[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023127421A1 - 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法 - Google Patents

光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法 Download PDF

Info

Publication number
WO2023127421A1
WO2023127421A1 PCT/JP2022/044827 JP2022044827W WO2023127421A1 WO 2023127421 A1 WO2023127421 A1 WO 2023127421A1 JP 2022044827 W JP2022044827 W JP 2022044827W WO 2023127421 A1 WO2023127421 A1 WO 2023127421A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber assembly
optical fibers
gravity
longitudinal direction
Prior art date
Application number
PCT/JP2022/044827
Other languages
English (en)
French (fr)
Inventor
正敏 大野
拓哉 植草
耕司 滝口
尚人 淺村
大典 佐藤
彰 鯰江
健 大里
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2023127421A1 publication Critical patent/WO2023127421A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to an optical fiber assembly, an optical fiber cable, and a method for manufacturing an optical fiber assembly.
  • Patent Document 1 discloses a technique for suppressing an increase in microbend loss of an optical fiber.
  • micro bend loss can be concentrated in a specific optical fiber. If microbend loss occurs in such a concentrated manner in a specific optical fiber, the probability of occurrence of an optical fiber that does not meet the standards for transmission loss when the optical fiber cable is bent increases, and the quality of the optical fiber cable deteriorates. Degradation and yield deterioration can occur.
  • the present invention has been made in consideration of such circumstances, and an object thereof is to provide an optical fiber assembly and an optical fiber cable capable of suppressing concentration of microbend loss on a specific optical fiber.
  • an optical fiber assembly includes a plurality of optical fibers, and a position of G all (center of gravity all), which is the center of gravity of all the optical fibers, in a cross-sectional view. varies in the longitudinal direction.
  • the method for manufacturing an optical fiber assembly according to an aspect of the present invention changes the position of G all (center of gravity all), which is the center of gravity of all the optical fibers in a cross-sectional view, in the longitudinal direction.
  • an optical fiber assembly and an optical fiber cable capable of suppressing concentration of microbend loss on a specific optical fiber.
  • FIG. 1 is a cross-sectional view showing an optical fiber assembly and an optical fiber cable according to an embodiment of the invention
  • FIG. 1 is a perspective view showing an optical fiber unit according to an embodiment of the invention
  • FIG. 1 is a perspective view showing an intermittently fixed tape core wire according to an embodiment of the present invention
  • FIG. 5 is a graph showing changes in position in the longitudinal direction of the center of gravity in, the center of gravity out, and the center of gravity all according to Example 1.
  • FIG. FIG. 5 is a graph obtained by extracting plots in the SZ twist reversal portion from the data shown in FIG. 4 .
  • FIG. FIG. 5 is a graph obtained by extracting plots in one section from one reversal of SZ twist to the adjacent reversal from the data shown in FIG. 4 ;
  • FIG. 9 is a graph showing changes in position of the center of gravity all in the longitudinal direction according to Example 2.
  • an optical fiber cable 100 includes an optical fiber assembly 1 including a plurality of optical fibers 11.
  • the optical fiber cable 100 comprises an optical fiber assembly 1 including a plurality of optical fiber units U.
  • each optical fiber unit U has a plurality of intermittently fixed fiber ribbons 10 .
  • the plurality of intermittently fixed fiber ribbons 10 constitute the plurality of optical fiber units U.
  • each intermittent fixing tape core wire 10 includes a plurality of optical fibers 11 .
  • the plurality of optical fibers 11 constitute the plurality of intermittently fixed tape core wires 10 .
  • the outer diameter of each optical fiber 11 is, for example, 250 ⁇ m. However, the outer diameter of the optical fiber 11 may be 200 ⁇ m, or may be another value.
  • the optical fiber aggregate 1 is not limited to a structure having a plurality of optical fiber units U formed of a plurality of intermittently fixed tape core wires 10 .
  • the optical fiber assembly 1 may be formed by bundling a plurality of optical fibers 11 that are not intermittently fixed without forming the intermittently fixed tape cable core 10 .
  • the longitudinal direction of the optical fiber assembly 1 (optical fiber cable 100) is simply referred to as the longitudinal direction Z.
  • the longitudinal direction Z is also a direction parallel to the central axis O of the optical fiber assembly 1 (optical fiber cable 100).
  • One orientation along the longitudinal direction Z is referred to as the +Z orientation or forward.
  • the orientation opposite to the +Z orientation is referred to as the -Z orientation or back.
  • a section perpendicular to the longitudinal direction Z is called a transverse section. Viewing a cross section from the longitudinal direction Z is called a cross section view.
  • a direction perpendicular to the central axis O of the optical fiber assembly 1 (optical fiber cable 100) is referred to as a radial direction.
  • the direction approaching the central axis O is referred to as the radial inner side, and the direction away from the central axis O is referred to as the radial outer side.
  • the direction of rotation around the central axis O when viewed from the longitudinal direction Z is called the circumferential direction.
  • the optical fiber cable 100 according to this embodiment is a so-called slotless optical cable. That is, the optical fiber cable 100 according to this embodiment does not have a slot rod in which a groove (slot groove) for accommodating the optical fiber 11 (the intermittent fixing tape core wire 10) is formed.
  • the optical fiber cable 100 may be a slot type optical cable having a slot rod.
  • the optical fiber assembly 1 according to this embodiment may be accommodated in the slot groove of the optical fiber cable 100 .
  • the optical fiber cable 100 includes the optical fiber assembly 1 described above, a pressure wrap 120 covering the optical fiber assembly 1, and the optical fiber assembly 1 via the pressure wrap 120. and a jacket 110 that covers and houses the .
  • the optical fiber assembly 1 can be regarded as a portion of the optical fiber cable 100 excluding the jacket 110, the pressure wrap 120, and the like.
  • the optical fiber assembly 1 and the pressure winding 120 may be collectively referred to as a core.
  • the pressure wrap 120 is a tape-shaped member that bundles the plurality of optical fiber units U. As shown in FIG. The type of the pressing wrap 120 is not particularly limited as long as the optical fiber units U can be bundled.
  • the press wrap 120 may have water absorbency.
  • the pressure winding 120 may be wound vertically or horizontally with respect to the optical fiber assembly 1, for example.
  • the pressure wrap 120 when the pressure wrap 120 is a tape extending in the longitudinal direction Z, the pressure wrap 120 may be formed in a cylindrical shape that wraps the optical fiber unit U. In this case, both ends in the circumferential direction of the pressure winding 120 may overlap each other to form a wrap portion.
  • the pressing wrap 120 may be a tube forming body that wraps the optical fiber unit U instead of the tape.
  • the optical fiber 11 By wrapping the optical fiber unit U with the pressing wrap 120 in the longitudinal direction Z, the optical fiber 11 can be protected. Note that there may be a portion in the longitudinal direction Z where the optical fiber 11 is not wrapped by the pressure wrap 120 , and the optical fiber cable 100 may not have the pressure wrap 120 .
  • Polyolefins such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), ethylene propylene copolymer (EP), etc. PO) resin, polyvinyl chloride (PVC), and the like can be used.
  • the jacket 110 may be formed using a mixture (alloy, mixture) of the above resins.
  • additives may be added to the jacket 110 depending on the purpose. Examples of additives include flame retardants, colorants, antidegradants, inorganic fillers, and the like.
  • the jacket 110 may have a two-layer structure or other multi-layer structure.
  • a protective layer covering the outer cover 110 is provided outside the outer cover 110 (first outer cover) in the illustrated example, and a second outer cover covering the protective layer is provided outside the protective layer.
  • the protective layer may be made of, for example, metal or fiber reinforced plastic (FRP).
  • jacket 110 may have no protective layer and may simply be formed by multiple layers of jacket.
  • the external shape of the jacket 110 according to the present embodiment is substantially circular in cross-sectional view, except for projections 110a, which will be described later. However, the shape of the jacket 110 can be changed as appropriate. As shown in FIG. 1, a plurality of (four in the illustrated example) tensile strength members 130 and a pair of ripcords 140 are arranged on the jacket 110 according to the present embodiment.
  • the tensile strength member 130 is a member having a higher spring constant or tensile strength in the longitudinal direction Z than the jacket 110 .
  • a metal wire steel wire or the like
  • a material in which metal wires are bundled, a glass fiber, a material in which glass fibers are bundled, or the like can be used.
