WO2022230064A1 - 鋼板及びめっき鋼板 - Google Patents
鋼板及びめっき鋼板 Download PDFInfo
- Publication number
- WO2022230064A1 WO2022230064A1 PCT/JP2021/016832 JP2021016832W WO2022230064A1 WO 2022230064 A1 WO2022230064 A1 WO 2022230064A1 JP 2021016832 W JP2021016832 W JP 2021016832W WO 2022230064 A1 WO2022230064 A1 WO 2022230064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- less
- layer
- oxide
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 342
- 239000010959 steel Substances 0.000 title claims abstract description 342
- 239000010410 layer Substances 0.000 claims abstract description 147
- 229910006639 Si—Mn Inorganic materials 0.000 claims abstract description 57
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 49
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 47
- 239000002344 surface layer Substances 0.000 claims abstract description 43
- 238000007747 plating Methods 0.000 claims description 88
- 239000012535 impurity Substances 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 230000002950 deficient Effects 0.000 abstract 2
- 229910052739 hydrogen Inorganic materials 0.000 description 100
- 239000001257 hydrogen Substances 0.000 description 100
- 239000011572 manganese Substances 0.000 description 73
- 238000000137 annealing Methods 0.000 description 59
- 150000002431 hydrogen Chemical class 0.000 description 51
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 49
- 238000000034 method Methods 0.000 description 40
- 239000000203 mixture Substances 0.000 description 38
- 230000000694 effects Effects 0.000 description 24
- 230000008569 process Effects 0.000 description 24
- 239000011777 magnesium Substances 0.000 description 22
- 230000001965 increasing effect Effects 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 21
- 239000011701 zinc Substances 0.000 description 21
- 239000010960 cold rolled steel Substances 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 19
- 238000005096 rolling process Methods 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 18
- 238000001878 scanning electron micrograph Methods 0.000 description 18
- 238000000227 grinding Methods 0.000 description 17
- 238000009792 diffusion process Methods 0.000 description 14
- 239000011651 chromium Substances 0.000 description 12
- 229910052761 rare earth metal Inorganic materials 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 230000006866 deterioration Effects 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 238000005098 hot rolling Methods 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 239000011575 calcium Substances 0.000 description 9
- 235000013339 cereals Nutrition 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 238000005097 cold rolling Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 238000005336 cracking Methods 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000001737 promoting effect Effects 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000004626 scanning electron microscopy Methods 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003578 releasing effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910001335 Galvanized steel Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000008397 galvanized steel Substances 0.000 description 3
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0252—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
Definitions
- the present invention relates to steel sheets and plated steel sheets. More specifically, the present invention relates to a high-strength steel sheet and plated steel sheet having high plateability and hydrogen-releasing properties.
- Si and Mn which are easily oxidizable elements, combine with oxygen in the atmosphere during the heat treatment, and can form a layer containing oxides near the surface of the steel sheet.
- the form of such a layer includes a form in which an oxide containing Si or Mn is formed as a film on the outside (surface) of the steel sheet (external oxide layer), and an form in which an oxide is formed inside (surface layer) of the steel sheet. morphology (internal oxide layer).
- a plating layer for example, a Zn-based plating layer
- the oxide exists as a film on the surface of the steel sheet, so the steel composition (for example, Fe) and the plating Interdiffusion with components (for example, Zn) is hindered, and the adhesion between steel and plating may be affected, resulting in insufficient plateability (for example, increased unplated areas). Therefore, from the viewpoint of improving plateability, a steel sheet having an internal oxide layer is more preferable than a steel sheet having an external oxide layer.
- Patent Documents 1 and 2 disclose a plated steel sheet having a zinc-based plating layer on a base steel sheet containing C, Si, Mn, etc., wherein Si and/or Mn A high-strength plated steel sheet having a tensile strength of 980 MPa or more is described, which has an internal oxide layer containing oxides of
- Patent Document 3 in the case of high Si content steel with a Si concentration of 0.3% or more in the steel, Si in the steel diffuses into the steel plate surface layer as an oxide when the steel plate surface is heated. Since oxides impede the wettability of the plating and deteriorate the adhesion of the plating, a method for producing a high-strength hot-dip galvanized steel sheet with a high Si content in which the annealing conditions are appropriately controlled has been proposed.
- Patent Documents 1 and 2 in an oxidation zone, oxidation is performed at an air ratio or air-fuel ratio of 0.9 to 1.4, and then in a reduction zone, the oxide film is reduced in a hydrogen atmosphere. It is taught that by controlling the average depth of the layer to 4 ⁇ m or more and allowing the internal oxide layer to function as a hydrogen trap site, hydrogen penetration can be prevented and hydrogen embrittlement can be suppressed. Similarly, Patent Document 3 specifically discloses heating in an oxidation zone at an air ratio of 0.95 to 1.10. However, none of these documents discusses control of the form of oxides present in the internal oxide layer, and there is room for improvement in terms of hydrogen discharge (hydrogen embrittlement resistance).
- an object of the present invention is to provide a high-strength steel sheet and a plated steel sheet that have high plateability and hydrogen-releasing properties.
- the present inventors formed an oxide in the surface layer of the steel sheet, that is, in the interior of the steel sheet, and furthermore controlled the form of the oxide present in the surface layer of the steel sheet. It has been found that it is important to control the Si--Mn depleted layer formed on the surface layer of the steel sheet due to the formation of oxides within a predetermined range of thickness and composition. More specifically, the present inventors ensure high plating properties by forming internal oxides, and grain boundary type oxides that exist along the grain boundaries of the metal structure as the form of oxides is formed in large amounts, and the grain boundary type oxide functions as an escape route for hydrogen that has entered the steel during annealing, promoting the release of hydrogen from the steel to the outside of the system.
- the present invention was made based on the above findings, and the gist thereof is as follows. (1) in % by mass, C: 0.05 to 0.40%, Si: 0.2 to 3.0%, Mn: 0.1 to 5.0%, sol. Al: 0 to less than 0.4000%, P: 0.0300% or less, S: 0.0300% or less, N: 0.0100% or less, B: 0 to 0.010%, Ti: 0 to 0.150%, Nb: 0 to 0.150%, V: 0 to 0.150%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 1.00%, W: 0 to 1.00%, Ca: 0-0.100%, Mg: 0-0.100%, Zr: 0 to 0.100%, A steel sheet containing Hf: 0 to 0.100% and REM: 0 to 0.100%, with the balance being Fe and impurities, A grain boundary type oxide is included in the surface layer of the steel sheet, When
- grain boundary type oxides present along the grain boundaries of the metal structure in the surface layer of the steel sheet function as an escape route for hydrogen that has entered the steel, and hydrogen from the steel to the outside of the system.
- the hydrogen discharge property can be greatly improved, and as a result, It is possible to greatly reduce the amount of hydrogen accumulated in the.
- the granular oxide is formed inside the steel sheet, when forming the coating layer, the steel components and the coating components are sufficiently interdiffused, and high coating properties can be obtained. becomes possible. Therefore, according to the present invention, it is possible to obtain high plateability and hydrogen exhaustability in a high-strength steel sheet.
- FIG. 1 shows a schematic view of a cross-section of a steel sheet with an external oxide layer
- FIG. 1 shows a schematic view of a cross-section of an exemplary steel plate according to the invention
- FIG. 1 shows a schematic diagram for explaining the measurement of ratio A in the present invention.
- the steel sheet according to the present invention is mass%, C: 0.05 to 0.40%, Si: 0.2 to 3.0%, Mn: 0.1 to 5.0%, sol. Al: 0 to less than 0.4000%, P: 0.0300% or less, S: 0.0300% or less, N: 0.0100% or less, B: 0 to 0.010%, Ti: 0 to 0.150%, Nb: 0 to 0.150%, V: 0 to 0.150%, Cr: 0 to 2.00%, Ni: 0 to 2.00%, Cu: 0 to 2.00%, Mo: 0 to 1.00%, W: 0 to 1.00%, Ca: 0-0.100%, Mg: 0-0.100%, Zr: 0 to 0.100%, A steel sheet containing Hf: 0 to 0.100% and REM: 0 to 0.100%, with the balance being Fe and impurities, A grain boundary type oxide is included in the surface layer of the steel sheet, When observing the cross section of the surface layer of the steel sheet, When observing the
- a layer containing oxides is formed in the vicinity of the surface of the steel sheet by combining relatively easily oxidizable components (eg, Si, Mn) in the steel sheet with oxygen in the annealing atmosphere.
- relatively easily oxidizable components eg, Si, Mn
- an external oxide layer 2 is formed in a film on the surface of the base steel 3 (that is, on the outside of the base steel 3).
- the external oxide layer 2 When the external oxide layer 2 is formed in the form of a film on the surface of the base material steel 3, when a plating layer (for example, a zinc-based plating layer) is formed, the external oxide layer 2 becomes a plating component (for example, Zn). Since it inhibits interdiffusion with steel components (for example, Fe), sufficient adhesion between the steel and the plating cannot be ensured, and unplated areas where no plating layer is formed may occur.
- a plating layer for example, a zinc-based plating layer
- the steel plate 11 according to the present invention does not form an external oxide layer 2 on the surface of the base steel 3 like the steel plate 1 shown in FIG. , oxides 12 , 13 (preferably only oxide 13 ) are present inside the base steel 14 . Therefore, when a plating layer is formed on the surface of the steel sheet 11, the steel sheet 11 according to the present invention in which oxides are formed inside the base steel has a higher plating composition than the steel sheet 1 having the outer oxide layer 2. Sufficient interdiffusion with steel components occurs, making it possible to obtain high plating properties. Therefore, the present inventors have found that it is effective to control the conditions during annealing to form oxides inside the steel sheet from the viewpoint of obtaining high plateability.
- the non-plated portion portion where the plated layer is not formed
- the plating layer can be formed in the absence of any.
- highly plated when used for a plated steel sheet indicates a plated steel sheet with very little (for example, 5.0 area % or less) or no non-plated portion.
- the present inventors controlled the form of oxides present in the surface layer of the steel sheet, and reduced the Si—Mn depleted layer generated on the surface layer of the steel sheet due to the formation of such oxides to a predetermined thickness and By controlling the composition within the range, more specifically, by making most or all of the oxide a grain boundary type oxide that connects the inside of the steel sheet and the surface of the steel sheet, the oxide penetrates during the annealing treatment. Furthermore, by forming a Si-Mn depleted layer having a predetermined thickness and composition on the surface layer of the steel sheet, hydrogen diffusion in the steel is promoted, and as a result, hydrogen in the steel can be efficiently discharged out of the system.
- the present inventors analyzed in detail the relationship between the morphology of oxides and their effectiveness as escape routes for hydrogen. It has been found that it is effective to increase the ratio A), more specifically to increase the ratio A to 50% or more. Although not bound by any particular theory, it is believed that the ability of the oxides in the steel sheet to discharge penetrating hydrogen has a positive correlation with the ratio A of the oxides. That is, it is thought that the presence of the grain boundary type oxide at a high ratio A increases escape routes for discharging hydrogen that has entered the steel sheet, and improves the hydrogen discharging function.
- the present inventors controlled the conditions during the production of the steel sheet, especially during the annealing treatment, and performed intergranular oxidation, which functions as an escape route for hydrogen entering during the annealing treatment. We have found that it is important to have a high proportion of matter and preferably to a greater depth.
