[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023163546A1 - 가소제 조성물 및 이를 포함하는 수지 조성물 - Google Patents

가소제 조성물 및 이를 포함하는 수지 조성물 Download PDF

Info

Publication number
WO2023163546A1
WO2023163546A1 PCT/KR2023/002666 KR2023002666W WO2023163546A1 WO 2023163546 A1 WO2023163546 A1 WO 2023163546A1 KR 2023002666 W KR2023002666 W KR 2023002666W WO 2023163546 A1 WO2023163546 A1 WO 2023163546A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylhexyl
terephthalate
weight
composition
plasticizer composition
Prior art date
Application number
PCT/KR2023/002666
Other languages
English (en)
French (fr)
Inventor
김현규
우승택
김주호
김은석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to MX2024009853A priority Critical patent/MX2024009853A/es
Priority claimed from KR1020230024778A external-priority patent/KR20230127922A/ko
Publication of WO2023163546A1 publication Critical patent/WO2023163546A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic

Definitions

  • the present invention relates to a plasticizer composition containing 2-ethylhexyl (2-hydroxyethyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexyl) terephthalate, and a resin composition containing the same .
  • plasticizers react with alcohols with polycarboxylic acids such as phthalic acid and adipic acid to form the corresponding esters.
  • polycarboxylic acids such as phthalic acid and adipic acid
  • plasticizer compositions that can replace phthalate-based plasticizers such as terephthalate-based, adipate-based, and other polymer-based plasticizers continues.
  • additives such as plasticizers, fillers, stabilizers, viscosity lowering agents, dispersants, antifoaming agents, and foaming agents are mixed with PVC resin according to the characteristics required by industry, such as tensile strength, elongation, light resistance, transferability, gelling property, or absorption rate.
  • plasticizer compositions applicable to PVC when relatively inexpensive and most commonly used di(2-ethylhexyl) terephthalate (DEHTP) is applied, hardness or sol viscosity is high and plasticizer absorption rate is high. was relatively slow, and transitivity and stress transitivity were not good.
  • DEHTP di(2-ethylhexyl) terephthalate
  • the present invention includes 2-ethylhexyl (2-hydroxyethyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexyl) terephthalate, which can be obtained in the decomposition process of polyethylene terephthalate.
  • a plasticizer it is intended to provide an environmentally friendly plasticizer composition that has performance equal to or higher than that of conventional phthalate-based plasticizers and is free from reproductive development toxicity.
  • the present invention is to provide a method for producing a plasticizer composition capable of preparing a plasticizer composition with excellent physical properties economically and environmentally friendly by using discarded polyethylene terephthalate as a raw material.
  • the present invention provides a plasticizer composition, a method for preparing the same, and a resin composition including the plasticizer composition.
  • the present invention includes 2-ethylhexyl (2-hydroxyethyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexyl) terephthalate, and the 2-ethylhexyl (2 -Hydroxyethyl)
  • the content of terephthalate provides a plasticizer composition that is 20% by weight or less based on the total plasticizer composition.
  • the present invention provides the plasticizer composition according to (1) above, wherein the content of 2-ethylhexyl (2-hydroxyethyl) terephthalate is 0.01 to 15% by weight.
  • the weight ratio between the 2-ethylhexyl (2-hydroxyethyl) terephthalate and the di (2-ethylhexyl) terephthalate is 1: 3 to 1 : 10000 provides a plasticizer composition.
  • the present invention further comprises a condensate of di(2-hydroxyethyl) terephthalate and 2-ethylhexyl(2-hydroxyethyl) terephthalate according to any one of (1) to (4) above. It provides a plasticizer composition that is to do.
  • the present invention provides a plasticizer composition according to any one of (1) to (5) above, further comprising any one or more of the dimer compounds represented by the following formulas (1) to (3).
  • the present invention provides the plasticizer composition according to (6) above, wherein the total content of the dimer compound in the composition is 2.0 to 20.0% by weight.
  • the present invention provides the plasticizer composition according to (6) or (7), wherein the content of the dimer compound represented by Formula 1 in the composition is 0.01 to 1% by weight.
  • the present invention provides the plasticizer composition according to any one of (6) to (8) above, wherein the content of the dimer compound represented by Formula 3 in the composition is 0.3 to 2.5% by weight.
  • the present invention is the plasticizer according to any one of (6) to (9) above, wherein the weight ratio between the dimer compound and 2-ethylhexyl (2-hydroxyethyl) terephthalate in the composition is 1: 0.001 to 5 composition is provided.
  • the present invention provides the plasticizer composition according to any one of (6) to (10) above, wherein the weight ratio between the dimer compound and di(2-ethylhexyl) terephthalate in the composition is 1:2.0 to 99.0. .
  • the present invention includes the step of esterification by mixing polyethylene terephthalate and 2-ethylhexanol under a catalyst, and the product of the esterification reaction is 2-ethylhexyl (2-hydroxyethyl) tere It provides a method for preparing a plasticizer composition comprising phthalate, di(2-ethylhexyl) isophthalate and di(2-ethylhexyl) terephthalate.
  • the present invention provides a method for producing a plasticizer composition according to (12) above, wherein the polyethylene terephthalate is mixed in an amount of 80% by weight or less based on the total content of polyethylene terephthalate and 2-ethylhexanol.
  • the present invention provides a method for producing a plasticizer composition according to (12) or (13) above, wherein the polyethylene terephthalate includes discarded and recycled polyethylene terephthalate.
  • the resin is a straight vinyl chloride polymer, a paste vinyl chloride polymer, an ethylene vinyl acetate copolymer, an ethylene polymer, a propylene polymer, polyketone, polystyrene, polyurethane, poly It provides a resin composition that is at least one selected from the group consisting of lactic acid, natural rubber and synthetic rubber.
  • the plasticizer composition according to an embodiment of the present invention is an eco-friendly material without toxicity to reproductive development, but when used in a resin composition, mechanical properties, migration resistance, stress migration and absorption rate can be improved compared to conventional plasticizers.
  • the manufacturing method of the down method is an eco-friendly manufacturing method by utilizing waste, and at the same time, cost competitiveness can be very excellent.
  • composition includes mixtures of materials comprising the composition as well as reaction products and decomposition products formed from the materials of the composition.
  • straight vinyl chloride polymer is one of the types of vinyl chloride polymer, and is polymerized through suspension polymerization or bulk polymerization. This polymer is a porous particle having a large number of pores, has a size of several tens to hundreds of micrometers, has no cohesiveness, and has excellent flowability.
  • paste vinyl chloride polymer is one of the types of vinyl chloride polymers, and is polymerized through microsuspension polymerization, microseed polymerization, or emulsion polymerization. This polymer is fine and dense particles without pores, has a size of tens to thousands of nanometers, has cohesiveness, and has poor flowability.
  • compositions claimed through use of the term 'comprising' will, unless stated to the contrary, contain any additional additives, adjuvants, or compounds, whether polymeric or otherwise. can include
  • the term 'consisting essentially of' excludes from the scope of any succeeding recitation any other component, step or procedure, excepting those not essential to operability.
  • the term 'consisting of' excludes any ingredient, step or procedure not specifically delineated or listed.
  • the content analysis of components in the composition is performed through gas chromatography measurement, and Agilent's gas chromatography instrument (product name: Agilent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4mL / min) , detector: F.I.D, injection volume: 1uL, initial value: 70°C/4.2min, final value: 280°C/7.8min, program rate: 15°C/min).
  • Agilent's gas chromatography instrument product name: Agilent 7890 GC, column: HP-5, carrier gas: helium (flow rate 2.4mL / min) , detector: F.I.D, injection volume: 1uL, initial value: 70°C/4.2min, final value: 280°C/7.8min, program rate: 15°C/min).
  • 'tensile strength' refers to a crosshead speed of 200 mm/min (1T) using a test device, U.T.M (manufacturer; Instron, model name: 4466) according to the ASTM D638 method. ) After pulling, the point where the specimen is cut is measured and calculated by Equation 1 below.
  • Tensile strength (kgf/cm 2 ) load value (kgf) / thickness (cm) x width (cm)
  • 'elongation rate' is measured by the ASTM D638 method, after pulling the cross head speed to 200 mm / min (1T) using the U.T.M., and then measuring the point where the specimen is cut After that, it is calculated by Equation 2 below.
  • Elongation (%) length after extension / initial length x 100
  • 'migration loss' may be measured according to KSM-3156. Specifically, after obtaining a test piece with a thickness of 1 mm, attaching an absorbent paper that can absorb organic matter flowing to the surface by transferring to both sides of the test piece, attaching a plate to cover the entire test piece on top of it, and applying a load of 1 kgf / cm 2 do. After the test piece is left in a hot air circulation oven (80° C.) for 72 hours, it is taken out and cooled at room temperature for 4 hours. Then, after removing the plate and absorbent paper attached to both sides of the test piece, the weight before and after leaving the test piece in the oven is measured, and the transition loss is calculated by Equation 3 below.
  • Transition loss (%) ⁇ [(initial specimen weight) - (specimen weight after leaving the oven)] / (initial specimen weight) ⁇ x 100
  • 'volatile loss' refers to measuring the weight of a specimen after working the specimen at 80 ° C for 72 hours.
  • Heating loss (%) ⁇ [(Initial specimen weight) - (Specimen weight after operation)] / (Initial specimen weight) ⁇ x 100
  • 'absorption rate' is evaluated by measuring the time required until the resin and the plasticizer are mixed with each other to stabilize the torque of the mixer using a Planatary mixer (Brabender, P600) under the conditions of 77 ° C and 60 rpm. do.
  • the present invention includes 2-ethylhexyl (2-hydroxyethyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexyl) terephthalate, and the 2-ethylhexyl (2-hydroxy
  • the content of oxyethyl) terephthalate is 20% by weight or less based on the total plasticizer composition.
  • the plasticizer composition containing the 2-ethylhexyl (2-hydroxyethyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexyl) terephthalate is polyethylene terephthalate (hereinafter referred to as PET) 2 -It can be obtained from a product produced by esterification with ethylhexanol.
  • di (2-ethylhexyl) terephthalate which is used as a general-purpose plasticizer
  • PET and 2-ethylhexanol are reacted in some cases, but a large amount of by-products are produced, and bis
  • 2-hydroxyethyl) terephthalate or 2-ethylhexyl (2-hydroxyethyl) terephthalate there is a problem in that it is not easy to separate from di(2-ethylhexyl) terephthalate.
  • bis(2-hydroxyethyl) terephthalate and 2-ethylhexyl(2-hydroxyethyl) terephthalate are alcohol-based compounds containing a hydroxyl group in their molecular structure, so that the target product, di(2-ethylhexyl) It has another problem that it can cause side reactions with terephthalate. Therefore, almost all manufacturers use direct esterification of terephthalic acid and 2-ethylhexanol or transesterification of dimethyl terephthalate and 2-ethylhexanol as a method for producing di(2-ethylhexyl)terephthalate. However, the method of using PET as a raw material is not being used.
  • 2-ethylhexyl (2-hydroxyethyl) terephthalate can bind more firmly with the resin being mixed due to the presence of a hydroxyl group in the molecular structure, and di (2-ethylhexyl), which is the main component in the plasticizer composition, ) It can play a role of holding terephthalate so that it is not discharged to the outside of the resin.
  • the content of the 2-ethylhexyl (2-hydroxyethyl) terephthalate may be 20% by weight or less based on the total plasticizer composition.
  • the content of the 2-ethylhexyl (2-hydroxyethyl) terephthalate is 0.01% by weight or more, 0.05% by weight or more, 0.06% by weight or more, 0.08% by weight or more, 0.10% by weight or more based on the total plasticizer composition , 0.50 wt% or more, 1.0 wt% or more, 2.0 wt% or more, 3.0 wt% or more, 4.0 wt% or more, 4.5 wt% or more, 4.9 wt% or more, 5.0 wt% or more, 5.5 wt% or more, 6.0 wt% or more , 6.5 wt% or more, 7.0 wt% or more, 7.1 wt% or more, 7.2 wt%
  • the content of terephthalate may be 0.01 to 15% by weight based on the total plasticizer composition.
