[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022205080A1 - 电池、用电装置、制备电池的方法和装置 - Google Patents

电池、用电装置、制备电池的方法和装置 Download PDF

Info

Publication number
WO2022205080A1
WO2022205080A1 PCT/CN2021/084441 CN2021084441W WO2022205080A1 WO 2022205080 A1 WO2022205080 A1 WO 2022205080A1 CN 2021084441 W CN2021084441 W CN 2021084441W WO 2022205080 A1 WO2022205080 A1 WO 2022205080A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
battery
thermal management
relief mechanism
battery cell
Prior art date
Application number
PCT/CN2021/084441
Other languages
English (en)
French (fr)
Inventor
黎贤达
陈小波
李耀
胡璐
岳金如
杨飘飘
顾明光
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to JP2022571298A priority Critical patent/JP7490085B2/ja
Priority to CA3177761A priority patent/CA3177761A1/en
Priority to EP21755670.3A priority patent/EP4096007A4/en
Priority to PCT/CN2021/084441 priority patent/WO2022205080A1/zh
Priority to CN202180000886.8A priority patent/CN115485894A/zh
Priority to KR1020227040129A priority patent/KR102681019B1/ko
Priority to US17/550,011 priority patent/US11489231B2/en
Priority to US17/953,734 priority patent/US11817601B2/en
Publication of WO2022205080A1 publication Critical patent/WO2022205080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/623Portable devices, e.g. mobile telephones, cameras or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery, an electrical device, and a method and device for preparing a battery.
  • the present application provides a battery, an electrical device, and a method and device for preparing the battery, which can enhance the safety of the battery.
  • a battery comprising: a battery cell, including a pressure relief mechanism, the pressure relief mechanism is provided on a first wall of the battery cell, and the pressure relief mechanism is used for Actuated to relieve the internal pressure when the internal pressure or temperature of the body reaches a threshold value; a thermal management member for containing a fluid to regulate the temperature of the battery cells, the first surface of the thermal management member is attached to the the first wall, the thermal management member is provided with a pressure relief hole opposite the pressure relief mechanism, so that the exhaust discharged from the battery cell can pass through the pressure relief hole when the pressure relief mechanism is actuated Exhaust through the thermal management component; a baffle for shielding a part of the pressure relief hole, so as to change the discharge direction of the exhaust that enters the pressure relief hole when the pressure relief mechanism is actuated.
  • the discharge may directly contact the baffle and reflect on the surface of the baffle, thereby changing the original discharge direction of the discharge, thereby It enables more high-temperature emissions to contact the thermal management components to achieve a better cooling effect, and avoids the situation where the high-temperature emissions flow too smoothly when passing through the pressure relief holes and cannot fully contact the thermal management components.
  • the maximum distance of the baffle from the first wall is greater than the minimum distance from the upper surface to the first wall.
  • Fluid is contained in the thermal management part, and the baffle is farther from the wall where the pressure relief mechanism is provided than the thermal management part, so that the discharge passing through the pressure relief hole is reflected after contacting the baffle to ensure more discharge Contact thermal management components for better cooling.
  • the baffle is inclined with respect to the axis of the pressure relief hole, and in a direction away from the first wall, the baffle gradually approaches the axis of the pressure relief hole, so that all the When the pressure relief mechanism is actuated, the discharge can impact toward the hole wall of the pressure relief hole.
  • the included angle between the baffle and the axis of the pressure relief hole ranges from 20° to 40°.
  • the included angle is set too large, the area of the baffle shielding the pressure relief hole will be too large, which will block the pressure relief hole and affect the passage of the discharge material discharged from the battery cell when the pressure relief mechanism is actuated, which may cause the discharge
  • the air is not smooth and further causes the battery cells to explode; on the contrary, if the included angle is set too small, it will also affect the reflection effect of the emissions on the baffle surface. Therefore, the value range of the included angle is usually set to 20° to 40° for optimum results.
  • baffles there are two oppositely arranged baffles around the pressure relief hole.
  • the ratio of the area of the baffle shielding the pressure relief hole to the area of the pressure relief hole is not less than 0.5 and not more than 0.8, so that it will not hinder the discharge of the exhaust, and can make the exhaust After reflection on the baffle surface, a large area of the thermal management components can be contacted.
  • the surface roughness of the baffle is less than or equal to 0.1 ⁇ m.
  • the surface of the baffle is too rough, the high-temperature particles in the exhaust may accumulate on the surface of the baffle, and cannot rebound, thereby affecting the effect of the baffle, so the surface of the baffle should be set to be relatively smooth. surface.
  • the baffle is disposed on a second surface of the thermal management component, and the second surface is opposite to the first surface or the second surface is a hole wall of the pressure relief hole.
  • the battery further includes: an electrical cavity for receiving a plurality of the battery cells; a collection cavity for collecting the exhaust discharged from the battery cells when the pressure relief mechanism is actuated and emissions from the thermal management component; wherein the thermal management component is used to isolate the electrical cavity and the collection cavity.
  • the battery further includes: a shielding member for shielding the thermal management component, the shielding member and the thermal management component forming the collection cavity.
  • the shielding member includes a bottom wall and a plurality of side walls to form a hollow structure with an open end, and the thermal management component covers the opening to form the collection cavity.
  • the end of the baffle plate away from the first wall abuts against the bottom wall of the guard member.
  • At least one battery cell is disposed on the surface of the thermal management component, and by abutting one end of the baffle against the bottom wall of the protective member, the thermal management component can be supported to ensure the distance between the thermal management component and the bottom wall of the protective member, This also ensures the space of the collection cavity, thereby avoiding explosion in the collection cavity.
  • the high-temperature exhaust can also be released at the bottom of the baffle after passing through the pressure relief hole.
  • it is divided into two opposite channels for discharge, especially the high-temperature gas in the high-temperature exhaust can be concentrated into two channels by the baffle after entering the collection cavity, which further increases the lower surface of the high-temperature gas melting and heat management components. It is possible that the thermal management components can be damaged in a large area, and the internal fluid flows out in a large amount, which improves the cooling effect.
  • the thermal management component is adapted to be disrupted by the redirected discharge when the pressure relief mechanism is actuated to allow the fluid to drain from the interior of the thermal management component.
  • the thermal management component has a temperature sensitive material disposed thereon, the temperature sensitive material configured to be meltable by the discharge when the pressure relief mechanism is actuated, so as to release the fluid from the internal exhaust of the thermal management components.
  • the temperature sensitive material is disposed on an area of the thermal management component facing the discharge of the battery cell.
  • a temperature sensitive material may be provided on the hole wall of the pressure relief hole, or may be provided around the pressure relief hole on the first surface of the thermal management component, so that when the discharge in the battery cell passes through the pressure relief hole, it can The temperature-sensitive material is melted, so that the fluid in the thermal management component can be discharged smoothly, thereby better cooling.
  • an electrical device comprising: the battery of the first aspect, used for providing electrical energy.
  • the powered device is a vehicle, a ship or a spacecraft.
  • a method for preparing a battery including: providing a battery cell, the battery cell includes a pressure relief mechanism, the pressure relief mechanism is provided on a first wall of the battery cell, and the pressure relief mechanism is provided.
  • a thermal management component is provided for containing a fluid to regulate the battery cell temperature, a first surface of the thermal management component is attached to the first wall, the thermal management component is provided with a pressure relief hole opposite the pressure relief mechanism for The exhaust discharged from the battery cell can be discharged through the thermal management part through the pressure relief hole; a baffle is provided for shielding a part of the pressure relief hole, so that in the pressure relief hole, a baffle is provided.
  • the mechanism changes the discharge direction of the discharge into the pressure relief hole when actuated.
  • an apparatus for preparing a battery including a module for performing the method of the third aspect above.
  • FIG. 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery module disclosed in an embodiment of the present application.
  • FIG. 4 is an exploded view of a battery cell disclosed in an embodiment of the application.
  • FIG. 5 is an exploded view of a battery cell and a thermal management component disclosed in an embodiment of the present application
  • FIG. 6 is an exploded view of a thermal management component and a baffle disclosed in an embodiment of the present application.
  • FIG. 7 is a top view of a thermal management component provided with a baffle plate disclosed in an embodiment of the present application.
  • FIG. 8 is a bottom view of a thermal management component provided with a baffle plate disclosed in an embodiment of the present application.
  • FIG. 9 is a cross-sectional view of a battery cell, a thermal management component and a baffle disclosed in an embodiment of the present application;
  • FIG. 10 is a cross-sectional view of another battery cell, a thermal management component and a baffle disclosed in an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • FIG. 13 is an exploded view of another electrical cavity disclosed in an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a case of a battery disclosed in an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a case of another battery disclosed in an embodiment of the present application.
  • 16 is an exploded view of a battery disclosed in an embodiment of the present application.
  • FIG. 17 is a cross-sectional view of a thermal management component, a baffle plate and a protective member disclosed in an embodiment of the present application;
  • FIG. 18 is a schematic flowchart of a method for preparing a battery disclosed in an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of an apparatus for preparing a battery disclosed in an embodiment of the present application.
  • a battery cell may include a primary battery or a secondary battery, for example, a lithium-ion battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery, or a magnesium-ion battery, which is not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • a battery pack typically includes a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, and the positive electrode active material layer is not coated.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative electrode sheet comprises a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector coated with the negative electrode active material layer was used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • the pressure relief mechanism refers to an element or component that is actuated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements.
  • the predetermined threshold value may depend on the materials of one or more of the positive pole piece, the negative pole piece, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism may employ elements or components such as pressure-sensitive or temperature-sensitive, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is actuated to form a vent for internal pressure or temperature relief. aisle.
  • the "actuating" mentioned in this application refers to the action of the pressure relief mechanism, so that the internal pressure and temperature of the battery cell can be released. Actions produced by the pressure relief mechanism may include, but are not limited to, rupture, tearing, or melting of at least a portion of the pressure relief mechanism, among others. After the pressure relief mechanism is actuated, the high temperature and high pressure substances inside the battery cells will be discharged from the pressure relief mechanism as a discharge. In this way, the battery cells can be depressurized under controlled pressure or temperature conditions, thereby avoiding potentially more serious accidents.
  • the emissions from the battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high temperature and high pressure gas generated by the reaction, flames, and the like.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a battery cell is short-circuited or overcharged, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released through the actuation of the pressure relief mechanism to prevent the battery cells from exploding and catching fire.
