[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023054705A1 - めっき鋼板 - Google Patents

めっき鋼板 Download PDF

Info

Publication number
WO2023054705A1
WO2023054705A1 PCT/JP2022/036832 JP2022036832W WO2023054705A1 WO 2023054705 A1 WO2023054705 A1 WO 2023054705A1 JP 2022036832 W JP2022036832 W JP 2022036832W WO 2023054705 A1 WO2023054705 A1 WO 2023054705A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
ferrite phase
content
internal
Prior art date
Application number
PCT/JP2022/036832
Other languages
English (en)
French (fr)
Inventor
卓哉 光延
敬太郎 松田
浩史 竹林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202280050754.0A priority Critical patent/CN117813411A/zh
Priority to MX2024003173A priority patent/MX2024003173A/es
Priority to KR1020247004543A priority patent/KR20240033693A/ko
Priority to US18/579,732 priority patent/US20240318288A1/en
Priority to JP2023551922A priority patent/JPWO2023054705A1/ja
Publication of WO2023054705A1 publication Critical patent/WO2023054705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to plated steel sheets. More specifically, the present invention relates to a high-strength plated steel sheet with excellent LME resistance.
  • Si, Mn, and Al which are easily oxidizable elements among the elements typically contained in high-strength steel sheets, combine with oxygen in the atmosphere during the heat treatment, and form a layer containing oxides near the surface of the steel sheet.
  • forms of such a layer include a form in which an oxide containing Si, Mn, or Al is formed as a film on the outside (surface) of the steel sheet (external oxide layer), and an form in which an oxide is formed inside (surface layer) of the steel sheet. (internal oxide layer).
  • a plating layer for example, a Zn-based plating layer
  • the oxide exists as a film on the surface of the steel sheet, so the steel composition (for example, Fe) and the plating Interdiffusion with components (for example, Zn) is hindered, and the adhesion between steel and plating may be affected, resulting in insufficient plateability (for example, increased unplated areas). Therefore, from the viewpoint of improving plateability, a steel sheet having an internal oxide layer is more preferable than a steel sheet having an external oxide layer.
  • Patent Documents 1 and 2 disclose a plated steel sheet having a zinc-based plating layer on a base steel sheet containing C, Si, Mn, Al, etc., and Si and / Alternatively, a high-strength plated steel sheet having a tensile strength of 980 MPa or more, which has an internal oxide layer containing an oxide of Mn, is described.
  • High-strength plated steel sheets are used in various fields such as automobile members, home electric appliances, and building materials.
  • the plated steel sheet is processed at a high temperature (for example, about 900 ° C), so the Zn contained in the plating layer can be processed in a molten state.
  • molten Zn may penetrate into the steel and cause cracks inside the steel plate.
  • Such a phenomenon is called liquid metal embrittlement (LME), and it is known that fatigue properties of steel sheets deteriorate due to the LME. Therefore, in order to prevent LME cracking, it is effective to prevent Zn and the like contained in the plating layer from penetrating into the steel sheet.
  • LME liquid metal embrittlement
  • Patent Documents 1 and 2 teach that by controlling the average depth of the internal oxide layer to a thickness of 4 ⁇ m or more and allowing the internal oxide layer to function as a hydrogen trap site, hydrogen penetration can be prevented and hydrogen embrittlement can be suppressed. It is However, no study has been made on how to improve the resistance to LME.
  • an object of the present invention is to provide a high-strength plated steel sheet with excellent LME resistance.
  • the present inventors have found that it is important to form oxides in the surface layer of the steel sheet, that is, in the interior of the steel sheet, and to control the form of the oxides present in the surface layer of the steel sheet. I found out. More specifically, the present inventors added fine (equivalent circle diameter of 1 ⁇ m or less) ferrite phase to a predetermined number density (2 pieces/ ⁇ m 2 or more) in the vicinity of the steel plate surface (range from the surface to a depth of 2 ⁇ m).
  • the internal oxide can be processed by hot stamping or It was found that high LME resistance can be obtained by functioning as a trap site for Zn that can enter steel during welding.
  • the present invention was made based on the above findings, and the gist thereof is as follows.
  • a region from the surface layer to a depth of 2 ⁇ m contains ferrite phases with an equivalent circle diameter of 1 ⁇ m or less at a number density of 2 to 30 pieces/ ⁇ m 2 , and the ferrite phase has an equivalent circle diameter of 2
  • the internal oxide is any one or more of Al and O, Al, Si and O, Al, Mn and O, Al, Si, Mn and O, and the amount of Al contained in the internal oxide is 20 to The plated steel sheet according to (1) or (2), which is 53% by mass.
  • the fine internal oxides of the ferrite phase present in the surface layer of the steel sheet function as trap sites for Zn that penetrates into the steel during hot stamping and welding, and increase the amount of Zn that penetrates. can be suppressed, and the LME resistance can be greatly improved. Therefore, the present invention makes it possible to obtain excellent LME resistance in high-strength steel sheets.
  • FIG. 1 shows a photograph of a cross-section of an exemplary steel plate according to the invention
  • the plated steel sheet according to the present invention is a plated steel sheet having a plating layer containing Zn on the steel sheet,
  • the steel sheet has a tensile strength of 780 MPa or more,
  • the chemical composition of the steel sheet is mass%, C: 0.05 to 0.40%, Si: 0.2 to 3.0%, Mn: 0.1 to 5.0%, sol.
  • a ferrite phase with an equivalent circle diameter of 1 ⁇ m or less is contained in the region with a number density of 2 to 30/ ⁇ m 2 , and an internal oxide with an equivalent circle diameter of 2 to 100 nm is contained in the
  • the photograph of FIG. 1 is an example of a cross section of the plated steel sheet according to this embodiment.
  • the photograph on the left side of FIG. 1 shows the steel cross-sectional structure in the range of 2 ⁇ m in depth from the surface of the plated steel plate (the interface of the plated layer/steel plate) to the steel plate side.
  • a ferrite phase that constitutes the structure and has an equivalent circle diameter of 1 ⁇ m or less can also be confirmed.
  • the photograph on the right in FIG. 1 is an enlarged part of the photograph on the left. It can be confirmed that a rod-shaped internal oxide (indicated by an arrow) having an equivalent circle diameter of 100 nm or less exists inside the ferrite phase.
  • the Zn contained in the plating layer may melt due to the high temperature during processing.
  • the molten Zn penetrates into the steel, and when the steel sheet is processed in that state, liquid metal embrittlement (LME) cracking occurs inside the steel sheet, and the fatigue characteristics of the steel sheet deteriorate due to the LME. may decrease.
  • LME liquid metal embrittlement
  • the internal oxides of the fine ferrite phase function as trap sites for Zn trying to penetrate into the steel during high temperature working.
  • Zn that tries to enter the steel during hot stamping, for example is captured by fine internal oxides of the ferrite phase on the surface layer of the steel sheet, and the penetration of Zn into the interior of the steel sheet is preferably suppressed. Therefore, in order to improve the LME resistance, it was found that it is important to allow fine internal oxides of the ferrite phase to exist at a predetermined number density.
  • the melted Zn flows from the interface of the steel sheet on which the coating layer is provided (the interface between the coating layer and the steel sheet) in the depth direction of the steel sheet. spread to. At this time, the melted Zn diffuses along the grain boundaries of the crystal grains forming the steel sheet structure, and also diffuses from the grain boundaries into the grains of the crystal grains.
  • Zn is trapped by the internal oxides, and further diffusion of Zn into the steel sheet is suppressed.
  • the ferrite phase near the surface of the steel sheet is fine (compared to the case where the ferrite phase is coarse), there are many grain boundary (or phase boundary) paths, and from the grain boundary to the grain interior (or Since the distance to the internal oxide of the ferrite phase is short, the molten Zn is rapidly trapped by the internal oxide of the ferrite phase. That is, the melted Zn is rapidly trapped near the surface of the steel sheet, and is remarkably suppressed from diffusing inside the steel sheet, particularly to a point deeper than the surface layer of the steel sheet. As a result, liquid metal embrittlement (LME) cracking inside the steel sheet is suppressed, and deterioration of the fatigue properties of the steel sheet caused by the LME is also suppressed.
  • LME liquid metal embrittlement
  • the metal structure of the surface layer of the steel plate is typically composed of a softer metal structure than the inside of the steel plate (e.g., 1/8 position or 1/4 position of the plate thickness), so Zn is present in the surface layer of the steel plate.
  • Liquid metal embrittlement (LME) cracking does not pose a particular problem even when
  • the steel plate according to the present invention will be described in detail below.
  • the thickness of the steel sheet according to the present invention is not particularly limited, but may be, for example, 0.1 to 3.2 mm.
  • C (C: 0.05-0.40%) C (carbon) is an important element for ensuring the strength of steel. If the C content is insufficient, there is a possibility that sufficient strength cannot be secured. Furthermore, the lack of the C content may prevent the desired internal oxide morphology from being obtained. Therefore, the C content is 0.05% or more, preferably 0.07% or more, more preferably 0.10% or more, and still more preferably 0.12% or more. On the other hand, if the C content is excessive, weldability may deteriorate. Therefore, the C content is 0.40% or less, preferably 0.35% or less, more preferably 0.30% or less.
  • Si (silicon) is an effective element for improving the strength of steel. If the Si content is insufficient, there is a possibility that sufficient strength cannot be secured. Furthermore, Si forms an oxide together with Mn, functions as a pinning particle, and contributes to refinement of the ferrite phase. In other words, when Si is insufficient, there is a possibility that the desired fine ferrite phase and its internal oxides may not be sufficiently generated in the vicinity of the surface layer of the steel sheet. Therefore, the Si content is 0.2% or more, preferably 0.3% or more, more preferably 0.5% or more, and still more preferably 1.0% or more.
  • the Si content is 3.0% or less, preferably 2.5% or less, more preferably 2.0% or less.
  • Mn manganese
  • Mn manganese
  • Si functions as a pinning particle, and contributes to refinement of the ferrite phase.
  • the Mn content is 0.1% or more, preferably 0.5% or more, more preferably 1.0% or more, further preferably 1.5% or more.
  • the Mn content is 5.0% or less, preferably 4.5% or less, more preferably 4.0% or less, and still more preferably 3.5% or less.
  • Al (aluminum) is an element that acts as a deoxidizing element. If the Al content is insufficient, there is a risk that a sufficient deoxidizing effect cannot be ensured. Furthermore, there is a possibility that the desired oxides, particularly the fine internal oxides of the ferrite phase, may not be sufficiently formed in the vicinity of the surface layer of the steel sheet.
  • Al is contained in the inner oxide together with Si and Mn, functions as pinning particles, and contributes to refinement of the ferrite phase.
  • the Al content may be 0.4% or more, the Al content is 0.5% or more, preferably 0.6% or more, in order to obtain a sufficient desired effect and fine internal oxides of the ferrite phase. , more preferably 0.7% or more.
  • the Al content is 1.50% or less, preferably 1.20% or less, more preferably 0.80% or less.
  • the Al content means the so-called acid-soluble Al content (sol. Al).
  • P 0.0300% or less
  • P (phosphorus) is an impurity generally contained in steel. If the P content exceeds 0.0300%, weldability may deteriorate. Therefore, the P content is 0.0300% or less, preferably 0.0200% or less, more preferably 0.0100% or less, still more preferably 0.0050% or less. Although the lower limit of the P content is not particularly limited, from the viewpoint of manufacturing cost, the P content may be more than 0% or 0.0001% or more.
  • S sulfur
  • S is an impurity generally contained in steel. If the S content exceeds 0.0300%, the weldability is lowered, and furthermore, the amount of precipitation of MnS increases, which may lead to a decrease in workability such as bendability. Therefore, the S content is 0.0300% or less, preferably 0.0100% or less, more preferably 0.0050% or less, still more preferably 0.0020% or less.
  • the lower limit of the S content is not particularly limited, but from the viewpoint of desulfurization cost, the S content may be more than 0% or 0.0001% or more.
  • N nitrogen
  • nitrogen is an impurity generally contained in steel. If the N content exceeds 0.0100%, weldability may deteriorate. Therefore, the N content is 0.0100% or less, preferably 0.0080% or less, more preferably 0.0050% or less, still more preferably 0.0030% or less. Although the lower limit of the N content is not particularly limited, the N content may be more than 0% or 0.0010% or more from the viewpoint of manufacturing cost.
  • B (B: 0 to 0.010%)
  • B (boron) is an element that increases hardenability and contributes to strength improvement, and is an element that segregates at grain boundaries to strengthen grain boundaries and improve toughness, so it may be contained as necessary. . Therefore, the B content is 0% or more, preferably 0.001% or more, more preferably 0.002% or more, and still more preferably 0.003% or more. On the other hand, from the viewpoint of ensuring sufficient toughness and weldability, the B content is 0.010% or less, preferably 0.008% or less, more preferably 0.006% or less.
  • Ti titanium
  • Ti titanium
  • the Ti content is 0% or more, preferably 0.001% or more, more preferably 0.003% or more, still more preferably 0.005% or more, and even more preferably 0.010% or more.
  • coarse TiN may be generated and the toughness may be impaired, so the Ti content is 0.150% or less, preferably 0.100% or less, more preferably 0.050% or less.
  • Nb 0 to 0.150%
  • Nb (niobium) is an element that contributes to improvement of strength through improvement of hardenability, so it may be contained as necessary. Therefore, the Nb content is 0% or more, preferably 0.010% or more, more preferably 0.020% or more, and still more preferably 0.030% or more. On the other hand, from the viewpoint of ensuring sufficient toughness and weldability, the Nb content is 0.150% or less, preferably 0.100% or less, more preferably 0.060% or less.
  • V vanadium
  • V vanadium
  • the V content is 0% or more, preferably 0.010% or more, more preferably 0.020% or more, and still more preferably 0.030% or more.
  • the V content is 0.150% or less, preferably 0.100% or less, and more preferably 0.060% or less.
  • Cr Cr (chromium) is effective in increasing the hardenability of steel and increasing the strength of the steel, so it may be contained as necessary. Therefore, the Cr content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, still more preferably 0.50% or more, and even more preferably 0.80% or more. On the other hand, if it is contained excessively, a large amount of Cr carbide is formed, and there is a possibility that the hardenability may be impaired. % or less.
  • Ni (Ni: 0 to 2.00%) Ni (nickel) is effective in increasing the hardenability of steel and increasing the strength of steel, so it may be contained as necessary. Therefore, the Ni content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, still more preferably 0.50% or more, and still more preferably 0.80% or more. On the other hand, excessive addition of Ni causes an increase in cost, so the Ni content is 2.00% or less, preferably 1.80% or less, more preferably 1.50% or less.
  • Cu (copper) is effective in increasing the hardenability of steel and increasing the strength of steel, so it may be contained as necessary. Therefore, the Cu content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, still more preferably 0.50% or more, and even more preferably 0.80% or more. On the other hand, the Cu content is 2.00% or less, preferably 1.80% or less, more preferably 1.50% or less, from the viewpoint of suppressing toughness deterioration, cracking of the slab after casting, and deterioration of weldability. .
  • Mo mobdenum
  • Mo mobdenum
  • the Mo content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, and still more preferably 0.30% or more.
  • the Mo content is 1.00% or less, preferably 0.90% or less, more preferably 0.80% or less.
  • W (W: 0-1.00%) W (tungsten) is effective in increasing the hardenability of steel and increasing the strength of steel, so it may be contained as necessary. Therefore, the W content is 0% or more, preferably 0.10% or more, more preferably 0.20% or more, and still more preferably 0.30% or more. On the other hand, the W content is 1.00% or less, preferably 0.90% or less, more preferably 0.80% or less, from the viewpoint of suppressing deterioration of toughness and weldability.
  • Ca (Ca: 0 to 0.100%)
  • Ca (calcium) is an element that contributes to the control of inclusions, particularly the fine dispersion of inclusions, and has the effect of increasing the toughness, so it may be contained as necessary. Therefore, the Ca content is 0% or more, preferably 0.001% or more, more preferably 0.005% or more, still more preferably 0.010% or more, and even more preferably 0.020% or more. On the other hand, if the Ca content is excessive, deterioration of the surface properties may become apparent, so the Ca content is 0.100% or less, preferably 0.080% or less, and more preferably 0.050% or less.
  • Mg manganesium
