[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023085371A1 - ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法 - Google Patents

ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法 Download PDF

Info

Publication number
WO2023085371A1
WO2023085371A1 PCT/JP2022/041965 JP2022041965W WO2023085371A1 WO 2023085371 A1 WO2023085371 A1 WO 2023085371A1 JP 2022041965 W JP2022041965 W JP 2022041965W WO 2023085371 A1 WO2023085371 A1 WO 2023085371A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite membrane
zeolite
membrane composite
raw material
molar ratio
Prior art date
Application number
PCT/JP2022/041965
Other languages
English (en)
French (fr)
Inventor
峻輔 鎌田
憲一 野田
直人 木下
遼太郎 吉村
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to AU2022386910A priority Critical patent/AU2022386910A1/en
Priority to DE112022004594.9T priority patent/DE112022004594T5/de
Priority to JP2023559905A priority patent/JPWO2023085371A1/ja
Priority to CN202280072245.8A priority patent/CN118176055A/zh
Publication of WO2023085371A1 publication Critical patent/WO2023085371A1/ja
Priority to US18/641,496 priority patent/US20240286088A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes

Definitions

  • the present invention relates to a zeolite membrane composite, a membrane reactor, and a method for producing a zeolite membrane composite.
  • zeolite membranes have been used as separation membranes utilizing molecular sieve action.
  • a zeolite membrane is usually provided on a porous support and handled as a zeolite membrane composite.
  • JP-A-7-185275 discloses a separation membrane in which a zeolite membrane having an LTA-type crystal structure (A-type zeolite membrane) is formed on a porous support.
  • the zeolite membrane is formed by hydrothermal synthesis, and the composition ratio of raw materials is SiO 2 /Al 2 O 3 molar ratio of 2 to 6, H 2 O/Na 2 O molar ratio of 20 to 300, Na 2 Adjusting the O/SiO 2 molar ratio to 0.3-2 is described.
  • the present invention is directed to a zeolite membrane composite, and aims to provide a zeolite membrane composite with improved hydrothermal durability and/or strength.
  • Aspect 1 of the invention is a zeolite membrane composite comprising a porous support and a zeolite membrane formed on the support and made of LTA-type zeolite.
  • the Si/Al molar ratio in the zeolite membrane is 1.74 or more and 2.80 or less.
  • Aspect 3 of the invention is a zeolite membrane composite comprising a porous support and a zeolite membrane formed on the support and made of LTA-type zeolite.
  • Aspect 4 of the invention is the zeolite membrane composite according to any one of aspects 1 to 3, wherein the zeolite membrane has a thickness of 5 ⁇ m or less.
  • Aspect 5 of the invention is the zeolite membrane composite according to any one of aspects 1 to 4, wherein a mixed solution containing 50% by mass of water and 50% by mass of ethanol is heated at 60° C. When supplied at 0.66 kPaG, the total permeation flux is 2.0 kg/m 2 h or more and the separation factor between water and ethanol is 2000 or more.
  • Aspect 6 of the invention is a membrane reactor containing the zeolite membrane composite of any one of aspects 1 to 5, a catalyst for promoting a chemical reaction of raw materials, and the zeolite membrane composite and the catalyst.
  • the zeolite membrane composite is a mixed substance containing a product substance produced by the chemical reaction of the raw material in the presence of the catalyst, and by permeating a highly permeable substance with high permeability, To separate.
  • the present invention is also directed to a method for producing a zeolite membrane composite.
  • Aspect 7 of the invention is a method for producing a zeolite membrane composite, comprising: a) a step of preparing a raw material solution by mixing a sodium source, an aluminum source and a silicon source with water; After that, the step of stirring the raw material solution for 10 hours or more, c) the step of immersing a porous support to which seed crystals containing LTA-type zeolite are attached in the raw material solution, and d) the step of b). After 70 minutes or more have elapsed from the end, heating the raw material solution to form a zeolite membrane made of LTA-type zeolite on the support to which the seed crystals are attached.
  • the molar ratio of SiO 2 /Al 2 O 3 is 4 or more and 7 or less
  • the molar ratio of H 2 O/Na 2 O is 100 or more and 1200 or less
  • the ratio of Na 2 O/SiO 2 is The molar ratio is 0.1 or more and 0.6 or less.
  • Aspect 8 of the invention is the method for producing a zeolite membrane composite according to aspect 7, wherein the raw material solution has a H 2 O/Na 2 O molar ratio of 350 or more.
  • Aspect 9 of the invention is the method for producing a zeolite membrane composite according to aspect 7 or 8, wherein the seed crystal has a Si/Al molar ratio of 2.4 or more.
  • FIG. 1 is a cross-sectional view of a zeolite membrane composite
  • FIG. 3 is a cross-sectional view showing an enlarged part of the zeolite membrane composite.
  • FIG. 2 shows an X-ray diffraction pattern obtained from the surface of a zeolite membrane;
  • FIG. 2 is a diagram showing the production flow of a zeolite membrane composite.
  • FIG. 3 shows a separation device;
  • FIG. 4 is a diagram showing the flow of separation of mixed substances;
  • FIG. 1 is a cross-sectional view of the zeolite membrane composite 1.
  • FIG. 2 is a cross-sectional view showing an enlarged part of the zeolite membrane composite 1.
  • FIG. A zeolite membrane composite 1 includes a porous support 11 and a zeolite membrane 12 provided on the support 11 .
  • the zeolite membrane is at least one in which zeolite is formed in the form of a membrane on the surface of the support 11, and does not include an organic membrane in which zeolite particles are simply dispersed.
  • the zeolite membrane 12 is drawn with a thick line.
  • the zeolite membrane 12 is hatched.
  • the thickness of the zeolite membrane 12 is drawn thicker than it actually is.
  • the support 11 is a porous member that is permeable to gas and liquid.
  • the support 11 is a monolithic type in which a plurality of through-holes 111 extending in the longitudinal direction (that is, the left-right direction in FIG. 1) are provided in an integrally formed columnar main body. a support.
  • the support 11 is substantially cylindrical.
  • a cross section perpendicular to the longitudinal direction of each through-hole 111 (that is, cell) is, for example, substantially circular.
  • the diameter of the through-holes 111 is drawn larger than the actual number, and the number of the through-holes 111 is drawn smaller than the actual number.
  • the zeolite membrane 12 is formed on the inner peripheral surface of the through hole 111 and covers substantially the entire inner peripheral surface of the through hole 111 .
  • the length of the support 11 (that is, the length in the horizontal direction in FIG. 1) is, for example, 10 cm to 200 cm.
  • the outer diameter of the support 11 is, for example, 0.5 cm to 30 cm.
  • the distance between the central axes of adjacent through holes 111 is, for example, 0.3 mm to 10 mm.
  • the surface roughness (Ra) of the support 11 is, for example, 0.1 ⁇ m to 5.0 ⁇ m, preferably 0.2 ⁇ m to 2.0 ⁇ m.
  • the shape of the support 11 may be, for example, a honeycomb shape, a flat plate shape, a tubular shape, a cylindrical shape, a columnar shape, a polygonal columnar shape, or the like. When the shape of the support 11 is tubular or cylindrical, the thickness of the support 11 is, for example, 0.1 mm to 10 mm.
  • the support 11 is made of a ceramic sintered body.
  • Ceramic sintered bodies selected as the material for the support 11 include, for example, alumina, silica, mullite, zirconia, titania, yttria, silicon nitride, and silicon carbide.
  • support 11 contains at least one of alumina, silica and mullite.
  • the support 11 may contain an inorganic binder. At least one of titania, mullite, sinterable alumina, silica, glass frit, clay mineral, and sinterable cordierite can be used as the inorganic binder.
  • the average pore size of the support 11 is, for example, 0.01 ⁇ m to 70 ⁇ m, preferably 0.05 ⁇ m to 25 ⁇ m.
  • the average pore size of the support 11 near the surface where the zeolite membrane 12 is formed is 0.01 ⁇ m to 1 ⁇ m, preferably 0.05 ⁇ m to 0.5 ⁇ m.
  • Average pore size can be measured, for example, by a mercury porosimeter, a perm porometer or a nanoperm porometer.
  • D5 is, for example, 0.01 ⁇ m to 50 ⁇ m
  • D50 is, for example, 0.05 ⁇ m to 70 ⁇ m
  • D95 is, for example, 0.1 ⁇ m to 2000 ⁇ m. be.
  • the porosity of the support 11 near the surface where the zeolite membrane 12 is formed is, for example, 20% to 60%.
  • the support 11 has, for example, a multi-layer structure in which multiple layers with different average pore diameters are laminated in the thickness direction.
  • the average pore size and sintered grain size in the surface layer including the surface on which the zeolite membrane 12 is formed are smaller than the average pore size and sintered grain size in layers other than the surface layer.
  • the average pore diameter of the surface layer of the support 11 is, for example, 0.01 ⁇ m to 1 ⁇ m, preferably 0.05 ⁇ m to 0.5 ⁇ m.
  • the above materials can be used for each layer.
  • the materials of the multiple layers forming the multilayer structure may be the same or different.
  • the zeolite membrane 12 is a porous membrane having fine pores (micropores).
  • the zeolite membrane 12 can be used as a separation membrane that separates a specific substance from a mixed substance in which a plurality of types of substances are mixed, using molecular sieve action.
  • the zeolite membrane 12 is less permeable to other substances than the specific substance. In other words, the permeation amount of the other substance through the zeolite membrane 12 is smaller than the permeation amount of the specific substance.
  • the thickness of the zeolite membrane 12 is, for example, 0.05 ⁇ m to 30 ⁇ m, preferably 0.1 ⁇ m to 20 ⁇ m, more preferably 0.5 ⁇ m to 10 ⁇ m. Thinning the zeolite membrane 12 increases the permeation rate, so the thickness of the zeolite membrane 12 is more preferably 5 ⁇ m or less. On the other hand, increasing the thickness of the zeolite membrane 12 improves the separation performance.
  • the surface roughness (Ra) of the zeolite membrane 12 is, for example, 5 ⁇ m or less, preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.5 ⁇ m or less. The thickness and surface roughness of the zeolite membrane 12 can be obtained by observing the cross section of the zeolite membrane 12 using a scanning electron microscope (SEM).
  • the zeolite membrane 12 is composed of zeolite having an LTA type structure.
  • the zeolite membrane 12 is made of zeolite whose structure code is "LTA" as defined by the International Zeolite Society.
  • the X-ray diffraction pattern of FIG. 3, which will be described later, obtained from the surface of the zeolite membrane 12 matches the X-ray diffraction pattern assumed from the structure of the LTA-type zeolite in peak positions.
  • the zeolite membrane 12 is typically composed of only LTA zeolite, but depending on the manufacturing method, etc., the zeolite membrane 12 may contain a small amount (for example, 1% by mass or less) of substances other than LTA zeolite. may
  • the maximum number of ring members of LTA-type zeolite is 8.
  • the 8-membered ring pore is a fine pore in which the number of oxygen atoms in a portion forming a ring structure in which an oxygen atom is bonded to a T atom, which will be described later, is eight.
  • the intrinsic pore diameter of LTA-type zeolite is 0.41 nm.
  • the pore diameter of the zeolite membrane 12 is smaller than the average pore diameter of the support 11 near the surface where the zeolite membrane 12 is formed.
  • An example of the LTA-type zeolite constituting the zeolite membrane 12 is an aluminosilicate in which the atoms (T atoms) located in the center of the oxygen tetrahedron (TO 4 ) constituting the zeolite are composed of silicon (Si) and aluminum (Al). is a zeolite. Some of the T atoms may be substituted with other elements (Ti, B, P, etc.). This makes it possible to change the pore size and adsorption properties.
  • the Si/Al molar ratio (a value obtained by dividing the number of moles of Si atoms by the number of moles of Al atoms; the same shall apply hereinafter) in the zeolite membrane 12 is 1.2 or more.
  • the hydrothermal durability of the zeolite membrane 12 can be improved to some extent.
  • the hydrothermal durability can be evaluated by the degree of deterioration in separation performance before and after the zeolite membrane composite 1 is immersed in heated water.
  • the Si/Al molar ratio is preferably 1.74 or more, more preferably 1.85 or more, and still more preferably 2.0 or more.
  • the Si/Al molar ratio is preferably 2.80 or less. It is possible to adjust the molar ratio of Si/Al in the zeolite membrane 12 by adjusting the mixing ratio in the raw material solution, which will be described later (the same applies to the ratios of other elements).
  • the Si/Al molar ratio can be measured by EDS (energy dispersive X-ray spectroscopy) analysis of the cross section of the zeolite membrane 12 .
  • the zeolite membrane 12 contains an alkali metal.
  • An alkali metal is, for example, sodium (Na).
  • the zeolite membrane 12 may contain other alkali metals.
  • an organic substance called a structure-directing agent hereinafter also referred to as "SDA" is not used.
  • SDA structure-directing agent
  • the zeolite membrane 12 may be manufactured using SDA. In this case, it is preferable that most or all of the SDA is removed after the zeolite membrane 12 is formed. As a result, pores are appropriately secured in the zeolite membrane 12 .
  • SDA is, for example, tetramethylammonium hydroxide.
  • FIG. 3 is a diagram showing an example of an X-ray diffraction (XRD) pattern obtained by irradiating the surface of the zeolite membrane 12 with X-rays.
  • the X-ray diffraction pattern of FIG. 3 was obtained using CuK ⁇ radiation as the radiation source of the X-ray diffraction apparatus.
  • the X-ray diffraction pattern obtained from the zeolite membrane 12 matches the X-ray diffraction pattern assumed from the structure of the LTA zeolite in peak positions.
  • the strength of the zeolite membrane 12 can be evaluated by the degree of deterioration in separation performance before and after a hydraulic pressurization test, which will be described later.