  • the main focus is to release the high pressure and high heat inside the battery cell, that is, to discharge the exhaust to the outside of the battery cell.
  • a plurality of battery cells are often required, and the plurality of battery cells are electrically connected through a busbar. Emissions discharged from the inside of the battery cells may cause short-circuits in the remaining battery cells. For example, when the discharged metal scraps electrically connect the two bus components, the batteries will be short-circuited, thus posing a safety hazard.
  • the high-temperature and high-pressure discharge is discharged toward the direction in which the pressure relief mechanism is provided in the battery cell, and may be discharged in the direction toward the area where the pressure relief mechanism is actuated, and the power and destructive power of such discharge may be very large, It may even be enough to break through one or more structures in that direction, creating further safety concerns.
  • a thermal management component is provided in the battery, and the surface of the thermal management component is attached to the surface of the battery cell where the pressure relief mechanism is arranged, and the thermal management component may also be provided with a pressure relief area.
  • the pressure relief area may be a pressure relief hole.
  • the thermal management component is used to contain a fluid to regulate the temperature of the plurality of battery cells.
  • the fluid here can be liquid or gas, and adjusting the temperature refers to heating or cooling a plurality of battery cells.
  • the thermal management component is used to contain a cooling fluid to reduce the temperature of the plurality of battery cells.
  • the thermal management component may also be called a cooling component, a cooling system or a cooling plate, etc.
  • the fluid it contains can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas.
  • the thermal management component may also be used for heating to heat up a plurality of battery cells, which is not limited in the embodiment of the present application.
  • the fluid can be circulated to achieve better temperature regulation.
  • the fluid may be water, a mixture of water and ethylene glycol, or air, or the like.
  • the exhaust discharged from the battery cells can be discharged through the pressure relief holes of the thermal management component, and the thermal management component can also cool the battery cells to avoid the battery cells explosion occurs.
  • the bus components are used to realize electrical connection between a plurality of battery cells, such as parallel connection or series connection or hybrid connection.
  • the bus part can realize electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus members may be fixed to the electrode terminals of the battery cells by welding.
  • the electrical connection formed by the bus component may also be referred to as a "high voltage connection”.
  • the technical solutions described in the embodiments of this application are applicable to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships, and spacecraft.
  • the spacecraft includes Planes, rockets, space shuttles and spaceships, etc.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • the interior of the vehicle 1 may be provided with a motor 40 , a controller 30 and a battery 10 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom of the vehicle 1 or at the front or rear of the vehicle.
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as the operating power source of the vehicle 1 , for the circuit system of the vehicle 1 , for example, for the starting, navigation and operation power requirements of the vehicle 1 .
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connections.
  • a battery can also be called a battery pack.
  • a plurality of battery cells can be connected in series or in parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series or in parallel or mixed to form a battery. That is to say, a plurality of battery cells can directly form a battery, or a battery module can be formed first, and then the battery module can be formed into a battery.
  • the battery 10 may include at least one battery module 200 .
  • the battery module 200 includes a plurality of battery cells 20 .
  • the battery 10 may further include a box body, the inside of the box body is a hollow structure, and the plurality of battery cells 20 are accommodated in the box body.
  • the box body may include two parts, which are referred to as the first part 111 and the second part 112 respectively, and the first part 111 and the second part 112 are fastened together.
  • the shape of the first part 111 and the second part 112 may be determined according to the combined shape of the battery module 200 , and at least one of the first part 111 and the second part 112 has an opening.
  • both the first part 111 and the second part 112 may be a hollow cuboid and each has only one face as an open face, the opening of the first part 111 and the opening of the second part 112 are disposed opposite to each other, and the first part 111 and the second part 112 is fastened to each other to form a box body with a closed cavity.
  • FIG. 2 both the first part 111 and the second part 112 may be a hollow cuboid and each has only one face as an open face, the opening of the first part 111 and the opening of the second part 112 are disposed opposite to each other, and the first part 111 and the second part 112 is fastened to each other to form a box body with a closed cavity.
  • first portion 111 and the second portion 112 may be a hollow cuboid with an opening, and the other may be a plate shape to cover the opening.
  • the second part 112 is a hollow cuboid with only one face as an open surface
  • the first part 111 is plate-shaped as an example, then the first part 111 is covered at the opening of the second part 112 to form a box with a closed cavity
  • the chamber can be used to accommodate a plurality of battery cells 20 .
  • the plurality of battery cells 20 are connected in parallel or in series or in a mixed connection and then placed in the box formed by the first part 111 and the second part 112 being fastened together.
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may further include a bussing component for realizing electrical connection between the plurality of battery cells 20, such as parallel or series or hybrid.
  • the bus member may realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus members may be fixed to the electrode terminals of the battery cells 20 by welding. The electrical energy of the plurality of battery cells 20 can be further drawn out through the case through the conductive mechanism.
  • the number of battery cells 20 in the battery module 200 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in a mixed manner to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 are arranged in groups, and each group of battery cells 20 constitutes a battery module 200 .
  • the number of battery cells 20 included in the battery module 200 is not limited, and can be set according to requirements.
  • FIG. 3 is an example of a battery module 200 .
  • the battery may include a plurality of battery modules 200, and the battery modules 200 may be connected in series, parallel or mixed.
  • FIG. 4 is a schematic structural diagram of a battery cell 20 according to an embodiment of the application.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
  • the casing 211 and the cover plate 212 form the housing 21 . Both the wall of the case 211 and the cover plate 212 are referred to as the wall of the battery cell 20 .
  • the casing 211 is determined according to the combined shape of one or more electrode assemblies 22.
  • the casing 211 can be a hollow cuboid, a cube or a cylinder, and one surface of the casing 211 has an opening for one or more electrodes.
  • Assembly 22 may be placed within housing 211 .
  • one of the planes of the casing 211 is an opening surface, that is, the plane does not have a wall so that the casing 211 communicates with the inside and the outside.
  • the casing 211 can be a hollow cylinder
  • the end face of the casing 211 is an open face, that is, the end face does not have a wall so that the casing 211 communicates with the inside and the outside.
  • the cover plate 212 covers the opening and is connected with the case 211 to form a closed cavity in which the electrode assembly 22 is placed.
  • the casing 211 is filled with electrolyte, such as electrolyte.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
  • the cover plate 212 is generally in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the cover plate 212 , and the two electrode terminals 214 are the first electrode terminal 214 a and the second electrode terminal 214 b respectively.
  • the polarities of the two electrode terminals 214 are opposite. For example, when the first electrode terminal 214a is a positive electrode terminal, the second electrode terminal 214b is a negative electrode terminal.
  • Each electrode terminal 214 is correspondingly provided with a connecting member 23 , which is located between the cover plate 212 and the electrode assembly 22 and is used to electrically connect the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connecting member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connecting member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 may be set in a single or multiple number. As shown in FIG. 4 , four independent electrode assemblies 22 are provided in the battery cell 20 .
  • a pressure relief mechanism 213 may also be provided on one wall of the battery cell 20 , for example, a pressure relief mechanism 213 may be provided on the first wall 21 a of the battery cell 20 .
  • the first wall 21a in FIG. 4 is separated from the casing 211, that is, the bottom side of the casing 211 has an opening, the first wall 21a covers the bottom side opening and is connected to the casing 211 by welding or gluing.
  • the first wall 21a and the housing 211 may also be an integral structure.
  • the pressure relief mechanism 213 is used to actuate when the internal pressure or temperature of the battery cell 20 reaches a threshold value to relieve the internal pressure or temperature.
  • the pressure relief mechanism 213 can be a part of the first wall 21a, or can be a separate structure from the first wall 21a, and is fixed on the first wall 21a by, for example, welding.
  • the pressure relief mechanism 213 can be formed by providing a notch on the first wall 21a, and the thickness of the first wall 21a corresponding to the notch is smaller than the pressure relief mechanism The thickness of the other regions of the mechanism 213 excluding the score.
  • the notch is the weakest position of the pressure relief mechanism 213 .
  • the pressure relief mechanism 213 can The rupture occurs at the notch, causing the casing 211 to communicate with the inside and outside, and the gas pressure and temperature are released outward through the cracking of the pressure relief mechanism 213 , thereby preventing the battery cell 20 from exploding.
  • the second wall of the battery cell 20 is provided with electrode terminals 214, the second wall is different from the first wall 21a.
  • the second wall is disposed opposite to the first wall 21a.
  • the first wall 21 a may be the bottom wall of the battery cell 20
  • the second wall may be the cover plate 212 of the battery cell 20 .
  • Disposing the pressure relief mechanism 213 and the electrode terminal 214 on different walls of the battery cell 20 can make the discharge of the battery cell 20 farther away from the electrode terminal 214 when the pressure relief mechanism 213 is actuated, thereby reducing the amount of discharge to the electrode
  • the influence of the terminals 214 and the bus components can therefore enhance the safety of the battery.
  • the pressure relief mechanism 213 is arranged on the bottom wall of the battery cell 20, so that when the pressure relief mechanism 213 is actuated, the The discharge is discharged to the bottom of the battery 10 .
  • the thermal management components at the bottom of the battery 10 can be used to reduce the risk of emissions; on the other hand, when the battery 10 is installed in the vehicle, the bottom of the battery 10 is usually far away from the passengers, thereby reducing the harm to the passengers.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to be able to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism, and the pressure-sensitive pressure relief mechanism is configured to be able to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • thermal management components may be provided under the battery cells 20 .
  • the thermal management component can be used to contain fluid to regulate the temperature of the battery cells 20, and when the pressure relief mechanism 213 is actuated, the thermal management component can be the exhaust from the battery cells 20 provided with the pressure relief mechanism 213 cooling down.
  • the thermal management component may also be provided with a pressure relief area, for example, the pressure relief area may be a pressure relief hole, so that when the pressure relief mechanism 213 is actuated, the pressure relief mechanism 213 is opened, and the battery cells are released. Exhaust in 20 is discharged, and the exhaust can also be discharged through the thermal management component through the pressure relief hole.
  • the pressure relief area may be a pressure relief hole, so that when the pressure relief mechanism 213 is actuated, the pressure relief mechanism 213 is opened, and the battery cells are released. Exhaust in 20 is discharged, and the exhaust can also be discharged through the thermal management component through the pressure relief hole.
  • the embodiments of the present application provide a battery that can solve the above problems.