  • Mg is an element that contributes to the control of inclusions, particularly the fine dispersion of inclusions, and has the effect of increasing the toughness, so it may be contained as necessary. Therefore, the Mg content is 0% or more, preferably 0.001% or more, more preferably 0.003% or more, and still more preferably 0.010% or more. On the other hand, if the Mg content is excessive, deterioration of the surface properties may become apparent, so the Mg content is 0.100% or less, preferably 0.090% or less, and more preferably 0.080% or less.
  • Zr zirconium
  • the Zr content is 0% or more, preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the Zr content is 0.100% or less, preferably 0.050% or less, and more preferably 0.030% or less.
  • Hf (Hf: 0 to 0.100%) Hf (hafnium) is an element that contributes to the control of inclusions, particularly the fine dispersion of inclusions, and has the effect of increasing the toughness, so it may be contained as necessary. Therefore, the Hf content is 0% or more, preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.010% or more. On the other hand, if the Hf content is excessive, deterioration of the surface properties may become apparent, so the Hf content is 0.100% or less, preferably 0.050% or less, and more preferably 0.030% or less.
  • REM 0-0.100%
  • REM rare earth element
  • the REM content is 0% or more, preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.010% or more.
  • the REM content is 0.100% or less, preferably 0.050% or less, and more preferably 0.030% or less.
  • REM is an abbreviation for Rare Earth Metal, and refers to an element belonging to the lanthanide series. REM is usually added as a misch metal.
  • the balance other than the above composition consists of Fe and impurities.
  • impurities refers to components that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when steel sheets are industrially manufactured. means that it is permissible to contain within a range that does not adversely affect the
  • the analysis of the chemical composition of the steel sheet may be performed using an elemental analysis method known to those skilled in the art, such as inductively coupled plasma mass spectrometry (ICP-MS method).
  • ICP-MS method inductively coupled plasma mass spectrometry
  • C and S should be measured using the combustion-infrared absorption method
  • N should be measured using the inert gas fusion-thermal conductivity method.
  • the amount of Al may be measured by the following procedure. Specifically, the steel plate is electrolyzed, and the residue collected by the filter paper is analyzed by inductively coupled plasma mass spectrometry. Let the detected Al amount be precipitation Al amount. On the other hand, without electrolyzing the steel sheet, T.I. Al (also referred to as "total Al”) is measured. T. A value obtained by subtracting the amount of precipitated Al from Al is expressed as sol. Define as Al.
  • the "surface layer" of a steel sheet means a region from the surface of the steel sheet (the interface between the steel sheet and the coating layer in the case of a plated steel sheet) to a predetermined depth in the thickness direction, and the "predetermined depth” is It is typically 50 ⁇ m or less.
  • the shape, number density, etc. of the fine ferrite phase and its internal oxides according to the present embodiment are in the range of 2 ⁇ m in depth from the steel sheet surface (plating layer / steel sheet interface) to the steel sheet side in the “surface layer”. Measured in This range is sometimes referred to as "near surface layer".
  • a fine ferrite phase and its internal oxides are present in the surface layer of the steel sheet.
  • the term “ferrite phase” refers to a crystal phase that constitutes the matrix of steel and has a ferrite crystal structure.
  • the ferrite phase typically exists three-dimensionally in a spherical or nearly spherical shape in the surface layer of the steel sheet. Or it is observed in a substantially circular shape.
  • the ferrite phase has an equivalent circle diameter of 1 ⁇ m (1000 nm) or less, and the ferrite phase in this range is sometimes referred to as a fine ferrite phase.
  • the equivalent circle diameter By controlling the equivalent circle diameter to such a range, it is possible to disperse the fine ferrite phase near the surface layer of the steel sheet, and the internal oxides of the fine ferrite phase form a coating layer on the steel sheet. It functions well as a trap site for Zn that can enter during hot stamping or welding of steel sheets.
  • the equivalent circle diameter exceeds 1 ⁇ m (1000 nm), the number of ferrite phases may decrease, and the desired number density may not be obtained.
  • the lower limit of the equivalent circle diameter of the ferrite phase is not particularly limited, it may be 2 nm or more, preferably 10 nm or more so as to include internal oxides, which will be described later.
  • the number density of fine ferrite phases is 2 to 30/ ⁇ m 2 in the vicinity of the surface layer (region from the surface layer to a depth of 2 ⁇ m).
  • the internal oxide functions well as a trap site for Zn that can enter when a plated steel sheet having a plated layer formed on the steel sheet is hot stamped or welded.
  • the equivalent circle diameter of the ferrite phase is fine (equivalent circle diameter of 1 ⁇ m or less) (compared to the coarse ferrite phase) (compared to the coarse ferrite phase), Zn that has entered the ferrite phase quickly reaches the internal oxide, and the Zn is quickly trapped. be done. Conversely, if the ferrite phase is coarse, it takes time for Zn that has entered the ferrite phase to reach the internal oxide, and the Zn may not be trapped. Therefore, when the number density of fine ferrite phases is less than 2/ ⁇ m 2 , the number of relatively coarse ferrite phases increases, and most of the internal oxides as trap sites for Zn exist in the coarse ferrite phases. As a result, it may not function sufficiently as a trap site for Zn, and good LME resistance may not be obtained.
  • the number density of fine ferrite phases is preferably 3/ ⁇ m 2 or more, more preferably 4/ ⁇ m 2 or more, and still more preferably 5/ ⁇ m 2 or more. From the viewpoint of containing internal oxides that function as trap sites for Zn, the fine ferrite phase is preferably present in a large amount. However, under general manufacturing conditions, the upper limit of the number density of fine ferrite phases is 30/ ⁇ m 2 or less, so the upper limit of the number density of fine ferrite phases in this embodiment is 30/ ⁇ m 2 or less. , and may be 25/ ⁇ m 2 or less, or 20/ ⁇ m 2 or less.
  • the size (equivalent circle diameter) and number density of ferrite phases are measured with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Specific measurements are as follows. A cross section of the surface layer of the steel sheet is observed by SEM to obtain an SEM image containing a ferrite phase. From the cross-sectional SEM image, a test piece for TEM observation is taken using FIB processing so as to include the plating layer/steel plate interface. By TEM observation, the ferrite phase corresponding to the shape shown in this embodiment (equivalent circle diameter 1 ⁇ m or less) is specified in a range of 2 ⁇ m in depth from the steel sheet surface (plating layer / steel sheet interface) to the steel sheet side, and the number Measure the density.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the depth direction (direction perpendicular to the surface of the steel plate) is 2.0 ⁇ m from the steel plate surface, and the width direction (direction parallel to the surface of the steel plate) is at any position in the TEM image.
  • the observation field area is 2.0 ⁇ m ⁇ 1.0 ⁇ m.
  • the TEM image of each region obtained as described above is extracted, binarized to separate each ferrite phase (and grain boundary (or phase interface)), and from each binarized image, the area of each ferrite phase is calculated, and the equivalent circle diameter (nm) of the ferrite phase is obtained as the diameter of a circle having an area equal to the area, that is, the equivalent circle diameter.
  • a fine ferrite phase according to the morphology. Furthermore, the number of fine ferrite phases in each binarized image is counted. The average value of the total number of fine ferrite phases in the 10 regions obtained in this way is defined as the number density (pieces/ ⁇ m 2 ) of fine ferrite phases. When only part of the ferrite phase is observed in the observation area, that is, when the entire contour of the ferrite phase is not within the observation area, the number is not counted.
  • the "inner oxide” refers to an oxide present inside the fine "ferrite phase”.
  • a plurality of internal oxides may exist in one ferrite phase, and the position of each internal oxide may not be arranged according to a specific rule (for example, linearly) but may be arranged randomly. .
  • the grain diameter of the inner oxide is 2 nm or more and 100 nm or less in equivalent circle diameter.
  • the internal oxide can be dispersed in the fine ferrite phase existing near the surface layer of the steel sheet, and the internal oxide forms a coating layer on the steel sheet. It functions well as a trap site for Zn that can enter during hot stamping or welding of steel sheets.
  • the particle size exceeds 100 nm, the number of internalized substances may decrease, and the desired number density may not be obtained.
  • the lower limit is 2 nm or more.
  • the reason for this is that the amount of Zn that can be trapped per particle decreases, Zn cannot be trapped sufficiently, and there is a risk that the Zn trapping site will not function sufficiently.
  • the shape of the internal oxide is not particularly limited, but the aspect ratio (maximum line segment length (major axis) crossing the internal oxide/maximum line segment length (short diameter)) may be 1.5 or more, and the minor axis thereof may be less than 20 nm. While not wishing to be bound by any particular theory, it is believed that a higher aspect ratio of the internal oxide increases the likelihood of contact with Zn that has penetrated the ferrite phase, increasing the Zn trapping efficiency.
  • the number density of internal oxides is 3/ ⁇ m 2 or more.
  • the number density is 3/ ⁇ m 2 or more.
  • the number density is less than 3/ ⁇ m 2 , the number density as Zn trap sites is not sufficient, and the internal oxide does not sufficiently function as Zn trap sites, resulting in good LME resistance.
  • the number density of the internal oxides is preferably 6/ ⁇ m 2 or more, more preferably 8/ ⁇ m 2 or more, still more preferably 10/ ⁇ m 2 or more. From the viewpoint that the inner oxide functions as a trap site for Zn, it is preferable to have a large amount of the inner oxide. 30/ ⁇ m 2 or less, 25/ ⁇ m 2 or less, or 20/ ⁇ m 2 or less.
  • the grain size and number density of internal oxides are measured by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in the same manner as for the ferrite phase. Specific measurements are as follows. A cross section of the surface layer of the steel sheet is observed by SEM to obtain an SEM image including internal oxides. From the cross-sectional SEM image, a test piece for TEM observation is taken using FIB processing so as to include the plating layer/steel plate interface. By TEM observation, an internal oxide (grain size 2 to 100 nm) corresponding to the shape shown in this embodiment is specified in a range of 2 ⁇ m in depth from the steel plate surface (plating layer / steel plate interface) to the steel plate side, Measure the number density.
  • SEM scanning electron microscopy
  • TEM transmission electron microscopy
  • the depth direction (direction perpendicular to the surface of the steel plate) is 2.0 ⁇ m from the steel plate surface, and the width direction (direction parallel to the surface of the steel plate) is at any position in the TEM image.
  • the observation field area is 2.0 ⁇ m ⁇ 1.0 ⁇ m.
  • the TEM image of each region obtained as described above is extracted, binarized to separate the oxide portion and the steel portion, the area of the internal oxide portion is calculated from each binarized image, and the The particle size (nm) of the internal oxide is obtained as the diameter of a circle having an area equal to the area, that is, the circle-equivalent diameter, and the internal oxide having a particle size in the range of 2 nm or more and 100 nm or less is defined as the internal oxide according to the present embodiment. .
  • the number of internal oxides in each binarized image is counted.
  • the average value of the total number of internal oxides in the 10 regions obtained in this manner is taken as the number density of internal oxides (pieces/ ⁇ m 2 ). If only part of the internal oxide is observed in the observation area, that is, if the entire contour of the internal oxide is not within the observation area, the number is not counted.
  • the internal oxide contains one or more of the elements contained in the steel sheet described above in addition to oxygen, typically Si , O and Fe, and optionally Mn and Al.
  • the oxide may contain an element (for example, Cr) that may be contained in the steel sheet described above, in addition to these elements.
  • Cr an element that may be contained in the steel sheet described above, in addition to these elements.
  • the inclusion of Al in the oxide enhances the effect of Zn as a trap site, and the content of Al contained in the inner oxide is high. is preferable, and may be 20% by mass or more.
  • the internal oxide is an oxide of Al and O, so-called alumina, the Al content in the oxide is the highest, 53% by mass, and this may be the upper limit of the Al content.
  • the plated steel sheet according to the present invention has a plating layer containing Zn on the steel sheet according to the present invention described above.
  • This plating layer may be formed on one side of the steel sheet, or may be formed on both sides.
  • the plating layer containing Zn includes, for example, a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, an electro-galvanized layer, an electro-alloyed galvanized layer, and the like. More specifically, plating types include, for example, Zn-0.2% Al (GI), Zn-(0.3 to 1.5)% Al, Zn-4.5% Al, Zn-0. 09% Al-10% Fe (GA), Zn-1.5% Al-1.5% Mg, or Zn-11% Al-3% Mg-0.2% Si, Zn-11% Ni, Zn- 15% Mg or the like can be used.
  • GI Zn-0.2% Al
  • Zn-(0.3 to 1.5)% Al Zn-4.5% Al
  • Component composition of plating layer The component composition contained in the plating layer containing Zn in the present invention will be described. "%” regarding the content of an element means “% by mass” unless otherwise specified. In the numerical range of the component composition of the plating layer, unless otherwise specified, the numerical range represented using “ ⁇ ” means the range including the numerical values before and after " ⁇ " as the lower and upper limits. do.
  • Al is an element that improves the corrosion resistance of the plating layer by being contained or alloyed with Zn, so it may be contained as necessary. Therefore, the Al content may be 0%.
  • the Al content is preferably 0.01% or more, for example, 0.1% or more, 0.3% or more, 0.5% or more. , 1.0% or more, or 3.0% or more.
  • the Al content is preferably 60.0% or less, for example, 55.0% or less, 50.0% or less, 40.0% or less.
  • the Al content in the coating layer is preferably 0.3 to 1.5%.
  • the Al content in the plating layer may be 0 to less than 0.1%.
  • the plating layer may contain 0.3 to 1.5% by mass of Al, with the balance being Zn and impurities, and the plating layer may contain, by mass%, Al: 0 to less than 0.1%, and the balance may be Zn and impurities.
  • a plated layer having a composition within this range can further improve the LME resistance.
  • Mg is an element that improves the corrosion resistance of the plating layer by being contained together with Zn and Al or being alloyed with it, so it may be contained as necessary. Therefore, the Mg content may be 0%.
  • the Mg content is preferably 0.01% or more, for example, 0.1% or more, 0.5% or more, 1.0% or more. % or more, or 3.0% or more.
  • the Mg content is preferably 15.0% or less, for example, 10.0% or less, or 5.0% or less.
  • Fe (Fe: 0 to 15.0%) Fe can be contained in the coating layer by diffusing from the steel sheet when the coating layer containing Zn is formed on the steel sheet and then heat-treated. Therefore, the Fe content may be 0% since Fe is not contained in the plated layer when the heat treatment is not performed. Also, the Fe content may be 1.0% or more, 2.0% or more, 3.0% or more, 4.0% or more, or 5.0% or more. On the other hand, the Fe content is preferably 15.0% or less, such as 12.0% or less, 10.0% or less, 8.0% or less, or 6.0% or less.
  • Si is an element that further improves corrosion resistance when contained in a Zn-containing plating layer, particularly a Zn--Al--Mg plating layer, and thus may be contained as necessary. Therefore, the Si content may be 0%. From the viewpoint of improving corrosion resistance, the Si content may be, for example, 0.005% or more, 0.01% or more, 0.05% or more, 0.1% or more, or 0.5% or more. Also, the Si content may be 3.0% or less, 2.5% or less, 2.0% or less, 1.5% or less, or 1.2% or less.
  • the basic composition of the plating layer is as above. Furthermore, the plating layer is optionally Sb: 0 to 0.50%, Pb: 0 to 0.50%, Cu: 0 to 1.00%, Sn: 0 to 1.00%, Ti: 0 to 1.00%, Sr: 0 to 0.50%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, and Mn: 0 to 1.00%, one or more may contain.
  • the total content of these optional additive elements is preferably 5.00% or less, and 2.00%, from the viewpoint of sufficiently exhibiting the actions and functions of the basic components that constitute the plating layer. More preferably:
  • the balance other than the above components consists of Zn and impurities.
  • Impurities in the plating layer are components that are mixed in due to various factors in the manufacturing process, including raw materials, when manufacturing the plating layer, and are not intentionally added to the plating layer. do.
  • the plating layer may contain, as impurities, a trace amount of elements other than the above-described basic components and optional additive components within a range that does not interfere with the effects of the present invention.
  • the chemical composition of the plating layer can be determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses corrosion of the steel sheet, and measuring the resulting solution by ICP (inductively coupled plasma) emission spectroscopy. can.
  • the thickness of the plating layer may be, for example, 3-50 ⁇ m.
  • the amount of the plated layer deposited is not particularly limited, but may be, for example, 10 to 170 g/m 2 per side.