  • the bottom line in the X-ray diffraction pattern that is, the height of the background noise component is removed. The bottom line in the X-ray diffraction pattern is determined, for example, by the Sonneveld-Visser method or spline interpolation.
  • step S11 seed crystals used for manufacturing the zeolite membrane 12 are prepared (step S11).
  • the seed crystals are obtained, for example, from LTA-type zeolite powder produced by hydrothermal synthesis and obtained from the zeolite powder.
  • the LTA-type zeolite powder may be produced by any or known production method.
  • LTA-type zeolite powder is produced by hydrothermally synthesizing a solution similar to the raw material solution described below. When the solution contains SDA, the SDA in the powder is almost completely burned off by heat-treating the zeolite powder.
  • the zeolite powder may be used as it is as a seed crystal, or the seed crystal may be obtained by processing the powder by pulverization or the like.
  • the Si/Al molar ratio of the seed crystal is preferably somewhat large, for example 2.4 or more.
  • the upper limit of the Si/Al molar ratio of the seed crystal is not particularly limited, it is 5, for example.
  • the porous support 11 is immersed in the dispersion liquid in which the seed crystals are dispersed to adhere the seed crystals to the support 11 (step S12).
  • the seed crystals are adhered to the support 11 by contacting a portion of the support 11 on which the zeolite membrane 12 is to be formed with a dispersion liquid in which the seed crystals are dispersed.
  • a seed crystal-attached support is produced.
  • the seed crystal may be attached to support 11 by other techniques.
  • a raw material solution used for producing the zeolite membrane 12 is prepared (step S13).
  • the raw material solution is prepared, for example, by mixing a Si source, an Al source and a Na source with water (H 2 O).
  • Si sources include colloidal silica, fumed silica, tetraethoxysilane, sodium silicate, and the like.
  • Al sources include, for example, sodium aluminate, aluminum isopropoxide, aluminum hydroxide, boehmite, sodium aluminate, alumina sol, and the like.
  • Na sources are, for example, sodium hydroxide, sodium aluminate, sodium chloride, sodium silicate and the like.
  • the stock solution may contain SDA.
  • SDA is, for example, tetramethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, diethyldimethylammonium hydroxide and the like.
  • the molar ratio of SiO 2 /Al 2 O 3 is preferably 4-7.
  • the H 2 O/Na 2 O molar ratio is preferably 100-1200, assuming that the Na source is all present as Na 2 O.
  • the H 2 O/Na 2 O molar ratio is preferably 350 or more.
  • the H 2 O/Na 2 O molar ratio may be 550 or more.
  • the Na 2 O/SiO 2 molar ratio is preferably between 0.1 and 0.6.
  • the SDA/Al 2 O 3 molar ratio is preferably 0-2.
  • the raw material solution may be mixed with other raw materials.
  • the raw material solution is stirred for 10 hours or more (step S14).
  • Stirring of the raw material solution may be performed by various well-known techniques.
  • the temperature of the raw material solution during stirring is lower than the temperature during hydrothermal synthesis, which will be described later, and is, for example, 0 to 60°C, preferably 5 to 50°C.
  • the temperature of the raw material solution during stirring is room temperature.
  • the upper limit of the stirring time is not particularly limited, it is, for example, 100 hours.
  • the support 11 to which the seed crystals are attached is immersed in the raw material solution (step S15).
  • hydrothermal synthesis is started by heating the raw material solution.
  • LTA-type zeolite grows with the seed crystals as nuclei, and LTA-type zeolite membrane 12 is formed on support 11 (step S16).
  • the synthesis temperature (heating temperature of the raw material solution) during hydrothermal synthesis is, for example, 65 to 150°C, preferably 70 to 120°C.
  • the hydrothermal synthesis time is, for example, 5 to 200 hours, preferably 10 to 150 hours.
  • the immersion of the support 11 in the raw material solution in step S15 may be performed before 70 minutes have passed since the end of stirring the raw material solution.
  • the heating of the raw material solution that is, the formation of the zeolite membrane 12 is started 70 minutes or more after the end of stirring.
  • the upper limit of the time from the end of stirring to the start of heating the raw material solution is not particularly limited, but is, for example, 1000 minutes.
  • the support 11 and the zeolite membrane 12 are washed with pure water.
  • the washed support 11 and zeolite membrane 12 are dried at 80° C., for example.
  • the SDA in the zeolite membrane 12 is burnt off by heat-treating the zeolite membrane 12 in an oxidizing gas atmosphere.
  • the heating temperature for removing SDA is, for example, 300-600.degree.
  • the heating time is, for example, 1 to 100 hours.
  • the oxidizing gas atmosphere is an atmosphere containing oxygen, for example, the atmosphere.
  • FIG. 5 is a diagram showing the separation device 2.
  • FIG. 6 is a diagram showing the flow of separation of the mixed substance by the separation device 2. As shown in FIG.
  • a mixed substance containing multiple types of fluids i.e., gas or liquid
  • a substance with high permeability in the mixed substance hereinafter also referred to as a "highly permeable substance"
  • Separation in the separation device 2 may be performed, for example, for the purpose of extracting a highly permeable substance from a mixed substance, and for the purpose of concentrating a substance with a low permeability (hereinafter also referred to as a “low-permeability substance”). may be done.
  • the mixed substance (that is, mixed fluid) may be a mixed gas containing multiple types of gas, a mixed liquid containing multiple types of liquid, or a gas-liquid two-phase mixture containing both gas and liquid. It may be a fluid.
  • Mixed substances include, for example, hydrogen (H 2 ), helium (He), nitrogen (N 2 ), oxygen (O 2 ), water (H 2 O), carbon monoxide (CO), carbon dioxide (CO 2 ), Nitrogen oxides, ammonia (NH 3 ), sulfur oxides, hydrogen sulfide (H 2 S), sulfur fluoride, mercury (Hg), arsine (AsH 3 ), hydrogen cyanide (HCN), carbonyl sulfide (COS), C1- Contains one or more of C8 hydrocarbons, organic acids, alcohols, mercaptans, esters, ethers, ketones and aldehydes.
  • the highly permeable substance mentioned above is for example one or more of H2 , He, N2 , O2 , CO2 , NH3 and H2O , preferably H2O .
  • Nitrogen oxides are compounds of nitrogen and oxygen. Nitrogen oxides mentioned above include, for example, nitric oxide (NO), nitrogen dioxide (NO 2 ), nitrous oxide (also referred to as dinitrogen monoxide) (N 2 O), dinitrogen trioxide (N 2 O 3 ), dinitrogen tetroxide (N 2 O 4 ), dinitrogen pentoxide (N 2 O 5 ), and other gases called NO x (nox).
  • NO nitric oxide
  • NO 2 nitrogen dioxide
  • NO 2 O nitrous oxide
  • N 2 O 3 dinitrogen trioxide
  • N 2 O 4 dinitrogen tetroxide
  • N 2 O 5 dinitrogen pentoxide
  • Sulfur oxides are compounds of sulfur and oxygen.
  • the above sulfur oxides are gases called SOx (socks) such as sulfur dioxide (SO 2 ) and sulfur trioxide (SO 3 ).
  • Sulfur fluoride is a compound of fluorine and sulfur.
  • C1-C8 hydrocarbons are hydrocarbons having 1 or more and 8 or less carbons.
  • the C3-C8 hydrocarbons may be straight chain compounds, side chain compounds and cyclic compounds.
  • C2 to C8 hydrocarbons include saturated hydrocarbons (that is, those in which double bonds and triple bonds are not present in the molecule), unsaturated hydrocarbons (that is, those in which double bonds and/or triple bonds are present in the molecule). existing within).
  • the organic acids mentioned above are carboxylic acids, sulfonic acids, and the like.
  • Carboxylic acids are, for example, formic acid (CH 2 O 2 ), acetic acid (C 2 H 4 O 2 ), oxalic acid (C 2 H 2 O 4 ), acrylic acid (C 3 H 4 O 2 ) or benzoic acid (C 6 H 5 COOH) and the like.
  • Sulfonic acid is, for example, ethanesulfonic acid (C 2 H 6 O 3 S).
  • the organic acid may be a chain compound or a cyclic compound.
  • the aforementioned alcohols are, for example, methanol (CH 3 OH), ethanol (C 2 H 5 OH), isopropanol (2-propanol) (CH 3 CH(OH)CH 3 ), ethylene glycol (CH 2 (OH)CH 2 ( OH)) or butanol ( C4H9OH ), and the like.
  • Mercaptans are organic compounds having hydrogenated sulfur (SH) at the end, and are also called thiols or thioalcohols.
  • the mercaptans mentioned above are, for example, methyl mercaptan (CH 3 SH), ethyl mercaptan (C 2 H 5 SH) or 1-propanethiol (C 3 H 7 SH).
  • esters are, for example, formate esters or acetate esters.
  • ethers are, for example, dimethyl ether ((CH 3 ) 2 O), methyl ethyl ether (C 2 H 5 OCH 3 ), diethyl ether ((C 2 H 5 ) 2 O) or tetrahydrofuran ((CH 2 ) 4 O ), etc.
  • ketones mentioned above are, for example , acetone (( CH3 ) 2CO ), methyl ethyl ketone ( C2H5COCH3 ) or diethylketone (( C2H5 ) 2CO ).
  • aldehydes mentioned above are, for example, acetaldehyde (CH 3 CHO), propionaldehyde (C 2 H 5 CHO) or butanal (butyraldehyde) (C 3 H 7 CHO).
  • the mixed substance separated by the separation device 2 is a mixed liquid containing multiple types of liquids, and is separated by the pervaporation method.
  • the separation device 2 includes a zeolite membrane composite 1, a sealing portion 21, a housing 22, two sealing members 23, a supply portion 26, a first recovery portion 27, and a second recovery portion 28.
  • the zeolite membrane composite 1 , the sealing portion 21 and the sealing member 23 are accommodated within the housing 22 .
  • the supply portion 26 , the first recovery portion 27 and the second recovery portion 28 are arranged outside the housing 22 and connected to the housing 22 .
  • the sealing portions 21 are attached to both ends of the support 11 in the longitudinal direction (that is, the left-right direction in FIG. 5), and cover the longitudinal end surfaces of the support 11 and the outer peripheral surface near the end surfaces. It is a member that seals The sealing portion 21 prevents the inflow and outflow of liquid from the both end faces of the support 11 .
  • the sealing portion 21 is, for example, a plate-like member made of glass or resin. The material and shape of the sealing portion 21 may be changed as appropriate. Since the sealing portion 21 is provided with a plurality of openings that overlap with the plurality of through holes 111 of the support 11 , both longitudinal ends of the through holes 111 of the support 11 are covered by the sealing portion 21 . It has not been. Therefore, it is possible for a liquid or the like to flow into or out of the through hole 111 from both ends.
  • the shape of the housing 22 is not particularly limited, it is, for example, a substantially cylindrical tubular member.
  • the housing 22 is made of stainless steel or carbon steel, for example.
  • the longitudinal direction of the housing 22 is substantially parallel to the longitudinal direction of the zeolite membrane composite 1 .
  • a supply port 221 is provided at one longitudinal end of the housing 22 (that is, the left end in FIG. 5), and a first discharge port 222 is provided at the other end.
  • a second discharge port 223 is provided on the side surface of the housing 22 .
  • the supply portion 26 is connected to the supply port 221 .
  • the first recovery section 27 is connected to the first discharge port 222 .
  • the second recovery section 28 is connected to the second discharge port 223 .
  • the internal space of the housing 22 is a closed space isolated from the surrounding space of the housing 22 .
  • the two sealing members 23 are arranged along the entire circumference between the outer peripheral surface of the zeolite membrane composite 1 and the inner peripheral surface of the housing 22 near both longitudinal ends of the zeolite membrane composite 1 .
  • Each seal member 23 is a substantially annular member made of a liquid-impermeable material.
  • the sealing member 23 is, for example, an O-ring made of flexible resin.
  • the sealing member 23 is in close contact with the outer peripheral surface of the zeolite membrane composite 1 and the inner peripheral surface of the housing 22 over the entire circumference. In the example shown in FIG. 5 , the sealing member 23 adheres to the outer peripheral surface of the sealing portion 21 and indirectly adheres to the outer peripheral surface of the zeolite membrane composite 1 via the sealing portion 21 . Between the sealing member 23 and the outer peripheral surface of the zeolite membrane composite 1 and between the sealing member 23 and the inner peripheral surface of the housing 22 are sealed, and little or no liquid can pass through. .
  • the supply unit 26 supplies the liquid mixture to the internal space of the housing 22 via the supply port 221 .
  • the supply unit 26 includes, for example, a pump that pumps the liquid mixture toward the housing 22 .
  • the pump includes a temperature control section and a pressure control section for controlling the temperature and pressure of the liquid mixture supplied to the housing 22, respectively.
  • the first recovery unit 27 includes, for example, a storage container that stores the liquid drawn out from the housing 22, or a pump that transfers the liquid.
  • the second recovery unit 28 includes, for example, a vacuum pump that decompresses the space outside the outer peripheral surface of the zeolite membrane composite 1 in the housing 22 (that is, the space sandwiched between the two seal members 23), and the A cooling chiller trap for cooling and liquefying the gas that has permeated the zeolite membrane composite 1 is provided.
  • the zeolite membrane composite 1 is prepared by preparing the separation device 2 described above ( FIG. 6 : step S21). Subsequently, the supply unit 26 supplies a mixed liquid containing a plurality of types of liquids with different permeability to the zeolite membrane 12 into the internal space of the housing 22 .
  • the main components of the mixture are water ( H2O ) and ethanol ( C2H5OH ).
  • the mixed liquid may contain liquids other than water and ethanol.
  • the pressure of the liquid mixture supplied from the supply unit 26 to the internal space of the housing 22 (that is, the introduction pressure) is, for example, 0.1 MPa to 2 MPa, and the temperature of the liquid mixture is, for example, 10°C to 200°C. be.