  • the weight ratio between the 2-ethylhexyl (2-hydroxyethyl) terephthalate and di (2-ethylhexyl) terephthalate may be 1:3 to 10000, preferably 1:5 to 1:2000 or 1:5 to 1:1000. If the content of 2-ethylhexyl (2-hydroxyethyl) terephthalate in the plasticizer composition is too small, the above-described effect of improving the migration resistance of 2-ethylhexyl (2-hydroxyethyl) terephthalate may be insignificant.
  • Blending with the resin and processing conditions for the finished product may become unstable, and accordingly, the overall resin composition or the heat resistance of the finished product obtained from the resin composition may be reduced.
  • the 2-ethylhexyl (2-hydroxyethyl) terephthalate is included as a major component in the plasticizer composition, with a relatively low molecular weight of 2-ethylhexyl (2-hydroxyethyl) terephthalate Due to this, it may be difficult to mix with the resin, and a problem such as a smooth rolling process after blending may occur.
  • the content of 2-ethylhexyl (2-hydroxyethyl) terephthalate satisfies the above-described preferred range, appropriate heating loss and absorption rate can be realized, resulting in excellent heat resistance and a plasticizer that can be stably incorporated into a resin composition
  • a composition may be provided.
  • polyethylene terephthalate contains isophthalate, an isomer of terephthalate, in a small amount in its molecular structure, and this isophthalate structure can form di(2-ethylhexyl) isophthalate through the esterification reaction described above. there is.
  • di(2-ethylhexyl) isophthalate is regarded as an impurity and all di(2-ethylhexyl) isophthalate is removed from the final composition.
  • the content of di(2-ethylhexyl) isophthalate in the plasticizer composition of the present invention obtained from PET is also low, specifically, 5% by weight or less based on the total composition, Preferably it may be 0.3 to 3% by weight. It is not easy to increase the content of di (2-ethylhexyl) isophthalate higher than the above-mentioned range due to the structure of PET, which is a reaction raw material. The improvement effect by 2-ethylhexyl) isophthalate is insignificant.
  • the plasticizer composition of the present invention may further include any one or more of the dimer compounds represented by Chemical Formulas 1 to 3 below.
  • a plasticizer composition with improved performance compared to existing plasticizer products can be provided by adjusting so that it can be included in a certain amount in the plasticizer composition.
  • the isophthalate may be produced because recycled polyethylene terephthalate (PET) is used as a raw material during the manufacturing process of the plasticizer composition, and high-purity isophthalic acid used in a small amount remains during the manufacture of the PET.
  • dimer compounds can be prepared in various forms and contents depending on the type of alcohol used or the reaction conditions in the PET depolymerization process, etc., and compounds having these structures are included together with the terephthalate-based plasticizer in the plasticizer composition, thereby reducing the existing terephthalate-based plasticizer. It can supplement the compression transferability of plasticizers.
  • dimer compound in which 2-ethylhexanol is bonded to each end of two terephthalic acids is produced.
  • This dimer compound may be included in the final plasticizer composition.
  • dimer compound may be an example, and in addition to the formation process described above, various reactions between 2-ethylhexyl (2-hydroxyethyl) terephthalate and 2-ethylhexyl (2-hydroxyethyl) isophthalate Various combinations of dimer compounds can be formed by
  • the contents of the di(2-ethylhexyl) terephthalate, 2-ethylhexyl(2-hydroxyethyl) and the dimer compound may be adjusted by intentionally controlling the transesterification reaction during the manufacturing method described above.
  • the reaction time is adjusted during the transesterification reaction, a relatively large amount of by-products such as dimer compounds, trimer and/or tetramer compounds may be produced depending on the reaction time.
  • the content of the dimer compound may be determined according to the amount of catalyst used in the preparation method, the amount of 2-ethylhexanol introduced, the reaction pressure and temperature, the reaction time, etc. In particular, the amount of 2-ethylhexanol introduced As the amount increases, the content of the condensate and dimer may decrease.
  • the total content of the dimer compound in the composition may be 2.0 to 20.0% by weight, exemplarily, the total content of the dimer compound in the composition is 2.0% by weight or more, 3.0% by weight or more , 4.0 wt% or more, 5.0 wt% or more, 6.0 wt% or more, 7.0 wt% or more, 8.0 wt% or more, 20.0 wt% or less, 19.0 wt% or less, 18.0 wt% or less, 17.0 wt% or less, 16.0 wt% or less , 15.0 wt% or less, 14.0 wt% or less, 13.0 wt% or less, or 12.0 wt% or less.
  • the total content of the dimer compound in the composition may be 2.0 to 15.0% by weight.
  • the content of the dimer compound is controlled within the above-mentioned range, it is possible to provide a plasticizer composition having migration resistance and heat loss characteristics equal to or higher than those of existing plasticizer products, and excellent mechanical properties such as tensile strength and tensile residual rate and stress resistance characteristics.
  • the compounds represented by Chemical Formulas 1 to 3 may simultaneously exist in the plasticizer composition.
  • the content of the dimer compound represented by Formula 1 in the composition may be 0.01 to 1.0% by weight, and the content of the dimer compound represented by Formula 2 may be 1.5 to 17.0% by weight
  • the content of the dimer compound represented by Chemical Formula 3 may be 0.3 to 2.5% by weight.
  • the content of the dimer compound represented by Formula 1 is 0.01 wt% or more, 0.02 wt% or more, 0.03 wt% or more, 0.04 wt% or more, 0.05 wt% or more, 0.10 wt% or more, 0.20 wt% or more, 0.30 wt% or more. 0.40 wt% or more, 1.0 wt% or less, 0.90 wt% or less, 0.80 wt% or less, 0.70 wt% or less, 0.60 wt% or less, or 0.50 wt% or less.
  • the content of the dimer compound represented by Formula 2 is 1.5% by weight or more, 1.7% by weight or more, 1.8% by weight or more, 2.0% by weight or more, 2.5% by weight or more, 2.7% by weight or more, 3.0% by weight or more, 3.5 wt% or more, 3.7 wt% or more, 4.0 wt% or more, 5.0 wt% or more, 17.0 wt% or less, 16.0 wt% or less, 15.0 wt% or less, 14.0 wt% or less, 13.0 wt% or less, 12.0 wt% or less, 11.0 wt% or less, 10.0 wt% or less, 9.0 wt% or less, 8.0 wt% or less, 7.0 wt% or less, or 6.0 wt% or less.
  • the content of the dimer compound represented by Formula 3 is 0.3 wt% or more, 0.4 wt% or more, 0.5 wt% or more, 0.7 wt% or more, 1.0 wt% or more, 1.1 wt% or more, 1.2 wt% or more, 1.3 wt% or more, 1.5 wt% or more, 2.5 wt% or less, 2.4 wt% or less, 2.3 wt% or less, 2.1 wt% or less, 2.0 wt% or less, 1.7 wt% or less, 1.5 wt% or less, 1.3 wt% or less, 1.2 wt% or less, or 1.1 wt% or less.
  • each of the dimer compounds represented by Chemical Formulas 1 to 3 satisfies the above-described range, it may have an effect of improving transition resistance and heating loss in processing properties with the resin.
  • the weight ratio between the dimer compound and 2-ethylhexyl (2-hydroxyethyl) terephthalate in the composition may be 1:0.001 to 5.0, exemplarily, 1: 0.01 or more, 0.02 or more, 0.05 or more, 0.1 0.2 or more, 0.5 or more, 0.7 or more, 1.0 or more, 1.5 or more, 5.0 or less, 4.7 or less, 4.5 or less, 4.2 or less, 4.0 or less, 3.7 or less, 3.5 or less, 3.2 or less, 3.0 or less, 2.7 or less, 2.5 or less, 2.3 or less, 2.0 or less, 1.7 or less, 1.5 or less, 1.2 or less, 1.0 or less, or 0.8 or less.
  • the weight ratio between the dimer compound and 2-ethylhexyl (2-hydroxyethyl) terephthalate may be 1:0.01 to 0.8.
  • the weight ratio between the dimer compound and 2-ethylhexyl (2-hydroxyethyl) terephthalate in the plasticizer composition satisfies the above range, the effect of improving migration resistance may be excellent, and the heating loss and absorption rate may be excellent, resulting in resin
  • the mixing with and the rolling process after the mixing proceed smoothly, so process stability may be increased.
  • the weight ratio between the dimer compound and di(2-ethylhexyl) terephthalate in the composition may be 1: 2.0 to 99.0, exemplarily, 1: 2.0 or more, 2.5 or more, 2.7 or more, 3.0 or more, 3.5 or more.
  • the weight ratio between the dimer compound and di(2-ethylhexyl) terephthalate in the composition may be 1:2.7 to 45.
  • the ratio between the dimer compound and di(2-ethylhexyl) terephthalate is within the above-described range, the effect of improving migration resistance achieved by including the dimer compound in the plasticizer composition may be maximized.
  • a hydrogenation method may be applied to the plasticizer composition of the present invention.
  • the present invention is 2-ethylhexyl (2-hydroxyethyl) cyclohexane-1,4-dicarboxylate, di (2-ethylhexyl) cyclohexane-1,3-dicarboxylate and di (2-ethylhexyl)
  • a plasticizer containing cyclohexane-1,4-dicarboxylate, wherein the content of 2-ethylhexyl (2-hydroxyethyl) cyclohexane-1,4-dicarboxylate is 20% by weight or less based on the total plasticizer composition composition can be provided.
  • the plasticizer composition may further include hydrides of the dimer compounds represented by Chemical Formulas 1 to 4.
  • the plasticizer composition containing -1,4-dicarboxylate can be obtained by hydrogenating a product produced by trans-esterification of polyethylene terephthalate (hereinafter, PET) with 2-ethylhexanol, and trans-esterification The order of the reaction and the hydrogenation reaction may be reversed.
  • the products include the previously described 2-ethylhexyl (2-hydroxyethyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexyl) terephthalate, and the dimeric compounds of Formulas 1 to 4 above. may further include.
  • the plasticizer composition can significantly improve transferability and weight loss characteristics while eliminating environmental issues, and it is possible to implement a product with significantly improved light resistance and heat resistance compared to existing commercial products.
  • the present invention provides a method for preparing the plasticizer composition described above.
  • the present invention includes the step of performing an esterification reaction by mixing polyethylene terephthalate and 2-ethylhexanol under a catalyst, and the product of the esterification reaction is 2-ethylhexyl (2-hydroxyethyl) tere
  • the product of the esterification reaction is 2-ethylhexyl (2-hydroxyethyl) tere
  • It includes a method for producing a plasticizer composition comprising phthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexyl) terephthalate.
  • the product may further include any one or more of the dimer compounds represented by Chemical Formulas 1 to 3 described above.
  • PET is represented by Formula (a) below.
  • 2-ethylhexanol reacts with ester groups present in PET to break up the polymer chain of PET.
  • the ratio can be adjusted, and it is important to adjust the ratio of the three components as well as the ratio of the dimer compound within the above-described range to an optimal range.
  • the PET may be included in 80% by weight or less, preferably 60% by weight or less, more preferably 50% by weight, 40% by weight or 35% by weight or less, based on the total content of 2-ethylhexanol and PET. can be included.
  • the content of PET is within the above range, the amount of 2-ethylhexanol introduced is sufficient to minimize side reactions and maximize the transesterification reaction between the desired PET and 2-ethylhexanol.
  • the composition obtained through the manufacturing process satisfies the above-described preferred content condition, minimizing post-treatment after the manufacturing process, and immediately producing a plasticizer composition with excellent physical properties. there is.
  • the PET may include 50% by weight or more of waste PET, preferably 60% by weight or more, and more preferably 70% by weight or more. Even if waste PET is used, since the component ratio in the final product does not change, it is possible to use waste PET in its entirety as long as the color or impurity content of the plasticizer can be controlled. Since waste PET is used in this way, cost competitiveness is very excellent compared to di(2-ethylhexyl) terephthalate produced from terephthalic acid or dimethyl terephthalate, and energy consumption and environmental pollution used in manufacturing terephthalic acid or dimethyl terephthalate are reduced. can make a significant contribution to environmental improvement.
  • by-products generated during the reaction such as ethylene glycol
  • ethylene glycol may be recovered outside the system, but some of them may remain in the reaction system.
  • an appropriate level of 2-ethylhexyl (2-hydroxyethyl) terephthalate and the dimer compound of Formulas 1 to 3 can be formed from the ethylene glycol remaining in the reaction system.
  • the manufacturing process can be economically operated.
  • ethylene glycol is used as a reactant to form the 2-ethylhexyl (2-hydroxyethyl) terephthalate and the dimer compounds of Chemical Formulas 1 to 3