  • the adhesion amount of the plating layer is determined by dissolving the plating layer in an acid solution to which an inhibitor for suppressing corrosion of the base iron is added, and from the weight change before and after dissolving the plating.
  • the steel sheet and plated steel sheet according to the present invention preferably have a high strength, specifically a tensile strength of 780 MPa or more.
  • the tensile strength may be 780 MPa or higher, 800 MPa or higher, 900 MPa or higher.
  • the upper limit of the tensile strength is not particularly limited, it may be, for example, 2000 MPa or less from the viewpoint of ensuring toughness.
  • Measurement of the tensile strength may be performed by taking a JIS No. 5 tensile test piece and performing it in accordance with JIS Z 2241 (2011).
  • the longitudinal direction of the tensile test piece is not particularly limited, and may be perpendicular to the rolling direction.
  • the plated steel sheet according to the present invention has high strength and high LME resistance, it can be suitably used in a wide range of fields such as automobiles, home appliances, and building materials. preferable. Steel sheets and plated steel sheets used for automobiles are often subjected to hot stamping, in which case LME cracking can become a significant problem. Therefore, when the plated steel sheet according to the present invention is used as a steel sheet for automobiles, the effect of the present invention of having high LME resistance is suitably exhibited.
  • the steel sheet according to the present invention includes, for example, a casting process in which molten steel having an adjusted chemical composition is cast to form a steel slab, a hot rolling process in which the steel slab is hot rolled to obtain a hot-rolled steel sheet, and a hot-rolled steel sheet is coiled.
  • the cold rolling process may be performed as it is after pickling without winding after the hot rolling process.
  • Conditions for the casting process are not particularly limited. For example, following smelting by a blast furnace or an electric furnace, various secondary smelting may be performed, and then casting may be performed by a method such as ordinary continuous casting or casting by an ingot method.
  • a hot-rolled steel sheet can be obtained by hot-rolling the steel slab cast as described above.
  • the hot-rolling process is performed by hot-rolling a cast steel slab directly or by reheating it after cooling it once.
  • the heating temperature of the steel slab may be, for example, 1100.degree. C. to 1250.degree.
  • Rough rolling and finish rolling are usually performed in the hot rolling process.
  • the temperature and rolling reduction for each rolling may be appropriately changed according to the desired metal structure and plate thickness.
  • the finishing temperature of finish rolling may be 900 to 1050° C.
  • the rolling reduction of finish rolling may be 10 to 50%.
  • a hot-rolled steel sheet can be coiled at a predetermined temperature.
  • the coiling temperature may be appropriately changed according to the desired metal structure and the like, and may be, for example, 500 to 800°C.
  • the hot-rolled steel sheet may be subjected to a predetermined heat treatment by unwinding before or after winding. Alternatively, the coiling process may not be performed, and after the hot rolling process, pickling may be performed and the cold rolling process described below may be performed.
  • the hot-rolled steel sheet After subjecting the hot-rolled steel sheet to pickling or the like, the hot-rolled steel sheet can be cold-rolled to obtain a cold-rolled steel sheet.
  • the rolling reduction of cold rolling may be appropriately changed according to the desired metal structure and plate thickness, and may be, for example, 20 to 80%. After the cold-rolling process, for example, it may be air-cooled to room temperature.
  • Pretreatment process In order to obtain fine ferrite phases and internal oxides in the surface layer of the finally obtained steel sheet, it is effective to perform a predetermined pretreatment process before annealing the cold-rolled steel sheet.
  • the pretreatment process makes it possible to introduce strain into the steel sheet more effectively, and the strain promotes dislocations in the metal structure of the steel sheet, making it easier for oxygen to enter the steel along the dislocations during annealing. As a result, oxides are likely to be generated inside the steel sheet. As a result, it is advantageous to increase the number density of internal oxides in the ferrite phase.
  • the internal oxide functions as pinning particles and contributes to refinement of the ferrite phase.
  • the pretreatment step includes grinding the surface of the cold-rolled steel sheet with a heavy grinding brush (brush grinding process). D-100 manufactured by Hotani Co., Ltd. may be used as the heavy-duty grinding brush. It is preferable to apply a 1.0 to 5.0% aqueous solution of NaOH to the surface of the steel plate during grinding. It is preferable that the brush reduction amount is 0.5 to 10.0 mm and the rotation speed is 100 to 1000 rpm. By controlling the coating liquid conditions, the amount of brush reduction, and the number of rotations, the fine ferrite phase and its internal oxides are efficiently formed in the vicinity of the surface layer of the steel sheet in the annealing process described later. can do.
  • Annealing is performed on the cold-rolled steel sheet that has undergone the pretreatment process.
  • Annealing is preferably performed under a tension of 0.1 to 20 MPa, for example.
  • tension is applied during annealing, it is possible to introduce strain into the steel sheet more effectively. , oxides are likely to be generated inside the steel sheet. As a result, it is advantageous to increase the number density of oxides inside the fine ferrite phase.
  • the holding temperature in the annealing process should be 700°C to 900°C. If the holding temperature in the annealing step is less than 700°C, there is a risk that a sufficiently large amount of internal oxide will not be generated. Moreover, the pinning effect of the ferrite phase grain boundary by the internal oxide may be insufficient, and the ferrite phase may become coarse. Therefore, the LME resistance may become insufficient. On the other hand, if the holding temperature in the annealing step is higher than 900° C., the internal oxides may become coarse and the desired internal oxides may not be formed.
  • the rate of temperature increase to the holding temperature is not particularly limited, but may be 1 to 10° C./sec. Also, the temperature rise may be performed in two steps, with a first temperature rise rate of 1 to 10° C./sec and a second temperature rise rate of 1 to 10° C./sec different from the first temperature rise rate. good.
  • the holding time at the holding temperature in the annealing step is preferably 0 to 300 seconds, preferably 50 to 130 seconds.
  • a holding time of 0 seconds means that the heat treatment was performed at a predetermined dew point during the temperature rising process, and cooling was performed immediately after reaching the predetermined temperature without isothermal holding. Even if the holding time is 0 seconds, internal oxides are generated during the temperature rising process, and LME resistance can be obtained. On the other hand, if the holding time is longer than 300 seconds, the inner oxide may become coarse and a sufficiently large amount of inner oxide may not be generated. Moreover, the pinning effect of the ferrite phase grain boundary by the internal oxide may be insufficient, and the ferrite phase may become coarse. Therefore, the LME resistance may become insufficient.
  • Humidification is performed from the viewpoint of generating a fine ferrite phase and oxides inside it during the heating and holding (isothermal) of the annealing process. Humidification starts from at least 300° C. during the heat up. At 300° C. or higher, dislocations in the ferrite phase in the steel sheet act as oxygen diffusion paths, promoting the formation of internal oxides in the ferrite phase by oxygen contained in the humidified atmosphere. In general, humidification during temperature rise from about 300° C. to the holding temperature promotes the formation of an outer oxide film and deteriorates the plating properties. avoid.
  • the temperature at which humidification is started exceeds 300° C., particularly when the temperature is close to the holding temperature, for example, a temperature of about 700° C., the dislocations in the ferrite phase recover and disappear. The internal oxide inside is not sufficiently generated.
  • the atmosphere for humidification has a dew point of more than 10° C. and 20° C. or less, preferably 11 to 20° C., and a hydrogen concentration of 8 to 20 vol % H 2 , preferably 10 vol % H 2 .
  • the dew point before humidification is ⁇ 40 to ⁇ 60° C., and the dew point is controlled to a predetermined value by adding water vapor. If the dew point is too low, an internal oxide layer may not be sufficiently formed. Moreover, the pinning effect of the ferrite phase grain boundary by the internal oxide may be insufficient, and the ferrite phase may become coarse. Therefore, the LME resistance may become insufficient.
  • the dew point is too high, an external oxide layer is formed on the surface of the steel sheet, and a plating layer may not be obtained.
  • the hydrogen concentration is too low, the oxygen potential becomes excessive and an outer oxide layer is formed, making it impossible to obtain a plating layer, and an inner oxide layer is not sufficiently formed.
  • the LME resistance may be insufficient, but if the hydrogen concentration is too high, the oxygen potential will be insufficient, and the inner oxide layer will not be sufficiently formed, and the outer oxide layer will be formed to obtain the plating layer. may not be
  • the internal oxide is not generated in a sufficiently large amount, the ferrite phase grain boundary pinning effect by the internal oxide may be insufficient, and the ferrite phase may become coarse. Therefore, the LME resistance may become insufficient.
  • An internal oxide layer may be formed on the surface layer of the steel sheet during the above-described rolling process, particularly during the hot rolling process.
  • the internal oxide layer formed in such a rolling process may inhibit the formation of internal oxides in the annealing process, and the internal oxides may have insufficient pinning effect on the ferrite phase grain boundaries, resulting in It is preferable to remove the internal oxide layer by pickling or the like before annealing.
  • the depth of the internal oxide layer of the cold-rolled steel sheet during the annealing process is 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less, more preferably 0.2 ⁇ m or less, and still more preferably 0.1 ⁇ m. You should do the following.
  • the plated steel sheet according to the present invention can be obtained by performing a plating treatment step of forming a plating layer containing Zn on the steel sheet manufactured as described above.
  • the plating process may be performed according to a method known to those skilled in the art.
  • the plating treatment step may be performed by, for example, hot dip plating or electroplating.
  • the plating step is performed by hot dip plating.
  • the conditions of the plating process may be appropriately set in consideration of the composition, thickness, adhesion amount, etc. of the desired plating layer.
  • An alloying treatment may be performed after the plating treatment.
  • the conditions for the plating process are Al: 0-60.0%, Mg: 0-15.0%, Fe: 0-15%, Ni: 0-20%, and Si: 0-3 %, with the balance being Zn and impurities.
  • the conditions of the plating process are, for example, Zn-0.2% Al (GI), Zn-0.8% Al, Zn-4.5% Al, Zn-0.09% Al- 10% Fe (GA), Zn-1.5% Al-1.5% Mg, or Zn-11% Al-3% Mg-0.2% Si, Zn-11% Ni, Zn-15% Mg It may be set as appropriate so as to form.
  • Al in the plating layer is desirably 0.3 to 1.5%.
  • Samples of the plated steel sheets of Examples and Comparative Examples were prepared according to the following procedure, unless otherwise specified. Specific conditions employed in some comparative examples and the like will be described separately.
  • (Preparation of steel plate sample) Molten steel having an adjusted chemical composition was cast to form a steel slab. Next, the cold-rolled steel sheet was air-cooled to room temperature, and the cold-rolled steel sheet was pickled to remove the internal oxide layer formed by rolling to the internal oxide layer depth ( ⁇ m) before annealing shown in Table 1. Next, a sample was taken from each cold-rolled steel sheet by a method conforming to JIS G0417:1999, and the chemical composition of the steel sheet was analyzed by the ICP-MS method or the like. Table 1 shows the chemical compositions of the measured steel sheets. All of the steel plates used had a plate thickness of 1.6 mm.
  • a portion of the cold-rolled steel sheet is coated with a 2.0% NaOH aqueous solution and brush-ground using a heavy-duty grinding brush (D-100 manufactured by Hotani Co., Ltd.) at a brush reduction of 2.0 mm and a rotation speed of 600 rpm.
  • Pretreatment was performed, and then annealing treatment was performed according to the hydrogen concentration, dew point, holding temperature and holding time shown in Tables 1 and 2 to prepare each steel plate sample.
  • Tables 1 and 2 show the presence or absence of pretreatment and the conditions of annealing treatment (humidification zone, hydrogen concentration (%), dew point (°C), holding temperature (°C), and holding time (seconds)).
  • Tempoture increase in the column of humidification zone means humidification in the above-mentioned hydrogen concentration and dew point atmosphere during the period from 300 ° C. or higher to the holding temperature
  • “isothermal” in the column of humidification zone means holding It means to humidify in an atmosphere with the aforementioned hydrogen concentration and dew point for a certain period of time.
  • the heating rate during annealing was set to 1 to 10° C./sec.
  • the cold-rolled steel sheet was annealed while a tension of 0.1 to 20 MPa or more was applied in the rolling direction. For each steel plate sample, a JIS No.
  • a plated steel plate sample was produced by performing a plating treatment for forming the types of plating shown in Tables 1 and 2.
  • plating type a is "alloyed hot-dip galvanized steel sheet (GA)”
  • plating type b is “hot-dip Zn-0.2% Al-plated steel sheet (GI)”
  • plating type c is "hot-dip Zn- (0.3 to 1.5)% Al-plated steel sheet (Al content is shown in Tables 1 and 2)
  • plating type d means "electro-Zn plating (Al composition less than 0.01%)”.
  • the cut sample was immersed in a 440° C. hot dip galvanizing bath for 3 seconds. After immersion, it was pulled out at 100 mm/sec, and the coating weight was controlled to 50 g/m 2 with N 2 wiping gas. After that, alloying treatment was performed at 500° C. for plating type a.
  • the obtained plated steel sheet samples were evaluated for each evaluation item by the following evaluation methods. As in Example 1, No. For No. 1, the tensile strength was less than 440 MPa, and for the others, it was 440 MPa or more. Regarding the LME resistance, the LME resistance was improved when the Al content was 0.3 to 1.5% by mass in the plating type c. Table 2 shows the results.
  • the observation position is up to 2.0 ⁇ m from the steel plate surface in the depth direction (direction perpendicular to the surface of the steel plate), and any position in the TEM image in the width direction (direction parallel to the surface of the steel plate). of 1.0 ⁇ m.
  • the obtained TEM image of each region for each steel plate sample is binarized, the area of the ferrite phase is calculated from the binarized image, and the diameter of a circle having an area equal to the area, that is, the ferrite phase as a circle equivalent diameter
  • the equivalent circle diameter (nm) was determined, and those within the equivalent circle diameter range of 1 ⁇ m or less were defined as fine ferrite phases. Furthermore, the number of fine ferrite phases in the TEM image was counted.
  • Tables 1 and 2 show the number density (pieces/ ⁇ m 2 ) of fine ferrite phases for each steel plate sample.
  • the observation position is up to 2.0 ⁇ m from the steel plate surface in the depth direction (direction perpendicular to the surface of the steel plate), and any position in the TEM image in the width direction (direction parallel to the surface of the steel plate). of 1.0 ⁇ m.
  • the obtained TEM image of each region for each steel plate sample is binarized, the area of the internal oxide is calculated from the binarized image, and the diameter of a circle having an area equal to the area, that is, the equivalent diameter of the inner
  • the particle size (nm) of the oxide was determined, and those within the particle size range of 2 to 100 nm were defined as internal oxides. Furthermore, the number of internal oxides in the TEM image was counted.
  • Tables 1 and 2 show the number density (pieces/ ⁇ m 2 ) of internal oxides in the ferrite phase for each steel plate sample. The aspect ratio and minor axis of the internal oxide were also measured.
  • the element concentration of the internal oxide was measured by EDS (Energy Dispersed Spectroscopy), and the number density (number/ ⁇ m 2 ) of the internal oxide having an Al concentration of 20% by mass or more is also shown in Table 1, 2.
  • Evaluation AAA No LME cracks Evaluation AA: LME crack length over 0 ⁇ m to 100 ⁇ m Evaluation A: LME crack length over 100 ⁇ m to 500 ⁇ m Evaluation B: LME crack length over 500 ⁇ m
  • Sample no. No. 46 uses 22 vol% H2 with a dew point of 11°C as a humidified atmosphere during annealing, and the internal oxide layer is not sufficiently formed, and the ferrite phase grain boundary pinning effect by the internal oxide is insufficient, and the ferrite phase becomes coarse. and the LME resistance was insufficient.
  • Sample no. No. 47 did not humidify when the temperature was raised, but humidified only when the temperature was isothermal, so a sufficiently large amount of internal oxide was not generated. Therefore, high LME resistance was not obtained.
  • the present invention it is possible to provide a high-strength plated steel sheet having high LME resistance. High collision safety and long service life are expected as steel sheets for automobiles and galvanized steel sheets for automobiles. Therefore, the present invention can be said to be an invention of extremely high industrial value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