- the present inventors have investigated the morphology of the Si—Mn depletion layer produced by the reduction in the surrounding Si and Mn concentrations due to the formation of internal oxides such as oxides 12 and 13 as shown in FIG.
- the Si-Mn depleted layer is within a predetermined thickness and composition range, more specifically, the thickness of the Si-Mn depleted layer is the surface of the steel sheet
- the Si and Mn contents of the Si—Mn depleted layer that is 3.0 ⁇ m or more and does not contain oxides at the 1/2 position of the thickness are 10% of the Si and Mn contents at the center of the thickness of the steel sheet, respectively.
- Si depletion rate and Mn depletion rate are also referred to as Si depletion rate and Mn depletion rate.
- Si depletion rate and Mn depletion rate are also referred to as Si depletion rate and Mn depletion rate.
- Mn inhibits the diffusion of hydrogen, resulting in a slow hydrogen diffusion rate in steel.
- FIG. 2 when internal oxides such as oxides 12 and 13 are formed on the surface layer of the steel sheet, Si and Mn dissolved in the steel are consumed in the formation of the internal oxides.
- the Si—Mn depleted layer is made relatively thick, specifically, the thickness of the Si—Mn depleted layer is set to the surface of the steel sheet (if there is a coating layer on the surface of the steel sheet, the coating layer and the steel sheet.
- the Si and Mn content of the Si—Mn depleted layer is sufficiently low while sufficiently securing the diffusion path of hydrogen by controlling the distance from the interface of the ) to 3.0 ⁇ m or more, specifically Si and Mn depleted
- the ratios to be less than 10%, it is believed that the amounts of solid solution Si and Mn that inhibit hydrogen diffusion can be sufficiently reduced.
- the inclusion of the Si—Mn depleted layer whose thickness and composition are controlled within the above ranges promotes the diffusion of hydrogen and improves the ability to remove hydrogen from the steel. Therefore, by combining the grain boundary type oxide and the Si—Mn depleted layer, it is possible to remarkably improve the hydrogen discharge property.
- the present inventors found that the granular oxide formed on the surface layer, which is an oxide different from the grain boundary oxide, It has been found that it is important to suppress the production of substances as much as possible. Granular oxides are selectively formed on the surface layer and inhibit the formation of grain boundary oxides on the surface layer. In addition, when the particulate type oxide is excessively present, it functions as a trap site for hydrogen trying to escape from the system, and may deteriorate the hydrogen discharge function.
- the generation of granular type oxides is suppressed, more specifically, the number of granular type oxides We have found that it is also important to control the density (number per unit area).
- the steel plate according to the present invention will be described in detail below.
- the thickness of the steel sheet according to the present invention is not particularly limited, but may be, for example, 0.1 to 3.2 mm.
- C (C: 0.05-0.40%) C (carbon) is an important element for ensuring the strength of steel.
- the C content should be 0.05% or more.
- the C content is preferably 0.07% or more, more preferably 0.10% or more, still more preferably 0.12% or more.
- the C content should be 0.40% or less.
- the C content may be 0.38% or less, 0.35% or less, 0.32% or less, or 0.30% or less.
- Si (Si: 0.2 to 3.0%) Si (silicon) is an effective element for improving the strength of steel.
- the Si content is set to 0.2% or more in order to ensure sufficient strength and to sufficiently generate desired oxides, particularly grain boundary type oxides, inside the steel sheet.
- the Si content is preferably 0.3% or more, more preferably 0.5% or more, and still more preferably 1.0% or more.
- the Si content should be 3.0% or less.
- the Si content may be 2.8% or less, 2.5% or less, 2.3% or less, or 2.0% or less.
- Mn manganese
- Mn manganese
- the Mn content is set to 0.1% or more in order to ensure sufficient strength and to sufficiently generate desired oxides, particularly grain boundary type oxides, inside the steel sheet.
- the Mn content is preferably 0.5% or more, more preferably 1.0% or more, still more preferably 1.5% or more.
- the Mn content should be 5.0% or less.
- the Mn content may be 4.5% or less, 4.0% or less, 3.5% or less, or 3.0% or less.
- Al (aluminum) is an element that acts as a deoxidizing element.
- the Al content may be 0%, the Al content is preferably 0.0010% or more in order to obtain a sufficient deoxidizing effect.
- the Al content is more preferably 0.0050% or more, still more preferably 0.0100% or more, and even more preferably 0.0150% or more.
- the Al content should be less than 0.4000%.
- Al content is 0.3900% or less, 0.3800% or less, 0.3700% or less, 0.3500% or less, 0.3400% or less, 0.3300% or less, 0.3000% or less, or 0.2000 % or less.
- the Al content means the so-called acid-soluble Al content (sol. Al).
- P 0.0300% or less
- P (phosphorus) is an impurity generally contained in steel. Excessive P content may reduce weldability. Therefore, the P content should be 0.0300% or less.
- the P content is preferably 0.0200% or less, more preferably 0.0100% or less, still more preferably 0.0050% or less.
- the lower limit of the P content is 0%, but from the viewpoint of manufacturing costs, the P content may be more than 0% or 0.0001% or more.
- S sulfur
- S is an impurity generally contained in steel. If the S content is excessive, the weldability is lowered, and furthermore, the amount of precipitation of MnS increases, which may lead to a decrease in workability such as bendability. Therefore, the S content should be 0.0300% or less.
- the S content is preferably 0.0100% or less, more preferably 0.0050% or less, still more preferably 0.0020% or less.
- the lower limit of the S content is 0%, but from the viewpoint of desulfurization cost, the S content may be more than 0% or 0.0001% or more.
- N nitrogen
- nitrogen is an impurity generally contained in steel. If N is contained excessively, weldability may deteriorate. Therefore, the N content should be 0.0100% or less.
- the N content is preferably 0.0080% or less, more preferably 0.0050% or less, still more preferably 0.0030% or less. Although the lower limit of the N content is 0%, the N content may be more than 0% or 0.0010% or more from the viewpoint of manufacturing cost.
- the basic chemical composition of the steel sheet according to the present invention is as described above. Further, the steel sheet may contain the following arbitrary elements as necessary. The content of these elements is not essential, and the lower limit of the content of these elements is 0%.
- B (B: 0 to 0.010%)
- B (boron) is an element that increases hardenability and contributes to strength improvement, and segregates at grain boundaries to strengthen the grain boundaries and improve toughness.
- the B content may be 0%, but may be contained as necessary in order to obtain the above effects.
- the B content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
- the B content is preferably 0.010% or less, and may be 0.008% or less or 0.006% or less.
- Ti titanium
- Ti titanium
- Ti titanium
- Ti is an element that precipitates as TiC during cooling of steel and contributes to an improvement in strength.
- the Ti content may be 0%, it may be contained as necessary in order to obtain the above effect.
- the Ti content may be 0.001% or more, 0.003% or more, 0.005% or more, or 0.010% or more.
- the Ti content is preferably 0.150% or less, and may be 0.100% or less or 0.050% or less.
- Nb 0 to 0.150%
- Nb niobium
- the Nb content may be 0%, it may be contained as necessary in order to obtain the above effect.
- the Nb content may be 0.001% or more, 0.005% or more, 0.010% or more, or 0.015% or more.
- the Nb content is preferably 0.150% or less, and may be 0.100% or less or 0.060% or less.
- V vanadium
- V vanadium
- the V content may be 0%, it may be contained as necessary in order to obtain the above effects.
- the V content may be 0.001% or more, 0.010% or more, 0.020% or more, or 0.030% or more.
- the V content is preferably 0.150% or less, and may be 0.100% or less or 0.060% or less.
- Cr Cr (chromium) is effective in increasing the hardenability of steel and increasing the strength of steel.
- the Cr content may be 0%, it may be contained as necessary in order to obtain the above effect.
- the Cr content may be 0.01% or more, 0.10% or more, 0.20% or more, 0.50% or more, or 0.80% or more.
- the Cr content is preferably 2.00% or less, and may be 1.80% or less or 1.50% or less.
- Ni (Ni: 0 to 2.00%)
- Ni (nickel) is an element effective in increasing the hardenability of steel and increasing the strength of steel.
- the Ni content may be 0%, it may be contained as necessary in order to obtain the above effects.
- the Ni content may be 0.01% or more, 0.10% or more, 0.20% or more, 0.50% or more, or 0.80% or more.
- the Ni content is preferably 2.00% or less, and may be 1.80% or less or 1.50% or less.
- Cu (copper) is an element effective in increasing the hardenability of steel and increasing the strength of steel.
- the Cu content may be 0.001% or more, 0.005% or more, or 0.01% or more.
- the Cu content is preferably 2.00% or less, 1.80% or less, 1.50% or less, or 1 00% or less.
- Mo mobdenum
- Mo mobdenum
- the Mo content may be 0%, but may be contained as necessary in order to obtain the above effects.
- Mo content may be 0.01% or more, 0.10% or more, 0.20% or more, or 0.30% or more.
- the Mo content is preferably 1.00% or less, and may be 0.90% or less or 0.80% or less.
- W tungsten
- W is an element effective in increasing the hardenability of steel and increasing the strength of steel.
- the W content may be 0%, it may be contained as necessary in order to obtain the above effect.
- the W content may be 0.001% or more, 0.005% or more, or 0.01% or more.
- the W content is preferably 1.00% or less, 0.90% or less, 0.80% or less, 0.50% or less, or 0.10%. % or less.
- Ca (Ca: 0 to 0.100%)
- Ca (calcium) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has an effect of increasing toughness.
- the Ca content may be 0%, it may be contained as necessary in order to obtain the above effects.
- the Ca content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
- the Ca content is preferably 0.100% or less, and may be 0.080% or less, 0.050% or less, 0.010% or less, or 0.005% or less.
- Mg manganesium
- Mg is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has an effect of increasing toughness.
- the Mg content may be 0%, it may be contained as necessary in order to obtain the above effect.
- the Mg content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
- the Mg content is preferably 0.100% or less, and may be 0.090% or less, 0.080% or less, 0.050% or less, or 0.010% or less.
- Zr zirconium
- Zr zirconium
- the Zr content may be 0%, it may be contained as necessary in order to obtain the above effects.
- the Zr content may be 0.001% or more, 0.005% or more, or 0.010% or more.
- the Zr content is preferably 0.100% or less, and may be 0.050% or less, 0.040% or less, or 0.030% or less.
- Hf (Hf: 0 to 0.100%) Hf (hafnium) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has an effect of increasing toughness.
- the Hf content may be 0%, it may be contained as necessary in order to obtain the above effects.
- the Hf content may be 0.0001% or more, 0.0005% or more, or 0.001% or more.
- the Hf content is preferably 0.100% or less, and may be 0.050% or less, 0.030% or less, or 0.010% or less.
- REM 0-0.100%
- REM rare earth element
- the REM content may be 0%, it may be contained as necessary in order to obtain the above effects.
- the REM content may be 0.0001% or greater, 0.0005% or greater, or 0.001% or greater.
- the REM content is preferably 0.100% or less, and may be 0.050% or less, 0.030% or less, or 0.010% or less.
- REM is an abbreviation for Rare Earth Metal, and refers to an element belonging to the lanthanide series. REM is usually added as a misch metal.
