[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023202632A1 - 资源分配方法、设备及可读存储介质 - Google Patents

资源分配方法、设备及可读存储介质 Download PDF

Info

Publication number
WO2023202632A1
WO2023202632A1 PCT/CN2023/089271 CN2023089271W WO2023202632A1 WO 2023202632 A1 WO2023202632 A1 WO 2023202632A1 CN 2023089271 W CN2023089271 W CN 2023089271W WO 2023202632 A1 WO2023202632 A1 WO 2023202632A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
bsc
channel
transmission
bwp
Prior art date
Application number
PCT/CN2023/089271
Other languages
English (en)
French (fr)
Inventor
李东儒
吴凯
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023202632A1 publication Critical patent/WO2023202632A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a resource allocation method, equipment and readable storage medium.
  • Back Scatter Communication refers to a backscatter communication device that uses radio frequency signals from other devices or the environment to perform signal modulation to transmit information.
  • Backscatter communication devices can be tag devices in traditional Radio Frequency Identification (RFID) or Passive-IoT devices.
  • RFID Radio Frequency Identification
  • NR New Radio
  • Embodiments of the present application provide a resource allocation method, device, and readable storage medium, which can solve the problem of how to implement resource allocation methods related to BSC services when BSC services are deployed in NR communications.
  • the first aspect provides a resource allocation method, including:
  • the network side device configures resources used to transmit BSC channels or signals
  • the network side device schedules the transmission of the BSC channel or signal
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • the second aspect provides a resource allocation method, including:
  • the terminal obtains resource information used to transmit BSC channels or signals
  • the terminal transmits the BSC channel or signal according to the obtained resource information of the BSC channel or signal;
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • a resource allocation device including:
  • Configuration module used for network side equipment to configure resources for transmitting BSC channels or signals
  • Scheduling module used by the network side device to schedule the transmission of the BSC channel or signal
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • a resource allocation device including:
  • Acquisition module used by the terminal to obtain resource information used to transmit BSC channels or signals
  • a transmission module configured for the terminal to transmit the BSC channel or signal according to the acquired resource information of the BSC channel or signal
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • a network side device in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the processor is used by the network side device to configure resources for transmitting backscatter communication BSC channels or signals;
  • the network side device schedules the transmission of the BSC channel or signal
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • a terminal in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in the second aspect.
  • a terminal including a processor and a communication interface, wherein the processor is used by the terminal to obtain resource information for transmitting BSC channels or signals;
  • the terminal transmits the BSC channel or signal according to the obtained resource information of the BSC channel or signal;
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. steps, or steps to implement the method described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect The steps of the method, or the steps of implementing the method as described in the second aspect.
  • the network side device configures resources for transmitting BSC channels or signals, and the network side device schedules the transmission of the BSC channels or signals, thereby realizing the allocation and scheduling of BSC resources and improving the communication of BSC services. reliability.
  • Figure 1a is a block diagram of a wireless communication system provided by an embodiment of the present application.
  • Figure 1b is a schematic diagram of the sending and receiving process of Tag in BSC communication
  • Figure 1c is one of the schematic diagrams of BSC communication application scenarios
  • Figure 1d is the second schematic diagram of the application scenario of BSC communication
  • Figure 1e is the third schematic diagram of the application scenario of BSC communication
  • Figure 1f is a schematic diagram of the BSC communication architecture
  • Figure 2 is one of the flow diagrams of the resource allocation method provided by the embodiment of the present application.
  • Figure 3a is one of the schematic diagrams of application scenarios provided by the embodiment of this application.
  • Figure 3b is the second schematic diagram of the application scenario provided by the embodiment of the present application.
  • Figure 3c is the third schematic diagram of the application scenario provided by the embodiment of the present application.
  • Figure 3d is the fourth schematic diagram of the application scenario provided by the embodiment of the present application.
  • Figure 4 is the second schematic flowchart of the resource allocation method provided by the embodiment of the present application.
  • Figure 5 is one of the structural schematic diagrams of the resource allocation device provided by the embodiment of the present application.
  • Figure 6 is the second structural schematic diagram of the resource allocation device provided by the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1a shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an Evolved Node B (eNB), an access point, a base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, Home evolved B-node, Transmission Reception Point (TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in In the embodiment of this application, the base station in the NR system is only introduced as an example, and the specific type of the base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • Backscatter communication means that backscatter communication equipment uses radio frequency signals from other devices or the environment to perform signal modulation to transmit its own information.
  • Backscatter communication equipment can be tags in traditional radio frequency identification (Radio Frequency Identification, RFID) or passive IoT (Passive-IoT).
  • Backscatter communication equipment controls the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be characterized as:
  • Z 0 is the antenna characteristic impedance
  • Z 1 is the load impedance
  • the current UHF (Ultra High Frequency, UHF) RFID protocol design in inventory mode requires the reader to send a query command (Query) and then the tag (Tag) responds (Reply), that is, a A 16-bit random number is given to the reader. Then the reader sends the sequence to the Tag through the ACK command, and the Tag sends the relevant data to the reader.
  • Query query command
  • Tag tag responds
  • the terminal receives feedback information sent by Tag.
  • the terminal sends a carrier wave (Carrier Wave, CW) and signaling (command) or control to Tag; the signaling type includes at least one of the following: select, inventory, access.
  • the network receives feedback information from Tag.
  • system architecture of backscatter includes various types as shown in Figure 1f.
  • an embodiment of the present application provides a resource allocation method, including:
  • Step 201 The network side device configures resources for transmitting BSC channels or signals
  • Step 202 The network side device schedules the transmission of BSC channels or signals
  • the entity that transmits the BSC channel or signal may include at least one of network side equipment, Tag, and terminal;
  • transmission mentioned in various embodiments of this application may include sending or receiving.
  • the network side device configures resources for transmitting BSC channels or signals, and the network side device schedules the transmission of BSC channels or signals, thereby realizing the allocation of BSC resources and improving the communication reliability of BSC services.
  • the method in the embodiment of the present application can be applied to the BSC scenario between Tag and gNB as shown in Figure 1f, or the BSC communication scenario between Tag and gNB with terminal participation.
  • the above-mentioned BSC channels or signals include one or more of the following:
  • the carrier channel or signal includes: an excitation signal, which may be referred to as CW; in one embodiment, the carrier channel or signal may be information sent to a tag by a network side device, It can also be information sent by the terminal to the tag.
  • the carrier channel or signal may also include: a data channel, also known as a shared channel.
  • Control channel or signal such as: selection signal, query signal, repeated query signal, reply signal, read signal, write signal, random request signal, etc., which may be referred to as command; in one embodiment, the control channel Or the signal may be information sent to the tag by the network side device, or may be information sent to the tag by the terminal.
  • Feedback channel or signal such as Tag identification information (such as a 16-bit random number that temporarily represents the Tag identity during the query process), electronic product code information, Tag status information, etc.), which can be referred to as feedback.
  • the feedback channel or signal may be information sent by the tag to the terminal through backscattering, or may be information sent by the tag to the network side device through backscattering.
  • the network side device configures resources for transmitting BSC channels or signals, including:
  • the network side device configures the target frequency band used to transmit the BSC channel or signal.
  • the above target frequency band can also be called the target band.
  • the network side device deploys the BSC on the band of a specific mobile communication system.
  • the NR system allocates a new band to the BSC service, as shown in Figure 3a.
  • the network side device configures resources for transmitting BSC channels or signals, including:
  • the network side device configures the center frequency point used to transmit the BSC channel or signal.
  • the network specifies the center frequency point of the BSC, for example, the center frequency point of the BSC can be indicated by an Absolute Radio Frequency Channel Number (ARFCN).
  • ARFCN Absolute Radio Frequency Channel Number
  • the specific frequency domain resource size does not need to be configured, but is determined through specific hardware radio frequency related implementation.
  • the network side device configures resources for transmitting BSC channels or signals, including:
  • the network side device configures the target carrier or target serving cell used to transmit the BSC channel or signal.
  • the network side device configures a specific carrier or serving cell (Serving cell) for the BSC, which can be specifically shown in Figure 3b; for example, the network side device configures a dedicated secondary cell for the BSC to use the BSC channel or signal. transmission.
  • Server cell serving cell
  • the target carrier or target serving cell is only used for BSC transmission.
  • BSC transmission mentioned below and mentioned above refers to the transmission of BSC channels or signals.
  • the network side device schedules the transmission of BSC channels or signals, including:
  • the network side device schedules the BSC channel or signal to be transmitted on the target carrier or target serving cell through target control signaling; where the target control signaling is the signaling sent by the network side device on the carrier or serving cell that is not used for BSC transmission. Or the target control signaling is signaling sent by the network side device on the target carrier or target serving cell.
  • the above target control signaling may be Radio Resource Control (RRC) signaling or Media Access Control-Control Element (MAC CE), or downlink control information DCI;
  • RRC Radio Resource Control
  • MAC CE Media Access Control-Control Element
  • the network side device triggers data transmission by cross-carrier scheduling of Serving cells specifically used for the BSC.
  • the network side device schedules BSC transmission of the BSC on a specific carrier or serving cell by sending RRC or MAC CE or DCI on the serving cell that is not used for BSC; for example, the network side device in the cell DCI is sent on 1 to schedule BSC transmission on BSC-dedicated cells. That is, the network side device schedules BSC transmission across carriers.
  • the network side device configures resources for transmitting BSC channels or signals, including:
  • the network side device configures the target partial bandwidth (Bandwidth Part, BWP) used to transmit the BSC channel or signal.
  • the target BWP includes the target uplink BWP and/or the target downlink BWP.
  • the target partial bandwidth used to transmit BSC channels or signals is BSC BWP
  • the target uplink BWP is BSC uplink (UL) BWP
  • the target downlink BWP is BSC downlink (Downlink, DL) BWP.
  • the target BWP is used only for BSC transmission.
  • the network side device configures a specific BWP for the BSC, including the BSC.
  • the BWP includes the BSC At least one of DL BWP and BSC UL BWP, which can be shown in Figure 3c;
  • the configuration of the target BWP does not include one or more of the following:
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the configuration of the target BWP includes one or more of the following:
  • PDCCH, PDSCH, etc. may not be configured on the BSC BWP, and only the channel signal configuration related to the transmission of BSC services may be configured; that is to say, some content configured on the BWP in related technologies, except for BSC transmission
  • the original configuration of the NR channel signal can be removed without configuration.
  • the target BWP configuration may not contain at least one of the following configurations:
  • pdsch-configCommon including Cell specific parameters
  • pdcch-config including UE specific parameters
  • pdsch-config including UE specific parameters
  • SPS-config for a single BWP, NW can release the SPS-config at any time
  • radioLinkMonitoringConfig used to detect cellular and beam radio link failures
  • RACH-configCommon pucch-configCommon including Cell specific parameters
  • pusch-configCommon including Cell specific parameters
  • pucch-config including UE specific parameters
  • pushch-config Including UE specific parameters
  • CG-config, beamFailureRecoveryConfig SRS-config.
  • methods include:
  • the network side device switches to the preconfigured BWP.
  • the BWP-fallback timer timer (ie, the first timer) is started, and after the timer times out, the BWP is switched back to the preconfigured BWP.
  • the terminal can only have one active BWP on a serving cell at the same time. Therefore, if the terminal uses the BSC BWP to work, that is to say, the currently activated BWP is the BSC BWP. Since the PDCCH and other parameters are not configured on the BSC BWP, the terminal cannot receive the signaling sent by the network side device on the BSC BWP. Return to the BWP that transmits PDCCH and PDSCH. Therefore, through the configuration of the first timer mentioned above, when the first timer expires, the return to the preconfigured BWP is realized. The preconfigured BWP is used to transmit PDCCH and PDSCH. BWP.
  • the network side device activates or applies the target BWP and other non-target BWP BWPs at the same time.
  • BSC BWP and non-BSC BWP may be activated or applied at the same time. Therefore, this embodiment can realize simultaneous transmission of BSC services and current mobile communications. service (e.g., NR communication service).
  • BSC services transmitted on the BSC BWP are received by an additional receiver in the receiving device (eg, terminal).
  • the additional receiver refers to other receivers that are different from receivers that receive PDCCH, PDSCH and other mobile communication channels or signals in related technologies, and can be understood as receivers used to receive BSC services.
  • BSC services are transmitted on the BSC BWP by obtaining network scheduling signaling on the non-BSC BWP.