耐LME性に優れた高強度のめっき鋼板を提供すること。 鋼板上にZnを含有するめっき層を有するめっき鋼板であって、該鋼板の引張強度が780MPa以上であり、該鋼板の化学成分が質量%で、 C:0.05~0.40%、 Si:0.2~3.0%、 Mn:0.1~5.0%、 sol.Al:0.4~1.50%、 等を含有し、残部がFe及び不純物からなる成分組成を有し、 前記鋼板の任意の垂直断面において、表層から深さ2μmまでの領域に、円相当径1μm以下のフェライト相が数密度2~30個/μm含有され、該フェライト相内に、円相当径2~100nmの内部酸化物が数密度3個/μm以上含有される、めっき鋼板。

Description

めっき鋼板
 本発明は、めっき鋼板に関する。より具体的には、本発明は、耐LME性に優れる高強度のめっき鋼板に関する。
 近年、自動車、家電製品、建材等の様々な分野で使用される鋼板について高強度化が進められている。例えば、自動車分野においては、燃費向上のために車体の軽量化を目的として、高強度鋼板の使用が増加している。このような高強度鋼板は、典型的に、鋼の強度を向上させるためにC、Si、Mn及びAl等の元素を含有する。
 高強度鋼板の製造では、一般的に、圧延後に焼鈍処理のような熱処理が行われる。また、高強度鋼板に典型的に含まれる元素のうち易酸化元素であるSiやMnやAlは、上記熱処理時に雰囲気中の酸素と結合し、鋼板の表面近傍に酸化物を含む層を形成することがある。このような層の形態としては、鋼板の外部(表面)にSiやMnやAlを含む酸化物が膜として形成される形態(外部酸化層)と、鋼板の内部(表層)に酸化物が形成される形態(内部酸化層)とが挙げられる。
 外部酸化層が形成された鋼板の表面上にめっき層(例えばZn系めっき層)を形成する場合、酸化物が膜として鋼板の表面上に存在しているため、鋼成分(例えばFe)とめっき成分(例えばZn)との相互拡散が阻害され、鋼とめっきとの密着性に影響を及ぼし、めっき性が不十分となる(例えば不めっき部が増加する)場合がある。よって、めっき性を向上させる観点からは、外部酸化層が形成された鋼板よりも内部酸化層が形成された鋼板の方が好ましい。
 内部酸化層に関連して、特許文献1及び2には、C、Si、Mn及びAl等を含む素地鋼板上に亜鉛系めっき層を有するめっき鋼板であって、素地鋼板の表層にSi及び/又はMnの酸化物を含む内部酸化層を有する、引張強度が980MPa以上の高強度めっき鋼板が記載されている。
特開2016-130357号公報 特開2018-193614号公報
 高強度のめっき鋼板は、自動車用部材、家電製品、建材等の様々な分野で用いられる。
高強度鋼板上にZn系めっき層等を設けためっき鋼板をホットスタンプ成形加工や溶接加工する場合、当該めっき鋼板は高温(例えば900℃程度)で加工されるため、めっき層中に含まれるZnが溶融した状態で加工され得る。この場合、溶融したZnが鋼中に侵入して鋼板内部に割れを生じることがある。このような現象は液体金属脆化(LME)と呼ばれ、当該LMEに起因して鋼板の疲労特性が低下することが知られている。したがって、LME割れを防止するために、めっき層に含まれるZn等が鋼板中へ侵入することを抑制することが有効である。
 特許文献1及び2では、内部酸化層の平均深さを4μm以上に厚く制御し、当該内部酸化層を水素のトラップサイトとして機能させることで、水素の侵入を防ぎ水素脆化を抑制できることが教示されている。しかしながら、耐LME性の改善についての検討はなされていない。
 本発明は、このような実情に鑑み、耐LME性に優れた高強度のめっき鋼板を提供することを課題とするものである。
 本発明者らは、上記課題を解決するためには、酸化物を鋼板の表層、すなわち鋼板の内部に形成し、さらに、鋼板の表層に存在する酸化物の形態を制御することが重要であることを見出した。より詳細には、本発明者らは、鋼板表面近傍(表面から深さ2μmまでの範囲)にて、微細な(円相当径1μm以下)フェライト相を所定の数密度(2個/μm以上)で含み、当該フェライト相の内部に、内部酸化物(円相当径2~100nm)を所定の数密度(3個/μm以上)で含むことにより、当該内部酸化物をホットスタンプ成形加工や溶接加工の際に鋼中に侵入し得るZnのトラップサイトとして機能させることで、高い耐LME性を得ることができること、を見出した。
 本発明は、上記知見を基になされたものであり、その主旨は以下のとおりである。
 (1)
 鋼板上にZnを含有するめっき層を有するめっき鋼板であって、該鋼板の引張強度が780MPa以上であり、該鋼板の化学成分が質量%で、
 C:0.05~0.40%、
 Si:0.2~3.0%、
 Mn:0.1~5.0%、
 sol.Al:0.4~1.50%、
 P:0.0300%以下、
 S:0.0300%以下、
 N:0.0100%以下、
 B:0~0.010%、
 Ti:0~0.150%、
 Nb:0~0.150%、
 V:0~0.150%、
 Cr:0~2.00%、
 Ni:0~2.00%、
 Cu:0~2.00%、
 Mo:0~1.00%、
 W:0~1.00%、
 Ca:0~0.100%、
 Mg:0~0.100%、
 Zr:0~0.100%、
 Hf:0~0.100%、及び
 REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有し、
 前記鋼板の任意の垂直断面において、表層から深さ2μmまでの領域に、円相当径1μm以下のフェライト相が数密度2~30個/μm含有され、該フェライト相内に、円相当径2~100nmの内部酸化物が数密度3個/μm以上含有される、めっき鋼板。
 (2)
 前記内部酸化物の形状がアスペクト比1.5~20であり、短径が1~20nmであり、数密度が3~30個/μmである、(1)に記載のめっき鋼板。
 (3)
 前記内部酸化物が、AlとO、AlとSiとO、AlとMnとO、AlとSiとMnとOのいずれか1種以上であり、前記内部酸化物に含有されるAlが20~53質量%である(1)又は(2)に記載のめっき鋼板。
 (4)
 前記めっき層が、質量%で、Al:0.3~1.5%を含有し、残部がZn及び不純物からなる成分組成を有する、(1)~(3)のいずれか1項に記載のめっき鋼板。
 (5)
 前記めっき層が、質量%で、Al:0~0.1%未満を含有し、残部がZn及び不純物からなる成分組成を有する、(1)~(3)のいずれか1項に記載のめっき鋼板。
 本発明によれば、鋼板の表層に存在する微細なフェライト相の内部酸化物はホットスタンプ成形加工や溶接加工の際に鋼中に侵入するZnのトラップサイトとして機能し、侵入するZn量を大きく抑制し、耐LME性を大きく向上させることができる。よって、本発明により、高強度鋼板において、優れた耐LME性を得ることが可能となる。
本発明に係る例示の鋼板の断面についての写真を示す。
 <めっき鋼板>
 本発明に係るめっき鋼板は、鋼板上にZnを含有するめっき層を有するめっき鋼板であって、
該鋼板の引張強度が780MPa以上であり、
該鋼板の化学成分が質量%で、
 C:0.05~0.40%、
 Si:0.2~3.0%、
 Mn:0.1~5.0%、
 sol.Al:0.4~1.50%、
 P:0.0300%以下、
 S:0.0300%以下、
 N:0.0100%以下、
 B:0~0.010%、
 Ti:0~0.150%、
 Nb:0~0.150%、
 V:0~0.150%、
 Cr:0~2.00%、
 Ni:0~2.00%、
 Cu:0~2.00%、
 Mo:0~1.00%、
 W:0~1.00%、
 Ca:0~0.100%、
 Mg:0~0.100%、
 Zr:0~0.100%、
 Hf:0~0.100%、及び
 REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有し、 前記鋼板の任意の垂直断面において、表層から深さ2μmまでの領域に、円相当径1μm以下のフェライト相が数密度2~30個/μm含有され、該フェライト相内に、円相当径2~100nmの内部酸化物が数密度3個/μm以上含有される、ことを特徴としている。
 高強度鋼板の製造においては、所定の成分組成に調整した鋼片を圧延(典型的に熱間圧延及び冷間圧延)した後、所望の組織を得る等の目的のために、一般的に焼鈍処理が行われる。この焼鈍処理において、鋼板中の比較的酸化しやすい成分(例えばSi、Mn、Al)が焼鈍雰囲気中の酸素と結合することで、鋼板の表面近傍に酸化物を含む層が形成される。
 これに関して、図1の写真は本実施態様に係るめっき鋼板の断面の例である。図1の左の写真は、めっき鋼板の鋼板表面(めっき層/鋼板の界面)から鋼板側へ深さ2μmの範囲での鋼断面組織を表している。当該組織を構成するフェライト相であって、円相当径が1μm以下であるものも確認できる。図1の右の写真は、左の写真の一部を拡大したものである。フェライト相の内部に、円相当径が100nm以下の棒状の内部酸化物(矢印で指し示したもの)が存在していることが確認できる。
 Znを含むめっき層を鋼板表面上に設けためっき鋼板にホットスタンプ成形加工や溶接加工を行うと、加工時に高温になるため、めっき層に含まれるZnが溶融する場合がある。Znが溶融するとその溶融したZnが鋼中に侵入し、その状態で加工がなされると、鋼板内部に液体金属脆化(LME)割れが発生し、当該LMEに起因して鋼板の疲労特性が低下することがある。本発明者らは、上述したように、鋼板の表層近傍に微細なフェライト相およびその内部酸化物が所望の数密度を有すると、耐LME性の向上に寄与することを発見した。より詳細には、微細なフェライト相の内部酸化物が高温での加工中に鋼中に侵入しようとするZnのトラップサイトとして機能することを見出した。これにより、例えばホットスタンプ成形加工時に鋼中に侵入しようとするZnが鋼板の表層の微細なフェライト相の内部酸化物に捉えられ、鋼板内部へのZnの侵入が好適に抑制される。したがって、耐LME性を向上させるためには、微細なフェライト相の内部酸化物を所定の数密度で存在させることが重要であることを見出した。
 より詳しくは、ホットスタンプ成形加工や溶接加工によって、めっき層に含まれるZnが溶融すると、溶融したZnはめっき層の設けられた鋼板の界面(めっき層と鋼板の界面)から鋼板の深さ方向へ拡散していく。このとき、溶融したZnは、鋼板組織を構成する結晶粒の粒界を伝わって拡散していくとともに、粒界から結晶粒の粒内へも拡散する。結晶粒内に内部酸化物が存在していると、当該内部酸化物によってZnがトラップされ、Znがさらに鋼板内部に拡散することが抑制される。本実施態様では、鋼板表面近傍のフェライト相が微細であるので(フェライト相が粗大である場合に比べて)、粒界(または相界面)の経路が多く、且つ、粒界から粒内(または相内)の内部酸化物までの距離が短いので、溶融したZnのフェライト相の内部酸化物によるトラップが速やかに進行する。すなわち、溶融したZnは、鋼板の表面近傍で速やかにトラップされ、鋼板内部、特に鋼板表層よりも深い箇所まで拡散することが顕著に抑制される。その結果、鋼板内部での液体金属脆化(LME)割れが抑制され、当該LMEに起因して鋼板の疲労特性が低下することも抑制される。なお、鋼板の表層の金属組織は、典型的に、鋼板の内部(例えば板厚の1/8位置又は1/4位置)より軟質な金属組織で構成されるため、鋼板の表層にZnが存在していても液体金属脆化(LME)割れは特に問題とならない。
 以下、本発明に係る鋼板について詳しく説明する。なお、本発明に係る鋼板の板厚は、特に限定されないが、例えば、0.1~3.2mmであればよい。
 [鋼板の成分組成]
 本発明に係る鋼板に含まれる成分組成について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。成分組成における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 (C:0.05~0.40%)
 C(炭素)は、鋼の強度を確保する上で重要な元素である。C含有量が不足すると、十分な強度を確保することができないおそれがある。さらに、C含有量の不足により所望の内部酸化物の形態が得られない場合がある。したがって、C含有量は0.05%以上、好ましくは0.07%以上、より好ましくは0.10%以上、さらに好ましくは0.12%以上である。一方、C含有量が過剰であると、溶接性が低下するおそれがある。したがって、C含有量は0.40%以下、好ましくは0.35%以下、より好ましくは0.30%以下である。
 (Si:0.2~3.0%)
 Si(ケイ素)は、鋼の強度を向上させるのに有効な元素である。Si含有量が不足すると、十分な強度を確保することができないおそれがある。さらに、SiはMnとともに酸化物を形成して、ピン留め粒子として機能し、フェライト相の微細化に寄与する。つまり、Siが不足すると、所望の微細なフェライト相、およびその内部酸化物が鋼板の表層近傍に十分に生成されないおそれがある。したがって、Si含有量は0.2%以上、好ましくは0.3%以上、より好ましくは0.5%以上、さらに好ましくは1.0%以上である。一方、Si含有量が過剰であると、表面性状の劣化を引き起こすおそれがあり、外部酸化成長の促進を招くおそれもある。したがって、Si含有量は3.0%以下、好ましくは2.5%以下、より好ましくは2.0%以下である。
 (Mn:0.1~5.0%)
 Mn(マンガン)は、硬質組織を得ることで鋼の強度を向上させるのに有効な元素である。Mn含有量が不足すると、十分な強度を確保することができないおそれがある。さらに、MnはSiとともに酸化物を形成して、ピン留め粒子として機能し、フェライト相の微細化に寄与する。つまり、Mnが不足すると、所望の微細なフェライト相、およびその内部酸化物が鋼板の表層近傍に十分に生成されないおそれがある。したがって、Mn含有量は0.1%以上、好ましくは0.5%以上、より好ましくは1.0%以上、さらに好ましくは1.5%以上である。一方、Mn含有量が過剰であると、Mn偏析によって金属組織が不均一になり、加工性が低下するおそれがあり、外部酸化成長の促進を招くおそれもある。したがって、Mn含有量は5.0%以下、好ましくは4.5%以下、より好ましくは4.0%以下、さらにより好ましくは3.5%以下である。
 (sol.Al:0.4~1.50%)
 Al(アルミニウム)は、脱酸元素として作用する元素である。Al含有量が不足すると、十分な脱酸の効果を確保することができないおそれがある。さらに、所望の酸化物、特に微細なフェライト相の内部酸化物が鋼板の表層近傍に十分に生成されないおそれがある。AlはSi、Mnと共に内部酸化物に含有され、ピン留め粒子として機能し、フェライト相の微細化に寄与する。Al含有量は0.4%以上でもよいが、十分な所望の効果、微細なフェライト相の内部酸化物を得るためには、Al含有量は0.5%以上、好ましくは0.6%以上、より好ましくは0.7%以上であるとよい。一方、Al含有量が過剰であると加工性の低下や表面性状の劣化を引き起こすおそれがあり、外部酸化成長の促進を招くおそれもある。したがって、Al含有量は1.50%以下、好ましくは1.20%以下、より好ましくは0.80%以下である。Al含有量は、いわゆる酸可溶Alの含有量(sol.Al)を意味する。
 (P:0.0300%以下)
 P(リン)は、一般に鋼に含有される不純物である。P含有量が0.0300%超では溶接性が低下するおそれがある。したがって、P含有量は0.0300%以下、好ましくは0.0200%以下、より好ましくは0.0100%以下、さらに好ましくは0.0050%以下である。P含有量の下限は特に限定されないが、製造コストの観点から、P含有量は0%超又は0.0001%以上であってもよい。
 (S:0.0300%以下)
 S(硫黄)は、一般に鋼に含有される不純物である。S含有量が0.0300%超では溶接性が低下し、さらに、MnSの析出量が増加して曲げ性等の加工性が低下するおそれがある。したがって、S含有量は0.0300%以下、好ましくは0.0100%以下、より好ましくは0.0050%以下、さらに好ましくは0.0020%以下である。S含有量の下限は特に限定されないが、脱硫コストの観点から、S含有量は0%超又は0.0001%以上であってもよい。
 (N:0.0100%以下)
 N(窒素)は、一般に鋼に含有される不純物である。N含有量が0.0100%超では溶接性が低下するおそれがある。したがって、N含有量は0.0100%以下、好ましくは0.0080%以下、より好ましくは0.0050%以下、さらに好ましくは0.0030%以下である。N含有量の下限は特に限定されないが、製造コストの観点からN含有量は0%超又は0.0010%以上であってもよい。
 (B:0~0.010%)
 B(ホウ素)は、焼入れ性を高めて強度の向上に寄与し、また粒界に偏析して粒界を強化して靭性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、B含有量は0%以上、好ましくは0.001%以上、より好ましくは0.002%以上、さらに好ましくは0.003%以上である。一方、十分な靭性及び溶接性を確保する観点から、B含有量は0.010%以下、好ましくは0.008%以下、より好ましくは0.006%以下である。
 (Ti:0~0.150%)
 Ti(チタン)は、TiCとして鋼の冷却中に析出し、強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。したがって、Ti含有量は0%以上、好ましくは0.001%以上、より好ましくは0.003%以上、さらに好ましくは0.005%以上、さらにより好ましくは0.010%以上である。一方、過剰に含有すると粗大なTiNが生成して靭性が損なわれるおそれがあるため、Ti含有量は0.150%以下、好ましくは0.100%以下、より好ましくは0.050%以下である。
 (Nb:0~0.150%)
 Nb(ニオブ)は焼入れ性の向上を通じて強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。したがって、Nb含有量は0%以上、好ましくは0.010%以上、より好ましくは0.020%以上、さらに好ましくは0.030%以上である。一方、十分な靭性及び溶接性を確保する観点から、Nb含有量は、0.150%以下、好ましくは0.100%以下、より好ましくは0.060%以下である。
 (V:0~0.150%)
 V(バナジウム)は焼入れ性の向上を通じて強度の向上に寄与する元素であるため、必要に応じて含有していてもよい。したがって、V含有量は0%以上、好ましくは0.010%以上、より好ましくは0.020%以上、さらに好ましくは0.030%以上である。一方、十分な靭性及び溶接性を確保する観点から、V含有量は、0.150%以下、好ましくは0.100%以下、より好ましくは0.060%以下である。
 (Cr:0~2.00%)
 Cr(クロム)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、Cr含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.50%以上、さらにより好ましくは0.80%以上である。一方、過剰に含有するとCr炭化物が多量に形成し、逆に焼入れ性が損なわれるおそれがあるため、Cr含有量は2.00%以下、好ましくは1.80%以下、より好ましくは1.50%以下である。
 (Ni:0~2.00%)
 Ni(ニッケル)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、Ni含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.50%以上、さらにより好ましくは0.80%以上である。一方、Niの過剰な添加はコストの上昇を招くため、Ni含有量は2.00%以下、好ましくは1.80%以下、より好ましくは1.50%以下である。
 (Cu:0~2.00%)