  • FIG. 5 shows a partial exploded view of the battery 10 according to the embodiment of the present application.
  • the battery 10 includes: at least one battery cell 20 , and the following battery cell 20 is any one of the batteries included in the battery 10 .
  • the battery cell 20 may be the battery cell 20 in FIGS. 1-4 , which is applicable to the related description of the battery cell 20 in the above-mentioned FIGS. 1-4 , and is not repeated here for brevity.
  • the battery cell 20 includes a pressure relief mechanism 213 .
  • the pressure relief mechanism 213 is disposed on the first wall 21 a of the battery cell 20 .
  • the pressure relief mechanism 213 is used to release the pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value. to relieve internal pressure.
  • the battery 10 further includes: a thermal management part 13 for accommodating a fluid to adjust the temperature of the battery cells 20 .
  • the thermal management component 13 is applicable to the relevant description of the thermal management component in the above, and for the sake of brevity, it will not be repeated here.
  • the first surface 1321 of the thermal management part 13 is attached to the first wall 21 a of the battery cell 20
  • the thermal management part 13 is provided with a pressure relief hole 131 opposite to the pressure relief mechanism 213 , so that the pressure relief mechanism 213 Exhaust within the battery cells 20 during actuation can be exhausted through the thermal management component 13 through the pressure relief holes 131 .
  • the battery 10 further includes a baffle 14 , the baffle 14 is used to block a part of the pressure relief hole 131 , so that the pressure relief mechanism 213 is actuated to change the inlet pressure relief The discharge direction of the discharge of the hole 131 .
  • a baffle 14 is provided on the thermal management component 13 , so that the baffle 14 covers a part of the pressure relief hole 131 .
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is actuated, the discharged gas from the battery cells 20 After the exhaust enters the pressure relief hole 131, before passing through the pressure relief hole 131 or after passing through the pressure relief hole 131, the exhaust may directly contact the baffle 14, and the baffle 14
  • the surface of the radiator is reflected, thereby changing the original discharge direction of the discharge, so that more high-temperature discharge impinges on the thermal management part 13, so that the thermal management part 13 can cool down more discharge; in addition, more
  • the high-temperature discharge may also widen the area where the high-temperature discharge melts the thermal management component 13, and the thermal management component 13 may be more fully destroyed by the high-temperature discharge, which ensures that enough fluid in the thermal management component 13 can flow out smoothly. , in order to achieve a better cooling effect, and avoid the situation that the high
  • the thermal management component 13 of the embodiment of the present application is used for containing fluid to adjust the temperature of the plurality of battery cells 20 .
  • the thermal management part 13 can accommodate a cooling medium to adjust the temperature of the plurality of battery cells 20.
  • the thermal management part 13 can also be referred to as a cooling part, a cooling system or a cooling plate Wait.
  • the thermal management component 13 may also be used for heating, which is not limited in the embodiment of the present application.
  • the fluid can be circulated to achieve better temperature regulation.
  • FIG. 6 is an exploded view of the thermal management component 13 according to the embodiment of the application
  • FIG. 7 is a top view of the thermal management component 13 according to the embodiment of the application
  • FIG. 8 is a bottom view of the thermal management component 13 according to the embodiment of the application.
  • the thermal management component 13 of the embodiment of the present application may be provided with a flow channel 134 for accommodating a fluid, so that when the pressure relief mechanism 213 is actuated, the battery cells 20 pass through The exhaust discharged from the pressure relief mechanism 213 can damage the flow channel 134, so that the fluid in the flow channel 134 is discharged, thereby cooling the exhaust.
  • the thermal management component 13 may include a first thermal conduction plate 132 and a second thermal conduction plate 133 , and the first thermal conduction plate 132 is disposed between the second thermal conduction plate 133 and the battery cells 20 .
  • the first heat-conducting plate 132 and the second heat-conducting plate 133 are connected.
  • the upper surface of the first heat conducting plate 132 is the first surface 1321 of the thermal management component 13 , and the first surface 1321 is attached to the first wall 21 a of the battery cell 20 .
  • the first surface 1321 is attached to the first wall 21a of the battery cell 20 , and the first surface 1321 may be in direct contact with the first wall 21a, or the first surface 1321 may be in contact with the first wall 21a through a thermally conductive adhesive or other The substance is in contact with the first wall 21a to achieve heat exchange between the first surface 1321 and the first wall 21a of the battery cell 20 .
  • through holes corresponding to each other may be provided on the first heat conduction plate 132 and the second heat conduction plate 133 respectively, so as to form pressure relief holes 131 , that is, the pressure relief hole 131 penetrates through the first heat conduction plate 132 and the second heat conduction plate 133 respectively.
  • the first heat-conducting plate 132 may further include a second groove 1322 with an opening facing away from the second heat-conducting plate 133 , and a through hole is provided on the bottom wall of the second groove 1322 , to form the pressure relief holes 131 on the first heat conducting plate 132 .
  • the hole diameter of the second groove 1322 may gradually increase along the direction away from the second heat conducting plate 133 , that is, the hole wall of the second groove 1322 is inclined relative to the axis of the pressure relief hole 131 , so that the When the battery cell 20 is thermally out of control, the exhaust discharged through the pressure relief mechanism 213 can more contact the side wall of the second groove 1322, which also enables more exhaust to be cooled by the thermal management component 13, for example,
  • the side wall of the second groove 1322 can be set as the wall of the flow channel 134, then when the discharge contacts the side wall of the second groove 1322, the liquid in the flow channel 134 can cool down the discharge, further, the discharge The material can also melt the side wall of the second groove 1322, so that the fluid in the flow channel 134 flows out, and the temperature of the discharge is lowered.
  • the flow channel 134 provided on the thermal management component 13 can be implemented by providing grooves on the second heat-conducting plate 133 or the first heat-conducting plate 132 .
  • the second heat-conducting plate 133 is provided with a first groove 1331 whose opening faces the first heat-conducting plate 132 .
  • the first heat-conducting plate 132 covers the opening of the first groove 1331 to form a hollow structure, and the hollow structure is the flow channel 134 .
  • the shape, size, and position of the flow channel 134 in the embodiment of the present application can be flexibly set according to actual applications.
  • the size of the flow channel 134 at different positions in 8 may be different, and the embodiment of the present application is not limited thereto.
  • the flow channel 134 on the thermal management component 13 is usually arranged around the pressure relief hole 131 so that the exhaust through the pressure relief hole 131 can directly contact the flow channel 134 , so as to be cooled by the fluid in the flow channel 134 , and further, when the exhaust contacts the flow channel 134 , the flow channel 134 can be destroyed in a large area, so that more fluid in the flow channel 134 can be discharged smoothly.
  • the thermal management component 13 may also be provided with a temperature-sensitive material, and the temperature-sensitive material can be released by the discharge of the battery cells 20 when the pressure relief mechanism 213 is actuated. melted so that the internal fluid is discharged from the interior of the thermal management member 13 .
  • the temperature-sensitive material may be disposed on an area of the thermal management component 13 facing the discharge of the battery cells 20 .
  • the temperature-sensitive material can be disposed around the pressure relief hole 131 on the first surface 1321 of the thermal management component 13, and for another example, the temperature-sensitive material can also be disposed on the hole wall of the pressure relief hole 131, and the temperature The area where the sensitive material is disposed may be the wall of the flow channel 134, so that the discharge from the battery cells 20 directly contacts the temperature-sensitive material and melts the temperature-sensitive material, so that the thermal management component 13 is destroyed, for example, the thermal management The flow channel 134 of the component 13 is broken, and the internal fluid flows out to cool the exhaust.
  • the battery 10 of the embodiment of the present application further includes a baffle 14 to change the entry of the pressure relief hole The discharge direction of the 131 emissions.
  • the baffle 14 can be arranged at any position around the pressure relief hole 131 , so that the baffle 14 blocks part of the pressure relief hole 131 , for example, the baffle 14
  • the value range of the ratio of the area of the shielded pressure relief hole 131 to the total area of the pressure relief hole 131 is generally 0.5 to 0.8, but the embodiment of the present application is not limited thereto.
  • the width D1 of the baffle 14 may be equal to or smaller than or greater than the width D2 of the pressure relief hole 131 .
  • FIGS. 6 to 8 take the example of two baffles 14 corresponding to each pressure relief hole 131 as an example.
  • more or less baffles may also be provided, and the embodiments of the present application are not limited thereto.
  • FIG. 9 shows a cross-sectional view of a battery cell 20 and a thermal management component 13 along the AA' direction shown in FIG. 7 .
  • only one baffle 14 is provided in each pressure relief hole 131 as an example.
  • 10 shows another battery cell 20 and a cross-sectional view of the thermal management component 13 along the AA' direction shown in FIG.
  • the baffle 14 in the embodiment of the present application may be located on the second surface of the thermal management component 13 , and the second surface may be any surface of the thermal management component 13 , that is, the baffle 14 may be disposed on the second surface of the thermal management component 13 .
  • the pressure relief hole 131 may also be located outside the pressure relief hole 131 .
  • the baffle 14 in FIG. 9 is arranged in the pressure relief hole 131, and the baffle 14 is connected to the first heat conduction plate 132 of the thermal management component 13, that is, the baffle 14 is arranged on the hole wall of the pressure relief hole 131; While the baffle 14 in FIG. 10 is disposed outside the pressure relief hole 131 , and the baffle 14 is connected to the second heat conduction plate 133 of the thermal management component 13 , the embodiment of the present application is not limited thereto.
  • the maximum distance between the baffle 14 and the first wall 21a of the battery cell 20 is greater than the minimum distance from the flow channel 134 to the first wall 21a, so that the discharge can reach the surface of the baffle 14 Reflection occurs to change the discharge direction, so that the reflected discharge can face the thermal management component 13, and more discharges can contact the thermal management component 13, so as to achieve the effect of the thermal management component 13 cooling more discharges; Further, the discharge direction of the discharge of the discharge is changed by the baffle 14, so that more discharge can impact the thermal management component 13, which may cause the flow channel 134 on the thermal management component 13 to be damaged, so that the flow channel The fluid inside 134 flows out to cool the exhaust.
  • the baffle plate 14 in the embodiment of the present application is generally disposed obliquely with respect to the axis 1311 of the pressure relief hole 131 .
  • the baffle 14 is inclined relative to the axis 1311 of the pressure relief hole 131 , and in the direction away from the first wall 21 a , the baffle 14 gradually approaches the axis 1311 of the pressure relief hole 131 , so that the pressure is released
  • the mechanism 213 is actuated, the exhaust can be reflected by the baffle 14 and impinge toward the hole wall of the pressure relief hole 131, so that more exhaust can impinge on the thermal management component 13, so that the exhaust can more fully interact with the thermal management component. 13 contact, more conducive to cooling.
  • the angle ⁇ between the baffle 14 and the axis 1311 of the pressure relief hole 131 can be set according to practical applications.
  • the included angle ⁇ is set too large, the area of the baffle 14 covering the pressure relief hole 131 will be too large, which will block the pressure relief hole 131 and affect the discharge of the battery cells 20 when the pressure relief mechanism 213 is actuated.
  • the passage of the pollutants may lead to poor exhaust and further cause the battery cells 20 to explode; on the contrary, if the included angle ⁇ is set too small, the reflection effect of the pollutants on the surface of the baffle 14 will also be affected.