  • the mixed liquid supplied from the supply part 26 to the housing 22 is introduced into each through-hole 111 of the support 11 from the left end of the zeolite membrane composite 1 in the drawing, as indicated by an arrow 251 .
  • the highly permeable substance which is a highly permeable liquid in the mixed liquid, permeates through the zeolite membrane 12 provided on the inner peripheral surface of each through-hole 111 and the support 11 while vaporizing. It is derived from the outer peripheral surface.
  • the highly permeable substance eg, water
  • the low-permeable substance eg, ethanol
  • the gas (hereinafter referred to as “permeable substance”) discharged from the outer peripheral surface of the support 11 is guided to the second recovery section 28 via the second discharge port 223 as indicated by an arrow 253, It is cooled in the second recovery section 28 and recovered as a liquid.
  • the pressure of the gas recovered by the second recovery section 28 via the second discharge port 223 (that is, permeation pressure) is, for example, approximately 6.67 kPa (approximately 50 Torr).
  • the permeable substance may include a low-permeable substance that has permeated the zeolite membrane 12 in addition to the above-described high-permeable substance.
  • the liquid excluding the substances that have permeated the zeolite membrane 12 and the support 11 passes through each through-hole 111 of the support 11 from the left to the right in the drawing. , and is recovered by first recovery section 27 via first discharge port 222 as indicated by arrow 252 .
  • the pressure of the liquid recovered by the first recovery section 27 via the first discharge port 222 is, for example, substantially the same as the introduction pressure.
  • the impermeable substance may include a highly permeable substance that has not permeated the zeolite membrane 12, in addition to the low-permeable substance described above.
  • the impermeable substance recovered by the first recovery section 27 may be, for example, circulated to the supply section 26 and supplied again into the housing 22 .
  • the separation device 2 shown in FIG. 5 may be used, for example, as a membrane reactor.
  • the housing 22 is used as a reactor.
  • the housing 22 accommodates a catalyst that accelerates the chemical reaction of the raw material supplied from the supply section 26 .
  • the catalyst is arranged, for example, between the supply port 221 and the first exhaust port 222 .
  • the catalyst is arranged near the zeolite membrane 12 of the zeolite membrane composite 1 .
  • the catalyst used has an appropriate material and shape depending on the type of raw material and the type of chemical reaction to be caused on the raw material.
  • a source substance includes one or more substances.
  • the membrane reactor may further comprise a reactor (ie, housing 22) and a heating device for heating the source material to facilitate the chemical reaction of the source material.
  • a mixed substance containing a product produced by a chemical reaction of raw materials in the presence of a catalyst is supplied to the zeolite membrane 12 in the same manner as described above, and the mixed substance permeation of the highly permeable material through the zeolite membrane 12 separates it from other materials that are less permeable than the highly permeable material.
  • the mixed material may be a fluid containing the product material and unreacted source material.
  • the mixed material may contain two or more product materials.
  • the highly permeable material may be a product material produced from a source material, or may be a material other than the product material.
  • the highly permeable material comprises one or more producing materials.
  • the highly permeable substance is a product produced from a raw material
  • the product is separated from other substances by the zeolite membrane 12, thereby improving the yield of the product.
  • the mixture contains two or more product substances
  • the two or more product substances may be highly permeable substances, and some of the two or more product substances are may be a highly permeable material.
  • Table 1 shows the composition (molar ratio) of the raw material solution used for forming the LTA-type zeolite membrane, the stirring time, the time from the end of stirring to the start of heating, the synthesis temperature, and the synthesis time.
  • LTA-type zeolite crystals were obtained.
  • the obtained LTA-type zeolite crystals were heat-treated at 450° C. for 15 hours to burn off SDA.
  • the heat-treated LTA-type zeolite crystals were pulverized by a ball mill for 45 hours to obtain seed crystals.
  • Measurement by energy dispersive X-ray spectroscopy was performed in the same manner as in the later-described "film Si/Al ratio measurement", and the Si/Al molar ratio of the seed crystal was 2.4 or more.
  • the monolithic porous alumina support was brought into contact with the solution in which the seed crystals were dispersed, so that the seed crystals adhered to the cells, which are the through-holes of the support.
  • Example 3 (Preparation of LTA film) Sodium hydroxide (manufactured by Sigma-Aldrich) as a Na source and sodium aluminate powder (manufactured by Sigma-Aldrich) as an Al source were mixed with pure water. Moreover, in Example 3 and Comparative Example 4, a tetramethylammonium hydroxide solution, which is SDA, was further mixed. After the mixed solution was stirred at room temperature for 1 hour, colloidal silica (Snowtex-50T: manufactured by Nissan Chemical Industries, Ltd.) as a Si source was added to obtain a raw material solution.
  • colloidal silica Snowtex-50T: manufactured by Nissan Chemical Industries, Ltd.
  • the molar ratio of SiO 2 /Al 2 O 3 in the raw material solution the molar ratio of H 2 O / Na 2 O, Na 2 O / SiO
  • the molar ratio of 2 and the molar ratio of SDA/Al 2 O 3 are as shown in Table 1.
  • the molar ratio of SiO 2 /Al 2 O 3 was 4 to 7
  • the molar ratio of H 2 O/Na 2 O was 100 to 1200
  • the molar ratio of Na 2 O/SiO 2 was 0. .1 to 0.6.
  • Comparative Example 1 the molar ratio of Na 2 O/SiO 2 was 1.0, which was larger than the above range.
  • Comparative Example 4 the SiO 2 /Al 2 O 3 molar ratio was set to 10, which was larger than the above range.
  • the raw material solution was stirred at room temperature.
  • the stirring time of the raw material solution is as shown in Table 1. In Examples 1 to 9, the raw material solution was stirred for 10 hours or more. On the other hand, in Comparative Examples 1 and 2, the raw material solution was stirred for 6 hours.
  • Example 3 After the hydrothermal synthesis, the support and zeolite membrane were thoroughly washed with pure water and then dried at 80°C. In Example 3 and Comparative Example 4, in which the raw material solution contained SDA, SDA was burned off by heat-treating the LTA-type zeolite membrane at 450° C. for 30 hours. Through the above treatment, zeolite membrane composites of Examples 1 to 9 and Comparative Examples 1 to 4 having LTA type zeolite membranes were obtained.
  • Table 2 shows the Si/Al ratio, XRD diffraction peak intensity ratio, water/ethanol separation performance, hydrothermal durability, and strength of the LTA-type zeolite membrane.
  • Si/Al ratio measurement A scanning electron microscope (SEM)-energy dispersive X-ray spectroscopy (EDX) was used to measure the Si/Al molar ratio (“Si/Al ratio” in Table 2) in the cross section of the zeolite membrane.
  • the acceleration voltage was 15 kV.
  • Si/Al ratio was 1.2 or more.
  • the Si/Al ratio was 1.74 to 2.80.
  • Comparative Examples 1 and 2 in which the raw material solution was stirred for 6 hours, the Si/Al ratios were 1.03 and 1.25, respectively.
  • Comparative Example 3 in which the time from the end of stirring to the start of heating was 40 minutes, the separation coefficient was extremely small in the "water/ethanol separation test" described later, and an appropriate separation membrane was not formed. No other measurements were taken.
  • Comparative Example 4 in which the molar ratio of SiO 2 /Al 2 O 3 in the raw material solution was 10, the Si/Al ratio was 2.92, but a dense film was not formed. No other measurements were made.
  • an X-ray diffractometer manufactured by Rigaku (device name: MiniFlex600) was used, with a tube voltage of 40 kV, a tube current of 15 mA, a scanning speed of 0.5°/min, and a scanning step of 0.02°. .
  • the divergence slit was 1.25°
  • the scattering slit was 1.25°
  • the light receiving slit was 0.3 mm
  • the incident solar slit was 5.0°
  • the light receiving solar slit was 5.0°.
  • a 0.015 mm thick nickel foil was used as a CuK ⁇ ray filter without using a monochromator.
  • the water/ethanol separation test was carried out by the pervaporation method using the separation device 2 described above. In the test, a mixture of 50% by mass of water and 50% by mass of ethanol at 60° C. was supplied from the supply part 26 to the housing 22 through the supply port 221 at atmospheric pressure. Also, the second discharge port 223 on the permeation side of the zeolite membrane composite was evacuated to -94.66 kPaG (about 50 Torr). The gas passed through the zeolite membrane and discharged from the outer peripheral surface of the support 11 was cooled in the second recovery section 28 and recovered as a liquid.
  • the total permeation flux (kg/m 2 h), which is the amount of fluid permeating through a unit area of the membrane per unit time, was calculated. Also, the concentrations (% by mass) of water and ethanol in the liquid were measured, and the ratio of water concentration/ethanol concentration was obtained as a separation factor.
  • the zeolite membrane composite 1 includes a porous support 11 and a zeolite membrane 12 provided on the support 11 and made of LTA-type zeolite.
  • the Si/Al molar ratio in the zeolite membrane 12 is 1.74 or more and 2.80 or less.
  • the zeolite membrane composite 1 with improved hydrothermal durability can be provided (see Examples 1 to 7), and the zeolite membrane composite 1 can be used for a long time.
  • the strength of the zeolite membrane composite 1 can be improved by making it 0.85 times or more the intensity of the peak existing around ° (see Examples 1 to 9).
  • the thickness of the zeolite membrane 12 is preferably 5 ⁇ m or less.
  • the zeolite membrane 12 can be made thinner while improving hydrothermal durability and/or strength, and the permeation amount of highly permeable substances can be improved.
  • the total permeation flux is 2. It is 0 kg/m 2 h or more, and the separation factor between water and ethanol is 2000 or more. This makes it possible to properly separate the mixture of water and ethanol.
  • the membrane reactor includes the zeolite membrane composite 1, a catalyst that promotes the chemical reaction of raw materials, and a reactor (housing 22 in the above example) housing the zeolite membrane composite 1 and the catalyst. ) and a supply 26 for supplying source material to the reactor.
  • the zeolite membrane composite 1 separates the highly permeable substance from the other substances by permeating the mixed substance containing the product substance produced by the chemical reaction of the source substance in the presence of the catalyst. .
  • the membrane reactor is particularly suitable for separating H2O .
  • the method for producing the zeolite membrane composite 1 includes a step of preparing a raw material solution (step S13), a step of stirring the raw material solution for 10 hours or more after step S13 (step S14), and seed crystals containing LTA-type zeolite.
  • a raw material solution is prepared by mixing Na source, Al source and Si source with water.
  • the molar ratio of SiO 2 /Al 2 O 3 is 4 or more and 7 or less
  • the molar ratio of H 2 O/Na 2 O is 100 or more and 1200 or less
  • the ratio of Na 2 O/SiO 2 is The molar ratio is 0.1 or more and 0.6 or less (see Examples 1-9).
  • the raw material solution is stirred for 10 hours or more, and the uniformity of the raw material solution is increased, so that the crystals are not oriented and can be grown randomly.
  • the heating of the raw material solution is started after 70 minutes or more have elapsed from the end of stirring, the raw material particles are appropriately agglomerated to form raw material particles of an appropriate size at the start of heating.
  • the crystal growth rate can be controlled, and the generation of film defects (for example, the generation of different phases and impurities) can be suppressed.
  • a preferable zeolite membrane composite 1 with improved hydrothermal durability and/or strength can be produced.
  • the presence or absence of heterogeneous phases and impurities can be confirmed by X-ray diffraction measurement of the surface of the zeolite membrane 12 .
  • the raw material solution has a H 2 O/Na 2 O molar ratio of 350 or more (see Examples 1 to 7).
  • the hydrothermal durability of the zeolite membrane composite 1 can be improved more reliably.
  • the Si/Al molar ratio of the seed crystal is 2.4 or more.
  • the preferable zeolite membrane composite 1 can be produced more reliably.
  • the molar ratio of H 2 O/Na 2 O in the raw material solution may be less than 350, and the molar ratio of Si/Al in the seed crystal is less than 2.4. There may be.
  • the zeolite membrane composite 1 may be produced by a method other than the above production method.
  • the zeolite membrane composite 1 may further include a functional membrane and a protective membrane laminated on the zeolite membrane 12 in addition to the support 11 and the zeolite membrane 12 .
  • Such functional films and protective films may be inorganic films such as zeolite films, silica films or carbon films, or may be organic films such as polyimide films or silicone films. Further, a substance that easily adsorbs water may be added to the functional film or protective film laminated on the zeolite film 12 .
  • the mixed substance may be separated by vapor permeation method, reverse osmosis method, gas permeation method, etc., in addition to the pervaporation method exemplified in the above explanation.
  • the zeolite membrane composite of the present invention can be used, for example, as a dehydration membrane, and furthermore, as a separation membrane for various substances other than water, an adsorption membrane for various substances, etc., in various fields where zeolite is used. Available.
  • zeolite membrane composite 11 support 12 zeolite membrane S11 to S16, S21, S22 Step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

ゼオライト膜複合体(1)は、多孔質の支持体(11)と、支持体(11)上に設けられ、LTA型ゼオライトからなるゼオライト膜(12)とを備える。ゼオライト膜(12)におけるSi/Alのモル比が、1.74以上かつ2.80以下である場合、ゼオライト膜複合体(1)の水熱耐久性を向上することができる。ゼオライト膜(12)におけるSi/Alのモル比が、1.2以上であり、ゼオライト膜(12)の表面にX線を照射して得られるX線回折パターンにおいて、2θ=24.0°付近に存在するピークの強度、および、2θ=30.0°付近に存在するピークの強度の少なくとも一方が、2θ=7.2°付近に存在するピークの強度の0.85倍以上である場合、ゼオライト膜複合体(1)の強度を向上することができる。

Description

ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法
 本発明は、ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法に関する。
[関連出願の参照]
 本願は、2021年11月12日に出願された日本国特許出願JP2021-184979からの優先権の利益を主張し、当該出願の全ての開示は、本願に組み込まれる。
 従来、ゼオライト膜が、分子篩作用を利用した分離膜として用いられている。ゼオライト膜は、通常、多孔質の支持体上に設けられ、ゼオライト膜複合体として取り扱われる。例えば、特開平7-185275号公報(文献1)では、多孔質支持体上にLTA型結晶構造を有するゼオライト膜(A型ゼオライト膜)を成膜した分離膜が開示されている。当該ゼオライト膜は、水熱合成により形成され、原料の組成比として、SiO/Alのモル比を2~6、HO/NaOのモル比を20~300、NaO/SiOのモル比を0.3~2に調整することが記載されている。
 国際公開第2020/261795号(文献2)では、通常、LTA型ゼオライト膜のSi/Al比は約1であり、熱安定性および水熱安定性の点で不充分であることが課題として記載されており、Si/Al比が1.29~1.60のLTA型ゼオライト膜の製造が実現されている。また、文献2では、Si/Al比が1.70であるLTA型ゼオライト膜が脆弱となることが記載されている。Marlon T. Conato、他4名による「Framework stabilization of Si-rich LTA zeolite prepared in organic-free media」(Chem. Commun.、2015年、51巻、269-272頁)(文献3)では、Si/Al比が1.7~2.1のLTA型ゼオライト粉末の合成について記載されている。R. H. JARMAN、他2名による「Synthesis and Characterization of A-Type Zeolites」(ACS Symposium Series、 American Chemical Society、1983年、218巻、267-281頁)(文献4)では、Si/Al比が1.16~2.99のLTA型ゼオライト粉末の合成について記載されている。
 既述のように、文献2では、LTA型ゼオライト膜においてSi/Al比を1.29~1.60とすることにより、水熱耐久性(水熱安定性)の向上が図られるが、必ずしも十分ではない。また、LTA型ゼオライト膜のSi/Al比を大きくする場合に、ゼオライト膜複合体の強度が低下すると、実用上問題となる。したがって、水熱耐久性または/および強度が向上したゼオライト膜複合体が求められている。
 本発明は、ゼオライト膜複合体に向けられており、水熱耐久性または/および強度が向上したゼオライト膜複合体を提供することを目的としている。
 態様1の発明は、ゼオライト膜複合体であって、多孔質の支持体と、前記支持体上に設けられ、LTA型ゼオライトからなるゼオライト膜とを備える。前記ゼオライト膜におけるSi/Alのモル比が、1.74以上かつ2.80以下である。
 これにより、水熱耐久性が向上したゼオライト膜複合体を提供することができる。
 態様2の発明は、態様1のゼオライト膜複合体であって、前記ゼオライト膜の表面にX線を照射して得られるX線回折パターンにおいて、2θ=24.0°付近に存在するピークの強度、および、2θ=30.0°付近に存在するピークの強度の少なくとも一方が、2θ=7.2°付近に存在するピークの強度の0.85倍以上である。
 態様3の発明は、ゼオライト膜複合体であって、多孔質の支持体と、前記支持体上に設けられ、LTA型ゼオライトからなるゼオライト膜とを備える。前記ゼオライト膜におけるSi/Alのモル比が、1.2以上であり、前記ゼオライト膜の表面にX線を照射して得られるX線回折パターンにおいて、2θ=24.0°付近に存在するピークの強度、および、2θ=30.0°付近に存在するピークの強度の少なくとも一方が、2θ=7.2°付近に存在するピークの強度の0.85倍以上である。
 これにより、強度が向上したゼオライト膜複合体を提供することができる。
 態様4の発明は、態様1ないし3のいずれか1つのゼオライト膜複合体であって、前記ゼオライト膜の厚さが、5μm以下である。
 態様5の発明は、態様1ないし4のいずれか1つのゼオライト膜複合体であって、50質量%の水、および、50質量%のエタノールを含む60℃の混合液を、透過側を-94.66kPaGとして供給した場合に、全透過流束が2.0kg/mh以上であり、かつ、水とエタノールの分離係数が2000以上である。
 本発明は、膜反応装置にも向けられている。態様6の発明は、膜反応装置であって、態様1ないし5のいずれか1つのゼオライト膜複合体と、原料物質の化学反応を促進させる触媒と、前記ゼオライト膜複合体および前記触媒を収容する反応器と、前記原料物質を前記反応器に供給する供給部とを備える。前記ゼオライト膜複合体は、前記原料物質が前記触媒存在下で化学反応することにより生成された生成物質を含む混合物質のうち、透過性が高い高透過性物質を透過することにより他の物質から分離する。
 本発明は、ゼオライト膜複合体の製造方法にも向けられている。態様7の発明は、ゼオライト膜複合体の製造方法であって、a)ナトリウム源、アルミニウム源およびケイ素源を水に混合することにより、原料溶液を調製する工程と、b)前記a)工程の後、前記原料溶液を10時間以上撹拌する工程と、c)LTA型ゼオライトを含む種結晶を付着させた多孔質の支持体を前記原料溶液中に浸漬する工程と、d)前記b)工程の終了から70分以上経過後に、前記原料溶液を加熱することにより、前記種結晶を付着させた前記支持体上にLTA型ゼオライトからなるゼオライト膜を形成する工程とを備える。前記原料溶液において、SiO/Alのモル比が4以上かつ7以下であり、HO/NaOのモル比が100以上かつ1200以下であり、NaO/SiOのモル比が0.1以上かつ0.6以下である。
 態様8の発明は、態様7のゼオライト膜複合体の製造方法であって、前記原料溶液において、HO/NaOのモル比が350以上である。
 態様9の発明は、態様7または8のゼオライト膜複合体の製造方法であって、前記種結晶のSi/Alのモル比が、2.4以上である。
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
ゼオライト膜複合体の断面図である。 ゼオライト膜複合体の一部を拡大して示す断面図である。 ゼオライト膜の表面から得られるX線回折パターンを示す図である。 ゼオライト膜複合体の製造の流れを示す図である。 分離装置を示す図である。 混合物質の分離の流れを示す図である。
 図1は、ゼオライト膜複合体1の断面図である。図2は、ゼオライト膜複合体1の一部を拡大して示す断面図である。ゼオライト膜複合体1は、多孔質の支持体11と、支持体11上に設けられたゼオライト膜12とを備える。ゼオライト膜とは、少なくとも、支持体11の表面にゼオライトが膜状に形成されたものであって、有機膜中にゼオライト粒子を分散させただけのものは含まない。図1では、ゼオライト膜12を太線にて描いている。図2では、ゼオライト膜12に平行斜線を付す。また、図2では、ゼオライト膜12の厚さを実際よりも厚く描いている。
 支持体11はガスおよび液体を透過可能な多孔質部材である。図1に示す例では、支持体11は、一体成形された一繋がりの柱状の本体に、長手方向(すなわち、図1中の左右方向)にそれぞれ延びる複数の貫通孔111が設けられたモノリス型支持体である。図1に示す例では、支持体11は略円柱状である。各貫通孔111(すなわち、セル)の長手方向に垂直な断面は、例えば略円形である。図1では、貫通孔111の径を実際よりも大きく、貫通孔111の数を実際よりも少なく描いている。ゼオライト膜12は、貫通孔111の内周面上に形成され、貫通孔111の内周面を略全面に亘って被覆する。
 支持体11の長さ(すなわち、図1中の左右方向の長さ)は、例えば10cm~200cmである。支持体11の外径は、例えば0.5cm~30cmである。隣接する貫通孔111の中心軸間の距離は、例えば0.3mm~10mmである。支持体11の表面粗さ(Ra)は、例えば0.1μm~5.0μmであり、好ましくは0.2μm~2.0μmである。なお、支持体11の形状は、例えば、ハニカム状、平板状、管状、円筒状、円柱状または多角柱状等であってもよい。支持体11の形状が管状または円筒状である場合、支持体11の厚さは、例えば0.1mm~10mmである。
 支持体11の材料は、表面にゼオライト膜12を形成する工程において化学的安定性を有するのであれば、様々な物質(例えば、セラミックまたは金属)が採用可能である。本実施の形態では、支持体11はセラミック焼結体により形成される。支持体11の材料として選択されるセラミック焼結体としては、例えば、アルミナ、シリカ、ムライト、ジルコニア、チタニア、イットリア、窒化ケイ素、炭化ケイ素等が挙げられる。本実施の形態では、支持体11は、アルミナ、シリカおよびムライトのうち、少なくとも1種類を含む。
 支持体11は、無機結合材を含んでいてもよい。無機結合材としては、チタニア、ムライト、易焼結性アルミナ、シリカ、ガラスフリット、粘土鉱物、易焼結性コージェライトのうち少なくとも1つを用いることができる。
 支持体11の平均細孔径は、例えば0.01μm~70μmであり、好ましくは0.05μm~25μmである。ゼオライト膜12が形成される表面近傍における支持体11の平均細孔径は0.01μm~1μmであり、好ましくは0.05μm~0.5μmである。平均細孔径は、例えば、水銀ポロシメーター、パームポロメーターまたはナノパームポロメーターにより測定することができる。支持体11の表面および内部を含めた全体における細孔径の分布については、D5は例えば0.01μm~50μmであり、D50は例えば0.05μm~70μmであり、D95は例えば0.1μm~2000μmである。ゼオライト膜12が形成される表面近傍における支持体11の気孔率は、例えば20%~60%である。
 支持体11は、例えば、平均細孔径が異なる複数の層が厚さ方向に積層された多層構造を有する。ゼオライト膜12が形成される表面を含む表面層における平均細孔径および焼結粒径は、表面層以外の層における平均細孔径および焼結粒径よりも小さい。支持体11の表面層の平均細孔径は、例えば0.01μm~1μmであり、好ましくは0.05μm~0.5μmである。支持体11が多層構造を有する場合、各層の材料は上記のものを用いることができる。多層構造を形成する複数の層の材料は、同じであってもよく、異なっていてもよい。
 ゼオライト膜12は、微細孔(マイクロ孔)を有する多孔膜である。ゼオライト膜12は、複数種類の物質が混合した混合物質から、分子篩作用を利用して特定の物質を分離する分離膜として利用可能である。ゼオライト膜12では、当該特定の物質に比べて他の物質が透過しにくい。換言すれば、ゼオライト膜12の当該他の物質の透過量は、上記特定の物質の透過量に比べて小さい。
 ゼオライト膜12の厚さは、例えば0.05μm~30μmであり、好ましくは0.1μm~20μmであり、さらに好ましくは0.5μm~10μmである。ゼオライト膜12を薄くすると透過速度が増大するため、より一層好ましくは、ゼオライト膜12の厚さは5μm以下である。一方、ゼオライト膜12を厚くすると分離性能が向上する。ゼオライト膜12の表面粗さ(Ra)は、例えば5μm以下であり、好ましくは2μm以下であり、より好ましくは1μm以下であり、さらに好ましくは0.5μm以下である。ゼオライト膜12の厚さおよび表面粗さは、ゼオライト膜12の断面を走査型電子顕微鏡(SEM)を用いて観察することにより取得可能である。
 ゼオライト膜12は、構造がLTA型であるゼオライトにより構成される。換言すれば、ゼオライト膜12は、国際ゼオライト学会が定める構造コードが「LTA」であるゼオライトからなる。ゼオライト膜12の表面から得られる、後述の図3のX線回折パターンは、LTA型ゼオライトの構造から想定されるX線回折パターンとピークの位置が一致する。ゼオライト膜12は、典型的には、LTA型ゼオライトのみから構成されるが、製造方法等によっては、ゼオライト膜12においてLTA型ゼオライト以外の物質が僅かに(例えば、1質量%以下)含まれていてもよい。
 LTA型ゼオライトの最大員環数は8である。8員環細孔とは、酸素原子が後述するT原子と結合して環状構造をなす部分の酸素原子の数が8個である微細孔である。LTA型ゼオライトの固有細孔径は、0.41nmである。ゼオライト膜12の細孔径は、ゼオライト膜12が形成される表面近傍における支持体11の平均細孔径よりも小さい。
 ゼオライト膜12を構成するLTA型ゼオライトの一例は、ゼオライトを構成する酸素四面体(TO)の中心に位置する原子(T原子)がケイ素(Si)とアルミニウム(Al)とからなるアルミノケイ酸塩ゼオライトである。T原子の一部は、他の元素(Ti、B、P等)に置換されていてもよい。これにより、細孔径や吸着特性を変えることが可能となる。
 ゼオライト膜12におけるSi/Alのモル比(Si原子のモル数をAl原子のモル数で除して得た値である。以下同様。)は、1.2以上である。これにより、ゼオライト膜12の水熱耐久性をある程度向上することができる。後述するように、水熱耐久性は、ゼオライト膜複合体1を加熱した水に浸漬する前後における、分離性能の低下の度合いにより評価可能である。水熱耐久性をさらに向上するという観点では、Si/Alのモル比は、好ましくは1.74以上であり、より好ましくは1.85以上であり、より一層好ましくは2.0以上である。Si/Alのモル比が2.80よりも大きい場合、緻密な膜を形成することが困難となる。したがって、Si/Alのモル比は2.80以下であることが好ましい。後述する原料溶液中の配合割合等を調整することにより、ゼオライト膜12におけるSi/Alのモル比を調整することが可能である(他の元素の比率についても同様である。)。Si/Alのモル比は、ゼオライト膜12の断面に対するEDS(エネルギー分散型X線分光)分析により測定可能である。
 典型的には、ゼオライト膜12は、アルカリ金属を含む。アルカリ金属は、例えばナトリウム(Na)である。ゼオライト膜12は、他のアルカリ金属を含んでいてもよい。 ゼオライト膜12の製造の一例では、構造規定剤(Structure-Directing Agent、以下「SDA」とも呼ぶ。)と呼ばれる有機物は用いられない。ゼオライト膜12の製造は、SDAを用いて行われてもよい。この場合、ゼオライト膜12の形成後にSDAがほとんど、もしくは完全に除去されることが好ましい。これにより、ゼオライト膜12において細孔が適切に確保される。SDAは、例えばテトラメチルアンモニウムヒドロキシド等である。
 図3は、ゼオライト膜12の表面にX線を照射して得られるX線回折(XRD)パターンの一例を示す図である。図3のX線回折パターンは、X線回折装置の線源としてCuKα線を用いて取得される。既述のように、ゼオライト膜12から得られるX線回折パターンは、LTA型ゼオライトの構造から想定されるX線回折パターンとピークの位置が一致する。
 ゼオライト膜12では、X線回折パターンにおいて、2θ(回折角)=24.0°付近に存在するピークの強度、および、2θ=30.0°付近に存在するピークの強度の少なくとも一方が(好ましくは、双方が)、2θ=7.2°付近に存在するピークの強度の、例えば0.85倍以上である。2θ=24.0°付近のピークは、2θ=24.0°±0.5°の範囲に存在するピークであり、LTA型ゼオライトの(622)面に由来する。2θ=30.0°付近のピークは、2θ=30.0°±0.5°の範囲に存在するピークであり、(820)または(644)面に由来する。2θ=7.2°付近のピークは、2θ=7.2°±0.5°の範囲に存在するピークであり、(200)面に由来する。
 例えば、国際公開第2020/261795号(上記文献2)の図6では、LTA型ゼオライト膜のX線回折パターンにおいて、2θ=24.0°付近のピークの強度、および、2θ=30.0°付近のピークの強度の双方が、2θ=7.2°付近のピークの強度の0.85倍未満(実際には、約0.8倍)である。換言すると、文献2のLTA型ゼオライト膜では、2θ=7.2°付近のピークの強度が比較的大きく、ゼオライト結晶が配向して成長していると考えられる。したがって、Si/Alのモル比が大きくなると、ゼオライト膜が脆くなりやすく、強度が低下する。
 これに対し、2θ=24.0°付近のピークの強度、および、2θ=30.0°付近のピークの強度の少なくとも一方が、2θ=7.2°付近のピークの強度の0.85倍以上であるゼオライト膜12では、2θ=7.2°付近のピークの強度が比較的小さく、ゼオライト結晶が配向せずにランダムに成長していると考えられる。したがって、Si/Alのモル比が大きくなっても、ゼオライト膜12が脆くなりにくく、ある程度の強度が確保される。ゼオライト膜12の強度は、後述の水圧加圧試験の前後における、分離性能の低下の度合いにより評価可能である。
 ゼオライト膜12の強度をより確実に向上するには、2θ=24.0°付近のピークの強度は、2θ=7.2°付近のピークの強度の0.90倍以上であることが好ましく、0.95倍以上であることがより好ましい。2θ=30.0°付近のピークの強度についても同様である。通常、2θ=24.0°付近のピークの強度は、2θ=7.2°付近のピークの強度に対して過度に大きくはならないが、例えば、2θ=24.0°付近のピークの強度は、2θ=7.2°付近のピークの強度の3倍以下である。2θ=30.0°付近のピークの強度についても同様である。なお、ピークの強度は、X線回折パターンにおける底部のライン、すなわち、バックグラウンドノイズ成分を除いた高さを用いるものとする。X線回折パターンにおける底部のラインは、例えば、Sonneveld-Visser法またはスプライン補間法により求められる。
 次に、図4を参照しつつ、ゼオライト膜複合体1の製造の流れの一例について説明する。ゼオライト膜複合体1が製造される際には、まず、ゼオライト膜12の製造に利用される種結晶が準備される(ステップS11)。種結晶は、例えば、水熱合成にてLTA型のゼオライトの粉末が生成され、当該ゼオライトの粉末から取得される。LTA型ゼオライトの粉末は、任意のまたは公知の製造方法により生成されてよい。一例では、後述の原料溶液と同様の溶液を水熱合成することにより、LTA型ゼオライトの粉末が生成される。当該溶液がSDAを含む場合には、当該ゼオライトの粉末を加熱処理することによって、粉末中のSDAがおよそ完全に燃焼除去される。当該ゼオライトの粉末はそのまま種結晶として用いられてもよく、当該粉末を粉砕等によって加工することにより種結晶が取得されてもよい。水熱耐久性または/および強度が向上したゼオライト膜複合体1をより確実に製造するには、種結晶のSi/Alのモル比は、ある程度大きいことが好ましく、例えば2.4以上である。種結晶のSi/Alのモル比の上限は、特に限定されないが、例えば5である。
 続いて、種結晶を分散させた分散液に多孔質の支持体11を浸漬し、種結晶を支持体11に付着させる(ステップS12)。あるいは、種結晶を分散させた分散液を、支持体11上のゼオライト膜12を形成させたい部分に接触させることにより、種結晶を支持体11に付着させる。これにより、種結晶付着支持体が作製される。種結晶は、他の手法により支持体11に付着されてもよい。
 また、ゼオライト膜12の生成に用いられる原料溶液が調製される(ステップS13)。原料溶液は、例えば、Si源、Al源およびNa源を、水(HO)に混合することにより作製される。Si源は、例えばコロイダルシリカ、ヒュームドシリカ、テトラエトキシシラン、ケイ酸ナトリウム等である。Al源は、例えばアルミン酸ナトリウム、アルミニウムイソプロポキシド、水酸化アルミニウム、ベーマイト、アルミン酸ナトリウム、アルミナゾル等である。Na源は、例えば水酸化ナトリウム、アルミン酸ナトリウム、塩化ナトリウム、ケイ酸ナトリウム等である。原料溶液は、SDAを含んでもよい。SDAは、例えば、テトラメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、ジエチルジメチルアンモニウムヒドロキシド等である。
 原料溶液において、Si源が全てSiOとして存在し、Al源が全てAlとして存在すると仮定した場合に、SiO/Alのモル比は、好ましくは4~7である。Na源が全てNaOとして存在すると仮定した場合に、HO/NaOのモル比は、好ましくは100~1200である。ゼオライト膜12におけるSi/Alのモル比をより確実に大きくするには、HO/NaOのモル比は、350以上であることが好ましい。HO/NaOのモル比は、550以上であってもよい。NaO/SiOのモル比は、好ましくは0.1~0.6である。SDA/Alのモル比は、好ましくは0~2である。原料溶液には、他の原料が混合されてもよい。
 原料溶液の調製後、10時間以上、原料溶液の撹拌が行われる(ステップS14)。原料溶液の撹拌は、周知の様々な手法にて行われてよい。撹拌時における原料溶液の温度は、後述の水熱合成時の温度未満であり、例えば、0~60℃であり、好ましくは、5~50℃である。典型的には、撹拌時における原料溶液の温度は、室温である。撹拌時間の上限は特に限定されないが、例えば100時間である。
 原料溶液の撹拌終了から70分以上経過後に、種結晶が付着された支持体11が、原料溶液中に浸漬される(ステップS15)。その後、原料溶液を加熱することにより、水熱合成が開始される。水熱合成では、当該種結晶を核としてLTA型のゼオライトが成長し、支持体11上にLTA型のゼオライト膜12が形成される(ステップS16)。水熱合成時の合成温度(原料溶液の加熱温度)は、例えば、65~150℃であり、好ましくは70~120℃である。水熱合成時間は、例えば、5~200時間であり、好ましくは10~150時間である。なお、ステップS15における支持体11の原料溶液への浸漬は、原料溶液の撹拌終了から70分経過前に行われてもよい。この場合も、撹拌終了から70分以上経過後に、原料溶液の加熱、すなわち、ゼオライト膜12の形成が開始される。撹拌終了から原料溶液の加熱開始までの時間の上限は、特に限定されないが、例えば1000分である。
 水熱合成が終了すると、支持体11およびゼオライト膜12が純水で洗浄される。洗浄後の支持体11およびゼオライト膜12は、例えば80℃にて乾燥される。原料溶液がSDAを含む場合、支持体11およびゼオライト膜12の乾燥後に、ゼオライト膜12を酸化性ガス雰囲気下で加熱処理することによって、ゼオライト膜12中のSDAが燃焼除去される。これにより、ゼオライト膜12内の微細孔が貫通する。好ましくは、SDAはおよそ完全に除去される。SDAの除去における加熱温度は、例えば300~600℃である。加熱時間は、例えば1~100時間である。酸化性ガス雰囲気は、酸素を含む雰囲気であり、例えば大気中である。原料溶液がSDAを含まない場合、上記加熱処理は行われない。以上の処理により、上述のゼオライト膜複合体1が得られる。
 次に、図5および図6を参照しつつ、ゼオライト膜複合体1を利用した混合物質の分離について説明する。図5は、分離装置2を示す図である。図6は、分離装置2による混合物質の分離の流れを示す図である。
 分離装置2では、複数種類の流体(すなわち、ガスまたは液体)を含む混合物質をゼオライト膜複合体1に供給し、混合物質中の透過性が高い物質(以下、「高透過性物質」とも呼ぶ。)を、ゼオライト膜複合体1を透過させることにより混合物質から分離させる。分離装置2における分離は、例えば、高透過性物質を混合物質から抽出する目的で行われてもよく、透過性が低い物質(以下、「低透過性物質」とも呼ぶ。)を濃縮する目的で行われてもよい。
 当該混合物質(すなわち、混合流体)は、複数種類のガスを含む混合ガスであってもよく、複数種類の液体を含む混合液であってもよく、ガスおよび液体の双方を含む気液二相流体であってもよい。
 混合物質は、例えば、水素(H)、ヘリウム(He)、窒素(N)、酸素(O)、水(HO)、一酸化炭素(CO)、二酸化炭素(CO)、窒素酸化物、アンモニア(NH)、硫黄酸化物、硫化水素(HS)、フッ化硫黄、水銀(Hg)、アルシン(AsH)、シアン化水素(HCN)、硫化カルボニル(COS)、C1~C8の炭化水素、有機酸、アルコール、メルカプタン類、エステル、エーテル、ケトンおよびアルデヒドのうち、1種類以上の物質を含む。上述の高透過性物質は、例えば、H、He、N、O、CO、NHおよびHOのうち1種類以上の物質であり、好ましくはHOである。
 窒素酸化物とは、窒素と酸素の化合物である。上述の窒素酸化物は、例えば、一酸化窒素(NO)、二酸化窒素(NO)、亜酸化窒素(一酸化二窒素ともいう。)(NO)、三酸化二窒素(N)、四酸化二窒素(N)、五酸化二窒素(N)等のNO(ノックス)と呼ばれるガスである。
 硫黄酸化物とは、硫黄と酸素の化合物である。上述の硫黄酸化物は、例えば、二酸化硫黄(SO)、三酸化硫黄(SO)等のSO(ソックス)と呼ばれるガスである。
 フッ化硫黄とは、フッ素と硫黄の化合物である。上述のフッ化硫黄は、例えば、二フッ化二硫黄(F-S-S-F,S=SF)、二フッ化硫黄(SF)、四フッ化硫黄(SF)、六フッ化硫黄(SF)または十フッ化二硫黄(S10)等である。
 C1~C8の炭化水素とは、炭素が1個以上かつ8個以下の炭化水素である。C3~C8の炭化水素は、直鎖化合物、側鎖化合物および環式化合物のうちいずれであってもよい。また、C2~C8の炭化水素は、飽和炭化水素(すなわち、2重結合および3重結合が分子中に存在しないもの)、不飽和炭化水素(すなわち、2重結合および/または3重結合が分子中に存在するもの)のどちらであってもよい。C1~C4の炭化水素は、例えば、メタン(CH)、エタン(C)、エチレン(C)、プロパン(C)、プロピレン(C)、ノルマルブタン(CH(CHCH)、イソブタン(CH(CH)、1-ブテン(CH=CHCHCH)、2-ブテン(CHCH=CHCH)またはイソブテン(CH=C(CH)である。
 上述の有機酸は、カルボン酸またはスルホン酸等である。カルボン酸は、例えば、ギ酸(CH)、酢酸(C)、シュウ酸(C)、アクリル酸(C)または安息香酸(CCOOH)等である。スルホン酸は、例えばエタンスルホン酸(CS)等である。当該有機酸は、鎖式化合物であってもよく、環式化合物であってもよい。
 上述のアルコールは、例えば、メタノール(CHOH)、エタノール(COH)、イソプロパノール(2-プロパノール)(CHCH(OH)CH)、エチレングリコール(CH(OH)CH(OH))またはブタノール(COH)等である。
 メルカプタン類とは、水素化された硫黄(SH)を末端に持つ有機化合物であり、チオール、または、チオアルコールとも呼ばれる物質である。上述のメルカプタン類は、例えば、メチルメルカプタン(CHSH)、エチルメルカプタン(CSH)または1-プロパンチオール(CSH)等である。
 上述のエステルは、例えば、ギ酸エステルまたは酢酸エステル等である。
 上述のエーテルは、例えば、ジメチルエーテル((CHO)、メチルエチルエーテル(COCH)、ジエチルエーテル((CO)またはテトラヒドロフラン((CHO)等である。
 上述のケトンは、例えば、アセトン((CHCO)、メチルエチルケトン(CCOCH)またはジエチルケトン((CCO)等である。
 上述のアルデヒドは、例えば、アセトアルデヒド(CHCHO)、プロピオンアルデヒド(CCHO)またはブタナール(ブチルアルデヒド)(CCHO)等である。
 以下の説明では、分離装置2により分離される混合物質は、複数種類の液体を含む混合液であり、浸透気化法により分離を行うものとして説明する。
 分離装置2は、ゼオライト膜複合体1と、封止部21と、ハウジング22と、2つのシール部材23と、供給部26と、第1回収部27と、第2回収部28とを備える。ゼオライト膜複合体1、封止部21およびシール部材23は、ハウジング22内に収容される。供給部26、第1回収部27および第2回収部28は、ハウジング22の外部に配置されてハウジング22に接続される。
 封止部21は、支持体11の長手方向(すなわち、図5中の左右方向)の両端部に取り付けられ、支持体11の長手方向両端面、および、当該両端面近傍の外周面を被覆して封止する部材である。封止部21は、支持体11の当該両端面からの液体の流入および流出を防止する。封止部21は、例えば、ガラスまたは樹脂により形成された板状部材である。封止部21の材料および形状は、適宜変更されてよい。なお、封止部21には、支持体11の複数の貫通孔111と重なる複数の開口が設けられているため、支持体11の各貫通孔111の長手方向両端は、封止部21により被覆されていない。したがって、当該両端から貫通孔111への液体等の流入および流出は可能である。
 ハウジング22の形状は特に限定されないが、例えば、略円筒状の筒状部材である。ハウジング22は、例えばステンレス鋼または炭素鋼により形成される。ハウジング22の長手方向は、ゼオライト膜複合体1の長手方向に略平行である。ハウジング22の長手方向の一方の端部(すなわち、図5中の左側の端部)には供給ポート221が設けられ、他方の端部には第1排出ポート222が設けられる。ハウジング22の側面には、第2排出ポート223が設けられる。供給ポート221には、供給部26が接続される。第1排出ポート222には、第1回収部27が接続される。第2排出ポート223には、第2回収部28が接続される。ハウジング22の内部空間は、ハウジング22の周囲の空間から隔離された密閉空間である。
 2つのシール部材23は、ゼオライト膜複合体1の長手方向両端部近傍において、ゼオライト膜複合体1の外周面とハウジング22の内周面との間に、全周に亘って配置される。各シール部材23は、液体が透過不能な材料により形成された略円環状の部材である。シール部材23は、例えば、可撓性を有する樹脂により形成されたOリングである。シール部材23は、ゼオライト膜複合体1の外周面およびハウジング22の内周面に全周に亘って密着する。図5に示す例では、シール部材23は、封止部21の外周面に密着し、封止部21を介してゼオライト膜複合体1の外周面に間接的に密着する。シール部材23とゼオライト膜複合体1の外周面との間、および、シール部材23とハウジング22の内周面との間は、シールされており、液体の通過はほとんど、または、全く不能である。
 供給部26は、混合液を、供給ポート221を介してハウジング22の内部空間に供給する。供給部26は、例えば、ハウジング22に向けて混合液を圧送するポンプを備える。当該ポンプは、ハウジング22に供給する混合液の温度および圧力をそれぞれ調節する温度調節部および圧力調節部を備える。第1回収部27は、例えば、ハウジング22から導出された液体を貯留する貯留容器、または、当該液体を移送するポンプを備える。第2回収部28は、例えば、ハウジング22内におけるゼオライト膜複合体1の外周面の外側の空間(すなわち、2つのシール部材23に挟まれている空間)を減圧する真空ポンプと、気化しつつゼオライト膜複合体1を透過したガスを冷却して液化する冷却チラートラップとを備える。
 混合液の分離が行われる際には、上述の分離装置2が用意されることにより、ゼオライト膜複合体1が準備される(図6:ステップS21)。続いて、供給部26により、ゼオライト膜12に対する透過性が異なる複数種類の液体を含む混合液が、ハウジング22の内部空間に供給される。例えば、混合液の主成分は、水(HO)およびエタノール(COH)である。混合液には、水およびエタノール以外の液体が含まれていてもよい。供給部26からハウジング22の内部空間に供給される混合液の圧力(すなわち、導入圧)は、例えば、0.1MPa~2MPaであり、当該混合液の温度は、例えば、10℃~200℃である。
 供給部26からハウジング22に供給された混合液は、矢印251にて示すように、ゼオライト膜複合体1の図中の左端から、支持体11の各貫通孔111内に導入される。混合液中の透過性が高い液体である高透過性物質は、気化しつつ各貫通孔111の内周面上に設けられたゼオライト膜12、および、支持体11を透過して支持体11の外周面から導出される。これにより、高透過性物質(例えば、水)が、混合液中の透過性が低い液体である低透過性物質(例えば、エタノール)から分離される(ステップS22)。
 支持体11の外周面から導出されたガス(以下、「透過物質」と呼ぶ。)は、矢印253にて示すように、第2排出ポート223を介して第2回収部28へと導かれ、第2回収部28において冷却されて液体として回収される。第2排出ポート223を介して第2回収部28により回収されるガスの圧力(すなわち、透過圧)は、例えば、約6.67kPa(約50Torr)である。透過物質には、上述の高透過性物質以外に、ゼオライト膜12を透過した低透過性物質が含まれていてもよい。
 また、混合液のうち、ゼオライト膜12および支持体11を透過した物質を除く液体(以下、「不透過物質」と呼ぶ。)は、支持体11の各貫通孔111を図中の左側から右側へと通過し、矢印252にて示すように、第1排出ポート222を介して第1回収部27により回収される。第1排出ポート222を介して第1回収部27により回収される液体の圧力は、例えば、導入圧と略同じ圧力である。不透過物質には、上述の低透過性物質以外に、ゼオライト膜12を透過しなかった高透過性物質が含まれていてもよい。第1回収部27により回収された不透過物質は、例えば、供給部26に循環されて、ハウジング22内へと再度供給されてもよい。
 図5に示す分離装置2は、例えば、膜反応装置として利用されてもよい。この場合、ハウジング22は反応器として利用される。ハウジング22の内部には、供給部26から供給される原料物質の化学反応を促進させる触媒が収容される。当該触媒は、例えば、供給ポート221と第1排出ポート222の間に配置される。好ましくは、当該触媒は、ゼオライト膜複合体1のゼオライト膜12近傍に配置される。当該触媒は、原料物質の種類、および、原料物質に生じさせる化学反応の種類に応じて、適切な材料および形状のものが使用される。原料物質は、1種類、または、2種類以上の物質を含む。膜反応装置は、原料物質の化学反応を促進するために、反応器(すなわち、ハウジング22)や原料物質を加熱するための加熱装置をさらに備えていてもよい。
 膜反応装置として使用される分離装置2では、原料物質が触媒存在下で化学反応することにより生成された生成物質を含む混合物質が、上記と同様にゼオライト膜12に供給され、当該混合物質中の高透過性物質がゼオライト膜12を透過することにより、高透過性物質よりも透過性が低い他の物質から分離される。例えば、混合物質は、当該生成物質と、未反応の原料物質とを含む流体であってもよい。また、混合物質は、2種類以上の生成物質を含んでいてもよい。高透過性物質は、原料物質から生成された生成物質であってもよく、生成物質以外の物質であってもよい。好ましくは、高透過性物質は、1種類以上の生成物質を含む。
 高透過性物質が、原料物質から生成された生成物質である場合、当該生成物質がゼオライト膜12により他の物質から分離されることにより、生成物質の収率を向上することができる。混合物質が2種類以上の生成物質を含んでいる場合、当該2種類以上の生成物質が高透過性物質であってもよく、当該2種類以上の生成物質のうち、一部の種類の生成物質が高透過性物質であってもよい。
 次に、ゼオライト膜複合体の実施例1~9および比較例1~4について説明する。表1は、LTA型ゼオライト膜の形成に用いる原料溶液の組成(モル比)、撹拌時間、撹拌終了から加熱開始までの時間、合成温度、合成時間を示す。
Figure JPOXMLDOC01-appb-T000001
(種結晶の作製)
 SDAであるテトラメチルアンモニウムヒドロキシド溶液(富士フイルム和光純薬社製、15%水溶液)に、Si源であるコロイダルシリカ(LUDOX AS-40、Sigma-Aldrich社製)を加え、30分撹拌して溶液Aとした。Na源である水酸化ナトリウム(Sigma-Aldrich社製)とAl源であるアルミン酸ナトリウム粉末(Sigma-Aldrich社製)を純水に加え、透明になるまで撹拌し、溶液Bとした。溶液Aに溶液Bを滴下、室温下で24時間以上撹拌し、組成が1Al:6.5SiO:1.45NaO:1.8(TMA)O:320HOの種結晶用原料溶液を作製した。
 種結晶用原料溶液を100℃にて60時間水熱合成することで、LTA型ゼオライト結晶が得られた。得られたLTA型ゼオライト結晶を450℃にて15時間加熱処理することによってSDAを燃焼除去した。加熱処理したLTA型ゼオライト結晶をボールミルによって45時間粉砕し、種結晶とした。後述の「膜Si/Al比測定」と同様にして、エネルギー分散型X線分光法による測定を行ったところ、種結晶のSi/Alのモル比は、2.4以上であった。その後、モノリス形状の多孔質アルミナ支持体を、上記種結晶を分散させた溶液に接触させて、当該支持体の貫通孔であるセル内に種結晶を付着させた。
(LTA膜の作製)
 Na源である水酸化ナトリウム(Sigma-Aldrich社製)、Al源であるアルミン酸ナトリウム粉末(Sigma-Aldrich社製)を純水に混合した。また、実施例3および比較例4では、SDAであるテトラメチルアンモニウムヒドロキシド溶液をさらに混合した。混合液を室温で1時間撹拌した後、Si源であるコロイダルシリカ(スノーテックス-50T:日産化学社製)を加え、原料溶液を得た。Si源、Al源およびNa源が全て酸化物として存在すると仮定した場合に、原料溶液におけるSiO/Alのモル比、HO/NaOのモル比、NaO/SiOのモル比、および、SDA/Alのモル比は、表1に示す通りである。実施例1~9では、いずれもSiO/Alのモル比を4~7、HO/NaOのモル比を100~1200、NaO/SiOのモル比を0.1~0.6とした。一方、比較例1では、NaO/SiOのモル比を1.0とし、上記範囲よりも大きくした。また、比較例4では、SiO/Alのモル比を10とし、上記範囲よりも大きくした。
 続いて、原料溶液を室温下で撹拌した。原料溶液の撹拌時間は、表1に示す通りである。実施例1~9では、いずれも原料溶液の撹拌時間を10時間以上とした。一方、比較例1および2では、原料溶液の撹拌時間を6時間とした。
 原料溶液の撹拌終了から、表1中の「撹拌終了から加熱開始までの時間」が経過後、種結晶を付着させた支持体を当該原料溶液中に浸漬し、当該原料溶液の加熱(水熱合成)を開始した。水熱合成時の合成温度、および、合成時間は表1に示す通りである。これにより、支持体上にLTA型ゼオライト膜が形成された。実施例1~9では、いずれも撹拌終了から加熱開始までの時間を70分以上とした。一方、比較例3では、撹拌終了から加熱開始までの時間を40分とした。
 水熱合成後、支持体およびゼオライト膜を純水にて十分に洗浄した後、80℃で乾燥させた。原料溶液がSDAを含む実施例3および比較例4では、LTA型ゼオライト膜を450℃にて30時間加熱処理することによってSDAを燃焼除去した。以上の処理により、LTA型ゼオライト膜を有する、実施例1~9および比較例1~4のゼオライト膜複合体を得た。
 表2は、LTA型ゼオライト膜におけるSi/Al比、XRD回折ピーク強度比、水/エタノール分離性能、水熱耐久性、強度を示す。
Figure JPOXMLDOC01-appb-T000002
(膜Si/Al比測定)
 走査型電子顕微鏡(SEM)-エネルギー分散型X線分光法(EDX)により、ゼオライト膜断面のSi/Alのモル比(表2中の「Si/Al比」)を測定した。加速電圧は15kVとした。原料溶液の撹拌時間を10時間以上とし、撹拌終了から加熱開始までの時間を70分以上とした実施例1~9では、いずれもSi/Al比が1.2以上であった。特に、原料溶液におけるHO/NaOのモル比を350以上とした実施例1~7では、Si/Al比が1.74~2.80であった。一方、原料溶液の撹拌時間を6時間とした比較例1,2では、Si/Al比が、それぞれ1.03、1.25となった。撹拌終了から加熱開始までの時間を40分とした比較例3では、後述の「水/エタノール分離試験」において分離係数が極めて小さく、適切な分離膜が形成されなかったため、「水/エタノール分離試験」以外の測定は行わなかった。また、原料溶液におけるSiO/Alのモル比を10とした比較例4では、Si/Al比が2.92であったが、緻密な膜が形成されなかったため、Si/Al比以外の測定は行わなかった。
(膜XRD測定)
 X線回折測定により、実施例1~9、および、比較例1,2のゼオライト膜表面の回折パターンを測定した。X線回折パターンから、実施例1~9、および、比較例1,2では、LTA型ゼオライト膜が形成されたことを確認した。また、実施例1~9では、X線回折パターンにおいて、2θ=7.2°付近に存在するピークの強度に対する、2θ=24.0°付近に存在するピークの強度の比(表2中の「24.0°/7.2°」であり、以下、単に、「24.0°/7.2°の強度比」という。)が0.85以上であり、実施例1~3,6~9では、0.90以上であった。また、実施例1~5,7~9では、2θ=7.2°付近に存在するピークの強度に対する、2θ=30.0°付近に存在するピークの強度の比(表2中の「30.0°/7.2°」であり、以下、単に、「30.0°/7.2°の強度比」という。)が0.85以上であり、実施例1~3,8,9では、0.90以上であった。一方、原料溶液の撹拌時間を6時間とした比較例1,2では、24.0°/7.2°の強度比および30.0°/7.2°の強度比が、共に0.85未満であった。
 なお、X線回折測定では、リガク社製のX線回折装置(装置名:MiniFlex600)を用い、管電圧40kV、管電流15mA、走査速度0.5°/min、走査ステップ0.02°とした。また、発散スリット1.25°、散乱スリット1.25°、受光スリット0.3mm、入射ソーラースリット5.0°、受光ソーラースリット5.0°とした。モノクロメーターは使用せず、CuKβ線フィルターとして0.015mm厚ニッケル箔を使用した。
(水/エタノール分離試験)
 水/エタノール分離試験は、上述の分離装置2を用いて浸透気化法にて実施した。当該試験では、50質量%の水、および、50質量%のエタノールを含む60℃の混合液を、供給部26から供給ポート221を介してハウジング22に大気圧にて供給した。また、ゼオライト膜複合体の透過側である第2排出ポート223を、-94.66kPaG(約50Torr)に減圧した。ゼオライト膜を透過して支持体11の外周面から導出されたガスは、第2回収部28において冷却して液体として回収した。第2回収部28にて回収された当該液体の質量から、単位時間あたりに単位面積の膜を透過した流体の量である全透過流束(kg/mh)を算出した。また、当該液体中の水およびエタノールの濃度(質量%)をそれぞれ測定し、水濃度/エタノール濃度を分離係数として取得した。
 測定を行った実施例1~9および比較例1~3のいずれも、全透過流束が2kg/mh以上であった。分離係数は、比較例3を除き、2000以上であり、良好であった。比較例3では、分離係数が156であり、極めて小さくなった。
(水熱耐久性評価)
 水熱耐久性の評価では、ゼオライト膜複合体を60℃の純水に6時間浸漬し、続いて、80℃で12時間以上乾燥させた。その後、上記「水/エタノール分離試験」を再度行って分離係数を測定し、浸漬前の分離係数に対する浸漬後の分離係数の比(表2中の「熱水浸漬後の分離係数/熱水浸漬前の分離係数」)を水熱耐久性の指標とした。
 実施例1~9では、浸漬前の分離係数に対する浸漬後の分離係数の比が、0.5以上となった。Si/Alのモル比が、1.74~2.80である実施例1~7では、浸漬前の分離係数に対する浸漬後の分離係数の比が、0.7以上となり、比較例1,2に比べて大幅に大きくなった。
(水圧加圧試験)
 水圧加圧試験では、まず、長手方向が略鉛直方向を向くようにゼオライト膜複合体を配置した。続いて、各貫通孔の下側の開口から内部に室温の純水を導入し、当該貫通孔内の水を加圧することによりゼオライト膜複合体を水圧加圧した。加圧圧力は、10MPaGとし、加圧時間は1分とした。ゼオライト膜複合体を80℃で12時間以上乾燥させた後、上記「水/エタノール分離試験」を再度行って分離係数を測定し、水圧加圧前の分離係数に対する水圧加圧後の分離係数の比(表2中の「水圧加圧後の分離係数/水圧加圧前の分離係数」)を強度の指標とした。
 24.0°/7.2°の強度比、および、30.0°/7.2°の強度比の少なくとも一方が0.85以上である実施例1~9では、水圧加圧前の分離係数に対する水圧加圧後の分離係数の比が、比較例1,2よりも十分に大きくなった。すなわち、実施例1~9のゼオライト膜複合体の強度は、比較例1,2よりも向上した。24.0°/7.2°の強度比、および、30.0°/7.2°の強度比の双方が0.90以上である実施例1~3,8,9では、水圧加圧前の分離係数に対する水圧加圧後の分離係数の比が1となり、水圧加圧前後で分離係数は変化しなかった。
 ところで、24.0°/7.2°の強度比、および、30.0°/7.2°の強度比が0.85よりも僅かに大きい実施例4,5においても、水圧加圧前の分離係数に対する水圧加圧後の分離係数の比は、比較例1,2に比べて十分に大きくなった。したがって、24.0°/7.2°の強度比、および、30.0°/7.2°の強度比の少なくとも一方が0.85以上であれば、ゼオライト膜複合体の強度が向上すると考えられる。
 以上に説明したように、ゼオライト膜複合体1は、多孔質の支持体11と、支持体11上に設けられ、LTA型ゼオライトからなるゼオライト膜12とを備える。ゼオライト膜12におけるSi/Alのモル比が、1.74以上かつ2.80以下である。これにより、水熱耐久性が向上したゼオライト膜複合体1を提供することができ(実施例1~7参照)、ゼオライト膜複合体1を長時間使用することが可能となる。
 好ましくは、ゼオライト膜12の表面にX線を照射して得られるX線回折パターンにおいて、2θ=24.0°付近に存在するピークの強度、および、2θ=30.0°付近に存在するピークの強度の少なくとも一方が、2θ=7.2°付近に存在するピークの強度の0.85倍以上である。これにより、水熱耐久性に加えて強度が向上したゼオライト膜複合体1を提供することができる(実施例1~7参照)。ゼオライト膜複合体1の強度をさらに向上するには、2θ=24.0°付近のピークの強度、および、2θ=30.0°付近のピークの強度の双方が、2θ=7.2°付近のピークの強度の0.90倍以上であることが好ましい(実施例1~3参照)。
 ゼオライト膜複合体1において、ある程度の水熱耐久性を確保するという観点では、ゼオライト膜12におけるSi/Alのモル比が、1.2以上であればよい(実施例1~9参照)。この場合も、上記X線回折パターンにおいて、2θ=24.0°付近に存在するピークの強度、および、2θ=30.0°付近に存在するピークの強度の少なくとも一方が、2θ=7.2°付近に存在するピークの強度の0.85倍以上であることにより、ゼオライト膜複合体1の強度を向上することができる(実施例1~9参照)。上記と同様に、ゼオライト膜複合体1の強度をさらに向上するには、2θ=24.0°付近のピークの強度、および、2θ=30.0°付近のピークの強度の双方が、2θ=7.2°付近のピークの強度の0.90倍以上であることが好ましい(実施例1~3,8,9参照)。
 好ましくは、ゼオライト膜12の厚さが、5μm以下である。ゼオライト膜複合体1では、水熱耐久性または/および強度を向上しつつ、ゼオライト膜12を薄くすることができ、高透過性物質の透過量を向上することができる。
 好ましいゼオライト膜複合体1では、50質量%の水、および、50質量%のエタノールを含む60℃の混合液を、透過側を-94.66kPaGとして供給した場合に、全透過流束が2.0kg/mh以上であり、かつ、水とエタノールの分離係数が2000以上である。これにより、水およびエタノールの混合液を適切に分離することが可能となる。
 上述のように、膜反応装置は、上記ゼオライト膜複合体1と、原料物質の化学反応を促進させる触媒と、ゼオライト膜複合体1および当該触媒を収容する反応器(上述の例では、ハウジング22)と、原料物質を当該反応器に供給する供給部26とを備える。ゼオライト膜複合体1は、原料物質が触媒存在下で化学反応することにより生成された生成物質を含む混合物質のうち、透過性が高い高透過性物質を透過することにより他の物質から分離する。これにより、上記と同様に、高透過性物質を、他の物質から効率良く分離することができる。当該膜反応装置は、HOの分離に特に適している。
 ゼオライト膜複合体1の製造方法は、原料溶液を調製する工程(ステップS13)と、ステップS13の後、原料溶液を10時間以上撹拌する工程(ステップS14)と、LTA型ゼオライトを含む種結晶を付着させた多孔質の支持体11を原料溶液中に浸漬する工程(ステップS15)と、ステップS14の終了から70分以上経過後に、原料溶液を加熱することにより、当該支持体11上にLTA型ゼオライトからなるゼオライト膜12を形成する工程(ステップS16)とを備える。ステップS13では、Na源、Al源およびSi源を水に混合することにより、原料溶液が調製される。当該原料溶液において、SiO/Alのモル比が4以上かつ7以下であり、HO/NaOのモル比が100以上かつ1200以下であり、NaO/SiOのモル比が0.1以上かつ0.6以下である(実施例1~9参照)。
 上記製造方法では、原料溶液の撹拌時間を10時間以上として、原料溶液の均一性が増すことで、結晶が配向せず、ランダムに成長させることができる。また、撹拌終了から70分以上経過後に、原料溶液の加熱が開始されるため、加熱開始時には、原料粒子が適度に凝集して適度な大きさの原料粒子が生成されている。これにより、結晶成長速度を制御することができ、膜欠陥の生成(例えば、異相や不純物の発生)を抑制することができる。その結果、水熱耐久性または/および強度を向上した、好ましいゼオライト膜複合体1を製造することができる。なお、異相や不純物の有無は、ゼオライト膜12の表面に対するX線回折測定により確認することが可能である。
 好ましくは、原料溶液において、HO/NaOのモル比が350以上である(実施例1~7参照)。これにより、ゼオライト膜複合体1の水熱耐久性をより確実に向上することができる。好ましくは、種結晶のSi/Alのモル比が、2.4以上である。これにより、好ましいゼオライト膜複合体1をより確実に製造することができる。ゼオライト膜複合体1に求められる性能によっては、原料溶液におけるHO/NaOのモル比が350未満であってもよく、種結晶のSi/Alのモル比が、2.4未満であってもよい。
 上記ゼオライト膜複合体1、膜反応装置およびゼオライト膜複合体1の製造方法では様々な変形が可能である。
 ゼオライト膜複合体1において高い強度が求められない場合には、X線回折パターンにおいて、2θ=24.0°付近のピークの強度、および、2θ=30.0°付近のピークの強度が、2θ=7.2°付近のピークの強度の0.85倍未満であってもよい。
 ゼオライト膜複合体1は、上記製造方法以外の方法により製造されてもよい。
 ゼオライト膜複合体1は、支持体11およびゼオライト膜12に加えて、ゼオライト膜12上に積層された機能膜や保護膜をさらに備えていてもよい。このような機能膜や保護膜は、ゼオライト膜、シリカ膜または炭素膜等の無機膜であってもよく、ポリイミド膜またはシリコーン膜等の有機膜であってもよい。また、ゼオライト膜12上に積層された機能膜や保護膜には、水を吸着しやすい物質が添加されていてもよい。
 分離装置2、膜反応装置および分離方法では、上記説明にて例示した浸透気化法以外に、蒸気透過法、逆浸透法、ガス透過法等によって混合物質の分離が行われてもよい。
 分離装置2、膜反応装置および分離方法では、上記説明にて例示した物質以外の物質が、混合物質から分離されてもよい。
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
 本発明のゼオライト膜複合体は、例えば、脱水膜として利用可能であり、さらには、水以外の様々な物質の分離膜や様々な物質の吸着膜等として、ゼオライトが利用される様々な分野で利用可能である。
 1  ゼオライト膜複合体
 11  支持体
 12  ゼオライト膜
 S11~S16,S21,S22  ステップ

