[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023198058A1 - 信息传输方法、装置、终端及网络侧设备 - Google Patents

信息传输方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2023198058A1
WO2023198058A1 PCT/CN2023/087616 CN2023087616W WO2023198058A1 WO 2023198058 A1 WO2023198058 A1 WO 2023198058A1 CN 2023087616 W CN2023087616 W CN 2023087616W WO 2023198058 A1 WO2023198058 A1 WO 2023198058A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sub
information
block
domain
Prior art date
Application number
PCT/CN2023/087616
Other languages
English (en)
French (fr)
Inventor
孙布勒
刘昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023198058A1 publication Critical patent/WO2023198058A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques

Definitions

  • This application belongs to the field of mobile communication technology, and specifically relates to an information transmission method, device, terminal and network side equipment.
  • the originator splits the delayed Doppler domain into multiple sub-regions and uses different precoding on different sub-regions.
  • the receiving end can evaluate the performance of the precoding or modulation coding used by the transmitting end, and feedback the corresponding information to make suggestions and adjustments to the precoding or modulation coding method of the transmitting end to improve the performance of subsequent downlink transmission.
  • Orthogonal Time Frequency Space logically maps the information in a data packet of size M ⁇ N to an M ⁇ N grid point on the two-dimensional delay Doppler plane, that is, The pulses within each grid point modulate a symbol in the data packet.
  • multi-antenna precoding is used to uniformly perform spatial precoding in the delayed Doppler domain, resulting in a mismatch between the uniform spatial precoding in the delayed Doppler domain and the actual channel.
  • Embodiments of the present application provide an information transmission method, device, terminal and network-side equipment, which can solve the problem of mismatch between spatial precoding performed uniformly in the delayed Doppler domain and the actual channel.
  • an information transmission method is provided, applied to a first device, and the method includes:
  • the first device receives a first signal from the second device.
  • the first signal is a signal mapped on N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then transformed into the time-frequency domain.
  • the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • an information transmission device including:
  • a transceiver module configured to receive a first signal from a second device.
  • the first signal is a signal mapped on N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then converted into a time-frequency signal. domain signal;
  • An analysis module is used to analyze the first signal.
  • the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • an information transmission method is provided, applied to the second device, and the method includes:
  • the second device sends a first signal to the first device.
  • the first signal is a signal mapped on N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then transformed into the time-frequency domain.
  • the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • an information transmission device including:
  • Determining module used to determine the first signal
  • a transmission module configured to send a first signal to the first device.
  • the first signal is a signal mapped on the N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then converted into a time-frequency signal. domain signal;
  • the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect, or the steps of implementing the method described in the third aspect.
  • a network side device in a sixth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a seventh aspect provides an information transmission system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the information transmission method as described in the first aspect or the third aspect.
  • the network side device can be used to Perform the steps of the information transmission method described in the first aspect or the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the third aspect.
  • a chip in a ninth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. , or implement the method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product Stored in a storage medium, the computer program/program product is executed by at least one processor to implement the information transmission method as described in the first aspect, or to implement the steps of the information transmission method as described in the third aspect.
  • the delayed Doppler domain is divided into N sub-blocks, and each sub-block is precoded using the corresponding codeword, and then the first signal is sent after OTFS modulation, so that the precoding is consistent with the actual Channels are better matched.
  • Figure 1 is a schematic structural diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a schematic flow chart of an information transmission method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a resource in the delayed Doppler domain provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of the information sending method provided by the embodiment of the present application.
  • Figure 5 is another schematic flow chart of the information transmission method provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of another resource in the delayed Doppler domain provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of an information receiving method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of another resource in the delayed Doppler domain provided by an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of an information receiving method provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an information transmission device provided by an embodiment of the present application.
  • Figure 11 is another schematic flow chart of the information transmission method provided by the embodiment of the present application.
  • Figure 12 is another structural schematic diagram of an information transmission device provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a terminal that implements an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of another terminal implementing an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a network side device that implements an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • the instructions In the claims, "and/or” indicates at least one of the connected objects. The character “/” generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node , Transmitting Receiving Point Point, TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only the base station in the NR system is used. This is introduced as an example and does not limit the specific type of base station.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • the embodiment of the present application provides an information transmission method.
  • the execution subject of the method is a first device.
  • the first device can be a network side device or a terminal.
  • the method can be performed by Software or hardware installed on the first device to execute.
  • the method also includes the following steps.
  • the first device receives a first signal from the second device.
  • the first signal is a signal mapped on N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then transformed. signals in the time-frequency domain;
  • the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • the first signal can be an OTFS modulated signal, and of course it can also be a signal based on other modulation methods, for example, based on Walsh-Hadmard Transform (WHT), based on discrete cosine transform ( Discrete Cosine Transform (DCT) modulation method.
  • WHT Walsh-Hadmard Transform
  • DCT Discrete Cosine Transform
  • the second device divides the delayed Doppler domain into N sub-blocks. As shown in Figure 3, the delayed Doppler domain is divided into four sub-blocks, the first sub-block 301, the second sub-block 302, and the third sub-block 303. and fourth sub-block 304.
  • each sub-block division can be set according to actual needs. You can design each sub-block to occupy the same number of resource grids. As shown in Figure 3, the four sub-blocks occupy the same number of resource grids. You can also design each sub-block to occupy a different number of resource grids.
  • the same codeword is used for precoding for all ports on the same sub-block, as shown in Figure 3.
  • Different patterns are used to represent the corresponding codewords, and the first The sub-block 301 uses the codeword W1 for precoding, the second sub-block 302 uses the codeword W2 for precoding, the third sub-block 303 uses the codeword W3 for precoding, and the fourth sub-block 304 uses the codeword W4 for precoding.
  • the second device transmits the first signal through two antenna ports: port 1 and port 2, and the same sub-block uses the same codeword for precoding at port 1 and port 2.
  • codewords W1, W2, W3 and W4 may be partially the same.
  • codeword W1 and codeword W3 are the same.
  • the number of layers of all ports on the same sub-block is the same.
  • the precoded codeword is determined in one of the following ways:
  • a first guard interval is configured between the N sub-blocks in the delay domain direction and the Doppler domain direction. As shown in Figure 3, the first guard interval configured between adjacent sub-blocks occupies one grid in the delay domain direction and two grids in the Doppler domain direction.
  • the size of the first guard interval can be configured according to actual needs. In one embodiment, it can be configured that the first guard interval between adjacent sub-blocks in the delay direction should not be less than the maximum transmission delay of the current transmission environment. The first guard interval between adjacent sub-blocks in the Doppler direction should be no less than twice the maximum transmission Doppler of the current transmission environment.
  • the same codeword can be used for precoding different sub-blocks with the same delay domain resource location and distinguished by the first guard interval in the Doppler domain direction, for example, the first one as shown in Figure 3 Sub-block 301 and third sub-block 303, second sub-block 302 and fourth sub-block 304.
  • the same codeword can be used for precoding different sub-blocks with the same Doppler domain resource location and distinguished by the first guard interval in the delay domain direction, for example, the first one as shown in Figure 3 Sub-block 301 and second sub-block 302, third sub-block 303 and fourth sub-block 304.
  • the process for the second device to send the first signal is as shown in Figure 4, including the following steps.
  • A1 Divide the delayed Doppler domain into sub-blocks and divide it into N sub-blocks;
  • ISFFT inverse sympletic Fourier Transform
  • A5. Perform Heisenberg transform on the time-frequency domain signal to obtain the time domain signal, and send it to the first device.
  • steps A4 and A5 are OTFS modulation.
  • the method further includes:
  • the first device obtains the sub-block partitioning scheme of the first signal domain.
  • the sub-block division scheme includes a resource identifier of the first signal domain or a set of the resource identifiers.
  • the sub-block partitioning scheme is obtained by at least one of the following methods:
  • the embodiments of the present application divide the delayed Doppler domain into N sub-blocks, precode each sub-block with a corresponding codeword, and then perform OTFS modulation before sending the first signal. This makes the precoding more consistent with the actual channel.
  • step S210 the method further includes:
  • Step S220 The first device detects the first signal and determines the precoding quality information corresponding to the N sub-blocks.
  • Step S220 can be implemented in various ways.
  • the first signal is configured with a pilot signal
  • step S220 includes:
  • the first device determines the pilot signal in the first signal according to the pilot configuration information, and obtains the first channel information corresponding to the pilot signal; wherein the first channel information is based on spatial channel information and equivalent channel information obtained from precoding information, where the precoding information refers to precoded codewords, etc.;
  • the first signal is detected according to the first channel information, and precoding quality information corresponding to the N sub-blocks is determined.
  • the spatial channel information and precoding information may be in matrix form, and the first channel information may be obtained by multiplying the spatial channel information and precoding information.
  • the pilot configuration information may include:
  • the pilot signal in the first signal can be set according to actual needs.
  • the first signal The pilot signal in the number may be the first pilot signal located in each sub-block, that is, the resource mapping of each sub-block in the delayed Doppler domain may include a data signal and the corresponding first pilot signal. Since the first pilot signal on each sub-block uses the same precoding as the data signal on the sub-block, the channel estimated by the first pilot signal in each sub-block is completely consistent with the channel experienced by the data signal. Can be used directly for detection or demodulation.
  • the first pilot signal 3011 is set on the first sub-block 301, the first pilot signal 3021 is set on the second sub-block 302, and the first pilot signal 3021 is set on the third sub-block 303.
  • Pilot signal 3031, the first pilot signal 3041 is set on the fourth sub-block 304;
  • the first pilot signal 3012 is set on the first sub-block 301, and the first pilot signal 3012 is set on the second sub-block 302.
  • the first pilot signal 3032 is set on the third sub-block 303, and the first pilot signal 3042 is set on the fourth sub-block 304.
  • the positions of the pilot signals may be different.
  • the first device determines the first pilot signal in each sub-block in the first signal and the first pilot signal corresponding to the first pilot signal according to the pilot configuration information.
  • the first channel information of each sub-block is obtained, that is, the equivalent channel information of each sub-block is obtained.
  • the process for the first device to receive the first signal is as shown in Figure 7, including the following steps.
  • steps B1 and B2 are OTFS demodulation.
  • step S220 the method further includes:
  • the first device obtains pilot configuration information, that is, the position of the first pilot signal in each sub-block and the position of the second guard interval corresponding to the first pilot signal.
  • the pilot configuration information may be received from the second device or specified by a protocol.
  • step S220 the method further includes:
  • the first device feeds back to the second device precoded feedback information corresponding to a target sub-block.
  • the target sub-block is all or part of the N sub-blocks. For example, it may be a precoded quality sub-block. Sub-blocks with poor quality do not meet the requirements.
  • the feedback information includes at least one of the following:
  • Modulation and Coding Scheme recommended for the target sub-block.
  • the first device may dynamically adjust the precoding corresponding to each sub-block, for example, using the codewords recommended in the feedback information, or using the modulation and coding scheme recommended in the feedback information.
  • the precoding of each sub-block can be dynamically changed, and the codewords precoded for each sub-block are transparent to the first device.
  • the pilot signal in the first signal may be a second pilot signal located in a sub-block, and the second pilot signal is a common pilot signal.
  • the second pilot signal 3043 is set on the fourth sub-block 304
  • the second pilot signal 3044 is set on the fourth sub-block 304.
  • the positions of the pilot signals may be different.
  • the first device determines the position of the second pilot signal in the first signal and its relationship with the second pilot signal according to the pilot configuration information.
