WO2023074139A1 - 圧電素子、および圧電素子の製造方法 - Google Patents
圧電素子、および圧電素子の製造方法 Download PDFInfo
- Publication number
- WO2023074139A1 WO2023074139A1 PCT/JP2022/033711 JP2022033711W WO2023074139A1 WO 2023074139 A1 WO2023074139 A1 WO 2023074139A1 JP 2022033711 W JP2022033711 W JP 2022033711W WO 2023074139 A1 WO2023074139 A1 WO 2023074139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric
- atoms
- piezoelectric element
- lead
- composition
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000000203 mixture Substances 0.000 claims abstract description 77
- 229910052788 barium Inorganic materials 0.000 claims abstract description 20
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 20
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 20
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 16
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 16
- 239000010953 base metal Substances 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims description 34
- 239000002994 raw material Substances 0.000 claims description 18
- 239000013078 crystal Substances 0.000 claims description 10
- 238000010344 co-firing Methods 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 6
- 206010021143 Hypoxia Diseases 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 abstract description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 abstract description 10
- 239000001301 oxygen Substances 0.000 abstract description 10
- 230000007812 deficiency Effects 0.000 abstract description 3
- 239000000470 constituent Substances 0.000 abstract 1
- 239000010955 niobium Substances 0.000 description 43
- 239000011572 manganese Substances 0.000 description 40
- 239000010410 layer Substances 0.000 description 29
- 239000010936 titanium Substances 0.000 description 24
- 239000011575 calcium Substances 0.000 description 23
- 239000000523 sample Substances 0.000 description 22
- 230000015556 catabolic process Effects 0.000 description 21
- 239000003513 alkali Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 16
- 238000009413 insulation Methods 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 11
- 229910052726 zirconium Inorganic materials 0.000 description 11
- 229910052735 hafnium Inorganic materials 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000006104 solid solution Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 229910052700 potassium Inorganic materials 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 229910052758 niobium Inorganic materials 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 238000010304 firing Methods 0.000 description 4
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 4
- 229910052701 rubidium Inorganic materials 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/50—Piezoelectric or electrostrictive devices having a stacked or multilayer structure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/05—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/05—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
- H10N30/053—Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
- H10N30/067—Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/08—Shaping or machining of piezoelectric or electrostrictive bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/097—Forming inorganic materials by sintering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8542—Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
- H10N30/871—Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the technology disclosed in this specification relates to a piezoelectric element and a method for manufacturing the piezoelectric element.
- PZT lead zirconate titanate
- piezoelectric ceramic electronic components are generally manufactured by laminating ceramic green sheets as piezoelectric ceramic layers and conductive films as electrodes and co-firing them.
- electrode materials Pt, Ag--Pd alloys, etc. are widely used.
- Ni nickel
- Ni is inexpensive and can suppress the occurrence of migration, has been proposed as a substitute in recent years. Since Ni is easily oxidized when fired in an air atmosphere, it must be fired in a reducing atmosphere.
- the lead-free piezoelectric ceramic composition as described above has a relatively large dielectric loss (tan ⁇ ) of about 5%, and there are concerns about its insulating properties. For this reason, there is a risk that leakage or dielectric breakdown will occur or that the temperature will easily rise during the polarization process in which a high electric field is applied at several tens of degrees Celsius or when the device is driven.
- e is a value indicating oxygen deficiency or excess ) containing a main phase composed of an alkali niobate-based perovskite-type oxide represented by ) and satisfying b/(d3+d4+d5) ⁇ 1 are mixed and calcined to obtain a calcined powder.
- a molding step of forming a molded body containing the calcined powder an electrode forming step of forming an electrode layer containing a base metal as a main component on the molded body; and a reducing atmosphere between the molded body and the electrode layer. and a co-firing step of co-firing below.
- the dielectric loss can be reduced and the insulation can be improved.
- a piezoelectric body made of a lead-free piezoelectric magnetic composition that satisfies b/(d3+d4+d5) ⁇ 1 and that contains a main phase composed of an alkaline niobate-based perovskite oxide represented by the following; And prepare.
- e is a value indicating oxygen deficiency or excess ) containing a main phase composed of an alkali niobate-based perovskite-type oxide represented by ) and satisfying b/(d3+d4+d5) ⁇ 1 are mixed and calcined to obtain a calcined powder.
- a molding step of forming a molded body containing the calcined powder an electrode forming step of forming an electrode layer containing a base metal as a main component on the molded body; and a reducing atmosphere between the molded body and the electrode layer. and a co-firing step of co-firing below.
- the B site (niobium site) of the alkali niobate-based perovskite oxide contains an appropriate amount of Ti, Zr, and Hf, thereby improving the sinterability of the piezoelectric body and reducing the dielectric loss. and insulation is improved.
- Mn dissolves in the B site as a solid solution as an acceptor, so that the charge caused by oxygen vacancies formed during reduction firing can be compensated, the dielectric loss is reduced, and the insulation is improved.
- Mn is difficult to form a solid solution in the alkali niobate perovskite oxide, and tends to segregate as a heterogeneous phase in the lead-free piezoelectric ceramic composition.
- Ba, Ca, and Sr form a solid solution in the A site (alkali site), the piezoelectric performance is improved.
