WO2023120524A1 - 結核感染試料のスクリーニング方法及びこれに用いるプローブセット - Google Patents
結核感染試料のスクリーニング方法及びこれに用いるプローブセット Download PDFInfo
- Publication number
- WO2023120524A1 WO2023120524A1 PCT/JP2022/046903 JP2022046903W WO2023120524A1 WO 2023120524 A1 WO2023120524 A1 WO 2023120524A1 JP 2022046903 W JP2022046903 W JP 2022046903W WO 2023120524 A1 WO2023120524 A1 WO 2023120524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tuberculosis
- sample
- hsa
- mir
- urine
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 213
- 201000008827 tuberculosis Diseases 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 81
- 238000012216 screening Methods 0.000 title claims abstract description 48
- 239000002679 microRNA Substances 0.000 claims abstract description 160
- 239000000090 biomarker Substances 0.000 claims abstract description 93
- 210000002700 urine Anatomy 0.000 claims abstract description 69
- 108091070501 miRNA Proteins 0.000 claims abstract description 65
- 108091032109 Homo sapiens miR-423 stem-loop Proteins 0.000 claims abstract description 54
- 239000002773 nucleotide Substances 0.000 claims description 32
- 125000003729 nucleotide group Chemical group 0.000 claims description 32
- 238000012360 testing method Methods 0.000 claims description 29
- 239000003550 marker Substances 0.000 claims description 22
- 208000036981 active tuberculosis Diseases 0.000 claims description 18
- 108091063565 Homo sapiens miR-532 stem-loop Proteins 0.000 claims description 13
- 238000005194 fractionation Methods 0.000 claims description 12
- 108091032683 Homo sapiens miR-451a stem-loop Proteins 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 238000007689 inspection Methods 0.000 claims description 2
- 108091032770 miR-451 stem-loop Proteins 0.000 claims 1
- 108091030646 miR-451a stem-loop Proteins 0.000 claims 1
- 208000015181 infectious disease Diseases 0.000 abstract description 49
- 108700011259 MicroRNAs Proteins 0.000 description 94
- 238000005259 measurement Methods 0.000 description 33
- 238000010606 normalization Methods 0.000 description 27
- 238000003753 real-time PCR Methods 0.000 description 20
- 238000011002 quantification Methods 0.000 description 16
- 210000001808 exosome Anatomy 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000012795 verification Methods 0.000 description 9
- 208000025721 COVID-19 Diseases 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000002123 RNA extraction Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 241000725303 Human immunodeficiency virus Species 0.000 description 6
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 6
- 239000013614 RNA sample Substances 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 108091056921 miR-532 stem-loop Proteins 0.000 description 6
- 208000031886 HIV Infections Diseases 0.000 description 5
- 208000037357 HIV infectious disease Diseases 0.000 description 5
- 206010036790 Productive cough Diseases 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 5
- 238000010839 reverse transcription Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 208000024794 sputum Diseases 0.000 description 5
- 210000003802 sputum Anatomy 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 210000001124 body fluid Anatomy 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 108091037240 miR-423 stem-loop Proteins 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 101100291912 Mycobacterium bovis (strain ATCC BAA-935 / AF2122/97) mpb64 gene Proteins 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 3
- 230000004570 RNA-binding Effects 0.000 description 3
- 238000003559 RNA-seq method Methods 0.000 description 3
- 238000011530 RNeasy Mini Kit Methods 0.000 description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000005138 cryopreservation Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 206010017758 gastric cancer Diseases 0.000 description 3
- 238000011528 liquid biopsy Methods 0.000 description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 3
- 108091027963 non-coding RNA Proteins 0.000 description 3
- 102000042567 non-coding RNA Human genes 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 201000002528 pancreatic cancer Diseases 0.000 description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 201000011549 stomach cancer Diseases 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108091070482 Caenorhabditis elegans miR-39 stem-loop Proteins 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 101710166488 6 kDa early secretory antigenic target Proteins 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 108091032955 Bacterial small RNA Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 208000028399 Critical Illness Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000010831 Cytoskeletal Proteins Human genes 0.000 description 1
- 108010037414 Cytoskeletal Proteins Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 238000001134 F-test Methods 0.000 description 1
- 238000000729 Fisher's exact test Methods 0.000 description 1
- 108091056652 Homo sapiens miR-3610 stem-loop Proteins 0.000 description 1
- 108091023134 Homo sapiens miR-4669 stem-loop Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 206010065048 Latent tuberculosis Diseases 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 108091030146 MiRBase Proteins 0.000 description 1
- 241000186366 Mycobacterium bovis Species 0.000 description 1
- 101001057048 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) ESAT-6-like protein EsxB Proteins 0.000 description 1
- 208000012266 Needlestick injury Diseases 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 108091007412 Piwi-interacting RNA Proteins 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 239000000091 biomarker candidate Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000011976 chest X-ray Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 206010013781 dry mouth Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000003317 immunochromatography Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 238000011880 melting curve analysis Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 108091032902 miR-93 stem-loop Proteins 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 101150090202 rpoB gene Proteins 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960001005 tuberculin Drugs 0.000 description 1
- 239000000107 tumor biomarker Substances 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
Definitions
- the present invention relates to a screening method for separating a large number of test samples into samples that may be positive for tuberculosis infection and samples that may be negative for tuberculosis infection. screening methods and test probe sets.
- test method for diagnosing tuberculosis infection
- a test method Quantiferon ( (registered trademark) TB and T-spot (registered trademark) TB
- blood is collected from a subject, lymphocytes are separated, a certain amount is dispensed into a culture plate coated with an anti-human interferon ⁇ antibody, and tubercle bacillus-specific antigens ESAT-6 and CFP-10 are added. , culturing for about 20 hours, and then counting the number of INF- ⁇ -producing cells bound to the anti-human INF- ⁇ antibody.
- INF- ⁇ is not only produced by Mycobacterium tuberculosis, but also in patients infected with HIV (human immunodeficiency virus) (co-infected patients with HIV infection and tuberculosis infection).
- HIV human immunodeficiency virus
- MPB64 antibody is known as an antibody specific to active tuberculosis patients. It is also known to determine whether the It has been reported that MPB64 antibody is also present in urine and correlates with the results of using serum as a measurement sample (Non-Patent Document 1: Yasuko Tamada et.al., Microbiol immunol 2012;56:740 -747).
- urine which is easy to collect, can be used as a measurement sample, so it is suitable as a method that can quickly determine the presence or absence of tuberculosis infection in developing countries where tuberculosis infection is likely to spread. is.
- cross-reacting antibodies are also known to exist, which may result in false positive test results in BCG vaccinated individuals.
- miRNA As a biomarker in addition to antibodies, cells, cytokines, and the like. Abnormal expression of miRNAs has been found to be involved in the onset and malignancy of many diseases, and since miRNAs can also be detected in body fluids such as blood, attention is being focused on their use as liquid biopsies. . In recent years, the use of miRNA as a diagnostic marker has been variously reported mainly for cancer (Patent 5156829 (various cancers: Patent Document 1), Patent 6489583 (Pancreatic cancer: Patent Document 2), WO2019/244575 (Stomach cancer: Patent document 3)).
- two types of miRNA are identified as biomarkers, and the abundance of the miRNA that serves as the biomarker in blood samples is compared with the abundance of the same miRNA in healthy subjects to determine the possibility of developing pancreatic cancer. are doing.
- the two types of miRNAs are a combination of miRNAs whose abundance increases and miRNAs whose abundance decreases when the possibility of developing pancreatic cancer is high compared to healthy subjects.
- the ⁇ Ct value after correction using cel-miR39 as an external control from the Ct value of the measurement sample, subtract the Ct value of cel-miR39 contained in the sample other) are used. Positive and negative discrimination is performed based on the cutoff value calculated based on the ⁇ Ct value for the biomarker miRNA.
- Patent Document 3 proposes a method for determining the presence of gastric cancer using the expression level of miRNA identified as a gastric cancer biomarker as an indicator.
- specific miRNAs hsa-miR3610, hsa-miR4669
- ⁇ Ct value the value obtained by subtracting the Ct value of the normalization factor from the biomarker Ct value
- Patent Document 4 using a minimally invasive sample (serum here), as a biomarker that can be used for population screening for separating positive and negative samples of colorectal cancer, It has been proposed to identify specific piRNAs (non-coding RNA molecules that are longer (26-31 nucleotides) than miRNAs) and compare the expression levels of marker RNAs with reference expression levels.
- the expression level used for comparison is the expression level normalized with miR93-5p as a normalization marker (endogenous control), and the determination of the cut-off value for discrimination judgment is performed in the healthy subject group and the colon patient group. , can be determined by statistical analysis of normalized expression levels.
- Non-Patent Document 2 Naveed Sabir et.al., Frontiers in Microbiology vol.9, March 2018
- Table 1 of Non-Patent Document 2 human peripheral blood , whole blood, serum, or macrophages as specimens, miRNAs that can be candidates for biomarkers have been introduced.
- the miRNAs shown in Table 1 even if we focus on human peripheral blood and serum, they vary depending on the reference literature, and what degree of specificity each miRNA has as a diagnostic marker It has not been clarified whether the miRNAs shown in Table 1, even if we focus on human peripheral blood and serum, they vary depending on the reference literature, and what degree of specificity each miRNA has as a diagnostic marker It has not been clarified whether the miRNAs shown in Table 1, even if we focus on human peripheral blood and serum, they vary depending on the reference literature, and what degree of specificity each miRNA has as a diagnostic marker It has not been clarified whether the miRNAs shown in Table 1, even if we focus on human peripheral blood and serum, they vary depending on the
- blood as a test sample is excellent as a liquid biopsy, it is necessary to collect blood for examination, and the examination method in developing countries is limited to patients who are strongly suspected of being infected with tuberculosis. It is of limited application as a testing method for broadly screening tuberculosis-infected patients.