- the balance other than the above composition consists of Fe and impurities.
- impurities refers to components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when steel sheets are manufactured industrially.
- the analysis of the chemical composition of the steel sheet may be performed using an elemental analysis method known to those skilled in the art, such as inductively coupled plasma mass spectrometry (ICP-MS method).
- ICP-MS method inductively coupled plasma mass spectrometry
- C and S should be measured using the combustion-infrared absorption method
- N should be measured using the inert gas fusion-thermal conductivity method.
- the "surface layer" of a steel sheet means a region from the surface of the steel sheet (the interface between the steel sheet and the coating layer in the case of a plated steel sheet) to a predetermined depth in the thickness direction, and the "predetermined depth” is It is typically 50 ⁇ m or less.
- the steel sheet 11 according to the present invention includes grain boundary oxides 13 in the surface layer of the steel sheet 11 .
- grain boundary oxide 13 is present.
- the grain boundary type oxide 13 exists inside the base steel 14 (that is, exists as an internal oxide)
- the steel plate 11 can have high plateability.
- this is because there is no external oxide layer that inhibits interdiffusion between plating components and steel components when coating (for example, Zn-based coating) is formed on the surface of the steel sheet. This is considered to be the result of sufficient interdiffusion between the coating components and the steel components, since they exist only in a sufficiently thin thickness. Therefore, the steel sheet and the plated steel sheet according to the present invention containing grain boundary oxides in the surface layer of the steel sheet, that is, in the interior of the steel sheet, have high plateability.
- the surface layer of the steel sheet 11 may contain granular oxides 12 in addition to the grain boundary oxides 13 . Since this granular type oxide 12 exists inside the base material steel 14 as well as the grain boundary type oxide 13, the steel sheet and the plated steel sheet containing both the granular type oxide 12 and the grain boundary type oxide 13 are also , has high platability. On the other hand, since the granular oxide 12 exists independently as grains, it does not function as an escape route for hydrogen during annealing. The hydrogen discharging function of the grain boundary type oxide 13 can be lowered.
- the steel sheet 11 is manufactured using manufacturing conditions (particularly annealing conditions) that generate an excessive number of granular oxides 12 (for example, a number density of 4.0 pieces/ ⁇ m 2 or more, which will be described later), the granular type The formation of the oxide 12 is accelerated, the grain boundary type oxide 13 is not sufficiently formed, and the hydrogen discharging function tends to deteriorate. Therefore, from the viewpoint of effectively increasing escape paths for hydrogen during annealing, it is preferable that the granular oxide 12 is as small as possible. Therefore, more preferably, in the present invention, the surface layer of the steel sheet 11 may not contain the granular type oxide 12 (that is, all the oxides present in the surface layer of the steel sheet 11 are the grain boundary type oxide 13 and can also be used).
- the term “particulate type oxide” refers to an oxide dispersed in the form of particles within grains or on grain boundaries of steel.
- granular refers to being separated from each other in the steel matrix, for example, an aspect ratio of 1.0 to 5.0 (maximum line segment length across the granular type oxide ( long axis)/maximum line segment length (minor axis) crossing the oxide perpendicular to the long axis).
- “Granularly dispersed” means that the positions of the particles of the oxide are not arranged according to a specific rule (for example, linearly) but are randomly arranged.
- the granular oxide typically exists three-dimensionally in a spherical or nearly spherical shape on the surface layer of the steel sheet. It is generally observed to be circular or approximately circular. In FIG. 2, as an example, a granular type oxide 12 that looks like a circle is shown.
- the average particle size of the particulate oxide 12 is not particularly limited, and may be, for example, 300 nm or less, 200 nm or less, or 150 nm or less.
- the number density of particulate type oxides is less than 4.0 pieces/ ⁇ m 2 .
- the number density may be 0/ ⁇ m 2 because the surface layer of the steel sheet may not contain particulate oxides.
- the granular oxide functions as a trap site for hydrogen, and may impede the escape of hydrogen from the steel. Therefore, from the viewpoint of enhancing the hydrogen discharge property in particular, the smaller the number of particulate oxides, the better, and the number density is set to less than 4.0 particles/ ⁇ m 2 .
- the number density is preferably less than 3.0/ ⁇ m 2 , more preferably less than 2.0/ ⁇ m 2 , still more preferably less than 1.0/ ⁇ m 2 . be.
- the average particle size and number density of particulate type oxides are measured by scanning electron microscopy (SEM). Specific measurements are as follows. A cross-section of the surface layer of the steel sheet is observed by SEM to obtain an SEM image containing particulate type oxides. From the SEM image, a total of 10 regions of 1.0 ⁇ m (depth direction) ⁇ 1.0 ⁇ m (width direction) that do not contain grain boundary oxides, which will be described later, are selected as observation regions.
- the depth direction (direction perpendicular to the surface of the steel plate) is set to 1.0 ⁇ m in the region from the steel plate surface to 1.5 ⁇ m
- the width direction (direction parallel to the surface of the steel plate) ) is 1.0 ⁇ m at an arbitrary position in the SEM image.
- the number density is 0 pieces/ ⁇ m 2 , and in that case the average grain size is nil.
- the lower limit of the number of particulate oxides to be counted is set to 5.0 nm or more.
- grain boundary type oxide refers to oxides present along grain boundaries of steel, and does not include oxides present within grains of steel. In fact, since the grain boundary oxide exists in a plane along the grain boundary in the surface layer of the steel sheet, when observing the cross section of the surface layer of the steel sheet, the grain boundary oxide is linear Observed. In FIGS. 2 and 3, as an example, a grain boundary type oxide 13 that looks linear is shown.
- the grain boundary type oxide 13 is shown below the grain type oxide 12, but the grain boundary type oxide 13 is is also formed near the surface of the By forming the grain boundary type oxide 13 near the surface of the steel sheet, the grain boundary type oxide connects the steel sheet surface and the inside of the steel sheet, and the hydrogen discharging function is sufficiently exhibited.
- ratio A means the “surface of the steel sheet” with respect to the “length of the surface of the steel sheet: L 0 ” in the observed image when the cross section of the surface layer of the steel sheet 11 is observed.
- the ratio A is 50% or more and 100% or less.
- the ratio A is less than 50%, it may not function sufficiently as an escape route for hydrogen, and good hydrogen discharge performance may not be obtained.
- the ratio A is preferably 60% or more, more preferably 70% or more, even more preferably 80% or more, and even more preferably 90% or more.
- the ratio A may be 100%.
- the ratio A is determined by cross-sectionally observing the surface layer of the steel plate 11, as shown in FIG.
- a specific measuring method is as follows. A cross section of the surface layer of the steel plate 11 is observed by SEM. The observation position is selected at random. Measure the surface length L 0 (ie, the width of the SEM image) from the observed SEM image. The length L 0 is set to 100 ⁇ m or more (for example, 100 ⁇ m, 150 ⁇ m or 200 ⁇ m), and the depth to be measured is a region from the surface of the steel sheet to 50 ⁇ m.
- the position of the grain boundary type oxide 13 is identified from the SEM image, and the identified grain boundary type oxide 13 is projected onto the surface of the steel sheet 11 (on the interface between the steel sheet 11 and the plating layer in the case of a plated steel sheet).
- the granular type oxide and grain boundary type oxide (hereinafter also simply referred to as oxide) contain one or more of the elements contained in the steel sheet described above in addition to oxygen. It typically has a component composition that includes Si, O and Fe, and optionally Mn. More specifically, the oxide typically contains Si: 5-25%, Mn: 0-10%, O: 40-65%, and Fe: 10-30%. The oxide may contain an element (for example, Cr) that may be contained in the steel sheet described above, in addition to these elements.
- an element for example, Cr
- the steel sheet according to the present invention includes a Si—Mn depleted layer having a thickness of 3.0 ⁇ m or more from the surface of the steel sheet, and does not contain oxides at 1/2 positions of the thickness Si of the Si—Mn depleted layer and Mn contents are each less than 10% of the Si and Mn contents in the thickness center of the steel sheet.
- the Si—Mn depleted layer formed on the surface layer of the steel sheet due to the formation of grain boundary oxides and/or granular oxides has a thickness of 3.0 ⁇ m or more, and the Si—Mn depleted layer is depleted of Si and Mn.
- the thickness of the Si—Mn depleted layer is preferably 4.0 ⁇ m or more, more preferably is greater than or equal to 5.0 ⁇ m, most preferably greater than or equal to 7.0 ⁇ m.
- the thickness of the Si--Mn depleted layer may be, for example, 50.0 ⁇ m or less.
- the Si depletion rate of the Si—Mn depleted layer is preferably 8% or less, more preferably 6% or less, and most preferably 4% or less.
- the lower limit of the Si depletion rate is not particularly limited, but may be 0%.
- the Mn depletion rate of the Si—Mn depleted layer is preferably 8% or less, more preferably 6% or less, and most preferably 4% or less.
- the lower limit of the Mn deficiency rate is not particularly limited, but may be 0%.
- the expression "free of oxides” means not including not only the above-mentioned grain boundary type oxides and granular type oxides, but also any other oxides.
- a region containing no oxide can be identified by cross-sectional observation by SEM and energy dispersive X-ray spectroscopy (EDS).
- EDS energy dispersive X-ray spectroscopy
- the Si—Mn depleted layer according to the present invention cannot be controlled within a desired thickness and composition range simply by forming an internal oxide such as a grain boundary type oxide, and will be described in detail later. Thus, it is important to appropriately control the progress of internal oxidation in the manufacturing process.
- the thickness of the Si—Mn depleted layer is, as indicated by D in FIG. vertical direction) from the surface of the steel sheet 11 to the farthest position where the grain boundary type oxide 13 exists.
- the thickness of the Si—Mn depleted layer can be obtained from the same SEM image (surface length L 0 ) used for measuring the ratio A described above.
- the Si and Mn contents of the oxide-free region at the 1/2 position of the thickness of the Si—Mn depleted layer are determined from the SEM image, and the 1/2 position of the thickness of the Si—Mn depleted layer Measured values of Si and Mn concentrations obtained by analyzing 10 randomly selected points that do not contain oxides using a transmission electron microscope with an energy dispersive X-ray spectrometer (TEM-EDS) is determined by arithmetically averaging.
- the Si and Mn contents in the center of the thickness of the steel plate are obtained by observing the cross section of the center of the thickness with an SEM, and from the SEM image, 10 randomly selected points in the center of the thickness are energy It is determined by arithmetically averaging the Si and Mn concentration measurements obtained using a transmission electron microscope with dispersive X-ray spectroscopy (TEM-EDS).
- the plated steel sheet according to the present invention has a plating layer containing Zn on the steel sheet according to the present invention described above.
- This plating layer may be formed on one side of the steel sheet, or may be formed on both sides.
- the plating layer containing Zn includes, for example, a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, an electro-galvanized layer, an electro-alloyed galvanized layer, and the like. More specifically, plating types include, for example, Zn-0.2% Al (GI), Zn-0.09% Al (GA), Zn-1.5% Al-1.5% Mg, or Zn-11% Al-3% Mg-0.2% Si or the like can be used.