  • the network side device configures resources for transmitting BSC channels or signals, including:
  • the network side device configures the BSC channel or signal to be transmitted on the first BWP; wherein the first BWP is also used for first transmission; and the first transmission is used to transmit channels or signals other than the BSC channel or signal.
  • the first transmission may be used to transmit a channel or signal including at least one of the following: Physical Downlink Shared Channel (PDSCH), synchronization signal/physical broadcast channel signal block/synchronization signal block (Synchronization Signal and PBCH block (SSB), channel state information reference signal (Channel State Information-Reference Signal, CSI-RS), sounding reference signal (Sounding Reference Signal, SRS), physical random access channel (Physical Random Access Channel, PRACH) , Physical Uplink Control Channel (PUCCH), Physical Uplink Shared Channel (PUSCH).
  • the channel or signal used for transmitting other than the BSC channel or signal is an NR channel or signal.
  • BSC and NR transmission can be configured on the same BWP (that is, the above-mentioned first BWP), that is, BSC and NR transmission are supported on one BWP.
  • the first transmission is NR transmission as an example.
  • the first transmission may also be LTE transmission or other transmissions used to transmit channels or signals other than BSC channels or signals.
  • the embodiment of the present application applies to the third transmission.
  • the type of transmission is not specifically limited. Subsequent illustrations involving the first transmission will take NR transmission as an example and will not be described again.
  • the first BWP is a BWP with a specific BWP index. That is, the network configuration BSC is transmitted on the BWP with the specified BWP ID.
  • the network side device configures the BSC channel or signal to be transmitted on the first BWP, including:
  • the network side device configures the BSC channel or signal to be transmitted on the target frequency domain resource of the first BWP. That is to say, the network is configured to perform BSC transmission on the specific frequency domain resource of the first BWP;
  • the specific frequency domain resources may include: a specific resource block set (RB set) (which may be multiple consecutive RBs), a specific RB.
  • RB set a specific resource block set
  • the network side device schedules the transmission of BSC channels or signals, including at least one of the following:
  • the network side device schedules the transmission of BSC channels or signals by sending Downlink Control Information (DCI) signaling;
  • DCI Downlink Control Information
  • the network side device sends DCI to the UE, and dynamically schedules the transmission of the BSC through DCI; For example: If the carrier indicated by the Carrier Indicator Field (CIF) field in DCI is the carrier where BSC transmission is located, the information fields after the CIF in DCI are redefined to indicate parameters related to the transmission of BSC services. (such as BSC resource allocation parameters) information;
  • CIF Carrier Indicator Field
  • the network side device schedules the transmission of BSC channels or signals by configuring semi-persistent transmission.
  • the network side configures at least one semi-persistent transmission configuration, and activates one or more of the semi-static configurations through signaling instructions such as DCI, so as to realize the scheduling of the terminal in the activated one or more semi-static configurations. Transmit and receive BSC channels or signals in corresponding transmission opportunities;
  • the relevant configuration parameters for the transmission of BSC channels or signals include one or more of the following:
  • Power information such as Transmit Power Control (TPC) information
  • Frequency domain resources for example, frequency domain resource parameters include frequency domain resource size, frequency domain resource starting position, etc.
  • Time domain resources for example, time domain resource parameters include, time domain resource length, time domain resource starting position, etc.
  • Resource cycle for example, if the resource cycle is 10ms, it means that there is a BSC transmission resource every 10ms.
  • Waveform refers to the waveform used to transmit BSC, such as On-Off Keying (OOK) waveform.
  • OOK On-Off Keying
  • the transmission timeline of BSC channels or signals refers to the time interval requirements that need to be met for the transmission of BSC channels or signals. For example, the transmission of a BSC channel or signal requires a period of preparation. After receiving the signaling to schedule the transmission of the BSC channel signal, the BSC channel or signal needs to be greater than or equal to the preparation time before the BSC channel or signal can be sent.
  • BSC channel or signal reception timeline refers to the time interval requirements that must be met for the reception of BSC channels or signals. For example, the reception of a BSC channel or signal requires a period of decoding. After receiving the BSC channel signal, the decoding time needs to be greater than or equal to the decoding time before the HARQ corresponding to the BSC channel or signal can be sent out.
  • Hybrid Automatic Repeat request-ACK (10) Hybrid Automatic Repeat request-ACK (HARQ-ACK) resource information corresponding to the BSC channel or signal.
  • the transmission of the BSC channel or signal and the first transmission satisfy at least one of time-division multiplexing (TDM) and frequency-division multiplexing (FDM);
  • TDM time-division multiplexing
  • FDM frequency-division multiplexing
  • One transmission is used to transmit channels or signals other than BSC channels or signals, which can be specifically shown in Figure 3d;
  • the time interval between the transmission of the BSC channel or signal and the first transmission is greater than or equal to first threshold value
  • the frequency domain interval between the transmission of the BSC channel or signal and the first transmission satisfies the requirement of being greater than or equal to the second threshold.
  • the frequency domain interval between the BSC transmission and the first transmission satisfies greater than or equal to a specific value
  • the method further includes:
  • interruption time interruption time
  • the terminal or network side device can assume that no data is sent or received.
  • interruption time interruption time
  • the terminal does not support simultaneous BSC transmission and first transmission.
  • the method before the network side device configures resources for transmitting BSC channels or signals, the method further includes:
  • the network side device receives the first capability information sent by the terminal
  • the first capability information includes one or more of the following:
  • the terminal supports simultaneous transmission of BSC channels or signals and first transmission; the first transmission is used to transmit channels or signals other than BSC channels or signals; for example, whether the terminal supports simultaneous transmission and reception of NR channels/signals and BSC channels /Signal;
  • the radio frequency RF capability of the terminal is used to indicate the number of transceiver links supported by the terminal;
  • the receiver capability of the terminal includes at least one of whether it supports multiple receivers and the number of supported receivers.
  • the receiver may include a main receiver, and additional receivers, such as low-power receivers; for example, transmitting/receiving BSC channel signals is a different transmitter/receiver than transmitting/receiving NR channel signals. For example, what receives the BSC channel signal is a low-power receiver.
  • the transmission of the BSC channel or signal and the first transmission satisfy TDM, or the transmission of the BSC channel or signal With the first transmission meets TDM and FDM. It can be understood that when the terminal does not support simultaneous transmission and reception of these two sets of signal channels, the BSC channel or signal transmission and the first transmission cannot be in FDM mode.
  • an embodiment of the present application provides a resource allocation method, including:
  • Step 401 The terminal obtains resource information used to transmit BSC channels or signals;
  • Step 402 The terminal transmits the BSC channel or signal according to the acquired resource information of the BSC channel or signal;
  • transmission mentioned in various embodiments of this application may include sending or receiving.
  • the terminal obtains the resource information used to transmit BSC channels or signals. Specifically, it can be obtained from the network side device. That is, the network side device configures the resources used to transmit BSC channels or signals and provides them to the terminal. Subsequent terminals transmit BSC channels or signals.
  • the above-mentioned BSC channels or signals include one or more of the following:
  • the carrier channel or signal includes: an excitation signal, which may be referred to as CW; in one embodiment, the carrier channel or signal may be information sent to a tag by a network side device, It can also be information sent by the terminal to the tag.
  • the carrier channel or signal may also include: a data channel, also known as a shared channel.
  • Control channel or signal such as: selection signal, query signal, repeated query signal, reply signal, read signal, write signal, random request signal, etc., which may be referred to as command; in one embodiment, the control channel Or the signal may be information sent to the tag by the network side device, or may be information sent to the tag by the terminal.
  • Feedback channel or signal such as Tag identification information (such as a 16-bit random number that temporarily represents the Tag identity during the query process), electronic product code information, Tag status information, etc.), which can be referred to as feedback.
  • the feedback channel or signal may be information sent by the tag to the terminal through backscattering, or may be information sent by the tag to the network side device through backscattering.
  • the terminal obtains resource information used to transmit BSC channels or signals, including:
  • the terminal obtains information about the target frequency band used to transmit BSC channels or signals.
  • the above target frequency band can also be called the target band.
  • the terminal obtains resource information used to transmit BSC channels or signals, including:
  • the terminal obtains information about the center frequency point used to transmit BSC channels or signals.
  • the terminal obtains resource information used to transmit BSC channels or signals, including:
  • the terminal obtains the information of the target carrier used to transmit the BSC channel or signal or the information of the target serving cell.
  • the target carrier or target serving cell is only used for BSC transmission, and BSC transmission refers to the transmission of BSC channels or signals.
  • the terminal transmits the BSC channel or signal according to the acquired resource information of the BSC channel or signal, including:
  • the terminal transmits BSC channels or signals on the target carrier or target serving cell according to the target control signaling; where the target control signaling is the signaling received by the terminal on the carrier or serving cell not used for BSC transmission, or the target Control signaling is signaling received by the terminal on the target carrier or target serving cell.
  • the above target control signaling can be RRC signaling or MAC CE, or DCI;
  • the terminal obtains resource information used to transmit BSC channels or signals, including:
  • the terminal obtains information about the target partial bandwidth BWP used to transmit the BSC channel or signal, and the target BWP includes the target uplink BWP and/or the target downlink BWP.
  • the target partial bandwidth used for transmitting BSC channels or signals is referred to as BSC BWP
  • the target uplink BWP is BSC UL BWP
  • the target downlink BWP is BSC DL BWP.
  • the target BWP is used only for BSC transmission.
  • the configuration of the target BWP does not include one or more of the following:
  • the configuration of the target BWP includes one or more of the following:
  • PDCCH, PDSCH, etc. may not be configured on the BSC BWP, and only the channel signal configuration related to the transmission of BSC services may be configured; that is to say, some content configured on the BWP in related technologies, except for BSC transmission
  • the original configuration of the NR channel signal can be removed without configuration.
  • pdsch-configCommon including Cell specific parameters
  • pdcch-config including UE specific parameters
  • pdsch-config including UE specific parameters
  • SPS-config for a single BWP, NW can release the SPS-config at any time
  • radioLinkMonitoringConfig used to detect cellular and beam radio link failures
  • RACH-configCommon pucch-configCommon including Cell specific parameters
  • pusch-configCommon including Cell specific parameters
  • pucch-config including UE specific parameters
  • pushch-config Including UE specific parameters
  • CG-config, beamFailureRecoveryConfig SRS-config.
  • the terminal obtains resource information used to transmit BSC channels or signals, including:
  • the terminal obtains information of the first BWP.
  • the first BWP is used to transmit BSC channels or signals, and the first BWP is also used for first transmission; the first transmission is used to transmit channels or signals other than BSC channels or signals.
  • the first transmission may be used to transmit a channel or signal including at least one of the following: PDSCH, SSB, CSI-RS, SRS, PRACH, PUCCH, and PUSCH.
  • the channel or signal used for transmitting other than the BSC channel or signal is an NR channel or signal.
  • the first BWP is a BWP with a specific BWP index
  • the terminal obtains information about the first BWP, including:
  • the terminal acquires information about target frequency domain resources on the first BWP, and the target frequency domain resources are used to transmit BSC channels or signals. That is to say, the terminal performs BSC transmission on the specific frequency domain resource of the first BWP;
  • the specific frequency domain resources may include: a specific RB set (which may be multiple consecutive RBs), and a specific RB.
  • a specific RB set which may be multiple consecutive RBs
  • the terminal transmits BSC channels or signals, including at least one of the following:
  • the terminal transmits BSC channels or signals according to the DCI signaling sent by the network side device;
  • the network side device sends DCI to the UE and dynamically schedules the transmission of the BSC through the DCI; for example: if the carrier indicated by the CIF field in the DCI is the carrier where the BSC transmission is located, the information field after the CIF in the DCI Redefined to indicate parameters related to the transmission of BSC services (such as BSC resource allocation parameters) information;
  • the terminal transmits BSC channels or signals according to the semi-persistent transmission configured by the network side equipment.
  • the network side configures at least one semi-persistent transmission configuration, and activates one or more of the semi-static configurations through signaling instructions such as DCI, so as to realize the scheduling of the terminal in the activated one or more semi-static configurations. Transmit and receive BSC channels or signals in corresponding transmission opportunities;
  • the relevant configuration parameters for the transmission of BSC channels or signals include one or more of the following:
  • Power information such as TPC information
  • Frequency domain resources for example, frequency domain resource parameters include frequency domain resource size, frequency domain resource starting position, etc.
  • Time domain resources for example, time domain resource parameters include, time domain resource length, time domain resource starting position, etc.