Claims (11)

  1.  ゼオライト膜複合体であって、
     多孔質の支持体と、
     前記支持体上に設けられ、LTA型ゼオライトからなるゼオライト膜と、
    を備え、
     前記ゼオライト膜におけるSi/Alのモル比が、1.74以上かつ2.80以下である。
  2.  請求項1に記載のゼオライト膜複合体であって、
     前記ゼオライト膜の表面にX線を照射して得られるX線回折パターンにおいて、2θ=24.0°付近に存在するピークの強度、および、2θ=30.0°付近に存在するピークの強度の少なくとも一方が、2θ=7.2°付近に存在するピークの強度の0.85倍以上である。
  3.  ゼオライト膜複合体であって、
     多孔質の支持体と、
     前記支持体上に設けられ、LTA型ゼオライトからなるゼオライト膜と、
    を備え、
     前記ゼオライト膜におけるSi/Alのモル比が、1.2以上であり、
     前記ゼオライト膜の表面にX線を照射して得られるX線回折パターンにおいて、2θ=24.0°付近に存在するピークの強度、および、2θ=30.0°付近に存在するピークの強度の少なくとも一方が、2θ=7.2°付近に存在するピークの強度の0.85倍以上である。
  4.  請求項1に記載のゼオライト膜複合体であって、
     前記ゼオライト膜の厚さが、5μm以下である。
  5.  請求項1に記載のゼオライト膜複合体であって、
     50質量%の水、および、50質量%のエタノールを含む60℃の混合液を、透過側を-94.66kPaGとして供給した場合に、全透過流束が2.0kg/mh以上であり、かつ、水とエタノールの分離係数が2000以上である。
  6.  請求項3に記載のゼオライト膜複合体であって、
     前記ゼオライト膜の厚さが、5μm以下である。
  7.  請求項3に記載のゼオライト膜複合体であって、
     50質量%の水、および、50質量%のエタノールを含む60℃の混合液を、透過側を-94.66kPaGとして供給した場合に、全透過流束が2.0kg/mh以上であり、かつ、水とエタノールの分離係数が2000以上である。
  8.  膜反応装置であって、
     請求項1ないし7のいずれか1つに記載のゼオライト膜複合体と、
     原料物質の化学反応を促進させる触媒と、
     前記ゼオライト膜複合体および前記触媒を収容する反応器と、
     前記原料物質を前記反応器に供給する供給部と、
    を備え、
     前記ゼオライト膜複合体は、前記原料物質が前記触媒存在下で化学反応することにより生成された生成物質を含む混合物質のうち、透過性が高い高透過性物質を透過することにより他の物質から分離する。
  9.  ゼオライト膜複合体の製造方法であって、
     a)ナトリウム源、アルミニウム源およびケイ素源を水に混合することにより、原料溶液を調製する工程と、
     b)前記a)工程の後、前記原料溶液を10時間以上撹拌する工程と、
     c)LTA型ゼオライトを含む種結晶を付着させた多孔質の支持体を前記原料溶液中に浸漬する工程と、
     d)前記b)工程の終了から70分以上経過後に、前記原料溶液を加熱することにより、前記種結晶を付着させた前記支持体上にLTA型ゼオライトからなるゼオライト膜を形成する工程と、
    を備え、
     前記原料溶液において、SiO/Alのモル比が4以上かつ7以下であり、HO/NaOのモル比が100以上かつ1200以下であり、NaO/SiOのモル比が0.1以上かつ0.6以下である。
  10.  請求項9に記載のゼオライト膜複合体の製造方法であって、
     前記原料溶液において、HO/NaOのモル比が350以上である。
  11.  請求項9または10に記載のゼオライト膜複合体の製造方法であって、
     前記種結晶のSi/Alのモル比が、2.4以上である。
PCT/JP2022/041965 2021-11-12 2022-11-10 ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法 WO2023085371A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2022386910A AU2022386910A1 (en) 2021-11-12 2022-11-10 Zeolite membrane complex, membrane reactor, and method of producing zeolite membrane complex
DE112022004594.9T DE112022004594T5 (de) 2021-11-12 2022-11-10 Zeolithmembrankomplex, Membranreaktor und Verfahren zur Herstellung eines Zeolithmembrankomplexes
JP2023559905A JPWO2023085371A1 (ja) 2021-11-12 2022-11-10
CN202280072245.8A CN118176055A (zh) 2021-11-12 2022-11-10 沸石膜复合体、膜反应装置以及沸石膜复合体的制造方法
US18/641,496 US20240286088A1 (en) 2021-11-12 2024-04-22 Zeolite membrane complex, membrane reactor, and method of producing zeolite membrane complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021184979 2021-11-12
JP2021-184979 2021-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/641,496 Continuation US20240286088A1 (en) 2021-11-12 2024-04-22 Zeolite membrane complex, membrane reactor, and method of producing zeolite membrane complex

Publications (1)

Publication Number Publication Date
WO2023085371A1 true WO2023085371A1 (ja) 2023-05-19

Family

ID=86335889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041965 WO2023085371A1 (ja) 2021-11-12 2022-11-10 ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法

Country Status (6)

Country Link
US (1) US20240286088A1 (ja)
JP (1) JPWO2023085371A1 (ja)
CN (1) CN118176055A (ja)
AU (1) AU2022386910A1 (ja)
DE (1) DE112022004594T5 (ja)
WO (1) WO2023085371A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313390A (ja) * 2006-05-23 2007-12-06 Asahi Kasei Corp フィリップサイト型ゼオライト複合膜及びその製造方法
JP2018038977A (ja) * 2016-09-08 2018-03-15 国立大学法人 東京大学 ゼオライト分離膜の製造方法
WO2020195105A1 (ja) * 2019-03-26 2020-10-01 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、ゼオライト膜複合体の処理方法、および、分離方法
JP2020164407A (ja) * 2019-03-26 2020-10-08 日本碍子株式会社 ゼオライトの種結晶、ゼオライトの種結晶の製造方法、ゼオライト膜複合体の製造方法および分離方法
WO2020255867A1 (ja) * 2019-06-17 2020-12-24 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、分離装置、膜型反応装置および分離方法
WO2020261795A1 (ja) * 2019-06-27 2020-12-30 公益財団法人地球環境産業技術研究機構 ゼオライト膜複合体およびその製造方法、並びに流体分離方法
JP2021016858A (ja) * 2019-07-19 2021-02-15 日本碍子株式会社 分離装置、および、分離装置の運転方法
JP2021104467A (ja) * 2018-03-30 2021-07-26 日立造船株式会社 高含水系における低Siゼオライト膜適応脱水システムおよび脱水方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547727B2 (ja) 2016-09-30 2019-07-24 株式会社三洋物産 遊技機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007313390A (ja) * 2006-05-23 2007-12-06 Asahi Kasei Corp フィリップサイト型ゼオライト複合膜及びその製造方法
JP2018038977A (ja) * 2016-09-08 2018-03-15 国立大学法人 東京大学 ゼオライト分離膜の製造方法
JP2021104467A (ja) * 2018-03-30 2021-07-26 日立造船株式会社 高含水系における低Siゼオライト膜適応脱水システムおよび脱水方法
WO2020195105A1 (ja) * 2019-03-26 2020-10-01 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、ゼオライト膜複合体の処理方法、および、分離方法
JP2020164407A (ja) * 2019-03-26 2020-10-08 日本碍子株式会社 ゼオライトの種結晶、ゼオライトの種結晶の製造方法、ゼオライト膜複合体の製造方法および分離方法
WO2020255867A1 (ja) * 2019-06-17 2020-12-24 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、分離装置、膜型反応装置および分離方法
WO2020261795A1 (ja) * 2019-06-27 2020-12-30 公益財団法人地球環境産業技術研究機構 ゼオライト膜複合体およびその製造方法、並びに流体分離方法
JP2021016858A (ja) * 2019-07-19 2021-02-15 日本碍子株式会社 分離装置、および、分離装置の運転方法

Also Published As

Publication number Publication date
JPWO2023085371A1 (ja) 2023-05-19
DE112022004594T5 (de) 2024-08-01
US20240286088A1 (en) 2024-08-29
AU2022386910A1 (en) 2024-06-13
CN118176055A (zh) 2024-06-11

Similar Documents

Publication Publication Date Title
JP7163951B2 (ja) ゼオライト膜複合体
JP6167489B2 (ja) ゼオライト膜複合体
JP6107000B2 (ja) ゼオライト膜複合体
US20220047995A1 (en) Zeolite membrane complex, method of producing zeolite membrane complex, separator, membrane reactor, and separation method
US20230373799A1 (en) Zeolite membrane complex, separation apparatus, membrane reactor, and method of producing zeolite membrane complex
WO2020195105A1 (ja) ゼオライト膜複合体、ゼオライト膜複合体の製造方法、ゼオライト膜複合体の処理方法、および、分離方法
CN111902202B (zh) 陶瓷支撑体、沸石膜复合体、沸石膜复合体的制造方法以及分离方法
Wang et al. A super-permeable and highly-oriented SAPO-34 thin membrane prepared by a green gel-less method using high-aspect-ratio nanosheets for efficient CO2 capture
US20230338900A1 (en) Zeolite membrane complex and method of producing zeolite membrane complex
CN111902203B (zh) 沸石膜复合体、沸石膜复合体的制造方法以及分离方法
WO2023085371A1 (ja) ゼオライト膜複合体、膜反応装置およびゼオライト膜複合体の製造方法
US12134565B2 (en) Crystalline material and membrane complex
JP7170825B2 (ja) 分離方法
JP7297475B2 (ja) ゼオライト合成用ゾル、ゼオライト膜の製造方法、および、ゼオライト粉末の製造方法
JP7129362B2 (ja) 種結晶、種結晶の製造方法、種結晶付着支持体の製造方法およびゼオライト膜複合体の製造方法
WO2023085372A1 (ja) ゼオライト膜複合体および膜反応装置
WO2023162525A1 (ja) ゼオライト膜複合体および分離方法
WO2024157536A1 (ja) 分離膜複合体および分離膜複合体の製造方法
WO2023162854A1 (ja) ゼオライト膜複合体、ゼオライト膜複合体の製造方法および分離方法
WO2022209002A1 (ja) 分離膜複合体および分離膜複合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023559905

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280072245.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022004594

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2022386910

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022386910

Country of ref document: AU

Date of ref document: 20221110

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 22892869

Country of ref document: EP

Kind code of ref document: A1