of transgenes in lung bronchial target cells, making it possible to prevent or treat diseases related to lung bronchioles.
  • Figure 1 compares the genomic titer of wild-type AAV1 and the packaging efficiency of the recombinant AAV1 vector (#3-32 and #3-65 variants) of the present invention by quantitative PCR analysis.
  • Figure 2 shows the improvement in transduction efficiency into HEK293T analyzed by the ratio of cells expressing GFP among all cultured cells.
  • Figure 3 shows whole-mount ⁇ -gal samples on lungs excised from 8-week-old C57BL/6 male mice to confirm the lung bronchial specificity of recombinant AAV1 vectors (#3-32(a) and #3-65(b) variants). This shows the results of efficient local delivery in the lung bronchioles, confirming LacZ expression through lactosidase staining.
  • Figure 4 shows LacZ expression in the lung bronchioles by recombinant AAV1 vectors (#3-32(a) and #3-65(b) variants) through eosin/LacZ staining to confirm lung bronchial specificity.
  • Figures 5a and 5b show cleavage maps of AAV1 vector #3-32 and #3-65 variants, respectively.
  • Figure 5c shows the pHelper plasmid cleavage map.
  • Figure 5d shows the pCMV GFP plasmid cleavage map.
  • Figure 5e shows the pCMV LacZ plasmid cleavage map.
  • Figure 6 shows the results of injecting the recombinant AAV1 vector (#3-65 variant) through the pig airway to confirm its specificity in the lung bronchus.
  • Random point mutation was induced in the cap gene of wild-type AAV variants (AAV1, AAV2, AAV4, AAV6, AAV8, AAV9) using error-prone PCR, and a plasmid pool was created by inserting a random 7mer/9mer into the 3-fold protrusion of each serotype.
  • AAV packaging was performed by transfecting 7-70ng of the AAV plasmid library, 25 ⁇ g of pBluescript, and 25 ⁇ g of pHelper into a calcium-phosphate complex into AAV293 cells, and an AAV library pool containing the cap gene information of each variant was created. was produced.
  • PenWu micro-aerosolizer BioJane, Shanghai, China
  • 1x10 11 vg/100 ⁇ l of AAV library pool in PBS was anesthetized with isoflurane, and then a 1cm incision was made in the skin of the airway area.
  • PenWu micro-aerosolizer BioJane, Shanghai, China
  • APC Anti-alpha smooth muscle actin antibody
  • bronchial tropic cap gene amplification was performed using the above AAV cap gene-specific primer information. This was produced as a second AAV library, and intratracheal injection and sorting tasks were performed in the same way.
  • the finally amplified cap gene gene contained HindIII and NotI sequences at both ends, and was subcloned into pSub2 plasmid through HindIII/NotI restriction and ligation, electroporated in DH10 ⁇ , and purified plasmid (Qiagen).
  • Bronchotropic plasmid was stored in the form of a pool.
  • pSub2 is a plasmid produced by David Schaffer Lab, UC Berkeley, based on pSub201 (ATCC), and was designed to subcloning the cap gene using HindIII and NotI, Reference 1. Narendra Maheshri et al., Nature Biotechnology, 2006; 2. James T Koerber, Nature Protocols, 2006)
  • vascular tropic plasmid pool multiple bronchial tropic cap genes were subcloned through HindIII/NotI restriction into pXX2 (UC Berkeley, David Schaffer Lab) into which HindIII and NotI were introduced for cap gene insertion, thereby producing multiple bronchial tropisms for reporter gene loading. Construction of specific plasmid mutants was completed.
  • 17 ⁇ g of mutant plasmid, 17 ⁇ g of ITR flanked reporter gene (pCMV-GFP or pCMV-LacZ or pCMV-FGF12-IRES-GFP), and 17 ⁇ g of pHelper were formed into a calcium-phosphate complex and transfected into AAV293 cells for about 48 hours. After collecting only the cell pellet, AAV inside the cells was extracted through freezing-thawing. Afterwards, cell debris was removed through centrifugation, and nucleic acids from virus-producing cells were removed by incubating with 10 U/mL of benzonase at 37°C for 30 minutes.
  • the cleavage maps of the constructed AAV1 #3-32 and #3-65 variants are shown in Figures 5A and 5B, and the entire nucleotide sequences of the AAV1 #3-32 and #3-65 variants are as follows, respectively.
  • AAV-2 Rep gene #3-32 Cap gene Ampicillin Resistance (bla) gene (SEQ ID NO: 6)
  • 17 ⁇ g of packaging plasmid containing the rep gene of AAV2 and the cap gene of AAV1, 17 ⁇ g of ITR flanked reporter gene (pCMV-GFP or pCMV-LacZ or pCMV-FGF12-IRES-GFP), and 17 ⁇ g of pHelper form a calcium-phosphate complex.
  • AAV293 cells were transfected, and after about 48 hours, only the cell pellets were collected and AAV inside the cells was extracted through freezing-thawing. Afterwards, cell debris was removed through centrifugation, and nucleic acids from virus-producing cells were removed by incubating with 10 U/mL of benzonase at 37°C for 30 minutes.
  • the AAV solution was ultracentrifuged using an iodixanol gradient.
  • the Iodixa solution was prepared at 15%, 25%, 40%, and 54% and sequentially loaded into an ultracentrifuge tube, and the AAV solution was loaded on top of it.
  • ultracentrifugation was performed (42,000 RPM, 18°C, 2 hours) using an Optima XE-90 Ultracentrifuge (BECKMAN COULTER) and Vti65.2 rotor.
  • the AAV layer located between 54% and 40% iodixanol was extracted, and buffer exchange was performed with a PBS buffer containing 0.01% Tween 20 using an Amicon Ultra-15 Centrifugal Filter (MWCO 100,000).
  • the titers of wild-type AAV1 and AAV1 #3-32 and #3-65 mutants carrying CMV-FGF12-IRES-GFP were determined by extracting the viral genomes from viruses resistant to Dnase I (5U) by proteinase K treatment. Then, quantitative PCR (qPCR) for CMV was performed with each standard using primers (5-ATGGTGATGCGGTTTTGGCAG-3: SEQ ID NO: 10 and 5-GGCGGAGTTGTTACGACATTTTGG-3: SEQ ID NO: 11) for quantification.
  • the packaging efficiency of wild-type AAV1 and recombinant AAV1 vectors is shown in Figure 1 by comparing the genomic titers. This means that #3-32 and #3-65 mutants have improved packaging efficiency compared to wild-type AAV1, meaning that they have the potential to be maintained as evolutionarily superior individuals.
  • AAV1 wild type and #3-32 and #3-65 mutants carrying CMV-GFP were packaged, respectively, and infected into HEK293T (2x10 4 cells/20 ⁇ L).
  • Each virus was loaded with CMV-FGF12-IRES-GFP, and in the case of loading GFP, the ratio (%) of GFP-expressing cells among all cultured cells was measured by flow cytometry 48 hours after HEK293T infection (MOI 10,000). ) was analyzed to confirm the infection ability, and the results are shown in Figure 2.
  • Figure 2 shows the improvement in HEK293T transduction efficiency analyzed by the ratio of cells expressing GFP among all cultured cells.
  • AAV1 wild type and #3-32 and #3-65 mutants carrying CMV-LacZ were each packaged and injected (1x10 11 vg/100 ⁇ l) intratracheally into 8-week-old C57BL/6 male mice.
  • the lungs of 8-week-old C57BL/6 male mice were removed 1 week after injection, and the lung bronchioles were analyzed through eosin/LacZ staining.
  • the expression of LacZ was confirmed, and as a result, it was confirmed that it was specifically delivered to the lung bronchi, as shown in Figures 4a and 4b.