  • the value range of the included angle ⁇ is usually set to 20° to 40° to achieve the optimum effect.
  • the material of the baffle plate 14 in the embodiment of the present application can be flexibly set according to practical applications.
  • the baffle 14 can be made of the same material as the thermal management component 13 , for example, both can be made of aluminum alloy material, and the baffle 14 and the thermal management component 13 can be fixed by welding.
  • the surface of the baffle 14 in the embodiment of the present application should be set as a relatively smooth surface. Too roughness may cause the high-temperature particles in the exhaust to accumulate on the surface of the baffle 14 and fail to rebound, thereby affecting the baffle. effect of plate 14.
  • the surface roughness of the baffle 14 may be set to be less than or equal to 0.1 ⁇ m, and the surface roughness may be the arithmetic mean deviation (Ra) of the profile, but the embodiment of the present application is not limited thereto.
  • the battery 10 of the embodiment of the present application may further include an electrical cavity 11a and a collection cavity 11b.
  • the battery 10 provided with the electrical cavity 11a, the collection cavity 11b and the thermal management component 13 will be described in detail below with reference to the accompanying drawings.
  • FIG. 11 is a schematic diagram of the case 11 of the battery 10 according to an embodiment of the present application.
  • the box 11 of the embodiment of the present application may include an electrical cavity 11 a , a collection cavity 11 b , and a thermal management component 13 .
  • the thermal management part 13 is used to isolate the electrical chamber 11a and the collection chamber 11b.
  • isolation here refers to separation, which may not be hermetically sealed.
  • the electrical cavity 11 a is used to accommodate the plurality of battery cells 20 and the bus member 12 .
  • the electrical cavity 11a provides a accommodating space for the battery cells 20 and the bus parts 12 , and the shape of the electrical cavity 11a may be determined according to the plurality of battery cells 20 and the bus parts 12 .
  • the bus member 12 is used to realize electrical connection of the plurality of battery cells 20 .
  • the bus component 12 can realize electrical connection between the battery cells 20 by connecting the electrode terminals 214 of the battery cells 20 .
  • At least one battery cell 20 of the plurality of battery cells 20 may include a pressure relief mechanism 213 for actuating when the internal pressure or temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value to Relieve internal pressure or temperature.
  • the battery cell 20 involved in the related description of the pressure relief mechanism 213 below refers to the battery cell 20 provided with the pressure relief mechanism 213 .
  • the battery cell 20 may be the battery cell 20 in FIG. 4 .
  • the collection chamber 11b is used to collect the discharge from the battery cells 20 provided with the pressure relief mechanism 213 when the pressure relief mechanism 213 is actuated.
  • the thermal management component 13 is used to isolate the electrical cavity 11a and the collection cavity 11b. That is, the electrical chamber 11a for accommodating the plurality of battery cells 20 and the bus member 12 is provided separately from the collection chamber 11b for collecting the exhaust. In this way, when the pressure relief mechanism 213 is actuated, the discharge of the battery cells 20 enters the collection cavity 11b, but does not enter or enter into the electrical cavity 11a in a small amount, so as not to affect the electrical connection in the electrical cavity 11a, so that the battery can be strengthened security.
  • the thermal management component 13 has a wall common to the electrical cavity 11a and the collection cavity 11b.
  • the thermal management component 13 may be a wall of the electrical chamber 11a and a wall of the collection chamber 11b at the same time. That is, the thermal management part 13 (or a part thereof) can directly serve as the wall shared by the electrical cavity 11a and the collection cavity 11b, so that the discharge of the battery cells 20 can enter the collection cavity 11b through the thermal management part 13, and at the same time, due to The existence of the thermal management component 13 can isolate the discharge from the electrical cavity 11a as much as possible, thereby reducing the danger of the discharge and enhancing the safety of the battery.
  • the electrical cavity 11a may be formed by a cover body having an opening and the thermal management part 13 .
  • FIG. 12 shows an exploded view of the electrical cavity 11a of the embodiment of the present application.
  • the box body 11 may include a cover body 110 having an opening (eg, the lower side opening in FIG. 12 ).
  • the cover body 110 with the opening is a semi-closed chamber with an opening communicating with the outside, and the thermal management component 13 covers the opening to form a chamber, that is, an electrical chamber 11a.
  • the cover body 110 may also be composed of multiple parts.
  • FIG. 13 shows another exploded view of the electrical cavity 11a of the embodiment of the present application.
  • the cover body 110 may include a first part 111 and a second part 112 . Two sides of the second part 112 have openings respectively, that is, the second part 112 has only surrounding walls, the first part 111 covers one side opening of the second part 112 , and the thermal management component 13 covers the other side of the second part 112 opening, thereby forming the electrical cavity 11a.
  • FIG. 13 can be improved on the basis of FIG. 2 .
  • the bottom wall of the second part 112 in FIG. 2 can be replaced with the thermal management part 13, and the thermal management part 13 can be used as a wall of the electrical cavity 11a, thereby forming the electrical cavity 11a in FIG. 13 .
  • the bottom wall of the second part 112 in FIG. 2 can be removed, that is, a ring wall with openings on both sides is formed.
  • the chamber namely the electrical chamber 11a.
  • the collection chamber 11b may be formed by the thermal management part 13 and the protective member.
  • FIG. 14 shows a schematic diagram of the box body 11 according to the embodiment of the present application, wherein the electrical cavity 11b in FIG. 14 is the electrical cavity 11b shown in FIG. 12 ;
  • FIG. 15 shows the box body 11 according to the embodiment of the present application.
  • Another schematic diagram of wherein, the electrical cavity 11b in FIG. 15 is the electrical cavity 11b shown in FIG. 13 .
  • the box body 11 further includes a protective member 115 .
  • the shielding member 115 is used to shield the thermal management part 13 , and the shielding member 115 and the thermal management part 13 form a collection cavity 11 b.
  • the collection cavity 11b formed by the protective member 115 and the thermal management component 13 does not occupy space for accommodating battery cells, so a larger space for the collection cavity 11b can be provided, thereby effectively collecting and buffering the exhaust and reducing its risk.
  • a fluid such as a cooling medium
  • a component for accommodating the fluid may be arranged to further reduce the temperature of the exhaust entering the collection chamber 11b.
  • the collection chamber 11b may be a sealed chamber.
  • the junction of the shielding member 115 and the thermal management component 13 may be sealed by a sealing member.
  • the collection chamber 11b may not be a sealed chamber.
  • the collection chamber 11b may be communicated with the outside air, so that a part of the exhaust can be further discharged to the outside of the tank 11 .
  • the thermal management component 13 covers the opening of the cover body 110 to form the electrical cavity 11a, and the thermal management component 13 and the protective member 115 form the collection cavity 11b.
  • the thermal management component 13 can also directly divide the closed box 11 into the electrical cavity 11a and the collection cavity 11b, without the need for additional protection members 115.
  • the cover body 110 may include a first part 111 and a second part 112 , wherein the first part 111 and the second part 112 are both cavity structures with an opening on one side , respectively, can form a semi-closed structure.
  • the thermal management component 13 may be disposed inside the second part 112 , and the first part 111 covers the opening of the second part 112 .
  • the thermal management component 13 can be disposed in the semi-enclosed second part 112 first to isolate the collection cavity 11b, and then the first part 111 can be covered with the opening of the second part 112 to form the electrical cavity 11a.
  • the protective member 115 can be replaced by the bottom wall of the second portion 112 to form the collection cavity 11b.
  • one end of the baffle 14 away from the thermal management component 13 may abut against the protective member 115 .
  • FIG. 16 shows an exploded view of the battery 10 with the protective member 115 according to the embodiment of the present application
  • FIG. 17 shows a cross-sectional view of the protective member 115 and the thermal management component 13 .
  • the shield member 115 and the thermal management part 13 form a collection cavity 11b.
  • the protective member 115 includes a bottom wall 1511 and a plurality of side walls 1512 to form a hollow structure with one end open, and the thermal management component 13 covers the opening to form a collection cavity 11b.
  • the baffle 14 When the baffle 14 extends at least partially outside the pressure relief hole 131 , the end of the baffle 14 away from the first wall 21 a abuts against the bottom wall 1511 of the protective member 115 along the axis 1311 of the pressure relief hole 131 .
  • the baffle 14 may extend from the thermal management part 13 to the shielding member 115 , and the end of the baffle 14 away from the thermal management part 14 abuts against the bottom wall 1511 of the shielding member 115 .
  • Abutting the baffle 14 against the bottom wall of the protective member 115 can play the role of supporting the thermal management component 13 and maintain the distance between the thermal management component 13 and the protective member 115, so that the space of the collection cavity 11b will not be Being squeezed and deformed, the possibility of explosion of the battery 10 caused by the compression of the space of the collection chamber 11b is reduced.
  • the high-temperature exhaust can also be made to pass through the pressure relief hole 131 .
  • the exhaust is divided into two opposite channels for discharge, especially the high-temperature gas in the high-temperature exhaust, which can be concentrated and divided into two by the baffle 14 after entering the collection chamber 11b.
  • the passage further increases the possibility that the high temperature gas melts the second heat conducting plate 133 of the thermal management component 14, so that the thermal management component 13 can be damaged in a large area, and a large amount of internal fluid flows out, improving the cooling effect.
  • FIG. 18 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application.
  • the method 300 may include: S310 , providing a battery cell, where the battery cell includes a pressure relief mechanism, the pressure relief mechanism is disposed on the first wall of the battery cell, and the pressure relief mechanism is used for When the internal pressure or temperature of the battery cell reaches a threshold, actuation is performed to release the internal pressure; S320 , a thermal management part is provided, the thermal management part is used for containing a fluid to adjust the temperature of the battery cell, and the thermal management part has A first surface is attached to the first wall, and the thermal management component is provided with a pressure relief hole opposite the pressure relief mechanism to allow exhaust from the battery cell to pass through the pressure relief when the pressure relief mechanism is actuated A hole is discharged through the thermal management component; S330, a baffle is provided for shielding a portion of the pressure relief hole so as to change the discharge of the exhaust entering the pressure relief hole when the pressure relief mechanism
  • FIG. 19 shows a schematic block diagram of an apparatus 400 for preparing a battery according to an embodiment of the present application.
  • the apparatus 400 may include: a providing module 410 .
  • the providing module 710 is used for: providing a battery cell, the battery cell includes a pressure relief mechanism, the pressure relief mechanism is arranged on the first wall of the battery cell, and the pressure relief mechanism is used for the internal pressure of the battery cell or actuation to relieve the internal pressure when the temperature reaches a threshold; providing a thermal management member for containing a fluid to regulate the temperature of the battery cell, a first surface of the thermal management member attached to the first a wall, the thermal management member is provided with a pressure relief hole opposite the pressure relief mechanism, so that when the pressure relief mechanism is actuated, the exhaust discharged from the battery cell can be discharged through the thermal management member through the pressure relief hole;
  • a baffle is provided for shielding a portion of the pressure relief hole to change the discharge direction of the discharge entering the pressure relief hole when the pressure relief mechanism is actuated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请实施例提供一种电池、用电装置、制备电池的方法和装置,电池包括:电池单体,包括泄压机构,泄压机构设置于电池单体的第一壁,泄压机构用于在电池单体的内部压力或温度达到阈值时致动以泄放内部压力; 热管理部件,用于容纳流体以给电池单体调节温度,热管理部件的第一表面附接于第一壁,热管理部件设置有与泄压机构相对的泄压孔,以在泄压机构致动时电池单体内排出的排放物能够通过泄压孔穿过热管理部件排出; 挡板,用于遮挡泄压孔的一部分,以使在泄压机构致动时改变进入泄压孔的排放物的排放方向。本申请实施例提供的电池、用电装置、制备电池的方法和装置,能够增强电池的安全性。