 Cu(銅)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、Cu含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.50%以上、さらにより好ましくは0.80%以上である。一方、靭性低下や鋳造後のスラブの割れや溶接性の低下を抑制する観点から、Cu含有量は2.00%以下、好ましくは1.80%以下、より好ましくは1.50%以下である。
 (Mo:0~1.00%)
 Mo(モリブデン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、Mo含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.30%以上である。一方、靭性と溶接性の低下を抑制する観点から、Mo含有量は1.00%以下、好ましくは0.90%以下、より好ましくは0.80%以下である。
 (W:0~1.00%)
 W(タングステン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効であるため、必要に応じて含有していてもよい。したがって、W含有量は0%以上、好ましくは0.10%以上、より好ましくは0.20%以上、さらに好ましくは0.30%以上である。一方、靭性と溶接性の低下を抑制する観点から、W含有量は1.00%以下、好ましくは0.90%以下、より好ましくは0.80%以下である。
 (Ca:0~0.100%)
 Ca(カルシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、Ca含有量は0%以上、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上、さらにより好ましくは0.020%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Ca含有量は0.100%以下、好ましくは0.080%以下、より好ましくは0.050%以下である。
 (Mg:0~0.100%)
 Mg(マグネシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、Mg含有量は0%以上、好ましくは0.001%以上、より好ましくは0.003%以上、さらに好ましくは0.010%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Mg含有量は0.100%以下、好ましくは0.090%以下、より好ましくは0.080%以下である。
 (Zr:0~0.100%)
 Zr(ジルコニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、Zr含有量は0%以上、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Zr含有量は0.100%以下、好ましくは0.050%以下、より好ましくは0.030%以下である。
 (Hf:0~0.100%)
 Hf(ハフニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、Hf含有量は0%以上、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、Hf含有量は0.100%以下、好ましくは0.050%以下、より好ましくは0.030%以下である。
 (REM:0~0.100%)
 REM(希土類元素)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素であるため、必要に応じて含有していてもよい。したがって、REM含有量は0%以上、好ましくは0.001%以上、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。一方、過剰に含有すると表面性状の劣化が顕在化する場合があるため、REM含有量は0.100%以下、好ましくは0.050%以下、より好ましくは0.030%以下である。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をいう。REMは通常ミッシュメタルとして添加される。
 本発明に係る鋼板において、上記成分組成以外の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に係る鋼板の特性に悪影響を与えない範囲で含有することが許容されるものを意味する。
 本発明において、鋼板の成分組成の分析は、当業者に公知の元素分析法を用いればよく、例えば、誘導結合プラズマ質量分析法(ICP-MS法)により行われる。ただし、C及びSについては燃焼-赤外線吸収法を用い、Nについては不活性ガス融解-熱伝導度法を用いて測定するとよい。これらの分析は、鋼板をJIS G0417:1999に準拠した方法で採取したサンプルで行えばよい。
 また、sol.Alの量については、以下の手順で測定すればよい。具体的には、鋼板を電解し、ろ紙が回収した残渣を誘導結合プラズマ質量分析法で分析する。検出したAl量を析出Al量とする。一方で、鋼板を電解しないで、T.Al(「トータルAl」ともいう)を測定する。T.Alから析出Al量を引いた値をsol.Alと定義する。
 [表層]
 本発明において、鋼板の「表層」とは、鋼板の表面(めっき鋼板の場合は鋼板とめっき層の界面)から板厚方向に所定の深さまでの領域を意味し、「所定の深さ」は典型的には50μm以下である。なお、本実施態様に係る、微細なフェライト相およびその内部酸化物の形状や数密度等は、「表層」のうち、鋼板表面(めっき層/鋼板の界面)から鋼板側へ深さ2μmの範囲で測定される。この範囲を「表層近傍」と称することがある。
 図1に例示されるように、本実施態様に係るめっき鋼板においては、鋼板の表層に微細なフェライト相およびその内部酸化物が存在する。
 [フェライト相]
 本実施態様において、「フェライト相」とは、鋼のマトリクスを構成する結晶相であって、フェライトの結晶構造を有する結晶相をいう。実際には、フェライト相は鋼板の表層において、典型的に球状又は略球状に三次元的に存在しているため、鋼板の表層の断面を観察した場合は、当該フェライト相は典型的に円状又は略円状に観察される。
 (フェライト相の円相当径)
 本実施態様において、フェライト相は円相当径1μm(1000nm)以下であり、この範囲のフェライト相を微細なフェライト相と称することがある。円相当径をこのような範囲に制御することで、鋼板の表層近傍に微細なフェライト相を分散させることができ、微細なフェライト相の内部酸化物が、鋼板上にめっき層が形成されためっき鋼板をホットスタンプ成形加工や溶接加工した際に侵入し得るZnのトラップサイトとして良好に機能する。一方、円相当径が1μm(1000nm)超となるとフェライト相の数が低下することがあり、所望の数密度が得られないおそれがある。フェライト相の円相当径は、特に下限は限定されないが、後述する内部酸化物を包含することができるように、2nm以上、好ましくは10nm以上であってもよい。
 (フェライト相の数密度)
 本実施態様において、表層近傍(表層から深さ2μmまでの領域)で、微細なフェライト相の数密度は2~30個/μm2である。数密度をこのような範囲に制御することで、鋼板の表層に微細なフェライト相を多量に分散させることができ、その内部に内部酸化物を包含することができる。当該内部酸化物が、鋼板上にめっき層が形成されためっき鋼板をホットスタンプ成形加工や溶接加工した際に侵入し得るZnのトラップサイトとして良好に機能する。フェライト相の円相当径が微細(円相当径1μm以下)であるので(粗大なフェライト相に比べて)、フェライト相に侵入したZnが内部酸化物に速やかに到達し、当該Znは速やかにトラップされる。逆に、フェライト相が粗大であると、フェライト相に侵入したZnが内部酸化物に到達するのに時間を要し、当該Znはトラップされないことがある。したがって、微細なフェライト相の数密度が2個/μm2未満であると、相対的に粗大なフェライト相が多くなり、Znのトラップサイトとしての内部酸化物の多くが粗大なフェライト相に存在することになり、Znのトラップサイトとして十分に機能せず、良好な耐LME性を得られないおそれがある。微細なフェライト相の数密度は、好ましくは3個/μm2以上、より好ましくは4個/μm2以上、さらに好ましくは5個/μm2以上である。微細なフェライト相はZnのトラップサイトとして機能する内部酸化物を包含する観点からは多量に存在するほど好ましい。ただし、一般的な製造条件では、微細なフェライト相の数密度の上限は30個/μm2以下となるので、本実施態様での微細なフェライト相の数密度の上限は30個/μm2以下とし、25個/μm2以下、20個/μm2以下であってもよい。
 フェライト相のサイズ(円相当径)及び数密度は走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)で測定される。具体的な測定は、以下のとおりである。鋼板の表層の断面をSEMにより観察し、フェライト相を含むSEM画像を得る。断面SEM像から、めっき層/鋼板の界面を含むよう、FIB加工を用いてTEM観察用の試験片を採取する。TEM観察にて、鋼板表面(めっき層/鋼板の界面)から鋼板側へ深さ2μmの範囲で、本実施態様で示す形状に該当するフェライト相(円相当径1μm以下)を特定し、その数密度を測定する。観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から2.0μmとし、幅方向(鋼板の表面と平行な方向)については、上記TEM画像の任意の位置の1.0μmとする。言い換えると、観測視野領域は2.0μm×1.0μmである。次いで、上記のように得られた各領域のTEM画像を抽出し、各フェライト相(と粒界(または相界面))を分けるために二値化し、各二値化像から各フェライト相の面積を算出し、当該面積と等しい面積を有する円の直径、すなわち円相当直径として当該フェライト相の円相当径(nm)を求め、円相当径が1μm以下(1000nm以下)の範囲のものを本実施形態に係る微細なフェライト相とする。さらに各二値化像内の微細なフェライト相の個数を数える。こうして求めた10箇所の領域の合計の微細なフェライト相の個数の平均値を、微細なフェライト相の数密度(個/μm2)とする。なお、フェライト相の一部のみが観察領域で観察される場合、すなわち、フェライト相の輪郭全てが観察領域内に無い場合は、個数として計上しない。
 [内部酸化物]
 本実施態様において、「内部酸化物」とは、前述の微細な「フェライト相」の内部に存在する酸化物をいう。一つのフェライト相に複数の内部酸化物が存在してもよく、各内部酸化物の位置は特定の規則に沿って(例えば直線状に)配置されておらず、ランダムに配置されていてもよい。
 (内部酸化物の粒径)
 本実施態様において、内部酸化物の粒径は円相当径2nm以上100nm以下である。粒径をこのような範囲に制御することで、鋼板の表層近傍に存在する微細なフェライト相に内部酸化物を分散させることができ、当該内部酸化物が鋼板上にめっき層が形成されためっき鋼板をホットスタンプ成形加工や溶接加工した際に侵入し得るZnのトラップサイトとして良好に機能する。一方、粒径が100nm超となると内部化物の数が低下することがあり、所望の数密度が得られないおそれがある。内部酸化物は微細であるほど、比表面積が高くなり、トラップサイトとしての反応性が向上するので、内部酸化物の粒径は、50nm以下、好ましくは20nm以下あるいは20nm未満であってもよい。一方で、下限は2nm以上である。その理由は、一粒子あたりがトラップできるZnの量が低下し、十分にZnをトラップできず、Znのトラップサイトとして十分に機能しないおそれがあるからである。
 内部酸化物の形状は、特に限定されるものではないが、アスペクト比(内部酸化物を横断する最大線分長さ(長径)/長径と垂直な酸化物を横断する最大線分長さ(短径))が1.5以上であってもよく、その短径が20nm未満であってもよい。特定の理論に拘束されることを望むものではないが、内部酸化物のアスペクト比が高くなると、フェライト相に侵入したZnと接触する可能性が高まり、Znのトラップ効率が高まることが考えられる。
 (内部酸化物の数密度)
 また、内部酸化物の数密度は3個/μm2以上である。数密度をこのような範囲に制御することで、鋼板の表層に存在する微細なフェライト相に内部酸化物を多量に包含させることができ、当該内部酸化物が、鋼板上にめっき層が形成されためっき鋼板をホットスタンプ成形加工や溶接加工した際に侵入し得るZnのトラップサイトとして良好に機能する。一方、数密度が3個/μm2未満であると、Znのトラップサイトとしての数密度が十分でなく、内部酸化物がZnのトラップサイトとして十分に機能せず、良好な耐LME性を得られないおそれがある。内部酸化物の数密度は、好ましくは6個/μm2以上、より好ましくは8個/μm2以上、さらに好ましくは10個/μm2以上である。内部酸化物はZnのトラップサイトとして機能する観点からは多量に存在するほど好ましいが、内部酸化物を包含するフェライト相の円相当径が1μm以下であることから、内部酸化物の数密度は上限を設けてもよく、30個/μm2以下、25個/μm2以下、20個/μm2以下であってもよい。
 内部酸化物の粒径及び数密度は、フェライト相と同様の手法により、走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)で測定される。具体的な測定は、以下のとおりである。鋼板の表層の断面をSEMにより観察し、内部酸化物を含むSEM画像を得る。断面SEM像から、めっき層/鋼板の界面を含むよう、FIB加工を用いてTEM観察用の試験片を採取する。TEM観察にて、鋼板表面(めっき層/鋼板の界面)から鋼板側へ深さ2μmの範囲で、本実施態様で示す形状に該当する内部酸化物(粒径2~100nm)を特定し、その数密度を測定する。観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から2.0μmとし、幅方向(鋼板の表面と平行な方向)については、上記TEM画像の任意の位置の1.0μmとする。言い換えると、観測視野領域は2.0μm×1.0μmである。次いで、上記のように得られた各領域のTEM画像を抽出し、酸化物部分と鋼部分とを分けるために二値化し、各二値化像から内部酸化物部分の面積を算出し、当該面積と等しい面積を有する円の直径、すなわち円相当直径として当該内部酸化物の粒径(nm)を求め、粒径が2nm以上100nm以下の範囲のものを本実施形態に係る内部酸化物とする。さらに各二値化像内の内部酸化物の個数を数える。こうして求めた10箇所の領域の合計の内部酸化物の個数の平均値を、内部酸化物の数密度(個/μm2)とする。なお、内部酸化物の一部のみが観察領域で観察される場合、すなわち、内部酸化物の輪郭全てが観察領域内に無い場合は、個数として計上しない。
 [酸化物の成分組成]
 本発明において、内部酸化物(以下、単に酸化物ともいう)は、酸素に加え、上述した鋼板中に含まれる元素のうち1種又は2種以上を含むものであって、典型的に、Si、O及びFeを含み、場合によりさらにMnやAlを含む成分組成を有する。当該酸化物は、これらの元素以外にも上述した鋼板に含まれ得る元素(例えばCrなど)を含んでもよい。特定の理論に拘束されることを望むものではないが、酸化物にAlが含まれると、Znのトラップサイトとしての効果が高まると考えられ、内部酸化物に含有されるAlの含有率が高いことが好ましく、20質量%以上であってもよい。内部酸化物がAlとOの酸化物、いわゆるアルミナである場合に、酸化物中のAl含有率は最も高くなり、53質量%となり、これをAl含有率の上限としてもよい。
 <めっき鋼板>
 本発明に係るめっき鋼板は、上述した本発明に係る鋼板上にZnを含むめっき層を有する。このめっき層は鋼板の片面に形成されていても、両面に形成されていてもよい。Znを含むめっき層としては、例えば、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層、電気合金亜鉛めっき層などが挙げられる。より具体的には、めっき種としては、例えば、Zn-0.2%Al(GI)、Zn-(0.3~1.5)%Al、Zn-4.5%Al、Zn-0.09%Al-10%Fe(GA)、Zn-1.5%Al-1.5%Mg、又はZn-11%Al-3%Mg-0.2%Si、Zn-11%Ni、Zn-15%Mgなどを用いることができる。
 [めっき層の成分組成]
 本発明におけるZnを含むめっき層に含まれる成分組成について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。めっき層についての成分組成における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 (Al:0~60.0%)
 Alは、Znと共に含まれる又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Al含有量は0%であってもよい。ZnとAlとを含むめっき層を形成するために、好ましくは、Al含有量は0.01%以上であるとよく、例えば、0.1%以上、0.3%以上、0.5%以上、1.0%以上、又は3.0%以上であってよい。一方、60.0%超では耐食性を向上させる効果が飽和するため、Al含有量は、60.0%以下であるとよく、例えば、55.0%以下、50.0%以下、40.0%以下、30.0%以下、20.0%以下、10.0%以下、又は5.0%以下であってよい。詳細な機構は不明であるが、めっき層中のAlが0.3~1.5%の範囲にある場合、Alの効果によりZnの鋼粒界への侵入速度が大幅に低減され、耐LME性を向上させることが可能となる。従って、耐LME性向上の観点から、めっき層中のAlは0.3~1.5%が望ましい。一方で、電気めっきは目付け量が電気量によって制御しやすいことから、めっき層中のAlを0~0.1%未満としてもよい。めっき層中のAl組成が0~0.1%未満の場合、めっき層と地鉄の合金化速度が早く、溶接中にめっき層中Znが鋼粒界のみでなく粒内への拡散が早期に進行する。その結果、鋼粒界への集中的なZn進入が抑制され、耐LME性を向上させることが可能となる。典型的には、めっき層が、質量%で、Al:0.3~1.5%を含有し、残部がZn及び不純物からなる成分組成であってもよく、めっき層が、質量%で、Al:0~0.1%未満を含有し、残部がZn及び不純物からなる成分組成であってもよい。この範囲の成分組成のめっき層により、耐LME性をさらに向上することができる。
 (Mg:0~15.0%)
 Mgは、Zn及びAlと共に含まれる又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Mg含有量は0%であってもよい。ZnとAlとMgとを含むめっき層を形成するために、好ましくは、Mg含有量は0.01%以上であるとよく、例えば、0.1%以上、0.5%以上、1.0%以上、又は3.0%以上であってよい。一方、15.0%超ではめっき浴中にMgが溶解しきれずに酸化物として浮遊し、このめっき浴で亜鉛めっきするとめっき表層に酸化物が付着して外観不良を起こし、あるいは、不めっき部が発生するおそれがあるため、Mg含有量は、15.0%以下であるとよく、例えば、10.0%以下、5.0%以下であってよい。
 (Fe:0~15.0%)
 Feは、鋼板上にZnを含むめっき層を形成した後にめっき鋼板を熱処理した場合に鋼板から拡散することでめっき層中に含まれ得る。したがって、熱処理がされていない状態においては、Feはめっき層中に含まれないため、Fe含有量は0%であってもよい。また、Fe含有量は、1.0%以上、2.0%以上、3.0%以上、4.0%以上又は5.0%以上であってもよい。一方、Fe含有量は、15.0%以下であるとよく、例えば、12.0%以下、10.0%以下、8.0%以下又は6.0%以下であってもよい。
 (Si:0~3.0%)