  • LacZ-loaded wtAAV1 (1.25x1011vg/kg), #3-65 (5.38x1011vg/kg) vector was dispersed in PBS + 0.01% Tween20 and injected into the pig respiratory tract in 1ml liquid form, and sacrificed after 2 weeks.
  • LacZ-loaded wtAAV1 (1.25x1011vg/kg), #3-65 (5.38x1011vg/kg) vector was dispersed in PBS + 0.01% Tween20 and injected into the pig respiratory tract in 1ml liquid form, and sacrificed after 2 weeks.
  • X-gal staining after 4% PFA fixation local expression of LacZ was confirmed in the airway section of the airway and lung tissue under #3-65 conditions compared to wtAAV1, which showed no gene expression in the lung section including the airway. (Figure 6).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 아데노 부속 바이러스 혈청형 1(AAV1) 캡시드 단백질의 돌연변이체로서, 상기 돌연변이체는 야생형의 AAV 캡시드 단백질의 아미노산 서열과 비교해서 특정 위치의 아미노산이 치환된 AAV1 캡시드 단백질의 돌연변이체, 상기 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산, 상기 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산을 포함하는 재조합 AAV1 벡터, 상기 벡터를 포함하는 약제학적 조성물을 제공한다. 특히, AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산을 포함하는 재조합 바이러스 벡터는 기관지를 통해 에어로졸 상태로 전달 시 폐 기관지에서의 도입 유전자 발현이 향상되어 폐 기관지 관련 질환의 예방 또는 치료에 유용하다.

Description

폐 기관지 특이적 유전자 전달이 가능한 아데노부속바이러스 벡터
본 발명은 아데노 부속 바이러스(AAV) 캡시드 단백질의 돌연변이체에 관한 것으로, 특히 AAV1 캡시드 단백질의 돌연변이체를 포함하는 재조합 바이러스 벡터는 기관지를 통해 에어로졸 상태로 전달 시 폐 기관지에서의 도입 유전자의 발현에 유용하다.
유전자 치료를 효과적으로 하기 위해서는 치료 유전자를 원하는 표적세포로 전달하여 높은 발현 효율을 얻을 수 있도록 하는 유전자 전달 기술 개발이 가장 우선시 된다.
이러한 유전자 전달 기술 중 AAV는 비병원성 바이러스로서 침투된 감염 세포에 부작용이 없으며 대상 세포 유전자 정보에 돌연변이를 일으키는 확률이 희박하므로 다른 유전자 치료기술 대비 안전성이 탁월하다.
AAV(Adeno-Associated Virus)는 분열하거나 분열하지 않는 세포 모두에 감염시킬 수 있는 non-enveloped의 단일 가닥 DNA 바이러스이다. AAV는 헬퍼 바이러스가 존재 시에만 복제가 가능하며 인간에게는 비병원성이다. 이런 특징으로 다양한 세포에 유전자를 도입하는 유용한 방법이며 유전자 치료를 위한 유용한 벡터로 사용되고 있다.
AAV는 다양한 혈청형(serotype)이 존재하고 혈청형에 따라 host나 바이러스의 특징이 다른 것으로 알려져 있다. 혈청형 2 (AAV2)는 오래전부터 널리 연구되어 온 혈청형으로 다양한 세포를 감염시킬 수 있다. 혈청형 1 (AAV1), 혈청형 5 (AAV5),혈청형 6 (AAV6)은 보다 조직 감염특이성을 가진 혈청형으로, AAV1은 근육, 간, 기도, 중추신경계 등에, AAV5 는 중추신경계, 간, 망막 등에, AAV6는 심장, 근육, 간 등에 대한 유전자 도입효율이 높다고 알려져 있다. 특정 조직으로의 유전자 전달 특성이 혈청형에 따라 달라지기는 하지만 여전히 타 조직으로의 전달이 용이하기 때문에 조직 특이성을 향상시켜 안전성과 효율성을 개선시킬 수 있는 새로운 AAV 벡터의 개발이 필수적이라고 할 수 있다.
한편, 기관지염 및 기관지확장증 등은 폐 기관지에 발생하는 주요 질환으로, 특히, 기관지확장증은 합병증으로 객혈(혈액이나 혈액이 섞인 가래를 기침과 함께 배출하는 증상), 지속적인 호흡곤란과 호흡부전을 일으킬 수 있어 빠르게 진단받고 치료가 필요하다. 객혈은 잠재적으로 생명을 위협할 수 있는 기관지확장증의 대표적인 합병증으로 객혈의 조절을 위해 기관지동맥색전술 또는 수술적 치료를 고려할 수 있다.
AAV 캡시드 단백질을 변형시킴으로써 유전자 도입 효율을 향상시키는 시도가 이루어지고 있긴 하나, 폐 기관지를 표적 부위로 하는 아데노 부속 바이러스에 대한 연구는 아직까지 보고된 바 없다.
[선행기술문헌]
[특허문헌]
국제 공개번호 제2017-201121호 (2017.11.23.)
일본 특허 공개 제2021-0010372호 (2021.02.04.)
이에, 본 발명자들은 상기 과제를 해결하기 위해서 예의 노력한 결과, 기관지염 또는 기관지확장증 등 폐 기관지 관련 질환의 근본적인 유전적 원인을 해결하는 유전자 치료제를 전달할 잠재력이 있는 폐 기관지를 표적으로 하는 새로운 아데노 부속 바이러스(AAV) 혈청형 1의 캡시드를 기본 골격으로 하는 단백질 변이체를 개발함으로써 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 재조합 AAV에 의한 표적 조직 또는 세포로의 유전자 도입 효율의 향상 및/또는 유전정보 발현 효율의 향상을 위해서 AAV1 캡시드 단백질의 돌연변이체를 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산을 포함하는 재조합 AAV1 벡터를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 재조합 AAV1 벡터를 포함하는 약제학적 조성물을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 재조합 AAV1 벡터를 포함하는 유전자 전달체를 제공하는 것이다.
이하, 본 발명을 보다 상세히 설명하면 다음과 같다.
본 발명은 아데노 부속 바이러스 혈청형 1(AAV1) 캡시드 단백질의 돌연변이체에 관한 것이다.
본 발명에 사용된 용어 "아데노 부속 바이러스" 또는 "AAV"는 유전자 치료법에서 사용하는 모든 아데노 부속 바이러스를 이들의 유도체, 바이러스 아형 및 자연 발생 및 재조합 형태를 포함하여 지칭한다. AAV의 다양한 혈청형은 다수의 서로 다른 세포 유형을 형질 도입하기 위한 재조합 유전자 전달 바이러스로서 사용될 수 있다. AAV의 다양한 혈청형의 게놈 서열뿐만 아니라 천연 말단 반복체(terminal repeat: TR)의 서열, Rep 단백질 및 캡시드 서브유닛은 당업계에 공지되어 있다. 이러한 서열은 문헌에서 또는 진뱅크(GenBank)와 같은 공용 데이터베이스에서 찾을 수 있다. 예를 들어, 진뱅크(GenBank) 등록번호 NC_002077(AAV-1), AF063497(AAV-1)를 참조할 수 있다.
본 발명에 사용된 용어 "혈청형"은 혈청학적 또는 DNA 서열분석 방법에 의해 동정될 수 있고 그의 항원 특성에 의해 구별될 수 있는 AAV의 세분된 한 부분을 의미한다.
본 발명에 사용된 용어 캡시드는 바이러스의 게놈에 존재하는 cap 유전자에 코딩되는 단백질로, 바이러스의 외각을 구성하는 단백질을 의미한다. 야생형 AAV 게놈 또는 cap 유전자는 3종류의 캡시드 단백질(VP1, VP2 및 VP3)을 코딩한다. 야생형 AAV1 캡시드 단백질은 서열번호 1로 표시되는 아미노산 서열을 포함한다.
