[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010134604A1 - 圧電磁器組成物及び圧電素子 - Google Patents

圧電磁器組成物及び圧電素子 Download PDF

Info

Publication number
WO2010134604A1
WO2010134604A1 PCT/JP2010/058652 JP2010058652W WO2010134604A1 WO 2010134604 A1 WO2010134604 A1 WO 2010134604A1 JP 2010058652 W JP2010058652 W JP 2010058652W WO 2010134604 A1 WO2010134604 A1 WO 2010134604A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
piezoelectric ceramic
ceramic composition
phase transition
perovskite oxide
Prior art date
Application number
PCT/JP2010/058652
Other languages
English (en)
French (fr)
Inventor
田中 大介
正仁 古川
岳夫 塚田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US13/263,374 priority Critical patent/US8853920B2/en
Publication of WO2010134604A1 publication Critical patent/WO2010134604A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/176Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of ceramic material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/178Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of a laminated structure of multiple piezoelectric layers with inner electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a piezoelectric ceramic composition and a piezoelectric element using the same.
  • a piezoelectric ceramic showing a so-called piezoelectric phenomenon that generates mechanical strain and stress when an electric field is applied is known.
  • Such piezoelectric ceramics are used in various piezoelectric elements such as actuators, piezoelectric buzzers, sounding bodies, sensors, and the like.
  • Actuators using piezoelectric ceramics have features such as being able to obtain a very small amount of displacement with high accuracy and high generated stress, and are used, for example, for positioning of precision machine tools and optical devices.
  • As a composition for a piezoelectric ceramic used for an actuator lead zirconate titanate (PZT) having excellent piezoelectricity is most frequently used.
  • PZT lead zirconate titanate
  • lead zirconate titanate contains a large amount of lead
  • there is a concern about the influence on the global environment such as elution of lead by acid rain. Accordingly, there is a need for a piezoelectric ceramic composition in which the amount of lead is sufficiently reduced instead of lead zirconate titanate.
  • various piezoelectric ceramic compositions not containing lead have been proposed (see Patent Document 1).
  • Barium titanate (BaTiO 3 ) is known as a typical perovskite type piezoelectric ceramic composition that does not contain lead.
  • various other piezoelectric ceramic compositions are being investigated.
  • alkali niobate such as K 0.5 Na 0.5 NbO 3 (KNN) has been studied as a piezoelectric ceramic composition capable of realizing relatively high piezoelectric properties near room temperature (see Non-Patent Document 1). .
  • the present invention has been made in view of the above circumstances, a piezoelectric ceramic composition capable of sufficiently suppressing a decrease in piezoelectric characteristics due to temperature fluctuations and maintaining excellent piezoelectric characteristics, and the piezoelectric ceramic composition.
  • An object of the present invention is to provide a piezoelectric element using the above.
  • the present invention provides a piezoelectric ceramic composition containing a perovskite type oxide, wherein the perovskite type oxide is Na, K, Li, Ba and Sr at the A site, and Nb at the B site.
  • a piezoelectric ceramic composition having Ta, Zr and undergoing a crystal phase transition within a temperature range of ⁇ 50 to 150 ° C. and having an endotherm accompanying the crystal phase transition of 4 J / g or less.
  • the piezoelectric ceramic composition of the present invention it is possible to sufficiently suppress the deterioration of the piezoelectric characteristics over time due to temperature fluctuations in the vicinity of the operating temperature of devices such as automobiles and electronic devices.
  • the present inventors presume the reason why such an effect is obtained as follows. Since the piezoelectric ceramic composition of the present invention contains a perovskite oxide that undergoes a crystal phase transition near the device operating temperature, the piezoelectric ceramic composition has excellent piezoelectric characteristics at the operating temperature.
  • the endothermic amount accompanying the crystal phase transition is 4 J / g or less, which is smaller than that of the conventional piezoelectric ceramic composition, it is possible to suppress the rapid progress of the crystal phase transition of the perovskite oxide due to temperature fluctuation. It is considered that the polarization state can be maintained well. Therefore, even when continuously used in a temperature environment that crosses the phase transition temperature due to temperature fluctuations, it is possible to suppress a sudden change in the domain structure and maintain excellent piezoelectric characteristics. it is conceivable that.
  • the content ratio of Sr and Zr is preferably 4.5 to 7 mol% in terms of SrZrO 3 with respect to the entire perovskite oxide.
  • the present invention provides a piezoelectric ceramic composition containing a perovskite oxide represented by the following general formula (1).
  • (1-n) K 1 -xyw Na x Li y Ba w ) m (Nb 1 -z Ta z ) O 3 -nSrZrO 3 (1)
  • x, y, z, w, m, and n each satisfy the following formula. 0.4 ⁇ x ⁇ 0.7 0.02 ⁇ y ⁇ 0.3 0.5 ⁇ x + y ⁇ 0.75 0 ⁇ z ⁇ 0.3 0 ⁇ w ⁇ 0.01 0.98 ⁇ m ⁇ 1.0 0.045 ⁇ n ⁇ 0.07]
  • a piezoelectric ceramic composition containing a perovskite oxide having the above composition can sufficiently suppress a decrease in piezoelectric characteristics due to temperature fluctuations near the device operating temperature.
  • the present inventors presume the reason why such an effect is obtained as follows. Since the above-described piezoelectric ceramic composition contains a perovskite oxide having a specific composition, a crystal phase transition occurs near the device operating temperature. For this reason, it exhibits excellent piezoelectric characteristics near the device operating temperature. In addition, since the endothermic amount accompanying the crystal phase transition can be sufficiently reduced, it is possible to suppress the rapid progress of the crystal phase transition of the perovskite oxide due to temperature fluctuations, and to maintain the polarization state well. It is thought that you can. Therefore, even when continuously used in a temperature environment that crosses the crystal phase transition temperature due to temperature fluctuations, it is possible to suppress rapid changes in the domain structure and maintain excellent piezoelectric characteristics. It is considered possible.
  • the present invention provides a piezoelectric element comprising a piezoelectric ceramic made of the above-described piezoelectric ceramic composition and an electrode provided on the surface of the piezoelectric ceramic.
  • the piezoelectric element of the present invention has an element body in which internal electrodes and piezoelectric ceramics made of any one of the above-described piezoelectric ceramic compositions are alternately laminated, and both end faces of the element body so as to sandwich the element body.
  • a piezoelectric element provided with a pair of terminal electrodes provided and electrically connected to the internal electrodes may be used.
  • the piezoelectric element of the present invention includes a piezoelectric ceramic composed of the piezoelectric ceramic composition having the above characteristics, it is possible to sufficiently suppress a decrease in piezoelectric characteristics due to temperature fluctuations near the device operating temperature.
  • a piezoelectric ceramic composition capable of sufficiently suppressing a decrease in piezoelectric characteristics due to temperature fluctuation and maintaining excellent piezoelectric characteristics, and a piezoelectric element using the piezoelectric ceramic composition are provided. be able to.
  • FIG. 1 is a perspective view showing an embodiment of the piezoelectric element of the present invention.
  • the piezoelectric element 20 includes a piezoelectric ceramic 1 and electrodes 2 and 3 provided on a pair of opposing surfaces of the piezoelectric ceramic 1, respectively.
  • the piezoelectric ceramic 1 is polarized in the thickness direction, that is, the direction in which the pair of electrodes 2 and 3 are opposed to each other. Can spread and vibrate in the direction.
  • the electrodes 2 and 3 are made of, for example, a metal such as gold (Au).
  • the electrodes 2 and 3 can be electrically connected to an external power source via wires or the like (not shown).
  • the piezoelectric ceramic 1 is a sintered body made of a piezoelectric ceramic composition according to an embodiment of the present invention, and the piezoelectric ceramic composition contains a perovskite oxide as a main component.
  • This perovskite oxide has Na, K, Li, Ba and Sr as essential elements at the A site and Nb, Ta and Zr as essential elements at the B site when expressed by the general formula ABO 3 .
  • the perovskite oxide may be a solid solution composed of two or more components.
  • the piezoelectric ceramic composition of the present embodiment contains a perovskite oxide having a crystal phase transition temperature within a temperature range of ⁇ 50 to 150 ° C., and the endothermic amount accompanying the crystal phase transition is the piezoelectric ceramic composition. 4 J / g or less based on the whole, which is sufficiently smaller than the conventional piezoelectric ceramic composition.
  • This perovskite oxide undergoes a crystal phase transition, for example, from orthorhombic to tetragonal or vice versa, with increasing or decreasing temperature, within a temperature range of ⁇ 50 to 150 ° C.
  • the perovskite oxide is preferably 0 to 100 ° C., more preferably 5 to 50 ° C., and further preferably 10 to 40 ° C. It has a temperature of crystal phase transition.
  • the endothermic amount accompanying the crystal phase transition is preferably 0 to 3 J / g, more preferably 0 to 2 J / g, based on the whole piezoelectric ceramic composition.
  • the crystal phase of the piezoelectric ceramic composition can be identified by X-ray diffraction, the presence or absence of a crystal phase transition can be determined by X-ray diffraction. For this reason, for example, the temperature of the crystal phase transition of the perovskite oxide can be confirmed by performing X-ray diffraction measurement each time while raising or lowering the temperature of the piezoelectric ceramic composition.
  • the endothermic amount accompanying the crystal phase transition can be measured using a differential scanning calorimeter. That is, the endothermic peak in the differential scanning calorimetry when the crystal phase transition is detected by the X-ray diffraction analysis is performed in parallel with the differential scanning calorimetry and the X-ray diffraction analysis while raising or lowering the temperature of the piezoelectric ceramic composition. It is possible to calculate the endothermic amount accompanying the crystal phase transition.
  • the piezoelectric ceramic composition of the present embodiment may contain other metal compounds and unavoidable impurities as subcomponents in addition to the above-described perovskite oxide, as long as the effects of the present invention are not particularly impaired.
  • the metal compound preferably contains a Mn compound such as Mn oxide or a Cu compound such as Cu oxide. By including a Mn compound or a Cu compound, the electromechanical coupling coefficient (Qm) of the piezoelectric ceramic 1 can be improved.
  • the content of the perovskite oxide in the piezoelectric ceramic composition is preferably 90% by mass or more, more preferably 95% by mass or more, from the viewpoint of further suppressing the deterioration of the piezoelectric characteristics due to temperature fluctuation. More preferably, it is 98 mass% or more, and particularly preferably 99 mass% or more.
  • the piezoelectric ceramic composition may contain lead (Pb), but its content is preferably 1% by mass or less, and more preferably contains no lead. Piezoelectric ceramic compositions with a sufficiently reduced lead content minimize the volatilization of lead during firing and the release of lead into the environment after it has been marketed and discarded as piezoelectric components such as piezoelectric elements. Can be suppressed.
  • Such a piezoelectric ceramic composition can be preferably used as a material for a vibration element such as an actuator that is a piezoelectric element, a sounding body or a sensor.
  • the perovskite oxide contained in the piezoelectric ceramic composition of the present embodiment preferably has a composition represented by the following general formula (1) from the viewpoint of improving piezoelectric characteristics.
  • (1-n) K 1 -xyw Na x Li y Ba w ) m (Nb 1 -z Ta z ) O 3 -nSrZrO 3 (1)
  • x, y, z, w, m, and n are 0.4 ⁇ x ⁇ 0.7, 0.02 ⁇ y ⁇ 0.3, 0.5 ⁇ x + y ⁇ 0.75, 0 ⁇ z ⁇ 0.3, 0 ⁇ w ⁇ 0.01, 0.98 ⁇ m ⁇ 1.0 and 0.045 ⁇ n ⁇ 0.07 are satisfied.
  • x, y, z, w, m, and n are 0.4 ⁇ x ⁇ 0.7, 0.02 ⁇ y ⁇ 0.3, 0.5 ⁇ x + y ⁇ 0.75, 0 ⁇ z
  • the piezoelectric ceramic composition contains a solid solution of (K 1-xy Na x Li y Ba w ) m (Nb 1-z Ta z ) O 3 and SrZrO 3 as a perovskite oxide.
  • the molar ratio of SrZrO 3 to the whole solid solution, that is, the whole perovskite oxide is 4.5 to 7 mol%.
  • This molar ratio is more preferably 5 to 6 mol%.
  • n in the general formula (1) preferably satisfies 0.05 ⁇ n ⁇ 0.06.
  • the molar ratio can be measured, for example, by ICP emission spectroscopic analysis.
  • X in the general formula (1) preferably satisfies 0.45 ⁇ x ⁇ 0.6, more preferably 0.5 ⁇ x ⁇ 0.55.
  • x preferably satisfies 0.45 ⁇ x ⁇ 0.6, more preferably 0.5 ⁇ x ⁇ 0.55.
  • y preferably satisfies 0.02 ⁇ y ⁇ 0.2, more preferably 0.03 ⁇ y ⁇ 0.1.
  • y By setting y to a value satisfying such a numerical range, a piezoelectric ceramic composition having further excellent piezoelectric characteristics can be obtained.
  • Z in the general formula (1) preferably satisfies 0.04 ⁇ z ⁇ 0.2, more preferably 0.05 ⁇ z ⁇ 0.15.
  • z preferably satisfies 0.001 ⁇ w ⁇ 0.008, more preferably 0.003 ⁇ w ⁇ 0.007.
  • w preferably satisfies 0.99 ⁇ m ⁇ 1.
  • the relative density of the piezoelectric ceramic 1 is preferably 95% or more.
  • the piezoelectric ceramic 1 composed of a sintered body having such a high relative density exhibits more excellent piezoelectric characteristics.
  • the relative density of the piezoelectric ceramic 1 can be measured by the Archimedes method.
  • the relative density of the piezoelectric ceramic 1 can be adjusted by changing the firing temperature and firing time.
  • the piezoelectric element 20 shown in FIG. 1 First, as raw materials for the perovskite oxide that is the main component of the piezoelectric ceramic 1, for example, oxide powders each containing lithium, sodium, potassium, barium, strontium, niobium, zirconium, barium, and tantalum are prepared. As a raw material for the perovskite oxide, a material that becomes an oxide by firing, such as the above-described metal element carbonate or oxalate, may be used instead of the oxide.
  • a material that becomes an oxide by firing such as the above-described metal element carbonate or oxalate
  • each raw material is mixed at a ratio such that the composition represented by the general formula (1) is obtained, and calcined at 700 to 950 ° C. for 2 to 4 hours. Thereby, a calcined body containing a perovskite oxide represented by the general formula (1) is obtained.
  • the calcined body is sufficiently pulverized in an organic solvent or water using a ball mill or the like.
  • the pulverized product obtained by pulverization is dried, press-molded using a uniaxial press molding machine, an isostatic pressing machine (CIP) or the like, and baked at 1000 to 1200 ° C. for 2 to 8 hours.
  • CIP isostatic pressing machine
  • a sintered body containing the perovskite type compound represented by the above formula (1) as a main component can be obtained. Firing can be performed, for example, in air, and the relative density of the sintered body obtained by changing the firing temperature and firing time can be adjusted.
  • the obtained sintered body is processed as necessary, electrodes 2 and 3 are respectively provided on a pair of surfaces of the processed sintered body, and an electric field is applied in heated silicone oil to perform polarization treatment. I do.
  • the piezoelectric element 20 provided with the piezoelectric ceramic (sintered body) 1 shown in FIG. 1 and the electrodes 2 and 3 provided so as to sandwich the piezoelectric ceramic 1 and the piezoelectric ceramic 1 can be obtained.
  • the electrodes 2 and 3 can be formed by applying a paste such as Ag (silver) on the surface of the sintered body, then drying and firing.
  • the manufacturing method of the piezoelectric ceramic 1 is not limited to the above-described manufacturing method, and may be a manufacturing method such as a hydrothermal synthesis method or a sol-gel method.
  • the piezoelectric element 20 of this embodiment includes a piezoelectric ceramic 1 made of a piezoelectric ceramic composition containing a perovskite oxide represented by the general formula (1) as a main component.
  • This piezoelectric ceramic composition contains a perovskite oxide having a crystal phase transition temperature near room temperature, and the endothermic amount accompanying the crystal phase transition is sufficiently small. For this reason, it is possible to sufficiently suppress the deterioration of the piezoelectric characteristics even when it is continuously used in an environment where there is a temperature fluctuation near the crystal phase transition temperature even though it does not substantially contain lead. Excellent piezoelectric characteristics can be maintained for a long time.
  • FIG. 2 is a side view showing another embodiment of the piezoelectric element of the present invention.
  • a multilayer piezoelectric element 10 which is a multilayer piezoelectric element shown in FIG. 2 includes a rectangular parallelepiped multilayer body 11 and a pair of terminal electrodes 17A and 17B formed on opposite end surfaces of the multilayer body 11, respectively. Yes.
  • the laminated body 11 includes an element body 14 formed by alternately laminating internal electrode layers (electrode layers) 13A and 13B via piezoelectric layers 12, and the element body 14 is disposed on both end surfaces in the laminating direction (upper and lower sides in the figure). It is comprised from a pair of protective layers 15 and 16 provided so that it may pinch
  • the piezoelectric layers 12 and the internal electrode layers 13A and 13B are alternately stacked.
  • the piezoelectric layer 12 is a layer composed of a piezoelectric ceramic made of the piezoelectric ceramic composition according to the above embodiment.
  • This piezoelectric ceramic has the same composition as the piezoelectric ceramic 1 provided in the piezoelectric element 20 according to the above embodiment.
  • the thickness per layer of the piezoelectric layer 12 can be arbitrarily set, and can be set to 1 to 100 ⁇ m, for example.
  • the internal electrode layer 13A is formed so that one end is exposed to the end surface of the laminate 11 where the terminal electrode 17A is formed. Further, the internal electrode layer 13B is formed such that one end portion is exposed on the end surface of the multilayer body 11 where the terminal electrode 17B is formed.
  • the internal electrode layers 13A and 13B are provided in parallel to each other, and the internal electrode layer 13A and the internal electrode 13B are arranged so that most of them overlap in the stacking direction.
  • the active region 18 of the piezoelectric layer 12 sandwiched between the internal electrodes 13A and 13B becomes an active portion that expands and contracts (displaces) in the stacking direction when a voltage is applied to the internal electrodes 13A and 13B.
  • the region 19 not sandwiched between the internal electrodes 13A and 13B is an inactive portion.
  • the protective layers 15 and 16 are preferably made of ceramics and made of piezoelectric ceramics. Examples of the piezoelectric ceramic forming the protective layers 15 and 16 include those having the same composition as the piezoelectric layer 12. The composition of the piezoelectric ceramic constituting the protective layers 15 and 16 and the piezoelectric layer 12 may be the same or different.
  • the terminal electrodes 17A and 17B are in contact with the end portions of the internal electrodes 13A and 13B exposed at the end surfaces of the stacked body 11 on which the terminal electrodes 17A and 17B are provided. Thereby, the terminal electrodes 17A and 17B are electrically connected to the internal electrodes 13A and 13B, respectively.
  • the terminal electrodes 17A and 17B can be made of a conductive material whose main component is Ag, Au, Cu or the like.
  • the thicknesses of the terminal electrodes 17A and 17B are appropriately set depending on the application, the size of the multilayer piezoelectric element, and the like, but can be set to 10 to 50 ⁇ m, for example.
  • the manufacturing method of the multilayer piezoelectric element 10 first, as in the manufacturing method of the piezoelectric ceramic 1, the raw materials for the perovskite oxide, lithium, sodium, potassium, strontium, niobium, zirconium, barium and tantalum are used. Prepare oxide powder, carbonate powder, or oxalate powder, respectively. These are blended at a predetermined ratio, wet-ground by a ball mill or the like, and then dried to obtain a mixed powder. Subsequently, an organic binder, an organic solvent, an organic plasticizer, and the like are added to the mixed powder and mixed for about 20 hours by a ball mill or the like to obtain a piezoelectric paste.
  • This piezoelectric paste is applied onto a base film made of polyethylene terephthalate (PET), for example, by a doctor blade method to obtain a piezoelectric green sheet for forming the piezoelectric layer 12.
  • This piezoelectric green sheet mainly contains the mixed powder and binder.
  • an electrode paste for forming the internal electrodes 13A and 13B is applied on the piezoelectric green sheet by a screen printing method or the like, and an electrode paste layer made of this electrode paste is formed. In this way, a lamination sheet having an electrode paste layer on the piezoelectric green sheet is obtained. At this time, the electrode paste layers are respectively formed in patterns that can obtain the shapes of the internal electrodes 13A and 13B described above.
  • the electrode paste for forming the electrode paste layer is made of a metal such as Au, Pt, Pd, Ni, Cu or Ag, or an alloy containing two or more of these metals (Ag—Pd alloy, etc.), a binder. And an organic solvent. Known binders and organic solvents can be used.
  • the total content of metals in the electrode paste is preferably 40% by mass or more, and more preferably 50 to 60% by mass.
  • a plurality of lamination sheets are stacked so that the electrode paste layers and the piezoelectric green sheets are alternately arranged, and a plurality of piezoelectric green sheets are further provided on the surfaces of both end surfaces in the stacking direction of this stacked structure.
  • Laminate layer by layer The laminated body thus obtained is pressurized in the laminating direction while being appropriately heated, and further cut into a desired size as necessary, whereby a laminated green (laminate) can be obtained.
  • the laminate green after the binder removal is subjected to a firing treatment (main firing) in which, for example, heating is performed at 1000 to 1200 ° C. for 2 to 8 hours in a sealed container (air atmosphere). obtain.
  • main firing in which, for example, heating is performed at 1000 to 1200 ° C. for 2 to 8 hours in a sealed container (air atmosphere).
  • the piezoelectric green sheet and the electrode paste layer are integrally fired to form the internal electrodes 13A and 13B from the electrode paste layer, and the piezoelectric green sheet is sandwiched between the internal electrodes 13A and 13B. 12 is formed.
  • protective layers 15 and 16 are formed from piezoelectric green sheets stacked on both end faces in the stacking direction of the stacked green.
  • terminal electrodes 17A and 17B are baked on end faces (end faces where the end portions of the internal electrodes 13A and 13B are exposed) parallel to the stacking direction of the obtained laminate 11 and facing each other. Specifically, after applying a terminal electrode forming paste containing the metal constituting the terminal electrodes 17A and 17B, an organic binder, and the like to the end face of the laminate 11, the terminal electrodes 17A and 17B are fired. Is formed. In this way, the multilayer piezoelectric element 10 having the structure shown in FIG. 2 is obtained.
  • the terminal electrodes 17A and 17B can be formed by a method such as sputtering, vapor deposition, or electroless plating in addition to the above-described baking.
  • a polarization is applied to the multilayer piezoelectric element 10 in an environment of room temperature to 150 ° C., and a voltage is applied for about 10 to 30 minutes so that the electric field strength is 2 to 5 kV / mm between the terminal electrodes 17A and 17B.
  • a polarization is applied to the multilayer piezoelectric element 10 in an environment of room temperature to 150 ° C.
  • a voltage is applied for about 10 to 30 minutes so that the electric field strength is 2 to 5 kV / mm between the terminal electrodes 17A and 17B.
  • the multilayer piezoelectric element 10 of this embodiment includes a piezoelectric layer 12 made of a piezoelectric ceramic composition containing a perovskite oxide represented by the general formula (1) as a main component.
  • This piezoelectric ceramic composition contains a perovskite oxide having a crystal phase transition temperature near room temperature, and the endothermic amount accompanying the crystal phase transition is sufficiently small. For this reason, even though it is substantially free of lead, even if it is continuously used near the crystal phase transition temperature, it is possible to sufficiently suppress a decrease in piezoelectric characteristics due to temperature fluctuations, which is excellent. The piezoelectric characteristics can be maintained for a long time.
  • the composition of the perovskite oxide included in the piezoelectric ceramic 1 is not limited to that represented by the general formula (1), but Na, K, Li, Ba and Sr at the A site, and Nb at the B site. , Ta and Zr, and undergoes a crystal phase transition within a temperature range of ⁇ 50 to 150 ° C., and the endothermic amount associated with the crystal phase transition based on the entire piezoelectric ceramic composition is 4 J / g or less. Anything can be used without particular limitation.
  • a piezoelectric element 20 as shown in FIG. 1 was produced by the following procedure. First, as raw material powder of perovskite type oxide, K 2 CO 3 powder, Nb 2 O 5 powder, BaCO 3 powder, TiO 2 powder, Ta 2 O 5 , ZrO 2 powder, Li 2 CO 3 powder, SrCO 3 powder, PbO 2 powder, ZnO 2 powder, and Sb 2 O 3 powder were prepared. After sufficiently drying these raw material powders, they were blended at a ratio such that the composition shown in Table 1 was obtained, and sufficiently mixed in pure water using a ball mill to obtain a mixed powder.
  • the mixed powder was dried and calcined at 700 to 950 ° C. for 2 hours.
  • Polyvinyl alcohol (PVA) is added to the powder obtained by calcination, uniaxially formed into pellets, the binder is removed, and the temperature is 950 to 1160 ° C. for 2 hours in a closed system. Firing was performed to obtain a sintered body.
  • piezoelectric elements 20 (FIG. 1) of Examples 1 to 4, Comparative Examples 1 to 8, and Reference Example 1 including the piezoelectric ceramic 1 made of a perovskite oxide having the composition shown in Table 1 were obtained.
  • the endothermic amount was determined as follows. First, a baseline b was drawn by connecting semi-linear portions before and after the endothermic peak of the measurement curve. The area of the region Q surrounded by the base line b and the measurement curve was determined, and this was defined as the endothermic amount. When no endothermic peak was detected, the endothermic amount was set to “0”. The endothermic amount (J / g) per gram of the measurement sample was calculated from the obtained endothermic amount. The results are shown in Table 1. The measurement conditions for X-ray diffraction were the same as those described above for “measurement of crystal phase transition temperature”, and the measurement conditions for differential scanning calorimetry were as follows.
  • Measurement atmosphere nitrogen Amount of measurement sample: Filled sample holder (7 mm x 7 mm x 0.25 mm) DSC reference: Aluminum
  • Thermal cycle test The piezoelectric element 20 was placed in a test tank (manufactured by Tabai, trade name: MC810), and a thermal cycle test was performed in which the following steps i) to iv) were performed as one cycle.
  • the piezoelectric constant d 33 of the piezoelectric element 20 after 10 cycles was measured in the same manner as the “piezoelectric constant measurement” described above. The results are shown in Table 1. i) Hold at 125 ° C. for 30 minutes ii) Decrease in temperature from 120 ° C. to ⁇ 40 ° C. at 5 ° C./min iii) Hold at ⁇ 40 ° C. for 30 minutes iv) Increase in temperature from ⁇ 40 ° C. to 125 ° C. at 5 ° C./min
  • Thermal shock test The piezoelectric element 20 was placed in a test tank (manufactured by Tabai, trade name: MC810), and a thermal shock test was performed in which the following steps i) to iv) were performed as one cycle.
  • the piezoelectric constant d 33 of the piezoelectric element 20 after 1000 cycles was measured in the same manner as the “piezoelectric constant measurement” described above. The results are shown in Table 1.
  • each of the piezoelectric ceramic compositions of Examples 1 to 4 has an excellent piezoelectric constant at room temperature. Further, these piezoelectric ceramic compositions have a tetragonal-orthorhombic crystal phase transition temperature near the device operating temperature, and all of them have a higher endotherm than the piezoelectric ceramic compositions of Comparative Examples 1 to 8. It was confirmed that the piezoelectric constant was excellent even after the thermal cycle test and the thermal shock test.
  • the piezoelectric ceramic compositions of Examples 1 to 4 and Comparative Examples 2 to 6 are composed of a two-component solid solution as shown in Table 1, but the composition of the general formula ABO 3 is as shown in Table 2. It can also be expressed as That is, the piezoelectric ceramic compositions of Examples 1 to 4 are composed of perovskite oxides having Na, K, Li, Ba and Sr at the A site and Nb, Ta and Zr at the B site.
  • a piezoelectric ceramic composition capable of sufficiently suppressing a decrease in piezoelectric characteristics due to temperature fluctuations and maintaining excellent piezoelectric characteristics, and a piezoelectric element using the piezoelectric ceramic composition. Can do.
  • SYMBOLS 1 Piezoelectric ceramic, 2, 3 ... Electrode, 10 ... Laminated piezoelectric element, 11 ... Laminated body, 12 ... Piezoelectric layer, 13A, 13B ... Internal electrode, 14 ... Element body, 15, 16 ... Protective layer, 17A, 17B ... terminal electrode, 18 ... active region, 19 ... inactive region, 20 ... piezoelectric element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

 ペロブスカイト型酸化物を含有する圧電磁器組成物であって、ペロブスカイト型酸化物は、AサイトにNa、K、Li、Ba及びSr、並びにBサイトにNb、Ta及びZrを有し、-50~150℃の温度範囲内において結晶相転移をするものであり、結晶相転移に伴う吸熱量が4J/g以下である圧電磁器組成物、及び当該圧電磁器組成物からなる圧電磁器1を備える圧電素子20。

Description

圧電磁器組成物及び圧電素子
 本発明は、圧電磁器組成物及びそれを用いた圧電素子に関する。
 電界を加えると機械的な歪み及び応力を発生する、いわゆる圧電現象を示す圧電磁器が知られている。このような圧電磁器は、アクチュエータや圧電ブザー、発音体、センサなどの各種圧電素子に用いられている。
 圧電磁器を利用したアクチュエータは、微量な変位を高精度に得ることができると共に、発生応力が大きい等の特徴を有しており、例えば、精密工作機械や光学装置の位置決めに用いられている。アクチュエータに用いられる圧電磁器用の組成物としては、優れた圧電性を有するチタン酸ジルコン酸鉛(PZT)が最も多く利用されている。しかし、チタン酸ジルコン酸鉛は鉛を多く含んでいるので、最近では、酸性雨による鉛の溶出など地球環境に及ぼす影響が懸念されている。そこで、チタン酸ジルコン酸鉛に代わる、鉛の量が十分に低減された圧電磁器組成物が求められている。かかる要求に応じて、鉛を含有しない様々な圧電磁器組成物が提案されている(特許文献1参照)。
 鉛を含有しない代表的なペロブスカイト型構造の圧電磁器組成物としては、チタン酸バリウム(BaTiO3)が知られている。しかしながら、その圧電特性が十分ではないため、他の様々な圧電磁器組成物が検討されている。このうち、常温付近において比較的高い圧電特性を実現できる圧電磁器組成物として、K0.5Na0.5NbO3(KNN)などのニオブ酸アルカリ塩を用いることが検討されている(非特許文献1参照)。
 このような圧電磁器組成物を通常のデバイスに用いられる圧電磁器の材料として用いることにより、高い圧電特性を発揮することが期待される。しかしながら、圧電特性の高いニオブ酸アルカリ塩は、室温付近に斜方晶-正方晶の相転移温度を有していることが多く、結晶相転移温度を跨ぐような熱サイクルのある環境下で使用すると、結晶相転移の繰り返しにより、強誘電体ドメイン構造が変化し、圧電特性が低下してしまう(非特許文献1参照)。
特開2004-300019号公報
Shujun Zhang et al., "Mitigation of thermal and fatigue behavior inK0.5Na0.5NbO3-based lead free piezoceramics", Applied physics letters 92, 152904(2008)
 このため、構成元素としてPbを有しないペロブスカイト型酸化物を含み、デバイス使用温度(-50~150℃)付近で温度が変動する環境下で使用しても圧電特性が低下し難い圧電磁器組成物が求められている。
 本発明は、上記事情に鑑みてなされたものであり、温度変動による圧電特性の低下を十分に抑制し、優れた圧電特性を維持することが可能な圧電磁器組成物、及び該圧電磁器組成物を用いた圧電素子を提供することを目的とする。
 上記目的を達成するため、本発明では、ペロブスカイト型酸化物を含有する圧電磁器組成物であって、ペロブスカイト型酸化物は、AサイトにNa、K、Li、Ba及びSr、並びにBサイトにNb、Ta及びZrを有し、-50~150℃の温度範囲内において結晶相転移をするものであり、結晶相転移に伴う吸熱量が4J/g以下である圧電磁器組成物を提供する。
 本発明の圧電磁器組成物によれば、自動車や電子機器などのデバイスの使用温度付近での温度変動による圧電特性の経時的な低下を十分に抑制することができる。このような効果が得られる要因を本発明者らは次のように推測している。本発明の圧電磁器組成物は、デバイス使用温度付近で結晶相転移するペロブスカイト酸化物を含んでいることから、その使用温度において優れた圧電特性を有する。また、結晶相転移に伴う吸熱量が4J/g以下と従来の圧電磁器組成物に比べて小さいことから、温度変動によるペロブスカイト型酸化物の結晶相転移の急激に進行を抑制することが可能となり、分極状態を良好に維持することができると考えられる。したがって、温度変動により相転移温度を跨ぐような温度環境下で継続的に使用した場合であっても、ドメイン構造の急激な変化を抑制することが可能となり優れた圧電特性を維持することができると考えられる。
 本発明の圧電磁器組成物は、ペロブスカイト型酸化物全体に対し、Sr及びZrの含有割合がSrZrO3換算で4.5~7mol%であることが好ましい。これによって、温度変動による圧電特性の低下を一層十分に抑制することができる。
 本発明は、別の側面において、下記一般式(1)で表されるペロブスカイト型酸化物を含む圧電磁器組成物を提供する。
(1-n)(K1-x-y-wNaxLiyBawm(Nb1-zTaz)O3-nSrZrO3・・・(1)
[式(1)中、x、y、z、w、m、及びnは、それぞれ下記式を満たす。
   0.4<x≦0.7
   0.02≦y≦0.3
   0.5≦x+y<0.75
   0<z≦0.3
   0<w≦0.01
   0.98≦m≦1.0
   0.045≦n≦0.07]
 上記組成を有するペロブスカイト型酸化物を含有する圧電磁器組成物は、デバイス使用温度付近での温度変動による圧電特性の低下を十分に抑制することができる。このような効果が得られる要因を本発明者らは次のように推測している。上述の圧電磁器組成物は、特定の組成を有するペロブスカイト型酸化物を含有しているため、デバイス使用温度付近で結晶相転移する。このため、デバイス使用温度付近で優れた圧電特性を示す。また、結晶相転移に伴う吸熱量を十分に低減することができるため、温度変動によるペロブスカイト型酸化物の結晶相転移の急激な進行を抑制することが可能となり、分極状態を良好に維持することができると考えられる。したがって、温度変動により結晶相転移温度を跨ぐような温度環境下で継続的に使用した場合であっても、ドメイン構造の急激な変化を抑制することが可能となり優れた圧電特性を維持することができると考えられる。
 本発明は、さらに別の側面において、上述の圧電磁器組成物からなる圧電磁器と、該圧電磁器の表面上に設けられた電極と、を備える圧電素子を提供する。また、本発明の圧電素子は、内部電極と上述のいずれかの圧電磁器組成物からなる圧電磁器とが交互に積層された素体と、該素体を挟むように該素体の両端面にそれぞれ設けられ、内部電極と電気的に接続されている一対の端子電極と、を備える圧電素子であってもよい。
 本発明の圧電素子は、上記特徴を有する圧電磁器組成物からなる圧電磁器を備えていることから、デバイス使用温度付近での温度変動による圧電特性の低下を十分に抑制することができる。
 上記本発明によれば、温度変動による圧電特性の低下を十分に抑制し、優れた圧電特性を維持することが可能な圧電磁器組成物、及び該圧電磁器組成物を用いた圧電素子を提供することができる。
本発明の圧電素子の一実施形態を示す斜視図である。 本発明の圧電素子の別の実施形態を示す一側面図である。 本発明の圧電磁器組成物からなる圧電磁器の示差走査熱量分析結果の一例を示す図である。
 以下、場合により図面を参照して、本発明の好適な実施形態について説明する。
 図1は本発明の圧電素子の一実施形態を示す斜視図である。圧電素子20は、圧電磁器1と、この圧電磁器1の対向する一対の面上にそれぞれ設けられた電極2,3とを備えている。
 圧電磁器1は、例えば、厚さ方向、すなわち一対の電極2,3が対向する方向に分極されており、電極2,3を介して電圧が印加されることにより、厚み方向に縦振動および径方向に広がり振動することができる。電極2,3は、例えば、金(Au)などの金属により形成されている。電極2,3には、ワイヤなどを介して外部電源と電気的に接続することができる(図示しない)。
 圧電磁器1は、本発明の一実施形態に係る圧電磁器組成物からなる焼結体であり、この圧電磁器組成物は主成分としてペロブスカイト型酸化物を含有する。このペロブスカイト型酸化物は、一般式ABO3で表したときに、Aサイトに必須元素としてNa、K、Li、Ba及びSrを有し、Bサイトに必須元素としてNb、Ta及びZrを有する。なお、ペロブスカイト型酸化物は、2以上の成分からなる固溶体であってもよい。
 本実施形態の圧電磁器組成物は、結晶相転移の温度を-50~150℃の温度範囲内に有するペロブスカイト型酸化物を含有しており、その結晶相転移に伴う吸熱量が圧電磁器組成物全体を基準として4J/g以下と従来の圧電磁器組成物に比べて十分に小さくなっている。このペロブスカイト型酸化物は、-50~150℃の温度範囲内において、温度上昇又は温度下降に伴い、例えば斜方晶から正方晶に、またはその逆に結晶相転移する。なお、室温付近において一層優れた圧電特性を示す圧電磁器組成物とする観点から、ペロブスカイト型酸化物は、好ましくは0~100℃、より好ましくは5~50℃、さらに好ましくは10~40℃に結晶相転移の温度を有する。また、結晶相転移に伴う吸熱量は、圧電磁器組成物全体を基準として、好ましくは0~3J/g、より好ましくは0~2J/gである。
 圧電磁器組成物の結晶相は、X線回折によって同定することが可能であることから、結晶相転移の有無はX線回折によって判定することができる。このため、例えば圧電磁器組成物を昇温又は降温しながらX線回折測定を都度行うことによって、ペロブスカイト型酸化物の結晶相転移の温度を確認することができる。
 結晶相転移に伴う吸熱量の測定は、示差走査熱量計を用いて測定することができる。すなわち、圧電磁器組成物を昇温又は降温しながら示差走査熱量分析とX線回折分析と並行して行い、X線回折分析によって結晶相転移が検出された時の示差走査熱量分析における吸熱ピークを用いて、結晶相転移に伴う吸熱量を算出することができる。
 本実施形態の圧電磁器組成物は、上述のペロブスカイト型酸化物以外に、特に本発明の効果が損なわれない範囲において、副成分として、他の金属化合物や不可避的不純物を含んでいてもよい。金属化合物としては、Mn酸化物などのMn化合物やCu酸化物などのCu化合物を含むことが好ましい。Mn化合物やCu化合物を含むことによって、圧電磁器1の電気機械結合係数(Qm)を向上させることができる。ただし、圧電磁器組成物中におけるペロブスカイト型酸化物の含有量は、温度変動による圧電特性の低下をより一層抑制する観点から、好ましくは90質量%以上であり、より好ましくは95質量%以上であり、さらに好ましくは98質量%以上であり、特に好ましくは99質量%以上である。
 圧電磁器組成物は鉛(Pb)を含んでいてもよいが、その含有量は1質量%以下であることが好ましく、鉛を全く含んでいないことがより好ましい。鉛の含有量が十分に低減された圧電磁器組成物は、焼成時における鉛の揮発、および圧電素子などの圧電部品として市場に流通し廃棄された後における環境中への鉛の放出を最小限に抑制することができる。このような圧電磁器組成物は、例えば、圧電素子であるアクチュエータなどの振動素子,発音体またはセンサなどの材料として好ましく用いることができる。
 本実施形態の圧電磁器組成物に含まれるペロブスカイト型酸化物は、圧電特性を向上させる観点から、下記一般式(1)で表される組成を有することが好ましい。
(1-n)(K1-x-y-wNaxLiyBawm(Nb1-zTaz)O3-nSrZrO3・・・(1)
[式(1)中、x、y、z、w、m、及びnは、それぞれ
   0.4<x≦0.7、
   0.02≦y≦0.3、
   0.5≦x+y<0.75、
   0<z≦0.3、
   0<w≦0.01、
   0.98≦m≦1.0、及び
   0.045≦n≦0.07を満たす。]
 この場合、圧電磁器組成物は、ペロブスカイト型酸化物として、(K1-x-yNaxLiyBawm(Nb1-zTaz)O3とSrZrO3との固溶体を含有する。この固溶体全体、すなわちペロブスカイト型酸化物全体に対するSrZrO3のモル比率は4.5~7mol%である。このモル比率は、より好ましくは5~6mol%である。すなわち、上記一般式(1)におけるnは、好ましくは0.05≦n≦0.06を満たす。これによって、温度変動による圧電特性の低下を一層十分に抑制することができる。上記モル比率は、例えばICP発光分光分析によって測定することができる。
 上記一般式(1)におけるxは、好ましくは0.45≦x≦0.6、より好ましくは0.5≦x≦0.55を満たす。xをこのような数値範囲を満たす値にすることによって、圧電特性に一層優れる圧電磁器組成物とすることができる。また、yは、好ましくは0.02≦y≦0.2、より好ましくは0.03≦y≦0.1を満たす。yをこのような数値範囲を満たす値にすることによって、圧電特性に一層優れる圧電磁器組成物とすることができる。
 上記一般式(1)におけるzは、好ましくは0.04≦z≦0.2、より好ましくは0.05≦z≦0.15を満たす。zをこのような数値範囲を満たす値にすることによって、圧電特性に一層優れる圧電磁器組成物とすることができる。また、wは、好ましくは0.001≦w≦0.008、より好ましくは0.003≦w≦0.007を満たす。wをこのような数値範囲を満たす値にすることによって、圧電特性に一層優れる圧電磁器組成物とすることができる。また、mは、好ましくは0.99≦m≦1を満たす。mをこのような数値範囲を満たす値にすることによって、圧電特性に一層優れる圧電磁器組成物とすることができる。
 圧電磁器1の相対密度は95%以上であることが好ましい。このような高い相対密度を有する焼結体で構成される圧電磁器1は、一層優れた圧電特性を示す。なお、圧電磁器1の相対密度は、アルキメデス法によって測定することができる。圧電磁器1の相対密度は、焼成温度や焼成時間を変えることによって調整することができる。
 次に、図1に示す圧電素子20の製造方法について以下に説明する。まず、圧電磁器1の主成分となるペロブスカイト型酸化物の原料として、例えば、リチウム、ナトリウム、カリウム、バリウム、ストロンチウム、ニオブ、ジルコニウム、バリウム及びタンタルをそれぞれ含む酸化物粉末を準備する。ペロブスカイト型酸化物の原料としては、酸化物に代えて、上述の金属元素の炭酸塩またはシュウ酸塩のように、焼成により酸化物となるものを用いてもよい。
 次いで、準備した各原料を十分に乾燥させたのち、上記一般式(1)で表される組成となるような比率で各原料を混合し、700~950℃で2~4時間仮焼する。これによって、上記一般式(1)で表される、ペロブスカイト型酸化物を含む仮焼体が得られる。
 次に、仮焼体をボールミルなどにより有機溶媒中又は水中で十分に粉砕する。粉砕して得られた粉砕物を乾燥し、一軸プレス成形機や静水圧成形機(CIP)などを用いてプレス成形して、1000~1200℃で2~8時間焼成する。これによって、上記式(1)で表されるペロブスカイト型化合物を主成分として含有する焼結体を得ることができる。焼成は、例えば空気中で行うことが可能であり、焼成温度や焼成時間を変えることによって得られる焼結体の相対密度を調整することができる。
 次に、得られた焼結体を、必要に応じて加工し、加工した焼結体の一対の面上に電極2,3をそれぞれ設け、加熱したシリコーンオイル中で電界を印加して分極処理を行う。これにより、図1に示す圧電磁器(焼結体)1、及び圧電磁器1と該圧電磁器1を挟むように設けられる電極2,3とを備える圧電素子20を得ることができる。電極2,3は、Ag(銀)などのペーストを焼結体の表面上に塗布した後、乾燥し、焼成することによって形成することができる。
 圧電磁器1の製造方法は、上述の製造方法に限定されるものではなく、水熱合成法やゾルゲル法などの製造方法であってもよい。
 本実施形態の圧電素子20は、上記一般式(1)で表されるペロブスカイト型酸化物を主成分として含有する圧電磁器組成物からなる圧電磁器1を備えている。この圧電磁器組成物は、室温付近に結晶相転移温度を有するペロブスカイト型酸化物を含有しており、その結晶相転移に伴う吸熱量は十分に小さい。このため、鉛を実質的に含有しないにもかかわらず、結晶相転移温度付近で温度変動のある環境下において継続的に使用しても、圧電特性の低下を十分に抑制することが可能であり、優れた圧電特性を長期的に維持することができる。
 次に、本発明の圧電素子の別の実施形態について説明する。
 図2は本発明の圧電素子の別の実施形態を示す一側面図である。図2に示す積層型の圧電素子である積層型圧電素子10は、直方体状の積層体11と、この積層体11の対向する端面にそれぞれ形成された一対の端子電極17A,17Bとを備えている。
 積層体11は、圧電体層12を介して内部電極層(電極層)13A,13Bを交互に積層してなる素体14と、この素体14をその積層方向の両端面側(図中上下方向)から挟み込むように設けられた一対の保護層15及び16とから構成される。素体14において、圧電体層12と内部電極層13A,13Bは交互に積層されている。
 圧電体層12は、上記実施形態に係る圧電磁器組成物からなる圧電磁器で構成される層である。この圧電磁器は、上記実施形態に係る圧電素子20に備えられる圧電磁器1と同様の組成を有する。圧電体層12の1層当たりの厚さは、任意に設定することが可能であり、例えば1~100μmにすることができる。
 内部電極層13Aは、一方の端部が積層体11における端子電極17Aが形成された端面に露出するように形成されている。また、内部電極層13Bは、一方の端部が積層体11における端子電極17Bが形成された端面に露出するように形成されている。内部電極層13A,13Bはそれぞれ平行となるように設けられており、内部電極層13Aと内部電極13Bとは、これらの大部分が積層方向に重なり合うように配置されている。
 内部電極13A,13B間に挟まれた圧電体層12の活性領域18は、内部電極13A,13Bに電圧を印加したときに積層方向に伸縮(変位)する活性部分となる。一方、内部電極13A,13B間に挟まれていない領域19は不活性部分である。
 内部電極層13A,13Bの材質としては、例えば、Au,Pt,Pd,Ni,Cu又はAgなどの金属、或いはこれらの金属を2種以上含有する合金(Ag-Pd合金など)が用いられる。保護層15,16は、セラミックスから構成され、圧電磁器で構成される層であることが好ましい。この保護層15,16を形成する圧電磁器としては、圧電体層12と同様の組成を有するものが挙げられる。保護層15,16及び圧電体層12を構成する圧電磁器の組成は、同じであっても異なっていてもよい。
 端子電極17A,17Bは、これらが設けられている積層体11の端面において、当該端面に露出している内部電極13A,13Bの端部とそれぞれ接している。これにより、端子電極17A,17Bは、内部電極13A,13Bとそれぞれ電気的に接続される。この端子電極17A,17Bは、Ag、Au、Cu等を主成分とする導電材料から構成することができる。端子電極17A,17Bの厚さは、用途や積層型圧電素子のサイズ等によって適宜設定されるが、例えば10~50μmにすることができる。
 次に積層型圧電素子10の製造方法について説明する。積層型圧電素子10の製造方法においては、まず、上述の圧電磁器1の製造方法と同様に、ペロブスカイト型酸化物の原料である、リチウム、ナトリウム、カリウム、ストロンチウム、ニオブ、ジルコニウム、バリウム及びタンタルをそれぞれ含む酸化物粉末、炭酸塩粉末、又はシュウ酸塩粉末を準備する。これらを所定の比率で配合し、ボールミル等により湿式粉砕した後、これを乾燥させて混合粉体を得る。続いて、この混合粉体に、有機バインダ、有機溶剤、有機可塑剤等を加えてボールミル等により20時間程度の混合を行い、圧電体ペーストを得る。
 この圧電体ペーストを、例えばドクターブレード法によって、ポリエチレンテレフタレート(PET)製のベースフィルム上等に塗布して、圧電体層12を形成するための圧電体グリーンシートを得る。この圧電体グリーンシートは、上記混合粉体及びバインダを主に含有する。
 その後、圧電体グリーンシート上に、スクリーン印刷法等により内部電極13A,13B形成用の電極ペーストを塗布し、この電極ペーストからなる電極ペースト層を形成する。こうして、圧電体グリーンシート上に電極ペースト層を備える積層用シートを得る。この際、電極ペースト層は、上述した内部電極13A及び13Bの形状が得られるようなパターンでそれぞれ形成する。
 ここで、電極ペースト層を形成するための電極ペーストは、Au,Pt,Pd,Ni,Cu又はAgなどの金属、或いはこれらの金属を2種以上含有する合金(Ag-Pd合金など)、バインダ及び有機溶剤を含むものである。バインダ及び有機溶剤としては、公知のものが使用できる。電極ペースト中の金属の合計含有量は、40質量%以上とすることが好ましく、50~60質量%とすることがより好ましい。
 次に、積層用シートを、電極ペースト層と圧電体グリーンシートとが交互に配置されるように複数重ねるとともに、この積層構造の積層方向の両端面の表面上に、更に圧電体グリーンシートを複数層ずつ積層する。こうして得られた積層体を、適宜加熱しながら積層方向に加圧し、更に必要に応じて所望のサイズに切断することで、積層体グリーン(積層体)を得ることができる。
 その後、この積層体グリーンを、安定化ジルコニアセッター等に載置した後、大気雰囲気中で加熱することにより、圧電体グリーンシート及び電極ペースト層中に含まれるバインダや有機溶剤を除去する脱脂処理を行う。
 それから、脱バインダ後の積層体グリーンに対し、密閉された容器中(空気雰囲気)で、例えば1000~1200℃で2~8時間の加熱を行う焼成処理(本焼成)を行い、積層体11を得る。この本焼成処理において、圧電体グリーンシート及び電極ペースト層が一体焼成され、電極ペースト層から内部電極13A,13Bが形成され、内部電極13A,13B間に挟まれた圧電体グリーンシートから圧電体層12が形成される。また、積層体グリーンの積層方向の両端面上に積層された圧電体グリーンシートから、保護層15,16がそれぞれ形成される。
 次に、得られた積層体11の積層方向に平行であり互いに対向している端面(内部電極13A,13Bの端部が露出している端面)に、端子電極17A,17Bをそれぞれ焼き付ける。具体的には、端子電極17A,17Bを構成する金属、有機バインダ等を含む端子電極形成用のペーストを積層体11の上記端面に塗布した後、これを焼成することで、端子電極17A,17Bが形成される。このようにして、図2に示す構造を有する積層型圧電素子10が得られる。なお、端子電極17A,17Bは、上記の焼付けのほか、スパッタリング、蒸着、無電解めっき等の方法によっても形成することができる。
 そして、例えば、この積層型圧電素子10に対し、室温~150℃の環境下、端子電極17A,17B間に電界強度が2~5kV/mmとなるように10~30分間程度電圧を印加する分極処理を行うことで、圧電アクチュエータとして機能する積層型圧電素子10を得ることができる。
 本実施形態の積層型圧電素子10は、上記一般式(1)で表されるペロブスカイト型酸化物を主成分として含有する圧電磁器組成物からなる圧電体層12を備えている。この圧電磁器組成物は、室温付近に結晶相転移温度を有するペロブスカイト型酸化物を含有しており、結晶相転移に伴う吸熱量が十分に小さい。このため、鉛を実質的に含有しないにも関わらず、結晶相転移温度付近で継続的に使用しても、温度変動に伴う圧電特性の低下を十分に抑制することが可能であり、優れた圧電特性を長期的に維持することができる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、圧電磁器1に含まれるペロブスカイト型酸化物の組成は、上記一般式(1)で表されるものに限定されず、AサイトにNa、K、Li、Ba及びSr、並びにBサイトにNb、Ta及びZrを有するとともに、-50~150℃の温度範囲内において結晶相転移するものであり、圧電磁器組成物全体を基準とした結晶相転移に伴う吸熱量が4J/g以下であるようなものであれば特に制限なく用いることができる。
 以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実施例1~4、比較例1~8、参考例1)
[圧電素子の作製]
 以下の手順で図1に示すような圧電素子20を作製した。まず、ペロブスカイト型酸化物の原料粉末として、K2CO3粉末、Nb25粉末、BaCO3粉末、TiO2粉末、Ta25,ZrO2粉末、Li2CO3粉末、SrCO3粉末、PbO2粉末,ZnO2粉末、Sb23粉末を準備した。これらの原料粉末を十分に乾燥させた後、表1に示す組成となるような比率で配合し、ボールミルを用いて純水中で十分に混合して混合粉末を得た。その後、当該混合粉末を乾燥し、700~950℃で2時間仮焼した。仮焼して得られた粉体に、ポリビニルアルコール(PVA)を加え、一軸成形してペレット化した後、バインダを除去し、温度950~1160℃、2時間の焼成条件にて、密閉系で焼成して焼結体を得た。
 得られた焼結体の研磨、切断処理を行い、金電極を焼結体の対向するそれぞれの面上にスパッタにより形成し、120~150℃、15分間、直流2~5kV/mmの条件で分極処理した。これによって、表1に示す組成を有するペロブスカイト型酸化物からなる圧電磁器1を備える、実施例1~4、比較例1~8及び参考例1の圧電素子20(図1)を得た。
[結晶相転移温度の測定]
 圧電素子20を電気炉中に設置した後、LCRメータ(商品名:HP4284A)を用い、-40~300℃の温度範囲に亘って昇温する過程及び降温する過程において、圧電素子の静電容量が極大となるときの温度をそれぞれ測定した。そして、これらの測定値の平均値を求め、これを結晶相転移温度とした。その結果を表1に示す。なお、結晶の相転移(斜方晶-正方晶)が発生していることは、X線回折装置(リガク製、商品名:UltimaIII)を用いて確認した。X線回折の測定条件は以下の通りとした。
  2θ側角:10~80°
  走査速度:20°/min
  サンプリングステップ:0.02°
[吸熱量の測定]
 実施例1~4、比較例1~8及び参考例1の組成を有する、焼結体(圧電磁器)を粉砕し、粉末状の圧電磁器組成物を調製した。この圧電磁器組成物の結晶相転移(斜方晶-正方晶)に伴う吸熱量を以下の手順で測定した。まず、圧電磁器組成物を、-40℃から300℃まで20℃/minで昇温しながら、示差走査熱量計(リガク製、商品名:DSC8230)とX線回折装置(リガク製、商品名:UltimaIII)を用いて、示差走査熱量分析とX線回折パターン測定とを並行して行った。そして、X線回折パターン測定によって、結晶の相転移を確認しながら、示差走査熱量計で熱流量を測定し、図3に示すような、結晶相転移の温度付近における吸熱ピークを求めた。
 図3に示す測定曲線から、吸熱量を次の通りにして求めた。まず、測定曲線の吸熱ピーク前後の半直線部分を結んでベースラインbを描いた。このベースラインbと測定曲線とで囲まれる領域Qの面積を求め、これを吸熱量とした。吸熱ピークが全く検出されなかった場合は、吸熱量「0」とした。得られた吸熱量から測定試料1g当たりの吸熱量(J/g)を算出した。その結果を表1に示す。なお、X線回折の測定条件は、上述の「結晶相転移温度の測定」と同様とし、示差走査熱量分析の測定条件は以下の通りとした。
  測定雰囲気:窒素
  測定試料の量:試料ホルダー(7mm×7mm×0.25mm)に充填
  DSCリファレンス:アルミニウム
[圧電定数の測定]
 圧電素子20の圧電定数d33は、室温(20℃)において、d33メータ(IAAS製、商品名:ZJ-4B)を用いて測定した。その結果を表1に示す。
[熱サイクル試験]
 圧電素子20を、試験槽(TABAI製、商品名:MC810)に投入し、下記i)~iv)の工程を1サイクルとする熱サイクル試験を行った。10サイクル実施後の圧電素子20の圧電定数d33を上述の「圧電定数の測定」と同様にして行った。その結果を表1に示す。
  i)125℃で30分間保持
  ii)5℃/minで120℃から-40℃まで降温
  iii)-40℃で30分間保持
  iv)5℃/minで-40℃から125℃まで昇温
[熱衝撃試験]
 圧電素子20を、試験槽(TABAI製、商品名:MC810)に投入し、下記i)~iv)の工程を1サイクルとする耐熱衝撃試験を行った。1000サイクル実施後の圧電素子20の圧電定数d33を上述の「圧電定数の測定」と同様にして行った。その結果を表1に示す。
  i)125℃で15分間保持
  ii)72℃/minで125℃から-55℃まで降温
  iii)-55℃で15分間保持
  iv)72℃/minで-55℃から125℃まで昇温
Figure JPOXMLDOC01-appb-T000001
 実施例1~4の圧電磁器組成物は、いずれも室温において優れた圧電定数を有することが確認された。また、これらの圧電磁器組成物は、デバイス使用温度付近に正方晶-斜方晶の結晶相転移温度を有しているが、いずれも吸熱量が比較例1~8の圧電磁器組成物よりも小さく、熱サイクル試験及び熱衝撃試験後においても、優れた圧電定数を維持できることが確認された。
 一方、比較例1~8の圧電磁器組成物は、結晶相転移に伴う吸熱量が大きく、熱サイクル試験又は熱衝撃試験後において、圧電定数が大幅に低下してしまうことが確認された。
 なお、実施例1~4及び比較例2~6の圧電磁器組成物は、表1に示すように2成分系の固溶体からなるものであるが、一般式ABO3の組成として、表2のように表すこともできる。すなわち、実施例1~4の圧電磁器組成物は、AサイトにNa、K、Li、Ba及びSr、並びにBサイトにNb、Ta及びZrを有するペロブスカイト型酸化物から構成される。
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、温度変動による圧電特性の低下を十分に抑制し、優れた圧電特性を維持することが可能な圧電磁器組成物、及び該圧電磁器組成物を用いた圧電素子を提供することができる。
 1…圧電磁器、2,3…電極、10…積層型圧電素子、11…積層体、12…圧電体層、13A,13B…内部電極、14…素体、15,16…保護層、17A,17B…端子電極、18…活性領域、19…不活性領域、20…圧電素子。

Claims (6)

  1.  ペロブスカイト型酸化物を含有する圧電磁器組成物であって、
     前記ペロブスカイト型酸化物は、AサイトにNa、K、Li、Ba及びSr、並びにBサイトにNb、Ta及びZrを有し、-50~150℃の温度範囲内において結晶相転移をするものであり、
     前記結晶相転移に伴う吸熱量が4J/g以下である圧電磁器組成物。
  2.  前記ペロブスカイト型酸化物全体に対し、Sr及びZrの含有割合がSrZrO3換算で4.5~7mol%である請求項1に記載の圧電磁器組成物。
  3.  前記ペロブスカイト型酸化物が下記一般式(1)で表される請求項1に記載の圧電磁器組成物。
    (1-n)(K1-x-y-wNaxLiyBawm(Nb1-zTaz)O3-nS
    rZrO3・・・(1)
    [式(1)中、x、y、z、w、m、及びnは、それぞれ下記式を満たす。
       0.4<x≦0.7、
       0.02≦y≦0.3、
       0.5≦x+y<0.75、
       0<z≦0.3、
       0<w≦0.01、
       0.98≦m≦1.0、及び
       0.045≦n≦0.07]
  4.  下記一般式(1)で表されるペロブスカイト型酸化物を含む圧電磁器組成物。
    (1-n)(K1-x-y-wNaxLiyBawm(Nb1-zTaz)O3-nS
    rZrO3・・・(1)
    [式(1)中、x、y、z、w、m、及びnは、それぞれ下記式を満たす。
       0.4<x≦0.7
       0.02≦y≦0.3
       0.5≦x+y<0.75
       0<z≦0.3
       0<w≦0.01
       0.98≦m≦1.0
       0.045≦n≦0.07]
  5.  請求項1~4のいずれか一項に記載の圧電磁器組成物からなる圧電磁器と、該圧電磁器の表面上に設けられた電極と、を備える圧電素子。
  6.  内部電極と請求項1~4のいずれか一項に記載の圧電磁器組成物からなる圧電磁器とが交互に積層された素体と、
     該素体を挟むように該素体の両端面にそれぞれ設けられ、前記内部電極と電気的に接続されている一対の端子電極と、を備える圧電素子。
PCT/JP2010/058652 2009-05-22 2010-05-21 圧電磁器組成物及び圧電素子 WO2010134604A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/263,374 US8853920B2 (en) 2009-05-22 2010-05-21 Piezoelectric ceramic composition consisting of a perovskite-type oxide and piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-124252 2009-05-22
JP2009124252A JP5572998B2 (ja) 2009-05-22 2009-05-22 圧電磁器組成物及び圧電素子

Publications (1)

Publication Number Publication Date
WO2010134604A1 true WO2010134604A1 (ja) 2010-11-25

Family

ID=43126281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058652 WO2010134604A1 (ja) 2009-05-22 2010-05-21 圧電磁器組成物及び圧電素子

Country Status (3)

Country Link
US (1) US8853920B2 (ja)
JP (1) JP5572998B2 (ja)
WO (1) WO2010134604A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056098A (zh) * 2011-10-20 2013-04-24 佳能株式会社 压电设备、灰尘去除装置及成像装置
CN103172374A (zh) * 2011-12-26 2013-06-26 Tdk株式会社 压电陶瓷和压电元件
US20140339962A1 (en) * 2013-05-14 2014-11-20 Tdk Corporation Piezoelectric device
US20150295162A1 (en) * 2014-04-11 2015-10-15 Ngk Spark Plug Co., Ltd. Lead-free piezo-electric porcelain composition, piezo-electric element using the same, and method for producing lead-free piezo-electric porcelain composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056914B2 (ja) * 2010-07-07 2012-10-24 日立電線株式会社 圧電薄膜素子および圧電薄膜デバイス
DE102011010346B4 (de) * 2011-02-04 2014-11-20 H.C. Starck Gmbh Verfahren zur Herstellung eines homogenen Mehrstoffsystems, Keramikwerkstoff auf Basis des homogenen Mehrstoffsystems und dessen Verwendung
WO2014123134A1 (ja) * 2013-02-06 2014-08-14 株式会社村田製作所 圧電配向セラミックスおよびその製造方法
US20140339458A1 (en) * 2013-05-14 2014-11-20 Tdk Corporation Piezoelectric ceramic and piezoelectric device containing the same
CN105764696B (zh) * 2013-11-28 2017-08-29 京瓷株式会社 压电元件以及使用其的压电构件、液体喷出头和记录装置
JP6489333B2 (ja) * 2015-07-09 2019-03-27 株式会社村田製作所 圧電セラミック電子部品の製造方法
WO2018140972A1 (en) * 2017-01-30 2018-08-02 TBT Group, Inc. Multilayer devices and methods of manufacturing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1457471B1 (en) 2003-03-14 2014-02-26 Denso Corporation Crystal oriented ceramics and production method of same
JP4326374B2 (ja) 2003-03-14 2009-09-02 株式会社豊田中央研究所 結晶配向セラミックス及びその製造方法
JP5932216B2 (ja) * 2010-12-22 2016-06-08 キヤノン株式会社 圧電セラミックス、その製造方法、圧電素子、液体吐出ヘッド、超音波モータ、塵埃除去装置、光学デバイスおよび電子機器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The 28th Electronics Division Meeting of CSJ, 2008.10.22", 22 October 2008, article FURUKAWA, MASAHITO ET AL.: "Alkaline Niobate- based Lead-free Piezoelectric Ceramics, ABSTRACT BOOK, The 6th Asian Meeting on Electroceramics", pages: 38 *
TANAKA, DAISUKE ET AL.: "Thermal Reliability of Alkaline Niobate-Based Lead-free Piezoelectric Ceramics", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 48, 24 September 2009 (2009-09-24) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056098A (zh) * 2011-10-20 2013-04-24 佳能株式会社 压电设备、灰尘去除装置及成像装置
US9095882B2 (en) 2011-10-20 2015-08-04 Canon Kabushiki Kaisha Piezoelectric device, dust removing apparatus, and imaging apparatus
CN103056098B (zh) * 2011-10-20 2015-08-19 佳能株式会社 压电设备、灰尘去除装置及成像装置
CN103172374A (zh) * 2011-12-26 2013-06-26 Tdk株式会社 压电陶瓷和压电元件
US20130162108A1 (en) * 2011-12-26 2013-06-27 Tdk Corporation Piezoelectric ceramic and piezoelectric device
EP2610233A1 (en) * 2011-12-26 2013-07-03 TDK Corporation Piezoelectric ceramic and piezoelectric device
JP2013151404A (ja) * 2011-12-26 2013-08-08 Tdk Corp 圧電磁器および圧電素子
US9105845B2 (en) 2011-12-26 2015-08-11 Tdk Corporation Piezoelectric ceramic comprising an oxide and piezoelectric device
US20140339962A1 (en) * 2013-05-14 2014-11-20 Tdk Corporation Piezoelectric device
US9324931B2 (en) * 2013-05-14 2016-04-26 Tdk Corporation Piezoelectric device
US20150295162A1 (en) * 2014-04-11 2015-10-15 Ngk Spark Plug Co., Ltd. Lead-free piezo-electric porcelain composition, piezo-electric element using the same, and method for producing lead-free piezo-electric porcelain composition
US9871187B2 (en) * 2014-04-11 2018-01-16 Ngk Spark Plug Co., Ltd. Lead-free piezo-electric porcelain composition, piezo-electric element using the same, and method for producing lead-free piezo-electric porcelain composition

Also Published As

Publication number Publication date
US8853920B2 (en) 2014-10-07
JP5572998B2 (ja) 2014-08-20
JP2010269983A (ja) 2010-12-02
US20120019108A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5572998B2 (ja) 圧電磁器組成物及び圧電素子
JP5256804B2 (ja) 圧電磁器及びそれを用いた圧電素子
JP5386848B2 (ja) 圧電磁器
JP2009242167A (ja) 圧電磁器及びそれを用いた圧電素子
WO2006095716A1 (ja) 圧電/電歪磁器組成物及びその製造方法
JP2007258280A (ja) 積層型圧電素子
JP5929640B2 (ja) 圧電磁器および圧電素子
JP5651452B2 (ja) 圧電/電歪セラミックス焼結体
US20140339458A1 (en) Piezoelectric ceramic and piezoelectric device containing the same
JP2008156172A (ja) 無鉛圧電磁器組成物
US11296273B2 (en) Piezoelectric composition and piezoelectric device
JP2011032157A (ja) 圧電/電歪セラミックス焼結体
JP5392603B2 (ja) 圧電セラミック電子部品の製造方法
JP5044437B2 (ja) 圧電/電歪磁器焼結体の製造方法
JP5898032B2 (ja) 圧電磁器およびそれを用いた圧電素子
WO2023074139A1 (ja) 圧電素子、および圧電素子の製造方法
JP5774824B2 (ja) 圧電/電歪磁器組成物
JP6105777B2 (ja) 圧電磁器およびそれを用いた圧電素子
JP2020119957A (ja) 圧電組成物及び圧電素子
JP5894222B2 (ja) 積層型電子部品およびその製法
WO2023026614A1 (ja) 無鉛圧電磁気組成物、および圧電素子
WO2024070849A1 (ja) 無鉛圧電組成物、及び圧電素子
JP5651453B2 (ja) 圧電/電歪セラミックス焼結体
JP2009114049A (ja) 圧電/電歪磁器組成物及び圧電/電歪素子
JP6434335B2 (ja) 圧電磁器およびそれを用いた圧電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13263374

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777835

Country of ref document: EP

Kind code of ref document: A1