  • Resource cycle for example, if the resource cycle is 10ms, it means that there is a BSC transmission resource every 10ms.
  • Waveform refers to the waveform used to transmit BSC, such as OOK waveform.
  • the transmission timeline of BSC channels or signals refers to the time interval requirements that need to be met for the transmission of BSC channels or signals. For example, the transmission of a BSC channel or signal requires a period of preparation. After receiving the signaling to schedule the transmission of the BSC channel signal, the BSC channel or signal needs to be greater than or equal to the preparation time before the BSC channel or signal can be sent.
  • BSC channel or signal reception timeline refers to the time interval requirements that need to be met for the reception of BSC channels or signals. For example, the reception of a BSC channel or signal requires a period of decoding. After receiving the BSC channel signal, the decoding time needs to be greater than or equal to the decoding time before the HARQ corresponding to the BSC channel or signal can be sent out.
  • the transmission of the BSC channel or signal and the first transmission satisfy at least one of TDM and FDM; the first transmission is used to transmit channels or signals other than the BSC channel or signal.
  • the time interval between the transmission of the BSC channel or signal and the first transmission is greater than or equal to first threshold value
  • the frequency domain interval between the transmission of the BSC channel or signal and the first transmission satisfies greater than or equal to the second threshold.
  • the frequency domain interval between the BSC transmission and the first transmission satisfies greater than or equal to a specific value
  • the method further includes:
  • interruption time interruption time
  • the terminal or network side device can assume that no data is sent or received.
  • interruption time interruption time
  • the terminal does not support simultaneous BSC transmission and first transmission.
  • the method before the terminal obtains resources configured by the network side device for transmitting BSC channels or signals, the method further includes:
  • the terminal sends first capability information to the network side device.
  • the first capability information includes one or more of the following:
  • the terminal supports simultaneous transmission of BSC channels or signals and first transmission; the first transmission is used to transmit channels or signals other than BSC channels or signals;
  • the RF capability is used to indicate the number of transceiver links supported by the terminal;
  • the receiver capability of the terminal includes at least one of whether it supports multiple receivers and the number of supported receivers.
  • the transmission of the BSC channel or signal and the first transmission satisfy TDM, or the transmission of the BSC channel or signal With the first transmission meets TDM and FDM.
  • the execution subject may be a resource allocation device.
  • the resource allocation device performing the resource allocation method is taken as an example to illustrate the resource allocation device provided by the embodiment of the present application.
  • this embodiment of the present application provides a resource allocation device 500, which includes:
  • Configuration module 501 used for network side equipment to configure resources for transmitting BSC channels or signals;
  • Scheduling module 502 used for the network side device to schedule the transmission of the BSC channel or signal
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • the configuration module 501 is used to:
  • the network side device is configured to transmit the target frequency band of the BSC channel or signal.
  • the configuration module 501 is used to:
  • the network side device is configured to transmit a center frequency point of the BSC channel or signal.
  • the configuration module 501 is used to:
  • the network side device is configured to transmit the target carrier or target serving cell of the BSC channel or signal.
  • the scheduling module 502 is used to:
  • the network side device schedules the BSC channel or signal to be transmitted on the target carrier or target serving cell through target control signaling; wherein the target control signaling is used by the network side device when not used to transmit the The signaling sent on the carrier of the BSC channel or signal or the serving cell, or the target control signaling is the signaling sent by the network side device on the target carrier or the target serving cell.
  • the configuration module 501 is used to:
  • the network side device is configured to transmit a target partial bandwidth BWP of the BSC channel or signal, where the target BWP includes a target uplink BWP and/or a target downlink BWP.
  • the configuration of the target BWP does not include one or more of the following:
  • the configuration of the target BWP includes one or more of the following:
  • the identification ID of the target BWP is the identification ID of the target BWP
  • the subcarrier spacing SCS of the target BWP is the subcarrier spacing SCS of the target BWP
  • the device also includes:
  • a startup module is used to activate or target the BWP and start the first timer
  • a switching module configured to switch the network side device to a preconfigured BWP after the first timer times out.
  • the network side device activates or applies the target BWP and other BWPs other than the target BWP at the same time.
  • the configuration module 501 is used to:
  • the network side device configures the BSC channel or signal to be transmitted on the first BWP; the first BWP is also used for first transmission; the first transmission is used to transmit channels other than the BSC channel or signal or signal.
  • the first BWP is a BWP with a specific BWP index.
  • the configuration module 501 is used to:
  • the network side device configures the BSC channel or signal to be transmitted on the target frequency domain resource of the first BWP.
  • the scheduling module 502 is used for at least one of the following:
  • the network side device schedules the transmission of the BSC channel or signal by sending DCI signaling
  • the network side device schedules the transmission of the BSC channel or signal by configuring semi-persistent transmission.
  • the relevant configuration parameters for the transmission of the BSC channel or signal include one or more of the following:
  • the transmission timeline of the BSC channel or signal is the transmission timeline of the BSC channel or signal
  • Hybrid automatic repeat request response HARQ-ACK resource information corresponding to the BSC channel or signal is not limited to the BSC channel or signal.
  • the transmission of the BSC channel or signal and the first transmission satisfy at least one of time division multiplexing TDM and frequency division multiplexing FDM; the first transmission is used to transmit other than the BSC channel or signal. channel or signal.
  • the time interval between the transmission of the BSC channel or signal and the first transmission is Greater than or equal to the first threshold value
  • the frequency domain interval between the transmission of the BSC channel or signal and the first transmission satisfies greater than or equal to the second threshold.
  • the network side device does not perform data transmission.
  • the device also includes:
  • a receiving module configured to receive the first capability information sent by the terminal before the network side device configures resources for transmitting BSC channels or signals.
  • the first capability information includes one or more of the following: :
  • the terminal supports simultaneous transmission of the BSC channel or signal and first transmission; the first transmission is used to transmit channels or signals other than the BSC channel or signal;
  • the radio frequency RF capability of the terminal is used to indicate the number of transceiver links supported by the terminal;
  • the receiver capability of the terminal includes at least one of whether multiple receivers are supported and the number of supported receivers.
  • the transmission of the BSC channel or signal and the first transmission satisfy TDM, or the The transmission of the BSC channel or signal and the first transmission satisfy TDM and FDM.
  • this embodiment of the present application provides a resource allocation device 600, which includes:
  • Acquisition module 601 is used for the terminal to obtain resource information used to transmit BSC channels or signals;
  • Transmission module 602 configured for the terminal to transmit the BSC channel or signal according to the obtained resource information of the BSC channel or signal
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • the acquisition module 601 is used for:
  • the terminal obtains information about a target frequency band used to transmit the BSC channel or signal.
  • the acquisition module 601 is used for:
  • the terminal obtains information about a center frequency point used to transmit the BSC channel or signal.
  • the acquisition module 601 is used for:
  • the terminal obtains information about a target carrier used to transmit the BSC channel or signal or information about a target serving cell.
  • the transmission module 602 is used for:
  • the terminal transmits the BSC channel or signal on the target carrier or target serving cell according to the target control signaling; wherein the target control signaling is used by the terminal to transmit the BSC channel or signal when it is not used.
  • the signaling received on the carrier or the serving cell, or the target control signaling is the signaling received by the terminal on the target carrier or the target serving cell.
  • the acquisition module 601 is used for:
  • the terminal obtains information about a target partial bandwidth BWP used to transmit the BSC channel or signal, where the target BWP includes a target uplink BWP and/or a target downlink BWP.
  • the configuration of the target BWP does not include one or more of the following:
  • the configuration of the target BWP includes one or more of the following:
  • the ID of the target BWP is the ID of the target BWP
  • the acquisition module 601 is used for:
  • the terminal obtains information of the first BWP, the first BWP is used to transmit the BSC channel or signal, and the first BWP is also used for the first transmission; the first transmission is used to transmit other than the BSC A channel or signal other than a channel or signal.
  • the first BWP is a BWP with a specific BWP index
  • the acquisition module 601 is used for:
  • the terminal acquires information on target frequency domain resources on the first BWP, and the target frequency domain resources are used to transmit the BSC channel or signal.
  • the transmission module 602 is used for at least one of the following:
  • the terminal transmits the BSC channel or signal according to the DCI signaling sent by the network side device;
  • the terminal transmits the BSC channel or signal according to the semi-persistent transmission configured by the network side device.
  • the relevant configuration parameters for the transmission of the BSC channel or signal include one or more of the following:
  • the transmission timeline of the BSC channel or signal is the transmission timeline of the BSC channel or signal
  • the transmission of the BSC channel or signal and the first transmission satisfy at least one of TDM and FDM; the first transmission is used to transmit channels or signals other than the BSC channel or signal.
  • the time interval between the transmission of the BSC channel or signal and the first transmission is Greater than or equal to the first threshold value
  • the frequency domain interval between the transmission of the BSC channel or signal and the first transmission satisfies greater than or equal to the second threshold.
  • the device also includes:
  • a sending module configured to send the first capability information to the network-side device by the terminal before the terminal obtains the resources configured by the network-side device for transmitting BSC channels or signals.
  • the first capability information includes the following: Item or multiple items:
  • the terminal supports simultaneous transmission of the BSC channel or signal and first transmission; the first transmission is used to transmit channels or signals other than the BSC channel or signal;
  • the RF capability of the terminal is used to indicate the number of transceiver links supported by the terminal;
  • the receiver capability of the terminal includes at least one of whether multiple receivers are supported and the number of supported receivers.
  • the transmission of the BSC channel or signal and the first transmission satisfy TDM, or the The transmission of the BSC channel or signal and the first transmission satisfy TDM and FDM.
  • the resource allocation device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the resource allocation device provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 2 to 4, and achieve the same technical effect. To avoid duplication, details will not be described here.
  • this embodiment of the present application also provides a communication device 700, which includes a processor 701 and a memory 702.
  • the memory 702 stores programs or instructions that can be run on the processor 701, for example.
  • the communication device 700 is a terminal, when the program or instruction is executed by the processor 701, each step of the above resource allocation method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 700 is a network-side device, when the program or instruction is executed by the processor 701, the steps of the above resource allocation method embodiment are implemented and the same technical effect can be achieved. To avoid duplication, they will not be described again here.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the processor is used by the network side device to configure resources for transmitting backscatter communication BSC channels or signals; the network side device schedules the Transmission of BSC channels or signals; the BSC channels or signals include one or more of the following: carrier channels or signals; control channels or signals; feedback channels or signals.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 800 includes: an antenna 81 , a radio frequency device 82 , a baseband device 83 , a processor 84 and a memory 85 .
  • the antenna 81 is connected to the radio frequency device 82 .
  • the radio frequency device 82 receives information through the antenna 81 and sends the received information to the baseband device 83 for processing.
  • the baseband device 83 processes the information to be sent and sends it to the radio frequency device 82.
  • the radio frequency device 82 processes the received information and then sends it out through the antenna 81.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 83, which includes a baseband processor.
  • the baseband device 83 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 86, which is, for example, a common public radio interface (CPRI).
  • a network interface 86 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 800 in this embodiment of the present application also includes: stored in the memory 85 and available on the processor.
  • the processor 84 calls the instructions or programs in the memory 85 to execute the method of executing each module shown in Figure 5, and achieves the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the processor is used by the terminal to obtain resource information for transmitting BSC channels or signals; the terminal obtains resource information based on the BSC channels or signals. , to transmit the BSC channel or signal; the BSC channel or signal includes one or more of the following: carrier channel or signal; control channel or signal; feedback channel or signal.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment.
  • FIG. 9 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 900 includes but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, a processor 910, etc. At least some parts.
  • the terminal 900 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 910 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or may combine certain components, or arrange different components, which will not be described again here.
  • the input unit 904 may include a graphics processing unit (Graphics Processing Unit, GPU) 9041 and a microphone 9042.
  • the graphics processor 9041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 906 may include a display panel 9061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and at least one of other input devices 9072 .
  • Touch panel 9071 also known as touch screen.
  • the touch panel 9071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 9072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 901 after receiving downlink data from the network side device, can transmit it to the processor 910 for processing; in addition, the radio frequency unit 901 can send uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 909 may be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 909 may include volatile memory or nonvolatile memory, or memory 909 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory Access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • Memory 909 in embodiments of the present application includes, but is not limited to, these and any other suitable types of memory.
  • the processor 910 may include one or more processing units; optionally, the processor 910 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 910.
  • the processor 910 is used for the terminal to obtain resource information for transmitting BSC channels or signals;
  • Processor 910 configured for the terminal to transmit the BSC channel or signal according to the acquired resource information of the BSC channel or signal
  • the BSC channel or signal includes one or more of the following:
  • Carrier channel or signal
  • processor 910 is used to:
  • the terminal obtains information about a target frequency band used to transmit the BSC channel or signal.
  • processor 9101 is used to:
  • the terminal obtains information about a center frequency point used to transmit the BSC channel or signal.
  • processor 9101 is used to:
  • the terminal obtains information about a target carrier used to transmit the BSC channel or signal or information about a target serving cell.
  • processor 910 is used to:
  • the terminal transmits the BSC channel or signal on the target carrier or target serving cell according to the target control signaling; wherein the target control signaling is the terminal on a carrier other than the BSC transmission or the target serving cell.
  • the signaling received on the serving cell, or the target control signaling is the signaling received by the terminal on the target carrier or the target serving cell.
  • processor 910 is used to:
  • the terminal obtains information about a target partial bandwidth BWP used to transmit the BSC channel or signal, where the target BWP includes a target uplink BWP and/or a target downlink BWP.
  • the configuration of the target BWP does not include one or more of the following:
  • the configuration of the target BWP includes one or more of the following:
  • the ID of the target BWP is the ID of the target BWP
  • processor 910 is used to:
  • the terminal obtains information of the first BWP, the first BWP is used to transmit the BSC channel or signal, and the first BWP is also used for the first transmission; the first transmission is used to transmit other than the BSC A channel or signal other than a channel or signal.
  • the first BWP is a BWP with a specific BWP index
  • processor 910 is used to:
  • the terminal acquires information on target frequency domain resources on the first BWP, and the target frequency domain resources are used to transmit the BSC channel or signal.
  • the processor 910 is used for at least one of the following:
  • the terminal transmits the BSC channel or signal according to the DCI signaling sent by the network side device;
  • the terminal transmits the BSC channel or signal according to the semi-persistent transmission configured by the network side device.
  • the relevant configuration parameters for the transmission of the BSC channel or signal include one or more of the following:
  • the transmission timeline of the BSC channel or signal is the transmission timeline of the BSC channel or signal
  • the transmission of the BSC channel or signal and the first transmission satisfy at least one of TDM and FDM; the first transmission is used to transmit channels or signals other than the BSC channel or signal.
  • the time interval between the transmission of the BSC channel or signal and the first transmission is Greater than or equal to the first threshold value
  • the transmission of the BSC channel or signal satisfies FDM with the first transmission, or satisfies TDM and FDM.
  • the frequency domain interval between the transmission of the BSC channel or signal and the first transmission satisfies greater than or equal to the second threshold.
  • the processor 910 is configured to send the first capability information to the network side device before the terminal obtains the resources configured by the network side device for transmitting BSC channels or signals, the The first capability information includes one or more of the following:
  • the terminal supports simultaneous transmission of the BSC channel or signal and first transmission; the first transmission is used to transmit channels or signals other than the BSC channel or signal;
  • the RF capability of the terminal is used to indicate the number of transceiver links supported by the terminal;
  • the receiver capability of the terminal includes at least one of whether multiple receivers are supported and the number of supported receivers.
  • the transmission of the BSC channel or signal and the first transmission satisfy TDM, or the The transmission of the BSC channel or signal and the first transmission satisfy TDM and FDM.
  • Embodiments of the present application also provide a readable storage medium. Programs or instructions are stored on the readable storage medium. When the program or instructions are executed by a processor, each process of the above resource allocation method embodiment is implemented and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above resource allocation method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above resource allocation method embodiment.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the relevant technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several The instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源分配方法、设备及可读存储介质,属于通信技术领域,该方法包括:资源分配方法,包括:网络侧设备配置用于传输反向散射通信BSC信道或信号的资源;所述网络侧设备调度所述BSC信道或信号的传输;所述BSC信道或信号包括以下一项或者多项:载波信道或信号;控制信道或信号;反馈信道或信号。

Description

资源分配方法、设备及可读存储介质
相关申请的交叉引用
本申请主张在2022年4月22日在中国提交的中国专利申请No.202210432221.0的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种资源分配方法、设备及可读存储介质。
背景技术
反向散射通信(Back Scatter Communication,BSC)是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输信息。反向散射通信设备可以是传统射频识别(Radio Frequency Identification,RFID)中的标签(Tag)设备或者是无源物联网(Passive-IoT)设备。
目前在新空口(New Radio,NR)中的资源配置未考虑BSC相关业务,无法支持BSC业务在NR系统的传输。
发明内容
本申请实施例提供一种资源分配方法、设备及可读存储介质,能够解决在NR通信中部署BSC业务的情况下,如何实现BSC业务相关的资源分配的方法的问题。
第一方面,提供了一种资源分配方法,包括:
网络侧设备配置用于传输BSC信道或信号的资源;
所述网络侧设备调度所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
第二方面,提供了一种资源分配方法,包括:
终端获取用于传输BSC信道或信号的资源信息;
所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
第三方面,提供了一种资源分配装置,包括:
配置模块,用于网络侧设备配置用于传输BSC信道或信号的资源;
调度模块,用于所述网络侧设备调度所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
第四方面,提供了一种资源分配装置,包括:
获取模块,用于终端获取用于传输BSC信道或信号的资源信息;
传输模块,用于所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
第五方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于网络侧设备配置用于传输反向散射通信BSC信道或信号的资源;
所述网络侧设备调度所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
第七方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于终端获取用于传输BSC信道或信号的资源信息;
所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
在本申请实施例中,通过网络侧设备配置用于传输BSC信道或信号的资源,并由网络侧设备调度所述BSC信道或信号的传输,实现BSC资源的分配以及调度,提高BSC业务的通信可靠性。
附图说明
图1a是本申请实施例提供的无线通信系统的框图;
图1b是BSC通信中Tag的收发流程示意图;
图1c是BSC通信的应用场景示意图之一;
图1d是BSC通信的应用场景示意图之二;
图1e是BSC通信的应用场景示意图之三;
图1f是BSC通信的架构示意图;
图2是本申请实施例提供的资源分配方法的流程示意图之一;
图3a是本申请实施例提供的应用场景示意图之一;
图3b是本申请实施例提供的应用场景示意图之二;
图3c是本申请实施例提供的应用场景示意图之三;
图3d是本申请实施例提供的应用场景示意图之四;
图4是本申请实施例提供的资源分配方法的流程示意图之二;
图5是本申请实施例提供的资源分配装置的结构示意图之一;
图6是本申请实施例提供的资源分配装置的结构示意图之二;
图7是本申请实施例提供的通信设备的结构示意图;
图8是本申请实施例提供的网络侧设备的结构示意图;
图9是本申请实施例提供的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显 然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1a示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、 家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为更好理解本申请的技术方案,首先对以下内容进行介绍:
反向散射通信(Backscatter Communication,BSC)
反向散射通信是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息。反向散射通信设备,可以是传统射频识别(Radio Frequency Identification,RFID)中的标签(Tag),或者是无源IoT(Passive-IoT)。反向散射通信设备通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0为天线特性阻抗,Z1是负载阻抗。假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。
RFID中读取器(reader)和Tag之间的信息传输
Reader操作的指令如表1所示:
表1

Tag的状态如表2所示:
表2
收发流程
如图1b所示,现在特高频(Ultra High Frequency,UHF)RFID的协议设计在盘点模式下,要求读取器发送查询指令(Query)后标签(Tag)响应回应(Reply),即产生一个16-bit的随机数给读取器。然后读取器将该序列通过ACK指令发给Tag后,Tag将相关的数据发送给阅读器。
backscatter两类应用场景
(1)蜂窝反向散射场景-无终端辅助,如图1c所示;
(2)终端辅助下的蜂窝反向散射场景,如图1d和图1e所示;图1d中终端接收Tag发送的反馈信息。图1e中终端发送载波(Carrier Wave,CW)和信令(command)或control给Tag;其中,信令类型包括如下至少一项:select,inventory,access。网络接收Tag的反馈信息。
具体地,backscatter的系统架构包括如图1f所示的多种。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的资源分配方法进行详细地说明。
参见图2,本申请实施例提供一种资源分配方法,包括:
步骤201:网络侧设备配置用于传输BSC信道或信号的资源;
步骤202:网络侧设备调度BSC信道或信号的传输;
一种实施例中,传输BSC信道或信号的实体可以包括网络侧设备,Tag,终端中至少一项;
需要说明的是,本申请各个实施例中提到的“传输”,可以包括发送或接收。
在本申请实施例中,通过网络侧设备配置用于传输BSC信道或信号的资源,并由网络侧设备调度BSC信道或信号的传输,实现BSC资源的分配,提高BSC业务的通信可靠性。
需要说明的是,本申请实施例的方法可以应用于如图1f中所示的Tag与gNB之间的BSC场景,或者有终端参与的Tag与gNB之间的BSC通信场景。
上述BSC信道或信号包括以下一项或者多项:
(1)载波信道或信号,例如,载波信道或信号包括:激励信号,可简称为CW;一种实施例中,该载波信道或信号可以是由网络侧设备发送给标签(tag)的信息,还可以是由终端发送给标签的信息。可选地,载波信道或信号还可包括:数据信道,或称为共享信道。
(2)控制信道或信号,例如:选取信号、查询信号、重复查询信号、答复信号、读取信号、写入信号、随机请求信号等,可简称为command;一种实施例中,该控制信道或信号可以是由网络侧设备发送给标签(tag)的信息,还可以是由终端发送给标签的信息。
(3)反馈信道或信号,例如:Tag标识信息(如查询过程中的临时代表Tag身份的16-bit随机数)、电子产品代码信息、Tag状态信息等),可简称为feedback。一种实施例中,该反馈信道或信号可以是标签通过反向散射发送给终端的信息,还可以是标签通过反向散射发送给网络侧设备的信息。
在一种可能的实施方式中,网络侧设备配置用于传输BSC信道或信号的资源,包括:
网络侧设备配置用于传输BSC信道或信号的目标频带。
上述目标频带也可以称之为目标波段。
在本申请实施例中,网络侧设备在特定移动通信系统的波段(band)上部署BSC。例如,NR系统为BSC业务分配一个新的band,具体可以如图3a所示。
在一种可能的实施方式中,网络侧设备配置用于传输BSC信道或信号的资源,包括:
网络侧设备配置用于传输BSC信道或信号的中心频点。
在本申请实施例中,网络指定BSC的中心频点,例如可以通过绝对无线频道编号(Absolute Radio Frequency Channel Number,ARFCN)的方式来指示BSC的中心频点。此外,一种情况下,具体的频域资源大小可以不做配置,而是通过具体硬件射频相关实现来确定。
在一种可能的实施方式中,网络侧设备配置用于传输BSC信道或信号的资源,包括:
网络侧设备配置用于传输BSC信道或信号的目标载波或者目标服务小区。
在本申请实施例中,网络侧设备配置特定载波或服务小区(Serving cell)用于BSC,具体可以如图3b所示;例如,网络侧设备为BSC配置专门的辅小区用来BSC信道或信号的传输。
可选地,目标载波或目标服务小区仅用于BSC传输。
需要说明的是,下述与上述提及的BSC传输指的是BSC信道或信号的传输。
进一步地,网络侧设备调度BSC信道或信号的传输,包括:
网络侧设备通过目标控制信令调度BSC信道或信号在目标载波或者目标服务小区上传输;其中,目标控制信令为网络侧设备在非用于BSC传输的载波或者服务小区上发送的信令,或目标控制信令为网络侧设备在目标载波或目标服务小区上发送的信令。
上述目标控制信令可以是无线资源控制(Radio Resource Control,RRC)信令或者媒体接入控制单元(Media Access Control-Control Element,MAC CE),或下行控制信息DCI;
作为一种可选实施方式,网络侧设备通过跨载波调度特定用于BSC的Serving cell的方式来触发的数据传输。
作为一种可选实施方式,网络侧设备通过在非用于BSC的serving cell上通过发送RRC或者MAC CE或DCI来调度BSC在特定载波或者serving cell上的BSC传输;例如,网络侧设备在小区1上发送DCI来调度BSC专用的小区上的BSC传输。也就是网络侧设备通过跨载波调度BSC传输。
在一种可能的实施方式中,网络侧设备配置用于传输BSC信道或信号的资源,包括:
网络侧设备配置用于传输BSC信道或信号的目标部分带宽(Bandwidth Part,BWP),目标BWP包括目标上行BWP和/或目标下行BWP。
需要说明的是,下述简称用于传输BSC信道或信号的目标部分带宽为BSC BWP,目标上行BWP为BSC上行(Uplink,UL)BWP,目标下行BWP为BSC下行(Downlink,DL)BWP。
可选地,目标BWP仅用于BSC传输。
在本申请实施例中,网络侧设备配置特定BWP用于BSC,包括该BSC BWP包括BSC  DL BWP和BSC UL BWP中至少一项,具体可以如图3c所示;
进一步地,目标BWP的配置不包括以下一项或者多项:
(1)物理下行控制信道(Physical Downlink Control Channel,PDCCH)相关配置;
(2)物理下行共享信道(Physical Downlink Shared Channel,PDSCH)相关配置;
(3)物理上行共享信道(Physical Uplink Shared Channel,PUSCH)相关配置;
(4)物理上行控制信道(Physical Uplink Control Channel,PUCCH)相关配置;
(5)参考信号相关配置。
进一步地,目标BWP的配置包括以下一项或者多项:
(1)目标BWP的标识ID;
(2)目标BWP的带宽;
(3)目标BWP的子载波间隔(sub-carrier space,SCS);
(4)BSC信道或信号的相关配置。
在本申请实施例中,BSC BWP上可以不对PDCCH、PDSCH等进行配置,可以只有BSC业务的传输相关的信道信号配置;也就是说,在相关技术中的BWP上配置的一些内容,除了BSC传输相关的,原来NR信道信号的配置可以去掉不做配置。
例如,可以第=目标BWP配置中不包含以下配置中的至少一项:
pdsch-configCommon(包括Cell specific参数)、pdcch-config(包括UE specific参数)、pdsch-config(包括UE specific参数)、SPS-config(用于单个BWP,NW可以随时释放该SPS-config)、radioLinkMonitoringConfig(用于检测蜂窝和波束无线电链路故障)、RACH-configCommon pucch-configCommon(包括Cell specific参数)、pusch-configCommon(包括Cell specific参数)、pucch-config(包括UE specific参数)、pusch-config(包括UE specific参数)、CG-config、beamFailureRecoveryConfig、SRS-config。
进一步地,方法还包括:
(1)激活或应用目标BWP,并启动第一定时器(第一timer);
(2)在第一定时器超时后,网络侧设备切换至预配置的BWP。
在本申请实施例中,在切换到BSC BWP的情况下,启动BWP-fallback定时器timer(即第一定时器),该timer超时后切换回到预配置的BWP上。一种实施例中,终端在一个serving cell上同一时刻只能有一个激活的BWP。因此,如果终端应用BSC BWP进行工作,也就是说当前激活的BWP是BSC BWP,由于该BSC BWP上没有配置PDCCH等参数,那么终端不能在BSC BWP上接收到由网络侧设备发送的信令以返回到传输PDCCH,PDSCH的BWP上,因此,可以通过上述第一timer的配置,在第一timer到期的情况下,实现返回到预配置的BWP上,该预配置的BWP为传输PDCCH,PDSCH的BWP。
可选地,网络侧设备同时激活或同时应用目标BWP和其他非目标BWP的BWP。
在本申请实施例中,BSC BWP与非BSC BWP(例如:传输物理信道的BWP)可以同时被激活或同时被应用。由此,该实施例可以实现同时传输BSC业务以及现移动通信 业务(例如,NR通信业务)的目的。需要说明的是,一种实施例中,在BSC BWP上传输的BSC业务由接收设备(例如,终端)中的额外的接收机来进行接收。额外的接收机指的是区别于相关技术中的接收PDCCH,PDSCH等移动通信信道或信号的接收机的其他接收机,可以理解为用于接收BSC业务的接收机。
例如,通过在非BSC BWP上获得网络调度信令来进行BSC业务在BSC BWP上的传输。
在一种可能的实施方式中,网络侧设备配置用于传输BSC信道或信号的资源,包括:
网络侧设备配置BSC信道或信号在第一BWP上传输;其中,该第一BWP还用于第一传输;第一传输用于传输除BSC信道或信号之外的信道或信号。
可选地,所述第一传输可以用于传输包括如下至少之一的信道或信号:物理下行共享信道(Physical Downlink Shared Channel,PDSCH),同步信号/物理广播信道信号块/同步信号块(Synchronization Signal and PBCH block,SSB),信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),探测参考信号(Sounding Reference Signal,SRS),物理随机接入信道(Physical Random Access Channel,PRACH),物理上行控制信道(Physical Uplink Control Channel,PUCCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。在一个例子中,所述用于传输除BSC信道或信号之外的信道或信号是NR信道或信号。
在本申请实施例中,BSC与NR传输可以被配置在相同的BWP(即上述第一BWP)上,也就是支持在一个BWP上进行BSC和NR的传输,需要说明的是,这里仅是以第一传输为NR传输为例进行说明,可以理解的是,该第一传输也可以是LTE传输或者其他用于传输除BSC信道或信号之外的信道或信号的传输,本申请实施例对第一传输的种类不做具体限定。后续针对涉及第一传输的举例说明,均以NR传输为例进行说明,不再赘述。
进一步地,第一BWP为具有特定BWP索引的BWP。即网络配置BSC在指定BWP ID的BWP上传输。
进一步地,网络侧设备配置BSC信道或信号在第一BWP上传输,包括:
网络侧设备配置BSC信道或信号在第一BWP的目标频域资源上传输。也就是说,网络配置在第一BWP的特定的频域资源上进行BSC传输;
一种实施例中,特定频域资源,可以包括:特定的资源块集(Resource Block set,RB set)(可以是连续的多个RB),特定的RB。例如,约定在上述第一BWP上的RB ID=0的RB上传输BSC,也就是网络侧设备分配第一BWP上的RB0给BSC传输。
在一种可能的实施方式中,网络侧设备调度BSC信道或信号的传输,包括以下至少一项:
(1)网络侧设备通过发送下行控制信息(Downlink Control Information,DCI)信令,调度BSC信道或信号的传输;
在本申请实施例中,网络侧设备向UE发送DCI,通过DCI动态调度BSC的传输; 例如:如果DCI中的载波指示域(Carrier Indicator Field,CIF)域指示的carrier为BSC传输所在的carrier,对DCI中的CIF以后的信息域重定义,来用于指示BSC业务的传输相关的参数(例如BSC资源分配参数)信息;
(2)网络侧设备通过配置半持续传输,调度BSC信道或信号的传输。
一种实施例中,网络侧配置至少一个半持续传输配置,通过DCI等信令指示激活其中一个或多个半静态配置,从而实现调度终端在被激活的所述一个或多个半静态配置所对应的传输机会中进行BSC信道或信号的收发;
结合上述任一个或多个实施例,在一种可能的实施方式中,BSC信道或信号的传输的相关配置参数,包括以下一项或者多项:
(1)功率信息(例如传输功率控制(Transmit Power Control,TPC)信息);
(2)频域资源;例如,频域资源参数包括,频域资源大小,频域资源起始位置等。
(3)带宽;
(4)时域资源;例如,时域资源参数包括,时域资源长度,时域资源起始位置等。
(5)资源周期;例如,资源周期为10ms,则表示每隔10ms有一次BSC传输的资源。
(6)在每个资源周期中,资源所占持续时间;
(7)波形;指的是,传输BSC所用的波形,例如开/关键控(On-Off Keying,OOK)波形。
(8)BSC信道或信号的发送时间线;指的是,BSC信道或信号的发送所需满足的时间间隔要求。例如,BSC信道或信号的发送需要一段时间的准备,则在接收到调度BSC信道信号发送的信令后,需要满足大于或等于该准备时间才能将BSC信道或信号发送出去。
(9)BSC信道或信号的接收时间线;指的是,BSC信道或信号的接收所需满足的时间间隔要求。例如,BSC信道或信号的接收需要一段时间的解码,则在接收到BSC信道信号后,需要满足大于或等于该解码时间才能将BSC信道或信号对应的HARQ发送出去。
(10)BSC信道或信号对应的混合自动重传请求应答(Hybrid Automatic Repeat request-ACK,HARQ-ACK)资源信息。
在一种可能的实施方式中,BSC信道或信号的传输与第一传输满足时分复用(time-division multiplexing,TDM)和频分复用(frequency-division multiplexing,FDM)中至少一项;第一传输用于传输除BSC信道或信号之外的信道或信号,具体可以如图3d所示;
在一种可能的实施方式中,在BSC信道或信号的传输与第一传输满足TDM,或者满足TDM和FDM的情况下,BSC信道或信号的传输与第一传输之间的时间间隔大于或等于第一门限值;
即在BSC信道或信号的传输与第一传输满足TDM,或,TDM和FDM的情况下,BSC传输与第一传输之间的时间间隔满足大于或等于特定值;
在BSC信道或信号的传输与第一传输满足FDM,或者满足TDM和FDM的情况下,BSC信道或信号的传输与第一传输之间的频域间隔满足大于或等于第二门限。
即在BSC信道或信号的传输与第一传输满足FDM,或,TDM和FDM的情况下,BSC传输与第一传输之间的频域间隔满足大于或等于特定值;
在一种可能的实施方式中,方法还包括:
在BSC信道或信号的传输与第一传输进行切换的过程中存在中断时间,在中断时间内,网络侧设备不进行数据传输。
例如,在BSC传输和NR传输之间进行切换的过程中存在一定的中断时间(interruption time),在interruption time内,终端或网络侧设备可以假设不进行数据收发。造成上述切换过程的一种原因是因为终端不支持同时进行BSC传输和第一传输导致的。
在一种可能的实施方式中,在网络侧设备配置用于传输BSC信道或信号的资源之前,方法还包括:
网络侧设备接收终端发送的第一能力信息;
该第一能力信息包括以下一项或者多项:
(1)终端是否支持同时进行BSC信道或信号的传输和第一传输;第一传输用于传输除BSC信道或信号之外的信道或信号;例如终端是否支持同时收发NR信道/信号和BSC信道/信号;
(2)终端的射频RF能力,RF能力用于指示终端支持收发链路的数量;
(3)终端的接收机能力,接收机能力包括是否支持多个接收机和支持的接收机数量中至少一项。该接收机可以包括主接收机,以及额外的接收机,例如:低功耗接收机;例如:发送/接收BSC信道信号跟发送/接收NR信道/信号是不同的发送/接收机。例如,接收BSC信道信号的是低功耗接收机。
在一种可能的实施方式中,在终端不支持同时进行BSC信道或信号的传输和第一传输的情况下,BSC信道或信号的传输与第一传输满足TDM,或者,BSC信道或信号的传输与第一传输满足TDM和FDM。可以理解为,在终端不支持同时收发这两套信号信道的情况下,BSC信道或信号的传输和第一传输不能是FDM的方式。
参见图4,本申请实施例提供一种资源分配方法,包括:
步骤401:终端获取用于传输BSC信道或信号的资源信息;
步骤402:终端根据获取的BSC信道或信号的资源信息,进行BSC信道或信号的传输;
需要说明的是,本申请各个实施例中提到的“传输”,可以包括发送或接收。
在本申请实施例中,终端获取用于传输BSC信道或信号的资源信息,具体可以从网络侧设备获取,即由网络侧设备配置用于传输BSC信道或信号的资源并提供给终端,用于后续终端进行BSC信道或信号的传输。
需要说明的是,本申请实施例的方法可以应用于如图1f中所示的有终端参与的Tag 与gNB之间的BSC通信场景。
说明一下,终端侧方法描述中指出的参数、信息等与网络侧方法描述中给出的详细描述保持相同理解,在此不再赘述。
上述BSC信道或信号包括以下一项或者多项:
(1)载波信道或信号,例如,载波信道或信号包括:激励信号,可简称为CW;一种实施例中,该载波信道或信号可以是由网络侧设备发送给标签(tag)的信息,还可以是由终端发送给标签的信息。可选地,载波信道或信号还可包括:数据信道,或称为共享信道。
(2)控制信道或信号,例如:选取信号、查询信号、重复查询信号、答复信号、读取信号、写入信号、随机请求信号等,可简称为command;一种实施例中,该控制信道或信号可以是由网络侧设备发送给标签(tag)的信息,还可以是由终端发送给标签的信息。
(3)反馈信道或信号,例如:Tag标识信息(如查询过程中的临时代表Tag身份的16-bit随机数)、电子产品代码信息、Tag状态信息等),可简称为feedback。一种实施例中,该反馈信道或信号可以是标签通过反向散射发送给终端的信息,还可以是标签通过反向散射发送给网络侧设备的信息。
在一种可能的实施方式中,终端获取用于传输BSC信道或信号的资源信息,包括:
终端获取用于传输BSC信道或信号的目标频带的信息。
上述目标频带也可以称之为目标波段。
在一种可能的实施方式中,终端获取用于传输BSC信道或信号的资源信息,包括:
终端获取用于传输BSC信道或信号的中心频点的信息。
在一种可能的实施方式中,终端获取用于传输BSC信道或信号的资源信息,包括:
终端获取用于传输BSC信道或信号的目标载波的信息或者目标服务小区的信息。
可选地,目标载波或目标服务小区仅用于BSC传输,BSC传输指的是BSC信道或信号的传输。
在一种可能的实施方式中,终端根据获取的BSC信道或信号的资源信息,进行BSC信道或信号的传输,包括:
终端根据目标控制信令,在目标载波或者目标服务小区上进行BSC信道或信号的传输;其中,目标控制信令为终端在非用于BSC传输的载波或者服务小区上接收的信令,或目标控制信令为终端在目标载波或目标服务小区上接收的信令。
上述目标控制信令可以是RRC信令或者MAC CE,或DCI;
在一种可能的实施方式中,终端获取用于传输BSC信道或信号的资源信息,包括:
终端获取用于传输BSC信道或信号的目标部分带宽BWP的信息,目标BWP包括目标上行BWP和/或目标下行BWP。
需要说明的是,下述简称用于传输BSC信道或信号的目标部分带宽为BSC BWP,目标上行BWP为BSC UL BWP,目标下行BWP为BSC DL BWP。
可选地,目标BWP仅用于BSC传输。
在一种可能的实施方式中,目标BWP的配置不包括以下一项或者多项:
(1)PDCCH相关配置;
(2)PDSCH相关配置;
(3)PUSCH相关配置;
(4)PUCCH相关配置;
(5)参考信号相关配置。
在一种可能的实施方式中,目标BWP的配置包括以下一项或者多项:
(1)目标BWP的标识ID;
(2)目标BWP的带宽;
(3)目标BWP的SCS;
(4)BSC信道或信号的相关配置。
在本申请实施例中,BSC BWP上可以不对PDCCH、PDSCH等进行配置,可以只有BSC业务的传输相关的信道信号配置;也就是说,在相关技术中的BWP上配置的一些内容,除了BSC传输相关的,原来NR信道信号的配置可以去掉不做配置。
例如可以从相关技术中的BWP配置中去掉以下相关配置:
pdsch-configCommon(包括Cell specific参数)、pdcch-config(包括UE specific参数)、pdsch-config(包括UE specific参数)、SPS-config(用于单个BWP,NW可以随时释放该SPS-config)、radioLinkMonitoringConfig(用于检测蜂窝和波束无线电链路故障)、RACH-configCommon pucch-configCommon(包括Cell specific参数)、pusch-configCommon(包括Cell specific参数)、pucch-config(包括UE specific参数)、pusch-config(包括UE specific参数)、CG-config、beamFailureRecoveryConfig、SRS-config。
在一种可能的实施方式中,终端获取用于传输BSC信道或信号的资源信息,包括:
终端获取第一BWP的信息,第一BWP用于传输BSC信道或信号,且第一BWP还用于第一传输;第一传输用于传输除BSC信道或信号之外的信道或信号。
可选地,所述第一传输可以用于传输包括如下至少之一的信道或信号:PDSCH,SSB,CSI-RS,SRS,PRACH,PUCCH,PUSCH。在一个例子中,所述用于传输除BSC信道或信号之外的信道或信号是NR信道或信号。
在一种可能的实施方式中,第一BWP为具有特定BWP索引的BWP;
在一种可能的实施方式中,终端获取第一BWP的信息,包括:
终端获取在第一BWP上的目标频域资源的信息,目标频域资源用于传输BSC信道或信号。也就是说,终端在第一BWP的特定的频域资源上进行BSC传输;
一种实施例中,特定频域资源,可以包括:特定的RB set(可以是连续的多个RB),特定的RB。例如,约定在上述第一BWP上的RB ID=0的RB上传输BSC,也就是网络侧设备分配第一BWP上的RB0给BSC传输。
在一种可能的实施方式中,终端进行BSC信道或信号的传输,包括以下至少一项:
(1)终端根据网络侧设备发送的DCI信令,进行BSC信道或信号的传输;
在本申请实施例中,网络侧设备向UE发送DCI,通过DCI动态调度BSC的传输;例如:如果DCI中的CIF域指示的carrier为BSC传输所在的carrier,对DCI中的CIF以后的信息域重定义,来用于指示BSC业务的传输相关的参数(例如BSC资源分配参数)信息;
(2)终端根据网络侧设备配置的半持续传输,进行BSC信道或信号的传输。
一种实施例中,网络侧配置至少一个半持续传输配置,通过DCI等信令指示激活其中一个或多个半静态配置,从而实现调度终端在被激活的所述一个或多个半静态配置所对应的传输机会中进行BSC信道或信号的收发;
结合上述任一个或多个实施例,在一种可能的实施方式中,BSC信道或信号的传输的相关配置参数,包括以下一项或者多项:
(1)功率信息(例如TPC信息);
(2)频域资源;例如,频域资源参数包括,频域资源大小,频域资源起始位置等。
(3)带宽;
(4)时域资源;例如,时域资源参数包括,时域资源长度,时域资源起始位置等。
(5)资源周期;例如,资源周期为10ms,则表示每隔10ms有一次BSC传输的资源。
(6)在每个资源周期中,资源所占持续时间;
(7)波形;指的是,传输BSC所用的波形,例如OOK波形。
(8)BSC信道或信号的发送时间线;指的是,BSC信道或信号的发送所需满足的时间间隔要求。例如,BSC信道或信号的发送需要一段时间的准备,则在接收到调度BSC信道信号发送的信令后,需要满足大于或等于该准备时间才能将BSC信道或信号发送出去。
(9)BSC信道或信号的接收时间线;指的是,BSC信道或信号的接收所需满足的时间间隔要求。例如,BSC信道或信号的接收需要一段时间的解码,则在接收到BSC信道信号后,需要满足大于或等于该解码时间才能将BSC信道或信号对应的HARQ发送出去。
(10)BSC信道或信号对应的HARQ-ACK资源信息。
在一种可能的实施方式中,BSC信道或信号的传输与第一传输满足TDM和FDM中至少一项;第一传输用于传输除BSC信道或信号之外的信道或信号。
在一种可能的实施方式中,在BSC信道或信号的传输与第一传输满足TDM,或者满足TDM和FDM的情况下,BSC信道或信号的传输与第一传输之间的时间间隔大于或等于第一门限值;
即在BSC信道或信号的传输与第一传输满足TDM,或,TDM和FDM的情况下,BSC传输与第一传输之间的时间间隔满足大于或等于特定值;
在BSC信道或信号的传输与第一传输满足FDM,或者满足TDM和FDM的情况下, BSC信道或信号的传输与第一传输之间的频域间隔满足大于或等于第二门限。
即在BSC信道或信号的传输与第一传输满足FDM,或,TDM和FDM的情况下,BSC传输与第一传输之间的频域间隔满足大于或等于特定值;
在一种可能的实施方式中,方法还包括:
在BSC信道或信号的传输与第一传输进行切换的过程中存在中断时间,在中断时间内,终端不进行数据传输。
例如,在BSC传输和NR传输之间进行切换的过程中存在一定的中断时间(interruption time),在interruption time内,终端或网络侧设备可以假设不进行数据收发。造成上述切换过程的一种原因是因为终端不支持同时进行BSC传输和第一传输导致的。
在一种可能的实施方式中,在终端获取网络侧设备配置的用于传输BSC信道或信号的资源之前,方法还包括:
终端向网络侧设备发送第一能力信息,第一能力信息包括以下一项或者多项:
(1)终端是否支持同时进行BSC信道或信号的传输和第一传输;第一传输用于传输除BSC信道或信号之外的信道或信号;
(2)终端的RF能力,RF能力用于指示终端支持收发链路的数量;
(3)终端的接收机能力,接收机能力包括是否支持多个接收机和支持的接收机数量中至少一项。
在一种可能的实施方式中,在终端不支持同时进行BSC信道或信号的传输和第一传输的情况下,BSC信道或信号的传输与第一传输满足TDM,或者,BSC信道或信号的传输与第一传输满足TDM和FDM。
本申请实施例提供的资源分配方法,执行主体可以为资源分配装置。本申请实施例中以资源分配装置执行资源分配方法为例,说明本申请实施例提供的资源分配装置。
参见图5,本申请实施例提供一种资源分配装置500,包括:
配置模块501,用于网络侧设备配置用于传输BSC信道或信号的资源;
调度模块502,用于所述网络侧设备调度所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
可选地,所述配置模块501,用于:
所述网络侧设备配置用于传输所述BSC信道或信号的目标频带。
可选地,所述配置模块501,用于:
所述网络侧设备配置用于传输所述BSC信道或信号的中心频点。
可选地,所述配置模块501,用于:
所述网络侧设备配置用于传输所述BSC信道或信号的目标载波或者目标服务小区。
可选地,所述调度模块502,用于:
所述网络侧设备通过目标控制信令调度所述BSC信道或信号在所述目标载波或者目标服务小区上传输;其中,所述目标控制信令为所述网络侧设备在非用于传输所述BSC信道或信号的载波或者服务小区上发送的信令,或所述目标控制信令为所述网络侧设备在所述目标载波或目标服务小区上发送的信令。
可选地,所述配置模块501,用于:
所述网络侧设备配置用于传输所述BSC信道或信号的目标部分带宽BWP,所述目标BWP包括目标上行BWP和/或目标下行BWP。
可选地,所述目标BWP的配置不包括以下一项或者多项:
物理下行控制信道PDCCH相关配置;
物理下行共享信道PDSCH相关配置;
物理上行共享信道PUSCH相关配置;
物理上行控制信道PUCCH相关配置;
参考信号相关配置。
可选地,所述目标BWP的配置包括以下一项或者多项:
所述目标BWP的标识ID;
所述目标BWP的带宽;
所述目标BWP的子载波间隔SCS;
所述BSC信道或信号的相关配置。
可选地,所述装置还包括:
启动模块,用于在激活或所述目标BWP,并启动第一定时器;
切换模块,用于在所述第一定时器超时后,所述网络侧设备切换至预配置的BWP。
可选地,所述网络侧设备同时激活或同时应用所述目标BWP和其他非所述目标BWP的BWP。
可选地,所述配置模块501,用于:
所述网络侧设备配置所述BSC信道或信号在第一BWP上传输;所述第一BWP还用于第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
可选地,所述第一BWP为具有特定BWP索引的BWP。
可选地,所述配置模块501,用于:
所述网络侧设备配置所述BSC信道或信号在所述第一BWP的目标频域资源上传输。
可选地,所述调度模块502,用于以下至少一项:
所述网络侧设备通过发送DCI信令,调度所述BSC信道或信号的传输;
所述网络侧设备通过配置半持续传输,调度所述BSC信道或信号的传输。
可选地,所述BSC信道或信号的传输的相关配置参数,包括以下一项或者多项:
功率信息;
频域资源;
带宽;
时域资源;
资源周期;
在每个所述资源周期中,资源所占持续时间;
波形;
所述BSC信道或信号的发送时间线;
所述BSC信道或信号的接收时间线;
所述BSC信道或信号对应的混合自动重传请求应答HARQ-ACK资源信息。
可选地,所述BSC信道或信号的传输与第一传输满足时分复用TDM和频分复用FDM中至少一项;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
可选地,在所述BSC信道或信号的传输与所述第一传输满足TDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的时间间隔大于或等于第一门限值;
在所述BSC信道或信号的传输与所述第一传输满足FDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的频域间隔满足大于或等于第二门限。
可选地,在所述BSC信道或信号的传输与所述第一传输进行切换的过程中存在中断时间,在所述中断时间内,所述网络侧设备不进行数据传输。
可选地,所述装置还包括:
接收模块,用于在所述网络侧设备配置用于传输BSC信道或信号的资源之前,所述网络侧设备接收终端发送的第一能力信息,所述第一能力信息包括以下一项或者多项:
所述终端是否支持同时进行所述BSC信道或信号的传输和第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号;
所述终端的射频RF能力,所述RF能力用于指示所述终端支持收发链路的数量;
所述终端的接收机能力,所述接收机能力包括是否支持多个接收机和支持的接收机数量中至少一项。
可选地,在所述终端不支持同时进行所述BSC信道或信号的传输和所述第一传输的情况下,所述BSC信道或信号的传输与所述第一传输满足TDM,或者,所述BSC信道或信号的传输与所述第一传输满足TDM和FDM。
参见图6,本申请实施例提供一种资源分配装置600,包括:
获取模块601,用于终端获取用于传输BSC信道或信号的资源信息;
传输模块602,用于所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
可选地,所述获取模块601,用于:
所述终端获取用于传输所述BSC信道或信号的目标频带的信息。
可选地,所述获取模块601,用于:
所述终端获取用于传输所述BSC信道或信号的中心频点的信息。
可选地,所述获取模块601,用于:
所述终端获取用于传输所述BSC信道或信号的目标载波的信息或者目标服务小区的信息。
可选地,所述传输模块602,用于:
所述终端根据目标控制信令,在所述目标载波或者目标服务小区上进行BSC信道或信号的传输;其中,所述目标控制信令为所述终端在非用于传输所述BSC信道或信号的载波或者服务小区上接收的信令,或所述目标控制信令为所述终端在所述目标载波或目标服务小区上接收的信令。
可选地,所述获取模块601,用于:
所述终端获取用于传输所述BSC信道或信号的目标部分带宽BWP的信息,所述目标BWP包括目标上行BWP和/或目标下行BWP。
可选地,所述目标BWP的配置不包括以下一项或者多项:
PDCCH相关配置;
PDSCH相关配置;
PUSCH相关配置;
PUCCH相关配置;
参考信号相关配置。
可选地,所述目标BWP的配置包括以下一项或者多项:
所述目标BWP的ID;
所述目标BWP的带宽;
所述目标BWP的SCS;
所述BSC信道或信号的相关配置。
可选地,所述获取模块601,用于:
所述终端获取第一BWP的信息,所述第一BWP用于传输所述BSC信道或信号,且所述第一BWP还用于第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
可选地,所述第一BWP为具有特定BWP索引的BWP;
可选地,所述获取模块601,用于:
所述终端获取在所述第一BWP上的目标频域资源的信息,所述目标频域资源用于传输所述BSC信道或信号。
可选地,所述传输模块602,用于以下至少一项:
所述终端根据所述网络侧设备发送的DCI信令,进行BSC信道或信号的传输;
所述终端根据所述网络侧设备配置的半持续传输,进行BSC信道或信号的传输。
可选地,所述BSC信道或信号的传输的相关配置参数,包括以下一项或者多项:
功率信息;
频域资源;
带宽;
时域资源;
资源周期;
在每个所述资源周期中,资源所占持续时间;
波形;
所述BSC信道或信号的发送时间线;
所述BSC信道或信号的接收时间线;
所述BSC信道或信号对应的HARQ-ACK资源信息。
可选地,所述BSC信道或信号的传输与第一传输满足TDM和FDM中至少一项;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
可选地,在所述BSC信道或信号的传输与所述第一传输满足TDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的时间间隔大于或等于第一门限值;
在所述BSC信道或信号的传输与所述第一传输满足FDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的频域间隔满足大于或等于第二门限。
可选地,在所述BSC信道或信号的传输与所述第一传输进行切换的过程中存在中断时间,在所述中断时间内,所述终端不进行数据传输。
可选地,所述装置还包括:
发送模块,用于在所述终端获取网络侧设备配置的用于传输BSC信道或信号的资源之前,所述终端向所述网络侧设备发送第一能力信息,所述第一能力信息包括以下一项或者多项:
所述终端是否支持同时进行所述BSC信道或信号的传输和第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号;
所述终端的RF能力,所述RF能力用于指示所述终端支持收发链路的数量;
所述终端的接收机能力,所述接收机能力包括是否支持多个接收机和支持的接收机数量中至少一项。
可选地,在所述终端不支持同时进行所述BSC信道或信号的传输和所述第一传输的情况下,所述BSC信道或信号的传输与所述第一传输满足TDM,或者,所述BSC信道或信号的传输与所述第一传输满足TDM和FDM。
本申请实施例中的资源分配装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的资源分配装置能够实现图2至图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701和存储器702,存储器702上存储有可在所述处理器701上运行的程序或指令,例如,该通信设备700为终端时,该程序或指令被处理器701执行时实现上述资源分配方法实施例的各个步骤,且能达到相同的技术效果。该通信设备700为网络侧设备时,该程序或指令被处理器701执行时实现上述资源分配方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述处理器用于网络侧设备配置用于传输反向散射通信BSC信道或信号的资源;所述网络侧设备调度所述BSC信道或信号的传输;所述BSC信道或信号包括以下一项或者多项:载波信道或信号;控制信道或信号;反馈信道或信号。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图8所示,该网络侧设备800包括:天线81、射频装置82、基带装置83、处理器84和存储器85。天线81与射频装置82连接。在上行方向上,射频装置82通过天线81接收信息,将接收的信息发送给基带装置83进行处理。在下行方向上,基带装置83对要发送的信息进行处理,并发送给射频装置82,射频装置82对收到的信息进行处理后经过天线81发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置83中实现,该基带装置83包括基带处理器。
基带装置83例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图8所示,其中一个芯片例如为基带处理器,通过总线接口与存储器85连接,以调用存储器85中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口86,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备800还包括:存储在存储器85上并可在处理器 y4上运行的指令或程序,处理器84调用存储器85中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述处理器用于终端获取用于传输BSC信道或信号的资源信息;所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输;所述BSC信道或信号包括以下一项或者多项:载波信道或信号;控制信道或信号;反馈信道或信号。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图9为实现本申请实施例的一种终端的硬件结构示意图。
该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909以及处理器910等中的至少部分部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理单元(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072中的至少一种。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901接收来自网络侧设备的下行数据后,可以传输给处理器910进行处理;另外,射频单元901可以向网络侧设备发送上行数据。通常,射频单元901包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括易失性存储器或非易失性存储器,或者,存储器909可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存 取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器909包括但不限于这些和任意其它适合类型的存储器。
处理器910可包括一个或多个处理单元;可选的,处理器910集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,处理器910,用于终端获取用于传输BSC信道或信号的资源信息;
处理器910,用于所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输;
所述BSC信道或信号包括以下一项或者多项:
载波信道或信号;
控制信道或信号;
反馈信道或信号。
可选地,所述处理器910,用于:
所述终端获取用于传输所述BSC信道或信号的目标频带的信息。
可选地,所述处理器9101,用于:
所述终端获取用于传输所述BSC信道或信号的中心频点的信息。
可选地,所述处理器9101,用于:
所述终端获取用于传输所述BSC信道或信号的目标载波的信息或者目标服务小区的信息。
可选地,所述处理器910,用于:
所述终端根据目标控制信令,在所述目标载波或者目标服务小区上进行BSC信道或信号的传输;其中,所述目标控制信令为所述终端在非用于所述BSC传输的载波或者服务小区上接收的信令,或所述目标控制信令为所述终端在所述目标载波或目标服务小区上接收的信令。
可选地,所述处理器910,用于:
所述终端获取用于传输所述BSC信道或信号的目标部分带宽BWP的信息,所述目标BWP包括目标上行BWP和/或目标下行BWP。
可选地,所述目标BWP的配置不包括以下一项或者多项:
PDCCH相关配置;
PDSCH相关配置;
PUSCH相关配置;
PUCCH相关配置;
参考信号相关配置。
可选地,所述目标BWP的配置包括以下一项或者多项:
所述目标BWP的ID;
所述目标BWP的带宽;
所述目标BWP的SCS;
所述BSC信道或信号的相关配置。
可选地,所述处理器910,用于:
所述终端获取第一BWP的信息,所述第一BWP用于传输所述BSC信道或信号,且所述第一BWP还用于第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
可选地,所述第一BWP为具有特定BWP索引的BWP;
可选地,所述处理器910,用于:
所述终端获取在所述第一BWP上的目标频域资源的信息,所述目标频域资源用于传输所述BSC信道或信号。
可选地,所述处理器910,用于以下至少一项:
所述终端根据所述网络侧设备发送的DCI信令,进行BSC信道或信号的传输;
所述终端根据所述网络侧设备配置的半持续传输,进行BSC信道或信号的传输。
可选地,所述BSC信道或信号的传输的相关配置参数,包括以下一项或者多项:
功率信息;
频域资源;
带宽;
时域资源;
资源周期;
在每个所述资源周期中,资源所占持续时间;
波形;
所述BSC信道或信号的发送时间线;
所述BSC信道或信号的接收时间线;
所述BSC信道或信号对应的HARQ-ACK资源信息。
可选地,所述BSC信道或信号的传输与第一传输满足TDM和FDM中至少一项;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
可选地,在所述BSC信道或信号的传输与所述第一传输满足TDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的时间间隔大于或等于第一门限值;
在所述BSC信道或信号的传输与所述第一传输满足FDM,或者满足TDM和FDM的 情况下,所述BSC信道或信号的传输与所述第一传输之间的频域间隔满足大于或等于第二门限。
可选地,在所述BSC信道或信号的传输与所述第一传输进行切换的过程中存在中断时间,在所述中断时间内,所述终端不进行数据传输。
可选地,所述处理器910,用于在所述终端获取网络侧设备配置的用于传输BSC信道或信号的资源之前,所述终端向所述网络侧设备发送第一能力信息,所述第一能力信息包括以下一项或者多项:
所述终端是否支持同时进行所述BSC信道或信号的传输和第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号;
所述终端的RF能力,所述RF能力用于指示所述终端支持收发链路的数量;
所述终端的接收机能力,所述接收机能力包括是否支持多个接收机和支持的接收机数量中至少一项。
可选地,在所述终端不支持同时进行所述BSC信道或信号的传输和所述第一传输的情况下,所述BSC信道或信号的传输与所述第一传输满足TDM,或者,所述BSC信道或信号的传输与所述第一传输满足TDM和FDM。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者 是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种资源分配方法,包括:
    网络侧设备配置用于传输反向散射通信BSC信道或信号的资源;
    所述网络侧设备调度所述BSC信道或信号的传输;
    所述BSC信道或信号包括以下一项或者多项:
    载波信道或信号;
    控制信道或信号;
    反馈信道或信号。
  2. 根据权利要求1所述的方法,其中,所述网络侧设备配置用于传输BSC信道或信号的资源,包括:
    所述网络侧设备配置用于传输所述BSC信道或信号的目标频带。
  3. 根据权利要求1所述的方法,其中,所述网络侧设备配置用于传输BSC信道或信号的资源,包括:
    所述网络侧设备配置用于传输所述BSC信道或信号的中心频点。
  4. 根据权利要求1所述的方法,其中,所述网络侧设备配置用于传输BSC信道或信号的资源,包括:
    所述网络侧设备配置用于传输所述BSC信道或信号的目标载波或者目标服务小区。
  5. 根据权利要求4所述的方法,其中,所述网络侧设备调度所述BSC信道或信号的传输,包括:
    所述网络侧设备通过目标控制信令调度所述BSC信道或信号在所述目标载波或者目标服务小区上传输;其中,所述目标控制信令为所述网络侧设备在非用于传输所述BSC信道或信号的载波或者服务小区上发送的信令,或所述目标控制信令为所述网络侧设备在所述目标载波或目标服务小区上发送的信令。
  6. 根据权利要求1所述的方法,其中,所述网络侧设备配置用于传输BSC信道或信号的资源,包括:
    所述网络侧设备配置用于传输所述BSC信道或信号的目标部分带宽BWP,所述目标BWP包括目标上行BWP和/或目标下行BWP。
  7. 根据权利要求6所述的方法,其中,所述目标BWP的配置包括以下一项或者多项:
    所述目标BWP的标识ID;
    所述目标BWP的带宽;
    所述目标BWP的子载波间隔SCS;
    所述BSC信道或信号的相关配置。
  8. 根据权利要求6所述的方法,其中,所述目标BWP的配置不包括以下一项或者多项:
    物理下行控制信道PDCCH相关配置;
    物理下行共享信道PDSCH相关配置;
    物理上行共享信道PUSCH相关配置;
    物理上行控制信道PUCCH相关配置;
    参考信号相关配置。
  9. 根据权利要求6所述的方法,其中,所述方法还包括:
    激活或应用所述目标BWP,并启动第一定时器;
    在所述第一定时器超时后,所述网络侧设备切换至预配置的BWP。
  10. 根据权利要求6所述的方法,其中,所述网络侧设备同时激活或同时应用所述目标BWP和其他非所述目标BWP的BWP。
  11. 根据权利要求1所述的方法,其中,所述网络侧设备配置用于传输BSC信道或信号的资源,包括:
    所述网络侧设备配置所述BSC信道或信号在第一BWP上传输;其中,所述第一BWP还用于第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
  12. 根据权利要求11所述的方法,其中,所述第一BWP为具有特定BWP索引的BWP。
  13. 根据权利要求11所述的方法,其中,所述网络侧设备配置所述BSC信道或信号在第一BWP上传输,包括:
    所述网络侧设备配置所述BSC信道或信号在所述第一BWP的目标频域资源上传输。
  14. 根据权利要求1所述的方法,其中,所述网络侧设备调度所述BSC信道或信号的传输,包括以下至少一项:
    所述网络侧设备通过发送DCI信令,调度所述BSC信道或信号的传输;
    所述网络侧设备通过配置半持续传输,调度所述BSC信道或信号的传输。
  15. 根据权利要求1所述的方法,其中,所述BSC信道或信号的传输的相关配置参数,包括以下一项或者多项:
    功率信息;
    频域资源;
    带宽;
    时域资源;
    资源周期;
    在每个所述资源周期中,资源所占持续时间;
    波形;
    所述BSC信道或信号的发送时间线;
    所述BSC信道或信号的接收时间线;
    所述BSC信道或信号对应的混合自动重传请求应答HARQ-ACK资源信息。
  16. 根据权利要求1至15任一项所述的方法,其中,所述BSC信道或信号的传输与 第一传输满足时分复用TDM和频分复用FDM中至少一项;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
  17. 根据权利要求16所述的方法,其中,
    在所述BSC信道或信号的传输与所述第一传输满足TDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的时间间隔大于或等于第一门限值;
    在所述BSC信道或信号的传输与所述第一传输满足FDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的频域间隔满足大于或等于第二门限。
  18. 根据权利要求16或17所述的方法,其中,所述方法还包括:
    在所述BSC信道或信号的传输与所述第一传输进行切换的过程中存在中断时间,在所述中断时间内,所述网络侧设备不进行数据传输。
  19. 根据权利要求1所述的方法,其中,在所述网络侧设备配置用于传输BSC信道或信号的资源之前,所述方法还包括:
    所述网络侧设备接收终端发送的第一能力信息,所述第一能力信息包括以下一项或者多项:
    所述终端是否支持同时进行所述BSC信道或信号的传输和第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号;
    所述终端的射频RF能力,所述RF能力用于指示所述终端支持收发链路的数量;
    所述终端的接收机能力,所述接收机能力包括是否支持多个接收机和支持的接收机数量中至少一项。
  20. 根据权利要求19所述的方法,其中,
    在所述终端不支持同时进行所述BSC信道或信号的传输和所述第一传输的情况下,所述BSC信道或信号的传输与所述第一传输满足TDM,或者,所述BSC信道或信号的传输与所述第一传输满足TDM和FDM。
  21. 一种资源分配方法,包括:
    终端获取用于传输BSC信道或信号的资源信息;
    所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输;
    所述BSC信道或信号包括以下一项或者多项:
    载波信道或信号;
    控制信道或信号;
    反馈信道或信号。
  22. 根据权利要求21所述的方法,其中,所述终端获取用于传输BSC信道或信号的资源信息,包括:
    所述终端获取用于传输所述BSC信道或信号的目标频带的信息。
  23. 根据权利要求21所述的方法,其中,所述终端获取用于传输BSC信道或信号的资源信息,包括:
    所述终端获取用于传输所述BSC信道或信号的中心频点的信息。
  24. 根据权利要求21所述的方法,其中,所述终端获取用于传输BSC信道或信号的资源信息,包括:
    所述终端获取用于传输所述BSC信道或信号的目标载波的信息或者目标服务小区的信息。
  25. 根据权利要求24所述的方法,其中,所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输,包括:
    所述终端根据目标控制信令,在所述目标载波或者目标服务小区上进行BSC信道或信号的传输;其中,所述目标控制信令为所述终端在非用于传输所述BSC信道或信号的载波或者服务小区上接收的信令,或所述目标控制信令为所述终端在所述目标载波或目标服务小区上接收的信令。
  26. 根据权利要求21所述的方法,其中,所述终端获取用于传输BSC信道或信号的资源信息,包括:
    所述终端获取用于传输所述BSC信道或信号的目标部分带宽BWP的信息,所述目标BWP包括目标上行BWP和/或目标下行BWP。
  27. 根据权利要求26所述的方法,其中,所述目标BWP的配置包括以下一项或者多项:
    所述目标BWP的ID;
    所述目标BWP的带宽;
    所述目标BWP的SCS;
    所述BSC信道或信号的相关配置。
  28. 根据权利要求26所述的方法,其中,所述目标BWP的配置不包括以下一项或者多项:
    PDCCH相关配置;
    PDSCH相关配置;
    PUSCH相关配置;
    PUCCH相关配置;
    参考信号相关配置。
  29. 根据权利要求21所述的方法,其中,所述终端获取用于传输BSC信道或信号的资源信息,包括:
    所述终端获取第一BWP的信息,其中,所述第一BWP用于传输所述BSC信道或信号,且所述第一BWP还用于第一传输;所述第一传输用于传输除所述BSC信道或信号之 外的信道或信号。
  30. 根据权利要求29所述的方法,其中,所述第一BWP为具有特定BWP索引的BWP。
  31. 根据权利要求29所述的方法,其中,所述终端获取第一BWP的信息,包括:
    所述终端获取在所述第一BWP上的目标频域资源的信息,所述目标频域资源用于传输所述BSC信道或信号。
  32. 根据权利要求21所述的方法,其中,所述终端进行所述BSC信道或信号的传输,包括以下至少一项:
    所述终端根据网络侧设备发送的DCI信令,进行BSC信道或信号的传输;
    所述终端根据网络侧设备配置的半持续传输,进行BSC信道或信号的传输。
  33. 根据权利要求21所述的方法,其中,所述BSC信道或信号的传输的相关配置参数,包括以下一项或者多项:
    功率信息;
    频域资源;
    带宽;
    时域资源;
    资源周期;
    在每个所述资源周期中,资源所占持续时间;
    波形;
    所述BSC信道或信号的发送时间线;
    所述BSC信道或信号的接收时间线;
    所述BSC信道或信号对应的HARQ-ACK资源信息。
  34. 根据权利要求21至33任一项所述的方法,其中,所述BSC信道或信号的传输与第一传输满足TDM和FDM中至少一项;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号。
  35. 根据权利要求34所述的方法,其中,
    在所述BSC信道或信号的传输与所述第一传输满足TDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的时间间隔大于或等于第一门限值;
    在所述BSC信道或信号的传输与所述第一传输满足FDM,或者满足TDM和FDM的情况下,所述BSC信道或信号的传输与所述第一传输之间的频域间隔满足大于或等于第二门限。
  36. 根据权利要求34或35所述的方法,其中,所述方法还包括:
    在所述BSC信道或信号的传输与所述第一传输进行切换的过程中存在中断时间,在所述中断时间内,所述终端不进行数据传输。
  37. 根据权利要求21所述的方法,其中,在所述终端获取用于传输BSC信道或信号 的资源信息之前,所述方法还包括:
    所述终端发送第一能力信息,所述第一能力信息包括以下一项或者多项:
    所述终端是否支持同时进行所述BSC信道或信号的传输和第一传输;所述第一传输用于传输除所述BSC信道或信号之外的信道或信号;
    所述终端的RF能力,所述RF能力用于指示所述终端支持收发链路的数量;
    所述终端的接收机能力,所述接收机能力包括是否支持多个接收机和支持的接收机数量中至少一项。
  38. 根据权利要求37所述的方法,其中,
    在所述终端不支持同时进行所述BSC信道或信号的传输和所述第一传输的情况下,所述BSC信道或信号的传输与所述第一传输满足TDM,或者,所述BSC信道或信号的传输与所述第一传输满足TDM和FDM。
  39. 一种资源分配装置,包括:
    配置模块,用于网络侧设备配置用于传输BSC信道或信号的资源;
    调度模块,用于所述网络侧设备调度所述BSC信道或信号的传输;
    所述BSC信道或信号包括以下一项或者多项:
    载波信道或信号;
    控制信道或信号;
    反馈信道或信号。
  40. 一种资源分配装置,包括:
    获取模块,用于终端获取用于传输BSC信道或信号的资源信息;
    传输模块,用于所述终端根据获取的所述BSC信道或信号的资源信息,进行所述BSC信道或信号的传输;
    所述BSC信道或信号包括以下一项或者多项:
    载波信道或信号;
    控制信道或信号;
    反馈信道或信号。
  41. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至20任一项所述的资源分配方法的步骤。
  42. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求21至38任一项所述的资源分配方法的步骤。
  43. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至20任一项所述的资源分配方法的步骤,或者实现如权利要求21至38任一项所述的资源分配方法的步骤。
PCT/CN2023/089271 2022-04-22 2023-04-19 资源分配方法、设备及可读存储介质 WO2023202632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210432221.0 2022-04-22
CN202210432221.0A CN116997020A (zh) 2022-04-22 2022-04-22 资源分配方法、设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023202632A1 true WO2023202632A1 (zh) 2023-10-26

Family

ID=88419270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089271 WO2023202632A1 (zh) 2022-04-22 2023-04-19 资源分配方法、设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN116997020A (zh)
WO (1) WO2023202632A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256372A1 (en) * 2011-10-13 2014-09-11 Marisense Oy Transferring of information in electronic price label systems
CN112399542A (zh) * 2019-08-16 2021-02-23 成都华为技术有限公司 一种反向散射通信方法及相关设备
WO2021097597A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 信号传输的方法和装置、反射器以及接收器
WO2021119987A1 (zh) * 2019-12-17 2021-06-24 华为技术有限公司 反射通信方法、激励器、反射器和接收器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256372A1 (en) * 2011-10-13 2014-09-11 Marisense Oy Transferring of information in electronic price label systems
CN112399542A (zh) * 2019-08-16 2021-02-23 成都华为技术有限公司 一种反向散射通信方法及相关设备
WO2021097597A1 (zh) * 2019-11-18 2021-05-27 华为技术有限公司 信号传输的方法和装置、反射器以及接收器
WO2021119987A1 (zh) * 2019-12-17 2021-06-24 华为技术有限公司 反射通信方法、激励器、反射器和接收器

Also Published As

Publication number Publication date
CN116997020A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
EP4408097A1 (en) Transmission processing method and apparatus, terminal, network side device, and storage medium
WO2023241539A1 (zh) 波束指示方法、装置及终端
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
CN116367312A (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
CN116017590A (zh) 目标信息上报方法、终端及接入网设备
CN115913476A (zh) 反馈方法、相关设备及可读存储介质
WO2024032542A1 (zh) 发射通道切换的处理方法、终端及网络侧设备
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2023103942A1 (zh) 通信方法、装置、终端、网络设备及介质
WO2024061111A1 (zh) 资源处理方法、装置及通信设备
WO2023207840A1 (zh) 信号接收方法、装置及终端
US20240357664A1 (en) Communication operation execution method and apparatus, terminal, and storage medium
WO2024099190A1 (zh) 能力指示方法、装置、终端、网络侧设备及可读存储介质
WO2024032496A1 (zh) 通信、资源配置方法、装置、阅读器、标签和网络侧设备
WO2023198108A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2023198044A1 (zh) 信息接收方法、信息发送方法、装置及设备
CN115550890B (zh) 传输方法、装置、设备及介质
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2024146482A1 (zh) 一种传输参数配置方法、装置及终端设备
WO2023151650A1 (zh) 信息激活方法、终端及网络侧设备
WO2023246583A1 (zh) 频域资源确定方法、终端及网络侧设备
WO2023093709A1 (zh) 激活或去激活Gap的方法、终端及网络侧设备
WO2024001952A1 (zh) 参数确定方法、终端及网络侧设备
WO2023241453A1 (zh) 天线能力变更方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791287

Country of ref document: EP

Kind code of ref document: A1