- Component composition of plating layer The component composition contained in the plating layer containing Zn in the present invention will be described. "%” regarding the content of an element means “% by mass” unless otherwise specified. In the numerical range of the component composition of the plating layer, unless otherwise specified, the numerical range represented using “ ⁇ ” means the range including the numerical values before and after " ⁇ " as the lower and upper limits. do.
- Al is an element that improves the corrosion resistance of the plating layer by being contained together with Zn or being alloyed with it, so it may be contained as necessary. Therefore, the Al content may be 0%. In order to form a plating layer containing Zn and Al, the Al content is preferably 0.01% or more, for example, 0.1% or more, 0.5% or more, 1.0% or more, or It may be 3.0% or more.
- the Al content is preferably 60.0% or less, for example, 55.0% or less, 50.0% or less, It may be 40.0% or less, 30.0% or less, 20.0% or less, 10.0% or less, or 5.0% or less.
- Mg is an element that improves the corrosion resistance of the plating layer by being contained together with Zn and Al or being alloyed with it, so it may be contained as necessary. Therefore, the Mg content may be 0%.
- the Mg content is preferably 0.01% or more, for example, 0.1% or more, 0.5% or more, 1.0% or more. , or 3.0% or more.
- the Mg content is preferably 15.0% or less, and may be, for example, 10.0% or less, or 5.0% or less.
- Fe (Fe: 0 to 15.0%) Fe can be contained in the coating layer by diffusing from the steel sheet when the coating layer containing Zn is formed on the steel sheet and then heat-treated. Therefore, the Fe content may be 0% since Fe is not contained in the plated layer when the heat treatment is not performed. Also, the Fe content may be 1.0% or more, 2.0% or more, 3.0% or more, 4.0% or more, or 5.0% or more. On the other hand, the Fe content is preferably 15.0% or less, and may be, for example, 12.0% or less, 10.0% or less, 8.0% or less, or 6.0% or less.
- Si is an element that further improves corrosion resistance when contained in a Zn-containing plating layer, particularly a Zn--Al--Mg plating layer, and thus may be contained as necessary. Therefore, the Si content may be 0%. From the viewpoint of improving corrosion resistance, the Si content may be, for example, 0.005% or more, 0.01% or more, 0.05% or more, 0.1% or more, or 0.5% or more. Also, the Si content may be 3.0% or less, 2.5% or less, 2.0% or less, 1.5% or less, or 1.2% or less.
- the basic composition of the plating layer is as above. Furthermore, the plating layer is optionally Sb: 0 to 0.50%, Pb: 0 to 0.50%, Cu: 0 to 1.00%, Sn: 0 to 1.00%, Ti: 0 to 1.00%, Sr: 0 to 0.50%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, and Mn: 0 to 1.00%, one or more may contain.
- the total content of these optional additive elements is preferably 5.00% or less, and 2.00%, from the viewpoint of sufficiently exhibiting the actions and functions of the basic components that constitute the plating layer. More preferably:
- the balance other than the above components consists of Zn and impurities.
- Impurities in the plating layer are components and the like that are mixed due to various factors in the manufacturing process, including raw materials, when manufacturing the plating layer.
- the plating layer may contain, as impurities, a trace amount of elements other than the above-described basic components and optional additive components within a range that does not interfere with the effects of the present invention.
- the chemical composition of the plating layer can be determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses corrosion of the steel sheet, and measuring the resulting solution by ICP (inductively coupled plasma) emission spectroscopy. can.
- the thickness of the plating layer may be, for example, 3-50 ⁇ m.
- the amount of the plated layer deposited is not particularly limited, but may be, for example, 10 to 170 g/m 2 per side.
- the adhesion amount of the plating layer is determined by dissolving the plating layer in an acid solution to which an inhibitor for suppressing corrosion of the base iron is added, and from the change in weight before and after pickling.
- the steel sheet and plated steel sheet according to the present invention preferably have high strength, and specifically preferably have a tensile strength of 440 MPa or more.
- the tensile strength may be 500 MPa or greater, 600 MPa or greater, 700 MPa or greater, or 800 MPa or greater.
- the upper limit of the tensile strength is not particularly limited, it may be, for example, 2000 MPa or less from the viewpoint of ensuring toughness.
- the tensile strength may be measured according to JIS Z 2241 (2011) by taking a JIS No. 5 tensile test piece whose longitudinal direction is perpendicular to the rolling direction.
- the steel sheet and plated steel sheet according to the present invention have high strength, high plateability, and high hydrogen discharge properties, so they can be suitably used in a wide range of fields such as automobiles, home appliances, and building materials. preferably used.
- Steel sheets used for automobiles are usually subjected to plating treatment (typically Zn-based plating treatment). The effect is exhibited suitably.
- plating treatment typically Zn-based plating treatment
- steel sheets and plated steel sheets used for automobiles are often subjected to hot stamping, in which case hydrogen embrittlement cracking can become a significant problem. Therefore, when the steel sheet and plated steel sheet according to the present invention are used as steel sheets for automobiles, the effect of the present invention of having high hydrogen exhaustability is suitably exhibited.
- the steel sheet according to the present invention includes, for example, a casting process in which molten steel having an adjusted chemical composition is cast to form a steel slab, a hot rolling process in which the steel slab is hot rolled to obtain a hot-rolled steel sheet, and a hot-rolled steel sheet is coiled.
- the cold rolling process may be performed as it is after pickling without winding after the hot rolling process.
- Conditions for the casting process are not particularly limited. For example, following smelting by a blast furnace or an electric furnace, various secondary smelting may be performed, and then casting may be performed by a method such as ordinary continuous casting or casting by an ingot method.
- a hot-rolled steel sheet can be obtained by hot-rolling the steel slab cast as described above.
- the hot-rolling process is performed by hot-rolling a cast steel slab directly or by reheating it after cooling it once.
- the heating temperature of the steel slab may be, for example, 1100.degree. C. to 1250.degree.
- Rough rolling and finish rolling are usually performed in the hot rolling process.
- the temperature and rolling reduction for each rolling may be appropriately changed according to the desired metal structure and plate thickness.
- the finishing temperature of finish rolling may be 900 to 1050° C.
- the rolling reduction of finish rolling may be 10 to 50%.
- a hot-rolled steel sheet can be coiled at a predetermined temperature.
- the coiling temperature may be appropriately changed according to the desired metal structure and the like, and may be, for example, 500 to 800°C.
- the hot-rolled steel sheet may be subjected to a predetermined heat treatment by unwinding before or after winding. Alternatively, the coiling process may not be performed, and after the hot rolling process, pickling may be performed and the cold rolling process described below may be performed.
- the hot-rolled steel sheet After subjecting the hot-rolled steel sheet to pickling or the like, the hot-rolled steel sheet can be cold-rolled to obtain a cold-rolled steel sheet.
- the rolling reduction of cold rolling may be appropriately changed according to the desired metal structure and plate thickness, and may be, for example, 20 to 80%. After the cold-rolling process, for example, it may be air-cooled to room temperature.
- the cold-rolled steel sheet is ground before annealing. It is effective to carry out a process.
- This grinding process can introduce a large amount of dislocations into the surface of the cold-rolled steel sheet. Since the diffusion of oxygen and the like is faster in grain boundaries than in grains, introducing a large amount of dislocations on the surface of the cold-rolled steel sheet enables the formation of many paths as in the case of grain boundaries. For this reason, oxygen tends to diffuse (penetrate) into the steel along these dislocations during annealing, and the diffusion rate of Si and Mn also increases.
- the grinding step is not particularly limited, but can be carried out, for example, by grinding the surface of the cold-rolled steel sheet with a heavy grinding brush at a grinding amount of 10 to 200 g/m 2 .
- the amount of grinding by the heavy grinding brush can be adjusted by any appropriate method known to those skilled in the art, and is not particularly limited.
- a desired grain boundary type oxide is formed in the annealing step described later, and a desired thickness and composition, that is, a thickness of 3.0 ⁇ m or more, and Si and Mn depletion, are formed. It is possible to reliably and efficiently form Si—Mn depleted layers each having a ratio of less than 10% on the surface layer of the steel sheet.
- Annealing is performed on the cold-rolled steel sheet that has been subjected to the grinding process.
- Annealing is preferably performed in a state in which tension is applied to the cold-rolled steel sheet in the rolling direction.
- the annealing temperature is 500 ° C. or higher
- the cold rolled steel sheet is Annealing is preferably performed with a tension of 3 to 150 MPa, particularly 15 to 150 MPa, applied in the rolling direction.
- the holding temperature in the annealing step is preferably over 780°C to 900°C, more preferably 800 to 850°C. If the holding temperature in the annealing step is 780° C. or less, the formation of grain boundary oxides may be insufficient, and the hydrogen discharging function may deteriorate. On the other hand, if the holding temperature in the annealing step exceeds 900°C, an external oxide layer may form on the surface of the steel sheet, resulting in insufficient plateability.
- the rate of temperature increase to the holding temperature is not particularly limited, but may be 1 to 10° C./sec. Also, the temperature rise may be performed in two steps, with a first temperature rise rate of 1 to 10° C./sec and a second temperature rise rate of 1 to 10° C./sec different from the first temperature rise rate. good.
- the retention time at the above retention temperature is preferably 10 to 50 seconds, more preferably 30 to 50 seconds. If the holding time is less than 10 seconds, the grain boundary type oxide may not be sufficiently formed, and the plating properties and hydrogen discharge properties may become insufficient. On the other hand, when the holding time is longer than 50 seconds, there is a risk that excessive particulate oxides will be produced, and the hydrogen discharge property may become insufficient.
- the dew point of the atmosphere in the annealing step is preferably -20 to 10°C, more preferably -10 to 5°C, from the viewpoint of forming grain boundary oxides over a wide range (at a high ratio A). If the dew point is too low, an external oxide layer is formed on the surface of the steel sheet, and internal oxides may not be sufficiently formed, resulting in insufficient plating properties and hydrogen discharge properties. On the other hand, if the dew point is too high, Fe oxide may form as an external oxide on the steel sheet surface, resulting in insufficient plateability.
- the atmosphere in the annealing step may be a reducing atmosphere, more specifically a reducing atmosphere containing nitrogen and hydrogen, such as a reducing atmosphere containing 1-10% hydrogen (eg, 4% hydrogen and nitrogen balance).
- an internal oxide layer may be formed on the surface layer of the steel sheet during the above-described rolling process, particularly during the hot rolling process. Since the internal oxide layer formed in such a rolling process may hinder the formation of a sufficient grain boundary oxide in the annealing process, the internal oxide layer is removed by pickling or the like before annealing. It is preferable to keep More specifically, the depth of the internal oxide layer of the cold-rolled steel sheet during the annealing process is 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less, more preferably 0.2 ⁇ m or less, and still more preferably 0.1 ⁇ m. You should do the following.
- grain boundary type oxides are formed in a wide range (at a high ratio A) on the surface layer of the steel sheet, the formation of granular type oxides is sufficiently suppressed, and the desired thickness and composition are obtained. It is possible to obtain a steel sheet containing a Si—Mn depleted layer having
- the length of the grain boundary type oxide may be reduced. Since the ratio A is less than 50%, the grain boundary type oxide does not sufficiently function as a hydrogen escape route, making it difficult to obtain good hydrogen discharge properties.
- the plated steel sheet according to the present invention can be obtained by performing a plating treatment step of forming a plating layer containing Zn on the steel sheet manufactured as described above.