  • the content of ethylene glycol in the final composition is naturally extremely low and separated It also has the advantage of simplifying the process.
  • the catalyst examples include acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, and alkyl sulfuric acid; metal salts such as aluminum lactate, lithium fluoride, potassium chloride, cesium chloride, calcium chloride, iron chloride, and aluminum phosphate; metal oxides such as heteropoly acids; natural/synthetic zeolites; cation and anion exchange resins; Catalysts containing choline compounds such as choline hydroxide, choline bicarbonate, choline chloride, choline hydrogen stannate, choline dihydrogen citrate, choline sulfate, and the like; organic metals such as alkyl titanates such as tetraalkyl titanates or polymers thereof; and organometallics including zir
  • the amount of the catalyst used may vary depending on the type, and for example, in the case of a homogeneous catalyst, it is in the range of 0.01 to 5% by weight, 0.01 to 3% by weight, 1 to 5% by weight, or 2 to 4% by weight based on 100% by weight of the total reactant. and in the case of a heterogeneous catalyst may be within the range of 5 to 200%, 5 to 100%, 20 to 200%, or 20 to 150% by weight of the total amount of reactants.
  • the transesterification reaction is carried out at a reaction temperature of 120 ° C to 240 ° C, preferably 135 ° C to 230 ° C, more preferably 141 ° C to 220 ° C for 10 minutes to 12 hours, preferably It is preferably carried out in 30 minutes to 10 hours, more preferably 1 to 8 hours.
  • the reaction time may be calculated from the time when the reaction temperature is reached after the temperature of the reactant is raised.
  • a step of removing unreacted 2-ethylhexanol and reaction byproducts such as ethylene glycol may be further included.
  • ethylene glycol since it has high solubility in water, it can be removed through neutralization and washing with water after completion of the reaction, and after neutralization and washing with water, remaining 2-ethylhexanol can be removed through extractive distillation.
  • a resin composition including the plasticizer composition and the resin described above is provided.
  • Resins known in the art may be used as the resin.
  • resins known in the art may be used as the resin.
  • the resin in the group consisting of straight vinyl chloride polymers, paste vinyl chloride polymers, ethylene vinyl acetate copolymers, ethylene polymers, propylene polymers, polyketones, polystyrenes, polyurethanes, polylactic acids, natural rubbers, synthetic rubbers and thermoplastic elastomers.
  • One or more selected mixtures may be used, but the present invention is not limited thereto.
  • the plasticizer composition may be included in an amount of 5 to 150 parts by weight, preferably 5 to 130 parts by weight, or 10 to 120 parts by weight based on 100 parts by weight of the resin.
  • the resin used in the plasticizer composition may be manufactured into a resin product through melt processing or plastisol processing, and the melt processing resin and plastisol processing resin may be produced differently according to each polymerization method.
  • a vinyl chloride polymer when used for melt processing, it is produced by suspension polymerization and the like, and solid resin particles having a large average particle diameter are used.
  • a vinyl chloride polymer is called a straight vinyl chloride polymer and is used for plastisol processing.
  • a resin in a sol state as fine resin particles produced by emulsion polymerization or the like is used, and such a vinyl chloride polymer is called a paste vinyl chloride resin.
  • the plasticizer is preferably included within the range of 5 to 80 parts by weight based on 100 parts by weight of the polymer, and in the case of the paste vinyl chloride polymer, 40 to 120 parts by weight based on 100 parts by weight of the polymer It is preferable to be included in
  • the resin composition may further include a filler.
  • the filler may be 0 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight based on 100 parts by weight of the resin.
  • the filler may use a filler known in the art, and is not particularly limited.
  • a filler known in the art, and is not particularly limited.
  • it may be a mixture of at least one selected from silica, magnesium carbonate, calcium carbonate, hard coal, talc, magnesium hydroxide, titanium dioxide, magnesium oxide, calcium hydroxide, aluminum hydroxide, aluminum silicate, magnesium silicate, and barium sulfate.
  • the resin composition may further include other additives such as a stabilizer, if necessary.
  • additives such as the stabilizer may be 0 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the resin, for example.
  • the stabilizer may be, for example, a calcium-zinc-based (Ca-Zn-based) stabilizer or a barium-zinc (Ba-Zn-based) stabilizer such as a calcium-zinc composite stearate, but is not particularly limited thereto. no.
  • the resin composition can be applied to both melt processing and plastisol processing.
  • melt processing can be applied to calendering processing, extrusion processing, or injection processing
  • plastisol processing can be applied to coating processing, etc. this may apply.
  • Example 1 was carried out in the same manner as in 2-hydroxyethyl (2-ethylhexyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexanol) by adjusting the input amount and reaction time of 2-ethylhexanol.
  • -Ethylhexyl) terephthalate (DEHTP) was obtained as a composition containing 7.2% by weight, 2% by weight and 78.5% by weight, respectively.
  • the remaining components except for the three components in the composition included by-products generated during the reaction process, and the by-products contained dimer compounds in the amounts shown in Table 1 below.
  • Example 1 was carried out in the same manner as in 2-hydroxyethyl (2-ethylhexyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexanol) by adjusting the input amount and reaction time of 2-ethylhexanol.
  • -Ethylhexyl) terephthalate (DEHTP) was obtained as a composition containing 4.9% by weight, 1.75% by weight and 90.3% by weight, respectively.
  • the remaining components except for the three components in the composition included by-products generated during the reaction process, and the by-products contained dimer compounds in the amounts shown in Table 1 below.
  • Example 1 was carried out in the same manner as in 2-hydroxyethyl (2-ethylhexyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexanol) by adjusting the input amount and reaction time of 2-ethylhexanol.
  • -Ethylhexyl) terephthalate (DEHTP) was obtained as a composition containing 0.06% by weight, 1.9% by weight and 95.8% by weight, respectively.
  • the remaining components except for the three components in the composition included by-products generated during the reaction process, and the by-products contained dimer compounds in the amounts shown in Table 1 below.
  • Example 1 was carried out in the same manner as in 2-hydroxyethyl (2-ethylhexyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexanol) by adjusting the input amount and reaction time of 2-ethylhexanol.
  • -Ethylhexyl) terephthalate (DEHTP) was obtained as a composition containing 19.1% by weight, 2% by weight and 58.9% by weight, respectively.
  • the remaining components except for the three components in the composition included by-products generated during the reaction process, and the by-products contained dimer compounds in the amounts shown in Table 1 below.
  • di(2-ethylhexyl) phthalate (DEHP) was used as a plasticizer composition.
  • Example 1 was carried out in the same manner as in 2-hydroxyethyl (2-ethylhexyl) terephthalate, di (2-ethylhexyl) isophthalate and di (2-ethylhexanol) by adjusting the input amount and reaction time of 2-ethylhexanol.
  • -Ethylhexyl) terephthalate (DEHTP) was obtained as a composition containing 21.5% by weight, 1.5% by weight and 55.2% by weight, respectively.
  • the remaining components except for the three components in the composition included by-products generated during the reaction process, and the by-products contained dimer compounds in the amounts shown in Table 1 below.
  • Tensile strength According to the ASTM D638 method, after pulling the crosshead speed at 200 mm/min using a test device, UTM (manufacturer; Instron, model name: 4466), 1T specimen The cutting point was measured. Tensile strength was calculated as follows:
  • Tensile strength (kgf/cm 2 ) load value (kgf) / thickness (cm) x width (cm)
  • Elongation (%) length after elongation / initial length x 100.
  • Tensile and elongation residual rate measurements The measurement of tensile and elongation residual is to measure the tensile strength and elongation remaining in the specimen after heating at 100 ° C. for 168 hours, and the measurement method is the same as the tensile strength and elongation measurement method.
  • Measurement of migration loss Measured according to KSM-3156. Specifically, after obtaining a test piece with a thickness of 1 mm, attaching an absorbent paper that can absorb organic matter flowing to the surface by transferring to both sides of the test piece, attaching a plate to cover the entire test piece on top of it, and applying a load of 1 kgf / cm 2 do. After the test piece is left in a hot air circulation oven (80° C.) for 72 hours, it is taken out and cooled at room temperature for 4 hours. Then, after removing the plate and absorbent paper attached to both sides of the test piece, the weight before and after leaving the test piece in the oven was measured, and the transition loss was calculated by Equation 3 below.
  • Transition loss (%) ⁇ (initial weight of test piece at room temperature - weight of test piece after leaving in oven) / initial weight of test piece at room temperature ⁇ x 100
  • Stress test Stress resistance: After leaving a specimen with a thickness of 2 mm bent at 23 ° C for 168 hours, the degree of transition (degree of oozing) was observed on the 1st, 3rd and 7th days, and the result was written numerically. The closer the value is to 0, the better the stress resistance.
  • Example 1 5.11 0.94 210.9 324.8 108.2 89.9
  • Example 2 5.78 0.90 210.9 325.4 104.2 89.0
  • Example 3 5.86 0.92 210.1 324.5 102.1 89.0
  • Example 4 5.88 0.88 211.4 326.2 105.6 89.5
  • Example 5 5.23 0.95 208.7 320.1 104.8 88.9 Comparative Example 1 3.21 2.34 200.3 310.2 89.6 87.4 Comparative Example 2 6.54 0.90 207.3 320.4 104.2 89.1 Comparative Example 3 6.36 0.98 208.1 320.3 101.2 88.9 Comparative Example 4 5.34 1.23 198.5 310.2 98.6 82.3
  • Examples 1 to 5 showed excellent results in terms of heating loss, mechanical properties, stress resistance and carbonization characteristics compared to Comparative Example 1, which is a conventional phthalate-based plasticizer product. That is, the plasticizer composition of the present invention is applied together with di (2-ethylhexyl) terephthalate and 2-ethylhexyl (2-hydroxyethyl) terephthalate, thereby reducing heating loss, stress resistance and mechanical properties without deterioration of existing physical properties.
  • Comparative Example 2 was prepared from polyethylene terephthalate similarly to the examples of the present invention, but using a larger amount of 2-ethylhexanol and additionally going through a separation process to obtain 2-ethylhexyl in the final composition. (2-hydroxyethyl) terephthalate is completely removed, although the cost of the manufacturing process is higher than that of Examples 1 to 5, the physical properties of the finally obtained plasticizer composition are similar to those of the plasticizer composition of Examples 1 to 5 level, and in particular, in transition resistance, stress resistance and mechanical properties, rather inferior results than those of the examples. In addition, in terms of absorption rate, the results were inferior to those of the Examples.
  • the plasticizer composition of the present invention has a low manufacturing cost compared to a plasticizer composition containing di(2-ethylhexyl) terephthalate recovered from conventional polyethylene terephthalate, and the function of the plasticizer itself is also excellent.
  • Comparative Examples 3 and 4 were prepared from polyethylene terephthalate similarly to the embodiments of the present invention, but by adjusting the input amount of 2-ethylhexanol, reaction time and purification process, 2-ethylhexanol according to the present invention ( 2-hydroxyethyl) terephthalate and / or a plasticizer composition out of the content of the dimer compound, mechanical properties, migration loss, heating loss and stress resistance showed inferior results than the above examples.
  • the plasticizer composition of the present invention is to limit the content of each compound in order to maximize the improvement of various physical properties such as mechanical properties, heat resistance and migration resistance, 2-ethylhexyl (2-hydroxyethyl) terephthalate And / or it can be seen that the function of the plasticizer itself is excellent compared to the plasticizers of Comparative Examples 3 and 4 that deviate from the content of the dimer compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 가소제 조성물에 관한 것으로 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하고, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량은 전체 가소제 조성물을 기준으로 20 중량% 이하인 것을 특징으로 하며, 상기 가소제 조성물은 수지에 적용시 기계적 물성, 내이행성 및 가열감량 특성을 개선할 수 있다.