- the present invention is a tuberculosis infection using a biomarker that can provide useful information on the presence or absence of infection in a short time and at a low cost using a liquid biopsy that is less invasive, especially urine that is easy to collect specimen samples. It is to provide a screening method for the presence or absence of and a screening probe set.
- the present inventors comprehensively detected and analyzed miRNA contained in urine collected from patients with active tuberculosis and healthy subjects, and found that miRNAs were specifically increased/decreased in tuberculosis-infected patients compared to healthy subjects.
- a patent application was filed after identifying miRNAs that can be used as indicators for determining tuberculosis infection as biomarker candidates (PCT/JP2021/023027).
- miRNA concentration the amount of miRNA contained in the collected urine sample. Therefore, the determination based on the result of comparing the expression level of the miRNA selected as a biomarker (content in the urine sample) and the expression level of the same miRNA in healthy subjects by simple relative content lacks reliability. become.
- focusing on the expression frequency of miRNA by comparing the expression frequency of the biomarker miRNA of the subject and the average expression frequency of healthy subjects, it is possible to determine whether the expression of the biomarker miRNA is enhanced / decreased. If so, the problem of concentration differences between individuals can be resolved.
- miRNAs used as biomarkers generally do not have a very high expression frequency (approximately 0 to 2.5%). It is required to accurately grasp the total amount that will be the number. In addition, from the viewpoint of increasing the accuracy of the total amount, it is necessary to detect many types of miRNA. In this sense as well, RNA arrays equipped with many types of primer probes, expensive PCR equipment, and a large number of measurement engineers and analysts are required.
- the present inventors have found that the expression of miRNAs used as biomarkers is enhanced/decreased compared to healthy subjects without measuring the total amount of most miRNAs expressed in each individual (total read number). Further examination was carried out on the method of determining which is the case. Then, various studies were conducted on miRNAs that serve as a standard (internal control for standardization) for determining whether the expression of miRNAs that serve as biomarkers for tuberculosis infection is increasing or decreasing in individual individuals.
- miRNA that is constantly expressed in all individuals in all individuals, a certain level of expression can be expected at all times
- miRNA with small individual variation small individual variation in expression frequency
- the present inventors identified miRNA (internal control for standardization) that can satisfy the above requirements, and found that the presence or absence of tuberculosis infection can be determined by using the relative content of this internal control for standardization with respect to miRNA as an index, We have completed the present invention.
- the screening method for tuberculosis-infected samples of the present invention is selected from miRNAs (sequence ID: 2 to sequence ID: 33 and/or sequence ID: 34 to sequence ID: 73) contained in urine-derived samples of subjects.
- a method for screening a tuberculosis-infected sample by detecting one or more biomarker miRNAs comprising: obtaining the ratio [B/S] of the biomarker miRNA content B to the hsa-miR-423-5p (sequence ID: 1) content S in the urine-derived sample; and The ratio [B / S] of the subjects who were tested is the ratio N (B / S) of the content B of the biomarker miRNA to the content S of hsa-miR-423-5p in the urine-derived sample of healthy subjects and tuberculosis
- the sorting step is a step of sorting into tuberculosis-infected samples when the [B/S] of the subject is smaller than the cutoff value.
- the fractionation step includes a fractionation step (first fractionation step) using miRNAs selected from SEQ ID: 2 to SEQ ID: 33 as biomarkers, and miRNAs selected from SEQ ID: 34 to 73.
- first fractionation step using miRNAs selected from SEQ ID: 2 to SEQ ID: 33 as biomarkers
- miRNAs selected from SEQ ID: 34 to 73 are selected from SEQ ID: 34 to 73.
- a method for screening tuberculosis-infected samples comprises: hsa-miR-423-5p (sequence ID: 1) in the urine-derived sample of the subject, and hsa-miR-532-3p (sequence ID: 49), hsa-miR-423-3p (sequence measuring the content of at least two of ID: 56) and hsa-miR-451a (sequence ID: 37);
- the step of fractionating the tuberculosis-infected sample consists only of the second fractionation step of the type I screening method, and a plurality of markers are used as biomarkers used in the comparison step. This makes it possible to ensure the accuracy of determination.
- the test probe set used for tuberculosis-infected sample screening of the present invention includes a nucleotide probe for standardization that can hybridize with hsa-miR-423-5p under stringent conditions and has a detectable label; A probe set for testing active tuberculosis containing at least one selected from the group consisting of nucleotide probe 1 and nucleotide probe 2.
- Probe 1 A nucleotide probe that can hybridize under stringent conditions with one or more selected from sequence ID2 to sequence ID33 and has a detectable label
- Probe 2 from sequence ID34 to sequence ID73 A nucleotide probe capable of hybridizing under stringent conditions to one or more selected species and having a detectable label.
- Probe 1 and Probe 2 are included in the implementation of Type I tuberculosis infection sample screening.
- a test probe set containing a combination of the above standardization nucleotide probe and probe 3 below is used.
- Probe 3 A set of marker nucleotide probes that can hybridize with each of the probes of SEQ ID: 49 and SEQ ID: 56 under stringent conditions and have a detectable label.
- tuberculosis refers to an infectious disease caused by Mycobacterium tuberculosis. It refers to the state of active tuberculosis in which symptoms such as coughing and weight loss have already appeared, and tuberculosis bacteria are detected in sputum. On the other hand, the presence or absence of latent tuberculosis infected with Mycobacterium tuberculosis, although there are no abnormalities in clinical findings such as symptoms, chest X-ray findings, and bacteriological examination findings, is not included.
- the term "healthy subject” refers to a specimen derived from a person who is tuberculosis-negative with no tuberculosis bacteria detected in sputum, and who can be certified as AIDS-negative based on the ratio of CD4-positive T cells.
- miRNA refers to miRNA identified by a sequence ID (sequence No) when identified by the sequence.
- sequence ID sequence No
- miRNA genes correspond to initial transcripts transcribed by RNA polymerase II and have a hairpin loop structure.
- the concept also includes pre-miRNA corresponding to the precursor of miRNA in a state in which the pri-mRNA is partially cleaved by RNaseIII-like Drosha.
- the term "miRNA content” refers to the amount of miRNA contained in a measurement sample, and can be usually quantified by real-time PCR.
- Relative quantification standardized using an endogenous control (miRNA that is constantly present in patient and healthy subject specimens and has no difference in expression in both) so that absolute amounts obtained by absolute quantification and comparison between samples can be performed. includes both relative amounts obtained by
- the ratio [B/S] of the content B of the biomarker miRNA and the content S of the standardization miRNA contained in the same measurement sample is used as a discriminant index for tuberculosis infection positive or negative, as a parameter Since it is used as an absolute amount, it does not matter whether it is an absolute amount or a relative amount.
- the method using a calibration curve or the ⁇ Ct method may be used for quantification of the relative amount by real-time PCR.
- the parameter used herein that is, the content ratio [B / S], is expressed as P (B / S) when the ratio of tuberculosis infected patients [B / S] is generally referred to, healthy
- P B / S
- N the ratio of tuberculosis infected patients
- B/S the ratio of tuberculosis infected patients
- the ratio B/S of persons it is written as N(B/S).
- the content B of each biomarker in the sample is indicated using B (abbreviation of miRNA), such as B 532-3p when hsa-miR-532-3p is used as the biomarker.
- the content ratio of the relevant biomarker to the standardization internal miRNA (endogenous control) (for example, in the case of hsa-miR-532-3p [B 532-3p / S], in the case of tuberculosis infected is abbreviated as P (532-3p) for healthy subjects, and N (532-3p) for healthy subjects.
- miRNA expression frequency refers to the ratio of the number of target miRNA (eg, biomarker) reads to the total number of reads when read by a next-generation sequencer. It corresponds to the ratio (%) of the target miRNA content to the total miRNA content (usually 200 to 500 types) contained in a detectable amount in the sample.
- cycle number means the number of repetitions of PCR performed until the target miRNA can be detected, and the cycle number (herein represented by “Ct”) is large. It means that the content of the target miRNA is small.
- capable of hybridizing under stringent conditions means a nucleotide having a sequence complementary to each sequence of the target miRNA, or 85% or more, preferably 90% or more of the complementary sequence, More preferably, they have a sequence match of 95% or more.
- the screening method for a tuberculosis-infected sample of the present invention uses a specific number of miRNAs as biomarkers, and uses the content ratio [B/S] of the biomarker to the content of the endogenous control as an index for determination. , there is no need to obtain the total amount of miRNA for calculating the expression frequency, and variation between individuals can be small. Therefore, with the screening method of the present invention, it is possible to separate a large number of samples into a potentially positive group and a possibly negative group in a short period of time without using expensive equipment such as a next-generation sequencer. becomes. Furthermore, since urine, which does not need to be collected by a specialist, is used as a specimen sample for measurement, it is possible to quickly and inexpensively screen a large number of specimens for possible positive samples.
- FIG. 2 is a scatter diagram showing the expression levels of hsa-miR23-5p in all individuals measured in Examples.
- FIG. 2 is a scatter diagram showing the content ratio [B/S] after normalization of hsa-miR532-3p.
- Fig. 2 is a scatter diagram showing the content ratio [B/S] after normalization of hsa-miR423-3p.
- Fig. 2 is a scatter diagram showing the content ratio [B/S] after normalization of hsa-miR451a.
- FIG. 10 is a scatter diagram showing the normalized content ratio [B/S] of hsa-miR532-3p obtained in Verification 3;
- FIG. 10 is a scatter diagram showing the normalized content ratio [B/S] of hsa-miR423-3p obtained in Verification 3;
- the standardizing miRNA used in the screening method for tuberculosis-infected samples of the present invention is hsa-miR423-5p contained in individual specimens. Specifically, it has the nucleotide sequence "UGAGGGGCAGAGGAGCGAGACUUU" (sequence ID: 1).