- the plating process may be performed according to a method known to those skilled in the art.
- the plating treatment step may be performed by, for example, hot dip plating or electroplating.
- the plating step is performed by hot dip plating.
- the conditions of the plating process may be appropriately set in consideration of the composition, thickness, adhesion amount, etc. of the desired plating layer.
- An alloying treatment may be performed after the plating treatment.
- the conditions for the plating process include Al: 0-60.0%, Mg: 0-15.0%, Fe: 0-15%, and Si: 0-3%, with the balance being Zn. and impurities to form a plating layer. More specifically, the conditions of the plating process are, for example, Zn-0.2% Al (GI), Zn-0.09% Al (GA), Zn-1.5% Al-1.5% Mg , or Zn-11% Al-3% Mg-0.2% Si.
- annealing treatment (annealing atmosphere: 4% hydrogen and nitrogen balance) was performed at the dew point, holding temperature and holding time shown in Table 1 to prepare each steel plate sample.
- the heating rate during annealing was 6.0°C/sec up to 500°C, and 2.0°C/sec from 500°C to the holding temperature.
- the cold-rolled steel sheet is annealed with a tension of 1 MPa or more in the rolling direction, and the annealing temperature is higher in the region where the annealing temperature is 500 ° C. or higher in the rolling direction than in other regions, Specifically, annealing was performed with a tension of 3 to 150 MPa applied (no such tension was applied to sample No. 134). Presence or absence of grinding with a heavy grinding brush, and annealing treatment conditions (presence or absence of application of tension of 3 to 150 MPa in the annealing temperature range of 500 ° C. or higher, dew point (° C.), holding temperature (° C.), and holding time (seconds)) are shown in Table 1.
- a JIS No. 5 tensile test piece having a longitudinal direction perpendicular to the rolling direction was collected, and a tensile test was performed according to JIS Z 2241 (2011).
- the tensile strengths of Nos. 16 and 18 were less than 440 MPa, and the others were 440 MPa or more.
- the obtained SEM image of each region of each steel plate sample was binarized, the area of the granular oxide portion was calculated from the binarized image, and the number of granular oxides in the SEM image was counted. . From the areas and numbers of the granular oxides in the 10 binarized images obtained in this way, the average particle size and number density of the granular oxides were obtained as circle equivalent diameters.
- the thickness of the Si—Mn depleted layer is the grain boundary type oxidation from the surface of the steel sheet when proceeding from the surface of the steel sheet in the thickness direction of the steel sheet (direction perpendicular to the surface of the steel sheet) in the SEM image in which the ratio A is measured. Determined by measuring the distance to the furthest point where the object is.
- the Si and Mn contents of the oxide-free region at the 1/2 position of the thickness of the Si—Mn depleted layer are determined from the SEM image, and the 1/2 position of the thickness of the Si—Mn depleted layer
- Ten randomly selected oxide-free points were analyzed using TEM-EDS and the Si and Mn concentration measurements obtained were determined by arithmetic averaging.
- the Si and Mn contents in the center of the plate thickness of the steel plate are obtained by observing the cross section of the center of the plate thickness with an SEM, and 10 randomly selected points in the center of the plate thickness from the SEM image. - analyzed using EDS and determined by arithmetic averaging of the resulting Si and Mn concentration measurements. Finally, the Si and Mn contents obtained by dividing the Si and Mn contents at the 1/2 position of the thickness of the Si—Mn depleted layer by the Si and Mn contents at the center of the thickness of the steel sheet, respectively, are expressed as percentages. determined as the deficiency rate.
- a plated steel plate sample was prepared by performing a plating treatment for forming the types of plating shown in Table 1.
- plating type A is "GA (alloyed hot-dip galvanized steel sheet)”
- plating type B is “GI (hot-dip galvanized steel sheet)”
- plating type C is "Zn-1.5% Al-1.5 % Mg”.
- the hot dip galvanizing step the cut sample was immersed in a 440° C. hot dip galvanizing bath for 3 seconds. After immersion, it was pulled out at 100 mm/sec, and the coating weight was controlled to 50 g/m 2 with N 2 wiping gas.
- alloying treatment was performed at 460°C after that.
- the plating property was evaluated by measuring the area ratio of the unplated portion on the surface of the steel sheet. Specifically, an area of 1 mm ⁇ 1 mm on the surface of each plated steel sheet sample on which the plating layer was formed was observed with an optical microscope, and from the observed image, the part where the plating layer was formed (plating part) and the plating layer were formed. The area ratio of the non-plated portion (area of the non-plated portion/area of the observed image) is calculated, the plating property is evaluated according to the following criteria, and the results are shown. 1. ⁇ is a pass, and ⁇ is a fail. Evaluation ⁇ : 5.0% or less Evaluation ⁇ : More than 5.0%
- Sample No. 2 to 8 and 20 to 33 had high plating properties and hydrogen discharge because the component composition, the ratio A of the grain boundary type oxide, the number density of the granular type oxide, and the thickness and composition of the Si—Mn depleted layer were appropriate. had sex.
- sample no. In Nos. 1 and 19 the depth of the internal oxide layer before annealing was large, the grain boundary type oxide could not be sufficiently formed, and the desired Si—Mn depleted layer was not formed, so high hydrogen discharge performance could not be obtained. rice field.
- Sample no. In No. 13 the holding time during annealing was short, internal oxides were not formed, and the desired Si—Mn depleted layer was not formed, so high plating properties and hydrogen discharge properties could not be obtained.
- Sample no. In No. 14 the holding time during annealing was long, a large amount of particulate type oxide was formed, and the desired Si--Mn depleted layer was not formed, so a high hydrogen discharge property could not be obtained.
- Sample no. In No. 12 the holding temperature at the time of annealing was low, and the formation of granular oxide was accelerated, and the grain boundary oxide layer was not sufficiently formed, and high hydrogen discharge performance could not be obtained.
- Sample no. In No. 13 the holding time during annealing was short, internal oxides were not formed, and
- the present invention it is possible to provide a high-strength steel sheet and a plated steel sheet having high platability and hydrogen-releasing property, and the steel sheet and the plated steel sheet are suitable for applications such as automobiles, home appliances, building materials, and particularly automobiles. It can be used for automobile steel sheets and plated steel sheets for automobiles, and is expected to have high collision safety and long life. Therefore, the present invention can be said to be an invention of extremely high industrial value.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
