[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023208042A1 - 预失真处理方法、装置及设备 - Google Patents

预失真处理方法、装置及设备 Download PDF

Info

Publication number
WO2023208042A1
WO2023208042A1 PCT/CN2023/090864 CN2023090864W WO2023208042A1 WO 2023208042 A1 WO2023208042 A1 WO 2023208042A1 CN 2023090864 W CN2023090864 W CN 2023090864W WO 2023208042 A1 WO2023208042 A1 WO 2023208042A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
signal
pilot signal
target information
information
Prior art date
Application number
PCT/CN2023/090864
Other languages
English (en)
French (fr)
Inventor
洪琪
沈晓冬
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023208042A1 publication Critical patent/WO2023208042A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a pre-distortion processing method, device and equipment.
  • the radio frequency power amplifier (Power Amplifier, PA) as an example.
  • PA Power Amplifier
  • the PA is an important part of the communication system. For example, the degree of linearization of the PA directly affects the transmission quality of the signal.
  • PAPR Peak to Average Power Ratio
  • the PAPR often drives the PA to work in the nonlinear region or even the saturation region. This causes the amplitude of the power amplifier output signal to vary due to the difference in the instantaneous amplitude of the input signal. Distortion of phase information, such as signal amplitude modulation (AM)-AM, AM-phase modulation (Phase Modulation, PM)) nonlinear distortion, thereby affecting the performance of the communication system.
  • AM signal amplitude modulation
  • PM Phase Modulation
  • a preconfigured Digital Pre-Distortion (DPD) model is usually used to perform preprocessing of nonlinear distortion.
  • DPD Digital Pre-Distortion
  • Embodiments of the present application provide a pre-distortion processing method, device and equipment, which can enable equipment without a DPD model to implement pre-distortion processing and ensure the performance of the communication system.
  • a predistortion processing method including: a first device processes a target pilot signal sent by a second device to obtain target information; the first device sends the target information to a third device, wherein, the target information is information used for pre-distortion processing, and the third device includes the second device and/or other devices except the first device and the second device.
  • a predistortion processing method including: a second device receiving a target signal sent by the first device; information; the second device performs pre-distortion processing according to the target information.
  • a predistortion processing device which is applied to a first device.
  • the device includes: a first processing module for processing the target pilot signal sent by the second device to obtain target information;
  • a transmission module configured to send the target information to a third device, where the target information is information used for pre-distortion processing, and the third device includes the second device and/or is in addition to the first device. , other devices other than the second device.
  • a predistortion processing device which is applied to a second device.
  • the device includes: a second transmission module for receiving target information sent by the first device; a second processing module for processing according to the The target information is pre-distorted.
  • a device in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in the first aspect or the second aspect.
  • a device including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method described in the first aspect. steps, or steps for implementing the method as described in the second aspect.
  • a seventh aspect provides a communication system, including: a first device and a second device, the first device can be used to perform the steps of the method described in the first aspect, and the second device can be used to perform the steps of the method described in the first aspect. The steps of the method described in the second aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. steps, or steps to implement the method described in the second aspect.
  • a computer program product/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect
  • the first device obtains the target information by processing the target pilot signal sent by the second device, and feeds the target information back to the third device, thereby enabling the third device to perform operations based on the target information.
  • Pre-distortion processing avoids the problem in related technologies that equipment without a DPD model cannot perform pre-distortion processing, ensuring the performance of the communication system.
  • Figure 1 is a schematic structural diagram of a wireless communication system provided by an exemplary embodiment of the present application.
  • Figure 2 is a schematic flowchart of a predistortion processing method provided by an exemplary embodiment of the present application.
  • Figure 3 is a schematic flowchart of a predistortion processing method provided by another exemplary embodiment of the present application.
  • Figure 4 is a schematic flowchart of a predistortion processing method provided by another exemplary embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a pre-distortion processing device provided by an exemplary embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a pre-distortion processing device provided by an exemplary embodiment of the present application.
  • Figure 7 is a schematic structural diagram of equipment provided by an exemplary embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a terminal provided by an exemplary embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a network-side device provided by an exemplary embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • PUE pedestrian terminals
  • smart homes home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (PC), teller machines or self-service machines
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc. .
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home Node B Home Evolved Node B
  • TRP Transmitting Receiving Point
  • a schematic flowchart of a pre-distortion processing method 200 is provided in an exemplary embodiment of the present application.
  • the method 200 can be, but is not limited to, executed by a first device, and specifically can be performed by hardware and/or installed in the first device. or software execution.
  • the method 200 may include at least the following steps.
  • S210 The first device processes the target pilot signal sent by the second device to obtain target information.
  • the first device and the second device may be terminals or network-side devices.
  • the first device is a terminal and the second device is a network-side device.
  • the first device is a network-side device. side device, the first device is a terminal, etc.
  • the second device may be a device that cannot perform pre-distortion processing autonomously (or independently), for example, the second device is not configured with a DPD model, etc.
  • the target pilot signal may also be called a reference signal.
  • the target pilot signal may be a synchronization signal block (Synchronization Signal and PBCH block, SSB), a channel state information reference signal (Channel State Information Reference Signal, CSI-RS), a demodulation reference signal ( Demodulation Reference Signal, DMRS) or a reference signal dedicated to DPD compensation, etc., are not limited here.
  • the first device processes (such as measurement, analysis, etc.) the received target pilot signal to obtain the nonlinear characteristics of the target device on the second device, that is,
  • the target information is nonlinear characteristic information of a target device on the second device.
  • the target device may be a nonlinear device such as a PA, which is not limited here.
  • S220 The first device sends the target information to the third device.
  • the third device includes the second device and/or other devices except the first device and the second device, and the target information is information used for pre-distortion processing, as described Target information can be used to assist the Three devices perform pre-distortion processing.
  • the third device is a second device, when receiving the target information sent by the first device, the second device may perform pre-distortion processing according to the target information.
  • the second device After receiving the target information, the second device can directly perform pre-distortion processing according to the target information, or can perform pre-distortion processing at a designated time, or can also send the target information to other devices for use by other devices.
  • the equipment performs pre-distortion processing, etc. It can be understood that the target information is also applicable to the pre-distortion processing of the other devices, for example, the other devices have the same target device as the second device.
  • the first device obtains the target information by processing the target pilot signal sent by the second device, and feeds the target information back to the third device, thereby enabling the third device to perform predistortion based on the target information. processing, which avoids the problem in related technologies that devices without a DPD model cannot perform pre-distortion processing, ensuring the performance of the communication system.
  • a schematic flowchart of a pre-distortion processing method 300 is provided for an exemplary embodiment of the present application.
  • the method 300 may be, but is not limited to, executed by a first device. Specifically, it may be executed by hardware and/or installed in the first device. or software execution. In this embodiment, the method 300 may include at least the following steps.
  • S310 The first device processes the target pilot signal sent by the second device to obtain target information.
  • the second device when the second device sends the target pilot signal to the first device, It may be sent to the first device in a target mode, where the target mode may include a first mode and/or a second mode, and the content is as follows.
  • a first manner is that the second device periodically sends the target pilot signal to the first device.
  • the periodicity-related parameters used by the first device may be configured by the network side device through Radio Resource Control (RRC), or may be determined by a protocol agreement, etc., and are not limited here. .
  • RRC Radio Resource Control
  • the second way is that the second device sends the target pilot signal to the first device when receiving the trigger signal sent by the network side device.
  • the trigger signal may carry specific information to instruct the first device at what time to send the target pilot signal.
  • the trigger signal may be RRC, Medium Access Control Element (MAC CE), downlink control information (Downlink Control Information, DCI), etc.