일 구현예에서, 본 발명은 아데노 부속 바이러스 혈청형 1(AAV1) 캡시드 단백질의 돌연변이체로서, 상기 돌연변이체는 야생형의 AAV1 캡시드 단백질의 서열번호 1의 아미노산 서열에서 326번, 452번 및 456번 중 하나 이상의 위치에 존재하는 아미노산이 치환된 것인 AAV1 캡시드 단백질의 돌연변이체를 제공한다.
일 구현예에서, 본 발명은 아데노 부속 바이러스 혈청형 1(AAV1) 캡시드 단백질의 돌연변이체로서, 상기 돌연변이체는 야생형의 AAV1 캡시드 단백질의 서열번호 1의 아미노산 서열에서 326번 위치의 트레오닌이 알라닌으로 치환되고 452번 위치의 글루타민이 프롤린으로 치환된 AAV1 캡시드 단백질의 돌연변이체를 포함한다.
일 구현예에서, 본 발명은 아데노 부속 바이러스 혈청형 1(AAV1) 캡시드 단백질의 돌연변이체로서, 상기 돌연변이체는 야생형의 AAV1 캡시드 단백질의 서열번호 1의 아미노산 서열에서 456번 위치의 알라닌이 트레오닌으로 치환된 AAV1 캡시드 단백질의 돌연변이체를 포함한다.
일 구현예에서, 본 발명에 따른 AAV1 캡시드 단백질의 돌연변이체는 서열번호 2 또는 3으로 표시되는 아미노산 서열을 포함하거나 이로 이루어진다.
본원 실시예에서는 서열번호 2로 표시되는 AAV1 캡시드 단백질의 돌연변이체를 #3-32로 명명하였고, 서열번호 3으로 표시되는 AAV1 캡시드 단백질의 돌연변이체를 #3-65로 명명하였다.
본 발명에 사용된 용어야생형은 종 가운데서, 야생의 집단에 가장 많이 볼 수 있는 형을 의미한다. 돌연변이형에 대해서, 야생형은 기본으로 생각되는 표현형 또는 그 개체를 가리킨다. 야생형은 별명으로서 정상형이라고도 불린다. 한편, 본 명세서에 있어서 돌연변이체란 돌연변이를 일으킨 유전자가 형질적인 변화로서 나타나 있는 단백질, 바이러스, 세포, 개체 등을 의미한다. 또, 본 명세서에 있어서 「돌연변이체」란 돌연변이를 일으킨 유전자 자체를 가리키는 경우도 있다.
일 구현예에 있어서, 본 발명은 상기 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산을 포함한다. 본 발명의 핵산은 상기 AAV1 캡시드 단백질의 돌연변이체를 코딩한다. 본 발명의 핵산은 AAV1 캡시드 단백질을 코딩하는 핵산(cap 유전자)의 염기서열에 있어서 적어도 1개의 염기가 다른 염기로 치환되는 것에 의해 제작된다. 본 발명의 핵산은 DNA의 형태로 존재할 수 있지만, 경우에 따라서는 RNA의 형태나, DNA와 RNA와의 키메라일 수도 있다. 또, 본 발명의 핵산에는 상보적인 핵산(예, cDNA)도 포함된다. 본 발명의 핵산은 싱글-스트랜드일 수도 있고, 더블-스트랜드일 수도 있지만, 바람직하게는 더블-스트랜드이다.
본 발명은 서열번호 2 또는 3으로 표시되는 아미노산 서열로 이루어진 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산으로서 특별하게 한정되지 않지만, 일 구현예로 서열번호 4 또는 5로 표시되는 염기서열을 가지는 핵산이 예시된다.
본 발명의 핵산은 적절한 제어서열과 작동 가능하게 연결할 수도 있다. 제어서열에는 프로모터 서열, 폴리아데닐화 시그널, 전사 종결 서열, 상류의 조절 도메인, 내부 리보솜 진입 부위(internal ribosome entry sites:IRES), 인핸서 등이 포함된다. 프로모터 서열에는 유도성 프로모터 서열, 구성적 프로모터 서열이 포함된다. 제어서열은 캡시드 단백질의 유래가 되는 AAV에 고유한 것일 수도 있고 외래성의 것일 수도 있고, 천연서열일 수도 있고, 합성 서열일 수도 있다. 본 발명의 핵산을 포함하는 AAV1 캡시드 단백질의 돌연변이체를 발현 가능한 재조합 DNA도 본 발명에 포함된다.
상기 재조합 DNA는 시험관 내, 생체 외 및 생체 내의 세포에 본 발명의 핵산을 전달하고, 당해 세포에 AAV1 캡시드 단백질의 돌연변이체를 발현하는 능력을 부여하는데 유용하다. 그리고 본 발명의 핵산이 전달된 세포는 재조합 AAV 입자를 제조하는데도 유용하다. 당해 재조합 DNA는 특히 진핵세포, 바람직하게는 동물세포, 더 바람직하게는 포유류 세포에 본 발명의 핵산을 전달 또는 도입하는데 사용할 수 있다.
본 발명에서는 벡터로서 사용되고 있는 DNA에 본 발명의 핵산을 보유시켜서 재조합 DNA를 제작할 수 있다. 예를 들면, 플라스미드, 파지, 트랜스포존, 코스미드, 에피소말 DNA, 바이러스 게놈 등을 사용할 수 있다.
예를 들면, 플라스미드에 본 발명의 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산(cap 유전자)을 보유시키는 것에 의해, 패키징 플라스미드를 제작할 수 있다. 패키징 플라스미드는 추가로 레플리카제(Rep) 단백질을 코딩하는 핵산(rep 유전자) 등, 임의의 핵산서열을 포함할 수 있다. 바람직하게 rep 유전자는 AAV2 유래 Rep를 추가할 수 있다.
공지의 패키징 플라스미드에 탑재된 cap 유전자의 핵산서열에 있어서, PLA2 도메인 코딩 영역에서의 적어도 1개의 염기를 다른 염기로 치환하는 것에 의해서도, 본 발명의 핵산을 포함하는 재조합 DNA를 제작할 수 있다. 상기 패키징 플라스미드로서 특별하게 한정은 되지 않지만, cap 유전자를 탑재한 패키징 플라스미드, 적합하게는 cap 유전자와 rep 유전자를 탑재한 패키징 플라스미드가 예시된다. 일례로, 본 발명에서는 본 발명의 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산(cap 유전자)과 rep 유전자를 탑재한 패키징 플라스미드인 서열번호 6 또는 7로 표시되는 재조합 AAV1 벡터, p #3-32 또는 p #3-65를 제작하였다.
핵산에 염기의 치환을 도입하는 방법은 공지의 방법에 의해 실시할 수 있고, 특별하게 한정은 없지만, 시판하고 있는 시약, 예를 들면 Mutagenesis Basal Kit(TAKARA BIO INC.)을 사용하여, 키트에 부속의 설명서에 따라서 PCR을 실시하는 것에 의해 달성할 수 있다.
따라서, 본 발명은 상기 AAV1 캡시드 단백질 변이체를 코딩하는 핵산을 포함하는 재조합 AAV1 벡터를 제공한다.
본 발명의 재조합 AAV 벡터는 표적 세포로의 유전자 도입에 유용하다. 본 발명의 재조합 AAV 벡터에 의해 도입된 유전자는 상기 표적 세포에서 강하게 발현된다.
본 명세서에 사용되고 있는 용어 "AAV 벡터"는 아데노-연관 바이러스(AAV)의 성분을 포함하거나 이들 성분으로부터 유래하고 뇌, 심장, 폐, 골격근, 간, 신장, 비장 또는 췌장과 같은 임의의 많은 조직 유형의 인간 세포를 포함한 포유류 세포를 시험관내 또는 생체 내 관계없이 감염시키기 적합한 임의의 벡터를 지칭한다. 용어 "AAV 벡터"는 관심 단백질을 코딩하는 적어도 핵산 분자를 포함하는 AAV형 바이러스 입자(또는 비리온)를 지칭하기 위해 사용될 수 있다.