Description

电池、用电装置、制备电池的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电装置、制备电池的方法和装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池、用电装置、制备电池的方法和装置,能够增强电池的安全性。
第一方面,提供了一种电池,包括:电池单体,包括泄压机构,所述泄压机构设置于所述电池单体的第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;热管理部件,用于容纳流体以给所述电池单体调节温度,所述热管理部件的第一表面附接于所述第一壁,所述热管理部件设置有与所述泄压机构相对的泄压孔,以在所述泄压机构致动时所述电池单体内排出的排放物能够通过所述泄压孔穿过所述热管理部件排出;挡板,用于遮挡所述泄压孔的一部分,以使在所述泄压机构致动时改变进入所述泄压孔的所述排放物的排放方向。
因此,本申请实施例的电池,通过在热管理部件上设置挡板,遮挡泄压孔的一部分,在泄压机构致动时,电池单体排出的排放物进入该泄压孔后,且在穿过该泄压孔之前或者在穿过该泄压孔之后,该排放物都可能会直接接触该挡板,并在该挡板的表面发生反射,进而改变了排放物原本的排放方向,从而使得更多的高温排放物能够接触热管理部件,以达到更好的降温效果,尽可能避免了高温排放物经过泄压孔时流动过于流畅,而不能充分接触热管理部件的情况。
在一些实施例中,所述挡板与所述第一壁最大的距离大于所述上表面至所述第一壁的最小距离。
热管理部件内容纳有流体,挡板距离设置有泄压机构的壁的距离相比于热管理部件更远,使得经过泄压孔的排放物接触挡板后被反射,以保证更多的排放接触热管理部件,从而达到更好的降温效果。
在一些实施例中,所述挡板相对于所述泄压孔的轴线倾斜,且沿着远离所述第一壁的方向,所述挡板逐渐靠近所述泄压孔的轴线,以使所述泄压机构致动时所述排放物能够朝向所述泄压孔的孔壁冲击。
在一些实施例中,所述挡板与所述泄压孔的轴线之间的夹角的取值范围为20°至40°。
若该夹角设置过大,会导致挡板遮挡泄压孔的面积过大,会堵住该泄压孔,影响泄压机构致动时电池单体排出的排放物的通过,进而可能导致排气不畅并进一步导致电池单体爆开;相反的,若该夹角设置过小,也会影响排放物在挡板表面的反射效果,因此,该夹角的取值范围通常设置为20°至40°,以达到最优效果。
在一些实施例中,所述泄压孔的周围具有两个相对设置的所述挡板。
在一些实施例中,所述挡板遮挡所述泄压孔的面积与所述泄压孔的面积的比值不小于0.5且不大于0.8,这样既不会阻碍排放物排出,又可以使得排放物在挡板表面发生反射后,能够大面积接触热管理部件。
在一些实施例中,所述挡板的表面粗糙度小于或者等于0.1μm。
考虑到挡板表面过于粗糙可能会让排放物中的高温颗粒在该挡板的表面堆积,而无法反弹,进而影响该挡板的效果,所以通常将该挡板的表面应设置为较为光滑的表面。
在一些实施例中,所述挡板设置在所述热管理部件的第二表面,所述第二表面与所述第一表面相对或者所述第二表面为所述泄压孔的孔壁。
在一些实施例中,所述电池还包括:电气腔,用于容纳多个所述电池单体;收集腔,用于在所述泄压机构致动时收集从所述电池单体内排出的排放物以及所述热管理部件的排放物;其中,所述热管理部件用于隔离所述电气腔和所述收集腔。
在一些实施例中,所述电池还包括:防护构件,所述防护构件用于防护所述热管理部件,所述防护构件与所述热管理部件形成所述收集腔。
在一些实施例中,所述防护构件包括底壁和多个侧壁,以形成一端开口的中空结构,所述热管理部件盖合所述开口以形成所述收集腔。
在一些实施例中,沿所述泄压孔的轴线,所述挡板的远离所述第一壁的一端抵靠所述防护构件的底壁。
热管理部件表面设置有至少一个电池单体,通过将挡板的一端抵靠在防护构件的底壁上,可以支撑该热管理部件,保证热管理部件和防护构件的底壁之间的距离,也就保证了收集腔的空间,从而避免收集腔内发生爆破。
另外,对于每个泄压孔内设置两个相对的挡板的情况,若将挡板的下端抵靠防护构件的底壁,还可以使得高温排放物在通过泄压孔之后,在挡板的作用下被分为相对的两个通道排放,尤其是高温排放物中的高温气体,在进入收集腔后可以被挡板集中分为两个通道,进一步增加了高温气体熔化热管理部件的下表面的可能,使得 热管理部件能够被大面积破坏,其内部流体大量流出,提高降温效果。
在一些实施例中,所述热管理部件用于在所述泄压机构致动时能够被改变排放方向后的所述排放物破坏,以使所述流体从所述热管理部件的内部排出。
在一些实施例中,所述热管理部件上设置有温敏材料,所述温敏材料被配置为在所述泄压机构致动时能够被所述排放物熔化,以使所述流体从所述热管理部件的内部排出。
在一些实施例中,所述温敏材料设置在所述热管理部件的面向所述电池单体的排放物的区域上。
例如,可以将温敏材料设置在泄压孔的孔壁上,或者可以设置在热管理部件的第一表面上泄压孔的周围,以使得电池单体内的排放物通过泄压孔时,能够熔化温敏材料,以使得热管理部件内的流体顺利排出,进而更好的降温。
第二方面,提供了一种用电设备,包括:第一方面中的电池,用于提供电能。
在一些实施例中,所述用电设备为车辆、船舶或航天器。
第三方面,提供了一种制备电池的方法,包括:提供电池单体,所述电池单体包括泄压机构,所述泄压机构设置于所述电池单体的第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;提供热管理部件,所述热管理部件用于容纳流体以给所述电池单体调节温度,所述热管理部件的第一表面附接于所述第一壁,所述热管理部件设置有与所述泄压机构相对的泄压孔,以在所述泄压机构致动时所述电池单体内排出的排放物能够通过所述泄压孔穿过所述热管理部件排出;提供挡板,所述挡板用于遮挡所述泄压孔的一部分,以使在所述泄压机构致动时改变进入所述泄压孔的所述排放物的排放方向。
第四方面,提供了一种制备电池的装置,包括执行上述第三方面的方法的模块。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的结构示意图;
图3是本申请一实施例公开的一种电池模块的结构示意图;
图4为本申请一实施例公开的一种电池单体的分解图;
图5是本申请一实施例公开的一种电池单体和热管理部件的爆炸图;
图6是本申请一实施例公开的一种热管理部件和挡板的爆炸图;
图7是本申请一实施例公开的一种设置有挡板的热管理部件的俯视图;
图8是本申请一实施例公开的一种设置有挡板的热管理部件的底面视图;
图9是本申请一实施例公开的一种电池单体、热管理部件和挡板的剖面图;
图10是本申请一实施例公开的另一种电池单体、热管理部件和挡板的剖面图;
图11是本申请一实施例公开的一种电池的结构示意图;
图12是本申请一实施例公开的一种电气腔的爆炸图;
图13是本申请一实施例公开的另一种电气腔的爆炸图;
图14是本申请一实施例公开的一种电池的箱体结构示意图;
图15是本申请一实施例公开的另一种电池的箱体结构示意图;
图16是本申请一实施例公开的一种电池的爆炸图;
图17是本申请一实施例公开的一种热管理部件、挡板和防护构件的剖面图;
图18是本申请一实施例公开的一种制备电池的方法的示意性流程图;
图19是本申请一实施例公开的一种制备电池的装置的示意性框图;
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上(包括两个);术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”和“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括一次电池、二次电池,例如可以是锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池包一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极片、负极片和隔离膜。 电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池来说,主要的安全危险来自于充电和放电过程,为了提高电池的安全性能,对电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需求不同而进行调整。所述预定阈值可取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。
本申请中所提到的“致动”是指泄压机构产生动作,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构在致动后,电池单体内部的高温高压物质作为排放物会从泄压机构向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当电池单体发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。
目前的泄压机构设计方案中,主要关注将电池单体内部的高压和高热释放,即将所述排放物排出到电池单体外部。然而,为了保证电池的输出电压或电流,往往需要多个电池单体且多个电池单体之间通过汇流部件进行电连接。从电池单体内部排出的排放物有可能导致其余电池单体发生短路现象,例如,当排出的金属屑电连接两个汇流部件时会引起电池发生短路,因而存在安全隐患。并且,高温高压的排放物朝向电池单体设置泄压机构的方向排放,并且可更具体地沿朝向泄压机构致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的一 个或多个结构,造成进一步的安全问题。
鉴于此,本申请实施例在电池内设置热管理部件,该热管理部件的表面与电池单体的设置有泄压机构的表面附接,并且,该热管理部件上还可以设置有泄压区,例如,该泄压区可以为泄压孔。
一方面,该热管理部件用于容纳流体以给多个电池单体调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。另外,热管理部件也可以用于加热以给多个电池单体升温,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
另一方面,在泄压机构致动时,电池单体内排出的排放物能够通过该热管理部件的泄压孔排出,并且,该热管理部件还可以为电池单体降温,以避免电池单体发生爆炸。
汇流部件用于实现多个电池单体之间的电连接,例如并联或串联或混联。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体的电极端子。对应于“高压腔”,汇流部件形成的电连接也可称为“高压连接”。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括至少一个电池模块200。电池模块200包括多个电池单体20。电池10还可以包括箱体,箱体内部为中空结构,多个电池单体20容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据电池模块200组合的形状而定,第一部分111和第二部分112中至少一个具有一个开口。例如,如图2所示,该第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。
根据不同的电力需求,电池模块200中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,将电池单体20分组设置,每组电池单体20组成电池模块200。电池模块200中包括的电池单体20的数量不限,可以根据需求设置。例如,图3为电池模块200的一个示例。电池可以包括多个电池模块200,这些电池模块200可通过串联、并联或混联的方式进行连接。
图4为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211和盖板212形成外壳21。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为第一电极端子214a和第二电极端子214b。两个电极端子 214的极性相反。例如,当第一电极端子214a为正电极端子时,第二电极端子214b为负电极端子。每个电极端子214各对应设置一个连接构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
如图4所示,在电池单体20的一个壁上还可以设置泄压机构213,例如,可以在电池单体20的第一壁21a上设置泄压机构213。图4中的第一壁21a与壳体211分离,即壳体211的底侧具有开口,第一壁21a覆盖底侧开口并且与壳体211连接,连接方式可以是焊接或胶接等。可替换地,第一壁21a与壳体211也可以是一体式结构。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
该泄压机构213可以为第一壁21a的一部分,也可以与第一壁21a为分体式结构,通过例如焊接的方式固定在第一壁21a上。当泄压机构213为第一壁21a的一部分时,例如,泄压机构213可以通过在第一壁21a上设置刻痕的方式形成,与该刻痕的对应的第一壁21a厚度小于泄压机构213除刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构213的裂开向外释放,进而避免电池单体20发生爆炸。
可选地,在本申请一个实施例中,如图4所示,在泄压机构213设置于电池单体20的第一壁21a的情况下,电池单体20的第二壁设置有电极端子214,第二壁不同于第一壁21a。
可选地,第二壁与第一壁21a相对设置。例如,第一壁21a可以为电池单体20的底壁,第二壁可以为电池单体20的盖板212。
将泄压机构213和电极端子214设置于电池单体20的不同壁上,可以使得泄压机构213致动时,电池单体20的排放物更加远离电极端子214,从而减小排放物对电极端子214和汇流部件的影响,因此能够增强电池的安全性。
进一步地,在电极端子214设置于电池单体20的盖板212上时,将泄压机构213设置于电池单体20的底壁,可以使得泄压机构213致动时,电池单体20的排放物向电池10底部排放。这样,一方面可以利用电池10底部的热管理部件降低排放物的危险性,另一方面,当电池10设置于车辆内时,电池10底部通常会远离乘客,从而能够降低对乘客的危害。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