- miRNAs that can be used as biomarkers in the screening method for tuberculosis-infected samples of the present invention are miRNAs that are expressed up/down in the state of active tuberculosis compared to healthy subjects. Specifically, miRNAs (first group) that are overexpressed compared to healthy subjects and have the sequences shown in Table 1 (SEQ ID: 2-ID: 33); miRNAs that are decreased compared to healthy subjects (Group 2), miRNAs having the sequences shown in Table 2 (sequence ID: 34-ID: 73).
- miRNAs comprehensively detect miRNAs contained in urine samples of tuberculosis-infected persons, and compared with the average profile of miRNAs contained in urine samples of healthy subjects, the expression frequency is significantly higher. Differences are recognized.
- the miRNAs in the first group were found to be significantly overexpressed compared to the expression frequency in healthy subjects, and the miRNAs in the second group were found to be significantly decreased in expression.
- p ⁇ 0.05 (preferably p ⁇ 0.01) as a significance level in the Mann Whitney U test with respect to the average content of the target miRNA in healthy subjects, containing Refers to cases where the amount increased (Table 1) or decreased (Table 2).
- hsa-miR-532-3p SEQ ID: 49
- hsa-miR-423-3p SEQ ID: 56
- hsa-miR-451a sequence ID: 37
- These miRNAs have a relatively high expression frequency, and there are few amplification errors that can occur when a urine specimen containing a low miRNA concentration is amplified and detected.
- biomarkers may be used alone, but it is preferable to use two or more in combination. By using two or more types in combination, it is possible to increase the accuracy of determination based on markers. In particular, it is preferable to use miRNAs classified into the first group and miRNAs classified into the second group in combination. By combining two groups in which the increase and decrease in expression frequency are reversed due to tuberculosis infection, more reliable determination results (tuberculosis-positive or tuberculosis-negative) can be obtained. In addition, even in the case of HIV infection, the risk of misjudgment such as false positive or false negative can be reduced.
- markers classified into the second group include a combination of hsa-miR-532-3p (sequence ID: 49) and hsa-miR-423-3p (sequence ID: 56), and hsa-miR-451a.
- sequence ID: 49 hsa-miR-532-3p
- hsa-miR-423-3p hsa-miR-451a.
- the test probe set of the present invention is a probe set for determining the possibility of positive active tuberculosis in a sample derived from urine of a subject, and is a set combining probes for detecting the above biomarkers. .
- an internal standard probe that detects the normalization miRNA (hsa-miR-423-5p), probe 1 that detects the biomarkers of the first group and / or probes that detect the biomarkers of the second group 2 (preferably probe 3).
- the base sequence of hsa-miR-423-5p represented by SEQ ID: 1 ( UGAGGGGCAGAGAGCGAGACUUU) has a sequence that matches 85% or more, preferably 90% or more, more preferably 95% or more, and is labeled for detection.
- the 5' end and 3' end of the sequence may be ligated with a primer sequence, a nucleotide chain for ligation for immobilization on a carrier, an adapter, etc. may be modified as appropriate.
- Probe 1 Hybridizable under stringent conditions with one or more miRNAs contained in the first group (SEQ ID: 2 to SEQ ID: 33) shown in Table 1, and labeled for detection nucleotide probe or probe set
- Probe 2 can hybridize under stringent conditions with a nucleotide represented by at least one selected from the group consisting of sequences ID: 37, ID: 49, and ID: 56, and is labeled for detection. It preferably contains a nucleotide probe that is
- Probe 3 is a preferred embodiment of Probe 2, and is a marker nucleotide that can hybridize under stringent conditions with each of the probes of SEQ ID: 49 and SEQ ID: 56 and has a detectable label. A set of probes.
- Probe 3 may further include a marker nucleotide probe that can hybridize with SEQ ID: 37 under stringent conditions and has a detectable label.
- Probe 1, probe 2, and probe 3 only need to have a sequence that can hybridize under stringent conditions with the target miRNA.
- a ligating nucleotide chain, an adapter, or the like for immobilization on a carrier may be ligated, and the phosphate moiety and sugar moiety may be appropriately modified.
- a nucleotide that can hybridize under stringent conditions is a nucleotide having a complementary sequence to each sequence of the target miRNA, or a sequence that matches the complementary sequence by 85% or more, preferably 90% or more. more preferably 95% or more, particularly preferably 99% or more.
- the probe set of the present invention is a probe set containing an internal standard probe and a biomarker probe, and includes the following combinations. ⁇ Internal standard probe and probe 1 ⁇ Internal standard probe and probe 2 ⁇ Internal standard probe, probe 1 and probe 2 ⁇ Internal standard probe and probe 3 ⁇ Internal standard probe, probe 1 and probe 3
- the type of biomarker probes included is selected according to the type of screening method to be applied, ie the fractionation process to be employed. Note that the probe set may be provided as a microarray, probe panel, or the like.
- the label may be either a known direct label or an indirect label that are suitably used for nucleotide probes.
- Examples of direct labeling substances include isotopes such as 32 P;
- examples of indirect labeling substances include antibodies, labeling enzymes such as the avidin-biotin system, chemiluminescence systems such as luminescence and quenching, fluorescent dyes, gold colloids, and the like.
- a sample to be tested is urine collected from a subject.
- urine collected from a subject.
- saliva is also a sample that can be collected without relying on specific skilled workers, but it may not be easy to collect from dry mouth subjects such as the elderly.
- urine is excellent as a test sample that can be easily collected from all subjects. Therefore, the screening method of the present invention is suitable as a simple screening method for comprehensively examining a large number of samples.
- Urine tends to have less exosomes containing miRNA than blood, but compared to other body fluids, a large amount can be collected, and blood collection equipment such as a syringe is unnecessary. Since there is no risk of infection with blood-borne viral infections due to needle stick accidents or the like, it is preferable to use urine as a sample as a testing method to be carried out in developing countries.
- Urine like other body fluids such as blood, contains exosomes containing mature miRNAs that serve as biomarkers.
- Exosomes are one of the membrane vesicles secreted from cells, and generally have a diameter of 30 to 150 nm by electron microscopic observation. - Includes mRNA, DNA, enzymes, cytoskeletal proteins, signal molecules, etc.
- Examples of urine-derived samples include exosome-enriched or crudely purified fractions (hereinafter referred to as "exosome-rich fractions”), and RNA-extracted samples. Among these, it is preferable to use a sample obtained by directly extracting RNA as the measurement sample from the viewpoint of determination accuracy.
- RNA isolate RNA isolate
- exosomes may be separated from urine specimens by size exclusion chromatography, centrifugation, etc.
- RNA may be extracted from the resulting exosome-rich fraction, or exosomes may be separated using a commercially available kit.
- direct RNA isolation may be performed.
- isolation kits include ExoQuick TM Exosome precipitation solution series (e.g., ExoQuick-TC, ExoQuick-CG, etc., both manufactured by System Biosciences) as exosome isolation kits, and nucleic acid extraction samples from urine
- the miRNeasy mini kit manufactured by Qiagen
- MagMax mirVana Total RNA kit manufactured by Thermo Fisher
- Magtration registered trademark
- a method for recovering exosomes simply by sending an exosome-containing sample (urine) to a nanowire structure may be used.
- it is a total RNA extraction sample prepared according to the protocol of the operation manual (urine sample) of MagMax TM mirVana Total RNA-Seq kit (Thermo Fisher).
- RNA-containing sample RNA-containing sample
- the probe set of the present invention is used. Then, luminescence intensity, radioactivity, fluorescence intensity, enzymatic activity, etc. may be measured based on the type of label used for the probe.
- miRNA quantification examples include real-time PCR, microarray, northern blotting, liquid-phase nucleic acid hybridization, colorimetry, and the like.
- a method of detecting a marker by coloration by combining the PCR method and the immunochromatography method may be used. These methods are appropriately selected according to the type of probe label used. For example, when a fluorescent label is used, it can be detected by visually observing the presence or absence of fluorescence emitted by hybridization. Also, by scaling the intensity according to the type of labeling substance, such as fluorescence intensity, it is possible to calculate the content and the content ratio.
- the quantification performed by the screening method of the present invention is not limited to measurement of the absolute amount of the target miRNA contained in the measurement sample, and may be quantification of the relative amount.
- the quantification of miRNA is a quantification for obtaining the ratio [B / S] of the content B of the biomarker miRNA to the content S of hsa-miR-423-5p. , without calculating the content of hsa-miR-423-5p as an endogenous control contained in the sample and the target biomarker miRNA, even if it is a method that can directly obtain [B / S] good.
- the [B/S] of the measurement sample can be obtained by either the calibration curve method or the ⁇ Ct method.
- the screening method of the present invention is a method for screening samples that may be positive for active tuberculosis from samples to be tested. It can be adopted as a screening method and as a simple test method for the first visit of a patient suspected of having tuberculosis.
- the screening method of the present invention uses the ratio [B/S] of biomarker miRNA content B to hsa-miR-423-5p content S contained in the specimen sample as a positive/negative determination index. is characterized by
- the hsa-miR-423-5p and the selected biomarker miRNA contained in the prepared measurement sample are detected and quantified, and the content of the biomarker miRNA with respect to the content S of hsa-miR-423-5p a step of obtaining the ratio of B [B/S]; and the obtained [B/S] is based on the same ratio N (B/S) of RNA-containing samples prepared from urine of healthy subjects by the same treatment method.
- [B / S] of the subject is obtained by detecting hsa-miR-423-5p (content S) contained in the measurement sample and the selected biomarker miRNA (content B) by the above-described detection and quantification method. , After obtaining each, the [B / S] of the measurement sample may be calculated, or, like the ⁇ Ct method, based on the cycle number (Ct) of the measured value obtained by the real-time PCR method, directly [B /S] may be calculated.
- [B/S] can be obtained directly from, for example, the specific intensity of the label.
- the cut-off value is a threshold for [B/S] that can statistically distinguish between a group of healthy subjects and a group of tuberculosis-infected subjects, and can be appropriately set by ROC analysis or the like. For example, for a data group of tuberculosis patients [B/S] normalized by the average value of N (B/S) derived from a large number of healthy subject groups, a ROC curve is created and a large number of tuberculosis patients are included. A threshold that will be exceeded can be set as a cut-off value. In this case, the cut-off value corresponds to how many times the expression frequency of the same biomarker in healthy subjects.
- the average value of N (B/S) for normalization is obtained by detecting and quantifying the marker miRNA of interest in the same manner as the method for obtaining [B/S] of the measurement sample for a population of healthy subjects. It is an average value obtained by going to The cut-off value used for comparison is appropriately determined depending on the type of miRNA, the preparation method of the sample for measurement, the type of label, the quantification method, and the like.
- the subject's [B/S] acquisition process and comparison process are performed according to each biomarker.
- the [B/S] obtained for each biomarker is compared with the corresponding cutoff value, and the sample measured based on the magnitude relationship with respect to the cutoff value Samples are sorted into tuberculosis-positive or negative samples.
- the samples in Table 1 are selected as biomarkers, if the obtained [B/S] is higher than the cutoff value, the samples are sorted into tuberculosis-infected samples (first determination).
- the miRNAs shown in Table 2 are selected as biomarkers, if the obtained [B/S] is lower than the cutoff value, the samples are separated into tuberculosis-infected samples (second judgment). .
- each biomarker is compared to a predetermined cutoff value.
- the screening method of the present invention may include either the first determination step or the second determination step, but from the viewpoint of increasing the determination accuracy, biomarkers are selected from both the first group and the second group. Then, it is preferable to perform the first determination and the second determination (type I screening method).
- biomarkers used are only the first group or the second group, only one of the above first determination or second determination will be performed.
- using a combination of multiple biomarkers belonging to the first group or the second group when the comparison results of the B / S value and the cutoff value of each biomarker all match, positive or negative It is possible to ensure the accuracy of determination by adopting the determination criteria for determination.
- the order of these determinations is not particularly limited. A judgment may be made. Moreover, you may perform a 1st determination and a 2nd determination simultaneously. Multiple determinations can be made simultaneously by using the probe set of the present invention.
- Screening methods that use biomarkers belonging to either the first group or the second group include, for example, screening methods that use a probe set in which an internal standard probe and probe 3 are combined (type II).
- Urine specimens from 19 healthy Laotian subjects, 19 Laotian patients with active tuberculosis infection (two of whom were co-infected with HIV), and 12 Japanese COVID19 severely ill patients (without tuberculosis infection) were used. board. After collection, the urine samples were cryopreserved, and in the case of urine samples from patients with active tuberculosis, RNA samples for measurement were prepared after a storage period of one year or longer. For urine specimens from healthy subjects and COVID19 critically ill patients, the cryopreservation period was within 60 days.
- RNA sample for measurement A total RNA extraction sample was obtained from 3 ml of a urine specimen according to the protocol of the operation manual (urine sample) of the MagMax TM mirVana Total RNA-Seq kit (Thermo Fisher). Specific procedures are as follows. 2.4 ml of Lysis Buffer was added to 3 ml of urine and shaken for 7 minutes (500 rpm). 350 ⁇ l of a separately prepared Binding Beads Mix (mixture of 234 ⁇ l of RNA Binding Beads and 116 ⁇ l of Lysis/Binding Enhancer) was added to the resulting mixed solution and shaken for 5 minutes (500 rpm).
- Binding Beads Mix mixture of 234 ⁇ l of RNA Binding Beads and 116 ⁇ l of Lysis/Binding Enhancer
- RNA extraction sample containing miRNA was obtained from 15 ml of urine sample.
- 15 ml of urine sample was pretreated (centrifuged at room temperature (2000 x g) for 20 minutes, filtered by PVDF membrane filter (Millex-GV Syringe Filter Unit, 0.22 ⁇ m, (MERCK)) and concentrated (obtained in pretreatment).
- 1.05 ⁇ m Urine Conditioning Buffer was added to the obtained filtrate, and after centrifugation (3000 x g) at room temperature for 20 minutes, a total RNA extraction sample was obtained according to the RNeasy Mini Kit protocol.
- RNA extraction sample obtained in preparation method 1 or 2 an adapter was added and reverse transcription reaction was performed according to the operation manual of Ion Total RNA-Seq kit v2 for small RNA Libraries (Thermo Fisher).
- a cDNA library for the next-generation sequencer was constructed. The sequence of the prepared cDNA library was analyzed using a next-generation sequencer Ion Torrent S5 (Thermo Fisher).
- miRNAs registered on the data bank site: miRBase miRNAs registered on the data bank site: miRBase
- the obtained sequences are comprehensively collated, and the number of reads for each miRNA is calculated to quantify the miRNAs in the sample, The percentage of total miRNA reads was calculated.
- miRNA corresponding to the reference sequence was identified when 10 consecutive bases or more matched.
- the content of the target miRNA was quantified by the qRT-real-time PCR method for the measurement sample prepared from the urine specimen by the preparation method 2.
- the quantification method by the real-time PCR method is as follows.
- RNA extraction samples were reverse transcribed using the miRCURY LNA miRNA PCR Starter Kit (Qiagen).
- a reaction solution (10 ⁇ l) having the following composition (volume ⁇ l per sample) was used in a 0.2 ml tube.
- 5 x miRCURY RT Reaction Buffer (buffer) 2.0 ⁇ l
- 10 x miRCURY RT Enzyme Mix 1.0 ⁇ l Template RNA 6.5 ⁇ l 0.5 ⁇ l of nuclease-free water
- Reverse transcription reaction was carried out under the following conditions using a thermal cycler, GeneAtlas G02 (ASTEC). Step 1: 60 minutes at 42°C Step 2: 5 minutes at 95°C Step 3: Store at 4°C
- Real-time PCR 2-1 Real-time PCR reaction (SYBR Green method)
- the cDNA synthesized by the reverse transcription was quantified by the real-time PCR method.
- a 15-fold dilution of the synthesized cDNA (dilution with nuclease-free water) was used with the miRCURY LNA miRNA PCR Starter Kit (Qiagen) to prepare a reaction solution (the following composition, the amount added is ⁇ l per sample) of 10 ⁇ l. was prepared in a Strip Tube (0.1 ml) and performed using a real-time thermal cycler, Roter Gene Q (Qiagen).
- the vertical axis represents the Ct of hsa-miR-423-5p in each sample (cycle number when hsa-miR-423-5p was detected in each sample). A larger Ct value indicates a smaller content.
- "Heslthy” indicates healthy subjects
- "TB” indicates tuberculosis patients
- "TB+HIV” indicates co-infected tuberculosis and HIV patients
- "Covid19” indicates Japanese severely ill patients with Covid19.
- the Ct value was 20 to 24 in all tuberculosis infection-negative group (healthy subjects, Covid19), and it can be seen that there is little variation within the group. This indicates that hsa-miR-423-5p does not differ in urinary expression frequency between races. In addition, it can be seen that individual differences in the tuberculosis-negative group are small.
- hsa-miR-423-5p is a microRNA with small individual differences even in the tuberculosis-positive group.
- hsa-miR-423-5p is constantly present in urine specimens, has little variation due to individual differences, and is less affected by HIV infection, tuberculosis infection, and Covid19, another respiratory disease. It was confirmed that the miRNA was small and suitable as a normalizing miRNA for relative comparison.
- Table 3 also shows the values normalized by the average value (B/S after normalization) for each test sample. Normalization is to convert when the average value is 1, and the content ratio of each sample [B 532-3p / S] is the average value of N (532-3p) 28.02, [B 423 -3p /S] by the average value of N(423-3p), 0.82.
- the average value of P (B 532-3p /S) is 5.92
- the average value of P (B 423-3p /S) is 0.44
- both N (532-3p) is significantly lower than the average value.
- ROC analysis was performed using statistical analysis software EZR (reference: Bone Marrow Transplantation (2013) 48, 452-458) to determine the cutoff value.
- the obtained cut-off values are as follows. When setting the cut-off value using the marker miR532-3p, no. 23 were rejected by the test. Cutoff value for marker miR532-3p: 0.46 Cutoff value for marker miR423-3p: 0.73
- FIGS. 2 and 3 Verification of Screening Method [B/S] after normalization of Tables 3 and 4 are shown in FIGS.
- the data rejected by the test are not plotted.
- the vertical axis indicates the content ratio [B/S] after normalization for each biomarker. That is, the average value of N(B/S) is 1.0.
- the sample is a positive sample for tuberculosis infection, or negative It can be confirmed that it is possible to separate into samples. That is, according to the screening method of the present invention, simply by detecting and quantifying a specific number of miRNAs, it is possible to easily screen samples that are highly likely to be positive for tuberculosis infection.
- the first group and the second group when only one of the first group and the second group is used as a biomarker, it is possible to reduce false negatives and false positives by using a plurality of types of biomarkers belonging to the group. For example, false positives can be avoided by classifying samples as positive for tuberculosis infection only when the results of comparison with cutoff values for all markers match.
- hsa-miR-451a (ID: 37) was prepared by preparation method 2 in the same manner as in 1, samples from healthy subjects (No. 1 to 19) and tuberculosis patient group samples Real-time PCR was performed on RNA samples for measurement prepared from (Nos. 21 to 39). From the obtained Ct value, the content was calculated in the same manner as in Part 1, and the content (B) of each biomarker relative to the content (S) of the standardization miRNA (hsa-miR-423-5p) The ratio [B/S] of was calculated.