 Siは、Znを含むめっき層、特にZn-Al-Mgめっき層に含まれるとさらに耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Si含有量は0%であってもよい。耐食性向上の観点から、Si含有量は、例えば、0.005%以上、0.01%以上、0.05%以上、0.1%以上又は0.5%以上であってもよい。また、Si含有量は、3.0%以下、2.5%以下、2.0%以下、1.5%以下又は1.2%以下であってもよい。
 めっき層の基本の成分組成は上記のとおりである。さらに、めっき層は、任意選択で、Sb:0~0.50%、Pb:0~0.50%、Cu:0~1.00%、Sn:0~1.00%、Ti:0~1.00%、Sr:0~0.50%、Cr:0~1.00%、Ni:0~1.00%、及びMn:0~1.00%のうち1種又は2種以上を含有してもよい。特に限定されないが、めっき層を構成する上記基本成分の作用及び機能を十分に発揮させる観点から、これらの任意添加元素の合計含有量は5.00%以下とすることが好ましく、2.00%以下とすることがより好ましい。
 めっき層において上記成分以外の残部はZn及び不純物からなる。めっき層における不純物とは、めっき層を製造する際に、原料を始めとして、製造工程の種々の要因によって混入する成分であって、めっき層に対して意図的に添加した成分ではないものを意味する。めっき層においては、不純物として、上で説明した基本成分及び任意添加成分以外の元素が、本発明の効果を妨げない範囲内で微量に含まれていてもよい。
 めっき層の成分組成は、鋼板の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、得られた溶液をICP(高周波誘導結合プラズマ)発光分光法によって測定することにより決定することができる。
 めっき層の厚さは、例えば3~50μmであってよい。また、めっき層の付着量は、特に限定されないが、例えば、片面当たり10~170g/m2であってよい。本発明において、めっき層の付着量は、地鉄の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、めっき溶解前後の重量変化から決定される。
 [引張強度]
 本発明に係る鋼板及びめっき鋼板は、高強度を有していることが好ましく、具体的には780MPa以上の引張強度を有することを指す。例えば、引張強度は780MPa以上、800MPa以上、900MPa以上であってもよい。引張強度の上限は特に限定されないが、靭性確保の観点から例えば2000MPa以下であればよい。引張強度の測定は、JIS5号引張試験片を採取し、JIS Z 2241(2011)に準拠して行えばよい。引張試験片の長手方向は特に限定されず、圧延方向に直角な方向であってもよい。
 本発明に係るめっき鋼板は、高強度であり、高い耐LME性を有するため、自動車、家電製品、建材等の広い分野において好適に使用することができるが、特に自動車分野で使用されるのが好ましい。自動車用に用いられる鋼板及びめっき鋼板はホットスタンプ成形することが多く、その場合にLME割れが顕著に問題になり得る。そのため、本発明に係るめっき鋼板を自動車用鋼板として使用した場合に、高い耐LME性を有するという本発明の効果が好適に発揮される。
 <鋼板の製造方法>
 以下で、本発明に係る鋼板の好ましい製造方法について説明する。以下の説明は、本発明に係る鋼板を製造するための特徴的な方法の例示を意図するものであって、当該鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明に係る鋼板は、例えば、成分組成を調整した溶鋼を鋳造して鋼片を形成する鋳造工程、鋼片を熱間圧延して熱延鋼板を得る熱延工程、熱延鋼板を巻取る巻取工程、巻取った熱延鋼板を冷間圧延して冷延鋼板を得る冷延工程、冷延鋼板を酸洗する酸洗工程、酸洗した冷延鋼板に対してブラシ研削処理する前処理工程、及び前処理した冷延鋼板を焼鈍する焼鈍工程を行うことで得ることができる。代替的に、熱延工程後に巻き取らず、酸洗してそのまま冷延工程を行ってもよい。
 [鋳造工程]
 鋳造工程の条件は特に限定されない。例えば、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造などの方法で鋳造すればよい。
 [熱延工程]
 上記のように鋳造した鋼片を熱間圧延して熱延鋼板を得ることができる。熱延工程は、鋳造した鋼片を直接又は一旦冷却した後に再加熱して熱間圧延することにより行われる。再加熱を行う場合には、鋼片の加熱温度は、例えば1100℃~1250℃であればよい。熱延工程においては、通常、粗圧延と仕上圧延とが行われる。各圧延の温度や圧下率は、所望の金属組織や板厚に応じて適宜変更すればよい。例えば仕上げ圧延の終了温度を900~1050℃、仕上圧延の圧下率を10~50%としてもよい。
 [巻取工程]
 熱延鋼板は所定の温度で巻取ることができる。巻取温度は、所望の金属組織等に応じて適宜変更すればよく、例えば500~800℃であればよい。巻取る前又は巻取った後に巻き戻して、熱延鋼板に所定の熱処理を与えてもよい。代替的に、巻取工程は行わずに熱延工程後に酸洗して後述する冷延工程を行うこともできる。
 [冷延工程]
 熱延鋼板に酸洗等を行った後、熱延鋼板を冷間圧延して冷延鋼板を得ることができる。冷間圧延の圧下率は、所望の金属組織や板厚に応じて適宜変更すればよく、例えば20~80%であればよい。冷延工程後は、例えば空冷して室温まで冷却すればよい。
 [前処理工程]
 最終的に得られる鋼板の表層において微細なフェライト相およびその内部酸化物を得るためには、冷延鋼板を焼鈍する前に所定の前処理工程を行うことが有効である。当該前処理工程により、鋼板に歪みをより効果的に導入することが可能となり、歪みによって鋼板の金属組織の転位が促進され、焼鈍時にその転位に沿って酸素が鋼の内部に侵入しやすくなることで、鋼板の内部に酸化物が生成されやすくなる。その結果、フェライト相の内部酸化物の数密度の増加に有利となる。また、内部酸化物は、ピン留め粒子として機能し、フェライト相の微細化に寄与する。よって、このような前処理工程を行った場合は、後述する焼鈍工程において所望の微細なフェライト相およびその内部酸化物を生成しやすい。当該前処理工程は、重研削ブラシで冷延鋼板表面を研削すること(ブラシ研削処理)を含む。重研削ブラシとして、ホタニ社製D-100を用いてもよい。研削する際に鋼板表面にNaOH 1.0~5.0%水溶液を塗布するとよい。ブラシ圧下量0.5~10.0mm、回転数100~1000rpmであるとよい。このような塗布液条件、ブラシ圧下量、回転数に制御してブラシ研削処理を行うことで、後述する焼鈍工程において、微細なフェライト相およびその内部酸化物を効率的に鋼板の表層近傍に形成することができる。
 [焼鈍工程]
 上記前処理工程を行った冷延鋼板に焼鈍を行う。焼鈍は、例えば0.1~20MPaの張力をかけた状態で行うのが好ましい。焼鈍時に張力をかけると鋼板に歪みをより効果的に導入することが可能となり、歪みによって鋼板の金属組織の転位が促進され、その転位に沿って酸素が鋼の内部に侵入しやすくなることで、鋼板の内部に酸化物が生成されやすくなる。その結果、微細なフェライト相の内部酸化物の数密度の増加に有利となる。
 微細なフェライト相およびその内部酸化物を生成させる観点から、焼鈍工程の保持温度は700℃~900℃であるとよい。焼鈍工程の保持温度が700℃未満であると、内部酸化物が十分多量に生成されないおそれがある。また、内部酸化物によるフェライト相粒界のピン留め効果が不足し、フェライト相が粗大化する場合もある。そのため、耐LME性が不十分になる場合がある。一方、焼鈍工程の保持温度が900℃超であると、内部酸化物が粗大化するおそれがあり、所望の内部酸化物が生成されないおそれがある。また、900℃超であると、内部酸化物が形成されていても、フェライト相が急激に成長し所望の微細なフェライト相が得られない場合がある。そのため、耐LME性が不十分になる場合がある。上記保持温度までの昇温速度は、特に限定されないが1~10℃/秒で行えばよい。また、昇温は、1~10℃/秒の第1昇温速度と、当該第1昇温速度とは異なる1~10℃/秒の第2昇温速度とにより、2段階で行ってもよい。
 上記焼焼鈍工程の保持温度での保持時間は、0~300秒間であるとよく、好ましくは50~130秒間である。保持時間0秒は、昇温過程を所定露点で熱処理し、所定温度に到達した直後に等温保持することなく冷却したことを意味する。保持時間が0秒であっても昇温過程中に内部酸化物生成され、耐LME性を得ることができる。一方、保持時間が300秒間超であると、内部酸化物が粗大化し、内部酸化物が十分多量に生成されないおそれがある。また、内部酸化物によるフェライト相粒界のピン留め効果が不足し、フェライト相が粗大化する場合もある。そのため、耐LME性が不十分になる場合がある。
 焼鈍工程の昇温中及び保持(等温)中に、微細なフェライト相およびその内部酸化物を生成させる観点から、加湿を行なう。加湿は、昇温中、少なくとも300℃から開始する。300℃以上で、鋼板中のフェライト相内の転位が酸素拡散経路として働き、加湿雰囲気に含まれる酸素によるフェライト相内の内部酸化物の生成が促進される。一般的には、300℃程度から保持温度までの昇温中に加湿することは外部酸化膜の形成を促進し、めっき性を低下させるので、当業者はそのような昇温過程から加湿することは避ける。また、加湿を開始する温度が、300℃を越えている場合、特に保持温度に近い温度、例えば700℃程度の温度である場合、フェライト相内の転位は回復し消滅しているので、フェライト相内の内部酸化物は十分に生成しない。
 加湿のための雰囲気は、露点10℃超、20℃以下であり、好ましくは11~20℃であり、且つ、水素濃度が8~20vol%Hであり、好ましくは10vol%Hである。なお、加湿前の露点は-40~-60℃で、そこから水蒸気を含有させて露点を所定の値に制御する。
露点が低すぎると、内部酸化層が十分に形成されないおそれがある。また、内部酸化物によるフェライト相粒界のピン留め効果が不足し、フェライト相が粗大化する場合もある。そのため、耐LME性が不十分になる場合がある。
一方、露点が高すぎると、鋼板の表面上に外部酸化層が形成され、めっき層が得られないことがある。
また、上記の露点範囲内であっても、水素濃度が低すぎると、酸素ポテンシャルが過剰となり、外部酸化層が形成されてめっき層が得られないことや、また内部酸化物層が十分に形成されないことがある。そのため、耐LME性が不十分になる場合がある
一方、水素濃度が高すぎると、酸素ポテンシャルが不足となり、内部酸化物層が十分に形成されず、外部酸化層が形成されてめっき層が得られないおそれがある。また、内部酸化物が十分多量に生成されないと、内部酸化物によるフェライト相粒界のピン留め効果が不足し、フェライト相が粗大化する場合もある。そのため、耐LME性が不十分になる場合がある。
 さらに、焼鈍工程を行う際、特にブラシ研削処理前に鋼板の内部酸化層を除去しておくことが有効である。上述した圧延工程、特に熱延工程の間に鋼板の表層に内部酸化層が形成される場合がある。そのような圧延工程で形成された内部酸化層は、焼鈍工程において内部酸化物を形成するのを阻害するおそれがあり、また内部酸化物によるフェライト相粒界のピン留め効果が不足し、フェライト相が粗大化するおそれもあるため、当該内部酸化層は酸洗処理等により焼鈍前に除去しておくことが好ましい。より具体的には、焼鈍工程を行う際の冷延鋼板の内部酸化層の深さは、0.5μm以下、好ましくは0.3μm以下、より好ましくは0.2μm以下、さらに好ましくは0.1μm以下にしておくとよい。
 上述した各工程を行うことにより、鋼板の表層に微細なフェライト相およびその内部酸化物が生成された鋼板を得ることができる。
 <めっき鋼板の製造方法>
 以下で、本発明に係るめっき鋼板の好ましい製造方法について説明する。以下の説明は、本発明に係るめっき鋼板を製造するための特徴的な方法の例示を意図するものであって、当該めっき鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明に係るめっき鋼板は、上述のように製造した鋼板上にZnを含むめっき層を形成するめっき処理工程を行うことで得ることができる。
 [めっき処理工程]
 めっき処理工程は、当業者に公知の方法に従って行えばよい。めっき処理工程は、例えば、溶融めっきにより行ってもよく、電気めっきにより行ってもよい。好ましくは、めっき処理工程は溶融めっきにより行われる。めっき処理工程の条件は、所望のめっき層の成分組成、厚さ及び付着量等を考慮して適宜設定すればよい。めっき処理の後、合金化処理を行ってもよい。典型的には、めっき処理工程の条件は、Al:0~60.0%、Mg:0~15.0%、Fe:0~15%、Ni:0~20%、及びSi:0~3%を含み、残部がZn及び不純物からなるめっき層を形成するように設定するとよい。より具体的には、めっき処理工程の条件は、例えば、Zn-0.2%Al(GI)、Zn-0.8%Al、Zn-4.5%Al、Zn-0.09%Al-10%Fe(GA)、Zn-1.5%Al-1.5%Mg、又はZn-11%Al-3%Mg-0.2%Si、Zn-11%Ni、Zn-15%Mgを形成するように適宜設定すればよい。耐LME性向上の観点から、めっき層中のAlは0.3~1.5%が望ましい。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 めっき鋼板の実施例、比較例について、特に、断りの無い限り、以下の手順で試料を作製した。一部の比較例等で、採用される特異な条件については別途説明される。
 (鋼板試料の作製) 成分組成を調整した溶鋼を鋳造して鋼片を形成し、鋼片を熱間圧延し、酸洗した後に冷間圧延して冷延鋼板を得た。次いで、室温まで空冷し、冷延鋼板に酸洗処理を施して圧延により形成された内部酸化層を表1に記載の焼鈍前の内部酸化層深さ(μm)まで除去した。次いで、各冷延鋼板からJIS G0417:1999に準拠した方法でサンプルを採取し、鋼板の成分組成をICP-MS法等により分析した。測定した鋼板の成分組成を表1に示す。使用した鋼板の板厚は全て1.6mmであった。
 次いで、一部の冷延鋼板について、NaOH 2.0%水溶液を塗布し、重研削ブラシ(ホタニ社製D-100)を用いて、ブラシ圧下量2.0mm、回転数600rpmで、ブラシ研削する前処理を行い、その後、表1、2に示す水素濃度、露点、保持温度及び保持時間により焼鈍処理を行い、各鋼板試料を作製した。前処理の有無、及び焼鈍処理の条件(加湿帯、水素濃度(%)、露点(℃)、保持温度(℃)、及び保持時間(秒))を表1、2に示す。加湿帯の欄の「昇温」とは、300℃以上から保持温度までの期間に前述の水素濃度、露点の雰囲気で加湿することを意味し、加湿帯の欄の「等温」とは、保持時間中に前述の水素濃度、露点の雰囲気で加湿することを意味する。焼鈍時の昇温速度は、1~10℃/秒とした。上記焼鈍処理において、冷延鋼板に対して圧延方向に0.1~20MPa以上の張力をかけた状態で焼鈍処理を行った。なお、各鋼板試料について、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、引張試験をJIS Z 2241(2011)に準拠して行った。結果、No.1については、引張強度が440MPa未満であり、それ以外については440MPa以上であった。
 (めっき鋼板試料の作製)
 得られた各鋼板試料を100mm×200mmのサイズに切断した後、表1、2に示すめっき種を形成するためのめっき処理を行うことにより、めっき鋼板試料を作製した。表1、2において、めっき種aは「合金化溶融亜鉛めっき鋼板(GA)」、めっき種bは「溶融Zn-0.2%Alめっき鋼板(GI)」、めっき種cは「溶融Zn-(0.3~1.5)%Alめっき鋼板(Al含有量を表1、2に記載)」、めっき種dは「電気Znめっき(Al組成0.01%未満)」を意味する。溶融亜鉛めっき工程では、切断した試料を440℃の溶融亜鉛めっき浴に3秒間浸漬した。浸漬後、100mm/秒で引き抜き、N2ワイピングガスによりめっき付着量を50g/m2に制御した。めっき種aについては、その後500℃で合金化処理を行った。
 得られためっき鋼板試料について、以下の評価手法で、各評価項目について評価を行なった。例1と同様に、No.1については、引張強度が440MPa未満であり、それ以外については440MPa以上であった。耐LME性については、めっき種cでAl含有量が0.3~1.5質量%である場合に、耐LME性が向上した。結果を表2に示す。
 (鋼板試料の表層の分析:微細なフェライト相の数密度)
 上記のように作成した各鋼板試料を25mm×15mmに切断し、切断後の試料を樹脂に埋め込み鏡面研磨を施し、各鋼板試料の断面について、SEMで観察した。断面SEM像から、めっき層/鋼板の界面を含むよう、FIB加工を用いてTEM観察用の試験片を採取した。TEM観察にて、鋼板表面(めっき層/鋼板の界面)から鋼板側へ深さ2μmの範囲で、本願で示す形状に該当するフェライト相を特定し、その数密度を測定した。観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から2.0μmまでとし、幅方向(鋼板の表面と平行な方向)については、上記TEM画像の任意の位置の1.0μmとした。得られた各鋼板試料についての各領域のTEM画像を二値化し、二値化像からフェライト相の面積を算出し、当該面積と等しい面積を有する円の直径、すなわち円相当直径として当該フェライト相の円相当径(nm)を求め、1μm以下の円相当径範囲内のものを微細なフェライト相とした。さらにTEM画像内の微細なフェライト相の個数を数えた。こうして求めた10箇所の二値化像における微細なフェライト相の個数の平均値を、微細なフェライト相の数密度とした。各鋼板試料についての微細なフェライト相の数密度(個/μm2)を表1、2に示す。
 (鋼板試料の表層の分析:内部酸化物の数密度)
 上記のように作成した各鋼板試料を25mm×15mmに切断し、切断後の試料を樹脂に埋め込み鏡面研磨を施し、各鋼板試料の断面について、SEMで観察した。断面SEM像から、めっき層/鋼板の界面を含むよう、FIB加工を用いてTEM観察用の試験片を採取した。TEM観察にて、鋼板表面(めっき層/鋼板の界面)から鋼板側へ深さ2μmの範囲で、本願で示す形状に該当するフェライト相の内部酸化物を特定し、その数密度を測定した。観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から2.0μmまでとし、幅方向(鋼板の表面と平行な方向)については、上記TEM画像の任意の位置の1.0μmとした。得られた各鋼板試料についての各領域のTEM画像を二値化し、二値化像から内部酸化物の面積を算出し、当該面積と等しい面積を有する円の直径、すなわち円相当直径として当該内部酸化物の粒径(nm)を求め、2~100nmの粒径範囲内のものを内部酸化物とした。さらにTEM画像内の内部酸化物の個数を数えた。こうして求めた10箇所の二値化像における内部酸化物の個数の平均値を、微細な内部酸化物の数密度とした。各鋼板試料についてのフェライト相の内部酸化物の数密度(個/μm2)を表1、2に示す。
 また、内部酸化物について、アスペクト比および短径についても測定を行い、所定のアスペクト比と短径を有する内部酸化物の数密度(個/μm2)も表1、2に示す。
 加えて、内部酸化物について、EDS(Energy Dispersed Spectroscopy:エネルギー分散型分光法)によって元素濃度測定を行ない、Al濃度が20質量%以上である内部酸化物の数密度(個/μm2)も表1、2に示す。
 (耐LME性評価)
 100×100mmの各めっき鋼板試料をスポット溶接に供した。50mm×100mmのサイズに切断したものを2枚準備し、その2枚のZn系めっき鋼板試料に対して、ドームラジアス型の先端直径8mmの溶接電極を用いて、打角5°、加圧力4.0kN、通電時間0.5秒、通電電流9kAにてスポット溶接を行うことで、溶接部材を得た。溶接部を断面研磨した後、光学顕微鏡で観察し、溶接部の断面に生じたLME割れの長さを測定し、以下のように評価した。その結果を表1、2に示す。表1、2のめっき種は各表に記載の通りとした。