  • the The network side device may indicate the specific information through bits or indication fields in the RRC, MAC CE, and DCI.
  • the aforementioned target mode can be configured by a network side device.
  • the second device can receive target signaling sent by the network side device.
  • the target signaling (such as RRC, DCI , MAC CE, etc.) may include the following first indication domain and/or second indication domain, the contents are as follows.
  • a first indication field is specifically used to indicate the target mode to the second device. That is, the target mode can be configured through a separate indication field.
  • the second indication field includes a first bit, the first bit is used to indicate to the second device Indicates the target mode, the first bit is a new bit in the second indication field, or the first bit is a multiplexed bit in the second indication field.
  • the newly added bit means that at least the network side device adds (or newly adds) a bit to the existing indication field to configure the target mode;
  • the multiplexed bit means that the network side device The target mode is configured using the available bits in the existing indication field.
  • the first device may, in one implementation, the target pilot signal sent by the second device to the first device include one or Multiple pilot signals.
  • the target pilot signal includes multiple pilot signals
  • at least part of the multiple pilot signals operate in different areas of the target device.
  • the plurality of pilot signals include at least a first pilot signal and a second pilot signal
  • the first pilot signal operates in the linear region of the target device
  • the second pilot signal operates in the linear region of the target device. nonlinear region of the device.
  • the plurality of pilot signals may be the same or different, for example, the first pilot signal may be SSB, the second pilot signal may be CSI-RS, etc.
  • the bandwidths corresponding to each of the pilot signals may be consistent.
  • each of the pilot signals may usually have a full bandwidth.
  • the target information obtained by the first device by processing the target pilot signal may be the nonlinear distortion characteristic information of the target device in the second device.
  • the target information may include at least one of the following (1)-(6).
  • the demodulated signals described in (1) to (6) are obtained by the first device by demodulating the target pilot signal.
  • S320 The first device sends the target information to the third device.
  • the target information is information used for pre-distortion processing
  • the third device includes the second device and/or other devices except the first device and the second device.
  • the implementation process of S320 may include S321 shown in Figure 3, as follows.
  • S321 The first device sends the target information to the third device based on the target time point.
  • the target time point may be a fixed time point configured by the network side.
  • the target time point may be a designated time point located after the reception time of the target pilot signal, and the designated time point is separated from the reception time of the target pilot signal by a predetermined length of time. That is, the designated time point may be separated by a predetermined length of time from the reception time of the target pilot signal.
  • the unit of the predetermined duration may be a slot, a symbol, etc.
  • the predetermined time period may be determined by the agreement. Determining, high-level configuration, and network-side configuration are implemented.
  • the carrier used to carry the target information may be different according to the difference between the first device and the third device.
  • the target information is carried on a physical uplink control channel (PUCCH) or a physical uplink shared channel (Physical Uplink Shared Channel). , PUSCH) or Sounding Reference Signal (SRS).
  • PUCCH physical uplink control channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • the target information is carried in SSB, Physical downlink control channel (PDCCH), Physical downlink shared channel (Physical Any of downlink shared channel (PDSCH) and CSI-RS.
  • SSB Physical downlink control channel
  • PDSCH Physical downlink shared channel
  • CSI-RS Physical Any of downlink shared channel
  • the second device after receiving the target information, the second device performs predistortion processing according to the target information to compensate for the nonlinear characteristics of the target device, providing When the efficiency of the target device is determined, a variety of preprocessing methods may be used. For example, assuming that the target device includes a PA, then the second device predistorts the PA according to the predistortion parameter configuration table and the target information. deal with.
  • the predistortion parameter configuration table may be configured with multiple predistortion characteristic parameters, multiple compensation amounts, and the corresponding relationship between the predistortion characteristic parameters and the compensation amount. Then, the second device receives the target information (that is, predistortion characteristic parameters), the corresponding compensation amount can be queried from the predistortion parameter configuration table according to the target information, and then PA characteristic compensation is performed according to the compensation amount to improve PA efficiency.
  • the target information that is, predistortion characteristic parameters
  • PA characteristic compensation is performed according to the compensation amount to improve PA efficiency.
  • the second device may perform pre-distortion processing on the PA according to the pre-distortion algorithm and the target information.
  • the predistortion algorithm can be implemented by protocol predetermination, high-level configuration, etc. Based on this, the second device can calculate the corresponding compensation amount according to the predistortion algorithm and the target information, and then perform PA characteristic compensation according to the compensation amount to improve PA efficiency.
  • the pre-distortion algorithm may be, but is not limited to, a multi-step iterative algorithm, a memory polynomial model algorithm, etc.
  • the process of the other devices performing predistortion processing based on the target information may refer to the predistortion processing process of the second device. , and achieve the same or corresponding technical effects. To avoid repetition, they will not be described again here.
  • a schematic flowchart of a pre-distortion processing method 400 is provided for an exemplary embodiment of the present application.
  • the method 400 may be, but is not limited to, executed by a second device. Specifically, it may be executed by hardware and/or installed in the second device. or software execution. In this embodiment, the method 400 may include at least the following steps.
  • the second device receives the target information sent by the first device.
  • S420 The second device performs pre-distortion processing according to the target information.
  • the method before the second device receives the target information sent by the first device, the method includes: the second device sends a target pilot signal to the first device; wherein the target pilot signal The signal includes at least one pilot signal.
  • the target pilot signal when the target pilot signal includes multiple pilot signals, the first pilot signal among the multiple pilot signals operates in the linear region of the target device, and the second pilot signal operates in the linear region of the target device.
  • the signal operates in the nonlinear region of the target device.
  • the bandwidths corresponding to each of the pilot signals are consistent.
  • the step of the second device sending a target pilot signal to the first device includes: the second device sending the target pilot signal to the first device in a target manner;
  • the target method includes at least any one of the following: a first method in which the second device periodically sends the target pilot signal to the first device; a second method in which the second device periodically sends the target pilot signal to the first device; The second method is that the second device sends the target pilot signal to the first device after receiving the trigger signal sent by the network side device.
  • the method further includes: the second device receiving target signaling sent by the network side device, where the target signaling includes any one of the following: a first indication field, the first indication A field dedicated to indicating the target mode to the second device; a second indication field, the second indication field including a first bit, the first bit being used to indicate the target mode to the second device , the first bit is a new bit in the second indication field, or the first bit is a multiplexed bit in the second indication field.
  • the target signaling includes any one of the following: a first indication field, the first indication A field dedicated to indicating the target mode to the second device; a second indication field, the second indication field including a first bit, the first bit being used to indicate the target mode to the second device , the first bit is a new bit in the second indication field, or the first bit is a multiplexed bit in the second indication field.
  • the step of the second device performing predistortion processing according to the target information includes any of the following: the second device performs predistortion processing according to the predistortion parameter configuration table and the target information. ; The second device performs pre-distortion processing according to the pre-distortion algorithm and the target information.
  • the target information is carried in the physical uplink control channel PUCCH, the physical uplink shared channel PUSCH, and the sounding reference signal SRS. Any one of; when the first device is a network side device and the second device is a terminal, the target information is carried in the synchronization signal block SSB, the physical downlink control channel PDCCH, the physical downlink shared channel PDSCH, and the channel status Any item in the information reference signal CSI-RS.
  • the target information includes at least one of the following: average amplitude offset of the demodulated signal; maximum amplitude offset of the demodulated signal; minimum amplitude offset of the demodulated signal; average phase of the demodulated signal offset; the maximum phase offset of the demodulated signal; the minimum phase offset of the demodulated signal; wherein the demodulated signal is obtained by the first device by demodulating the target pilot signal.
  • the method further includes: the second device sending the target information to other devices except the first device and the second device.