  • fiber reinforced plastic (FRP) or the like may be used as the tensile member 130 .
  • the tensile member 130 has a role of receiving the tension and protecting the optical fibers 11 when the tension along the longitudinal direction Z is applied to the optical fiber assembly 1 (optical fiber cable 100).
  • a plurality of strength members 130 are disposed on the jacket 110 .
  • a plurality of tensile members 130 are arranged so as to sandwich the optical fiber assembly 1 in the radial direction.
  • the plurality of tensile members 130 may be isotropically arranged on the jacket 110 so as to surround the optical fiber assembly 1 (core).
  • the tensile strength member 130 may not be embedded in the jacket.
  • strength member 130 may be included in the center or core of optical fiber assembly 1 .
  • the optical fiber cable 100 may not have the strength member 130.
  • a ripcord 140 is a member used to tear the jacket 110 .
  • synthetic fiber (polyester or the like) thread, polypropylene (PP) or nylon cylindrical rod, or the like can be used.
  • a ripcord 140 is disposed on the jacket 110 . Note that, in a cross-sectional view, the ripcord 140 may be arranged so that the entire circumference is embedded in the outer cover 110, or may be partially exposed from the outer peripheral surface or the inner peripheral surface of the outer cover 110. may be placed.
  • a pair of ripcords 140 according to this embodiment are arranged so as to sandwich the optical fiber assembly 1 in the radial direction.
  • each tensile strength member 130 and the position of each ripcord 140 are shifted from each other in the circumferential direction.
  • the number of ripcords 140 may be one, or three or more.
  • the ripcord 140 may not be embedded in the jacket 110 .
  • the ripcord 140 may be tandemly attached to the optical fiber assembly 1 .
  • fiber optic cable 100 may not have ripcord 140 .
  • a pair of protrusions 110a projecting radially outward from the outer peripheral surface of the outer cover 110 are provided on the outer cover 110 according to the present embodiment.
  • the position of the projection 110a in the circumferential direction and the position of the ripcord 140 correspond to each other.
  • the protrusion 110 a serves as a mark that makes it easier for the user to recognize the position of the ripcord 140 from the outside of the optical fiber cable 100 .
  • the outer cover 110 may not have the projections 110a.
  • the protrusions 110a may be replaced by linear coloring on the jacket 110.
  • the outer cover 110 does not have to have the projections 110a, and the outer cover 110 may not be colored.
  • the optical fiber assembly 1 has a plurality of (12 in the example shown in FIG. 1) optical fiber units U.
  • an optical fiber assembly 1 including a plurality of optical fiber units U has a two-layer structure. That is, the multiple optical fiber units U include multiple (nine in the illustrated example) outer layer units Uout and multiple (three in the illustrated example) inner layer units Uin. Each outer layer unit Uout is located on the outer circumference of the optical fiber assembly 1 .
  • the plurality of inner layer units Uin are surrounded from the radially outer side by the plurality of outer layer units Uout. That is, the plurality of inner layer units Uin are positioned at the center of the optical fiber assembly 1 in a cross-sectional view.
  • the number of inner layer units Uin and the number of outer layer units Uout can be changed as appropriate.
  • the optical fiber assembly 1 does not have to have a two-layer structure.
  • the optical fiber unit U includes the above-described multiple intermittently fixed tape core wires 10 and a bundle material 20 that bundles the multiple intermittently fixed tape core wires 10 .
  • the number of intermittently fixed tape core wires 10 included in one optical fiber unit U may be two or more, and may be six, for example.
  • the bundle material 20 is a member capable of bundling a plurality of intermittently fixed tape core wires 10 .
  • the bundle material 20 for example, a thread-like, string-like, tape-like member, or the like can be used.
  • the intermittently fixed fiber ribbon 10 according to the present embodiment is bundled by winding a bundle material 20 thereon.
  • the configuration in which the bundle material 20 bundles the intermittently fixed tape core wires 10 is not limited to the illustrated example.
  • the bundle material 20 may be spirally wound around the intermittent fixing ribbon 10 .
  • the optical fiber unit U may not have the bundle material 20 .
  • the intermittently fixed tape core wires 10 may be bundled by twisting a plurality of the intermittently fixed tape core wires 10 in the optical fiber unit U.
  • the optical fiber assembly 1 may not have the optical fiber unit U.
  • the plurality of intermittently fixed ribbon core wires 10 may not constitute the optical fiber unit U. That is, the optical fiber assembly 1 may have a structure in which the pressure wrap 120 and the jacket 110 directly cover the intermittently fixed tape cable core 10 .
  • the optical fiber unit is formed by a partial assembly of the optical fibers 11 bundled with the bundle material 20 .
  • U may be formed.
  • the optical fibers 11 may be SZ-twisted or unidirectionally twisted to form a sub-aggregate of the optical fibers 11, and the sub-aggregate of the optical fibers 11 may be used as the optical fiber unit U.
  • the optical fiber assembly 1 formed by the optical fibers 11 which are not intermittently fixed has a two-layer structure, the inner layer unit Uin and the outer layer unit Uout are intermittently fixed. It becomes a unit formed by a plurality of optical fibers 11 that are not connected.
  • the inner layer unit Uin is formed in a fan shape
  • the outer layer unit Uout is formed in a square shape.
  • the cross-sectional shape of the optical fiber unit U is not limited to the illustrated example, and may be circular, elliptical, or polygonal. Further, even when the optical fiber 11 is bundled with the bundle material 20 , the bundle material 20 is deformed, and the optical fiber 11 appropriately moves to an empty space inside the jacket 110 . Therefore, for example, as shown in FIG. 5, the cross-sectional shape of the optical fiber unit U may be deformed.
  • each intermittently fixed ribbon core 10 includes a plurality of (12 in the illustrated example) optical fibers 11 and a plurality of fixing portions 12 .
  • Each optical fiber 11 has a core and a cladding.
  • a coating layer such as resin is provided on the outer periphery of the clad.
  • the plurality of optical fibers 11 in the intermittently fixed tape cable core 10 are arranged in a row.
  • the intermittently fixed tape core wire 10 has a tape-like shape.
  • the direction in which the optical fibers 11 are arranged in the intermittently fixed fiber ribbon 10 may be referred to as the tape width direction W for ease of explanation.
  • Each fixing portion 12 fixes two optical fibers 11 adjacent in the tape width direction W to each other.
  • a gap may be provided between two adjacent optical fibers 11 .
  • a plurality of fixing portions 12 are intermittently arranged in the longitudinal direction Z in the gap.
  • two optical fibers 11 may be continuously fixed in the longitudinal direction Z to form an optical fiber set, and a plurality of optical fiber sets may be intermittently fixed by a plurality of fixing portions 12 .
  • the plurality of fixing portions 12 are two-dimensionally intermittently arranged in the longitudinal direction Z and the tape width direction W.
  • the arrangement of the fixing portion 12 is not limited to the example in FIG. 3, and can be changed as appropriate.
  • the arrangement pattern of the fixed portions 12 may not be a constant pattern in the longitudinal direction Z or the tape width direction W.
  • the arrangement pattern of the fixing portions 12 does not have to be a constant pattern between different intermittently fixed tape core wires 10 .
  • the material of the fixed part 12 for example, a UV curable resin may be adopted.
  • the material of the fixing portion 12 is not particularly limited as long as the adjacent optical fibers can be fixed, and can be changed as appropriate.
  • a plurality of optical fibers 11 are twisted together in an SZ shape.
  • a cycle includes a normal twisted portion in which the optical fibers 11 are twisted around the central axis O and a reverse twisted portion in which the optical fibers 11 are twisted around the central axis O in a direction opposite to the normal twisted portion. Repeated in the longitudinal direction.
  • the intermittently fixed ribbon core 10 and the optical fiber unit U formed by the plurality of optical fibers 11 are also twisted together in an SZ shape.
  • the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout may be equal or different.
  • Example 1 An optical fiber assembly 1 having three inner layer units Uin and nine outer layer units Uout was prepared. Each of the inner layer unit Uin and the outer layer unit Uout is obtained by binding six intermittently fixed tape core wires 10 with a bundle material. Each intermittent fixing tape core wire 10 has 12 optical fibers 11 respectively. That is, the optical fiber assembly 1 in Example 1 has a total of 864 optical fibers 11 . The outer diameter of each optical fiber 11 was set to 250 ⁇ m.