(1)
質量%で、
C:0.05~0.40%、
Si:0.2~3.0%、
Mn:0.1~5.0%、
sol.Al:0~0.4000%未満、
P:0.0300%以下、
S:0.0300%以下、
N:0.0100%以下、
B:0~0.010%、
Ti:0~0.150%、
Nb:0~0.150%、
V:0~0.150%、
Cr:0~2.00%、
Ni:0~2.00%、
Cu:0~2.00%、
Mo:0~1.00%、
W:0~1.00%、
Ca:0~0.100%、
Mg:0~0.100%、
Zr:0~0.100%、
Hf:0~0.100%、及び
REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
前記鋼板の表層に粒界型酸化物を含み、
前記鋼板の表層の断面を観察した場合において、前記鋼板の表面の長さに対する前記鋼板の表面に投影した粒界型酸化物の長さの比率Aが50%以上100%以下であり、
粒状型酸化物の数密度が4.0個/μm2未満であり、
前記鋼板の表面から3.0μm以上の厚さを有するSi-Mn欠乏層を含み、
前記厚さの1/2位置における酸化物を含まない前記Si-Mn欠乏層のSi及びMn含有量がそれぞれ前記鋼板の板厚中心部におけるSi及びMn含有量の10%未満である、鋼板。
(2)
前記比率Aが80%以上である、(1)に記載の鋼板。
(3)
前記比率Aが90%以上である、(1)に記載の鋼板。
(4)
前記粒状型酸化物の数密度が2.0個/μm2未満である、(1)~(3)のいずれか1つに記載の鋼板。
(5)
(1)~(4)のいずれか1つに記載の鋼板上にZnを含むめっき層を有する、めっき鋼板。
本発明に係る鋼板は、質量%で、
C:0.05~0.40%、
Si:0.2~3.0%、
Mn:0.1~5.0%、
sol.Al:0~0.4000%未満、
P:0.0300%以下、
S:0.0300%以下、
N:0.0100%以下、
B:0~0.010%、
Ti:0~0.150%、
Nb:0~0.150%、
V:0~0.150%、
Cr:0~2.00%、
Ni:0~2.00%、
Cu:0~2.00%、
Mo:0~1.00%、
W:0~1.00%、
Ca:0~0.100%、
Mg:0~0.100%、
Zr:0~0.100%、
Hf:0~0.100%、及び
REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
前記鋼板の表層に粒界型酸化物を含み、
前記鋼板の表層の断面を観察した場合において、前記鋼板の表面の長さに対する前記鋼板の表面に投影した粒界型酸化物の長さの比率Aが50%以上100%以下であり、
粒状型酸化物の数密度が4.0個/μm2未満であり、
前記鋼板の表面から3.0μm以上の厚さを有するSi-Mn欠乏層を含み、
前記厚さの1/2位置における酸化物を含まない前記Si-Mn欠乏層のSi及びMn含有量がそれぞれ前記鋼板の板厚中心部におけるSi及びMn含有量の10%未満であることを特徴としている。
本発明に係る鋼板に含まれる成分組成について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。成分組成における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
C(炭素)は、鋼の強度を確保する上で重要な元素である。十分な強度を確保ために、C含有量は0.05%以上とする。C含有量は、好ましくは0.07%以上、より好ましくは0.10%以上、さらに好ましくは0.12%以上である。一方、C含有量が過剰であると、溶接性が低下するおそれがある。したがって、C含有量は0.40%以下とする。C含有量は、0.38%以下、0.35%以下、0.32%以下又は0.30%以下であってもよい。
Si(ケイ素)は、鋼の強度を向上させるのに有効な元素である。十分な強度を確保し、さらに、所望の酸化物、特に粒界型酸化物を鋼板の内部に十分に生成させるために、Si含有量は0.2%以上とする。Si含有量は、好ましくは0.3%以上、より好ましくは0.5%以上、さらに好ましくは1.0%以上である。一方、Si含有量が過剰であると、表面性状の劣化を引き起こすおそれがあり、外部酸化成長を促進するおそれもある。したがって、Si含有量は3.0%以下とする。Si含有量は、2.8%以下、2.5%以下、2.3%以下又は2.0%以下であってもよい。
Mn(マンガン)は、硬質組織を得ることで鋼の強度を向上させるのに有効な元素である。十分な強度を確保し、さらに所望の酸化物、特に粒界型酸化物を鋼板の内部に十分に生成させるために、Mn含有量は0.1%以上とする。Mn含有量は、好ましくは0.5%以上、より好ましくは1.0%以上、さらに好ましくは1.5%以上である。一方、Mn含有量が過剰であると、Mn偏析によって金属組織が不均一になり、加工性が低下するおそれがあり、外部酸化成長を促進するおそれもある。したがって、Mn含有量は5.0%以下とする。Mn含有量は、4.5%以下、4.0%以下、3.5%以下又は3.0%以下であってもよい。
Al(アルミニウム)は、脱酸元素として作用する元素である。Al含有量は0%でもよいが、十分な脱酸の効果を得るためには、Al含有量は0.0010%以上であることが好ましい。Al含有量は、より好ましくは0.0050%以上、さらに好ましくは0.0100%以上、さらにより好ましくは0.0150%以上である。一方、Al含有量が過剰であると加工性の低下や表面性状の劣化を引き起こすおそれがある。したがって、Al含有量は0.4000%未満とする。Al含有量は、0.3900%以下、0.3800%以下、0.3700%以下、0.3500%以下、0.3400%以下、0.3300%以下、0.3000%以下又は0.2000%以下であってもよい。Al含有量は、いわゆる酸可溶Alの含有量(sol.Al)を意味する。
P(リン)は、一般に鋼に含有される不純物である。Pを過度に含有すると溶接性が低下するおそれがある。したがって、P含有量は0.0300%以下とする。P含有量は、好ましくは0.0200%以下、より好ましくは0.0100%以下、さらに好ましくは0.0050%以下である。P含有量の下限は0%であるが、製造コストの観点から、P含有量は0%超又は0.0001%以上であってもよい。
S(硫黄)は、一般に鋼に含有される不純物である。Sを過度に含有すると溶接性が低下し、さらに、MnSの析出量が増加して曲げ性等の加工性が低下するおそれがある。したがって、S含有量は0.0300%以下とする。S含有量は、好ましくは0.0100%以下、より好ましくは0.0050%以下、さらに好ましくは0.0020%以下である。S含有量の下限は0%であるが、脱硫コストの観点から、S含有量は0%超又は0.0001%以上であってもよい。
N(窒素)は、一般に鋼に含有される不純物である。Nを過度に含有すると溶接性が低下するおそれがある。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0080%以下、より好ましくは0.0050%以下、さらに好ましくは0.0030%以下である。N含有量の下限は0%であるが、製造コストの観点からN含有量は0%超又は0.0010%以上であってもよい。
B(ホウ素)は、焼入れ性を高めて強度の向上に寄与し、また粒界に偏析して粒界を強化して靭性を向上させる元素である。B含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。B含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、十分な靭性及び溶接性を確保する観点から、B含有量は0.010%以下であることが好ましく、0.008%以下又は0.006%以下であってもよい。
Ti(チタン)は、TiCとして鋼の冷却中に析出し、強度の向上に寄与する元素である。Ti含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Ti含有量は、0.001%以上、0.003%以上、0.005%以上又は0.010%以上であってもよい。一方、Tiを過剰に含有すると粗大なTiNが生成して靭性が損なわれるおそれがある。このため、Ti含有量は0.150%以下であることが好ましく、0.100%以下又は0.050%以下であってもよい。
Nb(ニオブ)は焼入れ性の向上を通じて強度の向上に寄与する元素である。Nb含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Nb含有量は、0.001%以上、0.005%以上、0.010%以上又は0.015%以上であってもよい。一方、十分な靭性及び溶接性を確保する観点から、Nb含有量は、0.150%以下であることが好ましく、0.100%以下又は0.060%以下であってもよい。
V(バナジウム)は焼入れ性の向上を通じて強度の向上に寄与する元素である。V含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。V含有量は、0.001%以上、0.010%以上、0.020%以上又は0.030%以上であってもよい。一方、十分な靭性及び溶接性を確保する観点から、V含有量は、0.150%以下であることが好ましく、0.100%以下又は0.060%以下であってもよい。
Cr(クロム)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効である。Cr含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Cr含有量は、0.01%以上、0.10%以上、0.20%以上、0.50%以上又は0.80%以上であってもよい。一方、Crを過剰に含有するとCr炭化物が多量に形成し、逆に焼入れ性が損なわれるおそれがある。このため、Cr含有量は2.00%以下であることが好ましく、1.80%以下又は1.50%以下であってもよい。
Ni(ニッケル)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効な元素である。Ni含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Ni含有量は、0.01%以上、0.10%以上、0.20%以上、0.50%以上又は0.80%以上であってもよい。一方、Niの過剰な添加はコストの上昇を招く。このため、Ni含有量は2.00%以下であることが好ましく、1.80%以下又は1.50%以下であってもよい。
Cu(銅)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効な元素である。Cu含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Cu含有量は、0.001%以上、0.005%以上又は0.01%以上であってもよい。一方、靭性低下や鋳造後のスラブの割れや溶接性の低下を抑制する観点から、Cu含有量は2.00%以下であることが好ましく、1.80%以下、1.50%以下又は1.00%以下であってもよい。
Mo(モリブデン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効な元素である。Mo含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Mo含有量は、0.01%以上、0.10%以上、0.20%以上又は0.30%以上であってもよい。一方、靭性と溶接性の低下を抑制する観点から、Mo含有量は1.00%以下であることが好ましく、0.90%以下又は0.80%以下であってもよい。
W(タングステン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効な元素である。W含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。W含有量は、0.001%以上、0.005%以上又は0.01%以上であってもよい。一方、靭性と溶接性の低下を抑制する観点から、W含有量は1.00%以下であることが好ましく、0.90%以下、0.80%以下、0.50%以下又は0.10%以下であってもよい。
Ca(カルシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。Ca含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Ca含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、Caを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、Ca含有量は0.100%以下であることが好ましく、0.080%以下、0.050%以下、0.010%以下又は0.005%以下であってもよい。
Mg(マグネシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。Mg含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Mg含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、Mgを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、Mg含有量は0.100%以下であることが好ましく、0.090%以下、0.080%以下、0.050%以下又は0.010%以下であってもよい。
Zr(ジルコニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。Zr含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Zr含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよい。一方、Zrを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、Zr含有量は0.100%以下であることが好ましく、0.050%以下、0.040%以下又は0.030%以下であってもよい。
Hf(ハフニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。Hf含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Hf含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、Hfを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、Hf含有量は0.100%以下であることが好ましく、0.050%以下、0.030%以下又は0.010%以下であってもよい。
REM(希土類元素)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。REM含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。REM含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、REMを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、REM含有量は0.100%以下であることが好ましく、0.050%以下、0.030%以下又は0.010%以下であってもよい。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をいう。REMは通常ミッシュメタルとして添加される。
本発明において、鋼板の「表層」とは、鋼板の表面(めっき鋼板の場合は鋼板とめっき層の界面)から板厚方向に所定の深さまでの領域を意味し、「所定の深さ」は典型的には50μm以下である。
本発明において、「粒状型酸化物」とは、鋼の結晶粒内又は結晶粒界上に粒状に分散した酸化物をいう。また、「粒状」とは、鋼マトリクス内で互いに離間して存在していることをいい、例えば、1.0~5.0のアスペクト比(粒状型酸化物を横断する最大線分長さ(長径)/長径と垂直な酸化物を横断する最大線分長さ(短径))を有することをいう。「粒状に分散」とは、酸化物の各粒子の位置が特定の規則に沿って(例えば直線状に)配置されておらず、ランダムに配置されていることをいう。実際には、粒状型酸化物は鋼板の表層において、典型的に球状又は略球状に三次元的に存在しているため、鋼板の表層の断面を観察した場合は、当該粒状型酸化物は典型的に円状又は略円状に観察される。図2においては、例として、円状に見える粒状型酸化物12を示している。粒状型酸化物12の平均粒径は特に限定されず、例えば、300nm以下、200nm以下、又は150nm以下であってよい。