  • method embodiment 400 has the same or corresponding technical features as the aforementioned method embodiment 200 and/or 300. Therefore, the implementation process of method embodiment 400 may refer to method embodiments 200-300. The relevant descriptions and achieve the same or corresponding technical effects will not be repeated here to avoid duplication.
  • the execution subject may be a predistortion processing device.
  • the predistortion processing device performs the predistortion processing method 200-400 as an example to illustrate the method provided by the embodiment of the present application. Provided pre-distortion processing device.
  • FIG. 5 it is a schematic structural diagram of a pre-distortion processing device 500 provided by an exemplary embodiment of the present application.
  • the device 500 includes: a first processing module 520 for processing the target pilot signal sent by the second device. , obtain the target information; the first transmission module 510 is used to send the target information to the third device, where the target information is information used for pre-distortion processing, and the third device includes the second equipment and/or other equipment other than the first equipment and the second equipment.
  • the first pilot signal among the multiple pilot signals operates in the linear region of the target device
  • the second pilot signal operates in the linear region of the target device.
  • the bandwidths corresponding to each of the pilot signals are consistent.
  • the target information includes at least one of the following: average amplitude offset of the demodulated signal; maximum amplitude offset of the demodulated signal; minimum amplitude offset of the demodulated signal; average phase offset of the demodulated signal; The maximum phase offset of the demodulated signal; the minimum phase offset of the demodulated signal; wherein the demodulated signal is obtained by the first device by demodulating the target pilot signal.
  • the step of the first transmission module 510 sending the target information to the third device includes: sending the target information to the third device based on a target time point; wherein, the target time point It includes any of the following: a fixed time point configured by the network side; a designated time point located after the reception time of the target pilot signal, and the designated time point is separated from the reception time of the target pilot signal by a predetermined length of time.
  • the target information is carried in any one of the physical uplink control channel PUCCH, the physical uplink shared channel PUSCH, and the sounding reference signal SRS.
  • the target information is carried in the synchronization signal block SSB, the physical downlink control channel PDCCH, the physical downlink shared channel PDSCH, and the channel state information reference signal Any of the CSI-RS.
  • FIG. 6 it is a schematic structural diagram of a pre-distortion processing device 600 provided by an exemplary embodiment of the present application.
  • the device 600 includes: a second transmission module 610, used to receive target information sent by the first device; second processing Module 620 is used to perform pre-distortion processing according to the target information.
  • the second transmission module 610 is also configured to send a target pilot signal to the first device; wherein the target pilot signal includes at least one pilot signal.
  • the first pilot signal among the multiple pilot signals operates in the linear region of the target device
  • the second pilot signal operates in the linear region of the target device.
  • the bandwidths corresponding to each of the pilot signals are consistent.
  • the step of the second transmission module 610 sending the target pilot signal to the first device includes: sending the target pilot signal to the first device in a target mode; wherein, the target mode Include at least any of the following One item: a first way, the first way is for the second device to periodically send the target pilot signal to the first device; a second way, the second way is for the second device to periodically send the target pilot signal to the first device; When the trigger signal sent by the network side device is received, the target pilot signal is sent to the first device.
  • the second transmission module 610 is also configured to receive target signaling sent by the network side device.
  • the target signaling includes any of the following: a first indication field, and the first indication field is dedicated to Indicate the target mode to the second device; a second indication field, the second indication field includes a first bit, the first bit is used to indicate the target mode to the second device, the The first bit is a newly added bit in the second indication field, or the first bit is a multiplexed bit in the second indication field.
  • the step of the second processing module 620 performing predistortion processing according to the target information includes any of the following: performing predistortion processing according to the predistortion parameter configuration table and the target information; performing predistortion processing according to the predistortion algorithm and The target information undergoes pre-distortion processing.
  • the target information is carried in any one of the physical uplink control channel PUCCH, the physical uplink shared channel PUSCH, and the sounding reference signal SRS.
  • the target information is carried in the synchronization signal block SSB, the physical downlink control channel PDCCH, the physical downlink shared channel PDSCH, and the channel state information reference signal Any of the CSI-RS.
  • the target information includes at least one of the following: average amplitude offset of the demodulated signal; maximum amplitude offset of the demodulated signal; minimum amplitude offset of the demodulated signal; average phase offset of the demodulated signal; The maximum phase offset of the demodulated signal; the minimum phase offset of the demodulated signal; wherein the demodulated signal is obtained by the first device by demodulating the target pilot signal.
  • the predistortion processing devices 500-600 in the embodiment of the present application can be a device (such as a first device or a second device), or a component in the device, such as an integrated circuit or a chip.
  • the device can be a terminal or network side.
  • Equipment for example, the terminal may include but is not limited to the type of terminal 11 listed above, and the network side device may include, but is not limited to, the type of network side device 12 listed above.
  • the embodiments of this application are not specifically limited.
  • the predistortion processing devices 500-600 provided by the embodiments of this application can implement each process implemented by the method embodiments of Figures 2 to 4, and achieve the same technical effect. To avoid duplication, they will not be described again here.
  • this embodiment of the present application also provides a communication device 700, including a processor 701 and a memory 702.
  • the memory 702 stores programs or instructions that can be run on the processor 701, for example,
  • the communication device 700 is a terminal, when the program or instruction is executed by the processor 701, each step of the above-mentioned predistortion processing method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 700 is a network-side device, when the program or instruction is executed by the processor 701, each step of the above-mentioned predistortion processing method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details are not repeated here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the methods described in method embodiments 200-400. Method steps.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and the various implementation processes and implementations of the above-mentioned method embodiment All methods can be applied to the terminal embodiment and can achieve the same technical effect.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 800 includes but is not limited to: radio frequency unit 801, network module 802, audio output unit 803, input unit 804, sensor 805, display unit 806, user input unit 807, interface unit 808, memory 809, processor 810, etc. at least some parts of it.
  • the terminal 800 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 810 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042.
  • the GPU 8041 is used for recording data by an image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the image data obtained from still pictures or videos is processed.
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and at least one of other input devices 8072 .
  • Touch panel 8071 also known as touch screen.
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 8072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 801 after receiving downlink data from the network side device, the radio frequency unit 801 can transmit it to the processor 810 for processing; in addition, the radio frequency unit 801 can send uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 809 may be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 809 may include volatile memory or non-volatile memory, or memory 809 may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 810 may include one or more processing units; optionally, the processor 810 integrates an application processor and modulation Demodulation processor, among which the application processor mainly processes operations involving the operating system, user interface and application programs, etc., and the modem processor mainly processes wireless communication signals, such as baseband processor. It can be understood that the above modem processor may not be integrated into the processor 810.
  • the radio frequency unit 801 is used to process the target pilot signal sent by the second device to obtain the target information; the processor 810 is used to send the Target information is given to a third device, where the target information is information used for pre-distortion processing, and the third device includes the second device and/or is in addition to the first device and the second device. of other equipment.
  • the radio frequency unit 801 is configured to receive target information sent by the first device; the processor 810 is configured to perform predistortion processing according to the target information.
  • each implementation manner mentioned in this embodiment has the same or corresponding technical features as the aforementioned method embodiments 200-400. Therefore, each implementation process in this embodiment can refer to the relevant descriptions in the method embodiments 200-400. To avoid repetition, they will not be repeated here.
  • the first device obtains the target information by processing the target pilot signal sent by the second device, and feeds the target information back to the third device, thereby enabling the third device to perform operations based on the target information.
  • Pre-distortion processing avoids the problem in related technologies that equipment without a DPD model cannot perform pre-distortion processing, ensuring the performance of the communication system.
  • Embodiments of the present application also provide a network-side device, including a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions.