Description

가소제 조성물 및 이를 포함하는 수지 조성물
관련 출원과의 상호 인용
본 출원은 2022년 02월 25일자 한국특허출원 제10-2022-0024953호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하는 가소제 조성물 및 이를 포함하는 수지 조성물에 관한 것이다.
통상적으로 가소제는 알코올이 프탈산 및 아디프산과 같은 폴리카복시산과 반응하여 이에 상응하는 에스터를 형성한다. 또한 인체에 유해한 프탈레이트계 가소제의 국내외 규제를 고려하여, 테레프탈레이트계, 아디페이트계, 기타 고분자계 등의 프탈레이트계 가소제를 대체할 수 있는 가소제 조성물들에 대한 연구가 계속되고 있다.
한편, 바닥재, 벽지, 연질 및 경질 시트, 장갑, 전선, 호스, 필름 등의 완제품을 제조하는 플라스티졸 업종, 캘린더링 업종, 압출/사출 컴파운드 업종을 막론하고, 이러한 친환경 제품에 대한 요구가 증대고 있으며, 이에 대한 완제품별 품질 특성, 가공성 및 생산성을 강화하기 위하여 변색 및 이행성, 기계적 물성 등을 고려하여 적절한 가소제를 사용하여야 한다.
이러한 다양한 사용 영역에서 업종별 요구되는 특성인 인장강도, 신율, 내광성, 이행성, 겔링성 혹은 흡수속도 등에 따라 PVC 수지에 가소제, 충전제, 안정제, 점도저하제, 분산제, 소포제, 발포제 등의 부원료등을 배합하게 된다.
일례로, PVC에 적용 가능한 가소제 조성물 중, 가격이 상대적으로 저렴하면서 가장 범용적으로 사용되는 디(2-에틸헥실) 테레프탈레이트(DEHTP)를 적용할 경우, 경도 혹은 졸 점도가 높고 가소제의 흡수 속도가 상대적으로 느리며, 이행성 및 스트레스 이행성도 양호하지 않았다.
이에 대한 개선으로 DEHTP를 포함하는 조성물로서, 부탄올과의 트랜스 에스터화 반응의 생성물을 가소제로 적용하는 것을 고려할 수 있으나, 가소화 효율은 개선되는 반면, 기계적 물성이 다소 저하되며, 열 또는 물리적인 힘에 의해 가소제가 유출되는 고질적인 문제가 있다.
또한, 최근 친환경성의 확보가 매우 중요해지고 있는데, 이는 최종 제품 자체의 친환경성뿐만 아니라, 원료의 수급과 공정에서의 친환경성 확보 또한 산업에서 매우 중요시되고 있으나, 산업에서의 제1 과제인 원가 경쟁력 확보와의 이해상충으로 인하여, 원료, 제조 과정 및 최종 제품이 친환경적이면서도 원가 경쟁력까지 갖춘 제품의 개발이 필요한 실정이다.
본 발명은 폴리에틸렌 테레프탈레이트의 분해 과정에서 얻어질 수 있는 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하는 조성물을 가소제에 적용함으로써, 기존 프탈레이트계 가소제와 동등 이상의 성능을 가지면서도 생식발달독성이 없어 친환경적인 가소제 조성물을 제공하기 위한 것이다.
또한, 본 발명은 폐기된 폴리에틸렌 테레프탈레이트를 원료로 사용함으로써 경제적 및 친환경적으로 우수한 물성의 가소제 조성물을 제조할 수 있는 가소제 조성물의 제조방법을 제공하기 위한 것이다.
상기 과제를 해결하기 위하여 본 발명은 가소제 조성물, 이의 제조방법 및 상기 가소제 조성물을 포함하는 수지 조성물을 제공한다.
(1) 본 발명은 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하고, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량은 전체 가소제 조성물을 기준으로 20 중량% 이하인 가소제 조성물을 제공한다.
(2) 본 발명은 상기 (1)에 있어서, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량은 0.01 내지 15 중량%인 가소제 조성물을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 및 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1:3 내지 1:10000인 가소제 조성물을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 및 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1:5 내지 1:1000인 가소제 조성물을 제공한다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 디(2-하이드록시에틸) 테레프탈레이트 및 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 축합체를 더 포함하는 것인 가소제 조성물을 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 하기 화학식 1 내지 3으로 표시되는 이합체 화합물 중 어느 하나 이상을 더 포함하는 것인 가소제 조성물을 제공한다.
[화학식 1]
Figure PCTKR2023002666-appb-img-000001
[화학식 2]
Figure PCTKR2023002666-appb-img-000002
[화학식 3]
Figure PCTKR2023002666-appb-img-000003
(7) 본 발명은 상기 (6)에 있어서, 조성물 내 상기 이합체 화합물의 총 함량은 2.0 내지 20.0 중량%인 가소제 조성물을 제공한다.
(8) 본 발명은 상기 (6) 또는 (7)에 있어서, 조성물 내 상기 화학식 1로 표시되는 이합체 화합물의 함량은 0.01 내지 1 중량%인 가소제 조성물을 제공한다.
(9) 본 발명은 상기 (6) 내지 (8) 중 어느 하나에 있어서, 조성물 내 상기 화학식 3으로 표시되는 이합체 화합물의 함량은 0.3 내지 2.5 중량%인 가소제 조성물을 제공한다.
(10) 본 발명은 상기 (6) 내지 (9) 중 어느 하나에 있어서, 조성물 내 상기 이합체 화합물과 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 사이의 중량비는 1: 0.001 내지 5인 가소제 조성물을 제공한다.
(11) 본 발명은 상기 (6) 내지 (10) 중 어느 하나에 있어서, 조성물 내 상기 이합체 화합물과 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1: 2.0 내지 99.0 인 가소제 조성물을 제공한다.
(12) 본 발명은 촉매 하에 폴리에틸렌 테레프탈레이트 및 2-에틸헥산올을 혼합하여 에스터화 반응시키는 단계;를 포함하고, 상기 에스터화 반응의 생성물은, 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하는 것인 가소제 조성물의 제조방법을 제공한다.
(13) 본 발명은 상기 (12)에 있어서, 상기 폴리에틸렌 테레프탈레이트는 폴리에틸렌 테레프탈레이트 및 2-에틸헥산올의 합 함량에 대하여 80 중량% 이하로 혼합되는 것인 가소제 조성물의 제조방법을 제공한다.
(14) 본 발명은 상기 (12) 또는 (13)에 있어서, 상기 폴리에틸렌 테레프탈레이트는 폐기되어 재활용된 폴리에틸렌 테레프탈레이트를 포함하는 것인 가소제 조성물의 제조방법을 제공한다.
(15) 본 발명은 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하고, 상기 수지는 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌 비닐 아세테이트 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 폴리락틱산, 천연고무 및 합성고무로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물을 제공한다.
본 발명의 일 실시예에 따른 가소제 조성물은, 생식발달독성이 없는 친환경 물질이면서도, 수지 조성물에 사용할 경우, 기존 가소제 대비 기계적 물성, 내이행성, 스트레스 이행성 및 흡수속도를 개선할 수 있고, 이러한 탑 다운 방식의 제조방법은 폐기물을 활용함으로써 친환경적인 제조방법임과 동시에 원가 경쟁력이 매우 우수할 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
용어의 정의
본 명세서에서 이용되는 바와 같은 "조성물"이란 용어는, 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 명세서에서 이용되는 바와 같은 "스트레이트 염화비닐 중합체"는, 염화비닐 중합체의 종류 중 하나로서, 현탁 중합 또는 벌크 중합 등을 통해 중합된 다. 이 중합체는, 기공이 다수 개 존재하는 다공성 입자로, 수십 내지 수백 마이크로미터 크기를 갖고, 응집성이 없으며, 흐름성이 우수하다.
본 명세서에서 이용되는 바와 같은 "페이스트 염화비닐 중합체"는, 염화비닐 중합체의 종류 중 하나로서, 미세현탁 중합, 미세시드 중합, 또는 유화 중합 등을 통해 중합된다. 이 중합체는, 공극이 없는 미세하고 치밀한 입자로, 수십 내지 수천 나노미터 크기를 갖고, 응집성이 있으며, 흐름성이 열악하다.
'포함하는', '가지는'이란 용어 및 이들의 파생어는, 이들이 구체적으로 개시되어 있든지 그렇치 않든지 간에, 임의의 추가의 성분, 단계 혹은 절차의 존재를 배제하도록 의도된 것은 아니다. 어떠한 불확실함도 피하기 위하여, '포함하는'이란 용어의 사용을 통해 청구된 모든 조성물은, 반대로 기술되지 않는 한, 중합체든지 혹은 그 밖의 다른 것이든지 간에, 임의의 추가의 첨가제, 보조제, 혹은 화합물을 포함할 수 있다. 이와 대조적으로, '로 본질적으로 구성되는'이란 용어는, 조작성에 필수적이지 않은 것을 제외하고, 임의의 기타 성분, 단계 혹은 절차를 임의의 연속하는 설명의 범위로부터 배제한다. '로 구성되는'이란 용어는 구체적으로 기술되거나 열거되지 않은 임의의 성분, 단계 혹은 절차를 배제한다.
측정 방법
본 명세서에서 조성물 내의 성분들의 함량 분석은 가스 크로마토그래피 측정을 통해 수행하며, Agilent 사의 가스 크로마토그래피 기기(제품명: Agilent 7890 GC, 컬럼: HP-5, 캐리어 가스: 헬륨(flow rate 2.4mL/min), 디텍터: F.I.D, 인젝션 볼륨: 1uL, 초기값: 70℃/4.2min, 종기값: 280℃/7.8min, program rate: 15℃/min)로 분석한다.
본 명세서에서, '인장강도(tensile strength)'는 ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정하고 하기 수학식 1로 계산한다.
[수학식 1]
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
본 명세서에서 '신율(elongation rate)'은 ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min(1T)으로 당긴 후, 시편이 절단되는 지점을 측정한 후, 하기 수학식 2로 계산한다.
[수학식 2]
신율(%) = 신장 후 길이 / 초기 길이 x 100
본 명세서에서 '이행 손실(migration loss)'은 KSM-3156에 따라 측정될 수 있다. 구체적으로, 두께 1 mm의 시험편을 얻고, 시험편 양면에 이행되어 표면으로 유출되는 유기물을 흡수할 수 있는 흡수지를 덧댄 후, 이 위에 전체 시험체를 덮을 수 있는 플레이트 붙여 1 kgf/cm2의 하중을 가한다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시킨다. 그런 후 시험편의 양면에 부착된 플레이트와 흡수지를 제거한 후, 시편을 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 하기 수학식 3에 의하여 계산한다.
[수학식 3]
이행손실량(%) = {[(초기 시편 중량) - (오븐 방치후 시편 중량)] / (초기 시편 중량)} x 100
본 명세서에서 '가열 감량(volatile loss)'은 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정한다.
[수학식 4]
가열 감량(%) = {[(초기 시편 중량) - (작업 후 시편 중량)] / (초기 시편 중량)} x 100
상기 다양한 측정 조건들의 경우, 온도, 회전속도, 시간 등의 세부 조건은 경우에 따라 다소 상이해질 수 있으며, 상이한 경우에는 별도로 그 측정 방법 및 조건을 명시한다.
본 명세서에서 '흡수 속도'는 77℃, 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 가소제가 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데까지 소요된 시간을 측정하여 평가한다.
상기 다양한 측정 조건들의 경우, 온도, 회전속도, 시간 등의 세부 조건은 경우에 따라 다소 상이해질 수 있으며, 상이한 경우에는 별도로 그 측정 방법 및 조건을 명시하였다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
가소제 조성물
본 발명은, 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하고, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량은 전체 가소제 조성물을 기준으로 20 중량% 이하인 가소제 조성물을 제공한다.
상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하는 가소제 조성물은 폴리에틸렌 테레프탈레이트(이하, PET)를 2-에틸헥산올과 에스터화 반응시켜 생성된 생성물로부터 얻어질 수 있는 것이다.