为了给电池单体20调节温度,可以在电池单体20下方设置热管理部件。具体地,该热管理部件可以用于容纳流体以给电池单体20调节温度,在泄压机构213致动时,该热管理部件能够为来自设有泄压机构213的电池单体20的排放物降温。
可选地,该热管理部件上还可以设置有泄压区,例如,该泄压区可以为泄压孔,这样,在泄压机构213致动时,泄压机构213打开,将电池单体20内的排放物排出,该排放物还可以通过泄压孔穿过热管理部件排出。
但泄压机构213致动时,排出的排放物通过该热管理部件的泄压孔排出时,排出速度过快,这会导致热管理部件中容纳的流体不能对排放物进行有效的降温,所以,如何有效地让排放物排出的同时并快速降温,是目前的电池单体20的设计很难解决的问题。
因此,本申请实施例提供了一种电池,能够解决上述问题。
图5示出了本申请实施例的电池10中局部爆炸图,如图5所示,该电池10包括:至少一个电池单体20,下文的电池单体20以电池10中包括的任意一个电池单体20为例,即该电池单体20可以为图1-4中的电池单体20,适用于上述图1-4中电池单体20的相关描述,为了简洁,在此不再赘述。具体地,该电池单体20包括泄压机构213,泄压机构213设置于电池单体20的第一壁21a,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力。
如图5所示,该电池10还包括:热管理部件13,该热管理部件13用于容纳流体以给电池单体20调节温度。该热管理部件13适用于上文中热管理部件的相关描述,为了简洁,在此不再赘述。具体地,该热管理部件13的第一表面1321附接于电池单体20的第一壁21a,热管理部件13设置有与泄压机构213相对的泄压孔131,以在泄压机构213致动时电池单体20内排出的排放物能够通过泄压孔131穿过热管理部件13排出。
在本申请实施例中,如图5所示,该电池10还包括挡板14,该挡板14用于遮挡泄压孔131的一部分,以使在泄压机构213致动时改变进入泄压孔131的排放物的排放方向。
因此,本申请实施例的电池10在热管理部件13上设置挡板14,使得挡板14遮挡了泄压孔131的一部分,这样,在泄压机构213致动时,电池单体20排出的排放物进入该泄压孔131后,且在穿过该泄压孔131之前或者在穿过该泄压孔131之后,该排放物都可能会直接接触该挡板14,并在该挡板14的表面发生反射,进而改变了排放物原本的排放方向,从而使得更多的高温排放物冲击热管理部件13,这样,该热管理部件13可以对更多的排放物进行降温;另外,更多的高温排放还可能会拓宽高温排放物熔化热管理部件13的面积,热管理部件13也就可能被高温的排放物更充分破坏, 也就保证了热管理部件13中足够多的流体能够顺利流出,以达到更好的降温效果,尽可能避免了高温排放物直接穿过泄压孔131,而有可能无法冲击或熔破热管理部件13的情况。
应理解,本申请实施例的热管理部件13用于容纳流体以给多个电池单体20调节温度。在给电池单体20降温的情况下,该热管理部件13可以容纳冷却介质以给多个电池单体20调节温度,此时,热管理部件13也可以称为冷却部件、冷却系统或冷却板等。另外,热管理部件13也可以用于加热,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。
图6为本申请实施例的热管理部件13的爆炸图,图7为本申请实施例的热管理部件13的俯视图,图8为本申请实施例的热管理部件13的底面视图。如图6至图8所示,本申请实施例的热管理部件13可以设置有流道134,该流道134用于容纳流体,这样,在泄压机构213致动时,电池单体20通过泄压机构213排出的排放物可以破坏流道134,以使得流道134内的流体排出,从而对排放物进行降温。
具体地,如图6至图8所示,热管理部件13可以包括第一导热板132和第二导热板133,该第一导热板132设置于第二导热板133与电池单体20的第一壁21a之间,且第一导热板132附接于第一壁21a,第一导热板132和第二导热板133连接。其中,该第一导热板132的上表面即为该热管理部件13的第一表面1321,该第一表面1321附接于电池单体20的第一壁21a。
应理解,本申请实施例中第一表面1321附接于电池单体20的第一壁21a可以是第一表面1321直接与第一壁21a接触,也可以是第一表面1321通过导热胶或其他物质与第一壁21a接触,以实现第一表面1321与电池单体20的第一壁21a之间的热交换。
对于热管理部件13上设置的泄压孔131,如图6至图8所示,可以分别在第一导热板132和第二导热板133上设置位置相互对应的通孔,从而形成泄压孔131,即该泄压孔131分别贯穿该第一导热板132和第二导热板133。
可选地,如图6所示,该第一导热板132还可以包括开口朝向远离第二导热板133的方向的第二凹槽1322,在该第二凹槽1322的底壁设置通孔,以形成第一导热板132上的泄压孔131。其中,该第二凹槽1322的孔径可以沿着远离第二导热板133的方向逐渐增大,即该第二凹槽1322的孔壁是相对于泄压孔131的轴线是倾斜的,以使得电池单体20热失控时,通过泄压机构213排出的排放物能够更多的接触该第二凹槽1322的侧壁,也就使得更多的排放物能够被热管理部件13降温,例如,该第二凹槽1322的侧壁可以设置为流道134的壁,那么排放物接触该第二凹槽1322的侧壁时,流道134内的液体可以对排放物降温,进一步的,该排放物还可以熔化该第二凹槽1322的侧壁,以使得流道134内的流体流出,对排放物降温。
对于热管理部件13上设置的流道134,可以通过在第二导热板133或者第一导热板132上设置凹槽来实现。具体地,以第二导热板133上设置凹槽为例,如图6至图8所示,该第二导热板133设置有开口朝向第一导热板132的第一凹槽1331,当第一导热板132与第二导热板133贴合设置时,该第一导热板132盖合该第一凹槽1331 的开口,从而形成中空结构,该中空结构为流道134。
可选地,本申请实施例中的流道134的形状、尺寸和位置均可以根据实际应用灵活设置,例如,图6和图8中的流道134均设置为条状,但图6和图8中不同位置处的流道134的尺寸可能不同,本申请实施例并不限于此。
考虑到经过泄压机构213的排放物通过热管理部件13上的泄压孔131排出,为了使得热管理部件13内的流体能够更好的对排放物进行降温,或者进一步的,为了能够使得热管理部件13被排放物破坏而使内部流体顺利排出,热管理部件13上的流道134通常会设置在泄压孔131周围,以使得经过该泄压孔131的排放物能够直接接触流道134,以被流道134内的流体降温,进一步的,还可以使得排放物接触流道134时大面积破坏流道134,也就使得流道134内更多的流体能够顺利排出。
另外,为了使得热管理部件13易于被破坏,该热管理部件13上还可以设置有温敏材料,该温敏材料在所述泄压机构213致动时,能够被电池单体20的排放物熔化,以使内部流体从该热管理部件13的内部排出。
可选地,该温敏材料可以设置在该热管理部件13的面向电池单体20的排放物的区域上。例如,该温敏材料可以设置在热管理部件13的第一表面1321上泄压孔131周围,再例如,该温敏材料也可以设置在该泄压孔131的孔壁上,并且,该温敏材料设置的区域可以为流道134的壁,以使得电池单体20排出的排放物直接接触该温敏材料,并熔化该温敏材料,以使得热管理部件13被破坏,例如,热管理部件13的流道134被破坏,其内部流体流出,为排放物降温。
为了能够使得在泄压机构213致动时,电池单体20的排放物能够尽可能大面积接触或者破坏流道,本申请实施例的电池10中还包括挡板14,以改变进入泄压孔131的排放物的排放方向。
具体地,如图6至图8所示,该挡板14可以设置在泄压孔131周围的任意位置,以使得该挡板14遮挡该泄压孔131的部分区域,例如,该挡板14遮挡的泄压孔131的面积与泄压孔131的总面积的比值的取值范围通常为0.5至0.8,但本申请实施例并不限于此。例如,以如图7所示设置挡板14为例,该挡板14的宽度D1可以等于或者小于或者大于泄压孔131的宽度D2。
另外,本申请实施例的该挡板14的个数和位置均可以根据实际应用而灵活设置,例如,图6至图8均以每个泄压孔131对应设置两个挡板14为例,但也可以设置更多或者更少的挡板,本申请实施例并不限于此。
下面将结合附图对挡板14的设置进行举例描述。
图9示出了一种电池单体20以及热管理部件13沿图7所示的A-A’方向的截面图,该图9以每个泄压孔131内仅设置一个挡板14为例;图10示出了另一种电池单体20以及热管理部件13沿图7所示的A-A’方向的截面图,该图10以每个泄压孔131对应设置两个挡板14为例。如图9和图10所示,本申请实施例中的挡板14可以位于热管理部件13的第二表面,该第二表面可以为热管理部件13的任意表面,即挡板14可以设置于泄压孔131内或者也可以位于泄压孔131外。例如,图9中的挡板14设置于泄压孔131内,并且该挡板14与热管理部件13的第一导热板132相连,即挡板 14设置在泄压孔131的孔壁上;而图10中的挡板14设置于泄压孔131外部,并且该挡板14与热管理部件13的第二导热板133相连,本申请实施例并不限于此。
在一些实施例中,挡板14与电池单体20的第一壁21a之间的最大的距离大于流道134至第一壁21a的最小距离,以使得排放物能够在该挡板14的表面发生反射而改变其排放方向,使得反射后的排放物能够朝向热管理部件13,则可以有更多的排放物接触热管理部件13,以达到热管理部件13为更多排放物降温的效果;进一步的,通过挡板14改变排放物的排放物的排放方向,使得更多的排放物能够冲击热管理部件13,也就有可能造成该热管理部件13上流道134被破坏,从而使流道134内部的流体流出,对排放物进行降温。
具体地,本申请实施例的挡板14通常相对于泄压孔131的轴线1311倾斜设置。如图9至图10所示,挡板14相对于泄压孔131的轴线1311倾斜,在远离第一壁21a的方向上,挡板14逐渐靠近泄压孔131的轴线1311,以使泄压机构213致动时排放物能够被挡板14反射,并朝向泄压孔131的孔壁冲击,从而使得更多的排放物冲击热管理部件13,进而使得排放物可以更充分地与热管理部件13接触,更加有利于降温。
可选地,本申请实施例的挡板14相对于泄压孔131的轴线1311倾斜设置时,挡板14与泄压孔131的轴线1311之间的夹角θ可以根据实际应用进行设置。但是,若该夹角θ设置过大,会导致挡板14遮挡泄压孔131的面积过大,会堵住该泄压孔131,影响泄压机构213致动时电池单体20排出的排放物的通过,进而可能导致排气不畅并进一步导致电池单体20爆开;相反的,若该夹角θ设置过小,也会影响排放物在挡板14表面的反射效果,因此,该夹角θ的取值范围通常设置为20°至40°,以达到最优效果。
本申请实施例中的挡板14的材料可以根据实际应用灵活设置。例如,该挡板14可以选择与热管理部件13相同的材料,例如,可以均设置为铝合金材料,并通过焊接方式固定该挡板14与热管理部件13。
另外,本申请实施例中的该挡板14的表面应设置为较为光滑的表面,过于粗糙可能会让排放物中的高温颗粒在该挡板14的表面堆积,而无法反弹,进而影响该挡板14的效果。例如,可以将该挡板14的表面粗糙度设置为小于或者等于0.1μm,该表面粗糙度可以为轮廓算术平均偏差(Ra),但本申请实施例并不限于此。
可选地,本申请实施例的电池10还可以包括电气腔11a和收集腔11b。下面将结合附图,针对设置有电气腔11a、收集腔11b以及热管理部件13的电池10进行详细介绍。
图11是本申请一个实施例的电池10的箱体11的示意图。如图11所示,本申请实施例的箱体11可以包括电气腔11a、收集腔11b以及热管理部件13。热管理部件13用于隔离电气腔11a和收集腔11b。这里所谓的“隔离”指分离,可以不是密封的。
电气腔11a用于容纳多个电池单体20和汇流部件12。电气腔11a提供电池单体20和汇流部件12的容纳空间,电气腔11a的形状可以根据多个电池单体20和汇流部件12而定。
汇流部件12用于实现多个电池单体20的电连接。汇流部件12可通过连接电池单体20的电极端子214实现电池单体20间的电连接。
多个电池单体20中的至少一个电池单体20可以包括泄压机构213,泄压机构213用于在设有泄压机构213的电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
为了便于描述,以下关于泄压机构213的相关描述中所涉及的电池单体20指设有泄压机构213的电池单体20。例如,电池单体20可以为图4中的电池单体20。
收集腔11b,用于在泄压机构213致动时收集来自设有泄压机构213的电池单体20的排放物。
在本申请实施例中,采用热管理部件13隔离电气腔11a和收集腔11b。也就是说,容纳多个电池单体20和汇流部件12的电气腔11a与收集排放物的收集腔11b是分离设置的。这样,在泄压机构213致动时,电池单体20的排放物进入收集腔11b,而不会进入或少量进入电气腔11a,从而不会影响电气腔11a中的电连接,因此能够增强电池的安全性。
可选地,在本申请一个实施例中,热管理部件13具有为电气腔11a和收集腔11b共用的壁。如图11所示,热管理部件13可以同时为电气腔11a的一个壁以及收集腔11b的一个壁。也就是说,热管理部件13(或其一部分)可以直接作为电气腔11a和收集腔11b共用的壁,这样,电池单体20的排放物可以经过热管理部件13进入收集腔11b,同时,由于热管理部件13的存在,可以将该排放物与电气腔11a尽可能的隔离,从而降低排放物的危险性,增强电池的安全性。
可选地,在本申请一个实施例中,电气腔11a可以由具有开口的罩体和热管理部件13形成。例如,图12示出了本申请实施例的电气腔11a的爆炸图,如图12所示,箱体11可以包括具有开口的罩体110(例如图12中下侧开口)。具有开口的罩体110为半封闭的腔室,具有与外部相通的开口,热管理部件13盖合该开口,形成腔室,即电气腔11a。
可选地,罩体110也可以由多部分组成,例如,图13示出了本申请实施例的电气腔11a的另一爆炸图,罩体110可以包括第一部分111和第二部分112。第二部分112的两侧分别具有开口,即第二部分112仅具有四周的壁,第一部分111盖合第二部分112的一侧开口,热管理部件13盖合第二部分112的另一侧开口,从而形成电气腔11a。