本発明において、粒状型酸化物の数密度は4.0個/μm2未満である。本発明における鋼板において、鋼板の表層に粒状型酸化物を含まなくてもよいため、数密度は0個/μm2でもよい。粒状型酸化物は水素のトラップサイトとして機能することで鋼中水素の脱出を阻害するおそれがある。このため、特に水素排出性を高める観点からは、粒状型酸化物は少ない方が好ましく、数密度を4.0個/μm2未満とする。さらに良好な水素排出性を得る観点から、数密度は、好ましくは3.0個/μm2未満、より好ましくは2.0個/μm2未満、さらに好ましくは1.0個/μm2未満である。
本発明において、「粒界型酸化物」とは、鋼の結晶粒界に沿って存在する酸化物をいい、鋼の結晶粒内に存在する酸化物は含まない。実際には、粒界型酸化物は鋼板の表層において結晶粒界に沿うように面状に存在しているため、鋼板の表層の断面を観察した場合、当該粒界型酸化物は線状に観察される。図2及び図3において、例として、線状に見える粒界型酸化物13を示している。また、図2及び図3において、鋼板11の典型的な例として、粒界型酸化物13は粒状型酸化物12の下部に示されているが、粒界型酸化物13は母材鋼14の表面付近にも形成される。粒界型酸化物13が鋼板の表面付近に形成されることで、鋼板表面と鋼板内部を粒界型酸化物がつなぎ、水素排出機能が十分に発揮される。
本発明において、「比率A」とは、図3に示されるように、鋼板11の表層の断面を観察した場合の、観察画像における「鋼板の表面の長さ:L0」に対する「鋼板の表面に投影した粒界型酸化物の長さ:L(L1+L2+L3+L4)」の比をいう。本発明において、比率Aは50%以上100%以下である。比率Aをこのような範囲に制御することで、粒界型酸化物を鋼板内部に広範囲に形成させることができ、当該粒界型酸化物が水素の脱出経路として良好に機能する。一方、比率Aが50%未満となると水素の脱出経路として十分に機能せず、良好な水素排出性を得られないおそれがある。比率Aは、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上、さらにより好ましくは90%以上である。比率Aは100%であってもよい。
本発明において、粒状型酸化物及び粒界型酸化物(以下、単に酸化物ともいう)は、酸素に加え、上述した鋼板中に含まれる元素のうち1種又は2種以上を含むものであって、典型的に、Si、O及びFeを含み、場合によりさらにMnを含む成分組成を有する。より具体的には、酸化物は、典型的にSi:5~25%、Mn:0~10%、O:40~65%、及びFe:10~30%を含む。当該酸化物は、これらの元素以外にも上述した鋼板に含まれ得る元素(例えばCrなど)を含んでもよい。
本発明に係る鋼板は、当該鋼板の表面から3.0μm以上の厚さを有するSi-Mn欠乏層を含み、当該厚さの1/2位置における酸化物を含まないSi-Mn欠乏層のSi及びMn含有量がそれぞれ鋼板の板厚中心部におけるSi及びMn含有量の10%未満である。粒界型酸化物及び/又は粒状型酸化物の形成に起因して鋼板の表層に生成されるSi-Mn欠乏層を3.0μm以上の厚さとし、当該Si-Mn欠乏層のSi及びMn欠乏率をそれぞれ10%未満に制御することで、水素の拡散を阻害する固溶Si及びMnの量を十分に低減することができ、その結果として水素の拡散を促進させることができる。したがって、上述した粒界型酸化物と当該Si-Mn欠乏層を組み合わせることで水素排出性を顕著に向上させることが可能となる。また、Si-Mn欠乏層の厚さを大きくすることで鋼中からの水素の拡散をより促進させることができるため、Si-Mn欠乏層の厚さは、好ましくは4.0μm以上、より好ましくは5.0μm以上、最も好ましくは7.0μm以上である。Si-Mn欠乏層の厚さの上限は特に限定されないが、例えばSi-Mn欠乏層の厚さは50.0μm以下であってよい。
本発明に係るめっき鋼板は、上述した本発明に係る鋼板上にZnを含むめっき層を有する。このめっき層は鋼板の片面に形成されていても、両面に形成されていてもよい。Znを含むめっき層としては、例えば、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層、電気合金亜鉛めっき層などが挙げられる。より具体的には、めっき種としては、例えば、Zn-0.2%Al(GI)、Zn-0.09%Al(GA)、Zn-1.5%Al-1.5%Mg、又はZn-11%Al-3%Mg-0.2%Siなどを用いることができる。
本発明におけるZnを含むめっき層に含まれる成分組成について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。めっき層についての成分組成における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Alは、Znと共に含まれるか又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Al含有量は0%であってもよい。ZnとAlとを含むめっき層を形成するために、Al含有量は0.01%以上であることが好ましく、例えば、0.1%以上、0.5%以上、1.0%以上、又は3.0%以上であってよい。一方、Alを過度に含有しても耐食性を向上させる効果が飽和するため、Al含有量は、60.0%以下であることが好ましく、例えば、55.0%以下、50.0%以下、40.0%以下、30.0%以下、20.0%以下、10.0%以下、又は5.0%以下であってよい。
Mgは、Zn及びAlと共に含まれるか又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Mg含有量は0%であってもよい。ZnとAlとMgとを含むめっき層を形成するために、Mg含有量は0.01%以上であることが好ましく、例えば、0.1%以上、0.5%以上、1.0%以上、又は3.0%以上であってよい。一方、Mgを過度に含有すると、めっき浴中にMgが溶解しきれずに酸化物として浮遊し、このめっき浴で亜鉛めっきするとめっき表層に酸化物が付着して外観不良を起こし、あるいは、不めっき部が発生するおそれがある。このため、Mg含有量は、15.0%以下であることが好ましく、例えば、10.0%以下、5.0%以下であってよい。
Feは、鋼板上にZnを含むめっき層を形成した後にめっき鋼板を熱処理した場合に鋼板から拡散することでめっき層中に含まれ得る。したがって、熱処理がされていない状態においては、Feはめっき層中に含まれないため、Fe含有量は0%であってもよい。また、Fe含有量は、1.0%以上、2.0%以上、3.0%以上、4.0%以上又は5.0%以上であってもよい。一方、Fe含有量は、15.0%以下であることが好ましく、例えば、12.0%以下、10.0%以下、8.0%以下又は6.0%以下であってもよい。
Siは、Znを含むめっき層、特にZn-Al-Mgめっき層に含まれるとさらに耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Si含有量は0%であってもよい。耐食性向上の観点から、Si含有量は、例えば、0.005%以上、0.01%以上、0.05%以上、0.1%以上又は0.5%以上であってもよい。また、Si含有量は、3.0%以下、2.5%以下、2.0%以下、1.5%以下又は1.2%以下であってもよい。
本発明に係る鋼板及びめっき鋼板は、高強度を有していることが好ましく、具体的には440MPa以上の引張強度を有することが好ましい。例えば、引張強度は500MPa以上、600MPa以上、700MPa以上、又は800MPa以上であってもよい。引張強度の上限は特に限定されないが、靭性確保の観点から例えば2000MPa以下であればよい。引張強度の測定は、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、JIS Z 2241(2011)に準拠して行えばよい。
以下で、本発明に係る鋼板の好ましい製造方法について説明する。以下の説明は、本発明に係る鋼板を製造するための特徴的な方法の例示を意図するものであって、当該鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
鋳造工程の条件は特に限定されない。例えば、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造などの方法で鋳造すればよい。
上記のように鋳造した鋼片を熱間圧延して熱延鋼板を得ることができる。熱延工程は、鋳造した鋼片を直接又は一旦冷却した後に再加熱して熱間圧延することにより行われる。再加熱を行う場合には、鋼片の加熱温度は、例えば1100℃~1250℃であればよい。熱延工程においては、通常、粗圧延と仕上圧延とが行われる。各圧延の温度や圧下率は、所望の金属組織や板厚に応じて適宜変更すればよい。例えば仕上げ圧延の終了温度を900~1050℃、仕上圧延の圧下率を10~50%としてもよい。
熱延鋼板は所定の温度で巻取ることができる。巻取温度は、所望の金属組織等に応じて適宜変更すればよく、例えば500~800℃であればよい。巻取る前又は巻取った後に巻き戻して、熱延鋼板に所定の熱処理を与えてもよい。代替的に、巻取工程は行わずに熱延工程後に酸洗して後述する冷延工程を行うこともできる。
熱延鋼板に酸洗等を行った後、熱延鋼板を冷間圧延して冷延鋼板を得ることができる。冷間圧延の圧下率は、所望の金属組織や板厚に応じて適宜変更すればよく、例えば20~80%であればよい。冷延工程後は、例えば空冷して室温まで冷却すればよい。
最終的に得られる鋼板の表層において粒界型酸化物を十分に形成させ、さらに所望の厚さ及び組成を有するSi-Mn欠乏層を形成させるためには、冷延鋼板を焼鈍する前に研削工程を行うことが有効である。当該研削工程により、冷延鋼板の表面に多量の転位を導入することができる。酸素等の拡散は粒内よりも粒界の方が速いため、冷延鋼板の表面に多量の転位を導入することで粒界の場合と同様に多くのパスを形成することができる。このため、焼鈍時に酸素がこれらの転位に沿って鋼の内部まで拡散(侵入)しやすくなり、またSi及びMnの拡散速度も向上するため、結果として酸素が鋼の内部のSi及び/又はMnと結び付いて粒界型酸化物を形成するのを促進することが可能となる。また、このような内部酸化物の形成促進に伴い、周囲のSi及びMn濃度の低下も促進されるため、所望の厚さ及び組成を有するSi-Mn欠乏層の形成も促進させることができる。研削工程は、特に限定されないが、例えば、重研削ブラシを用いて研削量10~200g/m2の条件下で冷延鋼板の表面を研削することにより実施することができる。重研削ブラシによる研削量は、当業者に公知の任意の適切な方法によって調整することができ、特に限定されないが、例えば、重研削ブラシの本数、回転数、ブラシ圧下量、及び使用する塗布液などを適切に選択することによって調整することができる。このような研削工程を実施することで、後述する焼鈍工程において所望の粒界型酸化物を形成するとともに、所望の厚さ及び組成すなわち3.0μm以上の厚さを有しかつSi及びMn欠乏率がそれぞれ10%未満となるSi-Mn欠乏層を確実かつ効率的に鋼板の表層に形成することが可能となる。
上記研削工程を行った冷延鋼板に焼鈍を行う。焼鈍は、冷延鋼板に対して圧延方向に張力をかけた状態で行うのが好ましい。とりわけ、焼鈍温度が500℃以上の領域では、それ以外の領域に比べて張力を高くして焼鈍を行なうことが好ましく、具体的には焼鈍温度が500℃以上の領域では、冷延鋼板に対して圧延方向に3~150MPa、特に15~150MPaの張力をかけた状態で焼鈍を行うのが好ましい。焼鈍時に張力をかけると冷延鋼板の表面に多量の転位をより効果的に導入することが可能となる。したがって、焼鈍時に酸素がこれらの転位に沿って鋼の内部まで拡散(侵入)しやすくなり、またSi及びMnの拡散速度も向上するため、鋼板の内部に酸化物が生成されやすくなる。その結果、所望の比率の粒界型酸化物の形成、並びに所望の厚さ及び組成を有するSi-Mn欠乏層の形成にとって有利となる。
以下で、本発明に係るめっき鋼板の好ましい製造方法について説明する。以下の説明は、本発明に係るめっき鋼板を製造するための特徴的な方法の例示を意図するものであって、当該めっき鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
めっき処理工程は、当業者に公知の方法に従って行えばよい。めっき処理工程は、例えば、溶融めっきにより行ってもよく、電気めっきにより行ってもよい。好ましくは、めっき処理工程は溶融めっきにより行われる。めっき処理工程の条件は、所望のめっき層の成分組成、厚さ及び付着量等を考慮して適宜設定すればよい。めっき処理の後、合金化処理を行ってもよい。典型的には、めっき処理工程の条件は、Al:0~60.0%、Mg:0~15.0%、Fe:0~15%、及びSi:0~3%を含み、残部がZn及び不純物からなるめっき層を形成するように設定するとよい。より具体的には、めっき処理工程の条件は、例えば、Zn-0.2%Al(GI)、Zn-0.09%Al(GA)、Zn-1.5%Al-1.5%Mg、又はZn-11%Al-3%Mg-0.2%Siを形成するように適宜設定すればよい。
成分組成を調整した溶鋼を鋳造して鋼片を形成し、鋼片を熱間圧延し、酸洗した後に冷間圧延して冷延鋼板を得た。次いで、室温まで空冷し、冷延鋼板に酸洗処理を施して圧延により形成された内部酸化層を表1に記載の焼鈍前の内部酸化層深さ(μm)まで除去した。次いで、各冷延鋼板からJIS G0417:1999に準拠した方法でサンプルを採取し、鋼板の成分組成をICP-MS法等により分析した。測定した鋼板の成分組成を表1に示す。使用した鋼板の板厚は全て1.6mmであった。
上記のように作成した各鋼板試料を25mm×15mmに切断し、切断後の試料を樹脂に埋め込み鏡面研磨を施し、各鋼板試料の断面について、1.0μm×1.0μmの領域をSEMで10箇所観察した。観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から0.2~1.2μmまでの1.0μmとし、幅方向(鋼板の表面と垂直な方向)については、上記SEM画像の任意の位置の1.0μmとした。なお、上記各領域として、粒界型酸化物が含まれない領域を選択した。次いで、得られた各鋼板試料についての各領域のSEM画像を二値化し、二値化像から粒状型酸化物部分の面積を算出し、さらにSEM画像内の粒状型酸化物の個数を数えた。こうして求めた10個の二値化像における粒状型酸化物の面積と個数から、円相当直径として粒状型酸化物の平均粒径及び数密度を求めた。各鋼板試料についての粒状型酸化物の平均粒径(nm)及び数密度(個/μm2)を表1に示す。なお、表1において、SEM画像内に粒状型酸化物が存在しない場合(数密度=0の場合)は、平均粒径は「-」と記載した。
各鋼板試料を100mm×200mmのサイズに切断した後、表1に示すめっき種を形成するためのめっき処理を行うことによりめっき鋼板試料を作製した。表1において、めっき種Aは「GA(合金化溶融亜鉛めっき鋼板)」、めっき種Bは「GI(溶融亜鉛めっき鋼板)」、めっき種Cは「Zn-1.5%Al-1.5%Mg」を示す。溶融亜鉛めっき工程では、切断した試料を440℃の溶融亜鉛めっき浴に3秒間浸漬した。浸漬後、100mm/秒で引き抜き、N2ワイピングガスによりめっき付着量を50g/m2に制御した。めっき種Aについては、その後460℃で合金化処理を行った。
各めっき鋼板試料について、鋼板の表面の不めっき部の面積率を測定することでめっき性の評価を行った。具体的には、めっき層を形成した各めっき鋼板試料の表面の1mm×1mmの領域を光学顕微鏡で観察し、観察した画像からめっき層が形成された部分(めっき部)とめっき層が形成されなかった部分(不めっき部)とを判別し、不めっき部の面積率(不めっき部の面積/観察した画像の面積)を算出し、以下の基準によりめっき性を評価し、その結果を表1に示す。〇が合格、×が不合格である。
評価〇:5.0%以下
評価×:5.0%超