  • the first channel information corresponding to the second pilot signal is obtained.
  • obtaining the first channel information corresponding to the second pilot signal based on the second pilot signal and the position of the second guard interval corresponding to the second pilot signal includes:
  • the first channel information of the sub-block where the second pilot signal is located is obtained, that is, the second pilot signal Equivalent channel information of the sub-block where the signal is located;
  • the second channel information corresponding to the second pilot signal is obtained; wherein the second channel information is spatial channel information; since The spatial channel experienced by each sub-block is the same, so the second channel information corresponding to the second pilot information can be used as the second channel information corresponding to each sub-block;
  • the first channel information of each sub-block is obtained.
  • a fixed codeword for the common pilot signal may be configured for precoding for the sub-block where the second pilot signal is located, and the codeword may be specified by a protocol.
  • the process for the first device to receive the first signal is as shown in Figure 9, including Include the following steps.
  • steps C1 and C2 are OTFS demodulation.
  • step S220 the method further includes:
  • the first device obtains the pilot configuration information and the precoded information corresponding to each sub-block.
  • the pilot configuration information includes the position of the second pilot signal and the position corresponding to the second pilot signal. The position of the second guard interval.
  • the pilot configuration information and the precoded information corresponding to each sub-block may be received from the second device or specified by a protocol.
  • step S220 the method further includes:
  • the first device feeds back to the second device precoding feedback information corresponding to a target sub-block, where the target sub-block is all or part of the N sub-blocks.
  • the feedback information includes at least one of the following:
  • the second device may dynamically adjust precoding corresponding to sub-blocks other than the sub-block where the second pilot signal is located.
  • the pilot overhead can be reduced.
  • the method further includes:
  • the first device obtains the pilot configuration scheme of the first signal.
  • the pilot configuration scheme may include which pilot configuration method is used, such as the first pilot signal or the second pilot signal, and may also include: Pilot configuration information corresponding to the pilot signal and symbols of the pilot signal, etc.
  • the pilot configuration scheme is obtained by at least one of the following methods:
  • delay diversity transmission and/or Doppler diversity is used at multiple antenna ports
  • the timing offset and/or frequency offset of the first device and the pilot signal corresponding to one of the antenna ports are quasi co-location (QCL).
  • the quasi-co-location is configured in at least one of the following ways:
  • the embodiments of the present application configure the pilot signal in the first signal, so that the first device can detect the first signal based on the estimation of the pilot signal and determine the corresponding value of each sub-block.
  • the precoding quality information can be used to dynamically adjust the precoding of each sub-block through feedback information to make the precoding more closely match the actual channel.
  • Channel prediction is an important function of the fifth-generation mobile communication technology (5th-Generation Mobile Communication Technology, 5G) and future 6G.
  • Conventional channel feedback information mainly includes the feedback channel itself, such as type 2 (type II); or feedback of a precoding codebook that matches the channel, such as type 1 (type I).
  • type 2 type II
  • type 1 type I
  • Channel prediction based on the above channel feedback information often performs poorly because there are no accurate delay and Doppler values in the channel feedback.
  • the method when obtaining the first channel information corresponding to the pilot signal, the method further includes:
  • the first device sends first information to the second device.
  • the first information includes channel information of the channel between the first device and the second device.
  • the channel information may include the information in the above embodiment.
  • the first channel information or the second channel information may also be other forms of channel information.
  • the channel information includes at least one of the following:
  • the Doppler information of the channel includes at least one of the following:
  • the maximum, minimum, or average value of Doppler for the channel is the maximum, minimum, or average value of Doppler for the channel.
  • the above-mentioned Doppler information may include the original value of the above-mentioned Doppler value, or may be the result of conversion of the above-mentioned Doppler value, for example, quantization encoding, classification, and the last feedback Doppler value. The size relationship of the values, etc.
  • the delay information of the channel includes at least one of the following:
  • the maximum, minimum or average delay of the channel is the maximum, minimum or average delay of the channel.
  • the delay information may include the original value of the delay value, or may be the result of conversion of the delay value, for example, quantization encoding, grading, the size relationship with the last feedback delay value, etc.
  • the technical solutions of the embodiments of this application can also be applied in other application scenarios.
  • the first information may be fed back to the second device.
  • the embodiments of the present application directly describe the delay value or delay range and Doppler value of the channel by newly defining multiple feedback quantities in the delay Doppler domain in the first feedback information. or Doppler range. Since the channel delay and Doppler include the channel's change patterns with time and frequency, better channel prediction can be performed based on the newly added feedback amount.
  • the execution subject may be an information transmission device.
  • an information transmission device performing an information transmission method is used as an example to illustrate the information transmission device provided by the embodiment of the present application.
  • the information transmission device includes: a transceiver module 1001 and an analysis module 1002.
  • the transceiver module 1001 is configured to receive a first signal from a second device.
  • the first signal is a signal mapped on N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then converted to A signal in the time-frequency domain; the analysis module 1002 is used to analyze the first signal.
  • the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • the number of layers of all ports on the same sub-block is the same.
  • the precoded codeword is determined by one of the following methods:
  • a first guard interval is configured between the N sub-blocks in the delay domain direction and the Doppler domain direction.
  • the same codeword is used for precoding different sub-blocks that have the same delay domain resource position and are distinguished by the first guard interval in the Doppler domain direction.
  • the same codeword is used for precoding for different sub-blocks that have the same Doppler domain resource position and are distinguished by the first guard interval in the delay domain direction.
  • the transceiver module 1001 is also configured to obtain the sub-block division scheme of the first signal domain.
  • the sub-block division scheme includes a resource identifier of the first signal domain or a set of the resource identifiers.
  • sub-block division scheme is obtained in at least one of the following ways:
  • the embodiments of the present application divide the delayed Doppler domain into N sub-blocks are precoded using corresponding codewords for each sub-block, and then the first signal is sent after OTFS modulation, thereby making the precoding more closely match the actual channel.
  • the parsing module 1002 is also configured to detect the first signal and determine the precoding quality information corresponding to the N sub-blocks.
  • parsing module 1002 is used to:
  • the first signal is detected according to the first channel information, and precoding quality information corresponding to the N sub-blocks is determined.
  • pilot signal in the first signal is at least one of the following:
  • the analysis module 1002 is used to:
  • pilot configuration information determine the position of the first pilot signal in each sub-block in the first signal and the second guard interval corresponding to the first pilot signal;
  • the first channel information of each sub-block is obtained.
  • the analysis module 1002 is used to:
  • the first channel information corresponding to the second pilot signal is obtained.
  • parsing module 1002 is used to:
  • the second channel information corresponding to the second pilot signal is obtained; wherein the second channel information is spatial channel information;
  • the first channel information of each sub-block is obtained.
  • pilot configuration information includes:
  • transceiver module 1001 is also used to obtain at least one of the following information:
  • Precoding information corresponding to each sub-block is Precoding information corresponding to each sub-block.
  • pilot configuration information and/or the precoding information corresponding to each sub-block is obtained through at least one of the following methods:
  • the transceiver module 1001 is further configured to feed back to the second device precoding feedback information corresponding to a target sub-block, where the target sub-block is all or part of the N sub-blocks.
  • the feedback information includes at least one of the following:
  • transceiver module 1001 is also used to obtain the pilot configuration scheme of the first signal.
  • pilot configuration scheme is obtained by at least one of the following methods:
  • the timing deviation and/or frequency deviation of the first device and the pilot signal corresponding to one of the antenna ports are quasi-coherent. address.
  • the quasi-co-location is configured in at least one of the following ways:
  • the embodiments of the present application configure the pilot signal in the first signal, so that the first device can detect the first signal based on the estimation of the pilot signal and determine the corresponding value of each sub-block.
  • the precoding quality information can be used to dynamically adjust the precoding of each sub-block through feedback information to make the precoding more closely match the actual channel.
  • the transceiver module 1001 is also configured to send first information to the second device, where the first information includes channel information of the channel with the second device.
  • the channel information includes at least one of the following:
  • the Doppler information of the channel includes at least one of the following:
  • the maximum, minimum, or average value of Doppler for the channel is the maximum, minimum, or average value of Doppler for the channel.
  • the delay information of the channel includes at least one of the following:
  • the maximum, minimum or average delay of the channel is the maximum, minimum or average delay of the channel.
  • the embodiments of the present application directly describe the delay value or delay range and Doppler value of the channel by newly defining multiple feedback quantities in the delay Doppler domain in the first feedback information. or Doppler range. Since the channel delay and Doppler include the channel's change patterns with time and frequency, better channel prediction can be performed based on the newly added feedback amount.
  • the information transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the information transmission device provided by the embodiments of the present application can implement each process implemented by the method embodiments in Figures 2 to 9 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application provides an information transmission method.
  • the execution subject of this method is a second device.
  • the second device can be a network side device or a terminal.
  • the second device sends a first signal to the first device.
  • the first signal is a signal mapped on N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then converted into a time-frequency signal. domain signal;
  • the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • the number of layers of all ports on the same sub-block is the same.
  • the precoded codeword is determined by one of the following methods:
  • a first guard interval is configured between the N sub-blocks in the delay domain direction and the Doppler domain direction.
  • the same codeword is used for precoding different sub-blocks that have the same delay domain resource position and are distinguished by the first guard interval in the Doppler domain direction.
  • the same codeword is used for precoding for different sub-blocks that have the same Doppler domain resource position and are distinguished by the first guard interval in the delay domain direction.
  • the method also includes:
  • the second device sends the sub-block partitioning scheme of the first signal domain to the first device.
  • the sub-block division scheme includes the resource identifier of the first signal domain or the resource identifier. collection of knowledge.
  • Step S1110 can implement the method embodiments described in Figures 2 to 4 and obtain the same technical effect, and the repeated parts will not be described again here.
  • the embodiments of the present application divide the delayed Doppler domain into N sub-blocks, precode each sub-block with a corresponding codeword, and then perform OTFS modulation before sending the first signal. This makes the precoding more consistent with the actual channel.
  • pilot signals are provided in at least some of the N sub-blocks in the first signal domain.
  • pilot signal in the first signal is at least one of the following:
  • the method also includes:
  • the second device sends at least one of the following information to the first device:
  • Precoding information corresponding to each sub-block is Precoding information corresponding to each sub-block.
  • pilot configuration information includes:
  • step S1110 the method further includes:
  • the second device receives, from the first device, precoded feedback information corresponding to a target sub-block, where the target sub-block is all or part of the N sub-blocks.
  • the feedback information includes at least one of the following:
  • the method also includes:
  • the second device sends the pilot configuration scheme of the first signal to the first device.
  • the timing deviation and/or frequency deviation of the first device and the pilot signal corresponding to one of the antenna ports are quasi-coherent. address.
  • the quasi-co-location is configured in at least one of the following ways:
  • the embodiments of the present application configure the pilot signal in the first signal, so that the first device can detect the first signal based on the estimation of the pilot signal and determine the corresponding value of each sub-block.
  • the precoding quality information can be used to dynamically adjust the precoding of each sub-block through feedback information to make the precoding more closely match the actual channel.
  • step S1110 the method further includes:
  • the second device receives first information from the first device, where the first information includes channel information of a channel between the second device and the first device.
  • the channel information includes at least one of the following:
  • the Doppler information of the channel includes at least one of the following:
  • the maximum, minimum, or average value of Doppler for the channel is the maximum, minimum, or average value of Doppler for the channel.