图13的实施例可以在图2的基础上改进而得到。具体而言,可以将图2中的第二部分112的底壁替换为热管理部件13,将热管理部件13作为电气腔11a的一个壁,从而形成图13中的电气腔11a。换句话说,可以将图2中的第二部分112的底壁去掉,即,形成两侧开口的环壁,第一部分111和热管理部件13分别盖合第二部分112的两侧开口,形成腔室,即电气腔11a。
可选地,在本申请一个实施例中,对于收集腔11b,可以由热管理部件13和防护构件形成。例如,图14示出了本申请实施例的箱体11的示意图,其中,图14中的电气腔11b为图12所示的电气腔11b;图15示出了本申请实施例的箱体11的另 一示意图,其中,图15中的电气腔11b为图13所示的电气腔11b。如图14和图15所示,箱体11还包括防护构件115。防护构件115用于防护热管理部件13,并且,防护构件115与热管理部件13形成收集腔11b。
防护构件115与热管理部件13形成的收集腔11b,不占用可容纳电池单体的空间,因此可以设置较大空间的收集腔11b,从而可以有效地收集和缓冲排放物,降低其危险性。
可选地,在本申请一个实施例中,收集腔11b内还可以设置流体,比如冷却介质,或者,设置容纳该流体的部件,以对进入收集腔11b内的排放物进一步降温。
可选地,在本申请一个实施例中,收集腔11b可以是密封的腔室。例如,防护构件115与热管理部件13的连接处可以通过密封构件密封。
可选地,在本申请一个实施例中,收集腔11b也可以不是密封的腔室。例如,收集腔11b可以与外部空气连通,这样,一部分排放物可以进一步排放到箱体11外部。
在上述实施例中,热管理部件13盖合罩体110的开口形成电气腔11a,热管理部件13与防护构件115形成收集腔11b。可选地,热管理部件13也可以直接将封闭的箱体11分隔为电气腔11a和收集腔11b,而无需设置额外的防护构件115。
例如,在本申请一个实施例中,以图13为例,罩体110可以包括第一部分111和第二部分112,其中,第一部分111和第二部分112均为一侧具有开口的空腔结构,分别可以形成半封闭结构。热管理部件13可以设置于第二部分112的内部,第一部分111盖合第二部分112的开口。换句话说,可以先将热管理部件13设置于半封闭的第二部分112内,以隔离出收集腔11b,再将第一部分111盖合第二部分112的开口,形成电气腔11a,这样,对比图15可知,可以由第二部分112的底壁代替防护构件115以形成收集腔11b。
为了便于说明,下文中以由防护构件115形成收集腔11b的情况为例进行说明。
可选地,当采用如图10所示的方式设置挡板14时,该挡板14远离热管理部件13的一端可以抵靠防护构件115。
图16示出了本申请实施例的具有防护构件115的电池10的爆炸图,图17示出了防护构件115与热管理部件13的剖面图。如图16和图17所示,防护构件115与热管理部件13形成收集腔11b。其中,防护构件115包括底壁1511和多个侧壁1512,以形成一端开口的中空结构,热管理部件13盖合该开口以形成收集腔11b。
当挡板14存在至少部分延伸至该泄压孔131外时,在沿泄压孔131的轴线1311方向上,挡板14的远离第一壁21a的一端抵靠防护构件115的底壁1511。例如,如图17所示,挡板14可以自热管理部件13向防护构件115延伸,而挡板14的远离热管理部件14的一端抵靠防护构件115的底壁1511。
将该挡板14抵靠在防护构件115的底壁上,可以起到支撑热管理部件13的作用,保持热管理部件13与防护构件115之间的距离,从而使得收集腔11b的空间不会被挤压变形,也就减小避免收集腔11b的空间被压缩导致的电池10爆炸的可能性。 另外,对于每个泄压孔131内设置两个相对的挡板14的情况,若将挡板14的下端抵靠防护构件115的底壁1511,还可以使得高温排放物在通过泄压孔131之后,在两个挡板14的作用下,排放物被分为相对的两个通道排放,尤其是高温排放物中的高温气体,在进入收集腔11b后可以被挡板14集中分为两个通道,进一步增加了高温气体熔化热管理部件14的第二导热板133的可能,使得热管理部件13能够被大面积破坏,其内部流体大量流出,提高降温效果。
上文描述了本申请实施例的电池和用电设备,下面将描述本申请实施例的制备电池的方法和装置,其中未详细描述的部分可参见前述各实施例。
图18示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图18所示,该方法300可以包括:S310,提供电池单体,该电池单体包括泄压机构,该泄压机构设置于该电池单体的第一壁,该泄压机构用于在该电池单体的内部压力或温度达到阈值时致动以泄放该内部压力;S320,提供热管理部件,该热管理部件用于容纳流体以给该电池单体调节温度,该热管理部件的第一表面附接于该第一壁,该热管理部件设置有与该泄压机构相对的泄压孔,以在该泄压机构致动时该电池单体内排出的排放物能够通过该泄压孔穿过该热管理部件排出;S330,提供挡板,该挡板用于遮挡该泄压孔的一部分,以使在该泄压机构致动时改变进入该泄压孔的该排放物的排放方向。
图19示出了本申请一个实施例的制备电池的装置400的示意性框图。如图19所示,该装置400可以包括:提供模块410。该提供模块710用于:提供电池单体,该电池单体包括泄压机构,该泄压机构设置于该电池单体的第一壁,该泄压机构用于在该电池单体的内部压力或温度达到阈值时致动以泄放该内部压力;提供热管理部件,该热管理部件用于容纳流体以给该电池单体调节温度,该热管理部件的第一表面附接于该第一壁,该热管理部件设置有与该泄压机构相对的泄压孔,以在该泄压机构致动时该电池单体内排出的排放物能够通过该泄压孔穿过该热管理部件排出;提供挡板,该挡板用于遮挡该泄压孔的一部分,以使在该泄压机构致动时改变进入该泄压孔的该排放物的排放方向。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种电池,其特征在于,包括:
    电池单体(20),包括泄压机构(213),所述泄压机构(213)设置于所述电池单体(20)的第一壁(21a),所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    热管理部件(13),用于容纳流体以给所述电池单体(20)调节温度,所述热管理部件(13)的第一表面(1321)附接于所述第一壁(21a),所述热管理部件(13)设置有与所述泄压机构(213)相对的泄压孔(131),以在所述泄压机构(213)致动时所述电池单体(20)内排出的排放物能够通过所述泄压孔(131)穿过所述热管理部件(13)排出;
    挡板(14),用于遮挡所述泄压孔(131)的一部分,以使在所述泄压机构(213)致动时改变进入所述泄压孔(131)的所述排放物的排放方向。
  2. 根据权利要求1所述的电池,其特征在于,所述挡板(14)与所述第一壁(21a)最大的距离大于所述第一表面(1321)至所述第一壁(21a)的最小距离。
  3. 根据权利要求1或2所述的电池,其特征在于,所述挡板(14)相对于所述泄压孔(131)的轴线(1311)倾斜,且沿着远离所述第一壁(21a)的方向,所述挡板(14)逐渐靠近所述泄压孔(131)的轴线(1311),以使所述泄压机构(213)致动时所述排放物能够朝向所述泄压孔(131)的孔壁冲击。
  4. 根据权利要求3所述的电池,其特征在于,所述挡板(14)与所述泄压孔(131)的轴线(1311)之间的夹角的取值范围为20°至40°。
  5. 根据权利要求1至4中任一项所述的电池,其特征在于,所述泄压孔(131)的周围具有两个相对设置的所述挡板(14)。
  6. 根据权利要求1至5中任一项所述的电池,其特征在于,所述挡板(14)遮挡所述泄压孔(131)的面积与所述泄压孔(131)的面积的比值不小于0.5,且不大于0.8。
  7. 根据权利要求1至6中任一项所述的电池,其特征在于,所述挡板(14)的表面粗糙度小于或者等于0.1μm。
  8. 根据权利要求1至7中任一项所述的电池,其特征在于,所述挡板(14)设置在所述热管理部件(13)的第二表面,所述第二表面与所述第一表面(1321)相对或者所述第二表面为所述泄压孔(131)的孔壁。
  9. 根据权利要求1至8中任一项所述的电池,其特征在于,所述电池还包括:
    电气腔(11a),用于容纳多个所述电池单体(20);
    收集腔(11b),用于在所述泄压机构(213)致动时收集从所述电池单体(20)内排出的排放物以及所述热管理部件(13)的排放物;
    其中,所述热管理部件(13)用于隔离所述电气腔(11a)和所述收集腔(11b)。
  10. 根据权利要求9所述的电池,其特征在于,所述电池还包括:
    防护构件(115),所述防护构件(115)用于防护所述热管理部件(13),所述防护构件(115)与所述热管理部件(13)形成所述收集腔(11b)。
  11. 根据权利要求10所述的电池,其特征在于,所述防护构件(115)包括底壁(1511)和多个侧壁(1512),以形成一端开口的中空结构,所述热管理部件(13)盖合所述开口以形成所述收集腔(11b)。
  12. 根据权利要求11所述的电池,其特征在于,沿所述泄压孔(131)的轴线(1311),所述挡板(14)的远离所述第一壁(21a)的一端抵靠所述防护构件(115)的底壁(1511)。
  13. 根据权利要求1至12中任一项所述的电池,其特征在于,所述热管理部件(13)用于在所述泄压机构(213)致动时能够被改变排放方向后的所述排放物破坏,以使所述流体从所述热管理部件(13)的内部排出。
  14. 根据权利要求13所述的电池,其特征在于,所述热管理部件(13)上设置有温敏材料,所述温敏材料被配置为在所述泄压机构(213)致动时能够被所述排放物熔化,以使所述流体从所述热管理部件(13)的内部排出。
  15. 根据权利要求14所述的电池,其特征在于,所述温敏材料设置在所述热管理部件(13)的面向所述电池单体(20)的排放物的区域上。
  16. 一种用电装置,其特征在于,包括:根据权利要求1至15中任一项所述的电池,所述电池用于为所述用电装置提供电能。
  17. 一种制备电池的方法,其特征在于,包括:
    提供电池单体,所述电池单体包括泄压机构,所述泄压机构设置于所述电池单体的第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供热管理部件,所述热管理部件用于容纳流体以给所述电池单体调节温度,所述热管理部件的第一表面附接于所述第一壁,所述热管理部件设置有与所述泄压机构相对的泄压孔,以在所述泄压机构致动时所述电池单体内排出的排放物能够通过所述泄压孔穿过所述热管理部件排出;
    提供挡板,所述挡板用于遮挡所述泄压孔的一部分,以使在所述泄压机构致动时改变进入所述泄压孔的所述排放物的排放方向。
  18. 一种制备电池的装置,其特征在于,包括:提供模块,所述提供模块用于:
    提供电池单体,所述电池单体包括泄压机构,所述泄压机构设置于所述电池单体的第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供热管理部件,所述热管理部件用于容纳流体以给所述电池单体调节温度,所述热管理部件的第一表面附接于所述第一壁,所述热管理部件设置有与所述泄压机构相对的泄压孔,以在所述泄压机构致动时所述电池单体内排出的排放物能够通过所述泄压孔穿过所述热管理部件排出;
    提供挡板,所述挡板用于遮挡所述泄压孔的一部分,以使在所述泄压机构致动时改变进入所述泄压孔的所述排放物的排放方向。
PCT/CN2021/084441 2021-03-31 2021-03-31 电池、用电装置、制备电池的方法和装置 WO2022205080A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2022571298A JP7490085B2 (ja) 2021-03-31 2021-03-31 電池、電力消費装置、電池を製造する方法と装置
CA3177761A CA3177761A1 (en) 2021-03-31 2021-03-31 Battery, power consumption device, method and device for producing battery
EP21755670.3A EP4096007A4 (en) 2021-03-31 2021-03-31 BATTERY, ELECTRICAL DEVICE, AND METHOD AND DEVICE FOR MANUFACTURING THE BATTERY
PCT/CN2021/084441 WO2022205080A1 (zh) 2021-03-31 2021-03-31 电池、用电装置、制备电池的方法和装置
CN202180000886.8A CN115485894A (zh) 2021-03-31 2021-03-31 电池、用电装置、制备电池的方法和装置
KR1020227040129A KR102681019B1 (ko) 2021-03-31 2021-03-31 전지, 전기 장치, 전지 제조 방법 및 장치
US17/550,011 US11489231B2 (en) 2021-03-31 2021-12-14 Battery, power consumption device, method and device for producing battery
US17/953,734 US11817601B2 (en) 2021-03-31 2022-09-27 Battery, power consumption device, method and device for producing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084441 WO2022205080A1 (zh) 2021-03-31 2021-03-31 电池、用电装置、制备电池的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/550,011 Continuation US11489231B2 (en) 2021-03-31 2021-12-14 Battery, power consumption device, method and device for producing battery