일반적으로, 기존 범용 가소제로 활용되는 디(2-에틸헥실) 테레프탈레이트를 얻기 위한 수단으로 PET와 2-에틸헥산올을 반응시키는 경우가 있으나, 부산물이 다량 생성되고, 반응 과정에서 생성되는 비스(2-하이드록시에틸) 테레프탈레이트나 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 경우, 디(2-에틸헥실) 테레프탈레이트와의 분리가 쉽지 않다는 문제점이 있다. 또한 비스(2-하이드록시에틸) 테레프탈레이트 및 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트는 분자 내 구조에 하이드록시기를 포함하는 알코올계 화합물이어서, 타겟 생성물인 디(2-에틸헥실) 테레프탈레이트와의 부반응까지 일으킬 수 있다는 또 다른 문제점을 갖는다. 따라서, 거의 모든 제조사가 디(2-에틸헥실)테레프탈레이트의 제조방법으로 테레프탈산과 2-에틸헥산올의 직접 에스터화 반응 또는 디메틸 테레프탈레이트와 2-에틸헥산올의 트랜스 에스터화 반응을 이용하고 있으며, PET를 원료로 활용하는 방법은 활용하고 있지 않다.
그러나, 본 발명에서는, 기존 불순물로 여겨져 제거의 대상이었던 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 기능에 주목하여, 이를 제거하지 않고 오히려 가소제 조성물 내 일정 함량으로 포함될 수 있도록 함으로써, 기존 가소제 제품 대비 성능이 개선된 가소제 조성물을 제공할 수 있음을 확인하였다. 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트는 디(2-에틸헥실) 테레프탈레이트와의 분리가 쉽지는 않으나, 디(2-에틸헥실) 테레프탈레이트가 갖는 압착 이행성, 즉 열이나 압력에 의해 가소제가 유출되는 문제를 해결할 수 있는 기능을 한다. 특히, 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트는 분자 구조 내 하이드록시기의 존재로 인해 혼합되는 수지와 보다 단단하게 결합할 수 있고, 가소제 조성물 내 주 성분인 디(2-에틸헥실) 테레프탈레이트가 수지 외부로 배출되지 않도록 붙잡아주는 역할을 수행할 수 있다.
본 발명의 일 실시예에 따르면, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량은 전체 가소제 조성물을 기준으로 20 중량% 이하일 수 있다. 예시적으로 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량은 전체 가소제 조성물을 기준으로 0.01 중량% 이상, 0.05 중량% 이상, 0.06 중량% 이상, 0.08 중량% 이상, 0.10 중량% 이상, 0.50 중량% 이상, 1.0 중량% 이상, 2.0 중량% 이상, 3.0 중량% 이상, 4.0 중량% 이상, 4.5 중량% 이상, 4.9 중량% 이상, 5.0 중량% 이상, 5.5 중량% 이상, 6.0 중량% 이상, 6.5 중량% 이상, 7.0 중량% 이상, 7.1 중량% 이상, 7.2 중량% 이상, 7.5 중량% 이상, 8.0 중량% 이상, 20.0 중량% 이하, 19.5 중량% 이하, 19.0 중량% 이하, 18.0 중량% 이하, 17.0 중량% 이하, 16.0 중량% 이하, 15.0 중량% 이하, 14.9 중량% 이하, 14.5 중량% 이하, 13.0 중량% 이하, 12.8 중량% 이하, 12.5 중량% 이하, 12.4 중량% 이하, 12.0 중량% 이하, 11.7 중량% 이하, 11.5 중량% 이하, 11.3 중량% 이하, 11.0 중량% 이하, 10.5 중량% 이하, 10.0 중량% 이하, 9.5 중량% 이하, 9.3 중량% 이하, 8.0 중량% 이하, 8.5 중량% 이하, 8.0 중량% 이하, 7.5 중량% 이하, 7.2 중량% 이하, 7.0 중량% 이하, 6.5 중량% 이하, 6.0 중량% 이하, 5.5 중량% 이하, 5.0 중량% 이하, 4.5 중량% 이하, 4.0 중량% 이하, 3.5 중량% 이하, 3.0 중량% 이하, 2.5 중량% 이하, 2.0 중량% 이하일 수 있다. 바람직하게는 테레프탈레이트의 함량은 전체 가소제 조성물을 기준으로 0.01 내지 15 중량%일 수 있다. 또한, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 및 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1:3 내지 10000일 수 있고, 바람직하게는 1:5 내지 1:2000 또는 1:5 내지 1:1000일 수 있다. 가소제 조성물 내 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량이 너무 적을 경우에는 앞서 설명한 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 내이행성 개선 효과가 미미할 수 있으며, 반대로 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량이 지나치게 많은 경우에는 상대적으로 디(2-에틸헥실) 테레프탈레이트의 함량이 적어짐에 따라 가열감량이 열세해지고, 흡수 속도가 지나침에 빨라짐에 따라, 수지와의 배합 및 완제품 공정 조건이 불안정해질 수 있으며, 이에 따라 전반적인 수지 조성물 또는 상기 수지 조성물로부터 얻어지는 완제품의 내열성이 저하될 수 있다. 특히, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트가 가소제 조성물 내 주성분(major)으로 포함되게 될 경우에는, 상대적으로 낮은 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 분자량으로 인해 수지와의 배합이 어려울 수 있고, 배합 후 롤링 과정 등이 원활하게 이루어지지 않는 문제가 발생할 수 있다. 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량이 앞서 설명한 바람직한 범위를 만족하는 경우, 적절한 가열감량과 흡수 속도를 구현할 수 있어 내열성이 우수하면서도, 안정적으로 수지 조성물에 배합될 수 있는 가소제 조성물이 제공될 수 있다.
한편, 폴리에틸렌 테레프탈레이트는 그 분자 구조 내 미량으로, 테레프탈레이트의 이성질체인 이소프탈레이트를 포함하며, 이러한 이소프탈레이트 구조는 앞서 설명한 에스터화 반응 과정을 통해 디(2-에틸헥실) 이소프탈레이트를 형성할 수 있다. PET로부터 디(2-에틸헥실) 테레프탈레이트를 회수하는 기존의 반응 공정에서는, 이러한 디(2-에틸헥실) 이소프탈레이트를 불순물로 보아, 최종 조성물로부터 디(2-에틸헥실) 이소프탈레이트를 전부 제거하였으나, 본 발명에서는 디(2-에틸헥실) 이소프탈레이트가 가소제 조성물 내 일부 포함될 경우, 테레프탈레이트만이 단독 사용될 경우보다 우수한 물성을 구현할 수 있으면서도, 물성의 밸런스를 유지할 수 있다는 점에 착안하여, 디(2-에틸헥실) 이소프탈레이트가 제거되지 않고 가소제 조성물 내에 잔존하는 것인 본 발명의 가소제 조성물을 도출하였다.
반응 원료인 PET 내 이소프탈레이트 함량이 낮음에 따라, PET로부터 얻어지는 본 발명의 가소제 조성물 내 디(2-에틸헥실) 이소프탈레이트 함량 역시 낮은 수준이며, 구체적으로는 전체 조성물을 기준으로 5 중량% 이하, 바람직하게는 0.3 내지 3 중량%일 수 있다. 디(2-에틸헥실) 이소프탈레이트의 함량을 상술한 범위보다 높게 하는 것은 반응 원료인 PET의 구조 상 쉽지 않으며, 디(2-에틸헥실) 이소프탈레이트의 함량이 상술한 범위보다 낮은 경우에는 디(2-에틸헥실) 이소프탈레이트에 의한 개선 효과가 미미하다.
본 발명의 일 실시예에 따르면, 본 발명의 가소제 조성물은 하기 화학식 1 내지 3으로 표시되는 이합체 화합물 중 어느 하나 이상을 더 포함하는 것일 수 있다.
[화학식 1]
Figure PCTKR2023002666-appb-img-000004
[화학식 2]
Figure PCTKR2023002666-appb-img-000005
[화학식 3]
Figure PCTKR2023002666-appb-img-000006
본 발명에서는, 앞서 설명한 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트와 같이, 부산물 중 하나인 (테레프탈레이트 또는 이소프탈레이트) - (에틸렌글리콜) - (테레프탈레이트 또는 이소프탈레이트) 구조의 이합체 화합물도 가소제 조성물 내 일정 함량으로 포함될 수 있도록 조절함으로써, 기존 가소제 제품 대비 성능이 개선된 가소제 조성물을 제공할 수 있음을 확인하였다. 상기 이소프탈레이트는 가소제 조성물의 제조 과정 중 원료로 재활용 폴리에틸렌테레프탈레이트(PET)가 사용되는데, 이 PET의 제조시에 소량 사용되는 고순도 이소프탈산이 잔존하는 이유로 생성될 수 있다.
이러한 이합체 화합물들은 사용되는 알코올의 종류나 PET의 해중합 과정에서의 반응 조건 등에 따라 다양한 형태 및 함량으로 제조될 수 있으며, 이러한 구조의 화합물들이 가소제 조성물 내 테레프탈레이트계 가소제와 함께 포함됨으로써 기존 테레프탈레이트계 가소제의 압착 이행성을 보완할 수 있다.
예를 들어, 2-에틸헥산올과 PET의 반응에 의해 단량체인 디 (2-에틸헥실)테레프탈레이트가 합성되는 과정에서, 테레프탈산 2개의 각 말단에 2-에틸헥산올이 결합된 이합체 화합물이 생성될 수 있으며, 이러한 이합체 화합물은 최종 가소제 조성물에 포함될 수 있다.
상기 설명한 이합체 화합물의 형성과정은 일 예시일 수 있고, 상기 기재된 형성과정 외에 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 및 2-에틸헥실(2-하이드록시에틸) 이소프탈레이트 간의 다양한 반응에 의해 다양한 조합의 이합체 화합물이 형성될 수 있다.
또한, 상기 설명하는 제조방법 과정 중 트랜스 에스터화 반응을 의도적으로 조절하여, 상기 디(2-에틸헥실) 테레프탈레이트, 2-에틸헥실(2-하이드록시에틸) 및 이합체 화합물의 함량을 조절할 수 있다. 한편, 상기 트랜스 에스터화 반응 과정 중 반응 시간을 조절하는 경우, 상기 반응 시간에 따라 이합체 화합물뿐만 아니라, 삼합체 및/또는 사합체 화합물 등의 부산물이 상대적으로 다량으로 생성될 수 있는데, 상기 부산물은 디(2-에틸헥실) 테레프탈레이트 및 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 전체 가소제 조성물의 최종 가공물성의 성능을 사용 가능한 수준으로 유지하면서 상기 성능을 저하시키기 않기 때문에, 상기 부산물을 포함한 반응 생성물을 그대로 가소제 조성물로서 사용하여도 무방하다.
또한, 상기 이합체 화합물의 함량은 제조방법 중 촉매의 사용량, 투입되는 2-에틸헥산올의 양, 반응 압력 및 온도, 반응의 진행 시간 등에 따라 결정될 수 있는데, 특히, 투입되는 2-에틸헥산올의 양이 많을수록 상기 축합체 및 이합체의 함량은 적어질 수 있다. 본 발명이 제공하는 가소제 조성물에 있어, 조성물 내 상기 이합체 화합물의 총 함량은 2.0 내지 20.0 중량%일 수 있고, 예시적으로, 조성물 내 상기 이합체 화합물의 총 함량은 2.0 중량% 이상, 3.0 중량% 이상, 4.0 중량% 이상, 5.0 중량% 이상, 6.0 중량% 이상, 7.0 중량% 이상, 8.0 중량% 이상, 20.0 중량% 이하, 19.0 중량% 이하, 18.0 중량% 이하, 17.0 중량% 이하, 16.0 중량% 이하, 15.0 중량% 이하, 14.0 중량% 이하, 13.0 중량% 이하, 12.0 중량% 이하일 수 있다. 바람직하게는, 조성물 내 상기 이합체 화합물의 총 함량은 2.0 내지 15.0 중량%일 수 있다. 이합체 화합물의 함량이 상술한 범위 내로 제어될 경우, 기존 가소제 제품과 비교하여 동등 이상의 내이행성 및 가열감량 특성을 가지며, 인장강도, 인장 잔율 등 기계적 물성 및 내스트레스성 특성이 우수한 가소제 조성물을 제공할 수 있다.
또한, 상기 화학식 1 내지 3으로 표시되는 화합물들은 가소제 조성물 내 동시에 존재할 수 있다. 본 발명이 제공하는 가소제 조성물에 있어, 상기 조성물 내 상기 화학식 1로 표시되는 이합체 화합물의 함량은 0.01 내지 1.0 중량%일 수 있고, 상기 화학식 2로 표시되는 이합체 화합물의 함량은 1.5 내지 17.0 중량%일 수 있으며, 상기 화학식 3으로 표시되는 이합체 화합물의 함량은 0.3 내지 2.5 중량%일 수 있다.
구체적으로, 상기 화학식 1로 표시되는 이합체 화합물의 함량은 0.01 중량% 이상, 0.02 중량% 이상, 0.03 중량% 이상, 0.04 중량% 이상, 0.05 중량% 이상, 0.10 중량% 이상, 0.20 중량% 이상, 0.30 중량% 이상, 0.40 중량% 이상, 1.0 중량% 이하, 0.90 중량% 이하, 0.80 중량% 이하, 0.70 중량% 이하, 0.60 중량% 이하, 0.50 중량% 이하일 수 있다.
또한 구체적으로, 상기 화학식 2로 표시되는 이합체 화합물의 함량은 1.5 중량% 이상, 1.7 중량% 이상, 1.8 중량% 이상, 2.0 중량% 이상, 2.5 중량% 이상, 2.7 중량% 이상, 3.0 중량% 이상, 3.5 중량% 이상, 3.7 중량% 이상, 4.0 중량% 이상, 5.0 중량% 이상, 17.0 중량% 이하, 16.0 중량% 이하, 15.0 중량% 이하, 14.0 중량% 이하, 13.0 중량% 이하, 12.0 중량% 이하, 11.0 중량% 이하, 10.0 중량% 이하, 9.0 중량% 이하, 8.0 중량% 이하, 7.0 중량% 이하, 6.0 중량% 이하일 수 있다.
또한 구체적으로, 상기 화학식 3으로 표시되는 이합체 화합물의 함량은 0.3 중량% 이상, 0.4 중량% 이상, 0.5 중량% 이상, 0.7 중량% 이상, 1.0 중량% 이상, 1.1 중량% 이상, 1.2 중량% 이상, 1.3 중량% 이상, 1.5 중량% 이상, 2.5 중량% 이하, 2.4 중량% 이하, 2.3 중량% 이하, 2.1 중량% 이하, 2.0 중량% 이하, 1.7 중량% 이하, 1.5 중량% 이하, 1.3 중량% 이하, 1.2 중량% 이하, 1.1 중량% 이하일 수 있다.
상기 화학식 1 내지 3으로 표시되는 이합체 화합물의 각각의 함량이 상술한 범위를 만족하는 경우, 수지와의 가공물성에서 내이행성 및 가열감량이 개선되는 효과를 가질 수 있다.
또한, 조성물 내 상기 이합체 화합물과 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 사이의 중량비는 1:0.001 내지 5.0 일 수 있고, 예시적으로, 1: 0.01 이상, 0.02 이상, 0.05 이상, 0.1 이상, 0.2 이상, 0.5 이상, 0.7 이상, 1.0 이상, 1.5 이상, 5.0 이하, 4.7 이하, 4.5 이하, 4.2 이하, 4.0 이하, 3.7 이하, 3.5 이하, 3.2 이하, 3.0 이하, 2.7 이하, 2.5 이하, 2.3 이하, 2.0 이하, 1.7 이하, 1.5 이하, 1.2 이하, 1.0 이하, 0.8 이하일 수 있다. 바람직하게는, 상기 이합체 화합물과 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 사이의 중량비는 1: 0.01 내지 0.8일 수 있다. 가소제 조성물 내 상기 이합체 화합물과 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 사이의 중량비가 상기 범위를 만족하는 경우, 내이행성 개선 효과가 우수할 수 있고, 가열 감량 및 흡수 속도가 우수하여 수지와의 배합 및 상기 배합 후의 롤링 과정이 원활하게 진행되어 공정 안정성이 증가할 수 있다.
또한, 조성물 내 상기 이합체 화합물과 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1: 2.0 내지 99.0 일 수 있고, 예시적으로, 1: 2.0 이상, 2.5 이상, 2.7 이상, 3.0 이상, 3.5 이상, 4.0 이상, 4.5 이상, 5.0 이상, 6.0 이상, 7.0 이상, 9.0 이상, 10.0 이상, 12.0 이상, 15.0 이상, 20.0 이상, 25.0 이상, 27.0 이상, 30.0 이상, 35.0 이상, 99.0 이하, 95.0 이하, 92.0 이하, 90.0 이하, 85.0 이하, 80.0 이하, 75.0 이하, 70.0 이하, 65.0 이하, 60.0 이하, 55.0 이하, 50.0 이하, 45.0 이하, 40.0 이하일 수 있다. 바람직하게는, 조성물 내 상기 이합체 화합물과 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1: 2.7 내지 45 일 수 있다. 상기 이합체 화합물과 디(2-에틸헥실) 테레프탈레이트 사이의 비율이 상술한 범위 내일 경우, 이합체 화합물이 가소제 조성물에 포함됨에 따라 구현되는 내이행성 개선 효과가 극대화될 수 있다.
본 발명의 상기 가소제 조성물에 대해 수소화하는 방법을 적용할 수 있다. 본 발명은 2-에틸헥실(2-하이드록시에틸) 사이클로헥산-1,4-디카복실레이트, 디(2-에틸헥실) 사이클로헥산-1,3-디카복실레이트 및 디(2-에틸헥실) 사이클로헥산-1,4-디카복실레이트를 포함하고, 상기 2-에틸헥실(2-하이드록시에틸) 사이클로헥산-1,4-디카복실레이트의 함량은 전체 가소제 조성물을 기준으로 20 중량% 이하인 가소제 조성물을 제공할 수 있다. 또한, 상기 가소제 조성물은 상기 화학식 1 내지 4로 표시되는 이합체 화합물의 수소화물을 더 포함할 수 있다.
상기 2-에틸헥실(2-하이드록시에틸) 사이클로헥산-1,4-디카복실레이트, 디(2-에틸헥실) 사이클로헥산-1,3-디카복실레이트 및 디(2-에틸헥실) 사이클로헥산-1,4-디카복실레이트를 포함하는 가소제 조성물은 폴리에틸렌 테레프탈레이트(이하, PET)를 2-에틸헥산올과 트랜스 에스터화 반응시켜 생성된 생성물을 수소화 반응시킴으로써 얻어질 수 있는 것이며, 트랜스 에스터화 반응 및 수소화 반응의 순서를 바꾸어 수행할 수도 있다. 상기 생성물은 앞서 설명한 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하고, 상기 화학식 1 내지 4의 이합체 화합물을 더 포함할 수 있다.
상기 가소제 조성물은 환경적인 이슈를 제거하면서도 이행성 및 감량 특성을 현저히 개선할 수 있고, 기존 상용 제품들 대비하여 내광성과 내열성이 대폭 개선된 제품의 구현이 가능할 수 있다.
가소제 조성물의 제조방법
본 발명은 앞서 설명한 가소제 조성물의 제조방법을 제공한다.
구체적으로, 본 발명은 촉매 하에 폴리에틸렌 테레프탈레이트 및 2-에틸헥산올을 혼합하여 에스터화 반응시키는 단계;를 포함하고, 상기 에스터화 반응의 생성물은, 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하는 것인 가소제 조성물의 제조방법을 포함한다. 또한, 상기 생성물은 상기 설명한 화학식 1 내지 3으로 표시되는 이합체 화합물 중 어느 하나 이상을 더 포함할 수 있다.
상기 PET와 2-에틸헥산올은 트랜스 에스터화 반응을 통해서 상기 3가지 성분을 포함하는 조성물로 전환된다. 구체적으로 PET는 하기 화학식 a와 같이 표현된다.
[화학식 a]
Figure PCTKR2023002666-appb-img-000007
상기 PET와 2-에틸헥산올의 트랜스 에스터화 반응에 있어서, 2-에틸헥산올이 PET에 존재하는 에스터기와 반응하여 PET의 중합 사슬이 해쇄되는데, 반응을 어떻게 제어하는지에 따라, 상기 두 성분의 비율이 조절될 수 있으며, 상기 3 가지 성분의 비율뿐만 아니라 상기 이합체 화합물의 비율을 앞서 설명한 범위 내로 조절하여 최적의 범위 내로 조절하는 것이 중요하다.
상기 PET는 2-에틸헥산올과 합 함량에 대하여, 80 중량% 이하로 포함될 수 있고, 바람직하게 60 중량% 이하로 포함될 수 있으며, 더 바람직하게 50 중량%, 40 중량% 또는 35 중량% 이하로 포함되도록 할 수 있다. PET 함량이 상술한 범위 내일 경우, 투입되는 2-에틸헥산올의 양이 충분하여 부반응을 최소화하면서, 목적하는 PET와 2-에틸헥산올 사이의 트랜스 에스터화 반응을 극대화할 수 있다. 특히 PET의 함량이 상술한 범위 내일 경우, 제조 공정을 거쳐 얻어지는 조성물이 앞서 설명한 바람직한 함량 조건을 만족하여, 제조 공정 이후의 후처리를 최소화하면서도, 바로 우수한 물성의 가소제 조성물을 제조할 수 있다는 장점이 있다.
한편, 상기 PET는 폐 PET를 50 중량% 이상 포함하는 것일 수 있고, 바람직하게 60 중량% 이상, 더 바람직하게는 70 중량% 이상 포함하는 것일 수 있다. 폐 PET를 사용하더라도, 최종 생성물에 있어서 성분 비율이 변하는 것은 아니므로, 가소제의 색상이나 불순물 함량에 관한 제어가 가능하다면, 전량 폐 PET를 사용하는 것도 가능하다. 이렇게 폐 PET를 활용하기 때문에, 테레프탈산 또는 디메틸 테레프탈레이트로부터 제조되는 디(2-에틸헥실) 테레프탈레이트 대비 원가 경쟁력이 매우 우수하고, 테레프탈산이나 디메틸 테레프탈레이트를 제조하는 데에 사용되는 에너지 소모량과 환경 오염을 방지할 수 있어 환경 개선에 큰 기여를 할 수 있다.
본 발명의 일 실시예에 따른 제조방법은, 반응 중 생성되는 부산물, 예컨대 에틸렌 글리콜을 계 외부로 회수하되, 그 중 일부를 반응계에 머물도록 하는 것일 수 있다. 에틸렌 글리콜의 일부를 반응에 참여하도록 반응계에 유지시키면, 반응계에 머무는 에틸렌 글리콜로부터 적당한 수준의 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트와 상기 화학식 1 내지 3의 이합체 화합물이 형성될 수 있고, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트와 상기 화학식 1 내지 3의 이합체 화합물은 가소제 조성물의 성능 개선에 기여를 하므로, 형성된 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트와 상기 화학식 1 내지 3의 이합체 화합물을 제거하기 위해 별도의 에너지를 소모할 필요가 없어, 제조 공정을 경제적으로 운전할 수 있다. 특히, 상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트와 상기 화학식 1 내지 3의 이합체 화합물을 형성하기 위한 반응물로 에틸렌 글리콜이 사용되므로, 최종 조성물 내 에틸렌 글리콜의 함량 역시 자연적으로 극히 낮아져 분리 공정 또한 단순화시킬 수 있는 장점이 있다.
상기 촉매는 일례로, 황산, 염산, 인산, 질산, 파라톨루엔술폰산, 메탄술폰산, 에탄술폰산, 프로판술폰산, 부탄술폰산, 알킬 황산 등의 산 촉매; 유산 알루미늄, 불화리튬, 염화칼륨, 염화세슘, 염화칼슘, 염화철, 인산알루미늄 등의 금속염; 헤테로폴리산 등의 금속 산화물; 천연/합성 제올라이트; 양이온 및 음이온 교환수지; 수산화콜린, 중탄산콜린, 염화콜린, 주석산수소콜린, 시트르산이수소콜린, 황산콜린, 등의 콜린화합물을 포함하는 촉매; 테트라알킬 티타네이트(tetra alkyl titanate) 등의 알킬 티타네이트 또는 그 폴리머 등의 유기금속; 및 지르코늄 또는 주석을 포함하는 유기금속; 중에서 선택된 1종 이상일 수 있다. 바람직하게, 상기 촉매는 테트라알킬 티타네이트를 사용할 수 있다.
촉매의 사용량은 종류에 따라 상이할 수 있으며, 일례로 균일 촉매의 경우에는 반응물 총 100 중량%에 대하여 0.01 내지 5 중량%, 0.01 내지 3 중량%, 1 내지 5 중량% 혹은 2 내지 4 중량% 범위 내, 그리고 불균일 촉매의 경우에는 반응물 총량의 5 내지 200 중량%, 5 내지 100 중량%, 20 내지 200 중량%, 혹은 20 내지 150 중량% 범위 내일 수 있다.
본 발명의 일 실시예에 따르면, 상기 트랜스 에스터화 반응은 120℃ 내지 240℃, 바람직하게는 135℃ 내지 230℃, 더욱 바람직하게는 141℃ 내지 220℃의 반응 온도 하에서 10분 내지 12시간, 바람직하게는 30분 내지 10시간, 더욱 바람직하게는 1 내지 8 시간에서 수행되는 것이 바람직하다. 상기 온도 및 시간 범위 내에서는 최종 가소제 조성물의 성분비를 효율적으로 제어할 수 있다. 이때, 상기 반응 시간은 반응물을 승온 후 반응 온도에 도달한 시점부터 계산될 수 있다.
또한, 상기 트랜스 에스터화 반응 종결 후, 미반응 상태의 2-에틸헥산올과 반응 부산물인 에틸렌 글리콜 등을 제거하는 단계를 더 포함할 수 있다. 에틸렌 글리콜의 경우, 물에 대한 용해도가 높으므로, 반응 종결 후 중화 및 수세 과정을 거쳐 제거할 수 있으며, 중화 및 수세 이후, 추출 증류를 통해 잔존하는 2-에틸헥산올을 제거할 수 있다. 상기 단계를 통해 목적하는 성분 및 조성비를 만족하는 가소제 조성물을 제조할 수 있다.
본 발명의 다른 일 실시예에 따르면, 전술한 가소제 조성물 및 수지를 포함하는 수지 조성물이 제공된다.
상기 수지는 당 분야에 알려져 있는 수지를 사용할 수 있다. 예를 들면, 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌초산비닐 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 폴리락틱산, 천연고무, 합성고무 및 열가소성 엘라스토머로 이루어진 군에서 선택된 1종 이상의 혼합물 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 가소제 조성물은 상기 수지 100 중량부를 기준으로 5 내지 150 중량부, 바람직하게 5 내지 130 중량부, 또는 10 내지 120 중량부로 포함될 수 있다.
일반적으로, 가소제 조성물이 사용되는 수지는 용융 가공 또는 플라스티졸 가공을 통해 수지 제품으로 제조될 수 있으며, 용융 가공 수지와 플라스티졸 가공 수지는 각 중합 방법에 따라 다르게 생산되는 것일 수 있다.
예를 들어, 염화비닐 중합체는 용융 가공에 사용되는 경우 현탁 중합 등으로 제조되어 평균 입경이 큰 고체상의 수지 입자가 사용되며 이러한 염화비닐 중합체는 스트레이트 염화비닐 중합체로 불리우며, 플라스티졸 가공에 사용되는 경우 유화 중합 등으로 제조되어 미세한 수지 입자로서 졸 상태의 수지가 사용되며 이러한 염화비닐 중합체는 페이스트 염화비닐 수지로 불리운다.
이 때, 상기 스트레이트 염화비닐 중합체의 경우, 가소제는 중합체 100 중량부 대비 5 내지 80 중량부의 범위 내에서 포함되는 것이 바람직하며, 페이스트 염화비닐 중합체의 경우 중합체 100 중량부 대비 40 내지 120 중량부의 범위 내에서 포함되는 것이 바람직하다.
상기 수지 조성물은 충진제를 더 포함할 수 있다. 상기 충진제는 상기 수지 100 중량부를 기준으로 0 내지 300 중량부, 바람직하게는 50 내지 200 중량부, 더욱 바람직하게는 100 내지 200 중량부일 수 있다.
상기 충진제는 당 분야에 알려져 있는 충진제를 사용할 수 있으며, 특별히 제한되지 않는다. 예를 들면, 실리카, 마그네슘 카보네이트, 칼슘 카보네이트, 경탄, 탈크, 수산화 마그네슘, 티타늄 디옥사이드, 마그네슘 옥사이드, 수산화 칼슘, 수산화 알루미늄, 알루미늄 실리케이트, 마그네슘 실리케이트 및 황산바륨 중에서 선택된 1종 이상의 혼합물일 수 있다.
또한, 상기 수지 조성물은 필요에 따라 안정화제 등의 기타 첨가제를 더 포함할 수 있다. 상기 안정화제 등의 기타 첨가제는 일례로 각각 상기 수지 100 중량부를 기준으로 0 내지 20 중량부, 바람직하게는 1 내지 15 중량부일 수 있다.
상기 안정화제는 예를 들어 칼슘-아연의 복합 스테아린산 염 등의 칼슘-아연계(Ca-Zn계) 안정화제 또는 바륨-아연(Ba-Zn계) 안정화제를 사용할 수 있으나, 이에 특별히 제한되는 것은 아니다.