  • the delay information of the channel includes at least one of the following:
  • the maximum, minimum or average delay of the channel is the maximum, minimum or average delay of the channel.
  • the embodiments of the present application directly describe the delay value or delay range and Doppler value of the channel by newly defining multiple feedback quantities in the delay Doppler domain in the first feedback information. or Doppler range. Since the channel delay and Doppler include the channel's change patterns with time and frequency, better channel prediction can be performed based on the newly added feedback amount.
  • the execution subject may be an information transmission device.
  • an information transmission device performing an information transmission method is used as an example to illustrate the information transmission device provided by the embodiment of the present application.
  • the information transmission device includes: a determination module 1201 and a transmission module 1202.
  • the determining module 1201 is used to determine a first signal; the transmission module 1202 is used to send a first signal to a first device, where the first signal is ANDed with signals mapped on N sub-blocks of the first signal domain.
  • the signal corresponding to the sub-block is precoded and then transformed into the time-frequency domain; wherein, the first signal domain is a delayed Doppler domain, the first signal domain is divided into N sub-blocks, and the N is A positive integer greater than or equal to 2.
  • the number of layers of all ports on the same sub-block is the same.
  • the precoded codeword is determined by one of the following methods:
  • a first guard interval is configured between the N sub-blocks in the delay domain direction and the Doppler domain direction.
  • the same codeword is used for precoding different sub-blocks that have the same delay domain resource position and are distinguished by the first guard interval in the Doppler domain direction.
  • the same codeword is used for precoding for different sub-blocks that have the same Doppler domain resource position and are distinguished by the first guard interval in the delay domain direction.
  • the transmission module 1202 is also configured to send the sub-block division scheme of the first signal domain to the first device.
  • the sub-block division scheme includes a resource identifier of the first signal domain or a set of the resource identifiers.
  • the embodiments of the present application divide the delayed Doppler domain into N sub-blocks, precode each sub-block with a corresponding codeword, and then perform OTFS modulation before sending the first signal. This makes the precoding more consistent with the actual channel.
  • pilot signals are provided in at least some of the N sub-blocks in the first signal domain.
  • pilot signal in the first signal is at least one of the following:
  • the transmission module 1202 is also configured to send at least one of the following information to the first device:
  • Precoding information corresponding to each sub-block is Precoding information corresponding to each sub-block.
  • pilot configuration information includes:
  • the transmission module 1202 is further configured to receive precoding feedback information corresponding to a target sub-block from the first device, where the target sub-block is all or part of the N sub-blocks.
  • the feedback information includes at least one of the following:
  • the transmission module 1202 is also configured to send the pilot configuration scheme of the first signal to the first device.
  • the timing deviation and/or frequency deviation of the first device and the pilot signal corresponding to one of the antenna ports are The number is quasi-co-located.
  • the quasi-co-location is configured in at least one of the following ways:
  • the embodiments of the present application configure the pilot signal in the first signal, so that the first device can detect the first signal based on the estimation of the pilot signal and determine the corresponding value of each sub-block.
  • the precoding quality information can be used to dynamically adjust the precoding of each sub-block through feedback information to make the precoding more closely match the actual channel.
  • the transmission module 1202 is also configured to receive first information from the first device, where the first information includes channel information of a channel with the first device.
  • the channel information includes at least one of the following:
  • the Doppler information of the channel includes at least one of the following:
  • the maximum, minimum, or average value of Doppler for the channel is the maximum, minimum, or average value of Doppler for the channel.
  • the delay information of the channel includes at least one of the following:
  • the maximum, minimum or average delay of the channel is the maximum, minimum or average delay of the channel.
  • the embodiments of the present application directly describe the delay value or delay range and Doppler value of the channel by newly defining multiple feedback quantities in the delay Doppler domain in the first feedback information. or Doppler range. Since the channel delay and Doppler include the channel's change patterns with time and frequency, better channel prediction can be performed based on the newly added feedback amount.
  • the information transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the information transmission device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 11 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1300, which includes a processor 1301 and a memory 1302.
  • the memory 1302 stores programs or instructions that can be run on the processor 1301, such as , when the communication device 1300 is a terminal, when the program or instruction is executed by the processor 1301, each step of the above information transmission method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 1300 is a network-side device, the program or instruction is executed by the processor 1301
  • Each step of the above information transmission method embodiment can be implemented in real time and can achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the processor is used to parse the first signal.
  • the communication interface is used to receive the first signal from a second device.
  • the first signal is the mapped signal.
  • the signal on N sub-blocks in the first signal domain is precoded corresponding to the sub-block and then transformed into a signal in the time-frequency domain.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 14 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409, a processor 1410, etc. At least some parts.
  • the terminal 1400 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1410 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 14 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1404 may include a graphics processing unit (Graphics Processing Unit, GPU) 14041 and a microphone 14042.
  • the graphics processor 14041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1406 may include a display panel 14061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1407 includes a touch panel 14071 and at least one of other input devices 14072. Touch panel 14071, also known as touch screen.
  • the touch panel 14071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 14072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1401 after receiving downlink data from the network side device, the radio frequency unit 1401 can transmit it to the processor 1410 for processing; in addition, the radio frequency unit 1401 can send uplink data to the network side device.
  • the radio frequency unit 1401 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1409 may be used to store software programs or instructions as well as various data.
  • the memory 1409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1409 may include volatile memory or non-volatile memory, or memory 1409 may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1410.
  • the radio frequency unit 1401 is used to receive a first signal from a second device.
  • the first signal is a signal mapped on N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then transformed. signal in the time-frequency domain.
  • Processor 1410 used to analyze the first signal.
  • the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • the number of layers of all ports on the same sub-block is the same.
  • the precoded codeword is determined by one of the following methods:
  • a first guard interval is configured between the N sub-blocks in the delay domain direction and the Doppler domain direction.
  • the same codeword is used for precoding different sub-blocks that have the same delay domain resource position and are distinguished by the first guard interval in the Doppler domain direction.
  • the same codeword is used for precoding for different sub-blocks that have the same Doppler domain resource position and are distinguished by the first guard interval in the delay domain direction.
  • the radio frequency unit 1401 is also configured to obtain the sub-block division scheme of the first signal domain.
  • the sub-block division scheme includes a resource identifier of the first signal domain or a set of the resource identifiers.
  • sub-block division scheme is obtained in at least one of the following ways:
  • the embodiment of the present application makes the precoding more consistent with the actual channel.
  • the processor 1410 is also configured to detect the first signal and determine the precoding quality information corresponding to the N sub-blocks.
  • processor 1410 is used for:
  • the first signal is detected according to the first channel information, and precoding quality information corresponding to the N sub-blocks is determined.
  • pilot signal in the first signal is at least one of the following:
  • the processor 1410 is configured to:
  • pilot configuration information determine the position of the first pilot signal in each sub-block in the first signal and the second guard interval corresponding to the first pilot signal;
  • the first channel information of each sub-block is obtained.
  • the processor 1410 is configured to:
  • the first channel information corresponding to the second pilot signal is obtained.
  • processor 1410 is used for:
  • the second channel information corresponding to the second pilot signal is obtained; wherein the second channel information is spatial channel information;
  • the first channel information of each sub-block is obtained.
  • pilot configuration information includes:
  • radio frequency unit 1401 is also used to obtain at least one of the following information:
  • Precoding information corresponding to each sub-block is Precoding information corresponding to each sub-block.
  • pilot configuration information and/or the precoding information corresponding to each sub-block is obtained through at least one of the following methods:
  • the radio frequency unit 1401 is further configured to feed back to the second device precoding feedback information corresponding to a target sub-block, where the target sub-block is all or part of the N sub-blocks.
  • the feedback information includes at least one of the following:
  • radio frequency unit 1401 is also configured to obtain the pilot configuration scheme of the first signal.
  • pilot configuration scheme is obtained by at least one of the following methods:
  • the timing deviation and/or frequency deviation of the first device and the pilot signal corresponding to one of the antenna ports are quasi-coherent. address.
  • the quasi-co-location is configured in at least one of the following ways:
  • Embodiments of the present application can dynamically adjust the precoding of each sub-block through feedback information to make the precoding more closely match the actual channel.
  • the radio frequency unit 1401 is also configured to send first information to the second device, where the first information includes channel information of the channel with the second device.
  • the channel information includes at least one of the following:
  • the Doppler information of the channel includes at least one of the following:
  • the maximum, minimum, or average value of Doppler for the channel is the maximum, minimum, or average value of Doppler for the channel.
  • the delay information of the channel includes at least one of the following:
  • the maximum, minimum or average delay of the channel is the maximum, minimum or average delay of the channel.
  • the embodiments of the present application can perform better channel prediction.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the processor is used to determine a first signal
  • the communication interface is used to send a first signal to a first device.
  • the first signal is to be mapped on the first signal.
  • the signals on N sub-blocks in the domain are precoded corresponding to the sub-blocks and then transformed into signals in the time-frequency domain.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 15 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1500 includes but is not limited to: a radio frequency unit 1501, a network module 1502, an audio output unit 1503, an input unit 1504, a sensor 1505, a display unit 1506, a user input unit 1507, an interface unit 1508, a memory 1509, a processor 1510, etc. At least some parts.
  • the terminal 1500 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1510 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 15 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1504 may include a graphics processing unit (Graphics Processing Unit, GPU) 15041 and a microphone 15042.
  • the graphics processor 15041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1506 may include a display panel 15061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1507 includes a touch panel 15071 and at least one of other input devices 15072 .
  • Touch panel 15071 also known as touch screen.
  • the touch panel 15071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 15072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1501 after receiving downlink data from the network side device, can transmit it to the processor 1510 for processing; in addition, the radio frequency unit 1501 can send uplink data to the network side device.
  • the radio frequency unit 1501 includes, but is not limited to, an antenna, an amplifier, a transceiver, Couplers, low noise amplifiers, duplexers, etc.
  • Memory 1509 may be used to store software programs or instructions as well as various data.
  • the memory 1509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1509 may include volatile memory or nonvolatile memory, or memory 1509 may include both volatile and nonvolatile memory.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory Synchronous DRAM, SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • the processor 1510 may include one or more processing units; optionally, the processor 1510 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1510.
  • the processor 1510 is used to determine the first signal
  • the radio frequency unit 1501 is configured to send a first signal to the first device.
  • the first signal is a signal mapped on the N sub-blocks of the first signal domain, which is precoded corresponding to the sub-block and then transformed into A signal in the frequency domain; wherein, the first signal domain is a delayed Doppler domain, and the first signal domain is divided into N sub-blocks, where N is a positive integer greater than or equal to 2.
  • the number of layers of all ports on the same sub-block is the same.
  • the precoded codeword is determined by one of the following methods:
  • a first guard interval is configured between the N sub-blocks in the delay domain direction and the Doppler domain direction.
  • the same codeword is used for precoding different sub-blocks that have the same delay domain resource position and are distinguished by the first guard interval in the Doppler domain direction.
  • the same codeword is used for precoding for different sub-blocks that have the same Doppler domain resource position and are distinguished by the first guard interval in the delay domain direction.
  • radio frequency unit 1501 is also configured to send the sub-block division scheme of the first signal domain to the first device.
  • the sub-block division scheme includes a resource identifier of the first signal domain or a set of the resource identifiers.
  • the embodiment of the present application makes the precoding more consistent with the actual channel.
  • pilot signals are provided in at least some of the N sub-blocks in the first signal domain.
  • pilot signal in the first signal is at least one of the following:
  • radio frequency unit 1501 is also configured to send at least one of the following information to the first device:
  • Precoding information corresponding to each sub-block is Precoding information corresponding to each sub-block.
  • pilot configuration information includes:
  • the radio frequency unit 1501 is further configured to receive precoding feedback information corresponding to a target sub-block from the first device, where the target sub-block is all or part of the N sub-blocks.
  • the feedback information includes at least one of the following:
  • radio frequency unit 1501 is also configured to send the pilot configuration plan of the first signal to the first device.
  • the timing deviation and/or frequency deviation of the first device and the pilot signal corresponding to one of the antenna ports are quasi-coherent. address.
  • the quasi-co-location is configured in at least one of the following ways:
  • the embodiments of the present application configure the pilot signal in the first signal, so that the first device can detect the first signal based on the estimation of the pilot signal and determine the corresponding value of each sub-block.
  • the precoding quality information can be used to dynamically adjust the precoding of each sub-block through feedback information to make the precoding more closely match the actual channel.
  • the radio frequency unit 1501 is also configured to receive first information from the first device, where the first information includes channel information of a channel with the first device.
  • the channel information includes at least one of the following:
  • the Doppler information of the channel includes at least one of the following:
  • the maximum, minimum, or average value of Doppler for the channel is the maximum, minimum, or average value of Doppler for the channel.
  • the delay information of the channel includes at least one of the following:
  • the maximum, minimum or average delay of the channel is the maximum, minimum or average delay of the channel.
  • the embodiments of the present application can perform better channel prediction.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the processor is used to analyze the first signal
  • the communication interface is used to receive the first signal from the second device.
  • the first signal is The signal mapped on the N sub-blocks in the first signal domain is precoded corresponding to the sub-block and then transformed into a signal in the time-frequency domain.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides another network-side device, including a processor and a communication interface.
  • the processor is used to determine a first signal
  • the communication interface is used to send a first signal to the first device.
  • the first signal is a signal to be mapped on
  • the signal on the N sub-blocks of the first signal domain is precoded corresponding to the sub-block and then transformed into a signal in the time-frequency domain.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1600 includes: an antenna 161 , a radio frequency device 162 , a baseband device 163 , a processor 164 and a memory 165 .
  • the antenna 161 is connected to the radio frequency device 162 .
  • the radio frequency device 162 receives information through the antenna 161 and sends the received information to the baseband device 163 for processing.
  • the baseband device 163 processes the information to be sent and sends it to the radio frequency device 162.
  • the radio frequency device 162 processes the received information and then sends it out through the antenna 161.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 163, which Band device 163 includes a baseband processor.
  • the baseband device 163 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 166, which is, for example, a common public radio interface (CPRI).
  • a network interface 166 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1600 in this embodiment of the present invention also includes: instructions or programs stored in the memory 165 and executable on the processor 164.
  • the processor 164 calls the instructions or programs in the memory 165 to execute Figure 10 or Figure 12
  • the execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above information transmission method embodiment is implemented, and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above information transmission method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above information transmission method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • Embodiments of the present application also provide an information transmission system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the information transmission method as described above.
  • the network side device can be used to perform the information transmission method as described above. Steps of the transfer method.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息传输方法、装置、终端及网络侧设备,属于移动通信领域,本申请实施例的信息传输方法包括:第二设备向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。

Description

信息传输方法、装置、终端及网络侧设备
交叉引用
本发明要求在2022年04月11日提交中国专利局、申请号为202210376061.2、发明名称为“信息传输方法、装置、终端及网络侧设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于移动通信技术领域,具体涉及一种信息传输方法、装置、终端及网络侧设备。
背景技术
发端将延迟多普勒域拆分成多个子区域,在不同的子区域上使用不同的预编码。收端可以对发端使用的预编码或调制编码性能进行评估,并反馈相应的信息对发端的预编码或调制编码方式进行建议、调整,提高后续下行传输的性能。
正交时频空域(Orthogonal Time Frequency Space,OTFS)把一个大小为M×N的数据包中的信息,在逻辑上映射到二维延迟多普勒平面上的一个M×N格点中,即每个格点内的脉冲调制了数据包中的一个符号。
在进行OTFS多天线传输时,采用多天线预编码对延迟多普勒域统一做空域预编码,造成延迟多普勒域统一做的空域预编码与实际信道不匹配。
发明内容
本申请实施例提供一种信息传输方法、装置、终端及网络侧设备,能够解决延迟多普勒域统一做的空域预编码与实际信道不匹配的问题。
第一方面,提供了一种信息传输方法,应用于第一设备,该方法包括:
第一设备从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;
其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
第二方面,提供了一种信息传输装置,包括:
收发模块,用于从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频 域的信号;
解析模块,用于对所述第一信号进行解析。
其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
第三方面,提供了一种信息传输方法,应用于第二设备,该方法包括:
第二设备向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;
其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
第四方面,提供了一种信息传输装置,包括:
确定模块,用于确定第一信号;
传输模块,用于向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;
其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或实现如第三方向所述的方法的步骤。
第六方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或实现如第三方面所述的方法的步骤。
第七方面,提供了一种信息传输系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面或第三方向所述的信息传输方法的步骤,所述网络侧设备可用于执行如第一方面或第三方向所述的信息传输方法的步骤。
第八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品 被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的信息传输方法,或实现如第三方面所述的信息传输方法的步骤。
在本申请实施例中,通过将延迟多普勒域划分为N个子块,并对每个子块采用对应的码字进行预编码,再进行OTFS调制后发送第一信号,从而使预编码与实际信道更加匹配。
附图说明
图1是本申请实施例可应用的一种无线通信系统的结构示意图;
图2是本申请实施例提供的信息传输方法的一种流程示意图;
图3是本申请实施例提供的延迟多普勒域一种资源示意图;
图4是本申请实施例提供的信息发送方法的一种流程示意图;
图5是本申请实施例提供的信息传输方法的另一种流程示意图;
图6是本申请实施例提供的延迟多普勒域另一种资源示意图;
图7是本申请实施例提供的信息接收方法的一种流程示意图;
图8是本申请实施例提供的延迟多普勒域另一种资源示意图;
图9是本申请实施例提供的信息接收方法的另一种流程示意图;
图10是本申请实施例提供的信息传输装置的一种结构示意图;
图11是本申请实施例提供的信息传输方法的另一种流程示意图;
图12是本申请实施例提供的信息传输装置的另一种结构示意图;
图13是本申请实施例提供的一种通信设备结构示意图;
图14为实现本申请实施例的一种终端的结构示意图;
图15为实现本申请实施例的另一种终端的结构示意图;
图16为实现本申请实施例的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书 以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving  Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信息传输方法、装置、终端及网络侧设备进行详细地说明。
如图2和图3所示,本申请实施例提供了一种信息传输方法,该方法的执行主体为第一设备,所述第一设备可以为网络侧设备或终端,换言之,该方法可以由安装在第一设备的软件或硬件来执行。所述方法还包括以下步骤。
S210、第一设备从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码(precoding)后再变换到时频域的信号;
其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
应理解的是,所述第一信号可以为OTFS调制信号,当然还可以为基于其它调制方式的信号,例如,基于沃尔什哈达码变换(Walsh-Hadmard Transform,WHT),基于离散余弦变换(Discrete Cosine Transform,DCT)的调制方式。
第二设备将延迟多普勒域划分为N个子块,如图3所示,将延迟多普勒域划分为4个子块,第一子块301、第二子块302、第三子块303和第四子块304。
应理解的是,所述每个子块划分的大小可以根据实际的需要进行设定, 可以设计每个子块所占的资源栅格数相同,如图3所示,4个子块所占的资源栅格数相同,也可以设计每个子块所占的资源栅格数不同。
进一步地,在进行OTFS多天线传输的情况下,对于同一子块上的所有端口采用相同的码字进行预编码,如图3所示,分别用不同的图案表示对应的码字,设置第一子块301采用码字W1进行预编码、第二子块302采用码字W2进行预编码、第三子块303采用码字W3进行预编码、第四子块304采用码字W4进行预编码。第二设备通过两个天线端口:端口1和端口2,传输所述第一信号,则同一子块在端口1和端口2采用相同的码字进行预编码。
对于不同子块可以采用相同或不同的码字进行预编码。如图3所示,码字W1、码字W2、码字W3和码字W4中可以部分相同。例如,码字W1和码字W3相同。
在一种实施方式中,同一子块上所有端口的层(layer)数相同。
在一种实施方式中,所述预编码的码字由以下方式之一确定:
协议规定;
信令指示;
从预编码的码字集合中选取,可以是随机选取也可以根据协议规定或信令指示选取。
在一种实施方式中,所述N个子块之间在延迟域方向和多普勒域方向配置有第一保护间隔。如图3所示,相邻子块之间配置的第一保护间隔在延迟域方向占有一个栅格,在多普勒域方向占有两个栅格。
所述第一保护间隔的大小可以根据实际的需要进行配置,在一种实施方式中可以配置相邻子块之间的第一保护间隔在延迟方向应不小于当前传输环境的最大传输延迟,相邻子块之间第一保护间隔在多普勒方向应不小于当前传输环境的最大传输多普勒的两倍。
在一种实施方式中,对于延迟域资源位置相同且通过多普勒域方向的第一保护间隔进行区分的不同子块可以采用相同的码字进行预编码,例如如图3所示的第一子块301和第三子块303,第二子块302和第四子块304。
在一种实施方式中,对于多普勒域资源位置相同且通过延迟域方向的第一保护间隔进行区分的不同子块可以采用相同的码字进行预编码,例如如图3所示的第一子块301和第二子块302,第三子块303和第四子块304。
在一种实施方式中,所述第二设备发送第一信号的流程如图4所示,包括以下步骤。
A1.对延迟多普勒域进行子块划分,划分为N个子块;
A2.分别对延迟多普勒域的每个子块进行资源映射,可以包括数据信号;
A3.分别对延迟多普勒域的每个子块采用与该子块对应的码字进行预编码,得到延迟多普勒域信号;
A4.对延迟多普勒域信号进行逆辛傅里叶变换(Inverse Sympletic Fourier Transform,ISFFT)转换得到时频域信号;
A5.对时频域信号进行海森堡变换得到时域信号,发送给第一设备。
其中,步骤A4和A5为OTFS调制。
在一种实施方式中,所述方法还包括:
所述第一设备获取所述第一信号域的子块划分方案。
其中,所述子块划分方案包括第一信号域的资源标识或所述资源标识的集合。
在一种实施方式中,所述子块划分方案由以下至少一种方式获取:
从所述第二设备接收;
由协议规定。
由述实施例的技术方案可知,本申请实施例通过将延迟多普勒域划分为N个子块,并对每个子块采用对应的码字进行预编码,再进行OTFS调制后发送第一信号,从而使预编码与实际信道更加匹配。
基于上述实施例,可选地,如图5所示,在步骤S210之后,所述方法还包括:
步骤S220、所述第一设备对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息。
步骤S220的实现方式可以多种多样,在一种实施方式中,所述第一信号中配置有导频信号,步骤S220包括:
所述第一设备根据导频配置信息,确定所述第一信号中的导频信号,并得到所述导频信号对应的第一信道信息;其中,所述第一信道信息是基于空间信道信息和预编码信息得到的等效信道信息,所述预编码信息指进行预编码的码字等;
根据所述第一信道信息对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息。
应理解的是,所述空间信道信息和预编码信息可以为矩阵形式,所述第一信道信息可以是空间信道信息和预编码信息相乘得到的。
在一种实施方式中,所述导频配置信息可以包括:
所述导频信号在所述第一信号域中的位置;
所述导频信号对应的第二保护间隔在所述第一信号域中的位置。
所述第一信号中的导频信号可以根据实际的需要进行设定,在一种实施方式中,由于不同的子块可能使用不同的码字进行预编码,因此所述第一信 号中的导频信号可以为位于每个子块内的第一导频信号,即在对延迟多普勒域的每个子块进行资源映射可以包括数据信号和对应的第一导频信号。由于每个子块上的第一导频信号与该子块上的数据信号采用了相同的预编码,所以每个子块内的第一导频信号估计得到的信道与数据信号经历的信道完全一致,可直接用于检测或解调。如图6所示,对于端口1,在第一子块301上设置第一导频信号3011,在第二子块302上设置第一导频信号3021,在第三子块303上设置第一导频信号3031,在第四子块304上设置第一导频信号3041;对于端口2,在第一子块301上设置第一导频信号3012,在第二子块302上设置第一导频信号3022,在第三子块303上设置第一导频信号3032,在第四子块304上设置第一导频信号3042。其中,对于不同的端口,导频信号的位置可以不同。
对于所述第一导频信号,所述第一设备根据所述导频配置信息,确定所述第一信号中每个子块中的第一导频信号以及与所述第一导频信号对应的第二保护间隔的位置;
根据每个子块中的第一导频信号以及与所述第一导频信号对应的第二保护间隔的位置,得到每个子块的第一信道信息,即得到每个子块的等效信道信息。
在一种实施方式中,所述第一设备接收第一信号的流程如图7所示,包括以下步骤。
B1.对接收到的时域信号进行魏格纳变换,得到时频域信号;
B2.对时频域信号进行辛傅里叶变换(Sympletic Fourier Transform,SFFT)转换得到延迟多普勒域信号;
B3.分别基于延迟多普勒域的每个子块内的第一导频信号进行信道估计,得到与每个子块对应的第一信道信息;
B4.根据第一信道信息分别对延迟多普勒勒域中的每个子块中的数据信号进行检测和/或解调。
其中,步骤B1和B2为OTFS解调。
在一种实施方式中,在步骤S220之前,所述方法还包括:
所述第一设备获取导频配置信息,即每个子块中第一导频信号的位置以及与第一导频信号对应的第二保护间隔的位置。
在一种实施方式中,所述导频配置信息可以从所述第二设备接收,或者由协议规定。
在一种实施方式中,在步骤S220之后,所述方法还包括:
所述第一设备向所述第二设备反馈目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块,例如,可以为预编码的质 量较差不满足要求的子块。
在一种实施方式中,所述反馈信息包括以下至少一项:
所述目标子块对应的所述预编码的质量;
对所述目标子块推荐的预编码的码字;
对所述目标子块推荐的调制编码方案(Modulation and Coding Scheme,MCS)。
第一设备在接收所述反馈信息后可以对每个子块对应的预编码进行动态调整,例如使用所述反馈信息中推荐的码字,或使用所述反馈信息中推荐的调制编码方案。
在此种技术方案下,每个子块的预编码都可以动态的变化,且每个子块进行预编码的码字对第一设备是透明的。
在另一种实施方式中,所述第一信号中的导频信号可以为位于一个子块内的第二导频信号,所述第二导频信号为公共导频信号。如图8所示,对于端口1,在第四子块304上设置第二导频信号3043,对于端口2,在第四子块304上设置第二导频信号3044。其中,对于不同的端口,导频信号的位置可以不同。
在一种实施方式中,对于所述第二导频信号,所述第一设备根据所述导频配置信息,确定所述第一信号中的第二导频信号的位置以及与所述第二导频信号对应的第二保护间隔的位置;
根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号对应的第一信道信息。
进一步地,所述根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号对应的第一信道信息,包括:
根据第二导频信号的位置以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号所在子块的第一信道信息,即所述第二导频信号所在子块的等效信道信息;
根据所述第二导频信号所在子块的第一信道信息和预编码信息,得到所述第二导频信号对应的第二信道信息;其中,所述第二信道信息为空间信道信息;由于每个子块所经历的空间信道相同,因此可以将所述第二导频信息对应的第二信道信息作为每个子块对应的第二信道信息;
根据每个子块的预编码信息和所述第二信道信息,得到每个子块的第一信道信息。
在一种实施方式中,可以为所述第二导频信号所在的子块配置一个固定的用于公共导频信号的码字进行预编码,该码字可以由协议规定。
在一种实施方式中,所述第一设备接收第一信号的流程如图9所示,包 括以下步骤。
C1.对接收到的时域信号进行魏格纳变换,得到时频域信号;
C2.对时频域信号进行辛傅里叶变换转换得到延迟多普勒域信号;
C3.基于延迟多普勒域中的第二导频信号进行信道估计,得到与所述第二导频信号对应的第二信道信息;
C4.分别基于延迟多普勒域中每个子块的预编码信息和所述第二信道信息,得到每个子块的第一信道信息;
C5.根据第一信道信息分别对延迟多普勒勒域中的每个子块中的数据信号进行检测和/或解调。
其中,步骤C1和C2为OTFS解调。
在一种实施方式中,在步骤S220之前,所述方法还包括:
所述第一设备获取所述导频配置信息和与每个子块对应的预编码的信息,所述导频配置信息包括所述第二导频信号的位置以及所述第二导频信号对应的第二保护间隔的位置。
在一种实施方式中,所述导频配置信息和与每个子块对应的预编码的信息可以从所述第二设备接收,或者由协议规定。
在一种实施方式中,在步骤S220之后,所述方法还包括:
所述第一设备向所述第二设备反馈目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块。
在一种实施方式中,所述反馈信息包括以下至少一项:
所述目标子块对应的所述预编码的质量;
对所述目标子块推荐的预编码的码字;
对所述目标子块推荐的MCS。
所述第二设备在接收所述反馈信息后,可以对除所述第二导频信号所在子块外的其它子块对应的预编码进行动态调整。
与在每个子块中设置第一导频信号相比,在此种技术方案下,可以降低导频开销。
在一种实施方式中,所述方法还包括:
所述第一设备获取所述第一信号的导频配置方案,所述导频配置方案可以包括采用何种导频配置方式,例如第一导频信号还是第二导频信号,还可以包括与导频信号对应的导频配置信息和所述导频信号的符号等。
在一种实施方式中,所述导频配置方案由以下至少一种方式获取:
从所述第二设备接收;
由协议规定。
在一种实施方式中,在多个天线端口采用延迟分集发送和/或多普勒分集 发送的情况下,所述第一设备的定时偏差和/或频偏和其中一个天线端口对应的导频信号是准共址(Quasi Co-Location,QCL)的。
在一种实施方式中,所述准共址由以下方式至少之一配置:
信令指示;
协议规定。
由上述实施例的技术方案可知,本申请实施例通过在第一信号中配置导频信号,使第一设备能够基于导频信号的估计,对所述第一信号进行检测,确定每个子块对应的预编码的质量信息,从而可以通过反馈信息,对每个子块的预编码进行动态调整,使预编码与实际信道更加匹配。
信道预测是第五代移动通信技术(5th-Generation Mobile Communication Technology,5G)以及未来6G的一个重要功能。常规的信道反馈信息中主要包括反馈信道本身,例如类型2(type II);或者反馈与信道匹配的预编码码本,例如类型1(type I)。基于上述信道反馈信息进行信道预测往往性能不佳,原因是信道反馈中没有准确的延迟和多普勒值。
基于上述实施例,可选地,在得到所述导频信号对应的第一信道信息时,所述方法还包括:
所述第一设备向所述第二设备发送第一信息,所述第一信息包括所述第一设备与所述第二设备之间信道的信道信息,所述信道信息可以包括上述实施例中的第一信道信息或第二信道信息,也可以为其它形式的信道信息。
进一步地,所述信道信息包括以下至少一项:
信道的多普勒信息;
信道的延迟信息。
进一步地,所述信道的多普勒信息包括以下至少一项:
所述信道的多普勒的所有值;
所述信道的多普勒的最大值、最小值或平均值。
上述多普勒信息可以包括上述多普勒的值的原始值,也可以是对上述多普勒的值进行转换后的结果,例如,进行量化编码、划分等级、与上一次反馈的多普勒的值的大小关系等。
进一步地,所述信道的延迟信息包括以下至少一项:
所述信息的延迟的所有值;
所述信道的延迟的最大值、最小值或平均值。
上述延迟信息可以包括上述延迟的值的原始值,也可以是对上述延迟的值进行转换后的结果,例如,进行量化编码、划分等级、与上一次反馈的延迟的值的大小关系等。
本申请实施例的技术方案还可以应用在其它的应用场景中,在第一设备 执行对第一设备向第二设备之间的信道估计之后,可以向第二设备反馈所述第一信息。
由上述实施例的技术方案可知,本申请实施例通过在反馈的第一信息中新定义了延迟多普勒域的多种反馈量,直接描述了信道的延迟值或延迟范围、多普勒值或多普勒范围。由于信道的延迟和多普勒中包含了信道随时间的变换规律和随频率变化规律,因此基于新增的反馈量可以更好地进行信道预测。
本申请实施例提供的信息传输方法,执行主体可以为信息传输装置。本申请实施例中以信息传输装置执行信息传输方法为例,说明本申请实施例提供的信息传输装置。
如图10所述,所述信息传输装置包括:收发模块1001和解析模块1002。
所述收发模块1001用于从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;所述解析模块1002用于对所述第一信号进行解析。其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
进一步地,同一子块上所有端口的层数相同。
进一步地,同一子块上的所有端口采用相同的码字进行预编码。
进一步地,所述预编码的码字由以下方式之一确定:
协议规定;
信令指示;
从预编码的码字集合中选取。
进一步地,所述N个子块之间在延迟域方向和多普勒域方向配置有第一保护间隔。
进一步地,对于延迟域资源位置相同且通过多普勒域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,对于多普勒域资源位置相同且通过延迟域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,所述收发模块1001还用于获取所述第一信号域的子块划分方案。
进一步地,所述子块划分方案包括第一信号域的资源标识或所述资源标识的集合。
进一步地,所述子块划分方案由以下至少一种方式获取:
从所述第二设备接收;
由协议规定。
由述实施例的技术方案可知,本申请实施例通过将延迟多普勒域划分为 N个子块,并对每个子块采用对应的码字进行预编码,再进行OTFS调制后发送第一信号,从而使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述解析模块1002还用于对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息。
进一步地,所述解析模块1002用于:
根据导频配置信息,确定所述第一信号中的导频信号,并得到所述导频信号对应的第一信道信息;其中,所述第一信道信息是基于空间信道信息和预编码信息得到的等效信道信息;
根据所述第一信道信息对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息。
进一步地,所述第一信号中的导频信号为以下至少一种:
位于每个子块内的第一导频信号;
位于一个子块内的第二导频信号,所述第二导频信号为公共导频信号。
进一步地,对于所述第一导频信号,所述解析模块1002用于:
根据所述导频配置信息,确定所述第一信号中每个子块中的第一导频信号以及与所述第一导频信号对应的第二保护间隔的位置;
根据每个子块中的第一导频信号以及与所述第一导频信号对应的第二保护间隔的位置,得到每个子块的第一信道信息。
进一步地,对于所述第二导频信号,所述解析模块1002用于:
根据所述导频配置信息,确定所述第一信号中的第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置;
根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号对应的第一信道信息。
进一步地,所述解析模块1002用于:
根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号所在子块的第一信道信息;
根据所述第二导频信号所在子块的第一信道信息和预编码信息,得到所述第二导频信号对应的第二信道信息;其中,所述第二信道信息为空间信道信息;
根据每个子块的预编码信息和所述第二信道信息,得到每个子块的第一信道信息。
进一步地,所述导频配置信息包括:
所述导频信号在所述第一信号域中的位置;
所述导频信号对应的第二保护间隔在所述第一信号域中的位置。
进一步地,所述收发模块1001还用于获取以下至少一项信息:
导频配置信息;
与每个子块对应的预编码信息。
进一步地,所述导频配置信息和/或与每个子块对应的预编码信息通过以下方式至少之一获取:
从所述第二设备接收;
由协议规定。
进一步地,所述收发模块1001还用于向所述第二设备反馈目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块。
进一步地,所述反馈信息包括以下至少一项:
所述目标子块对应的所述预编码的质量;
对所述目标子块推荐的预编码的码字;
对所述目标子块推荐的MCS。
进一步地,所述收发模块1001还用于获取所述第一信号的导频配置方案。
进一步地,所述导频配置方案由以下至少一种方式获取:
从所述第二设备接收;
由协议规定。
进一步地,在多个天线端口采用延迟分集发送和/或多普勒分集发送的情况下,所述第一设备的定时偏差和/或频偏和其中一个天线端口对应的导频信号是准共址的。
进一步地,所述准共址由以下方式至少之一配置:
信令指示;
协议规定。
由上述实施例的技术方案可知,本申请实施例通过在第一信号中配置导频信号,使第一设备能够基于导频信号的估计,对所述第一信号进行检测,确定每个子块对应的预编码的质量信息,从而可以通过反馈信息,对每个子块的预编码进行动态调整,使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述收发模块1001还用于向所述第二设备发送第一信息,所述第一信息包括与所述第二设备之间信道的信道信息。
进一步地,所述信道信息包括以下至少一项:
信道的多普勒信息;
信道的延迟信息。
进一步地,所述信道的多普勒信息包括以下至少一项:
所述信道的多普勒的所有值;
所述信道的多普勒的最大值、最小值或平均值。
进一步地,所述信道的延迟信息包括以下至少一项:
所述信息的延迟的所有值;
所述信道的延迟的最大值、最小值或平均值。
由上述实施例的技术方案可知,本申请实施例通过在反馈的第一信息中新定义了延迟多普勒域的多种反馈量,直接描述了信道的延迟值或延迟范围、多普勒值或多普勒范围。由于信道的延迟和多普勒中包含了信道随时间的变换规律和随频率变化规律,因此基于新增的反馈量可以更好地进行信道预测。
本申请实施例中的信息传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息传输装置能够实现图2至图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图11所示,本申请实施例提供了一种信息传输方法,该方法的执行主体为第二设备,所述第二设备可以网络侧设备或终端,
S1110、第二设备向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;
其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
进一步地,同一子块上所有端口的层数相同。
进一步地,同一子块上的所有端口采用相同的码字进行预编码。
进一步地,所述预编码的码字由以下方式之一确定:
协议规定;
信令指示;
从预编码的码字集合中选取。
进一步地,所述N个子块之间在延迟域方向和多普勒域方向配置有第一保护间隔。
进一步地,对于延迟域资源位置相同且通过多普勒域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,对于多普勒域资源位置相同且通过延迟域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,所述方法还包括:
所述第二设备向所述第一设备发送所述第一信号域的子块划分方案。
进一步地,所述子块划分方案包括第一信号域的资源标识或所述资源标 识的集合。
步骤S1110可以实现如图2-图4所述的方法实施例,并得到相同的技术效果,重复部分此处不再赘述。
由述实施例的技术方案可知,本申请实施例通过将延迟多普勒域划分为N个子块,并对每个子块采用对应的码字进行预编码,再进行OTFS调制后发送第一信号,从而使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述第一信号域的N个子块中至少部分子块内设置有导频信号。
进一步地,所述第一信号中的导频信号为以下至少一种:
位于每个子块内的第一导频信号;
位于一个子块内的第二导频信号,所述第二导频信号为公共导频信号。
进一步地,所述方法还包括:
所述第二设备向所述第一设备发送以下至少一项信息:
导频配置信息;
与每个子块对应的预编码信息。
进一步地,所述导频配置信息包括:
所述导频信号在所述第一信号域中的位置;
所述导频信号对应的第二保护间隔在所述第一信号域中的位置。
进一步地,在步骤S1110之后,所述方法还包括:
所述第二设备从所述第一设备接收目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块。
进一步地,所述反馈信息包括以下至少一项:
所述目标子块对应的所述预编码的质量;
对所述目标子块推荐的预编码的码字;
对所述目标子块推荐的MCS。
进一步地,所述方法还包括:
所述第二设备向所述第一设备发送所述第一信号的导频配置方案。
进一步地,在多个天线端口采用延迟分集发送和/或多普勒分集发送的情况下,所述第一设备的定时偏差和/或频偏和其中一个天线端口对应的导频信号是准共址的。
进一步地,所述准共址由以下方式至少之一配置:
信令指示;
协议规定。
本申请实施例可以实现如图5-图9的方法实施例,并得到相同的技术效果,重复部分此处不再赘述。
由上述实施例的技术方案可知,本申请实施例通过在第一信号中配置导频信号,使第一设备能够基于导频信号的估计,对所述第一信号进行检测,确定每个子块对应的预编码的质量信息,从而可以通过反馈信息,对每个子块的预编码进行动态调整,使预编码与实际信道更加匹配。
基于上述实施例,可选地,在步骤S1110之后,所述方法还包括:
所述第二设备从所述第一设备接收第一信息,所述第一信息包括所述第二设备与所述第一设备之间信道的信道信息。
进一步地,所述信道信息包括以下至少一项:
信道的多普勒信息;
信道的延迟信息。
进一步地,所述信道的多普勒信息包括以下至少一项:
所述信道的多普勒的所有值;
所述信道的多普勒的最大值、最小值或平均值。
进一步地,所述信道的延迟信息包括以下至少一项:
所述信息的延迟的所有值;
所述信道的延迟的最大值、最小值或平均值。
由上述实施例的技术方案可知,本申请实施例通过在反馈的第一信息中新定义了延迟多普勒域的多种反馈量,直接描述了信道的延迟值或延迟范围、多普勒值或多普勒范围。由于信道的延迟和多普勒中包含了信道随时间的变换规律和随频率变化规律,因此基于新增的反馈量可以更好地进行信道预测。
本申请实施例提供的信息传输方法,执行主体可以为信息传输装置。本申请实施例中以信息传输装置执行信息传输方法为例,说明本申请实施例提供的信息传输装置。
如图12所述,所述信息传输装置包括:确定模块1201和传输模块1202。
所述确定模块1201用于确定第一信号;所述传输模块1202用于向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
进一步地,同一子块上所有端口的层数相同。
进一步地,同一子块上的所有端口采用相同的码字进行预编码。
进一步地,所述预编码的码字由以下方式之一确定:
协议规定;
信令指示;
从预编码的码字集合中选取。
进一步地,所述N个子块之间在延迟域方向和多普勒域方向配置有第一保护间隔。
进一步地,对于延迟域资源位置相同且通过多普勒域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,对于多普勒域资源位置相同且通过延迟域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,所述传输模块1202还用于向所述第一设备发送所述第一信号域的子块划分方案。
进一步地,所述子块划分方案包括第一信号域的资源标识或所述资源标识的集合。
由述实施例的技术方案可知,本申请实施例通过将延迟多普勒域划分为N个子块,并对每个子块采用对应的码字进行预编码,再进行OTFS调制后发送第一信号,从而使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述第一信号域的N个子块中至少部分子块内设置有导频信号。
进一步地,所述第一信号中的导频信号为以下至少一种:
位于每个子块内的第一导频信号;
位于一个子块内的第二导频信号,所述第二导频信号为公共导频信号。
进一步地,所述传输模块1202还用于向所述第一设备发送以下至少一项信息:
导频配置信息;
与每个子块对应的预编码信息。
进一步地,所述导频配置信息包括:
所述导频信号在所述第一信号域中的位置;
所述导频信号对应的第二保护间隔在所述第一信号域中的位置。
进一步地,传输模块1202还用于从所述第一设备接收目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块。
进一步地,所述反馈信息包括以下至少一项:
所述目标子块对应的所述预编码的质量;
对所述目标子块推荐的预编码的码字;
对所述目标子块推荐的MCS。
进一步地,所述传输模块1202还用于向所述第一设备发送所述第一信号的导频配置方案。
进一步地,在多个天线端口采用延迟分集发送和/或多普勒分集发送的情况下,所述第一设备的定时偏差和/或频偏和其中一个天线端口对应的导频信 号是准共址的。
进一步地,所述准共址由以下方式至少之一配置:
信令指示;
协议规定。
由上述实施例的技术方案可知,本申请实施例通过在第一信号中配置导频信号,使第一设备能够基于导频信号的估计,对所述第一信号进行检测,确定每个子块对应的预编码的质量信息,从而可以通过反馈信息,对每个子块的预编码进行动态调整,使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述传输模块1202还用于从所述第一设备接收第一信息,所述第一信息包括与所述第一设备之间信道的信道信息。
进一步地,所述信道信息包括以下至少一项:
信道的多普勒信息;
信道的延迟信息。
进一步地,所述信道的多普勒信息包括以下至少一项:
所述信道的多普勒的所有值;
所述信道的多普勒的最大值、最小值或平均值。
进一步地,所述信道的延迟信息包括以下至少一项:
所述信息的延迟的所有值;
所述信道的延迟的最大值、最小值或平均值。
由上述实施例的技术方案可知,本申请实施例通过在反馈的第一信息中新定义了延迟多普勒域的多种反馈量,直接描述了信道的延迟值或延迟范围、多普勒值或多普勒范围。由于信道的延迟和多普勒中包含了信道随时间的变换规律和随频率变化规律,因此基于新增的反馈量可以更好地进行信道预测。
本申请实施例中的信息传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息传输装置能够实现图11的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述信息传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执 行时实现上述信息传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于对所述第一信号进行解析,通信接口用于从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图14为实现本申请实施例的一种终端的硬件结构示意图。
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理单元(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072中的至少一种。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401接收来自网络侧设备的下行数据后,可以传输给处理器1410进行处理;另外,射频单元1401可以向网络侧设备发送上行数据。通常,射频单元1401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括易失性存储器 或非易失性存储器,或者,存储器1409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1409包括但不限于这些和任意其它适合类型的存储器。
处理器1410可包括一个或多个处理单元;可选的,处理器1410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,射频单元1401,用于从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号。
处理器1410,用于对所述第一信号进行解析。
其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
进一步地,同一子块上所有端口的层数相同。
进一步地,同一子块上的所有端口采用相同的码字进行预编码。
进一步地,所述预编码的码字由以下方式之一确定:
协议规定;
信令指示;
从预编码的码字集合中选取。
进一步地,所述N个子块之间在延迟域方向和多普勒域方向配置有第一保护间隔。
进一步地,对于延迟域资源位置相同且通过多普勒域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,对于多普勒域资源位置相同且通过延迟域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,所述射频单元1401还用于获取所述第一信号域的子块划分方案。
进一步地,所述子块划分方案包括第一信号域的资源标识或所述资源标识的集合。
进一步地,所述子块划分方案由以下至少一种方式获取:
从所述第二设备接收;
由协议规定。
本申请实施例使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述处理器1410还用于对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息。
进一步地,所述处理器1410用于:
根据导频配置信息,确定所述第一信号中的导频信号,并得到所述导频信号对应的第一信道信息;其中,所述第一信道信息是基于空间信道信息和预编码信息得到的等效信道信息;
根据所述第一信道信息对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息。
进一步地,所述第一信号中的导频信号为以下至少一种:
位于每个子块内的第一导频信号;
位于一个子块内的第二导频信号,所述第二导频信号为公共导频信号。
进一步地,对于所述第一导频信号,所述处理器1410用于:
根据所述导频配置信息,确定所述第一信号中每个子块中的第一导频信号以及与所述第一导频信号对应的第二保护间隔的位置;
根据每个子块中的第一导频信号以及与所述第一导频信号对应的第二保护间隔的位置,得到每个子块的第一信道信息。
进一步地,对于所述第二导频信号,所述处理器1410用于:
根据所述导频配置信息,确定所述第一信号中的第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置;
根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号对应的第一信道信息。
进一步地,所述处理器1410用于:
根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号所在子块的第一信道信息;
根据所述第二导频信号所在子块的第一信道信息和预编码信息,得到所述第二导频信号对应的第二信道信息;其中,所述第二信道信息为空间信道信息;
根据每个子块的预编码信息和所述第二信道信息,得到每个子块的第一信道信息。
进一步地,所述导频配置信息包括:
所述导频信号在所述第一信号域中的位置;
所述导频信号对应的第二保护间隔在所述第一信号域中的位置。
进一步地,所述射频单元1401还用于获取以下至少一项信息:
导频配置信息;
与每个子块对应的预编码信息。
进一步地,所述导频配置信息和/或与每个子块对应的预编码信息通过以下方式至少之一获取:
从所述第二设备接收;
由协议规定。
进一步地,所述射频单元1401还用于向所述第二设备反馈目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块。
进一步地,所述反馈信息包括以下至少一项:
所述目标子块对应的所述预编码的质量;
对所述目标子块推荐的预编码的码字;
对所述目标子块推荐的MCS。
进一步地,所述射频单元1401还用于获取所述第一信号的导频配置方案。
进一步地,所述导频配置方案由以下至少一种方式获取:
从所述第二设备接收;
由协议规定。
进一步地,在多个天线端口采用延迟分集发送和/或多普勒分集发送的情况下,所述第一设备的定时偏差和/或频偏和其中一个天线端口对应的导频信号是准共址的。
进一步地,所述准共址由以下方式至少之一配置:
信令指示;
协议规定。
本申请实施例可以通过反馈信息,对每个子块的预编码进行动态调整,使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述射频单元1401还用于向所述第二设备发送第一信息,所述第一信息包括与所述第二设备之间信道的信道信息。
进一步地,所述信道信息包括以下至少一项:
信道的多普勒信息;
信道的延迟信息。
进一步地,所述信道的多普勒信息包括以下至少一项:
所述信道的多普勒的所有值;
所述信道的多普勒的最大值、最小值或平均值。
进一步地,所述信道的延迟信息包括以下至少一项:
所述信息的延迟的所有值;
所述信道的延迟的最大值、最小值或平均值。
本申请实施例可以更好地进行信道预测。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于确定第一信号,通信接口用于向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图15为实现本申请实施例的一种终端的硬件结构示意图。
该终端1500包括但不限于:射频单元1501、网络模块1502、音频输出单元1503、输入单元1504、传感器1505、显示单元1506、用户输入单元1507、接口单元1508、存储器1509以及处理器1510等中的至少部分部件。
本领域技术人员可以理解,终端1500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图15中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1504可以包括图形处理单元(Graphics Processing Unit,GPU)15041和麦克风15042,图形处理器15041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1506可包括显示面板15061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板15061。用户输入单元1507包括触控面板15071以及其他输入设备15072中的至少一种。触控面板15071,也称为触摸屏。触控面板15071可包括触摸检测装置和触摸控制器两个部分。其他输入设备15072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1501接收来自网络侧设备的下行数据后,可以传输给处理器1510进行处理;另外,射频单元1501可以向网络侧设备发送上行数据。通常,射频单元1501包括但不限于天线、放大器、收发信机、 耦合器、低噪声放大器、双工器等。
存储器1509可用于存储软件程序或指令以及各种数据。存储器1509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1509可以包括易失性存储器或非易失性存储器,或者,存储器1509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1509包括但不限于这些和任意其它适合类型的存储器。
处理器1510可包括一个或多个处理单元;可选的,处理器1510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1510中。
其中,处理器1510,用于确定第一信号;
射频单元1501,用于向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
进一步地,同一子块上所有端口的层数相同。
进一步地,同一子块上的所有端口采用相同的码字进行预编码。
进一步地,所述预编码的码字由以下方式之一确定:
协议规定;
信令指示;
从预编码的码字集合中选取。
进一步地,所述N个子块之间在延迟域方向和多普勒域方向配置有第一保护间隔。
进一步地,对于延迟域资源位置相同且通过多普勒域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,对于多普勒域资源位置相同且通过延迟域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
进一步地,所述射频单元1501还用于向所述第一设备发送所述第一信号域的子块划分方案。
进一步地,所述子块划分方案包括第一信号域的资源标识或所述资源标识的集合。
本申请实施例使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述第一信号域的N个子块中至少部分子块内设置有导频信号。
进一步地,所述第一信号中的导频信号为以下至少一种:
位于每个子块内的第一导频信号;
位于一个子块内的第二导频信号,所述第二导频信号为公共导频信号。
进一步地,所述射频单元1501还用于向所述第一设备发送以下至少一项信息:
导频配置信息;
与每个子块对应的预编码信息。
进一步地,所述导频配置信息包括:
所述导频信号在所述第一信号域中的位置;
所述导频信号对应的第二保护间隔在所述第一信号域中的位置。
进一步地,所述射频单元1501还用于从所述第一设备接收目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块。
进一步地,所述反馈信息包括以下至少一项:
所述目标子块对应的所述预编码的质量;
对所述目标子块推荐的预编码的码字;
对所述目标子块推荐的MCS。
进一步地,所述射频单元1501还用于向所述第一设备发送所述第一信号的导频配置方案。
进一步地,在多个天线端口采用延迟分集发送和/或多普勒分集发送的情况下,所述第一设备的定时偏差和/或频偏和其中一个天线端口对应的导频信号是准共址的。
进一步地,所述准共址由以下方式至少之一配置:
信令指示;
协议规定。
由上述实施例的技术方案可知,本申请实施例通过在第一信号中配置导频信号,使第一设备能够基于导频信号的估计,对所述第一信号进行检测,确定每个子块对应的预编码的质量信息,从而可以通过反馈信息,对每个子块的预编码进行动态调整,使预编码与实际信道更加匹配。
基于上述实施例,可选地,所述射频单元1501还用于从所述第一设备接收第一信息,所述第一信息包括与所述第一设备之间信道的信道信息。
进一步地,所述信道信息包括以下至少一项:
信道的多普勒信息;
信道的延迟信息。
进一步地,所述信道的多普勒信息包括以下至少一项:
所述信道的多普勒的所有值;
所述信道的多普勒的最大值、最小值或平均值。
进一步地,所述信道的延迟信息包括以下至少一项:
所述信息的延迟的所有值;
所述信道的延迟的最大值、最小值或平均值。
本申请实施例可以更好地进行信道预测。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于对所述第一信号进行解析,通信接口用于从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
本申请实施例还提供另一种网络侧设备,包括处理器和通信接口,处理器用于确定第一信号,通信接口用于向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图16所示,该网络侧设备1600包括:天线161、射频装置162、基带装置163、处理器164和存储器165。天线161与射频装置162连接。在上行方向上,射频装置162通过天线161接收信息,将接收的信息发送给基带装置163进行处理。在下行方向上,基带装置163对要发送的信息进行处理,并发送给射频装置162,射频装置162对收到的信息进行处理后经过天线161发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置163中实现,该基 带装置163包括基带处理器。
基带装置163例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图16所示,其中一个芯片例如为基带处理器,通过总线接口与存储器165连接,以调用存储器165中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口166,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1600还包括:存储在存储器165上并可在处理器164上运行的指令或程序,处理器164调用存储器165中的指令或程序执行图10或图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信息传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信息传输系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的信息传输方法的步骤,所述网络侧设备可用于执行如上所述的信息传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方 法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (56)

  1. 一种信息传输方法,其中,包括:
    第二设备向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;
    其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
  2. 根据权利要求1所述的方法,其中,同一子块上所有端口的层数相同。
  3. 根据权利要求1所述的方法,其中,同一子块上的所有端口采用相同的码字进行预编码。
  4. 根据权利要求1所述的方法,其中,所述预编码的码字由以下方式之一确定:
    协议规定;
    信令指示;
    从预编码的码字集合中选取。
  5. 根据权利要求1所述的方法,其中,所述N个子块之间在延迟域方向和多普勒域方向配置有第一保护间隔。
  6. 根据权利要求5所述的方法,其中,对于延迟域资源位置相同且通过多普勒域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
  7. 根据权利要求5所述的方法,其中,对于多普勒域资源位置相同且通过延迟域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
  8. 根据权利要求1所述的方法,其中,所述第一信号域的N个子块中至少部分子块内设置有导频信号。
  9. 根据权利要求8所述的方法,其中,所述导频信号为以下至少一种:
    位于每个子块内的第一导频信号;
    位于一个子块内的第二导频信号,所述第二导频信号为公共导频信号。
  10. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第二设备向所述第一设备发送以下至少一项信息:
    导频配置信息;
    与每个子块对应的预编码信息。
  11. 根据权利要求10所述的方法,其中,所述导频配置信息包括:
    所述导频信号在所述第一信号域中的位置;
    所述导频信号对应的第二保护间隔在所述第一信号域中的位置。
  12. 根据权利要求1所述的方法,其中,在所述第二设备向第一设备发送第一信号之后,所述方法还包括:
    所述第二设备从所述第一设备接收目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块。
  13. 根据权利要求12所述的方法,其中,所述反馈信息包括以下至少一项:
    所述目标子块对应的所述预编码的质量;
    对所述目标子块推荐的预编码的码字;
    对所述目标子块推荐的调制编码方案。
  14. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第二设备向所述第一设备发送所述第一信号域的子块划分方案。
  15. 根据权利要求14所述的方法,其中,所述子块划分方案包括第一信号域的资源标识或资源标识的集合。
  16. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第二设备向所述第一设备发送所述第一信号的导频配置方案。
  17. 根据权利要求1所述的方法,其中,在多个天线端口采用延迟分集发送和/或多普勒分集发送的情况下,所述第一设备的定时偏差和/或频偏和其中一个天线端口对应的导频信号是准共址的。
  18. 根据权利要求17所述的方法,其中,所述准共址由以下方式至少之一配置:
    信令指示;
    协议规定。
  19. 根据权利要求1所述的方法,其中,在所述第二设备向第一设备发送第一信号之后,所述方法还包括:
    所述第二设备从所述第一设备接收第一信息,所述第一信息包括所述第二设备与所述第一设备之间信道的信道信息。
  20. 根据权利要求19所述的方法,其中,所述信道信息包括以下至少一项:
    信道的多普勒信息;
    信道的延迟信息。
  21. 根据权利要求20所述的方法,其中,所述信道的多普勒信息包括以下至少一项:
    所述信道的多普勒的所有值;
    所述信道的多普勒的最大值、最小值或平均值。
  22. 根据权利要求20所述的方法,其中,所述信道的延迟信息包括以下至少一项:
    所述信息的延迟的所有值;
    所述信道的延迟的最大值、最小值或平均值。
  23. 一种信息传输装置,其中,包括:
    确定模块,用于确定第一信号;
    传输模块,用于向第一设备发送第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;
    其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
  24. 一种信息传输方法,其中,包括:
    第一设备从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;
    其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
  25. 根据权利要求24所述的方法,其中,在所述第一设备从第二设备接收第一信号之后,所述方法还包括:
    所述第一设备对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息。
  26. 根据权利要求24所述的方法,其中,同一子块上所有端口的层数相同。
  27. 根据权利要求24所述的方法,其中,同一子块上的所有端口采用相同的码字进行预编码。
  28. 根据权利要求24所述的方法,其中,所述预编码的码字由以下方式之一确定:
    协议规定;
    信令指示;
    从预编码的码字集合中选取。
  29. 根据权利要求24所述的方法,其中,所述N个子块之间在延迟域方向和多普勒域方向配置有第一保护间隔。
  30. 根据权利要求28所述的方法,其中,对于延迟域资源位置相同且通过多普勒域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
  31. 根据权利要求28所述的方法,其中,对于多普勒域资源位置相同且通过延迟域方向的第一保护间隔进行区分的不同子块采用相同的码字进行预编码。
  32. 根据权利要求25所述的方法,其中,所述第一设备对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息,包括:
    所述第一设备根据导频配置信息,确定所述第一信号中的导频信号,并得到所述导频信号对应的第一信道信息;其中,所述第一信道信息是基于空间信道信息和预编码信息得到的等效信道信息;
    根据所述第一信道信息对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息。
  33. 根据权利要求32所述的方法,其中,所述第一信号中的导频信号为以下至少一种:
    位于每个子块内的第一导频信号;
    位于一个子块内的第二导频信号,所述第二导频信号为公共导频信号。
  34. 根据权利要求33所述的方法,其中,对于所述第一导频信号,所述第一设备根据导频配置信息,确定所述第一信号中的导频信号,并得到所述导频信号对应的第一信道信息,包括:
    所述第一设备根据所述导频配置信息,确定所述第一信号中每个子块中的第一导频信号以及与所述第一导频信号对应的第二保护间隔的位置;
    根据每个子块中的第一导频信号以及与所述第一导频信号对应的第二保护间隔的位置,得到每个子块的第一信道信息。
  35. 根据权利要求33所述的方法,其中,对于所述第二导频信号,所述第一设备根据导频配置信息,确定所述第一信号中的导频信号,并得到所述导频信号对应的第一信道信息,包括:
    所述第一设备根据所述导频配置信息,确定所述第一信号中的第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置;
    根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号对应的第一信道信息。
  36. 根据权利要求35所述的方法,其中,所述根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号对应的第一信道信息,包括:
    根据第二导频信号以及与所述第二导频信号对应的第二保护间隔的位置,得到所述第二导频信号所在子块的第一信道信息;
    根据所述第二导频信号所在子块的第一信道信息和预编码信息,得到所述第二导频信号对应的第二信道信息;其中,所述第二信道信息为空间信道 信息;
    根据每个子块的预编码信息和所述第二信道信息,得到每个子块的第一信道信息。
  37. 根据权利要求32-36任一所述的方法,其中,所述导频配置信息包括:
    所述导频信号在所述第一信号域中的位置;
    所述导频信号对应的第二保护间隔在所述第一信号域中的位置。
  38. 根据权利要求25所述的方法,其中,在所述第一设备对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息之前,所述方法还包括:
    所述第一设备获取以下至少一项信息:
    导频配置信息;
    与每个子块对应的预编码信息。
  39. 根据权利要求38所述的方法,其中,所述导频配置信息和/或与每个子块对应的预编码信息通过以下方式至少之一获取:
    从所述第二设备接收;
    由协议规定。
  40. 根据权利要求25所述的方法,其中,在所述第一设备对所述第一信号进行检测,确定所述N个子块对应的预编码的质量信息之后,所述方法还包括:
    所述第一设备向所述第二设备反馈目标子块对应的预编码的反馈信息,所述目标子块为所述N个子块的全部或部分子块。
  41. 根据权利要求40所述的方法,其中,所述反馈信息包括以下至少一项:
    所述目标子块对应的所述预编码的质量;
    对所述目标子块推荐的预编码的码字;
    对所述目标子块推荐的调制编码方案。
  42. 根据权利要求24所述的方法,其中,所述方法还包括:
    所述第一设备获取所述第一信号域的子块划分方案。
  43. 根据权利要求42所述的方法,其中,所述子块划分方案包括第一信号域的资源标识或所述资源标识的集合。
  44. 根据权利要求42所述的方法,其中,所述子块划分方案由以下至少一种方式获取:
    从所述第二设备接收;
    由协议规定。
  45. 根据权利要求24或25所述的方法,其中,所述方法还包括:
    所述第一设备获取所述第一信号的导频配置方案。
  46. 根据权利要求45所述的方法,其中,所述导频配置方案由以下至少一种方式获取:
    从所述第二设备接收;
    由协议规定。
  47. 根据权利要求24或25所述的方法,其中,在多个天线端口采用延迟分集发送和/或多普勒分集发送的情况下,所述第一设备的定时偏差和/或频偏和其中一个天线端口对应的导频信号是准共址的。
  48. 根据权利要求47所述的方法,其中,所述准共址由以下方式至少之一配置:
    信令指示;
    协议规定。
  49. 根据权利要求32所述的方法,其中,在得到所述导频信号对应的第一信道信息之后,所述方法还包括:
    所述第一设备向所述第二设备发送第一信息,所述第一信息包括所述第一设备与所述第二设备之间信道的信道信息。
  50. 根据权利要求49所述的方法,其中,所述信道信息包括以下至少一项:
    信道的多普勒信息;
    信道的延迟信息。
  51. 根据权利要求50所述的方法,其中,所述信道的多普勒信息包括以下至少一项:
    所述信道的多普勒的所有值;
    所述信道的多普勒的最大值、最小值或平均值。
  52. 根据权利要求50所述的方法,其中,所述信道的延迟信息包括以下至少一项:
    所述信息的延迟的所有值;
    所述信道的延迟的最大值、最小值或平均值。
  53. 一种信息传输装置,其中,包括:
    收发模块,用于从第二设备接收第一信号,所述第一信号为将映射在第一信号域的N个子块上的信号进行与所述子块对应的预编码后再变换到时频域的信号;
    解析模块,用于对所述第一信号进行解析;
    其中,所述第一信号域为延迟多普勒域,所述第一信号域被划分为N个子块,所述N为大于等于2的正整数。
  54. 一种终端,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至22任一项所述的信息传输方法,或者实现如权利要求24至52任一项所述的信息传输方法的步骤。
  55. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至22任一项所述的信息传输方法,或者实现如权利要求24至52任一项所述的信息传输方法的步骤。
  56. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-22任一项所述的信息传输方法,或者实现如权利要求24至52任一项所述的信息传输方法的步骤。
PCT/CN2023/087616 2022-04-11 2023-04-11 信息传输方法、装置、终端及网络侧设备 WO2023198058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210376061.2A CN116938301A (zh) 2022-04-11 2022-04-11 信息传输方法、装置、终端及网络侧设备
CN202210376061.2 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023198058A1 true WO2023198058A1 (zh) 2023-10-19

Family

ID=88328970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087616 WO2023198058A1 (zh) 2022-04-11 2023-04-11 信息传输方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116938301A (zh)
WO (1) WO2023198058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4366199A4 (en) * 2021-06-30 2024-10-23 Vivo Mobile Communication Co Ltd TRANSMISSION PROCESSING METHOD AND APPARATUS, COMMUNICATION DEVICE, AND READABLE STORAGE MEDIUM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095101A1 (en) * 2018-11-06 2020-05-14 Indian Institute Of Technology, Delhi Multiple access method in wireless telecommunications system
CN112003808A (zh) * 2019-05-27 2020-11-27 成都华为技术有限公司 信号处理方法及装置
US20200389268A1 (en) * 2017-12-04 2020-12-10 Cohere Technologies, Inc. Implementation of orthogonal time frequency space modulation for wireless communications
CN114142978A (zh) * 2020-09-04 2022-03-04 维沃移动通信有限公司 导频接收处理方法、发送方法及相关设备
CN115133965A (zh) * 2021-03-24 2022-09-30 维沃移动通信有限公司 信息发送方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200389268A1 (en) * 2017-12-04 2020-12-10 Cohere Technologies, Inc. Implementation of orthogonal time frequency space modulation for wireless communications
WO2020095101A1 (en) * 2018-11-06 2020-05-14 Indian Institute Of Technology, Delhi Multiple access method in wireless telecommunications system
CN112003808A (zh) * 2019-05-27 2020-11-27 成都华为技术有限公司 信号处理方法及装置
CN114142978A (zh) * 2020-09-04 2022-03-04 维沃移动通信有限公司 导频接收处理方法、发送方法及相关设备
CN115133965A (zh) * 2021-03-24 2022-09-30 维沃移动通信有限公司 信息发送方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4366199A4 (en) * 2021-06-30 2024-10-23 Vivo Mobile Communication Co Ltd TRANSMISSION PROCESSING METHOD AND APPARATUS, COMMUNICATION DEVICE, AND READABLE STORAGE MEDIUM

Also Published As

Publication number Publication date
CN116938301A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
EP4231693A1 (en) Configuration method for ai network parameter and device
WO2022105913A1 (zh) 通信方法、装置及通信设备
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023143581A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022083619A1 (zh) 通信信息的发送、接收方法及通信设备
KR20240090505A (ko) 채널 상태 정보(csi) 측정 방법, 단말 및 네트워크측 기기
WO2024007949A1 (zh) Ai模型处理方法、装置、终端及网络侧设备
WO2024055993A1 (zh) Cqi传输方法、装置、终端及网络侧设备
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023125458A1 (zh) 通信方法、装置及相关设备
WO2024164961A1 (zh) 信息处理方法、装置、终端及网络侧设备
WO2023131288A1 (zh) 资源确定方法、装置、终端和网络侧设备
WO2024017025A1 (zh) 导频参数配置方法及设备
WO2023198094A1 (zh) 模型输入的确定方法及通信设备
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
WO2024149157A1 (zh) Csi传输方法、装置、终端及网络侧设备
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2023160535A1 (zh) 解调参考信号信息确定方法、指示方法及相关设备
WO2023179651A1 (zh) 波束处理方法、装置及设备
WO2023208042A1 (zh) 预失真处理方法、装置及设备
WO2023241474A1 (zh) 信道状态信息csi上报配置方法、终端及网络侧设备
WO2024140578A1 (zh) 基于ai模型的csi反馈方法、终端及网络侧设备
WO2024149322A1 (zh) 相位追踪参考信号传输方法、装置、终端及网络侧设备
WO2023179570A1 (zh) 信道特征信息传输方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787701

Country of ref document: EP

Kind code of ref document: A1