Publications (1)

Publication Number Publication Date
WO2022205080A1 true WO2022205080A1 (zh) 2022-10-06

Family

ID=83448380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084441 WO2022205080A1 (zh) 2021-03-31 2021-03-31 电池、用电装置、制备电池的方法和装置

Country Status (7)

Country Link
US (2) US11489231B2 (zh)
EP (1) EP4096007A4 (zh)
JP (1) JP7490085B2 (zh)
KR (1) KR102681019B1 (zh)
CN (1) CN115485894A (zh)
CA (1) CA3177761A1 (zh)
WO (1) WO2022205080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024198356A1 (zh) * 2023-03-31 2024-10-03 比亚迪股份有限公司 电池组件及电池包

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372477B2 (ja) * 2021-07-29 2023-10-31 寧徳時代新能源科技股▲分▼有限公司 電池セル及びその製造方法と製造システム、電池並びに電力消費装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598326A (zh) * 2018-06-11 2018-09-28 超威电源有限公司 一种锂离子电池和电池包
JP2019207769A (ja) * 2018-05-28 2019-12-05 株式会社豊田自動織機 蓄電装置
CN112018320A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 用于电池的箱体、电池、用电装置、制备电池的方法和设备
CN112018302A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN112072046A (zh) * 2020-10-19 2020-12-11 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379830B1 (ko) 2006-04-19 2014-04-01 테믹 오토모티브 일렉트릭 모터스 게엠베하 에너지 저장 장치용 열 교환기
DE102009046385A1 (de) 2009-11-04 2011-05-05 SB LiMotive Company Ltd., Suwon Batterie mit Entgasungssystem und Verfahren zum Abführen von Austretungen
CN102686880B (zh) * 2009-11-09 2015-05-13 住友重机械工业株式会社 低温泵及真空排气方法
JP2018538655A (ja) * 2015-10-02 2018-12-27 アーコニック インコーポレイテッドArconic Inc. エネルギー貯蔵装置および関連方法
CN105390655A (zh) 2015-12-11 2016-03-09 庄新国 一种锂离子电池组导流板
JP2017147128A (ja) 2016-02-17 2017-08-24 三菱重工業株式会社 電池モジュール、および、電池システム
JP6612966B2 (ja) * 2016-03-01 2019-11-27 日立オートモティブシステムズ株式会社 二次電池モジュール
WO2018023050A1 (en) * 2016-07-29 2018-02-01 Crynamt Management Llc High-density battery pack
US20180255744A1 (en) 2017-03-10 2018-09-13 Nevin Wagner Variable Slot Length Adjustment Vent
US10601090B2 (en) * 2017-04-28 2020-03-24 Nio Usa, Inc. Using a spacer to block path of thermally conductive structural adhesive in lithium ion cells
US11024901B2 (en) 2018-01-19 2021-06-01 Hanon Systems Battery cooling plate with integrated air vents
CN113113707B (zh) * 2018-12-29 2024-06-25 宁德时代新能源科技股份有限公司 电池包
JP7306843B2 (ja) 2019-03-14 2023-07-11 株式会社Subaru 車両用電源装置
EP3944357A4 (en) * 2019-03-19 2022-05-11 SANYO Electric Co., Ltd. BATTERY MODULE
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN112490578B (zh) * 2020-11-11 2021-11-23 华南理工大学 一种动力电池模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207769A (ja) * 2018-05-28 2019-12-05 株式会社豊田自動織機 蓄電装置
CN108598326A (zh) * 2018-06-11 2018-09-28 超威电源有限公司 一种锂离子电池和电池包
CN112018320A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 用于电池的箱体、电池、用电装置、制备电池的方法和设备
CN112018302A (zh) * 2020-10-19 2020-12-01 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN112072046A (zh) * 2020-10-19 2020-12-11 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024198356A1 (zh) * 2023-03-31 2024-10-03 比亚迪股份有限公司 电池组件及电池包

Also Published As

Publication number Publication date
CN115485894A (zh) 2022-12-16
JP7490085B2 (ja) 2024-05-24
US11489231B2 (en) 2022-11-01
US20220320679A1 (en) 2022-10-06
KR20230008110A (ko) 2023-01-13
US11817601B2 (en) 2023-11-14
EP4096007A1 (en) 2022-11-30
KR102681019B1 (ko) 2024-07-03
CA3177761A1 (en) 2022-10-06
EP4096007A4 (en) 2022-11-30
US20230025270A1 (en) 2023-01-26
JP2023528296A (ja) 2023-07-04

Similar Documents

Publication Publication Date Title
CN213026308U (zh) 电池、用电装置和制备电池的装置
WO2022006892A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006890A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006891A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022198457A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022205084A1 (zh) 电池的箱体、电池、用电设备、制备箱体的方法和装置
WO2022205069A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022193082A1 (zh) 电池, 用电装置, 制备电池的方法和装置
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022198462A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022082390A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023044619A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023050080A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2022082391A1 (zh) 电池、用电装置、制备电池的方法和设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021755670

Country of ref document: EP

Effective date: 20210826

ENP Entry into the national phase

Ref document number: 3177761

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227040129

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022571298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE