WO2024053272A1 - 円筒形電池用ガスケットおよび当該ガスケットを備える円筒形電池 - Google Patents
円筒形電池用ガスケットおよび当該ガスケットを備える円筒形電池 Download PDFInfo
- Publication number
- WO2024053272A1 WO2024053272A1 PCT/JP2023/027320 JP2023027320W WO2024053272A1 WO 2024053272 A1 WO2024053272 A1 WO 2024053272A1 JP 2023027320 W JP2023027320 W JP 2023027320W WO 2024053272 A1 WO2024053272 A1 WO 2024053272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gasket
- cylindrical battery
- open end
- insulating ring
- cylindrical
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/107—Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/148—Lids or covers characterised by their shape
- H01M50/152—Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/166—Lids or covers characterised by the methods of assembling casings with lids
- H01M50/167—Lids or covers characterised by the methods of assembling casings with lids by crimping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/184—Sealing members characterised by their shape or structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/586—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
- H01M50/593—Spacers; Insulating plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to a cylindrical battery gasket and a cylindrical battery including the gasket.
- nickel-hydrogen batteries have been used in various fields as a typical cylindrical secondary battery.
- a sealing body equipped with a safety valve is placed at the open end of a cylindrical outer can with a bottom, via an insulating gasket, and then the outer can is caulked to close the open end with the sealing body.
- This is a common configuration.
- the mainstream process is to fit the sealing body into the gasket in advance and then arrange it together with the gasket at the open end of the battery can.
- the cylindrical battery gasket of the present disclosure is an insulating cylindrical battery gasket into which a sealing body that seals the opening of a bottomed exterior can of a cylindrical battery is fitted.
- an inclined surface comprising a cylindrical peripheral wall rising upward from the periphery of the bottom, the outer diameter of the peripheral wall expanding upward so as to be larger than the inner diameter of the open end of the outer can;
- the gasket is provided over the entire outer periphery of the gasket, and the peripheral wall has a shape in which the thickness of the wall gradually increases toward the top.
- FIG. 1 is a longitudinal cross-sectional view showing a cylindrical battery according to one embodiment.
- FIG. 2 is a schematic diagram showing a cylindrical battery gasket and a cylindrical battery outer can according to one embodiment.
- FIG. 3 is a schematic diagram showing a state in which the gasket is placed at the open end of the battery can in the initial stage of the crimping process.
- FIG. 4 is a schematic diagram showing the gasket and the outer can in a caulked state.
- FIG. 5A is a schematic diagram for explaining an improved insulating ring.
- FIG. 5B is a schematic diagram for explaining an improved insulating ring.
- FIG. 6 is a schematic diagram for explaining a conventional gasket.
- FIG. 1 shows a nickel-hydrogen secondary battery 1 as a cylindrical battery according to an embodiment of the present disclosure.
- the battery 1 is, for example, an AA size cylindrical battery with a height of 50.5 mm and an outer diameter of 14.5 mm, and includes an outer can 10 in the shape of a bottomed cylinder with an open end.
- the outer can 10 is formed by multi-stage pressing of a nickel-plated steel plate into a bottomed cylindrical shape with an open end 10A at one end and a closed bottom 10B at the other end. Further, the outer surface of the bottom portion 10B serving as the bottom wall of the outer can 10 functions as a conductive negative electrode terminal.
- a substantially cylindrical electrode group 12 is housed together with an alkaline electrolyte (not shown).
- the electrode group 12 includes a positive electrode plate 16, a negative electrode plate 18, and a separator 20, each of which has a strip shape.
- a separator 20 is sandwiched between the positive electrode plate 16 and the negative electrode plate 18.
- the positive electrode plate 16, the negative electrode plate 18, and the separator 20 are spirally wound.
- a portion of the negative electrode plate 18 is located at the outermost periphery of the electrode group 12.
- the negative electrode plate 18 is electrically connected to the outer can 10 by the outermost portion of the negative electrode plate 18 coming into contact with the inner peripheral surface 10C of the outer can 10 .
- the positive electrode plate 16 is a strip-shaped electrode filled with a positive electrode active material.
- the negative electrode plate 18 is a band-shaped electrode made of a hydrogen storage alloy.
- the separator 20 is made of, for example, a nonwoven fabric of polyolefin fibers with hydrophilic groups added thereto.
- the alkaline electrolyte for example, a potassium hydroxide aqueous solution, a lithium hydroxide aqueous solution, a sodium hydroxide aqueous solution, or a mixed solution thereof is used.
- a current collector tab 22 is electrically connected to the positive electrode plate 16 near the open end 10A of the outer can 10.
- the other end of the current collecting tab 22 is electrically connected to a circular sealing plate 24 having conductivity.
- the sealing plate 24 as a sealing body has a gas vent hole 26 in the center.
- a rubber valve body 28 is arranged on the outer surface of the sealing plate 24 so as to close the gas vent hole 26.
- a flanged cylindrical positive electrode terminal 30 that covers the valve body 28 is fixed on the outer surface of the sealing plate 24 . This positive electrode terminal 30 presses the valve body 28 against the sealing plate 24.
- the length (for example, horizontal length) of the positive electrode terminal 30 may be shorter than that shown, or longer than that shown.
- the positive electrode terminal 30 may be sandwiched between the sealing plate 24 and the gasket 32, or may not be sandwiched between the sealing plate 24 and the gasket 32. Furthermore, the positive electrode terminal 30 may be placed so as to be embedded in the sealing plate 24 or placed on the upper surface of the sealing plate 24.
- the gas vent hole 26 is normally closed airtight by a valve body 28.
- the valve body 28 is compressed and the gas vent hole 26 communicates with the outside, so that gas is released from the outer can 10. .
- the sealing plate 24, the valve body 28, and the positive terminal 30 form a safety valve.
- the sealing plate 24 is arranged on the open end 10A side of the outer can 10.
- a gasket 32 made of an insulating material is sandwiched between the outer peripheral portion of the sealing plate 24 and the inner peripheral surface 10C of the outer can 10.
- the insulating material is, for example, fluororesin such as PTFE, PFA, FEP, or nylon resin (polyamide).
- the sealing plate 24 and gasket 32 are fixed to the open end 10A of the outer can 10 by caulking the open end 10A side portion of the outer can 10 toward the sealing plate 24, and close the open end 10A. do. Caulking is a method of fixing one part to another by deforming a part of the part.
- the gasket 32 prevents a short circuit between the sealing plate 24 connected to the positive electrode terminal 30 and the outer can 10 which forms a negative electrode terminal through electrical connection with the negative electrode plate 18 . Further, the gasket 32 prevents the electrolyte from leaking from the outer can 10.
- the outer can 10 has a circular shape that protrudes from the inner circumferential surface 10C toward the central axis X of the battery and reduces the inner diameter at a portion slightly closer to the bottom 10B than the open end 10A.
- a sealing plate receiving portion 10D extending in the circumferential direction is formed. This sealing plate receiving portion 10D is a portion where the sealing plate 24 inserted from the open end 10A of the outer can 10 is placed inside the outer can 10 via the gasket 32.
- the peripheral portion of the opening area 10E, the outer surface of the peripheral wall of the exterior can, and the peripheral portion of the bottom portion 10B are covered with an exterior label 36 made of a heat-shrinkable material. Insulated.
- the open area 10E is a circular area formed by the caulked open end 10A, and from which the positive electrode terminal 30 protrudes to the outside.
- a flat donut-shaped (annular) insulating ring 34 is arranged between the peripheral portion of the opening region 10E and the exterior label 36. The purpose of the insulating ring 34 is to prevent short circuits in the battery 1, particularly to prevent short circuits between the positive electrode terminal 30 and the outer can 10.
- This insulating ring 34 is made of an insulating material such as cellulose fiber or polypropylene resin, for example.
- the conventional gasket includes a cylindrical portion having the same shape as the outer can 10.
- the outer circumferential surface 132A of this conventional gasket 132 extends upward from the periphery of the bottom 132B of the gasket 132 so that it is parallel to the inner circumferential surface 10C on the open end 10A side of the outer can 10 when inserted. It extends vertically.
- the sealing body 24 inserted into the exterior can 10 together with the gasket 132 together with the gasket 132 has an outer peripheral surface formed into a cylindrical shape.
- the inner circumferential surface 132C of the gasket 132 into which the sealing body 24 is fitted also has a cylindrical surface.
- the open end 10A is caulked. Problems may occur when the gasket 132 deforms due to this. Specifically, when the upper portion of the peripheral wall of the gasket 132 is bent in the direction of the central axis of the battery during this deformation, the sealing plate 24 may be lifted up and displaced from the pre-fitted position of the gasket 132 or may come off the gasket. This is a problem.
- the gasket 32 according to the present embodiment shown in FIG. 2 addresses this problem.
- the outer peripheral surface is an inclined surface that gradually increases in diameter so that the outer diameter of the peripheral wall of the gasket is larger than the inner diameter of the open end 10A of the outer can 10.
- 32A is provided all around the outer periphery of the gasket 32.
- the outer circumferential surface 32A of the gasket 32 according to the present embodiment has a straight line along the outer circumferential surface 32A and the reference plane.
- 32Y has an inclination whose angle with the straight line is an angle Theta.
- the slope of the outer circumferential surface 32A is such that the outer circumferential portion of the gasket 32 increases in diameter upward.
- the outer circumferential surface 32A is inclined with respect to the reference surface 32Y such that the upper side faces outward in the radial direction. That is, the outer circumferential surface 32A extends upward from the periphery of the bottom 32B of the gasket 32 while being inclined radially outward at an angle Theta.
- the peripheral wall of the gasket 32 has a shape in which the thickness of the wall gradually increases toward the top until it reaches the width W at the upper end of the gasket.
- the battery 1 is constructed by inserting the electrode group 12 into the open end 10A of the outer can 10, then welding one end of the current collector tab 22 to a predetermined portion of the positive electrode plate 16, and applying an alkaline electrolyte. is injected into the outer can 10.
- the gasket 32 is placed in a space defined by its inner peripheral surface 32C with the sealing plate 24 fitted in advance so as to be in contact with the seat portion 32D of the gasket 32. Further, as shown in FIG. 3, the gasket 32 is pushed into the exterior can 10 from its open end 10A toward the bottom 10B. As the gasket 32 is pushed into the outer can 10, its diameter increases toward the top, and the outer circumferential surface 32A of the outer circumferential portion, which is inclined radially outward, is aligned with the inner circumference of the open end 10A. It becomes parallel to the surface 10C and comes into contact with the inner peripheral surface 10C.
- the gasket 32 is deformed such that the thick upper portion thereof is bent radially inward toward the central axis X of the battery. Due to this deformation, the sealing plate 24 is fixed to the inner circumferential surface 32C of the gasket 32 so that the outer peripheral portion thereof is wrapped around the inner circumferential surface 32C. Thereafter, the sealing plate 24 is further pushed into the bottom portion 10B side together with the gasket 32 in this fixed state, and is placed above the constricted portion forming the sealing plate receiving portion 10D. At this time, the other end of the current collecting tab 22 is connected to the sealing plate 24. At least a portion of the current collecting tab 22 may be connected to the sealing plate 24 . For this reason, the current collector tab 22 may be arranged on the lower surface of the sealing plate 24 so as to straddle the gas vent hole 26, or may be arranged on the lower surface of the sealing plate 24 without straddling the gas vent hole 26. .
- the edge of the open end 10A of the outer can 10 is oriented toward the central axis X of the battery along with the thickened open end of the gasket 32 using a jig. It can be bent.
- the sealing plate 24 is placed together with the gasket 32 at the open end of the battery can as described above, the sealing plate 24 is already arranged so that the outer circumferential portion thereof is wrapped around the inner circumferential surface 32C of the gasket 32. It is fixed in close contact with the Therefore, when the outer can 10 is caulked, the sealing plate 24 is prevented from shifting from the previously fitted position or coming off from the gasket 32 due to the action of the gasket 32.
- the sealing plate 24 when caulking the outer can 10, the sealing plate 24 is prevented from shifting or coming off from the gasket 32, that is, the movement of the sealing plate 24 relative to the gasket 32 is suppressed. Contact between the electrode and the outer can 10, that is, a short circuit between the electrodes can be suppressed. Further, in this case, since the sealing plate 24 is fixed to a predetermined location with respect to the outer can 10, occurrence of appearance defects of the battery 1 can also be suppressed. Thereafter, the sealing plate receiving portion 10D is formed by a portion of the outer can 10 that is constricted in advance to reduce the inner diameter. Further, in order to caulk the outer can 10 as necessary and sufficient, pressure is applied to the outer can 10 in the direction of the central axis X.
- FIG. 4 shows the outer can 10 after the outer can 10 has been caulked and the open end 10A has been sealed with the sealing plate 24.
- the thickened part of the gasket 32 crushed by caulking moves from between the open end 10A of the outer can 10 and the sealing plate 24 to the positive electrode terminal 30 side. As it extends, the extended portion projects upward to form a protrusion 32E.
- the part of the outer circumference of the gasket 32 crushed by caulking which is thicker than the conventional gasket, becomes the open end of the exterior can 10. The space between the inner circumferential surface 10C of 10A and the sealing plate 24 is sealed.
- a gap is less likely to occur around the gasket 32, especially between the gasket 32 and the inner peripheral surface 10C of the open end 10A, and the airtightness between the upper part of the gasket 32 and the end of the outer can is improved.
- the occurrence of electrolyte leakage can be suppressed.
- the protruding portion 32E of the gasket 32 formed by caulking is also useful for suppressing contact between the sealing plate 24 and the exterior can 10, that is, suppressing short circuits of the electrodes.
- the height "H" of the protrusion 32E from the upper end surface of the outer can 10 after caulking is 1 mm or less. In particular, it is preferably in the range of 0.01 to 1.00 mm. This is because if the height "H" of the protrusion 32E exceeds 1 mm, there is a possibility that the insulating ring 34 may not be inserted properly into the outer can 10 due to the presence of the protrusion 32E. be. Note that depending on the shape of the outer can, the shape of the insulating ring, etc., the height H may be "1.01 mm or more".
- an insulating ring 34 is attached to the outer can 10 in order to prevent short-circuiting of the electrodes.
- a circular opening region 10E through which the positive electrode terminal 30 projects outside is formed by the caulked open end 10A.
- a flat donut-shaped insulating ring 34 is disposed around the periphery of the opening region 10E so as to cover the opening region.
- the insulating ring 34 arranged in this way is fixed to the upper surface of the peripheral portion of the periphery of the opening region 10E. As a result, the insulating ring 34 is attached.
- the protruding portion 32E of the gasket 32 protrudes upward from the peripheral edge of the opening region 10E.
- the protrusion 32E comes into contact with the lower surface of the insulating ring 34. Thereafter, especially for insulation purposes, the peripheral portion of the periphery of the open area 10E, the outer surface of the peripheral wall, and the peripheral portion of the bottom portion 10B of the outer can 10 are covered with an outer label 36. At this time, the surrounding portion of the periphery of the opening region 10E is covered by sandwiching the insulating ring 34 between the periphery of the periphery and the exterior label 36.
- cylindrical batteries were also manufactured using a gasket with an angle Theta of 30 degrees. and compared.
- Table 1 for example, in the case of a gasket whose angle Theta is "30 degrees", the width W of the upper end of the gasket is "1.60 mm", and in the case of a gasket after caulking the outer can, " A protrusion having a height of 1.20 mm is formed.
- the width W of the upper end of the gasket is “0.62 mm”, “0.98 mm”, and “1. 38mm”.
- protrusions having heights of "0.01 mm”, “0.50 mm”, and “1.00 mm” are formed, respectively.
- the angle Theta is "0 degree”
- the width W of the upper end of the gasket is "0.45 mm”
- the protrusion is Since it is not formed, its height H is "0.00 mm”.
- the comparative example may be applied to a nickel-metal hydride secondary battery or a gasket instead of the conventional technology.
- the thickness of the peripheral wall of the upper part of the gasket it is desirable to increase (thicken) the thickness of the peripheral wall of the upper part of the gasket within a certain range.
- the deformation of the gasket caused by caulking the outer can will increase the airtightness around the gasket, especially between the gasket and the inner circumferential surface of the outer can, thereby suppressing electrolyte leakage. can.
- the thickness of the circumferential wall of the upper part of the gasket is increased, the height H of the protrusion increases as described above, resulting in incorrect insertion of the insulating ring.
- FIGS. 5A and 5B show an improved insulating ring 34'.
- the modified insulating ring 34' may or may not be applied to the embodiment.
- the insulating ring 34' has a mountain-like bulge on the upper surface side of the previously flat annular portion 34'A, in contrast to a conventional donut-shaped (annular) flat insulating ring.
- a mountain-folded convex portion 34'B is provided.
- the convex portion 34'B When the height (thickness) of the annular portion 34'A of the insulating ring 34' is H1, the convex portion 34'B has a mountain-fold shape.
- the height of B to the top is H2.
- the upper diagram in FIG. 5A is a schematic diagram of the insulating ring 34' viewed from the top side.
- the lower view of FIG. 5A is a longitudinal cross-sectional view of the insulating ring 34' when viewed from the side surface thereof.
- the mountain-folded convex portion 34'B extends over the entire circumference of the annular portion 34'A of the insulating ring 34'.
- a concave portion with a space formed in an upward valley-fold shape is provided at a portion corresponding to the back surface side of the convex portion 34'B.
- the modified insulating ring 34' is configured to receive the protrusion 32E of the gasket 32 through this recess. Therefore, as shown in FIG. 5B, the mountain-folded convex portion 34'B is designed to accommodate the protruding portion 32E of the gasket 32 in the concave portion on the lower surface side of the convex portion 34'B. It is provided at a position where positional alignment with the protrusion 32E is ensured in the radial direction.
- cylindrical batteries 10 of AA size, 000 were manufactured and the differences were compared.
- insulating rings made of cellulose fibers were used here.
- three cases were compared in which the height H of the protrusion was varied by varying the thickness of the peripheral wall of the upper part of the gasket.
- the first example is a comparative example in which insertion failure occurred when using a conventional insulating ring, that is, a case in which a gasket with an angle Theta of "30 degrees” is used. Adopted.
- cases in which a gasket with an angle Theta of "40 degrees” and a gasket with an angle Theta of "45 degrees” are used are added as Examples 4 and 5, respectively, and these "Comparative Examples” and " Comparisons were made between three examples, ⁇ Example 4'' and ⁇ Example 5''.
- the angle Theta is expanded to 5 to 40 degrees, and the width W of the upper end of the gasket is expanded to 0.62 to 2.05 mm, so the upper part of the gasket is larger than when using a conventional insulation ring. It becomes possible to increase the thickness of the peripheral wall.
- the height H may be "1.81 mm or more” and the angle Theta may be "1 to 4 degrees, 41 degrees or more”.
- the width W of the upper end of the gasket may be "0.01 to 0.61, 2.06 mm or more".
- the outer circumferential surface of the sealing body is formed into a cylindrical shape, and the inner circumferential surface of the gasket into which the sealing body is fitted also has a cylindrical surface. Further, the gasket has a cylindrical shape for ease of insertion into the outer can. With this configuration, when the gasket is deformed by caulking the outer can in the caulking process, the sealing body may lift up and be displaced from the pre-fitted position of the gasket, or sometimes come off from the gasket. As a result, short circuits and poor appearance may occur in the completed battery, and electrolyte may leak from the gap around the gasket, especially between the gasket and the inner circumferential surface of the outer can. Ta.
- an exemplary object of the present disclosure is to provide a cylindrical battery gasket that can suppress movement of the sealing body relative to the gasket when caulking an outer can, and a cylindrical battery equipped with the gasket. It is to be.
- a first disclosure is an insulating gasket for a cylindrical battery into which a sealing body for sealing an opening of a bottomed exterior can of a cylindrical battery is fitted, the gasket comprising a bottom part and a periphery of the bottom part.
- the gasket has a cylindrical peripheral wall that rises upward from the outer can, and an inclined surface that expands in diameter so that the outer diameter of the peripheral wall is larger than the inner diameter of the open end of the outer can.
- the gasket is provided over the entire circumference of the outer circumferential portion, and the peripheral wall has a shape in which the thickness of the wall gradually increases toward the top.
- the second disclosure is an exterior can having a cylindrical shape, including an open end portion as one end in the axial direction of the exterior can, and a closed bottom portion as the other end in the axial direction.
- an outer can that can accommodate an electrode group and an electrolytic solution; a circular sealing body that seals an open end of the outer can; and an inner circumferential surface of the outer can and the sealing body at the open end of the outer can.
- the gasket being inserted into the open end of the outer can with the sealing body fitted, and the gasket being inserted into the open end of the outer can with the sealing body fitted, and
- a part of the gasket forms a protrusion that protrudes upward from a peripheral edge portion of a circular opening area formed by the opening end after being caulked.
- a cylindrical battery in which an annular and flat insulating ring is disposed around the periphery of the opening area so as to cover the opening area and is fixed to the upper surface of the peripheral area.
- a third disclosure is the cylindrical battery according to the second disclosure, wherein the protruding portion of the gasket is set from the surface of the upper end of the outer can after being caulked as a reference surface. It is a cylindrical battery with a protruding height in the range of 0.01 mm to 1.00 mm.
- a fourth disclosure is the cylindrical battery according to the second disclosure, wherein the insulating ring has a mountain fold shape extending over the entire circumference of the annular portion on the upper surface side of the flat annular portion.
- a convex portion is provided, and a concave portion formed in an upwardly valley-fold shape is provided on the lower surface side of the annular portion corresponding to the back side of the convex portion, and the insulating ring
- the recess is configured to receive a protrusion of the gasket when the gasket is disposed to cover the opening area, and the protrusion of the gasket is arranged on a surface of the upper end of the outer can after being caulked.
- the cylindrical battery is a cylindrical battery that protrudes so that the height from the reference surface is higher than when the annular portion of the insulating ring is not provided with the protrusions and recesses.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
図1は、本開示の一実施形態に係る円筒形電池として、ニッケル水素二次電池1を示している。
電池1は、図1に示すように、外装缶10の開口端部10Aより内部に電極群12を挿入した後、集電タブ22の一端を正極板16の所定部位に溶接し、アルカリ電解液を外装缶10内に注入する。
この後、封口板24は、ガスケット32とともにこの固定された状態で底部10B側にさらに押し込まれて、封口板受部10Dを形成するくびれた部分の上側に配置される。その際、集電タブ22の他端が封口板24に接続される。集電タブ22は、少なくとも一部が封口板24に接続されていればよい。このため、集電タブ22は、封口板24の下面においてガス抜き孔26を跨いで配置されていてもよく、封口板24の下面においてガス抜き孔26を跨がずに配置されていてもよい。
この後、封口板受部10Dは、外装缶10の予め内径を縮小するようにくびれさせた部分によって形成される。また、外装缶10を必要十分にかしめるために、外装缶10に対しては、中心軸線X方向の圧力を加える。
上記のようにかしめ工程が行われた後には、かしめにより押しつぶされたガスケット32の肉厚とされた部分が外装缶10の開口端部10Aと封口板24との間から正極端子30の側に延び出すとともに、その延出した部分が上方に突出して突出部32Eを形成する。
このように、本実施形態では、外装缶10がかしめられた後には、かしめによって押しつぶされたガスケット32の外周部の従来のガスケットよりも肉厚とされた部分が、外装缶10の開口端部10Aの内周面10Cと封口板24との間を密封するようになる。この場合、ガスケット32の周囲、特にガスケット32と開口端部10Aの内周面10Cとの間においては隙間が生じにくく、ガスケット32上部と外装缶端部との間の気密性が向上するので、本実施形態では電解液の液漏れの発生を抑制することができる。
その後、特に絶縁のために、外装缶10における、開口領域10Eの周縁の周辺部分と、周壁の外面と、底部10Bの周縁の周辺部分とは、外装ラベル36を用いて被覆される。このとき開口領域10Eの周縁の周辺部分に対する被覆は、その周縁の周辺部分と外装ラベル36との間に絶縁リング34を挟むようにして行われる。
なお、上記実施形態のガスケットについては、外周面の傾斜の角度Thetaが異なる場合の違いを見るために、3つの異なる角度Thetaのガスケットを用いて円筒形電池をそれぞれ製造して比較するようにした。角度Thetaは、1つ目の実施例1では「5度」、2つ目の実施例2では「15度」、3つ目の実施例3では「25度」とした。
なお、従来のガスケットは、外周部に傾斜を有さないため角度Thetaは「0度」であって、ガスケット上端部の幅Wは「0.45mm」となり、そして、この場合には突出部が形成されないのでその高さHは「0.00mm」となっている。比較例は、従来技術ではなく、比較例をニッケル水素二次電池やガスケットに適用してもよい。
なお、表1に示した比較例、つまり角度Thetaが「30度」で高さHが「1.20mm」のガスケットを使用した場合は、10,000本のうちの「12本」の電池に絶縁リングの挿入不良が発生した。他方、実施例1~3、つまり角度Thetaが「5~25度」で高さHが「0.01~1.00mm」のガスケットを使用した場合には、10,000本の電池の製造では、絶縁リングの挿入不良は全く発生しなかった。この結果から、上記実施形態のガスケットを使用する場合、外装缶への絶縁リングの挿入不良を発生させないためには、突出部の高さHを「0.01~1.00mm」の範囲にするのがよいと考えられる。
なお、表1から分かるように、比較例のガスケットを使用した場合においても、かしめ短絡不良、ガスケットずれ、および電解液漏れの製造不良については、10,000本の電池の製造では全く発生しなかった。
図5Aに示すように、絶縁リング34’には、従来のドーナツ状(環状)で平坦な絶縁リングと対比すると、その平坦とされていた環状部34’Aの上面側に山のように盛り上がる山折り状の凸部34’Bが設けられている。この山折り状の凸部34’Bは、絶縁リング34’の環状部34’Aの部分の高さ(厚み)がH1である場合に、当該環状部34’Aの上面から凸部34’Bの頂部までの高さがH2となるように形成されている。なお、図5Aの上側の図は、絶縁リング34’を、その上面側から見た模式図である。また、図5Aの下側の図は、絶縁リング34’を、その側面側から見た場合の縦断面図である。
山折り状の凸部34’Bは、絶縁リング34’の環状部34’Aに、その全周に亘って延在している。そして、絶縁リング34’の環状部34’Aの下面側において、当該凸部34’Bの裏面側にあたる部分には、上方に向かって谷折り状に形成された空間の凹部が設けられている。工夫を施した絶縁リング34’は、この凹部によって、ガスケット32の突出部32Eを受け入れるように構成されている。従って、山折り状の凸部34’Bは、図5Bに示すように、その下面側の凹部にガスケット32の突出部32Eを受け入れ可能とするために、絶縁リングの環状部34’Aでの径方向において当該突出部32Eとの位置的整合性が確保される位置に設けるようにする。
実施例は、ガスケット上部の周壁の厚さを異ならせて突出部の高さHを変化させた3つのケースについて比較した。具体的には、既述のとおり、従来の絶縁リングを使用した場合に挿入不良が発生した比較例、即ち、角度Thetaが「30度」のガスケットを使用するケースを1つ目の実施例に採用した。さらに、新たに、角度Thetaが「40度」のガスケット、および角度Thetaが「45度」のガスケットを使用するケースを、それぞれ実施例4、実施例5として加え、これらの「比較例」、「実施例4」、及び「実施例5」の3つの実施例について比較を行った。
ここで、表2に再度示すとおり、角度Thetaが「30度」のガスケットを使用した比較例の場合には、ガスケット上端部の幅Wは「1.60mm」となり、外装缶をかしめた後のガスケットにおいては「1.20mm」の高さを有する突出部が形成されている。また、新たなケースの角度Thetaが「40度」のガスケットを使用した実施例4、および「45度」のガスケットを使用した実施例5の場合には、ガスケット上端部の幅Wは、それぞれ「2.05mm」、「2.50mm」となった。そして、外装缶をかしめた後のガスケットにおいては、それぞれ「1.80mm」、「2.00mm」の高さを有する突出部が形成されている。
これらの結果から、工夫を施した絶縁リングを使用する場合には、ガスケットの突出部の高さHが「0.01~1.80mm」の範囲にあれば、外装缶への絶縁リングの挿入不良の発生を抑制することができると考えられる。この場合、角度Thetaは「5~40度」、ガスケット上端部の幅Wは「0.62~2.05mm」の範囲に拡大されるので、従来の絶縁リングを使用する場合よりもガスケット上部の周壁の厚さを増加させることができるようになる。なお、外装缶の形状や絶縁リングの形状等によっては、高さHは、「1.81mm以上」であってもよく、角度Thetaは「1~4度、41度以上」であってもよく、ガスケット上端部の幅Wは「0.01~0.61、2.06mm以上」であってもよい。
このように、工夫を施した絶縁リングを使用することで、ガスケット上部の周壁の厚さを増加させつつ、絶縁リングの挿入不良の発生を抑制することができる。そのため、工夫を施した絶縁リングを上記実施形態のガスケットと併用すれば、ガスケットの上部の周壁の厚さを増加させることが可能となるので、従来の絶縁リングを使用する場合と比べて、電解液の液漏れの発生を抑制することができる。
なお、表2から分かるように、実施例4および実施例5のガスケットを使用した場合においても、かしめ短絡不良、ガスケットずれ、および電解液漏れの製造不良については、10,000本の電池の製造では全く発生していない。
封口体は、外周面が円筒形に成形され、封口体が嵌合されるガスケットの内周面も同様に円筒面を有している。また、ガスケットは、外装缶への挿入のし易さから形状が円筒形とされている。当該構成では、かしめ工程において外装缶をかしめてガスケットが変形するときに、封口体が浮き上がって、ガスケットの予め嵌合された位置からずれてしまったり、ときにはガスケットから外れてしまうことがあった。その結果、完成した電池においては、短絡や外観不良が発生したり、ガスケットの周囲、特にガスケットと外装缶の内周面との間に生じた隙間から電解液の液漏れが発生することがあった。
第1の開示は、円筒形電池の有底外装缶の開口を封止する封口体が嵌合される絶縁性の円筒形電池用ガスケットであって、前記ガスケットは、底部と、この底部の周辺部から上方に向かって立ち上がる円筒状の周壁を備え、且つ前記周壁の外径を上方に向かって前記外装缶の開口端部の内径よりも大きくするように拡径する傾斜面が、当該ガスケットの外周部の全周に亘って設けられており、前記周壁は、壁の厚さが上部に向かって漸次増加する形状とされている、ガスケットである。
本開示の円筒形電池用ガスケット、および当該ガスケットを備える円筒形電池によれば、外装缶をかしめるときに封口体のガスケットに対する移動を抑制することができるようになる。
10 外装缶
10A 開口端部
10B 底部
10C 内周面
24 封口板(封口体)
32 ガスケット
32A 外周面(傾斜面)
32B 底部
32C 内周面
32D シート部
32E 突出部
32Y 基準面(仮想の外周面)
34 絶縁リング(従来)
34’ 絶縁リング(工夫を施したもの)
34’A 環状部
34’B 山折り状凸部
H 突出部の高さ
Theta 角度(傾斜の角度、傾斜)
W ガスケット上端部の幅
X 電池の中心軸線
Claims (4)
- 円筒形電池の有底外装缶の開口を封止する封口体が嵌合される絶縁性の円筒形電池用ガスケットであって、
前記ガスケットは、底部と、この底部の周辺部から上方に向かって立ち上がる円筒状の周壁を備え、且つ前記周壁の外径を上方に向かって前記外装缶の開口端部の内径よりも大きくするように拡径する傾斜面が、当該ガスケットの外周部の全周に亘って設けられており、
前記周壁は、壁の厚さが上部に向かって漸次増加する形状とされている、
ガスケット。 - 円筒形状を有する外装缶であって、外装缶の軸線方向の一端としての開口した開口端部と、その軸線方向の他端としての閉塞された底部とを含み、内部に電極群および電解液を収容可能な外装缶と、
前記外装缶の開口端部を封止する円形状の封口体と、
前記外装缶の開口端部において前記外装缶の内周面と前記封口体との間に配置される請求項1に記載のガスケットと、
を備え、
前記ガスケットは、前記封口体が嵌合された状態で前記外装缶の開口端部内に挿入され、且つ前記開口端部がかしめられた後の前記外装缶において、前記ガスケットの一部が、前記かしめられた後の前記開口端部によって形成された円形状の開口領域の周縁の部分から上方に突出する突出部を形成しており、
前記開口領域の周縁の周辺部分には、環状で平坦な絶縁リングが、前記開口領域を覆うように配置されると共に前記周辺部分の上面に固定されている、
円筒形電池。 - 請求項2に記載の円筒形電池であって、
前記ガスケットの突出部は、前記かしめられた後の前記外装缶の上端部の面を基準として、その基準の面からの高さが0.01mm~1.00mmの範囲で突出している、
円筒形電池。 - 請求項2に記載の円筒形電池であって、
前記絶縁リングには、その平坦な環状部の上面側に、環状部の全周に亘って延在する山折り状の凸部が設けられると共に、前記環状部の下面側において前記凸部の裏面側にあたる部分には、上方に向かって谷折り状に形成された凹部が設けられており、
前記絶縁リングは、前記開口領域を覆うように配置されるときに、前記凹部によって前記ガスケットの突出部を受け入れるように構成されており、
前記ガスケットの突出部は、前記かしめられた後の前記外装缶の上端部の面を基準として、その基準の面からの高さが前記絶縁リングの環状部に前記凸部および凹部が設けられていない場合よりも高くなるように突出している、
円筒形電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380057570.1A CN119654736A (zh) | 2022-09-05 | 2023-07-26 | 圆筒形电池用垫圈及包括所述垫圈的圆筒形电池 |
EP23862815.0A EP4586375A1 (en) | 2022-09-05 | 2023-07-26 | Cylindrical battery gasket, and cylindrical battery provided with said gasket |
JP2024545486A JPWO2024053272A1 (ja) | 2022-09-05 | 2023-07-26 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-140723 | 2022-09-05 | ||
JP2022140723 | 2022-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024053272A1 true WO2024053272A1 (ja) | 2024-03-14 |
Family
ID=90192355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/027320 WO2024053272A1 (ja) | 2022-09-05 | 2023-07-26 | 円筒形電池用ガスケットおよび当該ガスケットを備える円筒形電池 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4586375A1 (ja) |
JP (1) | JPWO2024053272A1 (ja) |
CN (1) | CN119654736A (ja) |
WO (1) | WO2024053272A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007184270A (ja) * | 2005-12-29 | 2007-07-19 | Samsung Sdi Co Ltd | リチウム二次電池 |
JP2010040407A (ja) | 2008-08-07 | 2010-02-18 | Sumitomo Electric Fine Polymer Inc | ガスケット及び密閉型二次電池 |
WO2021200439A1 (ja) * | 2020-03-30 | 2021-10-07 | 三洋電機株式会社 | 円筒形電池 |
WO2022085318A1 (ja) * | 2020-10-21 | 2022-04-28 | 株式会社村田製作所 | 二次電池 |
WO2022091934A1 (ja) * | 2020-10-28 | 2022-05-05 | 三洋電機株式会社 | 円筒形電池用ガスケット、これを用いた円筒形電池の製造方法及び円筒形電池 |
JP2022531845A (ja) * | 2019-05-08 | 2022-07-12 | エルジー エナジー ソリューション リミテッド | 電池ケースの腐食を防止する円筒型電池用ガスケット及びこれを含む円筒型電池 |
-
2023
- 2023-07-26 WO PCT/JP2023/027320 patent/WO2024053272A1/ja active Application Filing
- 2023-07-26 CN CN202380057570.1A patent/CN119654736A/zh active Pending
- 2023-07-26 EP EP23862815.0A patent/EP4586375A1/en active Pending
- 2023-07-26 JP JP2024545486A patent/JPWO2024053272A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007184270A (ja) * | 2005-12-29 | 2007-07-19 | Samsung Sdi Co Ltd | リチウム二次電池 |
JP2010040407A (ja) | 2008-08-07 | 2010-02-18 | Sumitomo Electric Fine Polymer Inc | ガスケット及び密閉型二次電池 |
JP2022531845A (ja) * | 2019-05-08 | 2022-07-12 | エルジー エナジー ソリューション リミテッド | 電池ケースの腐食を防止する円筒型電池用ガスケット及びこれを含む円筒型電池 |
WO2021200439A1 (ja) * | 2020-03-30 | 2021-10-07 | 三洋電機株式会社 | 円筒形電池 |
WO2022085318A1 (ja) * | 2020-10-21 | 2022-04-28 | 株式会社村田製作所 | 二次電池 |
WO2022091934A1 (ja) * | 2020-10-28 | 2022-05-05 | 三洋電機株式会社 | 円筒形電池用ガスケット、これを用いた円筒形電池の製造方法及び円筒形電池 |
Also Published As
Publication number | Publication date |
---|---|
CN119654736A (zh) | 2025-03-18 |
EP4586375A1 (en) | 2025-07-16 |
JPWO2024053272A1 (ja) | 2024-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5665483A (en) | Sealed storage battery | |
WO2018124152A1 (ja) | コイン形電池及びその製造方法 | |
US20230395909A1 (en) | Cylindrical battery gasket, method for producing cylindrical battery using same, and cylindrical battery | |
JP4507159B2 (ja) | 密閉型電池 | |
JP5159076B2 (ja) | 円筒型蓄電池およびその製造方法 | |
KR20240156729A (ko) | 원통형 이차전지 | |
EP4210157A1 (en) | Cylindrical secondary battery | |
JP4942365B2 (ja) | 円筒形電池 | |
JP2009230991A (ja) | 円筒形電池及び円筒形電池の製造方法 | |
WO2024053272A1 (ja) | 円筒形電池用ガスケットおよび当該ガスケットを備える円筒形電池 | |
JP2023086489A (ja) | 円筒形電池用封口体および当該封口体を含む円筒形電池 | |
US20230395330A1 (en) | Power storage device, and method for manufacturing power storage device | |
US20240283114A1 (en) | Electricity storage device and method for manufacturing electricity storage device | |
KR102702547B1 (ko) | 원통형 이차 전지 | |
EP4250440A1 (en) | Cylindrical battery | |
US20240039096A1 (en) | Gasket and cylindrical battery | |
JP7644596B2 (ja) | ガスケット部材の評価方法及び電池 | |
EP4528893A1 (en) | Cylindrical battery | |
JP5677868B2 (ja) | 円筒形アルカリ電池用電池缶、および円筒形アルカリ電池 | |
JPH05283099A (ja) | アルカリ蓄電池 | |
CN113328180B (zh) | 圆柱型锂电池的封口结构的制作方法 | |
JP2023127980A (ja) | 電池および電池製造方法 | |
JP7187205B2 (ja) | 円筒型電池 | |
JP5021111B2 (ja) | 密閉型電池 | |
JP2025098758A (ja) | アルカリ電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23862815 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024545486 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023862815 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2023862815 Country of ref document: EP Effective date: 20250407 |