- the average value of B/S of the sample group of healthy subjects was obtained, and each B/S value was normalized by dividing it by the average value. That is, the average value (N(B/S)) of healthy subjects after normalization is 1.00.
- a scatter diagram of the B/S results after normalization is shown in FIG.
- the average B/S value N (451a) of the healthy subjects was 0.066, and the average B/S value P (451a) of the tuberculosis patient group was 0.0000089.
- the normalized B/S value for healthy subjects is 0 to 3.56
- the normalized B/S value for hsa-miR-451a for tuberculosis patients is 0 to 0.00072
- the average The value was 0.00014.
- the standardized B/S value of tuberculosis patients is lower than the cutoff value, so the sample group is classified into a sample group with a high possibility of being positive for tuberculosis infection. can do.
- the normalized B/S value is small, so even if the sample can be determined as positive, the normalized B/S values of the other two markers is not equal to or lower than the cutoff value, it is possible to judge that there is a high possibility of false positive.
- the normalized B 451a /S value of a healthy subject sample was 0, it can be judged positive, but the normalized B 532-3P /S of the same sample was 0.46 (cutoff value 0.46), and B 423-3p /S after normalization was 2.44 (cutoff value 0.73), so it is possible to judge that the possibility of false positive is high.
- RNA samples for measurement were prepared by preparation method 2 from urine specimens (24 healthy subjects, 39 patients with active tuberculosis infection) obtained separately from the specimens used in Verification 1 and 2 above.
- real-time PCR method is performed according to biomarker verification 1, internal microRNA for normalization (hsa-miR-423-5p) and biomarkers belonging to the second group (hsa- The content of miR-532-3p, hsa-miR-423-3p) was calculated.
- the ratio [B/S] of the content of each biomarker (B) to the content of hsa-miR-423-5p (S) is calculated, and the average value of healthy subjects for each specimen sample standardized by
- a scatter diagram of [B 532-3p /S] after normalization is shown in FIG. 5, and a scatter diagram of [B 423-3p /S] after normalization is shown in FIG. Mean of [B 532-3p /S] after normalization of tuberculosis-infected persons, excluding samples whose expression level was too low to be amplified for a given cycle in real-time PCR or samples far from the group
- Sensitivity and specificity were calculated based on the following table based on the results classified into positive and negative based on the above cut-off values.
- the sensitivity was 0.939 and the specificity was 0.696. Also, when miR423-3p was used as a biomarker, the sensitivity was 0.818 and the specificity was 0.571.
- the method for screening a tuberculosis-infected sample of the present invention allows the use of a urine sample that is minimally invasive and easy to collect for a subject as a test sample, and does not require culturing or the like for determination of tuberculosis infection, and is rapid. Since the determination result can be obtained, it is useful as a testing method for examining the presence or absence of active tuberculosis infection in areas where facilities are not well-equipped, such as developing countries.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
また、INF-γは、結核菌だけでなく、HIV(ヒト免疫不全ウィルス)の感染者でもある患者(HIV感染と結核感染の重複感染者)では、免疫不全のために結核感染患者であってもINF-γ産生細胞量が少ないため、判定結果が偽陰性となる場合があるという問題がある。
miRNAの診断マーカーとしての利用は、近年、癌を中心に種々報告されている(特許5156829(各種癌:特許文献1)、特許6489583(膵がん:特許文献2)、WO2019/244575(胃がん:特許文献3))。
比較に用いる発現レベルは、正規化用マーカー(内因性コントロール)としてのmiR93-5pで正規化した発現レベルであり、分別判定のためのカットオフ値の決定は、健常者群と大腸患者群における、正規化された発現レベルの統計解析によって決定できるとしている。
この点において、miRNAの発現頻度に着目し、被験者のバイオマーカーmiRNAの発現頻度と健常者の平均的発現頻度とを比較することで、バイオマーカーmiRNAの発現が亢進/低下しているかを判断すれば個体間の濃度差の問題は解決可能である。しかしながら、特定のmiRNAの発現頻度の大小を正確に知るためには、母数となるmiRNA量、すなわち、各個体で発現されている多数のmiRNAを同定、定量して、発現しているmiRNAの総量を求める必要がある。かかる測定には、数百種類以上のmiRNAの同定及び定量を同時に行うことができる次世代シークエンサーのような高価な装置を用いる必要があり、個々のサンプル解析にかかる時間も長くなるため、健康診断のように多数のサンプルから結核感染のおそれのあるサンプルをピックアップする大規模なスクリーニング方法には適用困難である。
a)全個体において、定常的に発現しているmiRNAであること(全個体で、常時ある程度の発現量が期待できること)
b)個体差のばらつきが小さいmiRNAであること(発現頻度について個体差が小さい)
c)結核感染に対する影響が極めて小さいmiRNAであること
前記尿由来の試料中のhsa-miR-423-5p(配列ID:1)の含有量Sに対する、前記バイオマーカー用miRNAの含有量Bの比率〔B/S〕を取得する工程;及び
得られた被験者の比率〔B/S〕を、健常者の尿由来試料中のhsa-miR-423-5pの含有量Sに対する前記バイオマーカー用miRNAの含有量Bの比率N(B/S)と結核感染者の同比率P〔B/S〕に基づくカットオフ値と比較する工程;
前記比較工程結果に基づいて、前記被験者の尿由来試料を結核感染陽性試料又は陰性試料に分別する工程を含む。
前記バイオマーカーとして、hsa-miR-532-3p(配列ID:49)、hsa-miR-423-3p(配列ID:56)、及びhsa-miR-451a(配列ID:37)から選択される少なくとも1種を選択した場合、前記分別工程は、前記被験者の〔B/S〕が、前記カットオフ値より小さい場合に結核感染試料に分別する工程となる。
被験者の尿由来試料中のhsa-miR-423-5p(配列ID:1)、及びマーカー用miRNAとしてのhsa-miR-532-3p(配列ID:49)、hsa-miR-423-3p(配列ID:56)及びhsa-miR-451a(配列ID:37)の少なくとも2種の含有量を測定する工程;
前記尿由来の試料中のhsa-miR-423-5pの含有量Sに対する、前記各マーカー用miRNAの各含有量Bの比率〔B/S〕を取得する工程;及び
得られた被験者の比率〔B/S〕を、健常者の尿由来試料中のhsa-miR-423-5pの含有量Sに対する前記バイオマーカー用miRNAの含有量Bの比率N(B/S)と結核感染者の同比率P〔B/S〕に基づいて、それぞれのバイオマーカーについて設定されたカットオフ値と比較する工程;
前記比較工程の結果、前記バイオマーカーの少なくとも1種又は全てについて、カットオフ値よりも低い場合に、前記被験者の尿由来試料を結核感染陽性試料に分別する工程を含む。
プローブ1:配列ID2~配列ID33から選択される1種又は2種以上とストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有しているヌクレオチドプローブ
プローブ2:配列ID34~配列ID73から選択される1種又は2種以上とストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有しているヌクレオチドプローブ。
タイプIIの結核感染試料のスクリーニングの実施には、上記標準化用ヌクレオチドプローブと、下記プローブ3との組合せを含む検査用プローブセットを用いる。
プローブ3:配列ID:49及び配列ID:56の各プローブとそれぞれストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有しているマーカー用ヌクレオチドプローブのセット。
特段の限定がない限り、16~25塩基程度の非コード(non-coding)RNAである成熟miRNAのほか、miRNA遺伝子がRNAポリメラーゼIIによって転写された初期転写産物に該当し、ヘアピンループ構造を有しているpri―miRNA、このpri―mRNAがRNaseIII様のDroshaにより一部切断された状態で、miRNAの前駆体に該当するpre―miRNAも含む概念である。
なお、リアルタイムPCRによる相対量の定量については、検量線を用いる方法、ΔΔCt法のいずれであってもよい。
よって、本発明のスクリーニング方法であれば、次世代シークエンサーなどの高価な機器を用いなくても、多数の試料を、短時間で、陽性可能性群と陰性可能性群とに分別することが可能となる。
さらに、測定の検体試料として、専門家による採取が不要な尿を用いているので、迅速に且つ安価で、大量の検体から、陽性可能性試料をスクリーニングすることができる。
本発明の結核感染試料のスクリーニング方法で使用する標準化用miRNAは、個々の検体中に含まれるhsa-miR423-5pである。具体的には、塩基配列「UGAGGGGCAGAGAGCGAGACUUU」(配列ID:1)を有する。
本発明の結核感染試料のスクリーニング方法でバイオマーカーとして用いることができるmiRNAは、活動性結核の状態では、健常者と比べて、増加発現/減少発現するmiRNAである。
具体的には、健常者と比べて過剰発現するmiRNA(第1グループ)で、表1に示す配列を有するmiRNA(配列ID:2-ID:33);健常者と比べて減少発現するmiRNA(第2グループ)で、表2に示す配列を有するmiRNA(配列ID:34-ID:73)である。
また、リアルタイムPCRの結果について、対象とするmiRNAの健常者の平均的含有量に対して、Mann Whitney U testでの有意水準としてp<0.05(好ましくはp<0.01)で、含有量が増加(表1)又は減少(表2)した場合をいう。
特に第1グループに分類されるmiRNAと第2グループに分類されるmiRNAとを組み合わせて使用することが好ましい。結核感染により発現頻度の増減が逆になる2つのグループを組み合わせて用いることで、より信頼性の高い判定結果(結核陽性又は結核陰性)を得ることができる。また、HIV感染の場合であっても、偽陽性、偽陰性といった誤判定のリスクを低減することができる。
本発明の検査用プローブセットは、被験者の尿由来の試料について、活動性結核の陽性可能性を判定するためのプローブセットであって、上記バイオマーカーを検出するためのプローブを組み合わせたセットである。具体的には、標準化用miRNA(hsa-miR-423-5p)を検出する内部標準用プローブと、第1グループのバイオマーカーを検出するプローブ1及び/又は第2グループのバイオマーカーを検出するプローブ2(好ましくはプローブ3)を含む。
hsa-miR-423-5pと、ストリンジェントな条件下でハイブリダイズできるプローブ
具体的には、配列ID:1で表されるhsa-miR-423-5pの塩基配列(UGAGGGGCAGAGAGCGAGACUUU)の相補的配列と85%以上、好ましくは90%以上、より好ましくは95%以上一致する配列を有し、検出のために標識化がされている。また、必要に応じて、配列の5’端、3’端に、プライマー配列、担体への固定化のための連結用ヌクレオチド鎖、アダプターなどが連結されていてもよく、リン酸部、糖部分は適宜修飾されていてもよい。
表1に示す第1グループ(配列ID:2~配列ID:33)に含まれるmiRNAの1種又は2種以上とストリンジェントな条件下でハイブリダイズでき、且つ検出のための標識化されているヌクレオチドプローブ又はプローブセット
表2に示す第2グループ(配列ID:34~配列ID:73)に含まれるmiRNAの1種又は2種以上とストリンジェントな条件下でハイブリダイズでき、且つ検出のための標識化されているヌクレオチドプローブ又はプローブセット
プローブ3は、プローブ2の好ましい一態様であり、配列ID:49及び配列ID:56の各プローブとそれぞれストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有しているマーカー用ヌクレオチドプローブのセットである。
・内部標準用プローブとプローブ1
・内部標準用プローブとプローブ2
・内部標準用プローブとブローブ1とプローブ2
・内部標準用プローブとプローブ3
・内部標準用プローブとプローブ1とプローブ3
なお、プローブセットは、マイクロアレイ、プローブパネルなどとして供されてもよい。
検査対象となる検体は、被験者から採取された尿である。ヒトの体液のうち、尿を検査試料として用いることにより、採血といった検体試料の採取が特定技能者に依存しなくて済む。唾液も特定技能者に依存することなく検体を採取できる試料であるが、高齢者のようなドライマウスの被験者では、採取が容易でない場合がある。この点、尿は全ての被験者から容易に採取できる検体試料として優れている。
したがって、本発明のスクリーニング方法は、多数の試料を網羅的に検査するための簡易スクリーニング方法として好適である。
例えば、尿検体から、サイズ排除クロマトグラフィー、遠心分離方法などによりエクソソームを分離し、得られたエクソソームリッチフラクションからRNAを抽出してもよいし、商業的入手可能なキットを用いてエクソソームの分離、あるいは直接RNA単離を行ってもよい。
また、エクソソーム含有試料(尿)をナノワイヤ構造体に送液するだけでエクソソームを回収する方法(ナノバイオデバイス法)を利用してもよい。
好ましくは、例えば、MagMaxTM mirVana Total RNA-Seq kit(Thermo Fisher社)の操作マニュアル(尿サンプル)のプロトコルにしたがって調製される全RNA抽出試料である。
上記により調製した測定用試料(RNA含有試料)からターゲットとするmiRNA(hsa-miR-423-5p、及びバイオマーカーとして用いたmiRNA)を検出、定量する方法としては、本発明のプローブセットを用いてハイブリダイズさせ、プローブに使用した標識の種類の基づき、発光強度、放射能、蛍光強度、酵素活性などを測定すればよい。
これらの方法は、使用したプローブの標識の種類に応じて適宜選択される。例えば、蛍光標識を用いた場合には、ハイブリッド形成により発される蛍光の有無を視覚により観察することで、検出することが可能である。また、蛍光強度など、標識物質の種類に応じた強度をスケーリングすることにより、含有量、含有比率を算出することが可能である。
後述するように、miRNAの定量は、hsa-miR-423-5pの含有量Sに対する、バイオマーカーmiRNAの含有量Bの比率〔B/S〕を取得するための定量であることから、サイクル数、試料中に含まれる内在性コントロールとしてのhsa-miR-423-5p及び目的とするバイオマーカーmiRNAそれぞれの含有量を算出しなくても、直接〔B/S〕を取得できる方法であってもよい。
本発明のスクリーニング方法は、検体となる試料から活動性結核の陽性可能性試料をスクリーニングする方法であり、健康診断のように、多数の検体を陽性試料群と陰性試料群とに分別するためのスクリーニング方法、結核の疑いがある患者の初診としての簡易的検査方法として採用することができる。
得られた〔B/S〕を、健常者の尿から同様の処理方法で調製したRNA含有試料の同比率N(B/S)に基づくカットオフ値と比較し、比較の結果、バイオマーカーの種類(第1グループ又は第2グループ)に応じて、前記被験者の尿由来試料を、結核感染陽性試料は陰性試料に分別する工程を含む。
例えば、多数の健常者集団から導出されるN(B/S)の平均値で規格化した結核患者の〔B/S〕のデータ集団について、ROC曲線を作成して、結核患者の多数が含まれることになる閾値を、カットオフ値として設定することができる。この場合、カットオフ値は、健常者の同バイオマーカーの発現頻度の何倍であるかということに対応する。
比較に使用するカットオフ値は、miRNAの種類、測定用試料の調製方法、標識の種類、定量方法などに依存して、適宜定められる。
バイオマーカーとして、表2(第2グループ)に示されているmiRNAを選択した場合、取得した〔B/S〕が上記カットオフ値より低い場合に、結核感染試料に分別する(第2判定)。
本発明のスクリーニング方法は、第1判定工程又は第2判定工程のいずれか一方を含むだけでもよいが、判定精度を上げる観点からは、第1グループと第2グループの双方からそれぞれバイオマーカーを選択し、第1判定及び第2判定を行うことが好ましい(タイプIのスクリーニング方法)。
本発明のプローブセットを用いることで、複数の判定を同時に行うことが可能である。
あるいは偽陰性を減らした場合、マーカーのいずれか1種のB/Sがカットオフ値よりも低い場合に、結核感染陽性の可能性がある試料であると判定することもできる。
ラオス人の健常者19人、ラオス人の活動性結核感染患者19名(うち2名は、HIV感染の重複感染者)、日本人のCOVID19重症患者(結核感染なし)12名の尿検体を用いた。
尿検体は、採取後、凍結保存され、活動性結核患者の尿検体の場合、1年以上の保存期間を経た後に測定用RNA試料の調製に供した。健常者及びCOVID19重症患者の尿検体の場合、凍結保存期間は60日以内であった。
(1)調製方法その1
尿検体3mlから、MagMaxTM mirVana Total RNA-Seq kit(Thermo Fisher社)の操作マニュアル(尿サンプル)のプロトコルにしたがって、全RNA抽出試料を得た。具体的手順は以下のとおりである。
尿3mlに、Lysis Buffer 2.4mlを添加し、7分間振盪した(500rpm)。得られた混合液に、別途調製したBinding Beads Mix(RNA Binding Beads 234μlとLysis/Binding Enhancer 116μlの混合液)350μlを添加し、5分間振盪した(500rpm)。
得られた溶液に、イソプロパノール5.76mlを添加して、ピペッティングした後、20分間インキュベートした(200rpm)。マグネットスタンドに静置して、分離させた後、上澄み液をすて、洗浄液の添加、振盪による洗浄、次いでTurbo DNaseTM溶液の添加によりRNA Binding Beadsに再結合させ、再結合したRNAを再度マグネットにより分離操作した。分離と洗浄を繰り返した後、乾燥したRNA Binding Beadsに、溶出用バッファーを添加し、65℃で5分間インキュベートした。マグネットスタンドに静置し、得られた上澄液を、測定用サンプルとして用いた。
Urine Conditioning Buffer(ZYMO RESEARCH)とRNeasy Mini KitとRNeasy MiniElute Cleanup Kit(Qiagen)を用いて尿検体15mlからmiRNAを含むRNA抽出試料を得た。尿検体15mlを、前処理(20分間室温で遠心(2000 x g)した後、上清をPVDFメンブレンフィルター(Millex-GV Syringe Filter Unit,0.22μm、(MERCK)でろ過)及び濃縮(前処理で得られたろ液に、1.05μmのUrine Conditioning Bufferを添加して、20分間室温で遠心(3000 x g))を行った後、RNeasy Mini Kit のプロトコルに従って、全RNA抽出試料を得た。具体的手順は、以下のとおりである。
上記で得られた沈殿物にQiazol 2.25ml及びイソプロパノール450μlを添加混合し、2分間室温で静置した。その後、30分間4℃で遠心(最大スピード、21100 x g)し、水相をRNeasy Mini Kit付属のカラムに添加し、遠心による分離洗浄を繰り返した(室温で8000 x g以上で15秒間遠心→フロースルーをRNeasy MiniElute Cleanup Kitへ添加→室温で8000 x g以上で15秒間遠心(フロースルーは廃棄)→RNeasy MiniElute Cleanup Kit付属のウォッシュ用バッファーをカラムへ添加→室温で8000 x g以上で15秒間遠心(フロースルーは廃棄)→80%エタノールをカラムへ添加→室温で8000 x g以上で2分間遠心→室温で、最大スピード21100 x gで5分間遠心)。最後に70℃に加温した滅菌水23μlをカラムに添加し、5分間室温で静置後、室温で1分間遠心(8000 x g以上)し、得られたフロースルー液を測定用サンプルとして用いた。
調製方法その1又はその2で得られたRNA抽出サンプルを用いて、Ion Total RNA-Seq kit v2 for small RNA Libraries(Thermo Fisher社)の操作マニュアルにしたがって、アダプターを付加し、逆転写反応を行って、次世代シークエンサー用cDNAライブラリーを作製した。
作製したcDNAライブラリーについて、次世代シークエンサーIon Torrent S5(Thermo Fisher社)によりシークエンスを解析した。
リファレンス配列との照合・同定は、連続する10塩基以上が一致する場合に、リファンレンス配列に対応するmiRNAであると同定した。
尿検体から調製方法その2により調製した測定用サンプルについて、ターゲットとするmiRNAの含有量を、qRT-リアルタイムPCR法により定量した。リアルタイムPCR法による定量方法は以下のとおりである。
miRCURY LNA miRNA PCR Starter Kit(Qiagen社)を用いて、RNA抽出試料の逆転写を行った。逆転写反応には、0.2mlチューブに下記組成(添加量については検体当たりの体積μl)を有する反応液(10μl)を用いた。
5×miRCURY RT Reaction Buffer(緩衝液) 2.0μl
10×miRCURY RT Enzyme Mix(逆転写酵素液) 1.0μl
Template RNA 6.5μl
ヌクレアーゼ非含有水 0.5μl
ステップ1:42℃で60分
ステップ2:95℃で5分
ステップ3:4℃で保存
2-1 リアルタイムPCR反応(SYBR Green法)
上記逆転写で合成されたcDNAについて、リアルタイムPCR法にて定量した。
リアルタイム反応は、合成したcDNAの15倍希釈物(ヌクレアーゼ非含有水による希釈)について、miRCURY LNA miRNA PCR Starter Kit(Qiagen社)で反応液(下記組成、添加量については検体当たりの体積μl)10μlを、Strip Tube(0.1ml)調製し、リアルタイムサーマルサイクラーであるRoter Gene Q(Qiagen社)を用いて行った。
2×miRCURY SYBR Green Master Mix(緩衝液) 5.0μl
PCRプライマー(miRCURY LNA miRNA PCR assay) 1.0μl
cDNA template(15倍希釈) 3.0μl
ヌクレアーゼ非含有水 1.0μl
Ct値は蛍光の増幅曲線が指数関数的に増幅する領域に、補助線となる閾値線(Thereshold line)を引き、この閾値線と増幅曲線との交点をCt値として算出した。
解析した全ての健常者と患者のcDNA1μlずつを混合した混合物を、基準サンプルとして用いた。
この基準サンプルを、8倍、32倍、128倍、512倍、2048倍に段階希釈した5種類のスタンダードサンプルを用いてリアルタイムPCR反応を行い、検量線を作成した。なお、スタンダードサンプルの濃度(相対値)はそれぞれ256、64、16、4、1となる。
上記シークエンス解析に供した検体の結核感染の有無は、各被験者の喀痰に含まれる結核菌の培養検査、及びGeneXpert(登録商標)システムによる解析により確認した。GeneXpert(登録商標)システムによる結核菌の存否の確認は、喀痰中に含まれるRNAをPCRで増幅した後、結核菌のrpoB遺伝子の薬剤耐性領域をターゲットとするプローブを用いて調べた。
HIV感染の有無については、BD bioscience社のFACS Presto(登録商標)を用いてCD4陽性T細胞の割合を計測することにより、HIV感染の有無を調べた。
健常者、活動性結核感染患者、COVID19患者の尿検体から、調製方法その2にて調製した測定用RNA試料について、リアルタイムPCR法により、hsa-miR-423-5pの同定・定量を行った。定量結果を図1に示す。
図1中、「Heslthy」は健常者、「TB」は結核患者、「TB+HIV」は結核とHIVの重複感染者、「Covid19」は日本人のCovid19重症患者を示す。
(1)N(B/S)の設定
調製方法その2により、健常者の検体(No.1~19)から調製した測定用RNA試料について、標準化用内部マイクロRNA(hsa-miR-423-5p)及び第2グループに属するバイオマーカー(hsa-miR-532-3p、hsa-miR-423-3p)について、リアルタイムPCR法で測定されたCt値から検量線法により含有量を算出した。次いで、hsa-miR-423-5pの含有量(S)に対する各バイオマーカーの含有量(B)の含有量の比率〔B/S〕を算出した。健常者の測定、算出結果を表3に示す。
・hsa-miR-532-3p
N(532-3p)={健常者18人の〔B532-3p/S〕の総和}/18=28.02
・hsa-miR-423-3p
N(423-3p)={健常者19人〔B423-3p/S〕の総和}/19=0.82
調製方法その2により、結核患者群の検体(No.21~39)から調製した測定用RNA試料について、標準化用内部マイクロRNA(hsa-miR-423-5p)及び第2グループに属するバイオマーカー(hsa-miR-532-3p、hsa-miR-423-3p)について、リアルタイムPCRにより測定されるCt値から含有量を算出した。次いで、hsa-miR-423-5pの含有量(S)に対する各バイオマーカーの含有量(B)の含有量比〔B/S〕を算出した。さらに、算出された各検体の〔B/S〕を、健常者のN(B/S)の平均値で除することにより規格化した値(規格化後B/S)を算出した結果を表4に示す。
マーカーmiR532-3pのカットオフ値:0.46
マーカーmiR423-3pのカットオフ値:0.73
表3及び表4の規格化後の〔B/S〕を、図2及び図3に示す。図2,3において、検定で棄却したデータは、プロットしていない。
図中、縦軸は各バイオマーカーについて、規格化後の含有量比率〔B/S〕を示している。すなわち、N(B/S)の平均値が1.0となっている。
また、図3(miR423-3p)に示すように、カットオフ値0.73に設定すると、結核感染陽性に分別されるカットオフ値以下に、約74%の検体が含まれた。
すなわち、本発明のスクリーニング方法によれば、特定数のmiRNAを検出、定量するだけで、簡易に、結核感染陽性可能性が高い試料をスクリーニングできることがわかる。
例えば、全てのマーカーについて、カットオフ値との比較結果が一致する場合にのみ結核感染陽性試料であると分別することで、偽陽性を回避できる。
第2グループに属するバイオマーカーとして、hsa-miR-451a(ID:37)について、その1と同様に、調製方法その2により、健常者の検体(No.1~19)及び結核患者群の検体(No.21~39)から調製した測定用RNA試料について、リアルタイムPCR法を実施した。得られたCt値から、その1と同様にして含有量を算出し、標準化用miRNA(hsa-miR-423-5p)の含有量(S)に対する各バイオマーカーの含有量(B)の含有量の比率〔B/S〕を算出した。
前記検証その1、その2で使用した検体とは別に取得した尿検体(健常者24人、活動性結核感染患者39人)について、調製方法その2により測定用RNA試料を調製した。得られた測定用RNA試料について、バイオマーカーの検証その1にしたがって、リアルタイムPCR法を実行し、標準化用内部マイクロRNA(hsa-miR-423-5p)及び第2グループに属するバイオマーカー(hsa-miR-532-3p、hsa-miR-423-3p)の含有量を算出した。次いで、hsa-miR-423-5pの含有量(S)に対する各バイオマーカーの含有量(B)の含有量の比率〔B/S〕を算出し、さらに各検体試料について、健常者の平均値で規格化した。
発現量が低すぎて、リアルタイムPCRにおいて所定サイクル増幅させることができなかった試料又は群からかけはなれた試料の値を除いた結核感染者の規格化後の〔B532-3p/S〕の平均値(n=34)に基づき、〔B532-3p/S〕のカットオフ値として0.526、〔B423-3p/S〕のカットオフ値として0.73に設定した。
感度=a/(a+c)
「特異度」とは、結核でない検体(真陰性)を正しく結核でない試料であると判定する割合で下記式により算出される。
特異度=d/(b+d)
Claims (8)
- 被験者の尿由来試料に含まれる、表1に示されているmiRNA(配列ID:2~配列IDo:33)及び/又は表2に示されているmiRNA(配列ID:34~配列ID:73)から選択される1種又は2種以上のバイオマーカー用miRNAを検出することにより、結核感染試料をスクリーニングする方法であって、
前記尿由来の試料中のhsa-miR-423-5pの含有量Sに対する、前記バイオマーカー用miRNAの含有量Bの比率〔B/S〕を取得する工程;及び
得られた被験者の比率〔B/S〕を、健常者の尿由来試料中のhsa-miR-423-5pの含有量Sに対する前記バイオマーカー用miRNAの含有量Bの比率N(B/S)と結核感染者の同比率P〔B/S〕に基づくカットオフ値と比較する工程;
前記比較工程結果に基づいて、前記被験者の尿由来試料を結核感染陽性試料又は陰性試料に分別する工程
を含む結核感染試料のスクリーニング方法。
- 前記カットオフ値は、健常者群から導出されるB/Sの平均値(N(B/S))に対する結核感染者群のB/S(P(B/S))について、健常者群と結核感染者群とを統計的に区別できるカットオフ値である請求項1に記載のスクリーニング方法。
- 前記バイオマーカーとして、hsa-miR-532-3p(配列ID:49)、hsa-miR-423-3p(配列ID:56)及びhsa-miR-451a(配列ID:37)から選択される少なくとも1種を選択し、
前記分別工程は、前記被験者の〔B/S〕が、前記カットオフ値より小さい場合に結核感染試料に分別する工程である、請求項2に記載の結核感染試料のスクリーニング方法。 - 前記バイオマーカーが表1に示されているmiRNAである分別工程(第1分別工程)と、前記バイオマーカーが表2に示されているmiRNAである分別工程(第2分別工程)とを行い、
第1分別工程で結核感染試料に分別され、且つ第2分別工程で結核感染試料に分別された場合に、結核感染陽性試料に分別する、請求項1に記載のスクリーニング方法。 - 被験者の尿由来試料中のhsa-miR-423-5p、及びマーカー用miRNAとしてのhsa-miR-532-3p(配列ID:49)、hsa-miR-423-3p(配列ID:56)及びhsa-miR-451a(配列ID:37)の少なくとも2種の含有量を測定する工程;
前記尿由来の試料中のhsa-miR-423-5pの含有量Sに対する、前記各マーカー用miRNAの各含有量Bの比率〔B/S〕を取得する工程;及び
得られた被験者の比率〔B/S〕を、健常者の尿由来試料中のhsa-miR-423-5pの含有量Sに対する前記バイオマーカー用miRNAの含有量Bの比率N(B/S)と結核感染者の同比率P〔B/S〕に基づく、それぞれのバイオマーカーについて設定したカットオフ値と比較する工程;
前記比較工程の結果、前記バイオマーカーの少なくとも1種又は全てについて、カットオフ値よりも低い場合に、前記被験者の尿由来試料を結核感染陽性試料に分別する工程
を含む結核感染試料のスクリーニング方法。 - 被験者の尿由来の試料について、活動性結核の陽性試料を分別するための検査用プローブセットであって、
hsa-miR-423-5pとストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有している標準化用ヌクレオチドプローブ;及び
下記ヌクレオチドプローブ1及びヌクレオチドプローブ2からなる群より選ばれる少なくとも1種を含む活動性結核の検査用プローブセット。
プローブ1:配列ID2~配列ID33から選択される1種又は2種以上とストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有しているヌクレオチドプローブ
プローブ2:配列ID34~配列ID73から選択される1種又は2種以上とストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有しているヌクレオチドプローブ。 - 前記プローブ2は、配列ID37、ID49、及びID56からなる群より選ばれる少なくとも1種で表されるヌクレオチドと、ストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有しているヌクレオチドプローブを含んでいる請求項6に記載の検査用プローブセット。
- 被験者の尿由来の試料について、活動性結核の陽性試料を分別するための検査用プローブセットであって、
hsa-miR-423-5pとストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有している標準化用ヌクレオチドプローブ;及び
プローブ3:配列ID49及び配列ID56の各ヌクレオチドとそれぞれストリンジェントな条件下でハイブリダイズでき、且つ検出可能な標識を有しているマーカー用ヌクレオチドプローブのセット
を含む活動性結核の検査用プローブセット。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280084658.8A CN118414437A (zh) | 2021-12-21 | 2022-12-20 | 结核感染试样的筛选方法和用于该方法的探针组 |
JP2023569461A JPWO2023120524A1 (ja) | 2021-12-21 | 2022-12-20 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-207106 | 2021-12-21 | ||
JP2021207106 | 2021-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023120524A1 true WO2023120524A1 (ja) | 2023-06-29 |
Family
ID=86902522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/046903 WO2023120524A1 (ja) | 2021-12-21 | 2022-12-20 | 結核感染試料のスクリーニング方法及びこれに用いるプローブセット |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023120524A1 (ja) |
CN (1) | CN118414437A (ja) |
WO (1) | WO2023120524A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103045723A (zh) * | 2012-09-13 | 2013-04-17 | 浙江大学 | 一种检测活动性肺结核病的试剂盒 |
EP3026121A1 (en) * | 2014-11-27 | 2016-06-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Micro-RNA-based diagnosis of tuberculosis |
US20170253916A1 (en) * | 2016-03-04 | 2017-09-07 | University Of Notre Dame Du Lac | Exosomal biomarkers diagnostic of tuberculosis |
CN109609620A (zh) * | 2019-01-25 | 2019-04-12 | 北京市结核病胸部肿瘤研究所 | 用于辅助诊断血行播散型肺结核的试剂盒 |
WO2021261373A1 (ja) * | 2020-06-22 | 2021-12-30 | 学校法人関西医科大学 | 結核感染試料のスクリーニング方法並びにこれに用いるバイオマーカー及びプローブセット |
-
2022
- 2022-12-20 CN CN202280084658.8A patent/CN118414437A/zh active Pending
- 2022-12-20 JP JP2023569461A patent/JPWO2023120524A1/ja active Pending
- 2022-12-20 WO PCT/JP2022/046903 patent/WO2023120524A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103045723A (zh) * | 2012-09-13 | 2013-04-17 | 浙江大学 | 一种检测活动性肺结核病的试剂盒 |
EP3026121A1 (en) * | 2014-11-27 | 2016-06-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Micro-RNA-based diagnosis of tuberculosis |
US20170253916A1 (en) * | 2016-03-04 | 2017-09-07 | University Of Notre Dame Du Lac | Exosomal biomarkers diagnostic of tuberculosis |
CN109609620A (zh) * | 2019-01-25 | 2019-04-12 | 北京市结核病胸部肿瘤研究所 | 用于辅助诊断血行播散型肺结核的试剂盒 |
WO2021261373A1 (ja) * | 2020-06-22 | 2021-12-30 | 学校法人関西医科大学 | 結核感染試料のスクリーニング方法並びにこれに用いるバイオマーカー及びプローブセット |
Non-Patent Citations (4)
Title |
---|
BARRY SIMONE E., CHAN BRIAN, ELLIS MAGDA, YANG YURONG, PLIT MARSHALL L., GUAN GUANGYU, WANG XIAOLIN, BRITTON WARWICK J., SAUNDERS : "Identification of miR‐93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients", JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, UNIVERSITY PRESS CAROL DAVILA, BUCHAREST, RO, vol. 19, no. 7, 1 July 2015 (2015-07-01), RO , pages 1606 - 1613, XP093074479, ISSN: 1582-1838, DOI: 10.1111/jcmm.12535 * |
KORMA WORKNEH, MIHRET ADANE, TAREKEGN AZEB, CHANG YUNHEE, HWANG DASOM, TESSEMA TESFAYE SISAY, LEE HYEYOUNG: "Identification of Circulating miR-22-3p and miR-93-5p as Stable Endogenous Control in Tuberculosis Study", DIAGNOSTICS, vol. 10, no. 11, pages 868, XP093074482, DOI: 10.3390/diagnostics10110868 * |
WANG JIERU, ZHU XIAOJIE, XIONG XUEKAI, GE PAN, LIU HAN, REN NINGNING, KHAN FARHAN ANWAR, ZHOU XIA, ZHANG LI, YUAN XU, CHEN XI, CHE: "Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients", EMERGING MICROBES & INFECTIONS, vol. 7, no. 1, 1 December 2018 (2018-12-01), pages 1 - 13, XP093074480, DOI: 10.1038/s41426-018-0066-5 * |
YUHUA QI;LUNBIAO CUI;YIYUE GE;ZHIYANG SHI;KANGCHEN ZHAO;XILING GUO;DANDAN YANG;HAO YU;LAN CUI;YUNFENG SHAN;MINGHAO ZHOU;HUA WANG;Z: "Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection", BMC INFECTIONS DISEASES, BIOMED CENTRAL, LONDON, GB, vol. 12, no. 1, 28 December 2012 (2012-12-28), GB , pages 384, XP021138848, ISSN: 1471-2334, DOI: 10.1186/1471-2334-12-384 * |
Also Published As
Publication number | Publication date |
---|---|
CN118414437A (zh) | 2024-07-30 |
JPWO2023120524A1 (ja) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220119886A1 (en) | Means for diagnosing, predicting or monitoring pneumocystis pneumonia | |
KR101643748B1 (ko) | 결핵 진단용 바이오마커 마이크로 rna | |
CN110804669A (zh) | 用于肺炎支原体的crispr检测引物组及其用途 | |
KR20170136525A (ko) | 전립선암을 예측하기 위한 전혈 기반 mRNA 마커 및 그의 검출 방법 | |
CN114277144B (zh) | 外泌体arpc5、tbc1d23等在肺癌诊断中的应用 | |
US20160362747A1 (en) | Kit and method for detecting bladder cancer | |
CN114369656B (zh) | 一种结核性脑膜炎辅助诊断分子标记物及其应用和试剂盒 | |
WO2016117582A1 (ja) | miRNAを用いた精神疾患判定マーカー | |
CN110541030A (zh) | 膀胱癌检测试剂盒及其应用 | |
WO2019117257A1 (ja) | 乳がんの検出を補助する方法 | |
WO2021261373A1 (ja) | 結核感染試料のスクリーニング方法並びにこれに用いるバイオマーカー及びプローブセット | |
CN110305953B (zh) | 检测miRNA表达量的系统在制备区分结核性脑膜炎和病毒性脑膜炎产品中的应用 | |
WO2023120524A1 (ja) | 結核感染試料のスクリーニング方法及びこれに用いるプローブセット | |
CN112501278A (zh) | Smim26作为结核病诊断分子标识的用途 | |
CN112143796A (zh) | Card16做为分子标识用于结核的诊断与鉴别 | |
WO2023021978A1 (ja) | 自己免疫疾患を検査する方法 | |
KR102241455B1 (ko) | 조기 간암 진단을 위한 엑소좀 유래 microRNA 바이오마커 및 그 용도 | |
CN115261476A (zh) | 筛选血清外泌体LncRNA HULC作为肝癌早期标记物的方法及其制备试剂盒的用途 | |
CN116068193B (zh) | 结核病分子标志物组合及其用途 | |
JP2016158531A (ja) | 大腸癌の予後診断を補助する方法、記録媒体および判定装置 | |
KR102256747B1 (ko) | 엑소좀 miR-125b를 포함하는 간암 전이 진단 또는 예측용 바이오마커 및 이의 용도 | |
KR102131519B1 (ko) | 간암 전이 진단 또는 예후 예측용 바이오마커 및 이의 용도 | |
CN118222703B (zh) | 生物标志物在制备诊断活动性结核病的产品中的应用及诊断活动性结核病的试剂盒 | |
JP7299765B2 (ja) | マイクロrna測定方法およびキット | |
CN114134231B (zh) | 一种基于ecDNA的脑胶质瘤基因标志物及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22911226 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 18716263 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023569461 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280084658.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202447053344 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11202403756R Country of ref document: SG |