  • the implementation is as described in Embodiments 200-400. steps of the method.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 900 includes: an antenna 901, a radio frequency device 902, a baseband device 903, a processor 904 and a memory 905.
  • Antenna 901 is connected to radio frequency device 902.
  • the radio frequency device 902 receives information through the antenna 901 and sends the received information to the baseband device 903 for processing.
  • the baseband device 903 processes the information to be sent and sends it to the radio frequency device 902.
  • the radio frequency device 902 processes the received information and then sends it out through the antenna 901.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 903, which includes a baseband processor.
  • the baseband device 903 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. 9 .
  • One of the chips is, for example, a baseband processor, which is connected to the memory 905 through a bus interface to call the Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 906, which is, for example, a common public radio interface (CPRI).
  • a network interface 906 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 900 in this embodiment of the present invention also includes: instructions or programs stored in the memory 905 and executable on the processor 904.
  • the processor 904 calls the instructions or programs in the memory 905 to execute Figure 5 or Figure 6
  • the execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above-mentioned predistortion processing method embodiments 200-400 is implemented. And can achieve the same technical effect. To avoid repetition, they will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run network-side device programs or instructions to implement the above predistortion processing.
  • Each process of Method Embodiments 200-400 can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a processor, a memory, and a program or instructions stored on the memory and executable on the processor.
  • the program or instructions are used by the processor.
  • An embodiment of the present application also provides a communication system, including: a first device and a second device.
  • the first device can be used to perform each process in the above-mentioned predistortion processing method embodiments 200-300.
  • the third device Two devices may be used to perform each process in the predistortion processing method embodiment 400 as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种预失真处理方法、装置及设备,属于通信技术领域,本申请实施例的预失真处理方法包括:第一设备对第二设备发送的目标导频信号进行处理,得到目标信息;所述第一设备发送所述目标信息给第三设备,其中,所述目标信息为用于预失真处理的信息,所述第三设备包括所述第二设备和/或除所述第一设备、所述第二设备之外的其他设备。

Description

预失真处理方法、装置及设备
交叉引用
本发明要求在2022年04月28日提交中国专利局、申请号为202210462196.0、发明名称为“预失真处理方法、装置及设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信技术领域,具体涉及一种预失真处理方法、装置及设备。
背景技术
在通信系统中,以射频功率放大器(Power Amplifier,PA)为例,PA是通信系统的重要组成部分,如PA的线性化程度直接影响到信号的发射质量。目前,为了尽量提高PA的转换效率,高峰均比(Peak to Average Power Ratio,PAPR)经常会驱动PA工作于非线性区乃至饱和区域,由此导致功放输出信号由于输入信号瞬时幅度的不同产生幅度与相位信息的畸变,如信号的幅度调制(Amplitude Modulation,AM)-AM、AM-相位调制(Phase Modulation,PM))非线性失真,从而影响通信系统的性能。
对此,在相关技术中,通常利用预配置的数字预失真(Digital Pre-Distortion,DPD)模型进行非线性失真的预处理,但是对于没有配置DPD模型的设备而言,如何实现预失真处理,依旧是当前急需解决的技术问题。
发明内容
本申请实施例提供一种预失真处理方法、装置及设备,能够使没有配置DPD模型的设备实现预失真处理,确保通信系统的性能。
第一方面,提供了一种预失真处理方法,包括:第一设备对第二设备发送的目标导频信号进行处理,得到目标信息;所述第一设备发送所述目标信息给第三设备,其中,所述目标信息为用于预失真处理的信息,所述第三设备包括所述第二设备和/或除所述第一设备、所述第二设备之外的其他设备。
第二方面,提供了一种预失真处理方法,包括:第二设备接收第一设备发送的目标信 息;所述第二设备根据所述目标信息进行预失真处理。
第三方面,提供了一种预失真处理装置,应用于第一设备,所述装置包括:第一处理模块,用于对第二设备发送的目标导频信号进行处理,得到目标信息;第一传输模块,用于发送所述目标信息给第三设备,其中,所述目标信息为用于预失真处理的信息,所述第三设备包括所述第二设备和/或除所述第一设备、所述第二设备之外的其他设备。
第四方面,提供了一种预失真处理装置,应用于第二设备,所述装置包括:第二传输模块,用于接收第一设备发送的目标信息;第二处理模块,用于根据所述目标信息进行预失真处理。
第五方面,提供了一种设备,该设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供了一种设备,包括处理器及通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第七方面,提供了一种通信系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的方法的步骤,所述第二设备可用于执行如第二方面所述的方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
第十方面,提供了一种计算机程序产品/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法的步骤。
在本申请实施例中,第一设备通过对第二设备发送的目标导频信号进行处理,得到目标信息,并将目标信息反馈给第三设备,由此,能够使得第三设备基于目标信息进行预失真处理,避免了相关技术中存在的未配置DPD模型的设备无法进行预失真处理的问题,确保了通信系统的性能。
附图说明
图1是本申请一示例性实施例提供的无线通信系统的结构示意图。
图2是本申请一示例性实施例提供的预失真处理方法的流程示意图。
图3是本申请另一示例性实施例提供的预失真处理方法的流程示意图。
图4是本申请另一示例性实施例提供的预失真处理方法的流程示意图。
图5是本申请一示例性实施例提供的预失真处理装置的结构示意图。