  • An optical fiber cable 100 was produced by wrapping this optical fiber assembly 1 with a pressure wrap 120 and covering it with a jacket 110 . The outer diameter of the jacket 110 was 18.2 mm, and the inner diameter of the jacket 110 was 11.5 mm. The thickness of the pressure winding 120 was set to 0.2 mm. The outer diameter of the optical fiber assembly 1 was approximately 11.1 mm.
  • the above optical fiber cable 100 was cut into 8 pitches in the SZ twist.
  • one pitch in the SZ twist is the dimension of the period of the SZ twist structure repeated in the longitudinal direction Z.
  • the optical fiber cable 100 for eight pitches was cut at predetermined intervals in the longitudinal direction to obtain a total of 28 cross sections.
  • the center of gravity (center of gravity in) of all the optical fibers 11 contained in the three inner layer units Uin, the center of gravity (center of gravity out) of all the optical fibers 11 contained in the nine outer layer units Uout, and the three The center of gravity (center of gravity all) of all the optical fibers 11 included in the inner layer unit Uin and the nine outer layer units Uout was obtained.
  • the center of gravity in can also be said to be the center of gravity of the structure including only all the optical fibers 11 included in the three inner layer units Uin.
  • the center of gravity in will also be referred to as “G in ”.
  • the center of gravity out can also be said to be the center of gravity of the structure including only all the optical fibers 11 included in the nine outer layer units Uout.
  • the center of gravity out will also be referred to as "G out ".
  • the center of gravity all can also be said to be the center of gravity of the structure including only all the optical fibers 11 included in the optical fiber assembly 1 .
  • the center of gravity all is also referred to as "G all ".
  • the positions such as the center of gravity in at each position in the longitudinal direction were identified by the following procedure. That is, after cutting the optical fiber assembly 1 at each position in the longitudinal direction, it is hardened with an epoxy resin, and the hardened optical fiber assembly 1 is polished so that the cross section becomes clear. Taken with On the image obtained by the microscope, the position of each optical fiber 11 was plotted on the xy plane to specify the center of gravity in and the like.
  • the optical fiber assembly 1 may be fixed with epoxy resin, and then the optical fiber cable 100 may be cut at each position in the longitudinal direction.
  • the sheath 110 may be filled with the epoxy resin, for example, by injecting the epoxy resin from one end in the longitudinal direction of the optical fiber cable 100 and sucking the epoxy resin from the other end.
  • FIGS. 4 to 6 are graphs plotting the center of gravity in, the center of gravity out, and the center of gravity all determined from the images of each cross section.
  • the plotted points are connected by lines in the order of the position where the optical fiber assembly 1 is cut.
  • the horizontal and vertical axes in FIGS. 4 to 6 are the orthogonal coordinate system (XY coordinate system) set on the cross section.
  • the XY coordinate system was common to each cross section. Therefore, each data of FIGS. 4 to 6 represents how the respective positions of the center of gravity in, the center of gravity out, and the center of gravity all change in the longitudinal direction.
  • FIG. 4 is a graph plotting all of the center of gravity in, the center of gravity out, and the center of gravity all determined from the images of each cross section.
  • FIG. 5 is a graph that extracts plots located at the SZ twist reversal portion from the data shown in FIG.
  • the reversal portion of the SZ twist is a position where the normal twist portion and the reverse twist portion of the SZ twist are switched.
  • FIG. 6 is a graph obtained by extracting plots in one section from one inversion portion to the adjacent inversion portion from the data shown in FIG.
  • the center of gravity all varies in the longitudinal direction.
  • both the center of gravity in and the center of gravity out are out of position with respect to the center of gravity all. This means that the cross-sectional shapes of both the inner layer unit Uin and the outer layer unit Uout are collapsed, and the state of collapse varies in the longitudinal direction.
  • the optical fiber 11 on which a strong stress may act due to bending of the optical fiber cable 100 is different at each position in the longitudinal direction. This disperses the risk of microbend loss occurring in each optical fiber 11 due to bending of the optical fiber cable 100 .
  • the amount of movement of the center of gravity in is greater than the amount of movement of the center of gravity out.
  • the cross-sectional shape of the inner layer unit Uin changes more in the longitudinal direction than the cross-sectional shape of the outer layer unit Uout.
  • a gap is likely to occur in the radially inner region (region near the central axis O) of the optical fiber assembly 1 . If a gap occurs in the radially inner region, the outer layer unit Uout tends to enter into the gap.
  • elongation strain and microbending loss are more likely to occur in the optical fiber 11 positioned farther from the neutral line of bending.
  • the outer layer unit Uout is more susceptible to microbend loss due to bending of the optical fiber cable 100 than the inner layer unit Uin.
  • a gap is created in the radially inner region of the optical fiber assembly 1, and the outer layer unit Uout is inserted into the gap, so that the outer layer unit Uout is positioned close to the neutral line. can be provided.
  • the amount of movement of the center of gravity in larger than the amount of movement of the center of gravity out, it is possible to suppress the concentration of the risk of elongation strain and microbend loss occurring only in a specific optical fiber 11 .
  • the amount of movement ⁇ in the longitudinal direction of each center of gravity can be calculated by the following formula (1) based on the formula for determining the distance between two points.
  • ⁇ ((X(n+1)-X(n)) ⁇ 2+(Y(n+1)-Y(n)) ⁇ 2) ...(1)
  • X(n) is the X coordinate at the nth cross-section
  • X(n+1) is the X coordinate at the n+1th cross-section.
  • Y(n) is the Y coordinate at the nth cross-section and Y(n+1) is the Y coordinate at the n+1th cross-section.
  • the average value of the amount of movement of the center of gravity in (expressed as ⁇ in) is 0.504 mm (4.54% of the outer diameter of the optical fiber assembly 1), and the amount of movement of the center of gravity out ( ⁇ out and ) is 0.416 mm (3.75% of the outer diameter of the optical fiber assembly 1). That is, the average value of ⁇ in is greater than the average value of ⁇ out. From the shapes of the graphs in FIGS.
  • the maximum loss increase of the outer layer unit Uout in the bending test was measured under the following conditions based on ICEA S-87-640-2016 (Item No. 7.21 Cable Low and High Temperature Bend Test).
  • the optical fiber cable 100 was wound four times around a mandrel (540 mm in diameter) approximately 30 times the outer diameter of the optical fiber cable 100 .
  • the measurement wavelength was 1550 nm.
  • the temperature was -30°C.
  • the length of the sample optical fiber cable 100 was set to 1000 mm.
  • the maximum outer diameter and the minimum outer diameter of the optical fiber cable 100 in the sample were measured at 10 points in total at intervals of 100 mm in the longitudinal direction.
  • the "non-circularity of the optical fiber cable" shown in Table 2 is the average value of the non-circularity at the above 10 locations. The non-circularity at each location was calculated by minimum outer diameter ⁇ maximum outer diameter ⁇ 100.
  • the average value of ⁇ in is preferably 0.010 mm or more (0.090% or more of the outer diameter of the optical fiber assembly 1).
  • the maximum loss increase of the outer layer unit Uout in the bending test can be 0.15 dB or less.
  • the average value of ⁇ in is preferably 2.250 mm or less (20.27% or less of the outer diameter of the optical fiber assembly 1). Thereby, the non-circularity of the optical fiber cable 100 can be made 80% or more.
  • the average value of ⁇ in should be within the range of 0.010 mm to 2.250 mm (0.090% to 20.27% of the outer diameter of the optical fiber assembly 1). If the average value of ⁇ in is too small, the effect of suppressing loss increase in the outer layer unit Uout due to bending of the optical fiber cable 100 is reduced. If the average value of ⁇ in is too large, the non-circularity of the optical fiber cable 100 is reduced, and other problems (undulation of the optical fiber cable 100, deterioration of ease of handling, etc.) occur.
  • Example 2 In Example 1, the inner layer unit Uin and the outer layer unit Uout are configured by binding a plurality of intermittently fixed ribbon cords 10 with a bundle material.
  • Example 2 24 intermittently fixed tape core wires 10 each having 12 optical fibers 11 were SZ-twisted without being bound with a bundle material to create an optical fiber assembly 1 .
