WO2023090352A1 - 手術支援システムおよび手術支援システムの制御方法 - Google Patents
手術支援システムおよび手術支援システムの制御方法 Download PDFInfo
- Publication number
- WO2023090352A1 WO2023090352A1 PCT/JP2022/042518 JP2022042518W WO2023090352A1 WO 2023090352 A1 WO2023090352 A1 WO 2023090352A1 JP 2022042518 W JP2022042518 W JP 2022042518W WO 2023090352 A1 WO2023090352 A1 WO 2023090352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pivot position
- pivot
- surgical instrument
- control device
- mode
- Prior art date
Links
- 238000001356 surgical procedure Methods 0.000 title claims description 43
- 238000000034 method Methods 0.000 title claims description 16
- 238000003860 storage Methods 0.000 claims abstract description 68
- 230000008859 change Effects 0.000 claims description 76
- 238000012937 correction Methods 0.000 claims description 40
- 238000012544 monitoring process Methods 0.000 claims description 19
- 230000007704 transition Effects 0.000 claims description 16
- 230000005856 abnormality Effects 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 17
- 230000007246 mechanism Effects 0.000 description 14
- 239000003638 chemical reducing agent Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000036544 posture Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/74—Manipulators with manual electric input means
- A61B2034/742—Joysticks
Definitions
- This disclosure relates to a surgical assistance system and a control method for the surgical assistance system.
- JP 2018-94446 discloses a robot system comprising a manipulator arm and a tool attached to the manipulator arm.
- the manipulator arm of JP 2018-94446 A is provided with an instrument holder for longitudinally translating the tool.
- a cannula is held at the distal end of the instrument holder.
- the cannula is retained in the cannula retaining mechanism of the instrument holder.
- a tool is inserted into the cannula.
- a predetermined portion of the cannula is predetermined as a fulcrum for rotational movement of the tool. That is, in Japanese Patent Laying-Open No. 2018-94446, the fulcrum of rotational movement of the tool is mechanically determined.
- JP 2018-94446 A describes reconfiguring the manipulator arm during surgery to avoid interference or to extend the range of motion of the instrument within the patient.
- the manipulator arm is reconfigured during surgery with the intermediate portion of the tool constrained to the fulcrum of rotational movement, and the end effector of the tool is maintained in a desired state during surgery. Reconfiguring the manipulator arm.
- a manipulator arm whose fulcrum for rotational movement of the tool is structurally determined is used. Therefore, the mechanism for holding the cannula of the instrument holder of the manipulator arm sets the fulcrum of rotational movement of the tool at a predetermined position of the cannula simply by holding the cannula.
- the manipulator arm is connected to the cannula via the cannula holding mechanism, the space near the patient's body surface where the cannula is inserted becomes narrow.
- the mechanism for holding the cannula interferes with the work performed by the assistant doctor during the operation, making it difficult to work near the patient's body surface.
- This disclosure has been made to solve the above-described problems, and one object of this disclosure is to facilitate work near the patient's body surface during surgery, and to use a robot. It is an object of the present invention to provide a surgical assistance system and a method of controlling the surgical assistance system that facilitates an operation for avoiding arm interference and an operation for expanding the movable range of a surgical instrument within a patient.
- a surgery support system includes a robot arm having a surgical instrument attached to its tip, an operation unit attached to the robot arm for operating the robot arm, and a movement of the surgical instrument attached to the robot arm.
- a pivot position setting section for setting a pivot position serving as a fulcrum, a storage section, and a control device, wherein the control device stores the first pivot position in the storage section based on the operation of the pivot position setting section.
- the first pivot position stored in the storage unit is changed based on the operation of the pivot position setting unit in a state where the surgical instrument is inserted into the body of the patient;
- the position change mode if the pivot position setting section is operated after the surgical instrument has been moved by the operation section, the position after the surgical instrument has been moved is stored in the storage section as the second pivot position.
- the control device stores the first pivot position in the storage section based on the operation of the pivot position setting section. This allows the controller to store the pivot position in software so that a manipulator arm with a structurally defined first pivot position can be used or a cannula can be supported to set the first pivot position. There is no need to arrange a mechanism for controlling the manipulator arm. As a result, since no mechanism for supporting the cannula is arranged, it is possible to easily perform operations near the patient's body surface during surgery.
- the control device shifts to a pivot position change mode in which the first pivot position stored in the storage unit is changed based on the operation of the pivot position setting unit while the surgical instrument is inserted into the patient's body.
- the pivot position change mode when the pivot position setting section is operated after the surgical instrument has been moved by the operation section, the position after the surgical instrument has been moved is stored in the storage section as the second pivot position.
- the control device changes the pivot position by software, so that the first pivot position, which is the fulcrum of movement of the surgical instrument, can be easily changed.
- an operation for avoiding interference of the robot arm and an operation for expanding the movable range of the surgical instrument within the patient can be easily performed.
- a method for controlling a surgical assistance system stores a first pivot position serving as a fulcrum for movement of a surgical instrument attached to a robot arm based on operation of a pivot position setting section. and a transition to a pivot position change mode in which the first pivot position stored in the storage unit is changed based on the operation of the pivot position setting unit while the surgical instrument is inserted into the patient's body. and, in the pivot position change mode, when the pivot position setting unit is operated after the surgical instrument is moved by the operation unit, the position after the surgical instrument is moved is stored in the storage unit as the second pivot position. Prepare things and things.
- a control method for a surgical assistance system is, as described above, based on the operation of the pivot position setting unit, the first position serving as a fulcrum for movement of the surgical instrument attached to the robot arm. Storing the pivot position in a storage unit. This allows the controller to store the pivot position in software so that a manipulator arm with a structurally defined first pivot position can be used or a cannula can be supported to set the first pivot position. There is no need to arrange a mechanism for controlling the manipulator arm. As a result, it is possible to provide a control method for a surgery support system that facilitates work near the patient's body surface during surgery because no mechanism for supporting the cannula is arranged.
- control method for the surgical assistance system includes a pivot position setting unit that changes the first pivot position stored in the storage unit based on the operation of the pivot position setting unit while the surgical instrument is inserted into the patient's body.
- the pivot position setting unit is operated after the surgical instrument has been moved by the operation unit, the position after the surgical instrument has been moved is stored as the second pivot position. storing in the unit.
- the control device changes the first pivot position by software, so that the first pivot position, which is the fulcrum of movement of the surgical instrument, can be easily changed.
- FIG. 12 illustrates a display of a medical trolley according to one embodiment; It is a figure which shows the structure of the medical cart by one Embodiment.
- FIG. 2 is a diagram showing a configuration of a robot arm according to one embodiment;
- FIG. 10 shows a forceps;
- FIG. 4 is a perspective view showing the configuration of an arm operation section according to one embodiment;
- FIG. 4 is a diagram for explaining translational movement of a robot arm;
- FIG. 4 is a diagram for explaining the rotational movement of the robot arm; It is a figure which shows an endoscope.
- Fig. 10 shows a pivot positioning instrument; It is a control block diagram of a surgical assistance robot according to one embodiment.
- FIG. 4 is a control block diagram of a robotic arm according to one embodiment;
- FIG. 4 is a diagram for explaining an operation of storing a pivot position in a storage unit;
- FIG. 5 is a diagram for explaining change of a pivot position stored in a storage unit;
- FIG. FIG. 4 is a diagram for explaining a pivot correctable range and a pivot correctable start range;
- FIG. 10 is a diagram for explaining a pivot deviation monitoring range before the pivot position is changed;
- FIG. 10 is a diagram for explaining a pivot deviation monitoring range after a pivot position is changed;
- FIG. 10 is a diagram showing a message displayed on the monitor when the pivot position is outside the pivot correction startable range;
- FIG. 4 is a diagram for explaining an operation of storing a pivot position in a storage unit
- FIG. 5 is a diagram for explaining change of a pivot position stored in a storage unit
- FIG. FIG. 4 is a diagram for explaining a pivot correctable range and a pivot correctable start range
- FIG. 10 is a diagram showing a message displayed on the monitor when the pivot position is located between the pivot correctable range and the pivot correctable start range;
- FIG. 4 is a diagram for explaining mode transition;
- FIG. 4 is a diagram for explaining a method of calculating a temporary pivot position;
- FIG. 11 is a diagram for explaining a method of calculating a pivot position after change;
- FIG. 4 is a flowchart for explaining a control method for a surgical assistance robot according to one embodiment;
- a surgical assistance system 100 includes a surgical assistance robot 1 and a remote control device 2 .
- the longitudinal direction of the surgical instrument 4 is defined as the Z direction.
- the distal end side of the surgical instrument 4 is the Z1 side
- the proximal end side of the surgical instrument 4 is the Z2 side.
- the direction orthogonal to the Z direction is defined as the X direction.
- One side in the X direction is the X1 side
- the other side is the X2 side.
- a direction perpendicular to the Z direction and the X direction is defined as the Y direction.
- One side in the Y direction is the Y1 side, and the other side is the Y2 side.
- the surgical assistance robot 1 is placed in the operating room.
- the remote control device 2 is arranged at a position spaced apart from the surgical assistance robot 1 .
- An operator such as a doctor inputs a command to the remote control device 2 to cause the surgical assistance robot 1 to perform a desired action.
- the remote control device 2 transmits the inputted command to the surgical assistance robot 1 .
- the surgical assistance robot 1 operates based on the received instructions.
- the surgical assistance robot 1 is placed in the operating room, which is a sterile sterile field.
- the surgical assistance robot 1 includes a medical cart 3 , a positioner 40 , an arm base 50 , a plurality of robot arms 60 and an arm manipulator 80 .
- the arm operating section 80 is an example of an operating section.
- the medical cart 3 moves the positioner 40.
- the medical cart 3 includes an input device 33 .
- the input device 33 receives operations for moving and changing postures of the positioner 40, the arm base 50, and the plurality of robot arms 60, mainly for preparing for surgery before surgery.
- the medical cart 3 includes an operation handle 34 that receives steering by an operator.
- the input device 33 is provided with a display section 33a.
- the display unit 33a is, for example, a liquid crystal panel. Numbers corresponding to a plurality of robot arms 60 are displayed on the display section 33a. Further, the type of surgical instrument 4 attached to each of the plurality of robot arms 60 is displayed on the display section 33a. A check mark CM indicating that a pivot position PP, which will be described later, has been set is displayed on the display section 33a.
- a joystick 33b for operating the movement of the positioner 40 is arranged near the input device 33 of the medical cart 3.
- the positioner 40 is moved three-dimensionally.
- Joystick 33b is an example of a first enable switch.
- an enable switch 33c for permitting or not permitting movement of the positioner 40 is arranged near the joystick 33b of the medical trolley 3. Then, the positioner 40 is moved by operating the joystick 33b in a state in which the enable switch 33c is pressed and movement of the positioner 40 is permitted.
- the positioner 40 is, for example, a 7-axis articulated robot.
- the positioner 40 is arranged on the medical cart 3 .
- a positioner 40 adjusts the position of the arm base 50 .
- the positioner 40 moves the position of the arm base 50 three-dimensionally.
- the positioner 40 includes a base portion 41 and a plurality of link portions 42 connected to the base portion 41 .
- the plurality of link portions 42 are connected by joint portions 43 .
- the arm base 50 is attached to the tip of the positioner 40.
- a plurality of robot arms 60 are attached to the arm base 50 at the proximal end of each robot arm 60 .
- the plurality of robot arms 60 can take a folded storage posture.
- the arm base 50 and the plurality of robot arms 60 are covered with a sterile drape for use.
- the robot arm 60 also supports the surgical instrument 4 .
- a plurality of robot arms 60 are arranged. Specifically, four robot arms 60a, 60b, 60c and 60d are arranged. Robot arms 60a, 60b, 60c and 60d have similar configurations to each other.
- the robot arm 60 includes an arm portion 61, a first link portion 72, a second link portion 73, and a translation mechanism portion .
- the robot arm 60 has JT1 to JT7 axes as rotation axes and J8 axis as a translational axis.
- the JT1 to JT7 axes are rotation axes of the joint 64 of the arm 61 .
- the JT7 axis is the rotation axis of the first link portion 72 .
- the JT8 axis is a linear movement axis along which the translation mechanism 70 moves the second link 73 relative to the first link 72 along the Z direction.
- the arm part 61 consists of a 7-axis articulated robot arm.
- the first link portion 72 is arranged at the tip of the arm portion 61 .
- An arm operating portion 80 to be described later is attached to the second link portion 73 .
- the translation mechanism section 70 is arranged between the first link section 72 and the second link section 73 .
- a holder 71 that holds the surgical instrument 4 is arranged on the second link portion 73 .
- a surgical instrument 4 is attached to the tip of each of the plurality of robot arms 60 .
- Surgical instruments 4 include, for example, replaceable instruments, an endoscope 6 for capturing images of the surgical site, and the like.
- a surgical instrument 4 as an instrument includes a driven unit 4a, forceps 4b and a shaft 4c.
- the endoscope 6 is attached to the tip of one of the robot arms 60, for example, the robot arm 60c, and the tips of the remaining robot arms 60a, 60b, and 60d, for example. , a surgical instrument 4 other than the endoscope 6 is attached.
- the endoscope 6 is attached to one of the two centrally arranged robot arms 60b and 60c of the four robot arms 60 arranged adjacent to each other.
- Robot arms 60a, 60b and 60d are an example of a first robot arm.
- the robot arm 60c is an example of a second robot arm.
- instrument configuration As shown in FIG. 5, for example, forceps 4b are provided at the tip of the instrument.
- instruments having joints such as scissors, graspers, needle holders, microdisectors, stable appliers, tuckers, suction cleaning tools, snare wires, clip appliers, etc. placed.
- non-articulated instruments such as cutting blades, cautery probes, irrigators, catheters, and aspiration orifices.
- the forceps 4b includes a first support 4e that supports the proximal sides of the jaw members 104a and 104b rotatably about the JT11 axis on the distal side, and a first support 4e that supports the proximal sides of the first support 4e on the distal side about the JT10 axis. and a second support 4f that rotatably supports.
- the shaft 4c rotates around the JT9 axis. Jaw members 104a and 104b open and close about the JT11 axis.
- the arm operating section 80 is attached to the robot arm 60 and operates the robot arm 60 .
- the arm operating section 80 is attached to the second link section 73 .
- the arm operation unit 80 includes an enable switch 81, a joystick 82, a linear switch 83, a mode switching button 84, a mode indicator 84a, a pivot button 85, and an adjustment button 86.
- the enable switch 81 is an example of a second enable switch.
- the pivot button 85 and the mode switching button 84 are examples of a pivot position setting section and a mode switching section, respectively.
- the enable switch 81 permits or disallows movement of the robot arm 60 by the joystick 82 and linear switch 83.
- an operator such as a nurse or an assistant presses the enable switch 81 while holding the arm operation unit 80 , the robot arm 60 is permitted to move the surgical instrument 4 .
- the joystick 82 is an operating tool for operating the movement of the surgical instrument 4 by the robot arm 60.
- a joystick 82 controls the direction and speed of movement of the robot arm 60 .
- the robot arm 60 is moved according to the tilted direction and tilted angle of the joystick 82 .
- the linear switch 83 is a switch for moving the surgical instrument 4 in the Z direction, which is the longitudinal direction of the surgical instrument 4 .
- the linear switch 83 includes a linear switch 83a for moving the surgical instrument 4 in the direction of inserting it into the patient P, and a linear switch 83b for moving the surgical instrument 4 in the direction away from the patient P. Both the linear switch 83a and the linear switch 83b are push button switches.
- the mode switching button 84 is a push button switch for switching between the translational movement mode shown in FIG. 7 and the rotational movement mode shown in FIG.
- the robot arm 60 in the translational movement mode of the robot arm 60, the robot arm 60 is moved such that the distal end 4d of the surgical instrument 4 moves on the XY plane.
- the forceps 4b in the mode of rotating the robot arm 60, when the pivot position PP is not stored in the storage unit 32 and the storage unit 35, the forceps 4b are rotated about the center of the JT11 axis of the forceps 4b, When the pivot position PP is stored in the storage unit 32 and the storage unit 35, the robot arm 60 is moved so that the surgical instrument 4 rotates about the pivot position PP.
- the surgical instrument 4 is rotated while the shaft 4c of the surgical instrument 4 is inserted into the trocar T.
- the mode switching button 84 is arranged on the surface of the arm operating section 80 on the Z-direction side. Note that the mode switching button 84 may have a configuration other than a push button switch.
- the mode indicator 84a displays the switched mode. Lighting of the mode indicator 84a represents the rotational movement mode, and unlighting represents the translational movement mode.
- the mode indicator 84a also serves as a pivot position indicator that indicates that the pivot position PP has been set.
- the mode indicator 84a is arranged on the surface of the arm operating section 80 on the Z-direction side.
- the pivot button 85 is a push button switch for setting the pivot position PP, which is the fulcrum of movement of the surgical instrument 4 attached to the robot arm 60 .
- the pivot button 85 may have a configuration other than a push button switch.
- the adjustment button 86 is a button for optimizing the position of the robot arm 60. After setting the pivot position PP for the robot arm 60 to which the endoscope 6 is attached, the positions of the other robot arm 60 and the arm base 50 are optimized by pressing the adjustment button 86 .
- the remote control device 2 is arranged inside or outside the operating room, for example.
- the remote control device 2 includes an operation section 120 including an arm 121 and an operation handle 21 , a foot pedal 22 , a touch panel 23 , a monitor 24 , a support arm 25 and a support bar 26 .
- the operation unit 120 constitutes an operation handle for an operator such as a doctor to input commands.
- the monitor 24 is an example of a display.
- the operation part 120 is a handle for operating the surgical instrument 4. Further, the operation unit 120 receives an operation amount for the surgical instrument 4 .
- the operation unit 120 includes an operation unit 120L arranged on the left side and operated by the operator's left hand when viewed from an operator such as a doctor, and an operation unit 120R arranged on the right side and operated by the operator's right hand. contains.
- the operation section 120L and the operation section 120R respectively include an operation handle 21L and an operation handle 21R.
- the monitor 24 is a scope-type display device for displaying images captured by the endoscope 6 .
- the support arm 25 supports the monitor 24 so that the height of the monitor 24 matches the height of the face of an operator such as a doctor.
- the touch panel 23 is arranged on the support bar 26 .
- a sensor provided near the monitor 24 detects the operator's head, thereby enabling the operation of the surgical assistance robot 1 by the remote control device 2 .
- the operator operates the operation unit 120 and the foot pedal 22 while viewing the affected area on the monitor 24 . Accordingly, a command is input to the remote control device 2 .
- a command input to the remote control device 2 is transmitted to the surgical assistance robot 1 .
- the surgery support system 100 includes a first control device 130, an arm control section 31a, a positioner control section 31b, an operation control section 110, and a second control device 140.
- the first control device 130 and the second control device 140 are examples of control devices.
- the first control device 130 is arranged inside the medical cart 3 so as to communicate with the arm control section 31a, and controls the surgery support system 100 as a whole. Specifically, the first control device 130 communicates with each of the arm control section 31 a, the positioner control section 31 b, and the operation control section 110 . The first control device 130 controls each of the arm control section 31 a , the positioner control section 31 b and the operation control section 110 . The first controller 130, the arm controller 31a, the positioner controller 31b, and the operation controller 110 are connected via a LAN or the like. 11, the first control device 130 is shown separately from the medical cart 3, but FIG. 11 is a diagram for explaining the control blocks, and actually, as shown in FIG. , the first controller 130 is arranged inside the medical cart 3 .
- the arm control unit 31a is arranged for each of the plurality of robot arms 60. 11 shows that the arm control unit 31a is arranged inside the robot arm 60, FIG. 11 is a diagram for explaining the control block, and is actually shown in FIG. Thus, the arm controller 31a is arranged inside the medical cart 3 . In other words, the arm control units 31a are arranged in the medical carriage 3 for the number of the plurality of robot arms 60 .
- the arm portion 61 is provided with a plurality of servomotors M1, an encoder E1, and a speed reducer so as to correspond to the plurality of joint portions 64.
- the encoder E1 detects the rotation angle of the servomotor M1.
- the speed reducer slows down the rotation of the servomotor M1 to increase the torque.
- a servo control section C1 is arranged for controlling the servo motor M1.
- An encoder E1 for detecting the rotation angle of the servomotor M1 is electrically connected to the servo control unit C1.
- the second link portion 73 is provided with a servomotor M2 for rotating the driven member arranged in the driven unit 4a of the surgical instrument 4, an encoder E2, and a speed reducer.
- the encoder E2 detects the rotation angle of the servomotor M2.
- the speed reducer slows down the rotation of the servomotor M2 to increase the torque.
- a servo control unit C2 for controlling a servo motor M2 that drives the surgical instrument 4 is arranged.
- An encoder E2 for detecting the rotation angle of the servo motor M2 is electrically connected to the servo control unit C2.
- a plurality of servo motors M2, encoders E2, and servo controllers C2 are arranged.
- the translational movement mechanism section 70 is provided with a servomotor M3 for translating the surgical instrument 4, an encoder E3, and a speed reducer.
- the encoder E3 detects the rotation angle of the servomotor M3.
- the speed reducer slows down the rotation of the servomotor M3 to increase the torque.
- a servo controller C3 is arranged for controlling a servo motor M3 that translates the surgical instrument 4 .
- An encoder E3 for detecting the rotation angle of the servo motor M3 is electrically connected to the servo control unit C3.
- the first control device 130 controls the robot arm 60 based on the operation received by the arm operation section 80.
- first controller 130 controls robot arm 60 based on an operation accepted by joystick 82 of arm operation unit 80 .
- the arm controller 31 a outputs an input signal input from the joystick 82 to the first controller 130 .
- the first controller 130 generates a position command based on the received input signal and the rotation angle detected by the encoder E1, and outputs the position command to the servo controller C1 via the arm controller 31a.
- Servo control unit C1 generates a current command based on the position command input from arm control unit 31a and the rotation angle detected by encoder E1, and outputs the current command to servo motor M1.
- the robot arm 60 is moved according to the motion command input to the joystick 82 .
- the first controller 130 controls the robot arm 60 based on the input signal from the linear switch 83 of the arm operation section 80. Specifically, the arm controller 31 a outputs the input signal input from the linear switch 83 to the first controller 130 .
- the first controller 130 generates a position command based on the received input signal and the rotation angle detected by the encoder E1 or E3, and sends the position command to the servo controller C1 or C3 via the arm controller 31a.
- output to The servo control unit C1 or C3 generates a current command based on the position command input from the arm control unit 31a and the rotation angle detected by the encoder E1 or E3, and sends the current command to the servo motor M1 or M3. output to As a result, the robot arm 60 is moved along with the operation command input to the linear switch 83 .
- the positioner control unit 31b is arranged on the medical cart 3.
- the positioner controller 31 b controls the positioner 40 and the medical cart 3 .
- a servo motor SM, an encoder EN, a speed reducer, and a servo controller SC are arranged in the positioner 40 so as to correspond to the plurality of joints 43 of the positioner 40 .
- the medical cart 3 is provided with a servo motor SM for driving each of the plurality of front wheels of the medical cart 3, an encoder EN, a speed reducer, a servo controller SC, and a brake.
- the operation control unit 110 controls the operation unit 120.
- the operation control unit 110 is arranged so as to correspond to each of the operation unit 120L and the operation unit 120R.
- a servo motor SM, an encoder EN, a speed reducer, and a servo controller SC are arranged in the operation unit 120 so as to correspond to the plurality of joints of the operation unit 120 .
- the second control device 140 is arranged separately from the first control device 130 .
- the tip of the endoscope 6 or the pivot position setting instrument 7 is moved to a position corresponding to the insertion position of the trocar T, and the pivot position PP stored in the storage unit 35 by the second control device 140 is is the first pivot position PP1.
- the second control device 140 stores data in the storage unit 35 based on the operation of the pivot button 85 while the surgical instrument 4 is inserted into the body of the patient P. If the pivot button 85 is operated after the surgical instrument 4 is moved by the arm operating section 80 in the pivot position changing mode, the surgical instrument 4 is moved to the pivot position changing mode. The position after being moved is stored in the storage unit 35 as the second pivot position PP2.
- the second control device 140 operates the pivot button 85 after the surgical instrument 4 has been moved by at least one of the joystick 82 and the linear switch 83 in a state of shifting to the pivot position change mode. If so, the position after the surgical instrument 4 has been moved is stored in the storage unit 35 as the changed second pivot position PP2. Note that the first pivot position PP1 can be changed for both the robot arm 60 to which the endoscope 6 is attached and the robot arm 60 to which the surgical instrument 4 other than the endoscope 6 is attached.
- the second control device 140 controls the first pivot position PP1 within the pivot correctable range A1 set based on the first pivot position PP1 stored in the storage unit 35.
- accept changes in The pivot correctable range A1 is the inside of a sphere with a radius r1 centered at the first pivot position PP1 stored in the storage unit 35, and is calculated by the first controller 130.
- the pivot correctable range A1 is centered on the first pivot position PP1 that is first stored in the storage unit 35. It is the inside of a sphere of radius r1.
- the second control device 140 does not accept transition to the pivot position change mode when the second pivot position PP2 is outside the pivot correction startable range A2 larger than the pivot correctable range A1.
- the pivot correction startable range A2 is the inside of a sphere with a radius r2 centered at the first pivot position PP1 stored in the storage unit 35 . Radius r2 is greater than radius r1.
- the second control device 140 monitors whether or not the second pivot position PP2 is outside the pivot correction startable range A2. Second controller 140 transmits to first controller 130 that second pivot position PP2 is outside pivot correction startable range A2.
- the second control device 140 operates the arm only in a direction approaching the first pivot position PP1 when the second pivot position PP2 is located between the pivot correctable range A1 and the pivot correction start range A2.
- An operation for moving the surgical instrument 4 by the unit 80 is accepted. Note that an operation to move the surgical instrument 4 is accepted not only in the direction of linearly approaching the first pivot position PP1, but also in the direction of approaching the center of the first pivot position PP1 while making a detour.
- the first control device 130 causes the monitor 24 of the remote control device 2 to display a warning message, and further, an audible alarm. control to emit
- the first control device 130 displays a message indicating that the second pivot position PP2 is outside the pivot correction start range A2. It is displayed on the monitor 24 of the remote control device 2 . For example, a message is displayed on the monitor 24 that the pivot position cannot be corrected because it is far from the original pivot position, please move closer manually.
- the first control device 130 presses the pivot button 85 when the second pivot position PP2 is positioned between the pivot correctable range A1 and the pivot correctable start range A2.
- the monitor 24 displays a message prompting the user to adjust the second pivot position PP2 to the pivot correctable range A1. For example, the monitor 24 displays a message that the pivot position cannot be changed and that the pivot position should be adjusted within the correction amount r1.
- the first control device 130 causes the monitor 24 to display the distance L from the first pivot position PP1 stored in the storage unit 35 to the second pivot position PP2. .
- the distance L is displayed in real time as the second pivot position PP2 to be changed moves.
- the second control device 140 determines that the deviation between the current pivot position PPa on the surgical instrument 4 and the first pivot position PP1 is not within the pivot deviation monitoring range A3. In this case, the monitor 24 displays that there is an abnormality.
- the second control device 140 monitors whether the deviation between the current pivot position PPa on the surgical instrument 4 and the first pivot position PP1 is within the pivot deviation monitoring range A3.
- the second controller 140 transmits to the first controller 130 that the deviation between the surgical instrument 4 and the first pivot position PP1 is outside the pivot deviation monitoring range A3.
- the pivot deviation monitoring range A3 is the interior of a sphere having a radius r3.
- the current pivot position PPa on the surgical instrument 4 is a temporary position obtained by drawing a perpendicular line from the first pivot position PP1 stored in the storage unit 35 to the shaft 4c of the surgical instrument 4 shown in FIG. This is the pivot position PPa. Also, the current pivot position PPa is calculated from the detected values of the encoder EN arranged on the positioner 40 and the encoders E1 and E3 arranged on the robot arm 60 .
- the second control device 140 in the normal mode, when the deviation between the current pivot position PPa and the first pivot position PP1 is not within the pivot deviation monitoring range A3, Notify anomalies.
- the normal mode is a mode separated from the pivot position change mode and the pivot position change interruption mode, which will be described later.
- FIG. 16 shows the pivot correctable range A1, the pivot correctable start range A2, and the pivot deviation monitoring range A3.
- A3 and A3 are present as parameters. Further, when shifting to the pivot position change mode or the pivot position change interruption mode, there are two parameters in terms of control: a pivot correction possible range A1 and a pivot correction start range A2.
- the possible pivot correction start range A2 and the pivot deviation monitoring range A3 are defined by the same parameters.
- the radius r1 of the pivot correctable range A1 and the radius r2 of the pivot correctable start range A2 are larger than the radius r3 of the pivot deviation monitoring range A3.
- the pivot displacement monitoring range A3 is centered on the second pivot position PP2. is changed to a pivot deviation monitoring range A3 with a radius r3.
- the current pivot position PPa is within the pivot deviation monitoring range A3, so no abnormality is notified.
- the second control device 140 transitions to the pivot position change mode when both the pivot button 85 and the mode switching button 84 are operated. Specifically, second control device 140 accepts an operation to change first pivot position PP1 when all of the following conditions are satisfied.
- Condition 1 is that the surgical instrument 4 is attached to the robot arm 60 whose first pivot position PP1 is to be changed.
- Condition 2 is that the storage of the first pivot position PP1 is completed.
- Condition 3 is that both the pivot button 85 and the mode switching button 84 are operated.
- Condition 4 is that the endoscope 6 is attached to the robot arm 60 .
- Condition 5 is that the robot arm 60 is not being moved to the replacement position for the replacement of the endoscope 6 .
- Condition 6 is that the position of the robot arm 60 is not being moved to the replacement position for replacement of the surgical instrument 4 other than the endoscope 6 .
- Condition 7 is that the operation using the surgical instrument 4 cannot be started.
- Condition 8 is that the enable switch 81 is not operated.
- Condition 9 is that the second pivot position PP2 to be changed is within the pivot correction start range A2 larger than the pivot correction range A1 set based on the first pivot position PP1 first stored in the storage unit 35. is within the Further, when the surgical instrument 4 is replaced and the surgical instrument 4 is inserted again into the patient P, the position of the robot arm 60 is moved to the replacement position in order to replace the surgical instrument 4 . It is to move the robot arm 60 forward from the position 60 by a predetermined distance. This operation is called a guide tool change.
- a state in which surgery using the surgical instrument 4 can be started is a state in which the surgical instrument 4 can be operated by the arm operation section 80 of the remote control device 2 .
- This state is called a followable state.
- Both the pivot button 85 and the mode switching button 84 being operated means that both the pivot button 85 and the mode switching button 84 are pressed for a predetermined time or longer.
- the operation of the enable switch 81 means that the enable switch 81 is pressed.
- the second control device 140 changes the first pivot position PP1 from the normal mode. Go to change mode.
- the first control device 130 transmits a pivot position correction switching permission signal to the second control device 140 when conditions 1, 3, 5, 6, 7, 8 and 9 are satisfied. do. Thereby, the second control device 140 shifts to the pivot position change mode.
- the second control device 140 when the pivot button 85 is operated in the pivot position change mode, the second control device 140 stores the second pivot position PP2 in the storage unit 35 and then ends the pivot position change mode. Switch to normal mode. When the surgical instrument 4 is pulled out from the patient P in the pivot position change mode, the second control device 140 interrupts the pivot position change mode and shifts to the pivot position change interruption mode. Although not shown in FIG. 20, when the surgery support system 100 is restarted in the pivot position change mode, the second control device 140 ends the pivot position change mode and shifts to the normal mode. .
- the normal mode means a state in which the arm operation section 80 of the remote control device 2 can operate the surgical instrument 4 . In the pivot repositioning suspension mode, the surgical instrument 4 attached to the robotic arm 60 may be changed.
- the second control device 140 determines that the surgical instrument 4 is attached to the robot arm 60 and that both the mode switching button 84 and the pivot button 85 are operated in the pivot position change suspension mode. If these conditions are satisfied, the transition to pivot position change mode is made. Specifically, the second control device 140 transitions from the pivot position change interruption mode to the pivot position change mode when all of the following conditions are satisfied.
- Condition 11 is that the surgical instrument 4 is attached to the robot arm 60 whose first pivot position PP1 is to be changed.
- Condition 12 is that both the mode switching button 84 and the pivot button 85 are operated.
- Condition 13 is that the robot arm 60 is not being moved to the replacement position for replacement of the endoscope 6 or the surgical instrument 4 .
- Condition 14 is that the operation using the surgical instrument 4 cannot be started.
- Condition 15 is that the enable switch 81 is not operated.
- Condition 16 is that the second pivot position PP2 to be changed is within the pivot correction startable range A2 larger than the pivot correctable range A1 set based on the first pivot position PP1 stored in the storage unit 35. It is settled.
- the pivot position change interruption mode when the surgical instrument 4 attached to the robot arm 60 is replaced, the second control device 140 switches the mode switching button 84 and the pivot button 85 after performing the guide tool change operation. are operated, the pivot position change interruption mode is shifted to the pivot position change mode.
- the first control device 130 causes the monitor 24 of the remote control device 2 to display a message that the pivot is being corrected and that the pivot button should be pressed after the correction is completed.
- the first controller 130 cannot correct in this direction, and moves the pivot position in the opposite direction. Please display a message on the monitor 24 .
- the first control device 130 displays a message stating that the pivot correction will be resumed after the guide tool change operation is completed. Please press both the pivot button 85 and the mode switching button 84. is displayed on the monitor 24 .
- the second control device 140 When shifting to the pivot position change mode, the second control device 140 sets a position obtained by drawing a perpendicular line to the shaft 4c of the surgical instrument 4 from the first pivot position PP1 stored in the storage unit 35 as the provisional pivot position PPa. Let The storage unit 35 stores the coordinates (x1, y1, z1) of the temporary pivot position PPa. Further, when shifting to the pivot position change mode, the second control device 140 adjusts the position of the TCP based on the posture of the surgical assistance robot 1 calculated from the values of the encoders mounted on the axes of the positioner 40 and the robot arm 60. set. The storage unit 35 stores TCP coordinates (xt, yt, zt).
- the second control device 140 stores the TCP coordinates (xt+ ⁇ x, yt+ ⁇ y, zt+ ⁇ z) after the movement in the storage unit 35. Memorize. Then, the amount of TCP movement ( ⁇ x, ⁇ y, ⁇ z) is calculated. The second control device 140 adds the calculated movement amount ( ⁇ x, ⁇ y, ⁇ z) to the coordinates (x1, y1, z1) of the temporary pivot position PPa so that the coordinates (x1+ ⁇ x, y1+ ⁇ y, z1+ ⁇ z) are is stored in the storage unit 35 as the coordinates of the second pivot position PP2.
- the straight line connecting the first pivot position PP1 before movement and the TCP before movement is parallel to the straight line connecting the second pivot position PP2 after movement and the TCP after movement.
- step S1 the tip of the endoscope 6 or pivot positioning instrument 7 attached to the tip side of the robot arm 60 is positioned at the insertion position of the trocar T inserted on the body surface S of the patient P.
- the pivot button 85 When the pivot button 85 is operated in the state of being moved to the position corresponding to , the second control device 140 causes the storage unit 35 to store the first pivot position PP1.
- step S2 the second control device 140 determines whether all of the above conditions 1 to 9 are satisfied.
- First control device 130 transmits a pivot position correction switching enable signal to second control device 140 when conditions 1, 3, 5, 6, 7 and 9 are satisfied. As a result, the second control device 140 transitions to the pivot position change mode in step S3.
- step S4 the second control device 140 accepts the operation of moving the surgical instrument 4 with the joystick 82 and the linear switch 83.
- step S5 it is determined whether to shift from the pivot position change mode.
- the second control device 140 stores the position after the surgical instrument 4 has been moved in the storage section 35 as the second pivot position PP2 in step S6.
- the second control device 140 transitions from the pivot position change mode to the normal mode.
- step S7 the second control device 140 suspends the pivot position change mode and shifts to the pivot position change suspension mode.
- the second control device 140 terminates the pivot position change mode and shifts to the normal mode in step S8.
- step S9 the second control device 140 determines whether or not all conditions 11 to 16 are satisfied. If yes in step S9, if both the pivot button 85 and the mode switching button 84 have been operated, the process proceeds to step S3, and the second control device 140 shifts from the pivot position change interruption mode to the pivot position change mode. do.
- the second control device 140 causes the storage unit 35 to store the first pivot position PP1, which is the fulcrum of movement of the surgical instrument 4 attached to the robot arm 60, based on the pivot button 85 being operated.
- the second control device 140 stores the first pivot position PP1 in the storage unit 35 by software, so that a manipulator arm whose first pivot position is structurally determined can be used, or the first pivot position PP1 can be used.
- no mechanism for supporting the cannula is arranged, it is possible to easily perform operations near the body surface S of the patient P during surgery.
- the second control device 140 changes the first pivot position PP1 stored in the storage unit 35 based on the operation of the pivot button 85 while the surgical instrument 4 is inserted into the body of the patient P.
- the pivot button 85 is operated after the surgical instrument 4 has been moved by the arm operating section 80
- the position after the surgical instrument 4 has been moved is set to the second pivot position. It is stored in the storage unit 35 as the position PP2.
- the second control device 140 changes the first pivot position PP1 by software, so that the first pivot position PP1, which is the fulcrum of movement of the surgical instrument 4, can be easily changed.
- an operation for avoiding interference of the robot arm 60 and an operation for expanding the movable range of the surgical instrument 4 within the patient P can be easily performed.
- the second control device 140 stores the second pivot position PP2 in the storage unit 35 within the pivot correctable range A1 set based on the first pivot position PP1. As a result, the range of change of the second pivot position PP2 is limited, so that it is possible to prevent the second pivot position PP2 from being changed to a position that is too far apart.
- the second controller 140 shifts to the pivot position change mode with the second pivot position PP2 stored in the storage unit 35, the second controller 140 performs surgery within the pivot correctable range A1 set based on the first pivot position PP1.
- the position after the instrument 4 has been moved is stored in the storage unit 35 as the third pivot position PP3.
- the second control device 140 When the second pivot position PP2 is outside the pivot correction start range A2 which is larger than the pivot correction range A1, the second control device 140 does not accept the transition to the pivot position change mode, and the second pivot position PP2 is the pivot position.
- the operation of moving the surgical instrument 4 by the arm operating section 80 is accepted only in the direction approaching the first pivot position PP1.
- the pivot correction startable range A2 is larger than the pivot correction possible range A1, it is possible to prevent the start of pivot correction from being limited to a small range.
- the operation of moving the surgical instrument 4 by the arm operating section 80 only in the direction approaching the first pivot position PP1 is performed. is accepted, the operator can be urged to set the second pivot position PP2 within the pivot correctable range A1.
- the first controller 130 displays on the monitor 24 a message indicating that the second pivot position PP2 is outside the pivot correction startable range A2. If the position is between the pivot-correctable range A1 and the pivot-correctable start range A2, the monitor 24 displays a message prompting adjustment of the second pivot position PP2 to the pivot-correctable range A1. As a result, the operator can confirm that the second pivot position PP2 is outside the pivot correction start range A2 and that the second pivot position PP2 is located between the pivot correction start range A1 and the pivot correction start range A2. can be easily recognized.
- the first controller 130 causes the monitor 24 to display the distance L from the first pivot position PP1 to the second pivot position PP2. Accordingly, the operator can easily recognize the distance L by viewing the monitor 24 .
- the second control device 140 displays an abnormality on the monitor 24. . This allows the operator to easily recognize that the current pivot position PPa on the surgical instrument 4 and the first pivot position PP1 are deviated excessively.
- the second control device 140 In the normal mode, the second control device 140 notifies an abnormality if the deviation between the current pivot position PPa and the first pivot position PP1 is not within the pivot deviation monitoring range A3. Thus, by always monitoring the current pivot position PPa in the normal mode, it is possible to prevent an excessively large deviation between the current pivot position PPa and the first pivot position PP1.
- the second control device 140 shifts to the pivot position change mode when both the pivot button 85 and the mode switching button 84 are operated. As a result, transition to the pivot position change mode due to erroneous operation of one of the pivot button 85 and the mode switching button 84 can be suppressed.
- the operation is performed.
- the position after the instrument 4 has been moved is stored in the storage unit 35 as the second pivot position PP2.
- the surgical instrument 4 can be easily moved by at least one of the joystick 82 and the linear switch 83, so that the first pivot position PP1 can be easily changed to the second pivot position PP2.
- the second control device 140 In the pivot position change mode, when the pivot button 85 is operated, the second control device 140 stores the second pivot position PP2 in the storage unit 35, ends the pivot position change mode, and shifts to the normal mode. .
- the second control device 140 suspends the pivot position change mode and shifts to the pivot position change suspension mode.
- the second control device 140 terminates the pivot position change mode and shifts to the normal mode. Accordingly, by operating the pivot button 85 based on the operator's intention, the first pivot position PP1 can be reliably changed to the second pivot position PP2. Also, when the operator does not intend to change the first pivot position PP1, such as when the surgical instrument 4 is pulled out or when the surgery support system 100 is restarted, the first pivot position PP1 is changed. can be suppressed.
- the second controller 140 controls the pivot position when the surgical instrument 4 is attached to the robot arm 60 and both the mode switching button 84 and the pivot button 85 are operated. Go to change mode. As a result, it is possible to shift to the pivot position changing mode again. Therefore, when the surgical instrument 4 is removed from the patient P and the surgical instrument 4 is replaced, the first pivot position PP1 can be set without performing the initial setting. 1 pivot position PP1 can be changed.
- the pivot correction start range A2 is larger than the pivot correction range A1 is shown, but the present disclosure is not limited to this.
- the size of the possible pivot correction start range A2 and the size of the possible pivot correction range A1 may be the same.
- the monitor 24 displays a message indicating that the second pivot position PP2 is outside the pivot correction start range A2, a message prompting adjustment of the second pivot position PP2 to the pivot correction range A1, and the like.
- these messages may be displayed on the display section 33a other than the monitor 24.
- FIG. also, these messages may be announced by voice.
- the second control device 140 shows an example in which the transition to the pivot position change mode is made when all of the conditions 1 to 9 are satisfied, but the present disclosure is not limited to this.
- the second controller 140 may transition to the pivot repositioning mode if some, but not all, of conditions 1 through 9 above are met.
- the second control device 140 has shown an example in which it transitions from the pivot position change mode to the pivot position change mode when all of the above conditions 11 to 16 are satisfied. is not limited to For example, the second controller 140 may transition to the pivot repositioning mode if some, but not all, of conditions 11 through 16 above are met.
- control of the above embodiments may be performed by one control device.
- the present disclosure is not limited to this.
- the number of robotic arms 60 may be any other number as long as at least one is provided.
- the arm unit 61 and the positioner 40 are composed of a 7-axis articulated robot
- the present disclosure is not limited to this.
- the arm unit 61 and the positioner 40 may be configured by an articulated robot having an axis configuration other than the seven-axis articulated robot.
- the axis configuration other than the 7-axis articulated robot is, for example, 6-axis or 8-axis.
- the surgical assistance robot 1 includes the medical cart 3, the positioner 40, and the arm base 50 is shown, but the present disclosure is not limited to this.
- the medical cart 3, the positioner 40, and the arm base 50 are not necessarily required, and the surgery support robot 1 may be configured with only the robot arm 60.
- ASICs Application Specific Integrated Circuits
- a circuit or processing circuit that includes a combination of A processor is considered a processing circuit or circuit because it includes transistors and other circuits.
- a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions.
- the hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions.
- a circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Robotics (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Manipulator (AREA)
Abstract
Description
本実施形態による手術支援システム100の構成について説明する。手術支援システム100は、手術支援ロボット1と、遠隔操作装置2とを備えている。
図1に示すように、手術支援ロボット1は、医療用台車3と、ポジショナ40と、アームベース50と、複数のロボットアーム60と、アーム操作部80と、を備えている。アーム操作部80は、操作部の一例である。
図5に示すように、インストゥルメントの先端には、たとえば、鉗子4bが設けられている。インストゥルメントの先端には、鉗子4b以外に、関節を有する器具として、ハサミ、グラスパー、ニードルホルダ、マイクロジセクター、ステーブルアプライヤー、タッカー、吸引洗浄ツール、スネアワイヤ、および、クリップアプライヤーなどが配置される。インストゥルメントの先端には、関節を有しない器具として、切断刃、焼灼プローブ、洗浄器、カテーテル、および、吸引オリフィスなどが配置される。
図6に示すように、アーム操作部80は、ロボットアーム60に取り付けられており、ロボットアーム60を操作する。具体的には、アーム操作部80は、第2リンク部73に取り付けられている。
図1に示すように、遠隔操作装置2は、たとえば、手術室の中または手術室の外に配置されている。遠隔操作装置2は、アーム121および操作ハンドル21を含む操作部120と、フットペダル22と、タッチパネル23と、モニタ24と、支持アーム25と、支持バー26とを含む。操作部120は、医師などの操作者が指令を入力するための操作用のハンドルを構成する。モニタ24は、表示部の一例である。
図11に示すように、手術支援システム100は、第1制御装置130と、アーム制御部31aと、ポジショナ制御部31bと、操作制御部110と、第2制御装置140と、を備えている。第1制御装置130および第2制御装置140は、制御装置の一例である。
ピボット位置PPの設定について説明する。図13に示すように、アーム操作部80によりロボットアーム60が操作されることにより、ロボットアーム60の先端側に取り付けられた内視鏡6またはピボット位置設定器具7の先端が、患者Pの体表面Sに挿入されたトロカールTの挿入位置に対応する位置まで移動された状態で、ピボットボタン85が操作されることにより、第2制御装置140は、ピボット位置PPを記憶部35に記憶させる。ピボット位置PPは、1つの座標として記憶され、ピボット位置PPの設定は、手術器具4の方向を設定するものではない。ピボットボタン85が操作されるとは、ピボットボタン85が押下されることを意味する。
以下の説明では、内視鏡6またはピボット位置設定器具7の先端がトロカールTの挿入位置に対応する位置まで移動された状態で、第2制御装置140が記憶部35に記憶させたピボット位置PPを、第1ピボット位置PP1とする。本実施形態では、図14に示すように、第2制御装置140は、手術器具4が患者Pの体内に挿入された状態で、ピボットボタン85が操作されたことに基づいて記憶部35に記憶された第1ピボット位置PP1の変更するピボット位置変更モードに移行し、ピボット位置変更モードにおいて、アーム操作部80により手術器具4が移動された後にピボットボタン85が操作された場合、手術器具4が移動された後の位置を第2ピボット位置PP2として記憶部35に記憶する。具体的には、第2制御装置140は、ピボット位置変更モードに移行している状態で、ジョイスティック82とリニアスイッチ83とのうちの少なくとも一方により手術器具4が移動された後にピボットボタン85が操作された場合、手術器具4が移動された後の位置を、変更後の第2ピボット位置PP2として記憶部35に記憶する。なお、第1ピボット位置PP1の変更は、内視鏡6が取り付けられているロボットアーム60および内視鏡6以外の手術器具4が取り付けられているロボットアーム60の両方に対して可能である。
次に、ピボット位置PPの算出方法について説明する。以下では、記憶部35に記憶されている第1ピボット位置PP1と、実際の手術器具4上の第1ピボット位置PP1とがずれている場合について説明するが、以下の算出方法は、第1ピボット位置PP1がずれていない場合でも同じである。図21に示すように、記憶部35に記憶されている第1ピボット位置PP1の座標は、(x,y,z)である。また、手術器具4のクレビスの中心を、TCPとよぶ。
次に、手術支援システム100の制御方法について説明する。図23に示すように、ステップS1において、ロボットアーム60の先端側に取り付けられた内視鏡6またはピボット位置設定器具7の先端が、患者Pの体表面Sに挿入されたトロカールTの挿入位置に対応する位置まで移動された状態で、ピボットボタン85が操作されることにより、第2制御装置140は、は、第1ピボット位置PP1を記憶部35に記憶させる。
第2制御装置140は、ピボットボタン85が操作されたことに基づいて、ロボットアーム60に取り付けられた手術器具4の移動の支点となる第1ピボット位置PP1を記憶部35に記憶させる。これにより、第2制御装置140はソフトウェア的に第1ピボット位置PP1を記憶部35に記憶させるので、第1ピボット位置が構造的に定められているマニピュレータアームを使用したり、第1ピボット位置PP1を設定するためにカニューレを支持する機構をマニピュレータアームに配置したりする必要がない。その結果、カニューレを支持する機構が配置されない分、手術中に患者Pの体表面S近傍での作業を容易に行うことができる。また、第2制御装置140は、手術器具4が患者Pの体内に挿入された状態で、ピボットボタン85が操作されたことに基づいて記憶部35に記憶された第1ピボット位置PP1を変更するピボット位置変更モードに移行し、ピボット位置変更モードにおいて、アーム操作部80により手術器具4が移動された後にピボットボタン85が操作された場合、手術器具4が移動された後の位置を第2ピボット位置PP2として記憶部35に記憶する。これにより、第2制御装置140はソフトウェア的に第1ピボット位置PP1を変更するので、手術器具4の移動の支点となる第1ピボット位置PP1を容易に変更できる。その結果、ロボットアーム60の干渉の回避のための操作や手術器具4の患者P内の可動範囲の拡張のための操作を容易に行うことができる。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更または変形例が含まれる。
6 内視鏡
24 モニタ(表示部)
35 記憶部
50 アームベース
60 ロボットアーム
60a、60b、60d ロボットアーム(第1ロボットアーム)
60c ロボットアーム(第2ロボットアーム)
80 アーム操作部(操作部)
82 ジョイスティック
83 リニアスイッチ
84 モード切替ボタン(モード切替部)
85 ピボットボタン(ピボット位置設定部)
100 手術支援システム
130 第1制御装置(制御装置)
140 第2制御装置(制御装置)
A1 ピボット補正可能範囲
A2 ピボット補正開始可能範囲
A3 ピボットずれ監視範囲
L 距離
P 患者
PP ピボット位置
PP1 第1ピボット位置
PP2 第2ピボット位置
PP3 第3ピボット位置
Claims (14)
- 先端に手術器具が取り付けられるロボットアームと、
前記ロボットアームに取り付けられ、前記ロボットアームを操作する操作部と、
前記ロボットアームに取り付けられた前記手術器具の移動の支点となるピボット位置を設定するピボット位置設定部と、
記憶部と、
制御装置と、を備え、
前記制御装置は、前記ピボット位置設定部が操作されたことに基づいて、第1ピボット位置を前記記憶部に記憶させ、
前記手術器具が患者の体内に挿入された状態で、前記ピボット位置設定部が操作されたことに基づいて前記記憶部に記憶された前記第1ピボット位置を変更するピボット位置変更モードに移行し、
前記ピボット位置変更モードにおいて、前記操作部により前記手術器具が移動された後に前記ピボット位置設定部が操作された場合、前記手術器具が移動された後の位置を第2ピボット位置として前記記憶部に記憶する、手術支援システム。 - 前記制御装置は、前記第1ピボット位置に基づいて設定されたピボット補正可能範囲内において前記第2ピボット位置を前記記憶部に記憶する、請求項1に記載の手術支援システム。
- 前記制御装置は、前記第2ピボット位置が前記記憶部に記憶された状態で前記ピボット位置変更モードに移行した場合、前記第1ピボット位置に基づいて設定された前記ピボット補正可能範囲内において前記手術器具が移動された後の位置を第3ピボット位置として前記記憶部に記憶する、請求項2に記載の手術支援システム。
- 前記制御装置は、
前記第2ピボット位置が前記ピボット補正可能範囲よりも大きいピボット補正開始可能範囲外である場合、前記ピボット位置変更モードへの移行を受け付けず、
前記第2ピボット位置が前記ピボット補正可能範囲と前記ピボット補正開始可能範囲との間に位置する場合、前記第1ピボット位置に近づく方向にのみ前記操作部による前記手術器具の移動の操作を受け付ける、請求項3に記載の手術支援システム。 - 表示部をさらに備え、
前記制御装置は、
前記第2ピボット位置が前記ピボット補正開始可能範囲外である場合、前記ピボット補正開始可能範囲外であることを示すメッセージを前記表示部に表示させ、
前記第2ピボット位置が前記ピボット補正可能範囲と前記ピボット補正開始可能範囲との間に位置する場合、前記ピボット補正可能範囲に前記ピボット位置を調整することを促すメッセージを前記表示部に表示させる、請求項4に記載の手術支援システム。 - 表示部をさらに備え、
前記制御装置は、前記第1ピボット位置から、前記第2ピボット位置までの間の距離を前記表示部に表示させる、請求項1に記載の手術支援システム。 - 前記制御装置は、前記手術器具上にある現在のピボット位置と前記第1ピボット位置とのずれがピボットずれ監視範囲内に収まっていない場合、異常を通知する、請求項1に記載の手術支援システム。
- 前記制御装置は、通常モードにおいて、前記現在のピボット位置と前記第1ピボット位置とのずれが前記ピボットずれ監視範囲内に収まっていない場合、異常を通知する、請求項7に記載の手術支援システム。
- 前記ロボットアームは、第1ロボットアームであり、
内視鏡が取り付けられる第2ロボットアームと、
前記第1および第2ロボットアームが取り付けられるアームベースと、をさらに備える、請求項1に記載の手術支援システム。 - 前記操作部は、前記手術器具を並進移動させる並進移動モードと、回転移動させる回転移動モードとを切り替えるモード切替部を含み、
前記制御装置は、前記ピボット位置設定部と前記モード切替部との両方が操作された場合、前記ピボット位置変更モードに移行する、請求項1に記載の手術支援システム。 - 前記操作部は、
前記手術器具の先端を平面上に沿って移動させる操作を受け付けるジョイスティックと、
前記手術器具を、前記手術器具の長手方向に沿って移動させる操作を受け付けるリニアスイッチと、を含み、
前記制御装置は、前記ピボット位置変更モードに移行している状態で、前記ジョイスティックと前記リニアスイッチとのうちの少なくとも一方により前記手術器具が移動された後に前記ピボット位置設定部が操作された場合、前記手術器具が移動された後の位置を、前記第2ピボット位置として前記記憶部に記憶する、請求項1に記載の手術支援システム。 - 前記操作部は、前記手術器具を並進移動させる並進移動モードと、回転移動させる回転移動モードとを切り替えるモード切替部を含み、
前記制御装置は、前記ピボット位置変更モードにおいて、
前記ピボット位置設定部が操作された場合、前記第2ピボット位置を前記記憶部に記憶してから前記ピボット位置変更モードを終了して、通常モードに移行し、
前記患者から前記手術器具が抜かれた場合、前記ピボット位置変更モードを中断して、ピボット位置変更中断モードに移行し、
前記手術支援システムが再起動された場合、前記ピボット位置変更モードを終了して、前記通常モードに移行する、請求項1に記載の手術支援システム。 - 前記制御装置は、
前記ピボット位置変更中断モードにおいて、前記ロボットアームに前記手術器具が取り付けられていることと、
前記モード切替部と前記ピボット位置設定部との両方が操作されていることと、
が満たされている場合、前記ピボット位置変更モードに移行する、請求項12に記載の手術支援システム。 - ピボット位置設定部が操作されたことに基づいて、ロボットアームに取り付けられた手術器具の移動の支点となる第1ピボット位置を記憶部に記憶することと、
前記手術器具が患者の体内に挿入された状態で、前記ピボット位置設定部が操作されたことに基づいて前記記憶部に記憶された前記第1ピボット位置を変更するピボット位置変更モードに移行することと、
前記ピボット位置変更モードにおいて、操作部により前記手術器具が移動された後に前記ピボット位置設定部が操作された場合、前記手術器具が移動された後の位置を第2ピボット位置として前記記憶部に記憶することと、を備える、手術支援システムの制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22895633.0A EP4434485A1 (en) | 2021-11-19 | 2022-11-16 | Surgery support system and surgery support system control method |
JP2023562372A JPWO2023090352A1 (ja) | 2021-11-19 | 2022-11-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021188955 | 2021-11-19 | ||
JP2021-188955 | 2021-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090352A1 true WO2023090352A1 (ja) | 2023-05-25 |
Family
ID=86397137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042518 WO2023090352A1 (ja) | 2021-11-19 | 2022-11-16 | 手術支援システムおよび手術支援システムの制御方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4434485A1 (ja) |
JP (1) | JPWO2023090352A1 (ja) |
WO (1) | WO2023090352A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007125404A (ja) * | 1996-02-20 | 2007-05-24 | Computer Motion Inc | 侵襲を最小に抑えた心臓手術を施術するための方法および装置 |
JP2018094446A (ja) | 2012-06-01 | 2018-06-21 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | ゼロ空間を使用して手術用マニピュレータの命令された再構成を取るためのシステム及び方法 |
WO2021161702A1 (ja) * | 2020-02-12 | 2021-08-19 | リバーフィールド株式会社 | 手術用ロボット |
JP2021171457A (ja) * | 2020-04-28 | 2021-11-01 | 川崎重工業株式会社 | 手術支援ロボットおよびピボット位置設定方法 |
-
2022
- 2022-11-16 WO PCT/JP2022/042518 patent/WO2023090352A1/ja active Application Filing
- 2022-11-16 JP JP2023562372A patent/JPWO2023090352A1/ja active Pending
- 2022-11-16 EP EP22895633.0A patent/EP4434485A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007125404A (ja) * | 1996-02-20 | 2007-05-24 | Computer Motion Inc | 侵襲を最小に抑えた心臓手術を施術するための方法および装置 |
JP2018094446A (ja) | 2012-06-01 | 2018-06-21 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | ゼロ空間を使用して手術用マニピュレータの命令された再構成を取るためのシステム及び方法 |
WO2021161702A1 (ja) * | 2020-02-12 | 2021-08-19 | リバーフィールド株式会社 | 手術用ロボット |
JP2021171457A (ja) * | 2020-04-28 | 2021-11-01 | 川崎重工業株式会社 | 手術支援ロボットおよびピボット位置設定方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023090352A1 (ja) | 2023-05-25 |
EP4434485A1 (en) | 2024-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7303775B2 (ja) | 手術支援ロボットおよび手術支援ロボットの位置決め方法 | |
CN108882969B (zh) | 外科手术系统 | |
JP7518885B2 (ja) | 外科手術システムおよび操作装置 | |
JP2023026468A (ja) | 手術支援ロボット | |
EP4393441A1 (en) | Robotic surgical system and method for controlling robotic surgical system | |
JP7105272B2 (ja) | 手術支援ロボットおよび手術支援ロボットシステム | |
WO2023090352A1 (ja) | 手術支援システムおよび手術支援システムの制御方法 | |
US12133706B2 (en) | Surgical robot | |
JP2023018313A (ja) | 手術支援システムおよびピボット位置設定方法 | |
JP2022191049A (ja) | 手術支援ロボットおよび手術支援ロボットの制御方法 | |
WO2023120396A1 (ja) | 手術支援システム、手術支援ロボットおよび手術支援システムの制御方法 | |
WO2022168510A1 (ja) | 手術支援ロボット、手術支援システムおよび手術支援ロボットの制御方法 | |
WO2023120526A1 (ja) | 手術支援システムおよび手術支援ロボット | |
JP7393383B2 (ja) | 手術支援ロボットおよび多関節ロボットの作動方法 | |
US20230012535A1 (en) | Surgical robot, surgical system, and control method | |
JP2023061245A (ja) | 手術支援ロボット | |
JP2022064650A (ja) | 手術支援システム、患者側装置および手術支援システムの制御方法 | |
JP2023001158A (ja) | 医師側操作装置および手術システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895633 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023562372 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18710203 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022895633 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022895633 Country of ref document: EP Effective date: 20240619 |