图6是本申请一示例性实施例提供的预失真处理装置的结构示意图。
图7是本申请一示例性实施例提供的设备的结构示意图。
图8是本申请一示例性实施例提供的终端的结构示意图。
图9是本申请一示例性实施例提供的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、 行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的技术方案进行详细地说明。
如图2所示,为本申请一示例性实施例提供的预失真处理方法200的流程示意图,该方法200可以但不限于由第一设备执行,具体可由安装于第一设备中的硬件和/或软件执行。本实施例中,所述方法200至少可以包括如下步骤。
S210,第一设备对第二设备发送的目标导频信号进行处理,得到目标信息。
其中,所述第一设备和所述第二设备可以是终端或网络侧设备,如所述第一设备为终端、所述第二设备为网络侧设备,又如,所述第一设备为网络侧设备、所述第一设备为终端等。当然,在本实施例中,所述第二设备可以是无法自主(或独立)进行预失真处理的设备,如所述第二设备中未配置有DPD模型等。
所述目标导频信号也可以称作参考信号。在本实施例中,所述目标导频信号可以是同步信号块(Synchronization Signal and PBCH block,SSB)、信道状态信息-参考信号(Channel State Information Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)或专用于DPD补偿的参考信号等,在此不做限制。
可选地,所述第一设备通过对接收到的所述目标导频信号进行处理(如测量、分析等),以得到所述第二设备上的目标器件的非线性特性,也就是说,所述目标信息是所述第二设备上的目标器件的非线性特性信息。可选的,所述目标器件可以是PA等非线性器件,在此不做限制。
S220,所述第一设备发送所述目标信息给第三设备。
其中,所述第三设备包括所述第二设备和/或除所述第一设备和所述第二设备之外的其他设备,所述目标信息为用于预失真处理的信息,如所述目标信息可以用于辅助所述第 三设备进行预失真处理。例如,假设所述第三设备为第二设备,那么,所述第二设备在接收到所述第一设备发送的目标信息的情况下,可根据所述目标信息进行预失真处理。
所述第二设备在接收到所述目标信息后,可以直接根据所述目标信息进行预失真处理,也可以在指定时间进行预失真处理,还可以将该目标信息发送给其他设备,以供其他设备进行预失真处理等。可以理解的是,所述目标信息也适用于所述其他设备的预失真处理,如所述其他设备具有与所述第二设备相同的目标器件。
本实施例中,第一设备通过对第二设备发送的目标导频信号进行处理,得到目标信息,并将目标信息反馈给第三设备,由此,能够使得第三设备基于目标信息进行预失真处理,避免了相关技术中存在的未配置DPD模型的设备无法进行预失真处理的问题,确保了通信系统的性能。
如图3所示,为本申请一示例性实施例提供的预失真处理方法300的流程示意图,该方法300可以但不限于由第一设备执行,具体可由安装于第一设备中的硬件和/或软件执行。本实施例中,所述方法300至少可以包括如下步骤。
S310,第一设备对第二设备发送的目标导频信号进行处理,得到目标信息。
可以理解,S310的实现过程除了可参照方法实施例200中的相关描述之外,一种可能的实现方式中,所述第二设备在向所述第一设备发送所述目标导频信号时,可以是按照目标方式向所述第一设备进行发送,其中,所述目标方式可以包括第一方式和/或第二方式,内容如下。
第一方式,所述第一方式为所述第二设备周期性地向所述第一设备发送所述目标导频信号。其中,所述第一设备所采用的周期性相关参数可以是网络侧设备通过无线资源控制(Radio Resource Control,RRC)进行配置得到,也可以是通过协议约定的方式确定等,在此不做限制。
第二方式,所述第二方式为所述第二设备在接收到网络侧设备发送的触发信号的情况下,向所述第一设备发送所述目标导频信号。其中,所述触发信号中可携带有特定信息,以用于指示所述第一设备在什么时间发送目标导频信号。可选的,在本实施例中,所述触发信号可以为RRC、媒体接入控制控制单元(Medium Access Control Control Element,MAC CE)、下行控制信息(Downlink Control Information,DCI)等,且所述网络侧设备可以通过所述RRC、MAC CE、DCI中的比特(bit)或指示域指示所述特定信息。
基于此,在一种实现方式中,前述的目标方式可以由网络侧设备进行配置,例如,所述第二设备可以接收网络侧设备发送的目标信令,所述目标信令(如RRC、DCI、MAC CE等)中可以包括以下第一指示域和/或第二指示域,内容如下。
第一指示域,所述第一指示域专用于向所述第二设备指示所述目标方式。即所述目标方式可以通过单独的指示域进行配置。
第二指示域,所述第二指示域中包括第一比特,所述第一比特用于向所述第二设备指 示所述目标方式,所述第一比特是所述第二指示域中的新增比特,或,所述第一比特是所述第二指示域中的复用比特。其中,所述新增比特是至少所述网络侧设备通过在已有指示域中添加(或新增)比特,以进行所述目标方式的配置;所述复用比特是指所述网络侧设备利用已有的指示域中可以利用的比特进行所述目标方式的配置。
当然,所述第一设备除了可以基于目标方式进行目标导频信号的发送之外,一种实现方式中,所述第二设备向所述第一设备发送的目标导频信号中可以包括一个或多个导频信号。其中,在所述目标导频信号包括多个导频信号时,多个导频信号中的至少部分工作在目标器件的不同区域。例如,假设所述多个导频信号中至少包括第一导频信号和第二导频信号,那么,所述第一导频信号工作在目标器件的线性区、第二导频信号工作在目标器件的非线性区。
以及,所述多个导频信号可以相同,也可以不同,如所述第一导频信号为SSB、第二导频信号为CSI-RS等。但要注意的是,为了确保相位一致性,各所述导频信号对应的带宽可以一致,例如各所述导频信号通常可以为满带宽。
在此情况下,所述第一设备通过对所述目标导频信号进行处理,得到的目标信息可以是第二设备中的目标器件的非线性失真特性信息,基于此,一种实现方式中,所述目标信息可以包括以下(1)-(6)中的至少一项。
(1)解调信号的平均幅度偏移。
(2)解调信号的最大幅度偏移。
(3)解调信号的最小幅度偏移。
(4)解调信号的平均相位偏移。
(5)解调信号的最大相位偏移。
(6)解调信号的最小相位偏移。
可以理解,前述(1)-(6)中所述的解调信号是所述第一设备通过对所述目标导频信号进行解调得到。
S320,所述第一设备发送所述目标信息给所述第三设备。
其中,所述目标信息为用于预失真处理的信息,所述第三设备包括所述第二设备和/或除所述第一设备、所述第二设备之外的其他设备。
可以理解,S320的实现过程除了可参照方法实施例200中的相关描述之外,一种可能的实现方式中,S320的实现过程可以包括图3中所示的S321,内容如下。
S321,所述第一设备基于目标时间点发送所述目标信息给所述第三设备。
其中,所述目标时间点可以为网络侧配置的固定时间点。
或者,所述目标时间点可以为位于所述目标导频信号的接收时间之后的指定时间点,所述指定时间点与所述目标导频信号的接收时间相距预定时长。也就是,所述指定时间点可以与所述目标导频信号的接收时间间隔预定时长。本实施例中,所述预定时长的单位可以是时隙(slot)、符号(symbol)等。此外,在本实施例中,所述预定时长可以由协议约 定、高层配置、网络侧配置实现。
基于此,在一种实现方式中,所述第一设备在发送目标信息时,根据所述第一设备、所述第三设备的不同,用于承载所述目标信息的载体可以不同。例如,在所述第一设备为终端、第三设备为网络侧设备的情况下,所述目标信息携带于物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、探测参考信号(Sounding Reference Signal,SRS)中的任一项。
又例如,在所述第一设备为网络侧设备、第三设备为终端的情况下,所述目标信息携带于SSB、物理下行控制信道(Physical downlink control channel,PDCCH)、物理下行共享信道(Physical downlink shared channel,PDSCH)、CSI-RS中的任一项。
进一步,在一种实现方式中,以所述第二设备为例,所述第二设备在接收到所述目标信息,根据所述目标信息进行预失真处理以补偿目标器件的非线性特性,提供目标器件的效率时,所采用的预处理方式可以有多种,例如,假设所述目标器件包括PA,那么,所述第二设备根据预失真参数配置表以及所述目标信息对PA进行预失真处理。
其中,所述预失真参数配置表中可以配置有多个预失真特性参数、多个补偿量以及预失真特性参数与补偿量之间的对应关系,那么,所述第二设备在接收到目标信息(即预失真特性参数)后,可以根据所述目标信息从所述预失真参数配置表中查询对应的补偿量,再根据所述补偿量进行PA特性补偿,以提高PA效率。
或者,所述第二设备可以根据预失真算法以及所述目标信息对PA进行预失真处理。其中,所述预失真算法可以由协议预定、高层配置等方式实现。基于此,所述第二设备可以根据所述预失真算法和所述目标信息计算对应的补偿量,再根据所述补偿量进行PA特性补偿,以提高PA效率。可选的,所述预失真算法可以是但不限于多步迭代算法、记忆多项式模型算法等。
值得注意的是,如果所述第一设备将所述目标信息还发送给除所述第一设备和所述第二设备之外的其他设备,或者,所述第二设备将接收到的所述目标信息转发给除所述第一设备和所述第二设备之外的其他设备,那么,所述其他设备根据所述目标信息进行预失真处理的过程可以参照前述第二设备的预失真处理过程,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
如图4所示,为本申请一示例性实施例提供的预失真处理方法400的流程示意图,该方法400可以但不限于由第二设备执行,具体可由安装于第二设备中的硬件和/或软件执行。本实施例中,所述方法400至少可以包括如下步骤。
S410,第二设备接收第一设备发送的目标信息。
S420,所述第二设备根据所述目标信息进行预失真处理。