  • An optical fiber cable 100 was produced by wrapping this optical fiber assembly 1 with a pressure wrap 120 and covering it with a jacket 110 . That is, the optical fiber cable 100 of the second embodiment has 288 optical fibers 11 in total. Also, in the second embodiment, the optical fiber 11 is not divided into an inner layer and an outer layer.
  • the outer diameter of the jacket 110 was 11.8 mm
  • the inner diameter of the jacket 110 was 7.0 mm.
  • the thickness of the pressure winding 120 was set to 0.2 mm.
  • the outer diameter of the optical fiber assembly 1 was approximately 6.6 mm.
  • FIG. 7 shows the result of obtaining the center of gravity all of the optical fiber cable 100 produced as described above by the same method as in Example 1.
  • the plotting method of the center of gravity all in the graph shown in FIG. 7 is the same as in FIGS.
  • the position of the center of gravity all varies in the longitudinal direction. In this way, even if the intermittent fixing tape core wire 10 is not bound with a bundle material, and even if the optical fiber 11 is not divided into inner and outer layers, the position of the center of gravity all can be changed.
  • the center of gravity all (G all ), which is the position of the center of gravity of all the optical fibers 11 in the cross-sectional view, changes in the longitudinal direction, so that the bending of the optical fiber cable 100 causes the specific optical fiber It is possible to suppress the occurrence of microbend loss concentrating on 11 . In other words, the risk of increased transmission loss is distributed to a plurality of optical fibers, and when viewed as a whole optical fiber cable 100, the emergence of optical fibers 11 that do not satisfy the standards for transmission loss can be suppressed. Therefore, it is possible to improve the bending performance and yield of the optical fiber cable 100 .
  • At least a portion of the plurality of optical fibers 11 may be SZ-twisted. According to this configuration, concentration of strain on a specific optical fiber 11 can be more reliably suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be more reliably suppressed.
  • the plurality of optical fibers 11 form a plurality of intermittently fixed tape core wires 10
  • the plurality of intermittently fixed tape core wires 10 are respectively two or more optical fibers 11 out of the plurality of optical fibers 11 and the two A plurality of fixing portions 12 for intermittently fixing the optical fibers 11 of one or more in the longitudinal direction may be included. Even when the optical fiber 11 constitutes the intermittently fixed tape core wire 10 , the above-described configuration can more reliably suppress the concentration of strain on a specific optical fiber 11 .
  • the plurality of optical fibers 11 form an inner layer unit Uin and an outer layer unit Uout located radially outside the inner layer unit Uin.
  • G in which is the position of the center of gravity of the outer layer unit Uout, may move in the longitudinal direction Z more than G out , which is the position of the center of gravity of all the optical fibers 11 included in the outer layer unit Uout.
  • the average value of ⁇ in which is the amount of movement of G in in the longitudinal direction Z, may be within the range of 0.090% to 20.27% with respect to the outer diameter of the optical fiber assembly 1 .
  • the optical fiber cable 100 includes the above-described optical fiber assembly 1 and a jacket 110 that accommodates the optical fiber assembly 1 . According to this configuration, it is possible to suppress an increase in the maximum transmission loss of the optical fiber cable 100 .
  • this embodiment proposes a method for manufacturing the optical fiber assembly 1 or the optical fiber cable 100 in which the position of the center of gravity all, which is the center of gravity of all the optical fibers 11 in the cross-sectional view, is changed in the longitudinal direction. do.
  • the following technique is used in the manufacturing process of the optical fiber assembly 1, for example.
  • the first method is to change the tension applied to the intermittently fixed tape core wires 10 with time in the process of twisting the intermittently fixed tape core wires 10 in an SZ shape.
  • a second technique is to change the rotational speed of battens used when intermittently fixing ribbon cords 10 are twisted in an SZ shape with time.
  • a third method is a method of varying the distance between each through-hole and the center of the batten plate for a plurality of through-holes formed in the batten plate and through which the intermittent fixing tape core wires 10 are inserted.
  • a fourth technique is to vary the shape and size of each of the plurality of through holes.