めっき鋼板試料のエッジ部をマスキングし、当該めっき鋼板試料中に電気化学的に水素をチャージさせた。水素チャージは、各試料を0.1M-H2SO4(pH=3)と0.01M-KSCNの混合溶液に浸漬し、室温かつ定電流(100μA/mm2)の条件で行った。この後、各めっき鋼板試料について、昇温脱離法により拡散性水素量を測定した。具体的には、ガスクロマトグラフィを備えた加熱炉中でめっき鋼板試料を400℃まで加熱し、250℃まで下がるまでに放出した水素量の総和を測定した。測定した拡散性水素量に基づき、以下の基準により、水素排出性を評価し、その結果を表1に示す。◎及び〇が合格、×が不合格である。
評価◎:0.2ppm以下
評価〇:0.2ppm超0.4ppm以下
評価×:0.4ppm超
2 外部酸化層
3 母材鋼
11 鋼板
12 粒状型酸化物
13 粒界型酸化物
14 母材鋼
Claims (5)
- 質量%で、
C:0.05~0.40%、
Si:0.2~3.0%、
Mn:0.1~5.0%、
sol.Al:0~0.4000%未満、
P:0.0300%以下、
S:0.0300%以下、
N:0.0100%以下、
B:0~0.010%、
Ti:0~0.150%、
Nb:0~0.150%、
V:0~0.150%、
Cr:0~2.00%、
Ni:0~2.00%、
Cu:0~2.00%、
Mo:0~1.00%、
W:0~1.00%、
Ca:0~0.100%、
Mg:0~0.100%、
Zr:0~0.100%、
Hf:0~0.100%、及び
REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
前記鋼板の表層に粒界型酸化物を含み、
前記鋼板の表層の断面を観察した場合において、前記鋼板の表面の長さに対する前記鋼板の表面に投影した粒界型酸化物の長さの比率Aが50%以上100%以下であり、
粒状型酸化物の数密度が4.0個/μm2未満であり、
前記鋼板の表面から3.0μm以上の厚さを有するSi-Mn欠乏層を含み、
前記厚さの1/2位置における酸化物を含まない前記Si-Mn欠乏層のSi及びMn含有量がそれぞれ前記鋼板の板厚中心部におけるSi及びMn含有量の10%未満である、鋼板。 - 前記比率Aが80%以上である、請求項1に記載の鋼板。
- 前記比率Aが90%以上である、請求項1に記載の鋼板。
- 前記粒状型酸化物の数密度が2.0個/μm2未満である、請求項1~3のいずれか1項に記載の鋼板。
- 請求項1~4のいずれか1項に記載の鋼板上にZnを含むめっき層を有する、めっき鋼板。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/016832 WO2022230064A1 (ja) | 2021-04-27 | 2021-04-27 | 鋼板及びめっき鋼板 |
MX2023012579A MX2023012579A (es) | 2021-04-27 | 2021-04-27 | Lamina de acero y lamina de acero enchapada. |
US18/288,223 US20240218491A1 (en) | 2021-04-27 | 2021-04-27 | Steel sheet and plated steel sheet |
JP2023516910A JPWO2022230064A1 (ja) | 2021-04-27 | 2021-04-27 | |
CN202180097467.0A CN117255869A (zh) | 2021-04-27 | 2021-04-27 | 钢板及镀覆钢板 |
KR1020237036699A KR20230160908A (ko) | 2021-04-27 | 2021-04-27 | 강판 및 도금 강판 |
EP21939225.5A EP4332250A4 (en) | 2021-04-27 | 2021-04-27 | STEEL SHEET AND CLAD STEEL SHEET |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/016832 WO2022230064A1 (ja) | 2021-04-27 | 2021-04-27 | 鋼板及びめっき鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022230064A1 true WO2022230064A1 (ja) | 2022-11-03 |
Family
ID=83847851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016832 WO2022230064A1 (ja) | 2021-04-27 | 2021-04-27 | 鋼板及びめっき鋼板 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240218491A1 (ja) |
EP (1) | EP4332250A4 (ja) |
JP (1) | JPWO2022230064A1 (ja) |
KR (1) | KR20230160908A (ja) |
CN (1) | CN117255869A (ja) |
MX (1) | MX2023012579A (ja) |
WO (1) | WO2022230064A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115584428A (zh) * | 2022-11-07 | 2023-01-10 | 鞍钢股份有限公司 | 一种新型短流程低成本冷轧dh590钢及其生产方法 |
CN115652207A (zh) * | 2022-11-07 | 2023-01-31 | 鞍钢股份有限公司 | 780MPa级短流程经济型冷轧DH钢板及其生产方法 |
CN115679223A (zh) * | 2022-11-07 | 2023-02-03 | 鞍钢股份有限公司 | 一种新型高屈强比冷轧dh980钢及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04202632A (ja) | 1990-11-30 | 1992-07-23 | Nippon Steel Corp | 高Si含有鋼の高張力溶融亜鉛めっき鋼板の製造方法 |
JP2007211279A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法 |
WO2013047836A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 亜鉛めっき鋼板及びその製造方法 |
CN103290308A (zh) * | 2012-02-27 | 2013-09-11 | 株式会社神户制钢所 | 高强度冷轧钢板及其制造方法 |
JP2016130357A (ja) | 2015-01-09 | 2016-07-21 | 株式会社神戸製鋼所 | 高強度めっき鋼板、並びにその製造方法 |
JP2016130356A (ja) * | 2015-01-09 | 2016-07-21 | 株式会社神戸製鋼所 | めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法 |
JP2018193614A (ja) | 2013-07-12 | 2018-12-06 | 株式会社神戸製鋼所 | めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法 |
WO2019116531A1 (ja) * | 2017-12-15 | 2019-06-20 | 日本製鉄株式会社 | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112015015191A2 (pt) * | 2012-12-25 | 2017-07-11 | Nippon Steel & Sumitomo Metal Corp | chapa de aço galvanizada e recozida e método de produção da mesma |
KR102648242B1 (ko) * | 2018-12-19 | 2024-03-18 | 주식회사 포스코 | 전기 저항 점용접성이 우수한 고강도 아연도금강판 및 그 제조방법 |
KR102200175B1 (ko) * | 2018-12-19 | 2021-01-08 | 주식회사 포스코 | 점 용접성이 우수한 아연도금강판 및 그 제조방법 |
-
2021
- 2021-04-27 JP JP2023516910A patent/JPWO2022230064A1/ja active Pending
- 2021-04-27 EP EP21939225.5A patent/EP4332250A4/en active Pending
- 2021-04-27 KR KR1020237036699A patent/KR20230160908A/ko unknown
- 2021-04-27 MX MX2023012579A patent/MX2023012579A/es unknown
- 2021-04-27 CN CN202180097467.0A patent/CN117255869A/zh active Pending
- 2021-04-27 US US18/288,223 patent/US20240218491A1/en active Pending
- 2021-04-27 WO PCT/JP2021/016832 patent/WO2022230064A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04202632A (ja) | 1990-11-30 | 1992-07-23 | Nippon Steel Corp | 高Si含有鋼の高張力溶融亜鉛めっき鋼板の製造方法 |
JP2007211279A (ja) * | 2006-02-08 | 2007-08-23 | Nippon Steel Corp | 耐水素脆性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法 |
WO2013047836A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 亜鉛めっき鋼板及びその製造方法 |
CN103290308A (zh) * | 2012-02-27 | 2013-09-11 | 株式会社神户制钢所 | 高强度冷轧钢板及其制造方法 |
JP2018193614A (ja) | 2013-07-12 | 2018-12-06 | 株式会社神戸製鋼所 | めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法 |
JP2016130357A (ja) | 2015-01-09 | 2016-07-21 | 株式会社神戸製鋼所 | 高強度めっき鋼板、並びにその製造方法 |
JP2016130356A (ja) * | 2015-01-09 | 2016-07-21 | 株式会社神戸製鋼所 | めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法 |
WO2019116531A1 (ja) * | 2017-12-15 | 2019-06-20 | 日本製鉄株式会社 | 鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4332250A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115584428A (zh) * | 2022-11-07 | 2023-01-10 | 鞍钢股份有限公司 | 一种新型短流程低成本冷轧dh590钢及其生产方法 |
CN115652207A (zh) * | 2022-11-07 | 2023-01-31 | 鞍钢股份有限公司 | 780MPa级短流程经济型冷轧DH钢板及其生产方法 |
CN115679223A (zh) * | 2022-11-07 | 2023-02-03 | 鞍钢股份有限公司 | 一种新型高屈强比冷轧dh980钢及其制备方法 |
CN115584428B (zh) * | 2022-11-07 | 2023-08-18 | 鞍钢股份有限公司 | 一种短流程低成本冷轧dh590钢及其生产方法 |
CN115679223B (zh) * | 2022-11-07 | 2023-08-18 | 鞍钢股份有限公司 | 一种高屈强比冷轧dh980钢及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4332250A1 (en) | 2024-03-06 |
KR20230160908A (ko) | 2023-11-24 |
MX2023012579A (es) | 2023-10-31 |
US20240218491A1 (en) | 2024-07-04 |
JPWO2022230064A1 (ja) | 2022-11-03 |
EP4332250A4 (en) | 2024-06-26 |
CN117255869A (zh) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022230064A1 (ja) | 鋼板及びめっき鋼板 | |
WO2013111362A1 (ja) | 合金化溶融亜鉛めっき鋼板 | |
WO2022230400A1 (ja) | 鋼板及びめっき鋼板 | |
WO2022230399A1 (ja) | 鋼板及びめっき鋼板 | |
WO2022230402A1 (ja) | 合金化溶融亜鉛めっき鋼板 | |
WO2022230401A1 (ja) | 鋼板及びめっき鋼板 | |
WO2023054717A1 (ja) | 鋼溶接部材 | |
JP7506350B2 (ja) | 鋼溶接部材 | |
WO2022230059A1 (ja) | 鋼板及びめっき鋼板 | |
JP7440771B2 (ja) | ホットスタンプ成形体 | |
WO2023054705A1 (ja) | めっき鋼板 | |
JP2022169169A (ja) | 鋼板及びめっき鋼板 | |
JP2022169341A (ja) | 鋼板及びめっき鋼板 | |
WO2024053663A1 (ja) | めっき鋼板 | |
WO2024053667A1 (ja) | 鋼板及びめっき鋼板 | |
WO2024150820A1 (ja) | 溶接継手 | |
WO2024150824A1 (ja) | 溶接継手 | |
EP4116457B1 (en) | Hot pressed member and method of producing same. and coated steel sheet for hot press forming | |
KR20240102991A (ko) | 강판 및 도금 강판 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21939225 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/012579 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20237036699 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317072656 Country of ref document: IN Ref document number: 202180097467.0 Country of ref document: CN Ref document number: 18288223 Country of ref document: US Ref document number: 2301006946 Country of ref document: TH Ref document number: 2023516910 Country of ref document: JP Ref document number: 1020237036699 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021939225 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021939225 Country of ref document: EP Effective date: 20231127 |