一种实现方式中,第二设备接收第一设备发送的目标信息的步骤之前,所述方法包括:所述第二设备向所述第一设备发送目标导频信号;其中,所述目标导频信号包括至少一个 导频信号。
另一种实现方式中,在所述目标导频信号包括多个导频信号的情况下,所述多个导频信号中的第一导频信号工作在目标器件的线性区、第二导频信号工作在目标器件的非线性区。
另一种实现方式中,在所述目标导频信号包括多个导频信号的情况下,各所述导频信号对应的带宽一致。
另一种实现方式中,所述第二设备向所述第一设备发送目标导频信号的步骤,包括:所述第二设备按照目标方式向所述第一设备发送所述目标导频信号;其中,所述目标方式包括以下至少任一项:第一方式,所述第一方式为所述第二设备周期性地向所述第一设备发送所述目标导频信号;第二方式,所述第二方式为所述第二设备在接收到网络侧设备发送的触发信号的情况下,向所述第一设备发送所述目标导频信号。
另一种实现方式中,所述方法还包括:所述第二设备接收网络侧设备发送的目标信令,所述目标信令中包括以下任一项:第一指示域,所述第一指示域专用于向所述第二设备指示所述目标方式;第二指示域,所述第二指示域中包括第一比特,所述第一比特用于向所述第二设备指示所述目标方式,所述第一比特是所述第二指示域中的新增比特,或,所述第一比特是所述第二指示域中的复用比特。
另一种实现方式中,所述第二设备根据所述目标信息进行预失真处理的步骤,包括以下任一项:所述第二设备根据预失真参数配置表以及所述目标信息进行预失真处理;所述第二设备根据预失真算法以及所述目标信息进行预失真处理。
另一种实现方式中,在所述第一设备为终端、第二设备为网络侧设备的情况下,所述目标信息携带于物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS中的任一项;在所述第一设备为网络侧设备、第二设备为终端的情况下,所述目标信息携带于同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS中的任一项。
另一种实现方式中,所述目标信息包括以下至少一项:解调信号的平均幅度偏移;解调信号的最大幅度偏移;解调信号的最小幅度偏移;解调信号的平均相位偏移;解调信号的最大相位偏移;解调信号的最小相位偏移;其中,所述解调信号是所述第一设备通过对所述目标导频信号进行解调得到。
又一种实现方式中,所述方法还包括:所述第二设备发送所述目标信息给除所述第一设备和所述第二设备之外的其他设备。
可以理解,方法实施例400中提及的各实现方式具有与前述方法实施例200和/或300相同或相应的技术特征,因此,方法实施例400的实现过程可参照方法实施例200-300中的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
本申请实施例提供的预失真处理方法200-400,执行主体可以为预失真处理装置。本申请实施例中以预失真处理装置执行预失真处理方法200-400为例,说明本申请实施例提 供的预失真处理装置。
如图5所示,为本申请一示例性实施例提供的预失真处理装置500的结构示意图,该装置500包括:第一处理模块520,用于对第二设备发送的目标导频信号进行处理,得到目标信息;第一传输模块510,用于发送所述目标信息给所述第三设备,其中,所述目标信息为用于预失真处理的信息,所述第三设备包括所述第二设备和/或除所述第一设备、所述第二设备之外的其他设备。
可选的,在所述目标导频信号包括多个导频信号的情况下,所述多个导频信号中的第一导频信号工作在目标器件的线性区、第二导频信号工作在目标器件的非线性区。
可选的,在所述目标导频信号包括多个导频信号的情况下,各所述导频信号对应的带宽一致。
可选的,所述目标信息包括以下至少一项:解调信号的平均幅度偏移;解调信号的最大幅度偏移;解调信号的最小幅度偏移;解调信号的平均相位偏移;解调信号的最大相位偏移;解调信号的最小相位偏移;其中,所述解调信号是所述第一设备通过对所述目标导频信号进行解调得到。
可选的,所述第一传输模块510发送所述目标信息给所述第三设备的步骤,包括:基于目标时间点发送所述目标信息给所述第三设备;其中,所述目标时间点包括以下任一项:网络侧配置的固定时间点;位于所述目标导频信号的接收时间之后的指定时间点,所述指定时间点与所述目标导频信号的接收时间相距预定时长。
可选的,在所述第一设备为终端、第三设备为网络侧设备的情况下,所述目标信息携带于物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS中的任一项;在所述第一设备为网络侧设备、第三设备为终端的情况下,所述目标信息携带于同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS中的任一项。
如图6所示,为本申请一示例性实施例提供的预失真处理装置600的结构示意图,该装置600包括:第二传输模块610,用于接收第一设备发送的目标信息;第二处理模块620,用于根据所述目标信息进行预失真处理。
可选的,所述第二传输模块610还用于向所述第一设备发送目标导频信号;其中,所述目标导频信号包括至少一个导频信号。
可选的,在所述目标导频信号包括多个导频信号的情况下,所述多个导频信号中的第一导频信号工作在目标器件的线性区、第二导频信号工作在目标器件的非线性区。
可选的,在所述目标导频信号包括多个导频信号的情况下,各所述导频信号对应的带宽一致。
可选的,所述第二传输模块610向所述第一设备发送目标导频信号的步骤,包括:按照目标方式向所述第一设备发送所述目标导频信号;其中,所述目标方式包括以下至少任 一项:第一方式,所述第一方式为所述第二设备周期性地向所述第一设备发送所述目标导频信号;第二方式,所述第二方式为所述第二设备在接收到网络侧设备发送的触发信号的情况下,向所述第一设备发送所述目标导频信号。
可选的,所述第二传输模块610,还用于接收网络侧设备发送的目标信令,所述目标信令中包括以下任一项:第一指示域,所述第一指示域专用于向所述第二设备指示所述目标方式;第二指示域,所述第二指示域中包括第一比特,所述第一比特用于向所述第二设备指示所述目标方式,所述第一比特是所述第二指示域中的新增比特,或,所述第一比特是所述第二指示域中的复用比特。
可选的,所述第二处理模块620根据所述目标信息进行预失真处理的步骤,包括以下任一项:根据预失真参数配置表以及所述目标信息进行预失真处理;根据预失真算法以及所述目标信息进行预失真处理。
可选的,在所述第一设备为终端、第二设备为网络侧设备的情况下,所述目标信息携带于物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS中的任一项;在所述第一设备为网络侧设备、第二设备为终端的情况下,所述目标信息携带于同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS中的任一项。
可选的,所述目标信息包括以下至少一项:解调信号的平均幅度偏移;解调信号的最大幅度偏移;解调信号的最小幅度偏移;解调信号的平均相位偏移;解调信号的最大相位偏移;解调信号的最小相位偏移;其中,所述解调信号是所述第一设备通过对所述目标导频信号进行解调得到。
本申请实施例中的预失真处理装置500-600可以是设备(如第一设备或第二设备),也可以是设备中的中的部件,例如集成电路或芯片,该设备可以终端或网络侧设备,示例性的,终端可以包括但不限于上述所列举的终端11的类型,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型。本申请实施例不作具体限定。
本申请实施例提供的预失真处理装置500-600能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701和存储器702,存储器702存储有可在所述处理器701上运行的程序或指令,例如,该通信设备700为终端时,该程序或指令被处理器701执行时实现上述预失真处理方法实施例的各个步骤,且能达到相同的技术效果。该通信设备700为网络侧设备时,该程序或指令被处理器701执行时实现上述预失真处理方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如方法实施例200-400中所述的方法的步骤。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现 方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器810等中的至少部分部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理单元(Graphics Processing Unit,GPU)8041和麦克风8042,GPU8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072中的至少一种。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801接收来自网络侧设备的下行数据后,可以传输给处理器810进行处理;另外,射频单元801可以向网络侧设备发送上行数据。通常,射频单元801包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括易失性存储器或非易失性存储器,或者,存储器809可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器809包括但不限于这些和任意其它适合类型的存储器。
处理器810可包括一个或多个处理单元;可选的,处理器810集成应用处理器和调制 解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,在一种实现方式中,在所述终端800作为第一设备时,射频单元801用于对第二设备发送的目标导频信号进行处理,得到目标信息;处理器810用于发送所述目标信息给第三设备,其中,所述目标信息为用于预失真处理的信息,所述第三设备包括所述第二设备和/或除所述第一设备、所述第二设备之外的其他设备。
在另一种实现方式中,在所述终端800作为第二设备时,射频单元801,用于接收第一设备发送的目标信息;处理器810用于根据所述目标信息进行预失真处理。
本实施例中提及的各实现方式具有与前述方法实施例200-400具有相同或相应的技术特征,因此,本实施例中的各实现过程可参照方法实施例200-400中的相关描述,为避免重复,在此不再赘述。
在本申请实施例中,第一设备通过对第二设备发送的目标导频信号进行处理,得到目标信息,并将目标信息反馈给第三设备,由此,能够使得第三设备基于目标信息进行预失真处理,避免了相关技术中存在的未配置DPD模型的设备无法进行预失真处理的问题,确保了通信系统的性能。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如实施例200-400中所述的方法的步骤。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备900包括:天线901、射频装置902、基带装置903、处理器904和存储器905。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收信息,将接收的信息发送给基带装置903进行处理。在下行方向上,基带装置903对要发送的信息进行处理,并发送给射频装置902,射频装置902对收到的信息进行处理后经过天线901发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置903中实现,该基带装置903包基带处理器。
基带装置903例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器905连接,以调用存储器905中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口906,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备900还包括:存储在存储器905上并可在处理器904上运行的指令或程序,处理器904调用存储器905中的指令或程序执行图5或图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述预失真处理方法实施例200-400的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述预失真处理方法实施例200-400的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现上述预失真处理方法实施例200-400的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:第一设备及第二设备,所述第一设备可用于执行如上所述预失真处理方法实施例200-300中的各个过程,所述第二设备可用于执行如上所述预失真处理方法实施例400中的各个过程。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在 本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种预失真处理方法,其中,包括:
    第一设备对第二设备发送的目标导频信号进行处理,得到目标信息;
    所述第一设备发送所述目标信息给第三设备,其中,所述目标信息为用于预失真处理的信息,所述第三设备包括所述第二设备和/或除所述第一设备、所述第二设备之外的其他设备。
  2. 如权利要求1所述的方法,其中,在所述目标导频信号包括多个导频信号的情况下,所述多个导频信号中的第一导频信号工作在目标器件的线性区、第二导频信号工作在目标器件的非线性区。
  3. 如权利要求1或2所述的方法,其中,在所述目标导频信号包括多个导频信号的情况下,各所述导频信号对应的带宽一致。
  4. 如权利要求1-3中任一项所述的方法,其中,所述目标信息包括以下至少一项:
    解调信号的平均幅度偏移;
    解调信号的最大幅度偏移;
    解调信号的最小幅度偏移;
    解调信号的平均相位偏移;
    解调信号的最大相位偏移;
    解调信号的最小相位偏移;
    其中,所述解调信号是所述第一设备通过对所述目标导频信号进行解调得到。
  5. 如权利要求1所述的方法,其中,所述第一设备发送所述目标信息给所述第三设备的步骤,包括:
    所述第一设备基于目标时间点发送所述目标信息给所述第三设备;
    其中,所述目标时间点包括以下任一项:
    网络侧配置的固定时间点;
    位于所述目标导频信号的接收时间之后的指定时间点,所述指定时间点与所述目标导频信号的接收时间相距预定时长。
  6. 如权利要求1-5中任一项所述的方法,其中,
    在所述第一设备为终端、第三设备为网络侧设备的情况下,所述目标信息携带于物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS中的任一项;
    在所述第一设备为网络侧设备、第三设备为终端的情况下,所述目标信息携带于同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS中的任一项。
  7. 一种预失真处理方法,其中,包括:
    第二设备接收第一设备发送的目标信息;
    所述第二设备根据所述目标信息进行预失真处理。
  8. 如权利要求7所述的方法,其中,第二设备接收第一设备发送的目标信息的步骤之前,所述方法包括:
    所述第二设备向所述第一设备发送目标导频信号;其中,所述目标导频信号包括至少一个导频信号。
  9. 如权利要求8所述的方法,其中,在所述目标导频信号包括多个导频信号的情况下,所述多个导频信号中的第一导频信号工作在目标器件的线性区、第二导频信号工作在目标器件的非线性区。
  10. 如权利要求8所述的方法,其中,在所述目标导频信号包括多个导频信号的情况下,各所述导频信号对应的带宽一致。
  11. 如权利要求8-10中任一项所述的方法,其中,所述第二设备向所述第一设备发送目标导频信号的步骤,包括:
    所述第二设备按照目标方式向所述第一设备发送所述目标导频信号;
    其中,所述目标方式包括以下至少任一项:
    第一方式,所述第一方式为所述第二设备周期性地向所述第一设备发送所述目标导频信号;
    第二方式,所述第二方式为所述第二设备在接收到网络侧设备发送的触发信号的情况下,向所述第一设备发送所述目标导频信号。
  12. 如权利要求11所述的方法,其中,所述方法还包括:
    所述第二设备接收网络侧设备发送的目标信令,所述目标信令中包括以下任一项:
    第一指示域,所述第一指示域专用于向所述第二设备指示所述目标方式;
    第二指示域,所述第二指示域中包括第一比特,所述第一比特用于向所述第二设备指示所述目标方式,所述第一比特是所述第二指示域中的新增比特,或,所述第一比特是所述第二指示域中的复用比特。
  13. 如权利要求9-12中任一项所述的方法,其中,所述第二设备根据所述目标信息进行预失真处理的步骤,包括以下任一项:
    所述第二设备根据预失真参数配置表以及所述目标信息进行预失真处理;
    所述第二设备根据预失真算法以及所述目标信息进行预失真处理。
  14. 如权利要求7-13中任一项所述的方法,其中,
    在所述第一设备为终端、第二设备为网络侧设备的情况下,所述目标信息携带于物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS中的任一项;
    在所述第一设备为网络侧设备、第二设备为终端的情况下,所述目标信息携带于同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS中的任一项。
  15. 如权利要求7-14中任一项所述的方法,其中,所述目标信息包括以下至少一项:
    解调信号的平均幅度偏移;
    解调信号的最大幅度偏移;
    解调信号的最小幅度偏移;
    解调信号的平均相位偏移;
    解调信号的最大相位偏移;
    解调信号的最小相位偏移;
    其中,所述解调信号是所述第一设备通过对所述目标导频信号进行解调得到。
  16. 一种预失真处理装置,其中,应用于第一设备,所述装置包括:
    第一处理模块,用于对第二设备发送的所述目标导频信号进行处理,得到目标信息;
    第一传输模块,用于发送所述目标信息给第三设备,其中,所述目标信息为用于预失真处理的信息,所述第三设备包括所述第二设备和/或除所述第一设备、所述第二设备之外的其他设备。
  17. 如权利要求16所述的装置,其中,在所述目标导频信号包括多个导频信号的情况下,所述多个导频信号中的第一导频信号工作在目标器件的线性区、第二导频信号工作在目标器件的非线性区。
  18. 如权利要求16或17所述的装置,其中,在所述目标导频信号包括多个导频信号的情况下,各所述导频信号对应的带宽一致。
  19. 如权利要求16-18中任一项所述的装置,其中,所述目标信息包括以下至少一项:
    解调信号的平均幅度偏移;
    解调信号的最大幅度偏移;
    解调信号的最小幅度偏移;
    解调信号的平均相位偏移;
    解调信号的最大相位偏移;
    解调信号的最小相位偏移;
    其中,所述解调信号是所述第一设备通过对所述目标导频信号进行解调得到。
  20. 如权利要求16所述的装置,其中,所述第一传输模块发送所述目标信息给所述第三设备的步骤,包括:
    基于目标时间点发送所述目标信息给所述第三设备;
    其中,所述目标时间点包括以下任一项:
    网络侧配置的固定时间点;
    位于所述目标导频信号的接收时间之后的指定时间点,所述指定时间点与所述目标导频信号的接收时间相距预定时长。
  21. 如权利要求16-20中任一项所述的装置,其中,
    在所述第一设备为终端、第三设备为网络侧设备的情况下,所述目标信息携带于物理 上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS中的任一项;
    在所述第一设备为网络侧设备、第三设备为终端的情况下,所述目标信息携带于同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS中的任一项。