- Ba, Ca, and Sr play a role as donors, there is a concern that the insulating properties of the piezoelectric body may be lowered by converting the piezoelectric body into a semiconductor.
- the molar ratio (Mn/Nb) of Mn atoms to Nb atoms contained in the main phase may be 0.003 or more.
- the molar ratio (Mn/Nb) of Mn atoms to Nb atoms contained in the raw material mixture may be 0.005 or more.
- the dielectric loss of the piezoelectric body can be reliably reduced and the insulation can be improved.
- the crystal grains of the alkali niobate-based perovskite oxide contained in the main phase may have an average grain size of less than 6 ⁇ m.
- the average particle diameter of the crystal grains is less than 6 ⁇ m, the grain boundary resistance is large, so deterioration of the piezoelectric properties can be avoided.
- the lead-free piezoelectric magnetic composition further has a composition formula of A2 1-x Ti 1-x Nb 1+x O 5 (where the element A2 is at least one alkali metal , 0 ⁇ x ⁇ 0.15) and a compound represented by the composition formula A3Ti 3 NbO 9 (provided that element A3 is at least one alkali metal). It may contain a subphase consisting of a compound.
- the piezoelectric properties can be improved more than when the lead-free piezoelectric ceramic composition does not have a subphase.
- the piezoelectric element of 1) above may have a structure in which the piezoelectric bodies and the electrodes are alternately laminated.
- the piezoelectric element 10 of this embodiment includes a piezoelectric layer 11 (an example of a piezoelectric body), a plurality of internal electrodes 12 and 13 (an example of electrodes) in contact with the piezoelectric phase 11, and two electrodes connected to the internal electrodes 12 and 13. and external electrodes 14 , 15 .
- the piezoelectric layer 11 is made of a lead-free piezoelectric ceramic composition containing a main phase of an alkaline niobate-based perovskite oxide.
- the internal electrodes 12 and 13 are mainly composed of a base metal, for example, Ni (nickel).
- the piezoelectric layers 11 and the internal electrodes 12 and 13 are alternately laminated.
- the piezoelectric layer 11 and the internal electrodes 12, 13 are laminated in the order of the piezoelectric layer 11, the internal electrode 12, the piezoelectric layer 11, the internal electrode 13, the piezoelectric layers 11, . 11 is sandwiched between two internal electrodes 12,13.
- Two external electrodes 14 , 15 are arranged on the outer surface of the laminate of the piezoelectric layer 11 and the internal electrodes 12 , 13 .
- One end of one of the two internal electrodes 12 and 13 in contact with one piezoelectric layer 11 is connected to one external electrode 14, and one end of the other internal electrode 13 is connected to the other external electrode 15. It is connected to the.
- the piezoelectric layer 11 expands and contracts, and the entire piezoelectric element 10 expands and contracts.
- the lead-free piezoelectric magnetic composition that constitutes the piezoelectric layer 11 contains a main phase composed of an alkaline niobate-based perovskite oxide having piezoelectric properties.
- the alkali niobate-based perovskite oxide of this embodiment is represented by the following compositional formula (1).
- the element A1 is at least one of alkali metals.
- Element M1 is at least one of alkaline earth metals Ca (calcium), Sr (strontium), and Ba (barium).
- the element A1 and the element M1 are arranged at the A site (alkaline site) of the perovskite structure, and are Nb (niobium), Mn (manganese), Ti (titanium), Zr (zirconium), and Hf (hafnium) is arranged at the B site.
- the values of the coefficients a to e in the composition formula (1) are preferable from the viewpoint of the electrical characteristics or piezoelectric characteristics (especially the piezoelectric constant d33) of the lead-free piezoelectric ceramic composition among the combinations of values that form the perovskite structure. A value is selected.
- the coefficient c for the entire A site satisfies 0.80 ⁇ c ⁇ 1.10, preferably 0.84 ⁇ c ⁇ 1.08, more preferably 0.88 ⁇ c ⁇ 1.07.
- the Zr coefficient d4 and the Hf coefficient d5 may be zero (ie, the composition does not contain either or both Zr or Hf).
- the coefficient e is a positive or negative value that indicates the deficiency or excess of oxygen with respect to the coefficient of oxygen, which is usually 3.
- the coefficient (3+e) of oxygen can take a value such that the main phase constitutes a perovskite oxide.
- the value of the coefficient e can be calculated from the electrically neutral condition of the composition of the main phase. However, as the composition of the main phase, a composition slightly deviating from the electrically neutral condition is also acceptable.
- Coefficients b, d3, d4, and d5 satisfy b/(d3+d4+d5) ⁇ 1. If the coefficients b, d3, d4, and d5 take values within this range, a lead-free piezoelectric ceramic composition with low dielectric loss and high insulating properties can be obtained. The reason is presumed to be as follows.
- the sinterability of the piezoelectric material is improved, the dielectric loss is reduced, and the insulation is improved. be.
- Mn dissolves in the B site as a solid solution as an acceptor, so that the charge caused by oxygen vacancies formed during reduction firing can be compensated, the dielectric loss is reduced, and the insulation is improved.
- Mn is difficult to form a solid solution in the alkali niobate perovskite oxide, and tends to segregate as a heterogeneous phase in the lead-free piezoelectric ceramic composition.
- Ba, Ca, and Sr form a solid solution in the A site (alkali site), the piezoelectric performance is improved.
- Ba, Ca, and Sr play a role as donors, there is a concern that the insulating properties of the piezoelectric body may be lowered by converting the piezoelectric body into a semiconductor.
- the alkali niobate-based perovskite-type oxide represented by the above composition formula (1) preferably contains at least one of K (potassium), Na (sodium), and Li (lithium) as the element A1.
- the oxide contains at least one of K, Na, and Li as the element A1 and at least one of Ca, Sr, and Ba as the element M1
- the composition formula (1) is the following composition formula (1a ) can be rewritten as
- Coefficients a1 and a2 of K and Na are typically 0 ⁇ a1 ⁇ 0.6 and 0 ⁇ a2 ⁇ 0.6.
- the coefficient a3 of Li may be zero, but preferably 0 ⁇ a3 ⁇ 0.2, more preferably 0 ⁇ a3 ⁇ 0.1.
- oxides containing K, Na, and Nb as main metal components are referred to as "KNN” or "KNN materials.”
- KNN alkali niobate-based perovskite-type oxides represented by the above composition formula (1a)
- oxides containing K, Na, and Nb as main metal components are referred to as "KNN” or "KNN materials.”
- the lead-free piezoelectric magnetic composition has excellent piezoelectric properties, electrical properties, insulation properties, and high-temperature durability, and does not exhibit abrupt changes in properties between -50°C and +150°C. can be obtained.
- a typical composition of the main phase is (K,Na,Li,Ca,Ba) c (Nb,Mn,Ti,Zr,Hf)O3 +e .
- the lead-free piezoelectric ceramic composition of the present embodiment includes a subphase composed of either an oxide represented by the following compositional formula (2) or an oxide represented by the following compositional formula (3): may contain.
- the element A2 is at least one of alkali metals, preferably at least one of K, Rb (rubidium), and Cs (cesium).
- the coefficient x is 0 ⁇ x ⁇ 0 . 15. If the coefficient x takes a value within this range, the structure of the subphase is stabilized and a uniform crystal phase can be obtained. From the viewpoint of structural stability of the subphase, the coefficient x preferably satisfies 0 ⁇ x ⁇ 0.15 when the element A2 is K or Rb, and 0 ⁇ x when the element A2 is Cs. It is preferable to satisfy ⁇ 0.10.
- element A3 is at least one of alkali metals, and preferably at least one of K, Rb, and Cs.
- the secondary phase does not have piezoelectric properties, but when mixed with the main phase, it improves sinterability and also improves insulation. It is also believed that it contributes to preventing the phase transition point from occurring between -50°C and +150°C.
- the secondary phase is a layered structure compound (or layered compound), and it is presumed that the fact that it is a layered structure compound contributes to the improvement of the insulating properties of the piezoelectric ceramic composition and the function of preventing the phase transition point from occurring. be done.
- the content of the subphase may be more than 0 mol % and less than 20 mol %, preferably 2 mol % or more and 15 mol % or less, more preferably 2 mol % or more and 10 mol % or less.
- oxides represented by compositional formula (2) or (3) oxides containing Nb, Ti and K as main metal components are called "NTK materials". By using this oxide, it is possible to obtain a lead-free piezoelectric magnetic composition which is inexpensive and has excellent piezoelectric properties.
- the molar ratio (Mn/Nb) of Mn atoms to Nb atoms contained in the main phase is preferably 0.003 or more.
- the average particle size of the crystal particles of the alkaline niobate-based perovskite oxide contained in the main phase is preferably less than 6 ⁇ m.
- the average grain size of the crystal grains is less than 6 ⁇ m, the grain boundary resistance is large, so deterioration of the piezoelectric properties can be avoided.
- Calcination Step First necessary powders are selected from raw material powders of the main phase, and weighed so as to obtain the desired composition.
- the raw material powder may be an oxide, carbonate, or hydroxide of each element contained in the main phase.
- the molar ratio (Mn/Nb) of Mn atoms to Nb atoms contained in the mixture of raw material powders of the main phase is set to 0.005 or more.
- Ethanol is added to these raw material powders, and the mixture is wet-mixed in a ball mill for preferably 15 hours or more to obtain a slurry.
- the mixed powder obtained by drying the obtained slurry is calcined, for example, at 600 to 1000° C. for 1 to 10 hours in an air atmosphere to obtain a main phase calcined product (calcining step).
- Mn/Nb molar ratio of Mn atoms to Nb atoms contained in the mixture of raw material powders of the main phase
- Mn/Nb molar ratio of Mn atoms to Nb atoms contained in the mixture of raw material powders of the main phase
- the necessary materials are selected from the subphase raw material powders and weighed so as to obtain the desired composition.
- the raw material powder may be an oxide, carbonate, or hydroxide of each element contained in the subphase.
- ethanol is added to these raw material powders and wet-mixed in a ball mill for preferably 15 hours or more to obtain a slurry.
- the mixed powder obtained by drying the obtained slurry is calcined, for example, at 600 to 1000° C. for 1 to 10 hours in an air atmosphere to obtain a subphase calcined product.
- the main phase calcined material and the sub phase calcined material are weighed, and a dispersant, a binder, and an organic solvent such as toluene are added, pulverized and mixed to form a slurry.
- a ceramic green sheet (an example of a molded body) is produced by processing into a sheet shape using a doctor blade method or the like (molding step).
- an electrode layer that will become internal electrodes is formed on one surface of the ceramic green sheet by, for example, screen printing (electrode forming step).
- the electrode layer contains a base metal as a main component, for example, Ni as a main component.
- a plurality of ceramic green sheets having electrode layers formed thereon are laminated, and ceramic green sheets having no electrode layers formed thereon are further laminated on both front and back surfaces, and pressed to alternately form the ceramic green sheets and the electrode layers. to obtain a laminated body. After cutting this laminate into a desired shape, it is held at, for example, 200 to 400° C. for 2 to 10 hours to remove the binder.
- the laminated body after the binder removal treatment is fired, for example, at 900 to 1200° C. for 2 to 5 hours in a reducing atmosphere adjusted to an oxygen partial pressure that does not oxidize the electrode layers (co-firing process).
- An external electrode made of Au is formed on the outer surface of the fired laminate by, for example, a sputtering method, and a polarization treatment is performed to obtain a piezoelectric element.
- the manufacturing method described above is merely an example, and various other processes and processing conditions for manufacturing piezoelectric elements can be used.
- the raw materials instead of separately producing calcined products of the main phase and the sub-phase in advance and then mixing and sintering the powders of the two, the raw materials are mixed in an amount ratio according to the composition of the final lead-free piezoelectric ceramic composition and sintered.
- the composition of the main phase and the sub-phase can be controlled more strictly, so that the yield of the lead-free piezoelectric ceramic composition can be increased. is possible.
- the lead-free piezoelectric ceramic composition and piezoelectric element of the present embodiment can be widely used for vibration detection applications, pressure detection applications, oscillation applications, piezoelectric device applications, and the like.
- sensors that detect various vibrations knock sensors, combustion pressure sensors, etc.
- vibrators, actuators, piezoelectric devices such as filters, high voltage generators, micro power sources, various drive devices, position control devices, vibration suppression devices, It can be used for fluid discharge devices (paint discharge, fuel discharge, etc.).
- the lead-free piezoelectric ceramic composition and piezoelectric element of this embodiment are particularly suitable for applications requiring excellent thermal durability (for example, knock sensors, combustion pressure sensors, etc.).
- the piezoelectric element 10 has a configuration in which the piezoelectric layers 11 and the internal electrodes 12 and 13 are alternately laminated. It may be a piezoelectric element having a single-layer structure including electrodes arranged on the surface of the substrate.
- Test example 1 (1) Preparation of samples K 2 CO 3 powder, Na 2 CO 3 powder, and Nb 2 O 5 powder were each weighed so that the coefficients f and g of the following composition formula (2) had the ratios shown in Table 1. mixed.
- the necessary one was selected from BaCO3 powder, CaCO3 powder, and SrCO3 powder, and the sum of the molar percentages of Ba atoms, Ca atoms, and Sr atoms with respect to Nb atoms contained in the Nb2O5 powder is shown in Table 1 . It was weighed and added so that the value shown in .
- MnO2 powder, TiO2 powder, ZrO2 powder, and HfO2 powder were mixed so that the molar percentage of metal atoms in each powder with respect to Nb atoms contained in Nb2O5 powder was the value shown in Table 1, respectively . Weighed and added.
- a slurry was obtained by adding ethanol to a mixture of these raw material powders and performing wet mixing in a ball mill for 15 hours or more.
- a mixed powder obtained by drying the obtained slurry was calcined at 600° C. to 1000° C. for 1 to 10 hours in an air atmosphere to obtain a calcined powder.
- a dispersant, a binder, and an organic solvent such as toluene were added to the obtained calcined powder, pulverized and mixed to form a slurry. Thereafter, a ceramic green sheet was produced by processing into a sheet shape using a doctor blade method. A plurality of ceramic green sheets thus obtained were laminated and pressure-bonded, and then cut into discs to obtain a compact.
- a conductive paste for electrodes was applied to both surfaces of the obtained compact by screen printing to form electrode layers (electrode forming step).
- the content ratios of the electrode components contained in the electrode conductive paste were as follows. 1-24 contains 100% Ni, sample No. For No. 25, Cu is 90% by mass and Ni is 10% by mass.
- the compact with the electrode layer formed thereon is held at 200-400° C. for 2-10 hours to remove the binder, and then at 900-1200° C. in a reducing atmosphere controlled to an oxygen partial pressure that does not oxidize the electrode layer. for 2-5 hours for co-firing.
- the obtained sintered body was subjected to polarization treatment by applying an electric field of 5 kv/mm in silicone oil at 50° C. to prepare a sample.
- the obtained sample was composed of a piezoelectric body composed of a lead-free piezoelectric magnetic composition made of an alkali niobate perovskite oxide represented by the composition formula (1a), and an electrode layer formed on the surface of the piezoelectric body.
- a piezoelectric element comprising
- test Method The obtained sample was measured using an impedance analyzer (Keysight Technologies, E4990A), and the dielectric loss tan ⁇ was calculated from the capacitance value at 1 kHz at room temperature. Also, the electromechanical coupling coefficient kp was obtained by the resonance-antiresonance method. Those having a dielectric loss tan ⁇ of 3.0% or less and an electromechanical coupling coefficient kp of 20% or more were judged to be non-defective products.
- a dielectric breakdown test was conducted on the obtained samples. Specifically, an electric field of 5 kv/mm was applied in silicone oil at 50° C. for 30 minutes or more to examine whether dielectric breakdown occurred. The case where insulation breakdown occurred was evaluated as x, and the case where insulation breakdown did not occur was evaluated as ⁇ .
- P M1 is the sum of the molar percentages of Ca atoms, Sr atoms, and Ba atoms with respect to Nb atoms in the mixture of raw material powders weighed in (1), and the molar percentages of Ti atoms, Zr atoms, and Hf atoms with respect to Nb atoms. were P Ti , P Zr , and P Hf , respectively, and the value of P M1 /(P Ti +P Zr +P Hf ) was obtained.
- the total P M1 of the molar percentages of Ba atoms, Ca atoms, and Sr atoms is the sum of the coefficients b1, b2, and b3 of Ba, Ca, and Sr in the composition formula (1a)
- the molar percentages of Ti atoms, Zr atoms and Hf atoms correspond to the coefficients d3, d4 and d5 of Ti, Zr and Hf in the above composition formula (1), respectively. You can think of it as compatible.
- Nos. 1 and 2 had a dielectric loss of 3.0% or more and had dielectric breakdown in the dielectric breakdown test.
- Sample No. containing no Mn. No. 3 also had a dielectric loss of 3.0% or more and had dielectric breakdown in the dielectric breakdown test.
- Sample No. containing no Ti. No. 4 also had a dielectric loss of 3.0% or more and had dielectric breakdown in the dielectric breakdown test.
- the molar percentage of Mn atoms to Nb atoms contained in the raw material mixture is 0.1% (i.e., the molar ratio of Mn atoms to Nb atoms contained in the raw material mixture (Mn/Nb) is 0.001).
- Sample no. No. 10 also had a dielectric loss of 3.0% or more and had dielectric breakdown in the dielectric breakdown test.
- Sample no. 5-9, and sample No. 11-25 contains element A1 (at least one of alkali metals), element M1 (at least one of Ba, Ca, and Sr), Mn and Ti as essential components, and has P M1 /(P Ti +P Zr +P Hf ) value (that is, the value of b/(d3+d4+d5)) is 1 or less, and the molar percentage of Mn atoms relative to the Nb atoms contained in the raw material mixture is 0.5% or more (i.e., the Nb The molar ratio of Mn atoms to atoms (Mn/Nb) is 0.005 or more), and the molar ratio of Mn atoms to Nb atoms contained in the main phase (Mn/Nb) is 0.003 or more. It was confirmed that these samples had a dielectric loss of 3.0% or less, an electromechanical coupling coefficient of 20% or more, did not break down in a dielectric breakdown test, and had excellent piezoelectric properties.
- Test example 2 (1) Preparation of sample and test method Sample No. 1 was prepared in the same manner as in Test Example 1 above. Sample No. 5 having a composition similar to that of Sample No. 26-29 were obtained (see Table 3). These samples were adjusted so that the grain sizes of the crystal grains of the alkali niobate-based perovskite-type oxides were different from each other by varying the firing temperature in the firing step.
- the obtained sample was imaged at a magnification of 5000 using an SEM (TM4000Plus, manufactured by Hitachi High-Tech Co., Ltd.), and the average particle size of the crystal particles contained in the obtained image was taken as the average particle size. Further, the dielectric loss tan ⁇ and the electromechanical coupling coefficient kp of the obtained samples were determined in the same manner as in Test Example 1, and a dielectric breakdown test was conducted.
- Sample No. in which the average particle size of the crystal grains contained is 6 ⁇ m. No. 29 had a dielectric loss of 3.0% or more and had dielectric breakdown in the dielectric breakdown test. On the other hand, sample No. in which the average particle size of the crystal grains contained is less than 6 ⁇ m. 5, and sample no. It was confirmed that No. 26-28 had a dielectric loss of 3.0% or less, an electromechanical coupling coefficient of 20% or more, no dielectric breakdown in a dielectric breakdown test, and excellent piezoelectric characteristics.
- Piezoelectric element 11 Piezoelectric layer (piezoelectric body) 12, 13: internal electrodes (electrodes)
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
Abstract
Description
(1)本明細書によって開示される圧電素子は、組成式(A1aM1b)c(Nbd1Mnd2Tid3Zrd4Hfd5)O3+e(但し、元素A1はアルカリ金属のうちの少なくとも1種であり、元素M1はBa、Ca、Srのうち少なくとも1種であり、0<a<1、0<b<1、a+b=1であり、cは0.80<c<1.10を満たし、0<d1<1、0<d2<1、0<d3<1、0≦d4<1、0≦d5<1、d1+d2+d3+d4+d5=1であり、eは酸素の欠損あるいは過剰を示す値)で表されるニオブ酸アルカリ系ペロブスカイト型酸化物からなる主相を含み、b/(d3+d4+d5)≦1を満たす無鉛圧電磁気組成物からなる圧電体と、卑金属を主成分とし、前記圧電体に接する電極と、を備える。
本明細書によって開示される技術の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[圧電素子10]
本実施形態の圧電素子10は、圧電層11(圧電体の一例)と、圧電相11に接する複数の内部電極12、13(電極の一例)と、内部電極12、13に接続される2つの外部電極14、15とを備える。圧電層11は、ニオブ酸アルカリ系ペロブスカイト型酸化物からなる主相を含む無鉛圧電磁器組成物により構成されている。内部電極12、13は、卑金属を主成分とし、例えば、Ni(ニッケル)を主成分とする。圧電層11と内部電極12、13とは、交互に積層されている。より具体的には、圧電層11と内部電極12、13とは、圧電層11、内部電極12、圧電層11、内部電極13、圧電層11…の順で積層されており、1つの圧電層11が2つの内部電極12、13によって挟まれている。2つの外部電極14、15は、圧電層11と内部電極12、13との積層体の外面に配されている。1つの圧電層11に接する2つの内部電極12、13のうち一方の内部電極12の一端は、一方の外部電極14に接続されており、他方の内部電極13の一端は、他方の外部電極15に接続されている。外部電極14、15間に電圧が印加されることで圧電層11が伸縮し、圧電素子10全体が伸縮する。
圧電層11を構成する無鉛圧電磁気組成物は、圧電特性を有するニオブ酸アルカリ系ペロブスカイト型酸化物からなる主相を含む。本実施形態のニオブ酸アルカリ系ペロブスカイト型酸化物は、以下の組成式(1)で表される。
A3Ti3NbO9…(3)
上記の圧電素子10の製造方法の一例を、以下に示す。
まず、主相の原料粉末のうちから必要なものを選択し、目的とする組成となるように秤量する。原料粉末は、主相に含まれる各元素の酸化物、炭酸塩、水酸化物であってもよい。このとき、主相の原料粉末の混合物に含まれるNb原子に対するMn原子のモル比(Mn/Nb)が0.005以上となるようにする。これらの原料粉末にエタノールを加え、ボールミルにて好ましくは15時間以上湿式混合してスラリーを得る。得られたスラリーを乾燥して得られた混合粉末を、例えば大気雰囲気下600~1000℃で1~10時間仮焼して主相仮焼物を得る(仮焼工程)。
1.試験例1
(1)試料の作成
K2CO3粉末、Na2CO3粉末、Nb2O5粉末の各々を、下記組成式(2)の係数f、gが表1に示す比率となるように秤量して混合した。
得られた試料について、インピーダンスアナライザ(Keysight Technologies社製、E4990A)を用いて測定を行い、室温、1kHzにおける静電容量の値から誘電損失tanδを算出した。また、共振-反共振法により電気機械結合係数kpを求めた。誘電損失tanδが3.0%以下、電気機械結合係数kpが20%以上のものを良品と判断した。
各試料について、上記1.(1)で秤量された原料粉末の混合物中のCa原子、Sr原子、およびBa原子のNb原子に対するモル百分率の合計をPM1とし、Ti原子、Zr原子、およびHf原子のNb原子に対するモル百分率をそれぞれPTi、PZr、PHfとし、PM1/(PTi+PZr+PHf)の値を求めた。また、各試料について、電子線マイクロアナライザー(EPMA)を用いて、ビーム径φ1μmにて主相の粒子3点について元素分析を行って、Nb原子に対するMn原子のモル比を計測し、3点の平均値を算出して主相に含まれるNb原子に対するMn原子のモル比(Mn/Nb)とした。これらの値を、誘電損失tanδ、電気機械結合係数kp、および絶縁破壊試験の結果とともに表2に示した。
(1)試料の作成、および試験方法
上記試験例1と同様にして、試料Nо.5と同様の組成を有する試料Nо.26-29を得た(表3参照)。これらの試料は、焼成工程における焼成温度を互いに異ならせることにより、ニオブ酸アルカリ系ペロブスカイト型酸化物の結晶粒子の粒子径が互いに異なるように調整された。
各試料について、誘電損失tanδ、電気機械結合係数kp、および絶縁破壊試験の結果を、平均粒子径とともに表4に示した。
11:圧電層(圧電体)
12、13:内部電極(電極)
Claims (7)
- 組成式(A1aM1b)c(Nbd1Mnd2Tid3Zrd4Hfd5)O3+e(但し、元素A1はアルカリ金属のうちの少なくとも1種であり、元素M1はBa、Ca、Srのうち少なくとも1種であり、0<a<1、0<b<1、a+b=1であり、cは0.80<c<1.10を満たし、0<d1<1、0<d2<1、0<d3<1、0≦d4<1、0≦d5<1、d1+d2+d3+d4+d5=1であり、eは酸素の欠損あるいは過剰を示す値)で表されるニオブ酸アルカリ系ペロブスカイト型酸化物からなる主相を含み、
b/(d3+d4+d5)≦1
を満たす無鉛圧電磁気組成物からなる圧電体と、
卑金属を主成分とし、前記圧電体に接する電極と、を備える圧電素子。 - 前記主相に含まれるNb原子に対するMn原子のモル比(Mn/Nb)が0.003以上である、請求項1に記載の圧電素子。
- 前記主相に含まれる前記ニオブ酸アルカリ系ペロブスカイト型酸化物の結晶粒子の平均粒子径が6μm未満である、請求項1または請求項2に記載の圧電素子。
- 前記無鉛圧電磁気組成物が、さらに、組成式A21-xTi1-xNb1+xO5(但し、元素A2はアルカリ金属のうちの少なくとも1種であり、0≦x≦0 .15を満たす)で表される化合物、および組成式A3Ti3NbO9(但し、元素A3はアルカリ金属のうちの少なくとも1種である)で表される化合物のうち一方の化合物からなる副相を含む、請求項1から請求項3のいずれか1項に記載の圧電素子。
- 前記圧電体と前記電極とが交互に積層された構成を有する、請求項1から請求項4のいずれか1項に記載の圧電素子。
- 組成式(A1aM1b)c(Nbd1Mnd2Tid3Zrd4Hfd5)O3+e(但し、元素A1はアルカリ金属のうちの少なくとも1種であり、元素M1はBa、Ca、Srのうち少なくとも1種であり、0<a<1、0<b<1、a+b=1であり、cは0.80<c<1.10を満たし、0<d1<1、0<d2<1、0<d3<1、0≦d4<1、0≦d5<1、d1+d2+d3+d4+d5=1であり、eは酸素の欠損あるいは過剰を示す値)で表されるニオブ酸アルカリ系ペロブスカイト型酸化物からなる主相を含み、b/(d3+d4+d5)≦1を満たす無鉛圧電磁気組成物の原料を混合し、焼成して仮焼粉を得る仮焼工程と、
前記仮焼粉を含む成形体を作成する成形工程と、
前記成形体上に卑金属を主成分とする電極層を形成する電極形成工程と、
前記成形体と前記電極層とを還元雰囲気下で共焼成する共焼成工程と、を含む圧電素子の製造方法。 - 前記仮焼工程において、前記原料の混合物に含まれるNb原子に対するMn原子のモル比(Mn/Nb)が0.005以上である、請求項6に記載の圧電素子の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237022496A KR20230110810A (ko) | 2021-10-29 | 2022-09-08 | 압전 소자, 및 압전 소자의 제조 방법 |
CA3218650A CA3218650A1 (en) | 2021-10-29 | 2022-09-08 | Piezoelectric element and production method therefor |
EP22886473.2A EP4284150A1 (en) | 2021-10-29 | 2022-09-08 | Piezoelectric element and method for manufacturing piezoelectric element |
US18/271,817 US20240065107A1 (en) | 2021-10-29 | 2022-09-08 | Piezoelectric element and production method therefor |
CN202280009189.3A CN116710416B (zh) | 2021-10-29 | 2022-09-08 | 压电元件和压电元件的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021177332A JP2023066639A (ja) | 2021-10-29 | 2021-10-29 | 圧電素子、および圧電素子の製造方法 |
JP2021-177332 | 2021-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023074139A1 true WO2023074139A1 (ja) | 2023-05-04 |
Family
ID=86157663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/033711 WO2023074139A1 (ja) | 2021-10-29 | 2022-09-08 | 圧電素子、および圧電素子の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240065107A1 (ja) |
EP (1) | EP4284150A1 (ja) |
JP (1) | JP2023066639A (ja) |
KR (1) | KR20230110810A (ja) |
CN (1) | CN116710416B (ja) |
CA (1) | CA3218650A1 (ja) |
TW (1) | TWI852146B (ja) |
WO (1) | WO2023074139A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024070626A1 (ja) * | 2022-09-30 | 2024-04-04 | 日本特殊陶業株式会社 | 無鉛圧電組成物、及び圧電素子 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013026246A (ja) * | 2011-07-15 | 2013-02-04 | Hitachi Cable Ltd | 圧電体膜およびその製造方法、圧電体膜素子およびその製造方法、並びに圧電体膜デバイス |
JP2014036035A (ja) * | 2012-08-07 | 2014-02-24 | Hitachi Metals Ltd | 圧電体素子、圧電体デバイス及びその製造方法 |
JP2014177355A (ja) * | 2013-03-13 | 2014-09-25 | Taiyo Yuden Co Ltd | 圧電セラミックス、圧電素子、及び圧電セラミックスの製造方法 |
JP5862983B2 (ja) | 2007-06-15 | 2016-02-16 | 株式会社村田製作所 | 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法 |
JP2017112282A (ja) * | 2015-12-17 | 2017-06-22 | セイコーエプソン株式会社 | 超音波センサー用の圧電デバイス |
JP6489333B2 (ja) | 2015-07-09 | 2019-03-27 | 株式会社村田製作所 | 圧電セラミック電子部品の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4524558B2 (ja) * | 2003-12-22 | 2010-08-18 | Tdk株式会社 | 圧電磁器およびその製造方法 |
US20080302658A1 (en) * | 2007-06-08 | 2008-12-11 | Tsutomu Sasaki | Oxide body, piezoelectric device, and liquid discharge device |
JP6327914B2 (ja) * | 2014-04-11 | 2018-05-23 | 日本特殊陶業株式会社 | 無鉛圧電磁器組成物、それを用いた圧電素子、及び、無鉛圧電磁器組成物の製造方法 |
-
2021
- 2021-10-29 JP JP2021177332A patent/JP2023066639A/ja active Pending
-
2022
- 2022-09-08 CA CA3218650A patent/CA3218650A1/en active Pending
- 2022-09-08 WO PCT/JP2022/033711 patent/WO2023074139A1/ja active Application Filing
- 2022-09-08 CN CN202280009189.3A patent/CN116710416B/zh active Active
- 2022-09-08 EP EP22886473.2A patent/EP4284150A1/en active Pending
- 2022-09-08 KR KR1020237022496A patent/KR20230110810A/ko not_active Application Discontinuation
- 2022-09-08 US US18/271,817 patent/US20240065107A1/en active Pending
- 2022-10-27 TW TW111140813A patent/TWI852146B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5862983B2 (ja) | 2007-06-15 | 2016-02-16 | 株式会社村田製作所 | 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法 |
JP2013026246A (ja) * | 2011-07-15 | 2013-02-04 | Hitachi Cable Ltd | 圧電体膜およびその製造方法、圧電体膜素子およびその製造方法、並びに圧電体膜デバイス |
JP2014036035A (ja) * | 2012-08-07 | 2014-02-24 | Hitachi Metals Ltd | 圧電体素子、圧電体デバイス及びその製造方法 |
JP2014177355A (ja) * | 2013-03-13 | 2014-09-25 | Taiyo Yuden Co Ltd | 圧電セラミックス、圧電素子、及び圧電セラミックスの製造方法 |
JP6489333B2 (ja) | 2015-07-09 | 2019-03-27 | 株式会社村田製作所 | 圧電セラミック電子部品の製造方法 |
JP2017112282A (ja) * | 2015-12-17 | 2017-06-22 | セイコーエプソン株式会社 | 超音波センサー用の圧電デバイス |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024070626A1 (ja) * | 2022-09-30 | 2024-04-04 | 日本特殊陶業株式会社 | 無鉛圧電組成物、及び圧電素子 |
Also Published As
Publication number | Publication date |
---|---|
US20240065107A1 (en) | 2024-02-22 |
EP4284150A1 (en) | 2023-11-29 |
KR20230110810A (ko) | 2023-07-25 |
TW202318689A (zh) | 2023-05-01 |
JP2023066639A (ja) | 2023-05-16 |
CN116710416B (zh) | 2024-10-25 |
CA3218650A1 (en) | 2023-05-04 |
CN116710416A (zh) | 2023-09-05 |
TWI852146B (zh) | 2024-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5929640B2 (ja) | 圧電磁器および圧電素子 | |
WO2014156302A1 (ja) | 誘電体磁器組成物、および誘電体素子 | |
WO2010134604A1 (ja) | 圧電磁器組成物及び圧電素子 | |
WO2005061413A1 (ja) | 圧電磁器およびその製造方法 | |
JPH11292625A (ja) | 圧電セラミック素子の製造方法 | |
WO2023074139A1 (ja) | 圧電素子、および圧電素子の製造方法 | |
JP2004075448A (ja) | 圧電磁器組成物、圧電磁器組成物の製造方法および圧電セラミック部品 | |
JP5597368B2 (ja) | 積層型電子部品およびその製法 | |
KR20150042075A (ko) | 저온 소결용 압전재료 | |
JP6102405B2 (ja) | 誘電体磁器組成物、および誘電体素子 | |
WO2019172064A1 (ja) | 圧電アクチュエータ、及び、圧電アクチュエータの駆動方法 | |
JP5158516B2 (ja) | 圧電磁器組成物及び圧電素子 | |
JP4992192B2 (ja) | 圧電磁器の製造方法及び圧電素子 | |
WO2023026614A1 (ja) | 無鉛圧電磁気組成物、および圧電素子 | |
WO2024070626A1 (ja) | 無鉛圧電組成物、及び圧電素子 | |
JP5190894B2 (ja) | 圧電体又は誘電体磁器組成物並びに圧電体デバイス及び誘電体デバイス | |
WO2024070849A1 (ja) | 無鉛圧電組成物、及び圧電素子 | |
WO2024070625A1 (ja) | 無鉛圧電組成物、及び圧電素子 | |
JP5894222B2 (ja) | 積層型電子部品およびその製法 | |
JP5173752B2 (ja) | 圧電磁器及びその製造方法並びに圧電素子 | |
JP5018602B2 (ja) | 圧電磁器組成物、並びにこれを用いた圧電磁器及び積層型圧電素子 | |
KR20040042910A (ko) | 연성계 압전 세라믹 조성물 및 이를 이용한 압전 세라믹장치 | |
JP2010059008A (ja) | 圧電セラミック組成物及びこれを用いたアクチュエータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886473 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20237022496 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280009189.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317045766 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18271817 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022886473 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022886473 Country of ref document: EP Effective date: 20230824 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3218650 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401001443 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11202308798V Country of ref document: SG |