  • a fifth technique is to adjust the length of the pause time (the rotation of the battens) when reversing the twisting direction.
  • a sixth method is a method of arranging optical fiber units having different numbers of cores adjacent to each other. According to these techniques, it is possible to change the collapsed state of each intermittently fixed ribbon cable 10 in the cross section in the longitudinal direction. Therefore, the position of the center of gravity all can also be changed in the longitudinal direction.
  • the above-described first to sixth methods are examples, and other methods may be used as long as the optical fiber assembly 1 satisfying the above relationship can be manufactured. Also, some of the methods described above may be used in combination.
  • the optical fiber assembly 1 is divided into an inner layer and an outer layer, but it is also conceivable that the optical fiber assembly 1 is divided into three or more layers such as an outer layer, an intermediate layer, and an inner layer.
  • the description of the first embodiment can be extended to the relative relationships between the outer layer and the middle layer, and between the middle layer and the inner layer.
  • Optical fiber assembly 10 Intermittent fixing tape core wire 11
  • Optical fiber 12 Fixed part Uin... Inner layer unit Uout... Outer layer unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

光ファイバ集合体は、複数の光ファイバを備え、横断面視における、全ての前記光ファイバの重心であるGallの位置が、長手方向において変化している。

Description

光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
 本発明は、光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法に関する。
 本願は、2021年12月27日に、日本に出願された特願2021-212168号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、光ファイバのマイクロベンドロスの増加を抑制する技術が開示されている。
日本国特開2019-56837号公報
 本願発明者らが鋭意検討したところ、各光ファイバテープ心線の断面形状が長手方向において一定であると、特定の光ファイバにマイクロベンドロスが集中して生じ得ることが判った。このように特定の光ファイバに集中してマイクロベンドロスが生じると、光ファイバケーブルが曲げられたときに、伝送損失に関する規格を満足しない光ファイバが発生する確率が高まり、光ファイバケーブルの品質の低下および歩留まりの悪化が生じ得る。
 本発明はこのような事情を考慮してなされ、マイクロベンドロスが特定の光ファイバに集中することを抑制可能な光ファイバ集合体および光ファイバケーブルを提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係る光ファイバ集合体は、複数の光ファイバを備え、横断面視における、全ての前記光ファイバの重心であるGall(重心all)の位置が、長手方向において変化している。
 また、本発明の一態様に係る光ファイバ集合体の製造方法は、横断面視における、全ての光ファイバの重心であるGall(重心all)の位置を、長手方向において変化させる。
 本発明の上記態様によれば、マイクロベンドロスが特定の光ファイバに集中することを抑制可能な光ファイバ集合体および光ファイバケーブルを提供できる。
本発明の実施形態に係る光ファイバ集合体および光ファイバケーブルを示す断面図である。 本発明の実施形態に係る光ファイバユニットを示す斜視図である。 本発明の実施形態に係る間欠固定テープ心線を示す斜視図である。 実施例1に係る重心in、重心out、および重心allの、長手方向における位置の変化を示すグラフである。 図4に示すデータから、SZ撚りの反転部におけるプロットを抜粋したグラフである。 図4に示すデータから、SZ撚りの1つの反転部からこれに隣接する反転部までの1区間におけるプロットを抜粋したグラフである。 実施例2に係る重心allの長手方向における位置の変化を示すグラフである。
 以下、本発明の実施形態に係る光ファイバ集合体1および光ファイバケーブル100について図面に基づいて説明する。
 図1に示すように、本実施形態に係る光ファイバケーブル100は、複数の光ファイバ11を含む光ファイバ集合体1を備える。図1に示す例では、光ファイバケーブル100は、複数の光ファイバユニットUを含む光ファイバ集合体1を備える。図2に示すように、各光ファイバユニットUは、複数の間欠固定テープ心線10を有する。言い換えれば、複数の間欠固定テープ心線10は、複数の光ファイバユニットUを構成している。また、各間欠固定テープ心線10は、複数の光ファイバ11を含む。言い換えれば、複数の光ファイバ11は、複数の間欠固定テープ心線10を構成している。各光ファイバ11の外径は、例えば250μmである。ただし、光ファイバ11の外径は200μmであってもよいし、その他の値であってもよい。
 なお、光ファイバ集合体1は、複数の間欠固定テープ心線10により形成された複数の光ファイバユニットUを有する構造に限られない。例えば、間欠固定テープ心線10を形成せず、それぞれが間欠的に固定されていない光ファイバ11を複数本束ねることにより光ファイバ集合体1が形成されていてもよい。
(方向定義)
 ここで、本実施形態では、光ファイバ集合体1(光ファイバケーブル100)の長手方向を単に長手方向Zと称する。長手方向Zは、光ファイバ集合体1(光ファイバケーブル100)の中心軸線Oと平行な方向でもある。長手方向Zに沿う一つの向きを、+Zの向きまたは前方と称する。+Zの向きとは反対の向きを、-Zの向きまたは後方と称する。長手方向Zに垂直な断面を、横断面と称する。横断面を長手方向Zから見ることを横断面視と称する。光ファイバ集合体1(光ファイバケーブル100)の中心軸線Oに直交する方向を、径方向と称する。径方向に沿って、中心軸線Oに接近する向きを、径方向内側と称し、中心軸線Oから離反する向きを、径方向外側と称する。長手方向Zから見て、中心軸線Oまわりに周回する方向を、周方向と称する。
 図1に示すように、本実施形態に係る光ファイバケーブル100は、いわゆるスロットレス型の光ケーブルである。すなわち、本実施形態に係る光ファイバケーブル100は、光ファイバ11(間欠固定テープ心線10)を収容する溝(スロット溝)が形成されるスロットロッドを有さない。ただし、光ファイバケーブル100はスロットロッドを有するスロット型の光ケーブルであってもよい。この場合、本実施形態に係る光ファイバ集合体1は、光ファイバケーブル100のスロット溝に収容されていてもよい。
 図1に示すように、本実施形態に係る光ファイバケーブル100は、上述した光ファイバ集合体1と、光ファイバ集合体1を覆う押さえ巻き120と、押さえ巻き120を介して光ファイバ集合体1を被覆して収容する外被110と、を備える。つまり、光ファイバ集合体1は、光ファイバケーブル100のうち外被110や押さえ巻き120等を除いた部分とみなすことができる。また、光ファイバ集合体1および押さえ巻き120を総称して、コアと称する場合がある。
 押さえ巻き120は、テープ状の部材であり、複数の光ファイバユニットUを束ねている。光ファイバユニットUを束ねることができれば押さえ巻き120の種類は特に限定されないが、押さえ巻き120としては、例えば不織布やポリエステルテープ等が採用されてもよい。押さえ巻き120は、吸水性を有していてもよい。押さえ巻き120は、光ファイバ集合体1に対して例えば縦添え巻きや横巻きされていてもよい。
 例えば、押さえ巻き120が長手方向Zに延びるテープである場合、押さえ巻き120は光ファイバユニットUを包む円筒状に形成されていてもよい。この場合、押さえ巻き120の周方向における両端部は、互いに重ねられており、ラップ部を形成していてもよい。また、押さえ巻き120はテープ状ではなく、光ファイバユニットUを包むチューブ形成体であってもよい。長手方向Zにおいて、光ファイバユニットUが押さえ巻き120により包まれていることで、光ファイバ11を保護することができる。
 なお、長手方向Zにおいて押さえ巻き120により光ファイバ11が包まれていない箇所があってもよし、光ファイバケーブル100は押さえ巻き120を有していなくてもよい。
 外被110の材質としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンエチルアクリレート共重合体(EEA)、エチレン酢酸ビニル共重合体(EVA)、エチレンプロピレン共重合体(EP)等のポリオレフィン(PO)樹脂、ポリ塩化ビニル(PVC)等を用いることができる。また、上記の樹脂の混和物(アロイ、ミクスチャー)を用いて外被110が形成されていてもよい。また、目的に応じて、外被110に対して種々の添加剤が添加されていてもよい。添加剤の例としては、難燃剤、着色剤、劣化防止剤、無機フィラー等が挙げられる。また、外被110は、2層構造、またはその他の複層構造を有していてもよい。例えば、図示の例における外被110(第1の外被)の外側に外被110を覆う保護層が設けられ、当該保護層の外側に当該保護層を覆う第2の外被が設けられていてもよい。保護層は、例えば、金属製であってもよいし、繊維強化プラスチック(FRP)製であってもよい。あるいは、外被110は、保護層を有さず、単に複数層の外被によって形成されていてもよい。
 本実施形態に係る外被110の外形は、後述する突起110aを除いて、横断面視において略円形状である。ただし、外被110の形状は適宜変更可能である。図1に示すように、本実施形態に係る外被110には、複数(図示の例において4つ)の抗張力体130および一対のリップコード140が配置されている。
 抗張力体130は、外被110よりも長手方向Zにおけるばね定数または引張強度が高い部材である。抗張力体130の材質としては、例えば、金属線(鋼線等)、金属線を束ねた材料、ガラス繊維、またはガラス繊維を束ねた材料等を用いることができる。あるいは、抗張力体130として繊維強化プラスチック(FRP)等を用いてもよい。抗張力体130は、光ファイバ集合体1(光ファイバケーブル100)に対して長手方向Zに沿った張力が印加された場合に、当該張力を受けて光ファイバ11を保護する役割を有する。
 複数の抗張力体130は、外被110に配置されている。本実施形態に係る複数の抗張力体130は、径方向において光ファイバ集合体1を間に挟むように配されている。ただし、複数の抗張力体130は、光ファイバ集合体1(コア)を囲むよう、等方的に外被110に配置されていてもよい。なお、抗張力体130は外被に埋設されていなくてもよい。例えば、抗張力体130は光ファイバ集合体1の中心やコアに含まれていてもよい。あるいは、光ファイバケーブル100の用途によっては、光ファイバケーブル100は抗張力体130を有していなくてもよい。
 リップコード140は、外被110を引裂くために用いられる部材である。リップコード140の材質としては、例えば合成繊維(ポリエステル等)の糸やポリプロピレン(PP)やナイロン製の円柱状のロッド等を用いることができる。
 リップコード140は、外被110に配置されている。なお、横断面視において、リップコード140は外被110内に全周が埋設されるように配置されていてもよいし、外被110の外周面または内周面から一部が露出するように配置されていてもよい。本実施形態に係る一対のリップコード140は、径方向において光ファイバ集合体1を間に挟むように配されている。また、周方向において、各抗張力体130の位置と各リップコード140の位置とは、互いにずれている。なお、リップコード140の数は1本であってもよいし、3本以上であってもよい。また、リップコード140は外被110に埋設されていなくてもよい。例えば、リップコード140は光ファイバ集合体1に縦添えされていてもよい。あるいは、光ファイバケーブル100はリップコード140を有していなくてもよい。
 本実施形態に係る外被110には、外被110の外周面から径方向外側に向けて突出する一対の突起110aが設けられている。周方向における突起110aの位置と、リップコード140の位置とは、互いに対応している。突起110aは、使用者が光ファイバケーブル100の外部からリップコード140の位置を認識しやすくする目印の役割を有する。なお、外被110は突起110aを有していなくてもよい。この場合、突起110aを、外被110に対する線状の着色で代用してもよい。ただし、外被110が突起110aを有さず、かつ、外被110に着色が施されていなくてもよい。
 上述したように、光ファイバ集合体1は、複数(図1に示す例において12個)の光ファイバユニットUを有する。図1に示すように、本実施形態に係る複数の光ファイバユニットUを含む光ファイバ集合体1は、2層構造を有している。つまり、複数の光ファイバユニットUは、複数(図示の例において9つ)の外層ユニットUoutおよび複数(図示の例において3つ)の内層ユニットUinを含む。各外層ユニットUoutは、光ファイバ集合体1の外周に位置する。複数の内層ユニットUinは、複数の外層ユニットUoutによって径方向外側から取り囲まれている。つまり、複数の内層ユニットUinは、横断面視において光ファイバ集合体1の中心部に位置する。ただし、内層ユニットUinの数および外層ユニットUoutの数は適宜変更可能である。また、光ファイバ集合体1は2層構造を有していなくてもよい。
 図2に示すように、本実施形態に係る光ファイバユニットUは、上述した複数の間欠固定テープ心線10と、複数の間欠固定テープ心線10を束ねるバンドル材20と、を備える。1つの光ファイバユニットUに含まれる間欠固定テープ心線10の数は、2つ以上であればよく、例えば6つ等であってもよい。
 バンドル材20は、複数の間欠固定テープ心線10を結束可能な部材である。バンドル材20としては、例えば、糸状、紐状、またはテープ状の部材等を採用できる。本実施形態に係る間欠固定テープ心線10は、バンドル材20が巻き付けられることによって束ねられている。ただし、バンドル材20が間欠固定テープ心線10を束ねる構成は図示の例に限られない。例えば、バンドル材20は間欠固定テープ心線10に対して螺旋状に巻き付けられていてもよい。あるいは、光ファイバユニットUはバンドル材20を有していなくてもよい。この場合、例えば、光ファイバユニットUにおいて複数の間欠固定テープ心線10が撚り合わされることで間欠固定テープ心線10が束ねられていてもよい。
 なお、光ファイバ集合体1は、光ファイバユニットUを有していなくてもよい。言い換えれば、複数の間欠固定テープ心線10は、光ファイバユニットUを構成していなくてもよい。つまり、光ファイバ集合体1は、押さえ巻き120や外被110が直接的に間欠固定テープ心線10を覆う構造を有していてもよい。
 また、光ファイバ集合体1が、それぞれ間欠的に固定されていない光ファイバ11により形成されている場合には、光ファイバ11をバンドル材20で束ねた光ファイバ11の部分集合体により光ファイバユニットUが形成されていてもよい。光ファイバ11をSZ撚りまたは一方向に撚り合わせることで光ファイバ11の部分集合体を形成し、当該光ファイバ11の部分集合体を光ファイバユニットUとしてもよい。
 また、それぞれが間欠的に固定されていない光ファイバ11により形成された光ファイバ集合体1が2層構造を有している場合には、内層ユニットUinおよび外層ユニットUoutはそれぞれ間欠的に固定されていない複数の光ファイバ11により形成されたユニットとなる。
 また、図1に示す例では、内層ユニットUinは扇形に形成され、外層ユニットUoutは四角形に形成されている。図示の例に限られず、光ファイバユニットUの断面形状が円形、楕円形、若しくは多角形となっていてもよい。また、光ファイバ11は、バンドル材20で束ねられた状態であっても、バンドル材20を変形させながら外被110の内部において空いている空間に適宜移動する。このため、例えば図5に示すように、光ファイバユニットUの断面形状が崩れていてもよい。
 図3に示すように、各間欠固定テープ心線10は、複数(図示の例において12個)の光ファイバ11および複数の固定部12を含む。各光ファイバ11は、コアおよびクラッドを有する。クラッドの外周には、例えば樹脂等の被覆層が設けられている。光ファイバ集合体1を構成する前の状態では、間欠固定テープ心線10における複数の光ファイバ11は一列に並んでいる。これにより、間欠固定テープ心線10はテープ状の形状を有する。以下、説明を容易とするために、間欠固定テープ心線10において光ファイバ11が並ぶ方向をテープ幅方向Wと称する場合がある。
 各固定部12は、テープ幅方向Wにおいて隣接する2つの光ファイバ11を互いに固定する。隣接する2つの光ファイバ11同士の間には、隙間が設けられていてもよい。この場合、その隙間には複数の固定部12が長手方向Zに間欠的に配置される。あるいは、隣接する2つの光ファイバ11同士の間に隙間が無くてもよい。また、2本の光ファイバ11が長手方向Zにおいて連続的に固定されて光ファイバ組を構成しており、複数の光ファイバ組が複数の固定部12によって間欠的に固定されていてもよい。
 図3に示すように、複数の固定部12は、長手方向Zおよびテープ幅方向Wに2次元的に間欠的に配置されている。なお、固定部12の配置は、図3の例に限定されず、適宜変更可能である。また、固定部12の配置パターンは、長手方向Zもしくはテープ幅方向Wにおいて、一定のパターンでなくてもよい。固定部12の配置パターンは、異なる間欠固定テープ心線10間において、一定のパターンでなくてもよい。固定部12の材質としては、例えばUV硬化型樹脂を採用してもよい。ただし、隣接する光ファイバを固定可能であれば、固定部12の材質は特に限定されず、適宜変更可能である。
 光ファイバ集合体1において、複数の光ファイバ11は、SZ状に撚り合わされている。SZ撚りでは、光ファイバ11が中心軸線O周りに撚り合わされた順撚り部と、光ファイバ11が順撚り部とは逆向きに中心軸線O周りに撚り合わされた逆撚り部と、を含む周期が前記長手方向において繰り返される。ここで、複数の光ファイバ11がSZ状に撚り合わせられている場合には、複数の光ファイバ11により形成されている間欠固定テープ心線10および光ファイバユニットUもSZ状に撚り合わせられていることになる。内層ユニットUinの捻れ角(巻回角)と外層ユニットUoutの捻れ角(巻回角)とは等しくてもよいし、異なっていてもよい。
 以下、具体的な実施例を用いて、上記実施形態を説明する。なお、本発明は以下の実施例に限定されない。
(実施例1)
 3つの内層ユニットUinと、9つの外層ユニットUoutと、を有する光ファイバ集合体1を用意した。内層ユニットUinおよび外層ユニットUoutはそれぞれ、6つの間欠固定テープ心線10をバンドル材で結束したものである。各間欠固定テープ心線10は、12本の光ファイバ11をそれぞれ有する。すなわち、実施例1における光ファイバ集合体1は合計864本の光ファイバ11を有する。各光ファイバ11の外径は250μmとした。この光ファイバ集合体1を押さえ巻き120で包み、さらに外被110を被覆して、光ファイバケーブル100を作成した。外被110の外径は18.2mm、外被110の内径は11.5mmとした。押さえ巻き120の厚みは0.2mmとした。光ファイバ集合体1の外径は約11.1mmとなった。
 上記の光ファイバケーブル100を、SZ撚りにおける8ピッチ分切り出した。ここで、SZ撚りにおける1ピッチとは、長手方向Zにおいて繰り返されるSZ撚り構造の周期の寸法である。その8ピッチ分の光ファイバケーブル100を、長手方向において所定の間隔で切断し、計28の横断面を得た。これらの横断面において、3つの内層ユニットUinに含まれる全ての光ファイバ11の重心(重心in)と、9つの外層ユニットUoutに含まれる全ての光ファイバ11の重心(重心out)と、3つの内層ユニットUinおよび9つの外層ユニットUoutに含まれる全ての光ファイバ11の重心(重心all)と、を求めた。重心inは、3つの内層ユニットUinに含まれる全ての光ファイバ11のみを含む構造の重心であるとも言える。以降、重心inを「Gin」とも称する。重心outは、9つの外層ユニットUoutに含まれる全ての光ファイバ11のみを含む構造の重心であるとも言える。以降、重心outを「Gout」とも称する。重心allは、光ファイバ集合体1に含まれる全ての光ファイバ11のみを含む構造の重心であるとも言える。以降、重心allを「Gall」とも称する。
 なお、長手方向の各位置における重心in等の位置の特定は、以下の手順で行った。すなわち、光ファイバ集合体1を長手方向における各位置で切断したのちエポキシ樹脂で固め、当該固めた光ファイバ集合体1を横断面が明瞭になるように研磨したのち、横断面の画像をマイクロスコープで撮影した。マイクロスコープによって得られた画像上で、各光ファイバ11の位置をxy平面上にプロットし、重心in等を特定した。なお、エポキシ樹脂で光ファイバ集合体1を固定してから、光ファイバケーブル100を長手方向における各位置で切断してもよい。この場合、例えば光ファイバケーブル100の長手方向における一方の端部からエポキシ樹脂を注入し、他方の端部からエポキシ樹脂を吸引することで、外被110内にエポキシ樹脂を充填してもよい。
 図4~6は、各横断面の画像から求めた重心in、重心out、および重心allをプロットしたグラフである。長手方向Zにおいて、光ファイバ集合体1を切断した位置の並び順で、プロットした点を線で結んでいる。図4~6における横軸、縦軸は、上記横断面において設定した直交座標系(XY座標系)である。XY座標系は、各横断面において共通とした。このため、図4~6の各データは、重心in、重心out、および重心allの各位置が長手方向においてどのように変化しているかを表している。上記のように、各重心の長手方向における変化を把握できればよいため、X軸およびY軸の位置の設定は任意である。
 図4は、各横断面の画像から求めた重心in、重心out、および重心allのすべてをプロットしたグラフである。
 図5は、図4に示すデータから、SZ撚りの反転部に位置するプロットを抜粋したグラフである。SZ撚りの反転部とは、SZ撚りの順撚り部および逆撚り部が切り替わる位置である。図6は、図4に示すデータから、1つの反転部からこれに隣接する反転部までの1区間におけるプロットを抜粋したグラフである。図4~図6に示すように、重心allは長手方向において変化している。また、重心allに対し、重心inおよび重心outはいずれも位置がずれている。これは、内層ユニットUinおよび外層ユニットUoutの両方で断面形状が崩れており、かつ、崩れの状態が長手方向で変化していることを意味している。
 このように、長手方向において、間欠固定テープ心線10の形状の崩れ状態を変化させることで、ある特定の光ファイバ11のみに光ファイバケーブル100の曲げによって強い応力が作用することを抑制できる。言い換えると、光ファイバケーブル100の曲げによって強い応力が作用し得る光ファイバ11が、長手方向における各位置で異なることになる。これにより、光ファイバケーブル100の曲げによって各光ファイバ11に生じるマイクロベンドロスの発生リスクが分散される。
 図4~図6では、重心inの移動量が、重心outの移動量よりも大きい。言い換えると、内層ユニットUinの断面形状の方が、外層ユニットUoutの断面形状よりも、長手方向において大きく変化している。このように、内層ユニットUinの断面形状を長手方向において大きく変化させると、光ファイバ集合体1における径方向内側の領域(中心軸線Oに近い領域)に空隙が生じやすくなる。径方向内側の領域に空隙が生じると、その空隙に向けて外層ユニットUoutが入り込みやすくなる。
 ここで、一般に、光ファイバケーブル100が曲げられたとき、曲げの中立線から遠い位置にある光ファイバ11ほど、伸び歪およびマイクロベンドロスが生じやすくなる。したがって、外層ユニットUoutは、内層ユニットUinよりも光ファイバケーブル100の曲げによるマイクロベンドロスが生じやすい。
 上記の通り、本実施例では、光ファイバ集合体1の径方向内側の領域に空隙を生じさせて、外層ユニットUoutをその空隙に入り込ませることで、外層ユニットUoutが中立線に近くなる部位を設けることができる。このように、重心inの移動量が、重心outの移動量よりも大きいことにより、特定の光ファイバ11のみに伸び歪およびマイクロベンドロスが生じるリスクが集中することを抑制できる。
 なお、各重心の長手方向における移動量Δは、2点間の距離を求める公式に基づき、以下の数式(1)によって計算することができる。
Δ=√((X(n+1)-X(n))^2+(Y(n+1)-Y(n))^2) …(1)
 数式(1)において、nは自然数であり、横断面の位置を示している。たとえば、本実施例では計28の横断面を得ているため、それぞれの横断面に対して、n=1~27が割り当てられる(n=27のとき、n+1が28番目の横断面に対応する)。X(n)は、n番目の横断面におけるX座標であり、X(n+1)は、n+1番目の横断面におけるX座標である。同様に、Y(n)は、n番目の横断面におけるY座標であり、Y(n+1)は、n+1番目の横断面におけるY座標である。図4のデータにおいて、重心inの移動量(Δinと表す)の平均値は0.504mm(光ファイバ集合体1の外径に対して4.54%)であり、重心outの移動量(Δoutと表す)の平均値は0.416mm(光ファイバ集合体1の外径に対して3.75%)である。つまり、Δinの平均値がΔoutの平均値より大きい。図4~図6では、グラフの形状からΔoutよりもΔinが大きいことが見て取れるが、上記のように両者の平均値を求めて定量的に比較してもよい。
 本実施例ではSZ撚りにおける8ピッチの長さから計28の横断面を切り出し、n番目の横断面とn+1番目の横断面とから移動量Δを求めている。このため、SZ撚りの1ピッチの長手方向Zにおける寸法をPとした場合、移動量Δは長手方向Zにおいて8/(28-1)×Pだけ離れた2点間における重心の移動量Δと考えてもよい。
 表1、表2に、Δinの平均値の好ましい範囲について検討した結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1において、曲げ試験における外層ユニットUoutの最大損失増加量は、ICEA S-87-640 -2016(項番7.21 Cable Low and High Temperature Bend Test)に基づき、以下の条件で測定した。光ファイバケーブル100の外径の約30倍であるマンドレル(直径540mm)に、光ファイバケーブル100を4周巻き付けた。測定波長は1550nmとした。温度は-30℃とした。
 表2において、光ファイバケーブル100のサンプルの長さは1000mmとした。当該サンプルにおける光ファイバケーブル100の最大外径および最小外径を、長手方向において100mmの間隔で、計10箇所測定した。表2に示す「光ファイバケーブルの非円率」は、上記の10箇所における非円率の平均値である。各箇所の非円率は、最小外径÷最大外径×100によって算出した。
 表1の結果から、Δinの平均値は、0.010mm以上(光ファイバ集合体1の外径に対して0.090%以上)であることが好ましい。これにより、曲げ試験における外層ユニットUoutの最大損失増加量を0.15dB以下とすることができる。
 表2の結果から、Δinの平均値は、2.250mm以下(光ファイバ集合体1の外径に対して20.27%以下)であることが好ましい。これにより、光ファイバケーブル100の非円率を80%以上とすることができる。
 総合すると、Δinの平均値は、0.010mm~2.250mm(光ファイバ集合体1の外径に対して0.090%~20.27%)の範囲内とするとよい。Δinの平均値が小さすぎると、光ファイバケーブル100の曲げに伴う外層ユニットUoutの損失増加を抑制する効果が低下する。Δinの平均値が大きすぎると、光ファイバケーブル100の非円率が低下し、他の課題(光ファイバケーブル100のうねり、取り扱いやすさの低下等)が生じる。
(実施例2)
 実施例1では、複数の間欠固定テープ心線10をバンドル材で結束して内層ユニットUin、外層ユニットUoutを構成した。これに対して本実施例2では、12本の光ファイバ11をそれぞれ有する24の間欠固定テープ心線10を、バンドル材で結束せずにSZ撚りし、光ファイバ集合体1を作成した。この光ファイバ集合体1を押さえ巻き120で包み、さらに外被110を被覆して、光ファイバケーブル100を作成した。すなわち、本実施例2の光ファイバケーブル100は合計で288本の光ファイバ11を有する。また、本実施例2では、光ファイバ11が内層、外層に分かれていない。外被110の外径は11.8mm、外被110の内径は7.0mmとした。押さえ巻き120の厚みは0.2mmとした。光ファイバ集合体1の外径は約6.6mmとなった。
 上記のように作成した光ファイバケーブル100について、実施例1と同様の方法により重心allを求めた結果を、図7に示す。図7に示すグラフにおける重心allのプロット方法は、図4~6と同様である。図7に示されるように、本実施例2においても、重心allの位置が長手方向において変化している。このように、間欠固定テープ心線10がバンドル材で結束されていなくても、また、光ファイバ11が内層、外層に分かれていなくても、重心allの位置を変化させることが可能である。
 以上、説明した通り、横断面視における全ての光ファイバ11の重心の位置である重心all(Gall)が、長手方向において変化していることで、光ファイバケーブル100の曲げによって特定の光ファイバ11に集中してマイクロベンドロスが生じることを抑制できる。すなわち、伝送損失が増大するリスクが複数の光ファイバに対して分散され、光ファイバケーブル100全体で見たときに、伝送損失に関する規格を満足しない光ファイバ11の出現を抑制できる。したがって、光ファイバケーブル100の曲げに対する性能の向上および歩留まりの向上を図ることができる。
 また、複数の光ファイバ11の少なくとも一部がSZ撚りされていてもよい。この構成によれば、特定の光ファイバ11に歪みが集中することをより確実に抑制し、光ファイバ集合体1の最大伝送損失の増大をより確実に抑制することができる。
 また、複数の光ファイバ11は、複数の間欠固定テープ心線10を形成し、複数の間欠固定テープ心線10はそれぞれ、複数の光ファイバ11のうちの二本以上の光ファイバ11および当該二本以上の光ファイバ11を長手方向において間欠的に固定する複数の固定部12を含んでいてもよい。
 光ファイバ11が間欠固定テープ心線10を構成している場合でも、上述の構成によれば、特定の光ファイバ11に歪みが集中することをより確実に抑制することができる。
 また、複数の光ファイバ11は、内層ユニットUinと、内層ユニットUinよりも径方向外側に位置する外層ユニットUoutと、を形成し、横断面視における、内層ユニットUinに含まれる全ての光ファイバ11の重心の位置であるGinが、外層ユニットUoutに含まれる全ての光ファイバ11の重心の位置であるGoutよりも、長手方向Zにおいて大きく移動していてもよい。
 これにより、光ファイバケーブル100が曲げられたときに、光ファイバ集合体1の径方向内側の領域に空隙を生じさせて、外層ユニットUoutをその空隙に入り込ませることができるため、特定の光ファイバ11のみに伸び歪およびマイクロベンドロスが生じるリスクが集中することを抑制できる。