본 명세서에 사용된 "AAV 바이러스" 또는 "AAV 바이러스 입자" 또는 "rAAV 벡터 입자"는 적어도 하나의 AAV 캡시드 단백질(야생형 AAV의 모든 캡시드 단백질에 의함) 및 캡시드 내 이입된(encapsidated) 폴리뉴클레오타이드 rAAV 벡터로 구성되는 바이러스 입자를 지칭한다. 입자가 이종성 폴리뉴클레오타이드(즉, 야생형 AAV 게놈 이외의 폴리뉴클레오타이드, 예컨대 포유류 세포에 전달되는 이식유전자)를 포함한다면, 이는 전형적으로 "rAAV 벡터 입자" 또는 간단하게 "rAAV 벡터"로서 지칭된다. 따라서, rAAV 입자의 생성은 필연적으로 rAAV의 생성을 포함하는데, 이러한 벡터가 rAAV 입자 내에 함유되기 때문이다.
"패키징"은 AAV 입자의 조립체 및 캡시드 내 이입을 야기하는 일련의 세포내 사건을 지칭한다.
AAV "rep" 및 "cap" 유전자는 아데노-관련 바이러스의 복제 및 캡시드 내 이입 단백질을 암호화하는 폴리뉴클레오타이드 서열을 지칭한다. AAV rep 및 cap은 본 명세서에서 AAV "패키징 유전자"로서 지칭된다.
AAV에 대한 "헬퍼 바이러스"는 AAV(예를 들어, 야생형 AAV)가 포유류 세포에 의해 복제되고, 패키징되게 하는 바이러스를 지칭한다. 아데노바이러스, 르페스바이러스, 및 백시니아와 같은 폭스바이러스를 포함하는, AAV에 대한 다양한 이러한 헬퍼 바이러스는 당업계에 공지되어 있다. 서브그룹 C의 아데노바이러스 5형이 가장 흔히 사용되지만, 아데노바이러스는 다수의 상이한 서브그룹을 포함한다. 인간, 비인간 포유류 및 조류 유래의 수많은 아데노바이러스는 공지되어 있고, ATCC와 같은 기탁기관으로부터 입수 가능하다. 헤르페스과의 바이러스는, 예를 들어 헤르페스 심플렉스 바이러스(herpes simplex viruses: HSV) 및 엡스타인-바르 바이러스(Epstein-Barr viruses: EBV)뿐만 아니라 사이토메칼로바이러스(cytomegaloviruses: CMV) 및 가성광견병 바이러스(pseudorabies viruses: PRV)를 포함하는데; 이들은 또한 ATCC와 같은 기탁기관으로부터 입수 가능하다.
"헬퍼 바이러스 기능(들)"은 AAV 복제 및 패키징(본 명세서에 기재된 복제 및 패키징을 위한 다른 요구사항과 함께)을 허용하는 헬퍼 바이러스 게놈에서 암호화된 기능(들)을 지칭한다. 본 명세서에 기재된 바와 같이, "헬퍼 바이러스 기능"은 헬퍼 바이러스를 제공하거나 또는, 예를 들어 트랜스로 생산자 세포에 필수 기능(들)을 암호화하는 폴리뉴클레오타이드 서열을 제공함으로써 포함되는, 다양한 방법으로 제공될 수 있다. 예를 들어, 하나 이상의 아데노바이러스 단백질을 암호화하는 뉴클레오타이드 서열을 포함하는 플라스미드 또는 다른 발현 벡터는 rAAV 벡터와 함께 생산자 세포로 형질감염된다.
일 구현예에 있어서, 본 발명에 따른 AAV1 벡터는 야생형 캡시드 단백질을 포함하는 AAV1 벡터와 비교할 때, 표적 조직에 대해서 향상된 형질도입 프로파일을 갖는다. 즉, 본 발명에 따른 AAV1 벡터는 명확한 조직 표적화 능력(예를 들어, 조직 향성(tissue tropism))을 갖고 있다.
본 명세서에서, 용어 "향성 (tropism)"은 특정 유형의 세포 또는 조직을 감염 또는 형질도입시키기 위한 AAV 바이러스 입자에 존재하는 AAV 캡시드 단백질의 특이성을 의미한다.
특정 유형의 세포 또는 조직에 대한 AAV 캡시드의 향성은 본 명세서의 실시예에 개시된 것과 같은 당업계에 잘 알려진 표준 분석법을 사용하여, AAV1 캡시드 단백질을 포함하여 특정 유형의 세포 또는 조직을 감염시키거나 형질도입하는 AAV 벡터 입자의 능력을 측정함으로써 결정될 수 있다.
즉, "향성"은 하나 이상의 특정 세포 유형을 감염시키는 AAV 벡터 또는 비리온의 능력을 의미하지만, 벡터가 하나 이상의 특정 세포 유형에 세포를 형질 도입하도록 기능하는지를 포함할 수도 있는 바; 즉 향성은 특정 세포 또는 조직 유형(들)으로 AAV 벡터 또는 비리온의 우선적인 도입 및/또는 특정 세포 또는 조직 유형으로 진입을 용이하게 하는 세포 표면과의 우선적인 상호작용 후, 경우에 따라 그리고 바람직하게는 세포에서 AAV 벡터 또는 비리온에 의해 운반되는 서열의 발현(예를 들어, 전사 및 경우에 따라 번역), 예를 들어 재조합 바이러스의 경우에는 이종 뉴클레오티드 서열(들)의 발현을 의미한다.
본 명세서에서 사용하는 용어 "형질 도입"은 하나 이상의 특정 세포 유형을 감염시키는 AAV 벡터 또는 비리온의 능력을 의미하는 바; 즉 형질 도입은 AAV 벡터 또는 비리온을 세포 내 도입하고 AAV 벡터 또는 비리온 내 함유된 유전 물질을 세포로 전달하여 벡터 게놈으로부터 발현을 얻는 것을 의미한다. 모든 경우는 아니지만 일부의 경우에는 형질 도입과 향성은 상관관계가 있을 수 있다.
본원에 기재되는 AAV는 1 이상의 캡시드 단백질에 있어서 새로운 또는 증강된 조직 향성 특성을 부여하는 아미노산 변형을 포함한다. 본원발명에 따른 AAV1 변이체는 폐 기관지를 표적으로 한다.
본 명세서에서 사용된 용어 "폐 기관지 향성은 폐 기관지에 대한 향성을 의미한다.
일부 구현예에서, 펩티드-변형된 하이브리드 AAV 캡시드 단백질의 폐 기관지 향성은, 펩티드를 갖지 않는 야생형 AAV 캡시드 단백질의 폐 기관지 향성에 비해 적어도 5%, 10%, 20%, 30%, 40%, 50% 또는 그 이상 추가로 증가된다.
또한, 본 발명은 상기 재조합 AAV1 벡터를 포함하는 약제학적 조성물을 포함한다. 상기 조성물은 약제학적으로 허용 가능한 담체를 추가로 포함할 수 있다.
상기 "약학적으로 허용가능한 담체"는 조성물의 유효 성분과 조합될 때, 성분들이 의도되지 않은 면역 반응과 같은, 지장을 주는 생리학적 반응들을 야기하는 것 없이 생물학적 활성을 보유하는 것을 가능하게 하는, 임의의 물질을 포함한다. 약학적으로 허용가능한 담체들은 물, 인산 완충 식염수(phosphate buffered saline), 오일/물 에멀젼과 같은 에멀젼들, 및 습윤제들(wetting agent)을 포함한다. 이러한 담체들을 포함하는 조성물들은 Remington's Pharmaceutical Sciences, current Ed., Mack Publishing Co., Easton Pa. 18042, USA; A. Gennaro (2000) "Remington: The Science and Practice of Pharmacy", 20th edition, Lippincott, Williams, & Wilkins; Pharmaceutical Dosage Forms and Drug Delivery Systems (1999) H. C. Ansel et al., 7th ed., Lippincott, Williams, & Wilkins; and Handbook of Pharmaceutical Excipients (2000) A. H. Kibbe et al., 3rd ed. Amer. Pharmaceutical Assoc 에 쓰인 것들과 같이 잘 알려진 종래의 방법들에 의하여 제형화된다.
일 구현예에 있어서, 본 발명에 따른 약제학적 조성물은 폐 기관지 관련 질환, 구체적으로 기관지염 또는 기관지확장증 예방 또는 치료를 위한 약제학적 조성물일 수 있다.
본 명세서에서 사용된 용어 “치료"는 질환 관련 증후군, 합병증, 증상 또는 생화학적 징후의 진행, 발달, 중증도 또는 재발을 반전, 완화, 개선, 저해 또는 지연 또는 예방하고자 하는 목적으로 대상에 대해 수행된 임의 유형의 개입 또는 과정 또는 대상에게 활성제를 투여하는 것을 말한다. 치료는 질환이 있는 대상체 또는 질환이 없는 대상체(예를 들어 예방용)에 대해 이루어질 수 있다.
또한, 일 구현예에 있어서, 본 발명은 치료유효량의 상기 약제학적 조성물을 대상체에 투여하는 단계를 포함하는 폐 기관지 관련 질환, 구체적으로 기관지염 또는 기관지확장증 예방 또는 치료방법을 포함한다.
본 명세서에서 사용하는 "투여"는 당업자에게 공지된 다양한 방법과 전달계 중 임의의 것을 사용하여 대상에 치료제 또는 치료제를 포함하는 조성물을 물리적으로 도입하는 것을 말한다. 본 명세서에 기재된 항체에 대한 바람직한 투여 경로는 기도, 정맥내, 복강내, 근육내, 피하, 척추, 유리체내, 또는 예를 들어 주사 또는 주입에 의한 다른 비경구 투여 경로를 포함한다. 본 명세서에서 사용하는 문구 "비경구 투여"는 일반적으로 주사에 의한 장내 및 국소 투여 이외의 투여 방식을 의미하고, 이에 제한되지는 않지만 기도, 정맥내, 복강내, 근육내, 동맥내, 척수강 내, 림프내, 병변내, 피막내, 안와내, 심장내, 피내, 경기관, 피하, 표피하, 유리체내, 관절내, 피막하, 지주막하, 척수내, 경막외 및 흉골내 주사 및 주입 뿐 아니라 생체 내 전기천공을 포함한다. 구체적인 일 실시예에서, 본 발명의 AAV 벡터는 돼지를 이용한 동물 실험에서 기도로 에어로졸 형태로 투여함으로써 기관지 특이적으로 유전자 전달이 가능함을 확인하였다.
본 명세서에서 사용하는 용어 "치료 유효량"은 대상의 질환 또는 장애를 "치료"하거나 질환 또는 장애(예를 들어, 폐 기관지 관련 질환)의 위험, 잠재성, 가능성 또는 발생을 감소시키는 데 효과적인 약물 단독 또는 또 다른 치료제와 조합한 약물의 양을 지칭한다. "치료 유효량"은 질환 또는 장애(예를 들어 본 명세서에 개시된 폐동맥 고혈압)를 갖거나 가질 위험이 있는 대상체에 일부 개선 또는 실익을 제공하는 약물 또는 치료제의 양을 포함한다. 이에 따라 "치료 유효양"은 질환 또는 장애의 위험, 잠재성, 가능성 또는 발생을 감소시키거나 또는 일부 완화, 경감을 제공하고/또는 적어도 하나의 지표(예를 들어 폐 기관지 관련 질환)를 감소시키고/또는 질환 또는 장애의 적어도 하나의 임상 증상을 감소시키는 양이다.
본 명세서에서 사용하는 용어 "대상체"는 임의의 인간 또는 비-인간 동물을 포함한다. 용어 "비-인간 동물"은 모든 척추동물, 예를 들어 포유류 및 비-인간 영장류, 양, 개, 소, 닭, 양서류, 파충류 등과 같은 비-포유류를 포함한다.
또한, 본 발명은 상기 재조합 AAV1 벡터를 포함하는 약물 전달체를 포함한다. 상기 조성물은 상기 용도로 이용하기 위한 공지된 약제학적으로 허용 가능한 담체를 추가로 포함할 수 있다.
본 발명의 AAV1 벡터는 폐 기관지로의 향성을 나타내며, 폐 기관지 특이적으로 유전자를 발현시키는 능력을 가지므로, 폐 기관지로 약물을 전달하는 전달체로써 이용할 수 있다. 구체적으로, 호흡기로 감염되는 감염성 물질에 대한 AAV1 백신으로 사용될 수 있다. 기존 정맥을 통해 주입하는 백신은 온 몸으로 퍼지게 되어 막상 폐 또는 기도 부근에서의 항체 생성 가능성이 감소되는 단점이 있으나, 본 발명의 벡터를 이용하여 유전자를 전달한다면 감염성 물질이 처음으로 접하게 되는 기도 부근에 유전자 발현 효율을 높여 기존의 백신 대비 점막 면역성(mucosal immunity)를 높일 수 있다.
본 발명은 폐 기관지를 특이적으로 표적화하여 고효율 유전자 전달능을 가진 재조합 AAV1 캡시드 변이체에 관한 것으로, AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산을 포함하는 재조합 바이러스 벡터는 기관지를 통해 에어로졸 상태로 전달 시 폐 기관지 표적 세포에서의 도입 유전자의 발현에 유용하여 폐 기관지 관련 질환 예방 또는 치료가 가능하다.
도 1은 야생형 AAV1과 본 발명의 재조합 AAV1 벡터(#3-32 및 #3-65 변이체)의 패키징 효율(packaging efficiency)을 정량적 PCR 분석으로 게노믹 역가를 비교한 것이다.
도 2는 HEK293T로의 형질도입 효율 향상을 전체 배양세포 중 GFP를 발현하는 세포의 비율로 분석한 것이다.
도 3은 재조합 AAV1 벡터(#3-32(a) 및 #3-65(b) 변이체)의 폐 기관지 특이성을 확인하기 위하여, 8주령 C57BL/6 수컷 마우스로부터 적출된 폐에 전체 마운트 β-갈락토시다아제 염색하여 LacZ 발현을 확인한 폐 기관지 내 효율적 국소 전달 결과를 나타낸 것이다.
도 4는 폐 기관지 특이성을 확인하기 위하여, 재조합 AAV1 벡터(#3-32(a) 및 #3-65(b) 변이체)에 의한 폐 기관지에서의 LacZ 발현을 eosin / LacZ staining을 통하여 확인한 것이다.
도 5a 및 5b는 각각 AAV1 벡터 #3-32 및 #3-65 변이체의 개열지도를 나타낸 것이다.
도 5c는 pHelper 플라스미드 개열지도를 나타낸 것이다.
도 5d는 pCMV GFP 플라스미드 개열지도를 나타낸 것이다.
도 5e는 pCMV LacZ 플라스미드 개열지도를 나타낸 것이다.
도 6은 재조합 AAV1 벡터 (#3-65 변이체)의 폐 기관지 특이성을 확인하기 위하여, 돼지 기도를 통해 상기 벡터를 주입한 결과를 나타낸 것이다.
이하, 본 발명에 따르는 실시예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
[실시예]
실시예 1: AAV1 캡시드 단백질 변이체 선별 및 제작
1) AAV1 캡시드 단백질 변이체 선별
야생형 AAV 변이체 (AAV1, AAV2, AAV4, AAV6, AAV8, AAV9)의 cap 유전자에 error-prone PCR을 이용한 랜덤 포인트 돌연변이 유도 및 각 혈청형의 3-fold protrusion에 random 7mer/9mer를 삽입하여 플라스미드 풀을 제작하였다. AAV 플라스미드 라이브러리 7-70ng, pBluescript 25μg, pHelper 25μg를 칼슘-포스페이트 복합체(calcium-phosphate complex)를 이뤄 AAV293 세포에 트랜스펙션하여 AAV 패키징을 진행하였고, 각 변이체의 cap 유전자 정보를 탑재한 AAV 라이브러리 풀을 제작하였다.
8주령의 C57BL/6 수컷 마우스를 이소플루란(isoflurane)으로 호흡 마취한 후 기도 부위의 피부를 1cm 가량 절개하였다. PenWu micro-aerosolizer (BioJane, Shanghai, China) (1.25 length of intratracheal portion, 700μm of outer diameter, 430μm of inner diameter)에 PBS 중 1x1011 vg/100 μl의 AAV 라이브러리 풀을 로딩하여 기도로 니들이 통과하는 모습을 확인하며 기관 내 주사(intratracheal injection)를 진행하였다.
일주일 후 0.9% 생리식염수를 심장을 통해 흘려주어 관류(perfusion)를 진행하였고 폐를 적출하였다. 균질화(Homogenization) 후 DNA 미니 킷 (Qiagen)을 이용해 폐 전체에서 DNA를 추출하였고, AAV cap 유전자 특이적 정방향 프라이머(forward primer) 5´-GCGGAAGCTTCGATCAACTACG-3´(서열번호 8), 역방향 프라이머(reverse primer) 5´-CGCAGAGACCAAAGTTCAACTGA-3´ (서열번호 9)를 이용하여 폐 전체에 향성(tropism)을 보이는 AAV 변이체들의 cap 유전자를 증폭하였다. 이를 폐 향성(tropic) AAV 라이브러리 풀로 제작하여 위와 동일한 방식으로 기관 내 주사(intratracheal injection)을 진행하였다. 일주일 후 관류(perfusion) 및 폐 적출을 진행하였고, 30초간 chopping하여 작은 조각으로 만든 후 콜라게나아제 II를 이용하여 single 세포 해리(cell dissociation)를 진행하였다. 이때 DNase I을 첨가하여 dead cell로부터 방출된 chromosomal DNA에 의한 세포 클러스터링(cell clustering)을 방지하여 cell loss를 최소화하고자 하였다. 이를 37 ℃에서 4-6 시간 동안 인큐베이션 후 피펫팅을 통해 단일 세포 형태의 total lung population을 얻었고, red blood cell lysis를 상온에서 빛을 차단한 상태로 진행한 뒤 70μm의 pore를 가진 cell strainer에 걸러 FACS 버퍼로 세포를 옮겼다. 이후 폐 조직 내 국소 향성(tropism)을 보이는 AAV 변이체를 선별하기 위해 10μg의 α-sma-APC 항체를 첨가 후 4 ℃에서 인큐베이션을 진행하였다. 이후, APC(Anti-alpha smooth muscle actin antibody) positive cells를 sorting하여 기관지 관련 세포를 선별하였고, cell lysis 및 DNA extraction 후, 위 AAV cap 유전자 특이적 프라이머 정보를 이용해 기관지 tropic cap 유전자 증폭을 진행하였다. 이를 두 번째 AAV library로 제작하여 intratracheal injection 및 sorting 작업을 동일하게 진행하였다. 3번의 in vivo selection 후, 최종적으로 증폭된 cap gene 유전자는 양 말단에 HindIII와 NotI 서열을 포함하여 이를 pSub2 플라스미드에 HindIII/NotI restriction 및 ligation을 통해 서브클로닝하여 DH10β에 electroporation 후 플라스미드를 정제하여(Qiagen Plasmid Maxi Kit) 기관지 향성 플라스미드 풀(pool) 형태로 보관하였다. (pSub2는 pSub201(ATCC)를 기반으로 UC Berkeley, David Schaffer Lab에서 제작한 플라스미드로 HindIII와 NotI을 이용해 cap gene을 subcloning 할 수 있도록 제작됨, Reference 1. Narendra Maheshri et al., Nature Biotechnology, 2006; 2. James T Koerber, Nature Protocols, 2006)
2) 재조합 AAV1 벡터(AAV1 #3-32 및 #3-65 변이체)의 제작
① 패키징 플라스미드 돌연변이체의 제작
혈관 향성 플라스미드 풀에서 HindIII/NotI restriction을 통해 다수의 기관지 향성 cap 유전자를 cap 유전자 삽입을 위해 HindIII 및 NotI이 도입되어 있는 pXX2(UC Berkeley, David Schaffer Lab)에 subcloning하여 reporter gene 탑재를 위한 다수의 기관지 특이적 플라스미드 돌연변이체의 제작을 완료하였다.
② AAV293 세포로의 플라스미드 도입
AAV1 #3-32 및 #3-65 변이체의 제작
돌연변이체 플라스미드 17 μg, ITR flanked reporter gene (pCMV-GFP 또는 pCMV-LacZ 또는 pCMV-FGF12-IRES-GFP) 17 μg, pHelper 17μg을 calcium-phosphate complex를 이뤄 AAV293 세포에 트랜스펙션하였고, 약 48시간 후 세포 펠렛만을 모아 동결-해동(freezing-thawing)을 통해 세포 내부의 AAV를 추출하였다. 이후 원심분리를 통해 세포 파괴물(cell debris)을 제거하고 벤조나아제(benzonase) 10 U/mL를 37 ℃에서 30분간 인큐베이션하여 바이러스 생산 세포로부터 나온 핵산을 제거하였다.
제작된 AAV1 #3-32 및 #3-65 변이체의 개열지도는 도 5a 및 도 5b에 나타내었으며, AAV1 #3-32 및 #3-65 변이체의 전체 염기서열은 각각 다음과 같다.