상기 수지 조성물은 전술한 것과 같이 용융 가공 및 플라스티졸 가공에 모두 적용될 수 있고, 예를 들어 용융 가공은 카렌더링 가공, 압출 가공, 또는 사출 가공이 적용될 수 있고, 플라스티졸 가공은 코팅 가공 등이 적용될 수 있다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1
교반기, 응축기 및 데칸터가 설치된 반응기에 촉매 TnBT 1.5g, 폐기된 폴리에틸렌 테레프탈레이트 500g 및 2-에틸헥산올 1220g를 투입한 다음, 질소 분위기 하 150 내지 230℃의 반응온도에서 3~8시간 동안 트랜스-에스터화 반응시켰다. 반응 완료 이후, 미반응 2-에틸헥산올을 감압하여 제거하였다. 이후 3 중량%의 수산화나트륨 수용액 100g을 투입하여 촉매를 중화시키고, 소량의 미반응 2-에틸헥산올을 증류하여 제거하였다. 상기 과정을 통해 2-하이드록시에틸(2-에틸헥실) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 12.4 중량%, 2.1 중량% 및 71 중량%로 포함하는 조성물을 얻었다. 조성물 내 상기 세 성분을 제외한 나머지 성분들은 반응 공정 중 발생한 부산물을 포함하고, 상기 부산물은 하기 표 1에 나타낸 함량의 이합체 화합물을 포함하고 있었다.
실시예 2
실시예 1과 동일하게 실시하되, 2-에틸헥산올의 투입량 및 반응시간 조정을 통해, 2-하이드록시에틸(2-에틸헥실) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 7.2 중량%, 2 중량% 및 78.5 중량%로 포함하는 조성물을 얻었다. 조성물 내 상기 세 성분을 제외한 나머지 성분들은 반응 공정 중 발생한 부산물을 포함하고, 상기 부산물은 하기 표 1에 나타낸 함량의 이합체 화합물을 포함하고 있었다.
실시예 3
실시예 1과 동일하게 실시하되, 2-에틸헥산올의 투입량 및 반응시간 조정을 통해, 2-하이드록시에틸(2-에틸헥실) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 4.9 중량%, 1.75 중량% 및 90.3 중량%로 포함하는 조성물을 얻었다. 조성물 내 상기 세 성분을 제외한 나머지 성분들은 반응 공정 중 발생한 부산물을 포함하고, 상기 부산물은 하기 표 1에 나타낸 함량의 이합체 화합물을 포함하고 있었다.
실시예 4
실시예 1과 동일하게 실시하되, 2-에틸헥산올의 투입량 및 반응시간 조정을 통해, 2-하이드록시에틸(2-에틸헥실) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 0.06 중량%, 1.9 중량% 및 95.8 중량%로 포함하는 조성물을 얻었다. 조성물 내 상기 세 성분을 제외한 나머지 성분들은 반응 공정 중 발생한 부산물을 포함하고, 상기 부산물은 하기 표 1에 나타낸 함량의 이합체 화합물을 포함하고 있었다.
실시예 5
실시예 1과 동일하게 실시하되, 2-에틸헥산올의 투입량 및 반응시간 조정을 통해, 2-하이드록시에틸(2-에틸헥실) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 19.1 중량%, 2 중량% 및 58.9 중량%로 포함하는 조성물을 얻었다. 조성물 내 상기 세 성분을 제외한 나머지 성분들은 반응 공정 중 발생한 부산물을 포함하고, 상기 부산물은 하기 표 1에 나타낸 함량의 이합체 화합물을 포함하고 있었다.
비교예 1
LG화학사 제품으로서 디(2-에틸헥실) 프탈레이트(DEHP)를 가소제 조성물로 하였다.
비교예 2
실시예 1과 동일하게 실시하되, 2-에틸헥산올을 1400g 투입하여, 조성물 내 2-하이드록시에틸(2-에틸헥실) 테레프탈레이트를 모두 제거하였으며, 디(2-에틸헥실)테레프탈레이트(DEHTP)를 99.9 중량%로 포함하는 조성물을 얻었다.
비교예 3
실시예 1과 동일하게 실시하되, 2-에틸헥산올의 투입량 및 반응시간 조정을 통해, 2-하이드록시에틸(2-에틸헥실) 테레프탈레이트를 포함하지 않고, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 2.1 중량% 및 96.7 중량%로 포함하는 조성물을 얻었다. 조성물 내 상기 두 성분을 제외한 나머지 성분들은 반응 공정 중 발생한 부산물을 포함하고, 상기 부산물은 하기 표 1에 나타낸 함량의 이합체 화합물을 포함하고 있었다.
비교예 4
실시예 1과 동일하게 실시하되, 2-에틸헥산올의 투입량 및 반응시간 조정을 통해, 2-하이드록시에틸(2-에틸헥실) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실)테레프탈레이트(DEHTP)를 각각 21.5 중량%, 1.5 중량% 및 55.2 중량%로 포함하는 조성물을 얻었다. 조성물 내 상기 세 성분을 제외한 나머지 성분들은 반응 공정 중 발생한 부산물을 포함하고, 상기 부산물은 하기 표 1에 나타낸 함량의 이합체 화합물을 포함하고 있었다.
구분 DOTP
(중량%)
DOIP
(중량%)
2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 (중량%) 부산물
이합체(중량%)
화학식 1 화학식 2 화학식 3 이합체 총합
실시예 1 71 2.1 12.4 0.9 12.4 1.2 14.5
실시예 2 78.5 2 7.2 0.8 10.5 1 12.3
실시예 3 90.3 1.75 4.9 0.05 2.6 0.4 3.05
실시예 4 95.8 1.9 0.06 0.04 1.8 0.4 2.24
실시예 5 58.9 2 19.1 1 16.7 2.3 20
비교예 1 DOP
비교예 2 99.9 - - - - - -
비교예 3 96.7 2.1 0 0 1 0.2 1.2
비교예 4 55.2 1.5 21.5 1.1 18 2.6 21.7
실험예 1: 시트 성능 평가
실시예 및 비교예의 가소제를 사용하여, ASTM D638에 따라 다음과 같은 처방 및 제작 조건으로 시편을 제작하였다.
(1) 처방: 스트레이트 염화비닐 중합체(LS100) 100 중량부, 가소제 50 중량부 및 안정제(BZ-153T) 3 중량부
(2) 배합: 98℃에서 700 rpm으로 믹싱
(3) 시편 제작: 롤 밀(Roll mill)로 160℃에서 4 분, 프레스(press)로 180℃에서 2.5분(저압) 및 2분(고압) 작업하여 1T 내지 3T 시트를 제작
(4) 평가 항목
1) 인장강도(tensile strength): ASTM D638 방법에 의하여, 테스트 기기인 U.T.M (제조사; Instron, 모델명; 4466)을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정하였다. 인장강도는 다음과 같이 계산하였다:
인장 강도(kgf/cm2) = 로드 (load)값(kgf) / 두께(cm) x 폭(cm)
2) 신율(elongation rate) 측정: ASTM D638 방법에 의하여, 상기 U.T.M을 이용하여 크로스헤드 스피드(cross head speed)를 200 ㎜/min으로 당긴 후, 1T 시편이 절단되는 지점을 측정한 후, 신율을 다음과 같이 계산하였다:
신율 (%) = 신장 후 길이 / 초기 길이 x 100으로 계산하였다.
3) 인장 및 신장 잔율 측정: 인장 및 신장 잔율의 측정은 100℃, 168 시간 동안 열을 가한 후, 시편에 잔존하는 인장강도 및 신율을 측정하는 것이며, 측정 방법은 인장강도 및 신율 측정 방법과 동일하다.
4) 이행 손실(migration loss) 측정: KSM-3156에 따라 측정하였다. 구체적으로, 두께 1 mm의 시험편을 얻고, 시험편 양면에 이행되어 표면으로 유출되는 유기물을 흡수할 수 있는 흡수지를 덧댄 후, 이 위에 전체 시험체를 덮을 수 있는 플레이트 붙여 1 kgf/cm2의 하중을 가한다. 시험편을 열풍 순환식 오븐(80℃)에서 72 시간 동안 방치한 후 꺼내서 상온에서 4 시간 동안 냉각시킨다. 그런 후 시험편의 양면에 부착된 플레이트와 흡수지를 제거한 후, 시편을 오븐에 방치하기 전과 후의 중량을 측정하여 이행손실량을 하기 수학식 3에 의하여 계산하였다.
이행손실량(%) = {(상온에서의 시험편의 초기 중량 - 오븐 방치후 시험편의 중량) / 상온에서의 시험편의 초기 중량} x 100
5) 가열 감량(volatile loss) 측정: 상기 제작된 시편을 80℃에서 72시간 동안 작업한 후, 시편의 무게를 측정하였다.
가열 감량 (중량%) = 초기 시편 무게 - (80℃, 72시간 작업 후 시편 무게) / 초기 시편 무게 x 100으로 계산하였다.
6) 스트레스 테스트(내스트레스성): 두께 2mm인 시편을 구부린 상태로 23℃에서 168시간 동안 방치한 후, 1일차, 3일차 및 7일차에 이행 정도(배어나오는 정도)를 관찰하고, 그 결과를 수치로 기재하였다. 수치가 0에 가까울수록 내스트레스성이 우수함을 나타낸다.
7) 탄화특성 평가: 두께 0.25mm인 시편을 40cm X 1cm의 크기로 제작하여 Mathis Oven에서 230℃, 5mm/10sec의 속도로 탄화 테스트를 진행하여, 검게 탄화가 시작된 시간을 측정하였다. 탄화특성이 우수함은 상대적으로 탄화가 늦게 시작되었음을 의미하며, 탄화특성이 열위함은 상대적으로 탄화가 일찍 시작되었음을 의미한다. 우수한 정도에 따라 1부터 5의 척도로 평가하되, 우수한 것을 5로 열세인 것을 1로 표기하였다.
8) 흡수속도 측정: 73℃, 60rpm의 조건 하에서, Planatary mixer(Brabender, P600)를 사용하여 수지와 가소제가 서로 혼합되어 믹서의 토크가 안정화되는 상태가 되는데까지 소요된 시간을 측정하여 가공성을 평가하였다.
(5) 평가 결과
상기 항목의 평가 결과를 하기 표 2 및 3에 나타내었다.
구분 이행손실
(%)
가열감량
(%)
인장강도
(kgf/cm2)
신율
(%)
인장잔율
(%)
신장 잔율
(%)
실시예 1 5.11 0.94 210.9 324.8 108.2 89.9
실시예 2 5.78 0.90 210.9 325.4 104.2 89.0
실시예 3 5.86 0.92 210.1 324.5 102.1 89.0
실시예 4 5.88 0.88 211.4 326.2 105.6 89.5
실시예 5 5.23 0.95 208.7 320.1 104.8 88.9
비교예 1 3.21 2.34 200.3 310.2 89.6 87.4
비교예 2 6.54 0.90 207.3 320.4 104.2 89.1
비교예 3 6.36 0.98 208.1 320.3 101.2 88.9
비교예 4 5.34 1.23 198.5 310.2 98.6 82.3
구분 스트레스 테스트 탄화특성 흡수속도
(mm:ss)
1일차 3일차 7일차
실시예 1 0.5 1.5 1.5 2 6:30
실시예 2 0.5 1.5 1.5 2 6:55
실시예 3 1.0 1.5 2.0 2 7:05
실시예 4 1.0 1.5 2.0 2 7:25
실시예 5 1.0 1.5 1.5 2 6:15
비교예 1 1.0 2.0 2.5 4 5:30
비교예 2 1.0 2.0 2.5 2 7:30
비교예 3 1.0 2.0 2.5 2 7:40
비교예 4 0 1.5 1.5 3 6:20
상기 표 2 및 3을 참조하면, 실시예 1 내지 5의 경우 기존 프탈레이트계 가소제 제품인 비교예 1과 비교하여, 가열감량, 기계적 물성, 내스트레스성 및 탄화특성 측면에서는 우수한 결과를 나타내었다. 즉, 본 발명의 가소제 조성물은 디(2-에틸헥실) 테레프탈레이트와 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트를 함께 적용함으로써, 기존 물성의 저하 없이 가열감량, 내스트레스성 및 기계적 물성에서의 개선을 나타남을 의미한다. 일반적으로 두 성분이 혼합되는 조성물의 경우, 혼합 조성물의 효과는 각 성분의 효과가 서로 희석되는 방향으로 나타나는데, 본 발명에서는 그와 달리 기존 물성의 수준을 유지하면서도 내스트레스성 및 기계적 물성에서의 개선이 달성되며, 이로부터 본 발명은 기존 기술로부터 예측할 수 없는 효과를 달성함을 확인할 수 있다.
한편, 비교예 2는 본 발명의 실시예들과 유사하게 폴리에틸렌 테레프탈레이트로부터 제조되되, 더 많은 양의 2-에틸헥산올을 사용하고, 분리 공정 등을 추가로 거침으로써 최종 조성물 내 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트를 완전히 제거한 것인데, 제조 공정의 비용은 실시예 1 내지 5 대비 더 높음에도 불구하고, 최종적으로 수득된 가소제 조성물의 물성은 실시예 1 내지 5의 가소제 조성물과 유사한 수준이었으며, 특히 내이행성, 내스트레스성 및 기계적 물성에서는 오히려 실시예보다 열위한 결과를 나타내었다. 또한 흡수 속도 측면에서도 실시예보다 열위한 결과를 나타내었다. 이로부터 본 발명의 가소제 조성물은 기존 폴리에틸렌 테레프탈레이트로부터 회수된 디(2-에틸헥실) 테레프탈레이트를 포함하는 가소제 조성물 대비 제조 비용이 저렴하면서도, 가소제 자체의 기능 역시 우수함을 확인할 수 있다.
한편, 비교예 3 및 4는 본 발명의 실시예들과 유사하게 폴리에틸렌 테레프탈레이트로부터 제조되되, 2-에틸헥산올의 투입량, 반응시간 및 정제과정을 조절하여, 본 발명에 따른 2-에틸헥식(2-하이드록시에틸) 테레프탈레이트 및/또는 이합체 화합물의 함량을 벗어난 가소제 조성물인데, 기계적 물성, 이행손실, 가열 감량 및 내스트래스성에서는 상기 실시예보다 열위한 결과를 나타내었다. 이로부터, 본 발명의 가소제 조성물은 기계적 물성, 내열성 및 내이행성 등의 여러 물성의 개선을 최대화하기 위해서 각각의 화합물의 함량을 한정한 것으로써, 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 및/또는 이합체 화합물의 함량을 벗어나는 비교예 3 및 4의 가소제 대비 가소제 자체의 기능이 우수함을 확인할 수 있다.

Claims (15)

  1. 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하고,
    상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량은 전체 가소제 조성물을 기준으로 20 중량% 이하인 가소제 조성물.
  2. 제1항에 있어서,
    상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트의 함량은 0.01 내지 15 중량%인 가소제 조성물.
  3. 제1항에 있어서,
    상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 및 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1:3 내지 10000인 가소제 조성물.
  4. 제3항에 있어서,
    상기 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 및 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1:5 내지 1000인 가소제 조성물.
  5. 제1항에 있어서,
    상기 디(2-에틸헥실) 이소프탈레이트의 함량은 전체 조성물을 기준으로 5.0 중량% 이하인 가소제 조성물.
  6. 제1항에 있어서,
    하기 화학식 1 내지 3으로 표시되는 이합체 화합물 중 어느 하나 이상을 더 포함하는 것인 가소제 조성물:
    [화학식 1]
    Figure PCTKR2023002666-appb-img-000008
    [화학식 2]
    Figure PCTKR2023002666-appb-img-000009
    [화학식 3]
    Figure PCTKR2023002666-appb-img-000010
  7. 제6항에 있어서,
    조성물 내 상기 이합체 화합물의 총 함량은 2.0 내지 20.0 중량%인 가소제 조성물.
  8. 제6항에 있어서,
    조성물 내 상기 화학식 1로 표시되는 이합체 화합물의 함량은 0.01 내지 1 중량%인 가소제 조성물.
  9. 제6항에 있어서,
    조성물 내 상기 화학식 3으로 표시되는 이합체 화합물의 함량은 0.3 내지 2.5 중량%인 가소제 조성물.
  10. 제6항에 있어서,
    조성물 내 상기 이합체 화합물과 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트 사이의 중량비는 1:0.001 내지 5인 가소제 조성물.
  11. 제6항에 있어서,
    조성물 내 상기 이합체 화합물과 디(2-에틸헥실) 테레프탈레이트 사이의 중량비는 1: 2.0 내지 99.0 인 가소제 조성물.
  12. 촉매 하에 폴리에틸렌 테레프탈레이트 및 2-에틸헥산올을 혼합하여 에스터화 반응시키는 단계;를 포함하고,
    상기 에스터화 반응의 생성물은, 2-에틸헥실(2-하이드록시에틸) 테레프탈레이트, 디(2-에틸헥실) 이소프탈레이트 및 디(2-에틸헥실) 테레프탈레이트를 포함하는 것인 가소제 조성물의 제조방법.
  13. 제12항에 있어서,
    상기 폴리에틸렌 테레프탈레이트는 폴리에틸렌 테레프탈레이트 및 2-에틸헥산올의 합 함량에 대하여 80 중량% 이하로 혼합되는 것인 가소제 조성물의 제조방법.
  14. 제12항에 있어서,
    상기 폴리에틸렌 테레프탈레이트는 폐기되어 재활용된 폴리에틸렌 테레프탈레이트를 포함하는 것인 가소제 조성물의 제조방법.
  15. 수지 100 중량부; 및 제1항의 가소제 조성물 5 내지 150 중량부;를 포함하고,
    상기 수지는 스트레이트 염화비닐 중합체, 페이스트 염화비닐 중합체, 에틸렌 비닐 아세테이트 공중합체, 에틸렌 중합체, 프로필렌 중합체, 폴리케톤, 폴리스티렌, 폴리우레탄, 폴리락틱산, 천연고무 및 합성고무로 이루어진 군에서 선택된 1 종 이상인 것인 수지 조성물.
PCT/KR2023/002666 2022-02-25 2023-02-24 가소제 조성물 및 이를 포함하는 수지 조성물 WO2023163546A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2024009853A MX2024009853A (es) 2022-02-25 2023-02-24 Composicion plastificante y composicion de resina que incluye la misma.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220024953 2022-02-25
KR10-2022-0024953 2022-02-25
KR10-2023-0024778 2023-02-24
KR1020230024778A KR20230127922A (ko) 2022-02-25 2023-02-24 가소제 조성물 및 이를 포함하는 수지 조성물

Publications (1)

Publication Number Publication Date
WO2023163546A1 true WO2023163546A1 (ko) 2023-08-31

Family

ID=87766474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002666 WO2023163546A1 (ko) 2022-02-25 2023-02-24 가소제 조성물 및 이를 포함하는 수지 조성물

Country Status (3)

Country Link
KR (1) KR102625807B1 (ko)
MX (1) MX2024009853A (ko)
WO (1) WO2023163546A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256274A (ja) * 1999-03-11 2000-09-19 Hokoku Seiyu Kk テレフタル酸ジエステルの製造法およびその組成物
KR20150093580A (ko) * 2014-02-07 2015-08-18 주식회사 엘지화학 에스테르계 가소제, 이의 제조방법, 및 이를 포함하는 수지 조성물
KR20180004903A (ko) * 2016-07-05 2018-01-15 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20200127877A (ko) * 2019-05-02 2020-11-11 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016019A1 (en) 1994-11-23 1996-05-30 Amoco Corporation Biodegradable surfactant/emulsifiers
KR20140027014A (ko) 2012-08-23 2014-03-06 주식회사 엘지화학 가소제 조성물
KR101758447B1 (ko) 2014-02-07 2017-07-17 주식회사 엘지화학 이소프탈레이트계 에스테르 화합물 및 이를 포함하는 가소제 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256274A (ja) * 1999-03-11 2000-09-19 Hokoku Seiyu Kk テレフタル酸ジエステルの製造法およびその組成物
KR20150093580A (ko) * 2014-02-07 2015-08-18 주식회사 엘지화학 에스테르계 가소제, 이의 제조방법, 및 이를 포함하는 수지 조성물
KR20180004903A (ko) * 2016-07-05 2018-01-15 주식회사 엘지화학 가소제 조성물, 수지 조성물 및 이들의 제조 방법
KR20200127877A (ko) * 2019-05-02 2020-11-11 주식회사 엘지화학 가소제 조성물 및 이를 포함하는 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PASZUN D, SPYCHAJ T: "CHEMICAL RECYCLING OF POLY(ETHYLENE TEREPHTHALATE)", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 36, no. 04, 1 April 1997 (1997-04-01), pages 1373 - 1383, XP000941864, ISSN: 0888-5885, DOI: 10.1021/ie960563c *

Also Published As

Publication number Publication date
KR102625807B1 (ko) 2024-01-17
MX2024009853A (es) 2024-08-19
KR20230175147A (ko) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2018048170A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222536A1 (ko) 사이클로헥산 트리에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2014181922A1 (ko) 에스테르계 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2020222500A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018110923A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018147690A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021020878A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018216985A1 (ko) 시트레이트계 가소제 및 이를 포함하는 수지 조성물
WO2017222232A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2019088736A2 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2018008913A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2020251266A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2016153235A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017018740A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2016182376A1 (ko) 에스테르계 화합물, 이를 포함하는 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2018110922A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017074057A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2017183877A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2021145643A1 (ko) 시트레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017091040A1 (ko) 가소제 조성물, 수지 조성물 및 이들의 제조 방법
WO2023075470A1 (ko) 프로판 트리카복실레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2020222494A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
WO2023075472A1 (ko) 프로판 트리카복실레이트계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2022270910A1 (ko) 트라이에스터계 가소제 조성물 및 이를 포함하는 수지 조성물
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760420

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/009853

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024017299

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2023760420

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023760420

Country of ref document: EP

Effective date: 20240925