評価AAA:LME割れなし 
評価AA:LME亀裂長さ0μm超~100μm
評価A:LME亀裂長さ100μm超~500μm
評価B:LME亀裂長さ500μm超
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の試料No.1~21、37~40、51~53については、鋼板の成分組成、微細なフェライト相およびその内部酸化物の数密度が本発明の範囲を満たしていたため、高い強度及び耐LME性を有していた。表2の試料No.22~36、41~47は、本発明の範囲外の比較例である。試料No.22は、C量が不足し、十分な強度を得られなかった。試料No.23は焼鈍時の露点が低く、十分に内部酸化層が形成されず、また微細なフェライト相が十分に形成されず、高い耐LME性を得られなかった。試料No.24は焼鈍時の露点が高く、鋼板の表面上に外部酸化層が形成され、めっき層が得られなかった。試料No.25は焼鈍時の保持温度が高く、内部酸化物が粗大化し、所望の内部酸化物が得られず、また、フェライト相も成長し所望の微細なフェライト相が得られず、高い耐LME性を得られなかった。試料No.26は焼鈍時の保持温度が低く、十分に内部酸化物が形成されず、また、内部酸化物によるフェライト相粒界のピン留め効果が不足し、フェライト相が粗大化し、高い耐LME性を得られなかった。試料No.27は焼鈍前のブラシ研削処理を行わなかったため、十分に内部酸化物が得られず、また微細なフェライト相が形成されず、高い耐LME性を得られなかった。試料No.28は焼鈍時の保持時間が長く、内部酸化物が粗大化し、内部酸化物が十分多量に生成されなかった。また、内部酸化物によるフェライト相粒界のピン留め効果が不足し、所望のフェライト相が形成されなかった。そのため、高い耐LME性を得られなかった。試料No.29及び31はそれぞれSi量及びMn量が過剰であり、鋼板の表面上に外部酸化層が形成され、めっき層が得られなかった。試料No.30及び32はそれぞれSi量及びMn量が不足し、微細なフェライト相が十分に形成されず、高い耐LME性を得られなかった。試料No.33はAl量が過剰であり、鋼板の表面上に外部酸化層が形成され、めっき層が得られなかった。試料No.34はAl量が不足し、十分に内部酸化物が形成されず、高い耐LME性を得られなかった。試料No.35は焼鈍前のブラシ研削処理を行わなかったため、十分に内部酸化物が得られず、また微細なフェライト相が形成されず、高い耐LME性を得られなかった。試料No.36は、焼鈍時の加湿雰囲気として露点20℃で4vol%Hを用い、鋼板の表面上に外部酸化層が形成され、めっき層が得られなかった。試料No.41は、冷延鋼板に酸洗処理を施さず、圧延により形成された内部酸化層を残して、その後表1に記載の条件のブラシ研削と熱処理を行った。冷延鋼板の内部酸化層の深さが0.7μmであったため、微細なフェライト相およびその内部酸化物が十分に形成されず、高い耐LME性を得られなかった。No.42は焼鈍時の保持時間が長く、内部酸化物が粗大化し、内部酸化物が十分多量に生成されなかった。また、内部酸化物によるフェライト相粒界のピン留め効果が不足し、所望のフェライト相が形成されなかった。そのため、高い耐LME性を得られなかった。試料No.43は、焼鈍時の露点が低く(言い換えると、10℃超ではなく)、十分に内部酸化層が形成されず、高い耐LME性を得られなかった。No.44は焼鈍時の露点が高く、鋼板の表面上に外部酸化層が形成され、めっき層が得られなかった。試料No.45は、焼鈍時の加湿雰囲気として露点11℃で7vol%Hを用い、外部酸化層が形成され、内部酸化層が十分に形成されず、耐LME性が不十分であった。試料No.46は、焼鈍時の加湿雰囲気として露点11℃で22vol%Hを用い、内部酸化層が十分に形成されないで、内部酸化物によるフェライト相粒界のピン留め効果が不足し、フェライト相が粗大化し、耐LME性が不十分であった。試料No.47は、昇温時に加湿を行わず、等温時のみに加湿を行ったので、内部酸化物が十分多量に生成されなかった。そのため、高い耐LME性を得られなかった。
 発明例では、鋼板表面近傍に微細なフェライト相およびその内部酸化物が確認された。そのため、高い耐LME性が得られた。一方、比較例では、鋼板表面近傍に微細なフェライト相およびその内部酸化物が適切に形成されていない。そのため、耐LME性が劣っていること、またはメッキ層が得られないこと、の少なくとも一つが確認された。
 本発明によれば、高い耐LME性を有する高強度のめっき鋼板を提供することが可能となり、当該めっき鋼板は自動車、家電製品、建材等の用途、特に自動車用に好適に用いることができ、自動車用鋼板及び自動車用めっき鋼板として高い衝突安全性、長寿命化が期待される。したがって、本発明は産業上の価値が極めて高い発明といえるものである。

Claims (5)

  1.  鋼板上にZnを含有するめっき層を有するめっき鋼板であって、該鋼板の引張強度が780MPa以上であり、該鋼板の化学成分が質量%で、
     C:0.05~0.40%、
     Si:0.2~3.0%、
     Mn:0.1~5.0%、
     sol.Al:0.4~1.50%、
     P:0.0300%以下、
     S:0.0300%以下、
     N:0.0100%以下、
     B:0~0.010%、
     Ti:0~0.150%、
     Nb:0~0.150%、
     V:0~0.150%、
     Cr:0~2.00%、
     Ni:0~2.00%、
     Cu:0~2.00%、
     Mo:0~1.00%、
     W:0~1.00%、
     Ca:0~0.100%、
     Mg:0~0.100%、
     Zr:0~0.100%、
     Hf:0~0.100%、及び
     REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有し、
     前記鋼板の任意の垂直断面において、表層から深さ2μmまでの領域に、円相当径1μm以下のフェライト相が数密度2~30個/μm含有され、該フェライト相内に、円相当径2~100nmの内部酸化物が数密度3個/μm以上含有される、めっき鋼板。
  2.  前記内部酸化物の形状がアスペクト比1.5~20であり、短径が1~20nmであり、数密度が3~30個/μmである、請求項1に記載のめっき鋼板。
  3.  前記内部酸化物が、AlとO、AlとSiとO、AlとMnとO、AlとSiとMnとOのいずれか1種以上であり、前記内部酸化物に含有されるAlが20~53質量%である請求項1又は2に記載のめっき鋼板。
  4.  前記めっき層が、質量%で、Al:0.3~1.5%を含有し、残部がZn及び不純物からなる成分組成を有する、請求項1~3のいずれか1項に記載のめっき鋼板。
  5.  前記めっき層が、質量%で、Al:0~0.1%未満を含有し、残部がZn及び不純物からなる成分組成を有する、請求項1~3のいずれか1項に記載のめっき鋼板。
PCT/JP2022/036832 2021-10-01 2022-09-30 めっき鋼板 WO2023054705A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280050754.0A CN117813411A (zh) 2021-10-01 2022-09-30 镀覆钢板
MX2024003173A MX2024003173A (es) 2021-10-01 2022-09-30 Lamina de acero enchapada.
KR1020247004543A KR20240033693A (ko) 2021-10-01 2022-09-30 도금 강판
US18/579,732 US20240318288A1 (en) 2021-10-01 2022-09-30 Plated steel sheet
JP2023551922A JPWO2023054705A1 (ja) 2021-10-01 2022-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021162623 2021-10-01
JP2021-162623 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054705A1 true WO2023054705A1 (ja) 2023-04-06

Family

ID=85780799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036832 WO2023054705A1 (ja) 2021-10-01 2022-09-30 めっき鋼板

Country Status (6)

Country Link
US (1) US20240318288A1 (ja)
JP (1) JPWO2023054705A1 (ja)
KR (1) KR20240033693A (ja)
CN (1) CN117813411A (ja)
MX (1) MX2024003173A (ja)
WO (1) WO2023054705A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102901A1 (ja) * 2012-12-25 2014-07-03 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板とその製造方法
WO2019116531A1 (ja) * 2017-12-15 2019-06-20 日本製鉄株式会社 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP2020524743A (ja) * 2017-06-20 2020-08-20 アルセロールミタル 抵抗スポット溶接性が高い亜鉛めっき鋼板
JP2020179413A (ja) * 2019-04-25 2020-11-05 Jfeスチール株式会社 スポット溶接部材
WO2021112584A1 (ko) * 2019-12-03 2021-06-10 주식회사 포스코 표면품질과 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2022071305A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼板
WO2022149511A1 (ja) * 2021-01-08 2022-07-14 日本製鉄株式会社 溶接継手及び自動車部品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193614A (ja) 2013-07-12 2018-12-06 株式会社神戸製鋼所 めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法
MX2017009017A (es) 2015-01-09 2018-04-13 Kobe Steel Ltd Lamina de acero chapada de alta resistencia y metodo para su produccion.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102901A1 (ja) * 2012-12-25 2014-07-03 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板とその製造方法
JP2020524743A (ja) * 2017-06-20 2020-08-20 アルセロールミタル 抵抗スポット溶接性が高い亜鉛めっき鋼板
WO2019116531A1 (ja) * 2017-12-15 2019-06-20 日本製鉄株式会社 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP2020179413A (ja) * 2019-04-25 2020-11-05 Jfeスチール株式会社 スポット溶接部材
WO2021112584A1 (ko) * 2019-12-03 2021-06-10 주식회사 포스코 표면품질과 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2022071305A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼板
WO2022149511A1 (ja) * 2021-01-08 2022-07-14 日本製鉄株式会社 溶接継手及び自動車部品

Also Published As

Publication number Publication date
US20240318288A1 (en) 2024-09-26
KR20240033693A (ko) 2024-03-12
CN117813411A (zh) 2024-04-02
MX2024003173A (es) 2024-03-25
JPWO2023054705A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2022230064A1 (ja) 鋼板及びめっき鋼板
WO2022230400A1 (ja) 鋼板及びめっき鋼板
WO2023054717A1 (ja) 鋼溶接部材
WO2022230399A1 (ja) 鋼板及びめっき鋼板
WO2022230401A1 (ja) 鋼板及びめっき鋼板
WO2022230402A1 (ja) 合金化溶融亜鉛めっき鋼板
JP7506350B2 (ja) 鋼溶接部材
WO2023054705A1 (ja) めっき鋼板
WO2022230059A1 (ja) 鋼板及びめっき鋼板
WO2024053669A1 (ja) 溶接継手
WO2024053667A1 (ja) 鋼板及びめっき鋼板
WO2024053663A1 (ja) めっき鋼板
WO2024150824A1 (ja) 溶接継手
WO2024150820A1 (ja) 溶接継手
WO2024150822A1 (ja) 鋼板及びめっき鋼板
JP2022169169A (ja) 鋼板及びめっき鋼板
JP2022169341A (ja) 鋼板及びめっき鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551922

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202317087639

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 18579732

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280050754.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2401000455

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20247004543

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004543

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22876567

Country of ref document: EP

Kind code of ref document: A1