  22. 一种预失真处理装置,其中,应用于第二设备,所述装置包括:
    第二传输模块,用于接收第一设备发送的目标信息;
    第二处理模块,用于根据所述目标信息进行预失真处理。
  23. 如权利要求22所述的装置,其中,所述第二传输模块还用于向所述第一设备发送目标导频信号;其中,所述目标导频信号包括至少一个导频信号。
  24. 如权利要求23所述的装置,其中,在所述目标导频信号包括多个导频信号的情况下,所述多个导频信号中的第一导频信号工作在目标器件的线性区、第二导频信号工作在目标器件的非线性区。
  25. 如权利要求23所述的装置,其中,在所述目标导频信号包括多个导频信号的情况下,各所述导频信号对应的带宽一致。
  26. 如权利要求22-24中任一项所述的装置,其中,所述第二传输模块向所述第一设备发送目标导频信号的步骤,包括:
    按照目标方式向所述第一设备发送所述目标导频信号;
    其中,所述目标方式包括以下至少任一项:
    第一方式,所述第一方式为所述第二设备周期性地向所述第一设备发送所述目标导频信号;
    第二方式,所述第二方式为所述第二设备在接收到网络侧设备发送的触发信号的情况下,向所述第一设备发送所述目标导频信号。
  27. 如权利要求26所述的装置,其中,所述第二传输模块,还用于接收网络侧设备发送的目标信令,所述目标信令中包括以下任一项:
    第一指示域,所述第一指示域专用于向所述第二设备指示所述目标方式;
    第二指示域,所述第二指示域中包括第一比特,所述第一比特用于向所述第二设备指示所述目标方式,所述第一比特是所述第二指示域中的新增比特,或,所述第一比特是所述第二指示域中的复用比特。
  28. 如权利要求22-27中任一项所述的装置,其中,所述第二处理模块根据所述目标信息进行预失真处理的步骤,包括以下任一项:
    根据预失真参数配置表以及所述目标信息进行预失真处理;
    根据预失真算法以及所述目标信息进行预失真处理。
  29. 如权利要求22-28中任一项所述的装置,其中,
    在所述第一设备为终端、第二设备为网络侧设备的情况下,所述目标信息携带于物理 上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS中的任一项;
    在所述第一设备为网络侧设备、第二设备为终端的情况下,所述目标信息携带于同步信号块SSB、物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS中的任一项。
  30. 如权利要求22-29中任一项所述的装置,其中,所述目标信息包括以下至少一项:
    解调信号的平均幅度偏移;
    解调信号的最大幅度偏移;
    解调信号的最小幅度偏移;
    解调信号的平均相位偏移;
    解调信号的最大相位偏移;
    解调信号的最小相位偏移;
    其中,所述解调信号是所述第一设备通过对所述目标导频信号进行解调得到。
  31. 一种设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至6任一项所述的方法的步骤,或者实现如权利要求7至15任一项所述的方法的步骤。
  32. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-6任一项所述的方法的步骤,或者实现如权利要求7至15任一项所述的方法的步骤。
PCT/CN2023/090864 2022-04-28 2023-04-26 预失真处理方法、装置及设备 WO2023208042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210462196.0A CN117014264A (zh) 2022-04-28 2022-04-28 预失真处理方法、装置及设备
CN202210462196.0 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023208042A1 true WO2023208042A1 (zh) 2023-11-02

Family

ID=88517810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090864 WO2023208042A1 (zh) 2022-04-28 2023-04-26 预失真处理方法、装置及设备

Country Status (2)

Country Link
CN (1) CN117014264A (zh)
WO (1) WO2023208042A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118311335A (zh) * 2024-04-11 2024-07-09 中国人民解放军军事科学院系统工程研究院 一种电磁信号处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919857A (zh) * 2016-10-07 2018-04-17 罗德施瓦兹两合股份有限公司 预失真系统和方法
CN110720201A (zh) * 2018-02-14 2020-01-21 Oppo广东移动通信有限公司 输出功率调整方法及相关产品
CN111567001A (zh) * 2017-12-18 2020-08-21 高通股份有限公司 利用参考信号进行非线性估计的系统和方法
CN111835297A (zh) * 2020-07-16 2020-10-27 中国联合网络通信集团有限公司 数字预失真校正方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919857A (zh) * 2016-10-07 2018-04-17 罗德施瓦兹两合股份有限公司 预失真系统和方法
CN111567001A (zh) * 2017-12-18 2020-08-21 高通股份有限公司 利用参考信号进行非线性估计的系统和方法
CN113595568A (zh) * 2017-12-18 2021-11-02 高通股份有限公司 利用参考信号进行非线性估计的方法和装置
CN110720201A (zh) * 2018-02-14 2020-01-21 Oppo广东移动通信有限公司 输出功率调整方法及相关产品
CN111835297A (zh) * 2020-07-16 2020-10-27 中国联合网络通信集团有限公司 数字预失真校正方法、装置及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118311335A (zh) * 2024-04-11 2024-07-09 中国人民解放军军事科学院系统工程研究院 一种电磁信号处理方法及装置

Also Published As

Publication number Publication date
CN117014264A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
US20240137781A1 (en) Spatial relation indication method and device
WO2023208042A1 (zh) 预失真处理方法、装置及设备
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023109759A1 (zh) Prach传输方法、装置及终端
EP4440081A1 (en) Session establishment method and apparatus for internet of things device
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2023186018A1 (zh) 信息传输方法、装置、终端及可读存储介质
WO2023216984A1 (zh) 信号监听方法、配置方法、装置、终端及网络侧设备
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023241514A1 (zh) 参考信号接收、发送方法、终端及网络侧设备
WO2023208181A1 (zh) 功率确定方法、终端及可读存储介质
WO2024078456A1 (zh) 上行控制信息传输方法、装置及终端
WO2023198094A1 (zh) 模型输入的确定方法及通信设备
US20240356819A1 (en) Communication method and apparatus, and related device
WO2023207842A1 (zh) 波束信息确定方法、终端及网络侧设备
WO2023131288A1 (zh) 资源确定方法、装置、终端和网络侧设备
WO2023207840A1 (zh) 信号接收方法、装置及终端
WO2023179618A1 (zh) 传输方法、装置、终端及存储介质
WO2023198071A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024146482A1 (zh) 一种传输参数配置方法、装置及终端设备
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
US20240276401A1 (en) Information reporting method, information receiving method, terminal, network side device, and storage medium
WO2023151519A1 (zh) 功率控制pc参数的确定方法、装置及终端
WO2024061111A1 (zh) 资源处理方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795474

Country of ref document: EP

Kind code of ref document: A1