AAV-2 Rep gene #3-32 Cap gene Ampicillin Resistance (bla) gene(서열번호 6)
GCGCGCCGATATCGTTAACGCCCCGCGCCGGCCGCTCTAGAACTAGTGGATCCCCCGGAAGATCAGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCTGATCTGCGCAGCCGCCCCAACATCGCGGAGGCCATAGCCCACACTGTGCCCTTCTACGGGTGCGTAAACTGGACCAATGAGAACTTTCCCTTCAACGACTGTGTCGACAAGATGGTGATCTGGTGGGAGGAGGGGAAGATGACCGCCAAGGTCGTGGAGTCGGCCAAAGCCATTCTCGGAGGAAGCAAGGTGCGCGTGGACCAGAAATGCAAGTCCTCGGCCCAGATAGACCCGACTCCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACGGGAACTCAACGACCTTCGAACACCAGCAGCCGTTGCAAGACCGGATGTTCAAATTTGAACTCACCCGCCGTCTGGATCATGACTTTGGGAAGGTCACCAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCAGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGAATGAATCAGAATTCAAATATCTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCATATCATGGGAAAGGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAATGTGGATTTGGATGACTGCATCTTTGAACAATAAATGATTTAAATCAGGTGGAAATTGAATGGGAGCTGCAGAAAGAAAACAGCAAGCGCTGGAATCCCGAAGTGCAGTACACATCCAATTATGCAAAATCTGCCAACGTTGATTTTACTGTGGACAACAATGGACTTTATACTGAGCCTCGCCCCATTGGCACCCGTTACCTTACCCGTCCCCTGTAAAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAAGCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTTCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTACCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCCTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAA
<AAV1 #3-32 변이체>
AAV-2 Rep gene #3-65 Cap gene Ampicillin Resistance (bla) gene(서열번호 7)
GCGCGCCGATATCGTTAACGCCCCGCGCCGGCCGCTCTAGAACTAGTGGATCCCCCGGAAGATCAGAAGTTCCTATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCTGATCTGCGCAGCCGCCCCAACATCGCGGAGGCCATAGCCCACACTGTGCCCTTCTACGGGTGCGTAAACTGGACCAATGAGAACTTTCCCTTCAACGACTGTGTCGACAAGATGGTGATCTGGTGGGAGGAGGGGAAGATGACCGCCAAGGTCGTGGAGTCGGCCAAAGCCATTCTCGGAGGAAGCAAGGTGCGCGTGGACCAGAAATGCAAGTCCTCGGCCCAGATAGACCCGACTCCCGTGATCGTCACCTCCAACACCAACATGTGCGCCGTGATTGACGGGAACTCAACGACCTTCGAACACCAGCAGCCGTTGCAAGACCGGATGTTCAAATTTGAACTCACCCGCCGTCTGGATCATGACTTTGGGAAGGTCACCAAGCAGGAAGTCAAAGACTTTTTCCGGTGGGCAAAGGATCACGTGGTTGAGGTGGAGCATGAATTCTACGTCAAAAAGGGTGGAGCCAAGAAAAGACCCGCCCCCAGTGACGCAGATATAAGTGAGCCCAAACGGGTGCGCGAGTCAGTTGCGCAGCCATCGACGTCAGACGCGGAAGCTTCGATCAACTACGCAGACAGGTACCAAAACAAATGTTCTCGTCACGTGGGCATGAATCTGATGCTGTTTCCCTGCAGACAATGCGAGAGAATGAATCAGAATTCAAATATCTGCTTCACTCACGGACAGAAAGACTGTTTAGAGTGCTTTCCCGTGTCAGAATCTCAACCCGTTTCTGTCGTCAAAAAGGCGTATCAGAAACTGTGCTACATTCATCATATCATGGGAAAGGTGCCAGACGCTTGCACTGCCTGCGATCTGGTCAATGTGGATTTGGATGACTGCATCTTTGAACAATAAATGATTTAAATCAGGTGGAAATTGAATGGGAGCTGCAGAAAGAAAACAGCAAGCGCTGGAATCCCGAAGTGCAGTACACATCCAATTATGCAAAATCTGCCAACGTTGATTTTACTGTGGACAACAATGGACTTTATACTGAGCCTCGCCCCATTGGCACCCGTTACCTTACCCGTCCCCTGTAAAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAAGCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTTCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTACCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCCTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAA
<AAV1 #3-65 변이체>
야생형 AAV1의 제작
AAV2의 rep 유전자와 AAV1의 cap 유전자를 포함하는 패키징 플라스미드 17 μg, ITR flanked reporter gene (pCMV-GFP 또는 pCMV-LacZ 또는 pCMV-FGF12-IRES-GFP) 17 μg, pHelper 17μg을 calcium-phosphate complex를 이뤄 AAV293 세포에 트랜스펙션하였고, 약 48시간 후 세포 펠렛만을 모아 동결-해동(freezing-thawing)을 통해 세포 내부의 AAV를 추출하였다. 이후 원심분리를 통해 세포 파괴물(cell debris)을 제거하고 벤조나아제(benzonase) 10 U/mL를 37 ℃에서 30분간 인큐베이션하여 바이러스 생산 세포로부터 나온 핵산을 제거하였다.
3) AAV1 #3-32 및 #3-65 변이체 정제
AAV 용액을 이오딕사놀 기울기(gradient)를 이용해 초원심분리를 진행하였다. 이오딕사 용액을 15%, 25%, 40%, 54%로 제작하여 차례로 초원심분리 튜브에 로딩하였고, 그 위로 AAV 용액을 로딩하였다. 튜브 실링(Tube sealing) 후 Optima XE-90 Ultracentrifuge (BECKMAN COULTER) 및 Vti65.2 rotor를 이용해 초원심분리를 진행(42,000 RPM, 18 ℃, 2시간)하였다. 54%와 40% 이오딕사놀 중간에 위치한 AAV 층을 추출하였고, 이를 Amicon Ultra-15 Centrifugal Filter (MWCO 100,000)를 이용해 0.01% 트윈 20을 함유한 PBS 버퍼로 버퍼 교환(buffer exchange)을 진행하였다.
4) AAV1 #3-32 및 #3-65 변이체 역가 측정
CMV-FGF12-IRES-GFP를 탑재하고 있는 야생형 AAV1과 AAV1 #3-32 및 #3-65 변이체의 역가는 Dnase I(5U)에 저항성을 지닌 바이러스를 프로테이나제 K 처리하여 바이러스 게놈을 추출한 후, CMV에 대한 정량적 PCR (qPCR) 프라이머(5-ATGGTGATGCGGTTTTGGCAG-3: 서열번호 10 및 5-GGCGGAGTTGTTACGACATTTTGG-3: 서열번호 11)를 이용하여 각각의 standard와 함께 qPCR를 진행하여 정량하였다.
야생형 AAV1과 재조합 AAV1 벡터(#3-32 및 #3-65 변이체)의 패키징 효율(packaging efficiency)을 genomic titer 비교하여 도 1에 나타내었다. 이는 #3-32 및 #3-65 변이체가 야생형 AAV1에 비해 packaging 효율이 향상된 것으로 진화론적으로 우수하게 개체가 유지될 수 있는 가능성을 의미한다.
실시예 2: 재조합 AAV1 변이체 감염 확인
1) 인 비트로 실험
리포터 유전자로서 유전자 전달 효율 및 위치 분석을 위해 CMV-GFP를 탑재한 AAV1 야생형과 #3-32 및 #3-65 변이체를 각각 패키징하여 HEK293T (2x104 cells/20 μL)에 감염시켰다.
각각의 바이러스는 CMV-FGF12-IRES-GFP를 탑재하였으며, GFP를 탑재한 경우에는 HEK293T 감염 (MOI 10,000) 48시간 이후에 유세포 분석기(flow cytometry)를 통해 전체 배양 세포 중 GFP 발현 세포의 비율(%)을 분석하여 감염능을 확인하였으며, 그 결과는 도 2에 나타내었다.
도 2는 HEK293T 형질도입 효율 향상을 전체 배양세포 중 GFP를 발현하는 세포의 비율로 분석한 것이다.
2) 인 비보 실험
CMV-LacZ를 탑재한 AAV1 야생형과 #3-32 및 #3-65 변이체를 각각 패키징하여 8주령의 C57BL/6 male 마우스에 기관 내 에어로졸 형태로 주입 (1x1011 vg/100μl)하였다.
재조합 AAV1 벡터(#3-32 및 #3-65 변이체)의 폐 기관지 특이성을 확인하기 위하여, 8주령 C57BL/6 수컷 마우스를 주입 1주일 후 적출된 폐에 전체 마운트 β-갈락토시다아제 염색하여 LacZ 발현을 확인한 결과, 도 3a 및 3b에 나타나는 바와 같이 폐 기관지에 특이적으로 국소 전달되었음을 확인하였다.
또한, 재조합 AAV1 벡터(#3-32 및 #3-65 변이체)의 폐 기관지 특이성을 확인하기 위하여, 8주령 C57BL/6 수컷 마우스를 주입 1주일 후 폐 적출하여 eosin / LacZ staining을 통해서 폐 기관지에서의 LacZ 발현 여부를 확인하였으며, 그 결과, 도 4a 및 4b에 나타나는 바와 같이, 폐 기관지에 특이적으로 전달되었음을 확인하였다.
아울러, LacZ를 탑재한 wtAAV1(1.25x1011vg/kg), #3-65(5.38x1011vg/kg) vector를 PBS+0.01% Tween20에 분산하여 1ml의 액상 형태로 돼지 기도에 주입하고, 2주 후 희생하여 4% PFA 고정 후 X-gal staining을 진행한 결과, airway를 포함한 lung section에서의 gene expression을 보이지 않는 wtAAV1 대비 #3-65 조건에서는 기도 부분과 폐 조직 내 airway 부분에서 LacZ의 local expression을 확인하였다(도 6).

Claims (13)

  1. 아데노 부속 바이러스 혈청형 1(AAV1) 캡시드 단백질의 돌연변이체로서,
    상기 돌연변이체는 서열번호 1로 표시되는 야생형의 AAV1 캡시드 단백질의 아미노산 서열에서 326번, 452번, 및 456번 중 하나 이상의 위치에 존재하는 아미노산이 치환된 것인 AAV1 캡시드 단백질의 돌연변이체.
  2. 제 1항에 있어서,
    상기 돌연변이체는 서열번호 1로 표시되는 야생형의 AAV1 캡시드 단백질의 아미노산 서열 중 326번 위치의 트레오닌이 알라닌으로 치환되고, 452번 위치의 글루타민이 프롤린으로 치환된 것인 AAV1 캡시드 단백질의 돌연변이체.
  3. 제 1항에 있어서,
    상기 돌연변이체는 서열번호 1로 표시되는 야생형의 AAV1 캡시드 단백질의 아미노산 서열 중 456번 위치의 알라닌이 트레오닌으로 치환된 것인 AAV1 캡시드 단백질의 돌연변이체.
  4. 제 2항의 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산.
  5. 제 3항의 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산.
  6. 제 4 항에 있어서,
    서열번호 4로 표시되는 염기서열을 가지는 핵산.
  7. 제 5 항에 있어서,
    서열번호 5로 표시되는 염기서열을 가지는 핵산.
  8. 제4항 또는 제5항의 AAV1 캡시드 단백질의 돌연변이체를 코딩하는 핵산을 포함하는 재조합 AAV1 벡터.
  9. 제 8 항에 있어서,
    상기 AAV1 벡터는 AAV1 야생형 바이러스 벡터와 비교할 때, 폐 기관지에 대해 향상된 형질도입 프로파일을 갖는, 재조합 AAV 벡터.
  10. 제 8항에 따른 재조합 AAV1 벡터를 포함하는 약제학적 조성물.
  11. 제 10 항에 있어서,
    상기 조성물은 약제학적으로 허용 가능한 담체를 추가로 포함하는 약제학적 조성물.
  12. 제 10 항에 있어서,
    상기 조성물은 폐기관지 염 또는 기관지확장증의 예방 또는 치료를 위한 약제학적 조성물.
  13. 제 8항에 따른 재조합 AAV1 벡터를 포함하는 유전자 전달체.
PCT/KR2023/015391 2022-10-06 2023-10-06 폐 기관지 특이적 유전자 전달이 가능한 아데노부속바이러스 벡터 WO2024076190A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220127751A KR20240048599A (ko) 2022-10-06 2022-10-06 폐 기관지 특이적 유전자 전달이 가능한 아데노부속바이러스 벡터
KR10-2022-0127751 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024076190A1 true WO2024076190A1 (ko) 2024-04-11

Family

ID=90608399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015391 WO2024076190A1 (ko) 2022-10-06 2023-10-06 폐 기관지 특이적 유전자 전달이 가능한 아데노부속바이러스 벡터

Country Status (2)

Country Link
KR (1) KR20240048599A (ko)
WO (1) WO2024076190A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292595A1 (en) * 2004-06-03 2008-11-27 Arbetman Alejandra E AAV vectors for gene delivery to the lung
WO2017201121A1 (en) * 2016-05-17 2017-11-23 University Of Florida Research Foundation, Inc. Recombinant aav for gene therapy in lungs
KR20190117571A (ko) * 2017-02-15 2019-10-16 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 혈관계를 통한 유전자 전달 방법 및 조성물
WO2020068990A1 (en) * 2018-09-26 2020-04-02 California Institute Of Technology Adeno-associated virus compositions for targeted gene therapy
US20220089651A1 (en) * 2015-09-28 2022-03-24 The University Of North Carolina At Chapel Hill Methods and compositions for antibody-evading virus vectors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017007737A2 (pt) 2014-10-21 2018-01-30 Univ Massachusetts variantes de aav recombinantes e usos das mesmas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080292595A1 (en) * 2004-06-03 2008-11-27 Arbetman Alejandra E AAV vectors for gene delivery to the lung
US20220089651A1 (en) * 2015-09-28 2022-03-24 The University Of North Carolina At Chapel Hill Methods and compositions for antibody-evading virus vectors
WO2017201121A1 (en) * 2016-05-17 2017-11-23 University Of Florida Research Foundation, Inc. Recombinant aav for gene therapy in lungs
KR20190117571A (ko) * 2017-02-15 2019-10-16 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 혈관계를 통한 유전자 전달 방법 및 조성물
WO2020068990A1 (en) * 2018-09-26 2020-04-02 California Institute Of Technology Adeno-associated virus compositions for targeted gene therapy

Also Published As

Publication number Publication date
KR20240048599A (ko) 2024-04-16

Similar Documents

Publication Publication Date Title
EP2412387B1 (en) Methods and compositions for the treatment of cirrhosis and liver fibrosis
KR101014207B1 (ko) 아데노-결합 바이러스 (aav) 서열을 검출 및/또는 확인하는 방법 및 그 방법에 의해 확인된 신규한 서열을 분리하는 방법
US9938541B2 (en) AAV variant
JP7417303B2 (ja) 血管性浮腫の治療としてのc1eiのアデノ随伴ウイルス介在性送達
US8420372B2 (en) Porcine adeno-associated viruses
US11028131B2 (en) Mutant of adeno-associated virus (AAV) capsid protein
JP2002529098A (ja) アデノ随伴ウイルス血清型1核酸配列、ベクターおよび同一物を含有する宿主細胞
CN111876432B (zh) 一组肝靶向新型腺相关病毒的获得及其应用
US20220162637A1 (en) Aav mutant having brain-targeting property
EP3390623B1 (en) Wilson&#39;s disease gene therapy
WO2023101281A1 (ko) 아데노 관련 바이러스 캡시드 단백질의 돌연변이체
WO2024076190A1 (ko) 폐 기관지 특이적 유전자 전달이 가능한 아데노부속바이러스 벡터
KR20230091788A (ko) 폐 세포 특이적 유전자 전달이 가능한 아데노부속바이러스 벡터
KR20230081958A (ko) 아데노 관련 바이러스 캡시드 단백질의 돌연변이체
CN118401543A (zh) 腺相关病毒衣壳蛋白突变体
JP2024541000A (ja) アデノ随伴ウイルスカプシドタンパク質の突然変異体
WO2024027632A1 (en) Novel plasmid backbone to reduce dna impurities in raav preparation
EP4410988A1 (en) An aav2-vector variant for targeted transfer of genes
WO2023078220A1 (zh) 分离的核酸分子及其应用
CN117886898A (zh) 腺相关病毒变体及其应用
WO2024160770A1 (en) An aav9 capsid variant for targeted gene transfer
CN117886897A (zh) 一种腺相关病毒变体及其应用
CN114507692A (zh) 用于治疗法布里病的腺相关病毒载体及其用途
CN112029800A (zh) 检测和/或鉴定腺伴随病毒(aav)序列以及分离所鉴定的新型序列的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23875251

Country of ref document: EP

Kind code of ref document: A1