 また、Ginの長手方向Zにおける移動量であるΔinの平均値は、光ファイバ集合体1の外径に対して0.090%~20.27%の範囲内であってもよい。
 これにより、光ファイバケーブル100の曲げに伴う外層ユニットUoutの損失増加と、光ファイバケーブル100の非円率の低下と、を抑制することができる。
 また、本実施形態に係る光ファイバケーブル100は、上記した光ファイバ集合体1と、光ファイバ集合体1を収容する外被110と、を備える。この構成によれば、光ファイバケーブル100の最大伝送損失の増大を抑制することができる。
 以上を踏まえて本実施形態では、横断面視における、全ての光ファイバ11の重心である重心allの位置を、長手方向において変化させる、光ファイバ集合体1または光ファイバケーブル100の製造方法を提案する。
 なお、重心allが、長手方向においてずれるようにするためには、光ファイバ集合体1の製造過程において、例えば以下に示す手法が用いられる。第1の手法は、間欠固定テープ心線10をSZ状に撚り合わせる過程において、間欠固定テープ心線10に加えられる張力を時間的に変化させる手法である。第2の手法は、間欠固定テープ心線10をSZ状に撚り合わせる際に用いる目板の回転速度を時間的に変化させる手法である。第3の手法は、上記目板に形成され、各々に間欠固定テープ心線10が挿通される複数の貫通孔について、各貫通孔と目板の中心との間の距離を異ならせる手法である。第4の手法は、上記複数の貫通孔について、各貫通孔の形状や大きさを異ならせる手法である。第5の手法は、撚り合わせの向きを反転させる際の(上記目板の回転の)一時停止の時間の長さを調整する手法である。第6の手法は、互いに心数の異なる光ファイバユニット同士を隣接させて配置する手法である。
 これらの手法によれば、横断面における各間欠固定テープ心線10の崩れ状態を長手方向において変化させることができる。したがって、重心allの位置も長手方向において変化させることができる。なお、上記した第1の手法~第6の手法は一例であり、上記した関係が成立する光ファイバ集合体1を製造できれば、他の手法が用いられてもよい。また、上記した手法のうちいくつかの手法が組み合わされて用いられてもよい。
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、実施例1では光ファイバ集合体1が内層と外層とに分かれている例を示したが、外層、中層、内層といった3層以上に分かれている場合も同様に考えられる。つまり、外層と中層、中層と内層、のそれぞれの相対的な関係にも、実施例1における説明内容を拡張可能である。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
1…光ファイバ集合体 10…間欠固定テープ心線 11…光ファイバ 12…固定部 Uin…内層ユニット Uout…外層ユニット

Claims (7)

  1.  複数の光ファイバを備え、
     横断面視における、全ての前記光ファイバの重心であるGallの位置が、長手方向において変化している、光ファイバ集合体。
  2.  前記複数の光ファイバの少なくとも一部がSZ撚りされている、請求項1に記載の光ファイバ集合体。
  3.  前記複数の光ファイバは、複数の間欠固定テープ心線を形成し、
     前記複数の間欠固定テープ心線はそれぞれ、前記複数の光ファイバのうちの二本以上の光ファイバおよび前記二本以上の光ファイバを長手方向において間欠的に固定する複数の固定部を含む、請求項1または2に記載の光ファイバ集合体。
  4.  前記複数の光ファイバは、内層ユニットと、前記内層ユニットよりも径方向外側に位置する外層ユニットと、を形成し、
     横断面視における、前記内層ユニットに含まれる全ての前記光ファイバの重心の位置であるGinが、前記外層ユニットに含まれる全ての前記光ファイバの重心の位置であるGoutよりも、長手方向において大きく移動している、請求項1から3のいずれか1項に記載の光ファイバ集合体。
  5.  前記Ginの前記長手方向における移動量であるΔinの平均値は、前記光ファイバ集合体の外径に対して0.090%~20.27%の範囲内である、請求項4に記載の光ファイバ集合体。
  6.  請求項1から5のいずれか1項に記載の光ファイバ集合体と、
     前記光ファイバ集合体を収容する外被と、を備える、光ファイバケーブル。
  7.  横断面視における、全ての光ファイバの重心であるGallの位置を、長手方向において変化させる、光ファイバ集合体の製造方法。
PCT/JP2022/044827 2021-12-27 2022-12-06 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法 WO2023127421A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021212168 2021-12-27
JP2021-212168 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127421A1 true WO2023127421A1 (ja) 2023-07-06

Family

ID=86998589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044827 WO2023127421A1 (ja) 2021-12-27 2022-12-06 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法

Country Status (2)

Country Link
TW (1) TW202331326A (ja)
WO (1) WO2023127421A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140233899A1 (en) * 2011-09-21 2014-08-21 Afl Telecommunications Llc Optical trunk cable
JP2014211526A (ja) * 2013-04-18 2014-11-13 日本電信電話株式会社 間欠接着型光ファイバテープおよびこれを用いた光ケーブル
JP2014228687A (ja) * 2013-05-22 2014-12-08 住友電気工業株式会社 光ファイバテープ心線及び光ケーブル
JP2020106734A (ja) * 2018-12-28 2020-07-09 株式会社フジクラ 光ファイバユニットの製造方法及び光ファイバユニット製造装置
JP2021157154A (ja) * 2020-03-30 2021-10-07 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140233899A1 (en) * 2011-09-21 2014-08-21 Afl Telecommunications Llc Optical trunk cable
JP2014211526A (ja) * 2013-04-18 2014-11-13 日本電信電話株式会社 間欠接着型光ファイバテープおよびこれを用いた光ケーブル
JP2014228687A (ja) * 2013-05-22 2014-12-08 住友電気工業株式会社 光ファイバテープ心線及び光ケーブル
JP2020106734A (ja) * 2018-12-28 2020-07-09 株式会社フジクラ 光ファイバユニットの製造方法及び光ファイバユニット製造装置
JP2021157154A (ja) * 2020-03-30 2021-10-07 住友電気工業株式会社 光ファイバユニットおよび光ファイバケーブル

Also Published As

Publication number Publication date
TW202331326A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
EP1567901B1 (en) High count telecommunication optical cable with controlled fiber length
JP5224403B2 (ja) 光ファイバユニット及び光ファイバケーブル
US7397992B1 (en) Tubeless fiber optic cables having strength members and methods therefor
AU2014385023B2 (en) Optical cable
KR20080027328A (ko) 광섬유 케이블 및 그 제조방법
WO2017022531A1 (ja) 光ファイバケーブル
WO2011043324A1 (ja) 光ファイバケーブル
JP2020024257A (ja) 光ファイバテープ心線、光ファイバケーブル、および光ファイバテープ心線の融着接続方法
JP2007233252A (ja) 光ファイバケーブルの製造方法
US20220269024A1 (en) Optical fiber cable with drop cables having preattached optical connectors and method to strand the same
JP2014106380A (ja) 光ファイバケーブル及びその製造方法並びにその製造装置
US20210271042A1 (en) Optical fiber cable
US6529662B1 (en) Optical fiber cable
JP4871008B2 (ja) 光ファイバケーブル
WO2023127421A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
JP6459833B2 (ja) 光ファイバケーブル
KR20010045604A (ko) 루즈튜브 옥내용 케이블
JP2020042175A (ja) 光ファイバケーブル
WO2023127419A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
WO2023127418A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
JP3681616B2 (ja) 自己支持型光ファイバケーブル
WO2023127420A1 (ja) 光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法
JP2019219497A (ja) 光ファイバケーブル
US11921341B2 (en) Optical cable and optical cable manufacturing method
WO2022065485A1 (ja) 光ファイバケーブルおよびコネクタ付きケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE