[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022138608A1 - 三相3レベルインバータの駆動制御装置および駆動制御方法 - Google Patents

三相3レベルインバータの駆動制御装置および駆動制御方法 Download PDF

Info

Publication number
WO2022138608A1
WO2022138608A1 PCT/JP2021/047190 JP2021047190W WO2022138608A1 WO 2022138608 A1 WO2022138608 A1 WO 2022138608A1 JP 2021047190 W JP2021047190 W JP 2021047190W WO 2022138608 A1 WO2022138608 A1 WO 2022138608A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switching
section
sections
drive control
Prior art date
Application number
PCT/JP2021/047190
Other languages
English (en)
French (fr)
Inventor
徹郎 児島
邦晃 大塚
渉 初瀬
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022571481A priority Critical patent/JP7494321B2/ja
Priority to CN202180083509.5A priority patent/CN116584029A/zh
Publication of WO2022138608A1 publication Critical patent/WO2022138608A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Definitions

  • the present invention relates to a power conversion device that converts a DC voltage into a three-phase AC voltage, and particularly relates to a drive control device and a drive control method for a three-phase three-level inverter.
  • a power conversion device that converts DC power into AC power is composed of a main circuit using a semiconductor switching element and a control device that controls the semiconductor switching element, and the semiconductor switching element is controlled at an arbitrary switching frequency.
  • An arbitrary frequency and voltage are generated by pulse width modulation control (PWM control).
  • AC motors In the field of railroad vehicles as well, AC motors (motors) are driven using power conversion devices (inverters) that use semiconductor switching elements, but because high withstand voltage elements are used, the switching frequency that can be achieved is There is an upper limit. Therefore, in general, depending on the drive frequency of the AC electric motor (motor), it is driven in the asynchronous PWM mode in which the drive frequency (inverter frequency) and the switching frequency are asynchronous in the low speed range, and in the high speed range, the drive frequency is reached. A method of switching to the synchronous PWM mode that synchronizes the (inverter frequency) and the switching frequency is adopted.
  • the switching frequency is reduced by switching from the asynchronous PWM mode to the synchronous PWM mode as in the 2-level system, and the switching of the semiconductor switching element is performed.
  • a means for reducing the loss can be considered. However, if the switching frequency is simply lowered, the switching ripple (current harmonic) increases, which leads to an increase in the loss (harmonic loss) of the driving AC motor.
  • Patent Document 2 The technique described in Patent Document 2 is intended to reduce specific voltage harmonics and is not intended to reduce the entire current harmonics.
  • Patent Document 3 belongs to so-called spatial vector modulation control (SVM control), and is expected to reduce unnecessary switching as compared with triangular wave PWM control having a constant carrier frequency.
  • SVM control spatial vector modulation control
  • the voltage harmonics can be reduced, but the current harmonics cannot always be reduced.
  • Patent Document 4 The technique described in Patent Document 4 is intended to reduce current harmonics, but there is no disclosure of pulse patterns, and the details and effects of means for reducing current harmonics are unknown.
  • Patent Document 5 aims to reduce the entire current harmonic (OVER ALL) with a small switching frequency. Therefore, one cycle of the modulated wave signal according to the output frequency of the three-phase three-level inverter is equally divided into 12 or 24 sections, and within each divided section, only one of the three phases switches, and the other. The two phases hold the output potential at zero, positive and constant, or negative and constant without switching. Only at the boundaries of the equally divided sections, each of the three phases performs the necessary switching to change the output potential of each equally divided section to either zero or positive and constant or negative and constant. It is something to do.
  • the three-phase inverter that drives an AC motor does not always operate constantly at the same modulation factor, and in reality, various disturbances, such as mechanical disturbances that are applied to the load side of the AC motor, and Voltage disturbances applied to the DC voltage source of the inverter are applied.
  • various disturbances such as mechanical disturbances that are applied to the load side of the AC motor, and Voltage disturbances applied to the DC voltage source of the inverter are applied.
  • the current flowing through the AC motor constantly fluctuates, so it is necessary to finely manipulate the modulation factor to control the current so as to match the desired current value.
  • a plurality of synchronous PWM modes are provided, and these synchronous PWM modes are switched and used according to the frequency and the modulation factor.
  • Patent Document 5 since the number of section divisions in one cycle of the modulated wave signal is different between Example 1 (FIG. 1) and Example 2 (FIG. 3), it is possible to smoothly switch between these PWM modes. There is a problem that it is difficult.
  • one of the typical drive control devices for the three-phase three-level power conversion device is one-fourth of the modulated wave signal per phase of the three-phase three-level inverter.
  • the output potential of the three-phase three-level inverter is set to zero.
  • switching is performed once, and the output potential is maintained at a constant positive potential for the remaining period after the switching.
  • switching is performed once and the output potential is set to zero for the remaining period after the switching, or the output potential is maintained at a constant positive potential without the switching.
  • switching is performed once and the output potential is kept at a constant positive potential for the remaining period after the switching, or the output potential is kept at a constant positive potential without the switching.
  • switching is performed once and the output potential is set to zero for the remaining period after the switching, or the output potential is maintained at a constant positive potential without the switching.
  • a waveform that is output by switching with a phase of 0 to 90 degrees and a waveform that is at least one of vertical symmetry and anteroposterior symmetry are output, and from the remaining two phases, the waveforms output by one phase are 120 degrees and 240 degrees, respectively.
  • a symmetric waveform with a phase shift of degrees is output.
  • the entire current harmonic (OVER ALL) can be reduced with a small number of switchings, the switching loss of the power converter (inverter) can be reduced, and at the same time, the motor can be driven. It is possible to reduce the loss (harmonic loss) of the existing AC motor. Further, the response of the current control can be improved with respect to the technique described in Patent Document 5. Further, since the first to fourth PWM modes of the present invention all have the same number of section divisions, the PWM mode can be smoothly switched. Issues, configurations and effects other than those mentioned above will be clarified by the description in the embodiments for carrying out the following.
  • FIG. 3 is an enlarged view (a range of a phase of 50 to 130 degrees) of one enlarged portion shown in FIG.
  • FIG. 4 is a diagram showing a case where the magnitude relationship between T23 and T9 is reversed with respect to FIG.
  • FIG. 3 is an enlarged view (a range of a phase of 110 to 190 degrees) of two enlarged parts shown in FIG.
  • FIG. 3 is an enlarged view (a range of a phase of 110 to 190 degrees) of two enlarged parts shown in FIG.
  • FIG. 6 is a diagram showing a case where the magnitude relationship between T23 and T45 is reversed with respect to FIG. It is a figure which defines the U-phase voltage waveform of the synchronous 8 pulse (2) corresponding to the 2nd PWM mode in the Example of this invention. It is a figure which shows the switching overlap state between a phase in each section of a synchronous 8 pulse (2). It is a figure which shows the U phase and V phase voltage waveform, and the UV line voltage waveform of the synchronous 8 pulse (2). It is an enlarged view (range of phase 110-190 degrees) of the enlarged part shown in FIG. 11 is a diagram showing a case where the magnitude relationship between T3 and T4 is reversed with respect to FIG. 11.
  • FIG. 21 is a diagram showing a case where the magnitude relationship between T23 and T89 is reversed with respect to FIG. 21. It is a figure which shows the current harmonic OVER ALL value of each of the 1st to 4th PWM modes with respect to a modulation factor. It is a figure which shows an example of the operation range of each of the 1st to 4th PWM modes. It is a figure which shows the configuration example of the drive system of the AC electric motor (motor) by the three-phase three-level inverter which concerns on embodiment of this invention.
  • FIG. 25 is a diagram showing a configuration example of a drive system for an AC motor (motor) using a three-phase three-level inverter according to an embodiment of the present invention.
  • the DC voltage supplied by the DC voltage source (not shown) is divided by two sets of smoothing capacitors 1 and 2, and the smoothing capacitors 1 and 2 have a U-phase inverter circuit 3, a V-phase inverter circuit 4, and a V-phase inverter circuit 4.
  • the W-phase inverter circuit 5 is connected in parallel.
  • the U-phase inverter circuit 3 is composed of four U-phase inverter switching elements 6 to 9 and U-phase clamp diodes 10 and 11, and the V-phase inverter circuit 4 is composed of four V-phase inverter switching elements 12 to 15 and V-phase. It is composed of clamp diodes 16 and 17, and the W-phase inverter circuit 5 is composed of four W-phase inverter switching elements 18 to 21 and clamp diodes 22 and 23.
  • the inverter control device 24 outputs gate pulse signals GPUs 1 to 4, GPVs 1 to 4, and GPWs 1 to 4 that drive the inverter switching elements of the U-phase to W-phase inverter circuits 3 to 5.
  • the AC motor 25 is connected to the AC output terminal side of the U-phase to W-phase inverter circuits 3 to 5.
  • the DC voltage supplied by the DC voltage source is divided by two sets of smoothing capacitors 1 and 2.
  • the respective capacitor voltages are Edp and Edn and the neutral point potential is zero
  • the output potentials Eu, Ev and Ew of the U-phase to W-phase inverter circuits 3 to 5 are positive potential Edp and negative potential (-Edn).
  • the neutral point potential of zero can be taken in three kinds of values.
  • the phase voltage of the inverter shall take three values, ⁇ 1 and 0.
  • FIG. 1 is a diagram showing a U-phase voltage waveform of synchronous 8 pulses (1) corresponding to the first PWM mode in the embodiment of the present invention, and a U-phase voltage waveform of one cycle in the upper half thereof. Is. For simplicity, the output potential of the U-phase voltage is shown normalized to three levels of ⁇ 1 and 0. In the following, the first PWM mode will be described as synchronous 8 pulse (1).
  • the 1/4 period (0 to 90 degrees) of the modulated wave signal according to the output frequency is equally divided into 9 sections, and the 1st to 9th sections are sequentially divided from the phase 0 degree side.
  • the output potential is set to zero.
  • the phase ⁇ (10 ⁇ ⁇ 30) in the second and third sections the output potential is raised from zero to a positive potential.
  • T23 30- ⁇ .
  • the phase ⁇ (30 ⁇ ⁇ 50) in the 4th and 5th sections the output potential is lowered from the positive potential to zero.
  • the remaining 3/4 period (90 to 360 degrees) is vertically or anteroposteriorly symmetric with the 1/4 period waveform.
  • the U-phase voltage waveform is SU ( ⁇ )
  • SU ( ⁇ ) in the range of 0 ⁇ ⁇ ⁇ 90 is defined as described above.
  • SU ( ⁇ ) SU (180- ⁇ )
  • In 180 ⁇ ⁇ ⁇ 270, SU ( ⁇ ) ⁇ SU ( ⁇ -180)
  • In 270 ⁇ ⁇ ⁇ 360, SU ( ⁇ ) ⁇ SU (360- ⁇ ) Is defined as.
  • U-phase voltage waveform SU ( ⁇ ) is a periodic function with a period of 360 degrees.
  • SU ( ⁇ ) SU ( ⁇ ⁇ 180) Is.
  • the lower half of FIG. 1 shows the relationship between the four switching phases ⁇ , ⁇ , ⁇ and ⁇ (vertical axis) of the U-phase voltage waveform and the modulation factor (horizontal axis).
  • the modulation factor horizontal axis
  • the first switching phase ⁇ is within the second and third sections
  • the second switching phase ⁇ is within the fifth section
  • the third switching phase ⁇ is within the sixth section
  • the fourth switching phase ⁇ is. , It is in the 9th section.
  • FIG. 2 is a diagram showing a switching overlapping state between phases in each section within one cycle of the synchronous 8 pulse (1).
  • the output potentials of the U-phase and V-phase voltages are shown normalized to 3 levels ⁇ 1 and 0, and the UV line voltage is shown normalized to 5 levels ⁇ 2, ⁇ 1 and 0, respectively.
  • the case where both the U-phase and V-phase voltage waveforms change in the divided section and the pulse rises and then falls or falls and then rises in the section is shown by an intersection pattern. ..
  • the output potential of the UV line voltage changes from +1 to +2 to +1 depending on the order of change of the U phase and V phase voltage waveforms.
  • FIG. 3 is a diagram showing U-phase and V-phase voltage waveforms and UV line voltage waveforms of synchronous 8 pulses (1).
  • the cross pattern (90 to 100 degrees) is shown due to the symmetry of the waveform. ) Is the center, and the range of the phase of 50 to 130 degrees shown in FIG. 3 is defined as “enlarged 1”, and the enlarged view thereof is shown in FIG.
  • the range of the phase 110 to 190 degrees shown in FIG. 3 is defined as “enlargement 2” centering on the intersection pattern (130 to 170 degrees), and the enlarged view thereof is shown in FIG.
  • the line voltage of a three-level inverter takes five levels of ⁇ 2, ⁇ 1, and 0, and can be classified into four states in which two adjacent levels come and go. ⁇ +2, +1> Traffic between +2, +1 ⁇ +1, 0> Traffic between +1 and 0 ⁇ -1, 0> Traffic between -1 and 0 ⁇ -2, -1> -2, -1
  • These four states are monotonically decreased as ⁇ +2, +1> ⁇ ⁇ +1, 0> ⁇ ⁇ 0, -1> ⁇ ⁇ -1, -2>, or conversely, ⁇ -2.
  • -1> ⁇ ⁇ -1, 0> ⁇ ⁇ 0, +1> ⁇ ⁇ +1, +2> monotonically increasing is called "normal order" here.
  • this state changes in "normal order"
  • the change in the output potential becomes gradual and the output voltage harmonic becomes smaller.
  • FIG. 7 is a diagram showing a case where the magnitude relationship between T23 and T45 is reversed (T23> T45) in the range of a phase of 110 to 190 degrees with respect to FIG.
  • the state of the UV line voltage changes in the order of ⁇ +1, 0> ⁇ ⁇ 0, -1> ⁇ ⁇ 0, +1> ⁇ ⁇ 0, -1>, and is in the “normal order” defined above. You can see that it is not. If there is such a section that does not become “normal order", it becomes a factor that the voltage harmonics increase. From the above, it can be seen that the condition for “normal order” and the reduction of voltage harmonics is T23 ⁇ T45.
  • FIG. 5 shows a case where the magnitude relationship between T23 and T9 is reversed in the range of a phase of 50 to 130 degrees with respect to FIG. Specifically, FIG. 5 shows the case of T23 + T9 ⁇ 10 (degrees), whereas T23 + T9> 10 (degrees) in FIG. Also in FIG. 5, the state of the UV line voltage changes from ⁇ +2, +1> to ⁇ +1, 0>, and it can be seen that this is also in the “normal order” defined above. That is, in the range of the phase of 50 to 130 degrees, the magnitude relationship between T23 and T9 is not restricted.
  • the synchronous 8 pulse (1) has a modulation factor of 50% to a little over 90%, which is a domain.
  • the first switching phase ⁇ is within the second and third sections, the second switching phase ⁇ is within the fifth section, the third switching phase ⁇ is within the sixth section, and the fourth switching phase ⁇ is. , It is in the 9th section.
  • the period T23 in which the positive potential is taken in the second and third sections is smaller than the period T45 in which the positive potential is taken in the fourth and fifth sections (T23 ⁇ T45).
  • the switching phases are arranged so that the switching does not overlap between the phases as much as possible within the divided section, and even if the switching overlaps, the “normal order” relationship is maintained.
  • the voltage harmonics By reducing the voltage harmonics, the current harmonics are reduced with as few switching times as possible. Further, since the synchronous 8 pulse (1) does not fix the switching phase, the response of the current control is also enhanced.
  • FIG. 8 is a diagram showing a U-phase voltage waveform of synchronous 8 pulses (2) corresponding to the second PWM mode in the embodiment of the present invention, and showing a U-phase voltage waveform of one cycle in the upper half thereof. Is. For simplicity, the output potential of the U-phase voltage is shown normalized to 3 levels of ⁇ 1 and 0. In the following, the second PWM mode will be described as synchronous 8 pulse (2).
  • the 1/4 period (0 to 90 degrees) of the modulated wave signal according to the output frequency is equally divided into 9 sections, and the 1st to 9th sections are sequentially divided from the phase 0 degree side.
  • the output potential is set to zero.
  • the phase ⁇ (20 ⁇ ⁇ 30) in the third section the output potential is raised from zero to a positive potential.
  • T3 30- ⁇ .
  • -At the phase ⁇ (30 ⁇ ⁇ 40) in the fourth section the output potential is lowered from the positive potential to zero.
  • the remaining 3/4 period (90 to 360 degrees) is vertically or anteroposteriorly symmetric with the 1/4 period waveform.
  • the U-phase voltage waveform is SU ( ⁇ )
  • SU ( ⁇ ) in the range of 0 ⁇ ⁇ ⁇ 90 is defined as described above.
  • SU ( ⁇ ) SU (180- ⁇ )
  • In 180 ⁇ ⁇ ⁇ 270, SU ( ⁇ ) ⁇ SU ( ⁇ -180)
  • In 270 ⁇ ⁇ ⁇ 360, SU ( ⁇ ) ⁇ SU (360- ⁇ ) Is defined as.
  • U-phase voltage waveform SU ( ⁇ ) is a periodic function with a period of 360 degrees.
  • SU ( ⁇ ) SU ( ⁇ ⁇ 180) Is.
  • the lower half of FIG. 8 shows the relationship between the switching phases ⁇ , ⁇ , ⁇ and ⁇ of the U-phase voltage waveform and the modulation factor.
  • modulation factor 0% to less than 50%, which is the domain of synchronous 8 pulses (2).
  • the first switching phase ⁇ is within the third section
  • the second switching phase ⁇ is within the fourth section
  • the third switching phase ⁇ is within the seventh section
  • the fourth switching phase ⁇ is the eighth. It is in the section.
  • FIG. 9 is a diagram showing a switching overlapping state between phases in each section of the synchronous 8 pulse (2).
  • the output potentials of the U-phase and V-phase voltages are shown normalized to 3 levels ⁇ 1 and 0, and the UV line voltage is shown normalized to 5 levels ⁇ 2, ⁇ 1 and 0, respectively.
  • the case where both the U-phase and V-phase voltage waveforms change in the divided section and the pulse rises and then falls or falls and then rises in the section is shown by an intersection pattern in FIG.
  • the output potential of the UV line voltage changes from 0 to +1 to 0 or 0 depending on the order of change of the U phase and V phase voltage waveforms.
  • FIG. 10 is a diagram showing U-phase and V-phase voltage waveforms and UV line voltage waveforms of synchronous 8 pulses (2).
  • the section where the switching of the U-phase and V-phase voltage waveforms overlap in the divided section is shown by the cross pattern, but the cross pattern (140 to 160 degrees) is shown due to the symmetry of the waveform.
  • FIG. 11 shows an enlarged view of the phase of 110 to 190 degrees centered on the above.
  • FIG. 12 is a diagram showing a case where the magnitude relationship between T3 and T4 is reversed with respect to FIG.
  • the state of the UV line voltage changes in the order of ⁇ +1, 0> ⁇ ⁇ -1, 0> ⁇ ⁇ +1, 0> ⁇ ⁇ -1, 0>, and is not in the “normal order” defined above. I understand. If there is such a section that does not become “normal order”, it becomes a factor that the voltage harmonics increase. From the above, it can be seen that the condition for “normal order” and the reduction of voltage harmonics is T3 ⁇ T4.
  • the synchronous 8 pulse (2) has a modulation factor of 0% to a little less than 50%, which is the domain.
  • the first switching phase ⁇ is within the third section
  • the second switching phase ⁇ is within the fourth section
  • the third switching phase ⁇ is within the seventh section
  • the fourth switching phase ⁇ is the eighth. It is in the section.
  • the period T3 in which the positive potential is taken in the third section is smaller than the period T4 in which the positive potential is taken in the fourth section (T3 ⁇ T4).
  • the switching phases are arranged so that the switching does not overlap between the phases as much as possible within the divided section, and even if the switching overlaps, the “normal order” relationship is maintained.
  • the voltage harmonics By reducing the voltage harmonics, the current harmonics are reduced with as few switching times as possible. Further, since the synchronous 8 pulse (2) does not fix the switching phase, the response of the current control is also enhanced.
  • FIG. 13 is a diagram showing a U-phase voltage waveform of 6 synchronous pulses corresponding to the third PWM mode in the embodiment of the present invention, and a U-phase voltage waveform of one cycle in the upper half thereof.
  • the output potential of the U-phase voltage is shown normalized to three levels of ⁇ 1 and 0.
  • the third PWM mode will be described as synchronous 6 pulses.
  • the 1/4 period (0 to 90 degrees) of the modulated wave signal corresponding to the output frequency is equally divided into 9 sections, which are called the 1st to 9th sections in order from the phase 0 degree side.
  • the output potential is set to zero.
  • the phase ⁇ (10 ⁇ ⁇ 30) in the second and third sections the output potential is raised from zero to a positive potential.
  • T23 30- ⁇ .
  • the output potential is lowered from the positive potential to zero.
  • T45 ⁇ -30.
  • T6 60- ⁇ .
  • T6 60- ⁇ .
  • the output potential is fixed to the positive potential.
  • the remaining 3/4 period (90 to 360 degrees) is vertically or anteroposteriorly symmetric with the 1/4 period waveform.
  • SU ( ⁇ ) is defined in the range of 0 ⁇ ⁇ ⁇ 90 as described above.
  • SU ( ⁇ ) SU (180- ⁇ )
  • 180 ⁇ ⁇ ⁇ 270, SU ( ⁇ ) ⁇ SU ( ⁇ -180)
  • 270 ⁇ ⁇ ⁇ 360, SU ( ⁇ ) ⁇ SU (360- ⁇ ) Is defined as.
  • U-phase voltage waveform SU ( ⁇ ) is a periodic function with a period of 360 degrees.
  • SU ( ⁇ ) SU ( ⁇ ⁇ 180) Is.
  • the lower half of FIG. 13 shows the relationship between the switching phases ⁇ , ⁇ and ⁇ of the U-phase voltage waveform and the modulation factor.
  • the first switching phase ⁇ is in the second and third sections
  • the second switching phase ⁇ is in the fourth and fifth sections
  • the third switching phase ⁇ is in the sixth section.
  • FIG. 14 is a diagram showing a switching overlapping state between phases in each section of synchronous 6 pulses.
  • the output potentials of the U-phase and V-phase voltages are shown normalized to 3 levels of ⁇ 1 and 0, and the UV line voltage is shown normalized to 5 levels of ⁇ 2, ⁇ 1 and 0.
  • the case where the output potential is raised from zero to positive potential or from negative potential to zero in the divided section is shown by a diagonal line pattern rising to the right.
  • the case where the output potential is lowered from the positive potential to zero or from zero to the negative potential in the divided section is shown by a diagonal line pattern downward to the right.
  • the case where both the U-phase and V-phase voltage waveforms change in the divided section and the pulse rises and then falls or falls and then rises in the section is shown by an intersection pattern.
  • the output potential of the UV line voltage changes from 0 to +1 to 0 or 0 depending on the order of change of the U phase and V phase voltage waveforms.
  • FIG. 15 shows U-phase and V-phase voltage waveforms of synchronous 6 pulses and UV line voltage waveforms.
  • the section where the switching of the U-phase and V-phase voltage waveforms overlap in the divided section is shown by the cross pattern, but the cross pattern (130 to 170 degrees) is shown due to the symmetry of the waveform. ) Is shown in FIG. 16 with an enlarged view of the phase of 110 to 190 degrees.
  • FIG. 17 is a diagram showing a case where the magnitude relationship between T23 and T45 is reversed with respect to FIG.
  • the state of the UV line voltage changes in the order of ⁇ +1, 0> ⁇ ⁇ -1, 0> ⁇ ⁇ +1, 0> ⁇ ⁇ -1, 0>, and is not in the “normal order” defined above. I understand. If there is such a section that does not become “normal order”, it becomes a factor that the voltage harmonics increase. From the above, it can be seen that the condition for “normal order” and the reduction of voltage harmonics is T23 ⁇ T45.
  • the synchronous 6 pulse is in the range of the modulation factor of 50% to more than 90%, which is the domain.
  • the first switching phase ⁇ is in the second and third sections
  • the second switching phase ⁇ is in the fourth and fifth sections
  • the third switching phase ⁇ is in the sixth section.
  • the period T23 in which the positive potential is taken in the second and third sections is smaller than the period T45 in which the positive potential is taken in the fourth and fifth sections (T23 ⁇ T45).
  • the synchronous 6 pulses arrange the switching phases so that the switching does not overlap between the phases as much as possible in the divided section, and even if they overlap, the voltage harmonics maintain the "normal order" relationship.
  • the current harmonics are reduced with as few switching times as possible. Further, since the synchronous 6 pulse does not fix the switching phase, the response of the current control is also enhanced.
  • FIG. 18 is a diagram showing a U-phase voltage waveform of four synchronous pulses corresponding to the fourth PWM mode in the embodiment of the present invention, and a U-phase voltage waveform of one cycle in the upper half thereof.
  • the output potential of the U-phase voltage is shown normalized to 3 levels of ⁇ 1 and 0.
  • the fourth PWM mode will be described as synchronous 4 pulses.
  • the 1/4 period (0 to 90 degrees) of the modulated wave signal corresponding to the output frequency is equally divided into 9 sections, which are called the 1st to 9th sections in order from the phase 0 degree side.
  • the output potential is set to zero.
  • T23 30- ⁇ .
  • the output potential is fixed to the positive potential.
  • the remaining 3/4 period (90 to 360 degrees) is vertically or anteroposteriorly symmetric with the 1/4 period waveform.
  • SU ( ⁇ ) is defined in the range of 0 ⁇ ⁇ ⁇ 90 from the above.
  • SU ( ⁇ ) SU (180- ⁇ )
  • 180 ⁇ ⁇ ⁇ 270, SU ( ⁇ ) ⁇ SU ( ⁇ -180)
  • 270 ⁇ ⁇ ⁇ 360, SU ( ⁇ ) ⁇ SU (360- ⁇ ) Is defined as.
  • U-phase voltage waveform SU ( ⁇ ) is a periodic function with a period of 360 degrees.
  • SU ( ⁇ ) SU ( ⁇ ⁇ 180) Is.
  • the lower half of FIG. 18 shows the relationship between the switching phases ⁇ and ⁇ of the U-phase voltage waveform and the modulation factor.
  • the first switching phase ⁇ is in the second and third sections, and the second switching phase ⁇ is in the eighth and ninth sections.
  • FIG. 19 is a diagram showing a switching overlapping state between phases in each section of synchronous 4 pulses.
  • the output potentials of the U-phase and V-phase voltages are shown normalized to 3 levels of ⁇ 1 and 0, and the UV line voltage is shown normalized to 5 levels of ⁇ 2, ⁇ 1 and 0.
  • the case where both the U-phase and V-phase voltage waveforms change in the divided section and the pulse rises and then falls or falls and then rises in the section is shown by an intersection pattern.
  • the output potential of the UV line voltage changes from +1 ⁇ +2 ⁇ +1 or +1 depending on the order of change of the U phase and V phase voltage waveforms.
  • FIG. 20 shows U-phase and V-phase voltage waveforms of four synchronous pulses and UV line voltage waveforms.
  • FIG. 19 in the UV line voltage waveform, the section where the switching of the U-phase and V-phase voltage waveforms overlap in the divided section is shown by the cross pattern, and the cross pattern (90 to 110 degrees) is shown from the symmetry of the waveform.
  • FIG. 21 shows an enlarged view of the phase of 60 to 140 degrees with the center.
  • the state of the UV line voltage has a monotonous transition from ⁇ +2, +1> to ⁇ +1, 0>, and is in the "normal order" defined above.
  • FIG. 22 is a diagram showing a case where the magnitude relationship between T23 and T89 is reversed with respect to FIG. 21.
  • FIG. 21 is the case of T23> 20-T89, that is, T23 + T89> 20 (degrees)
  • FIG. 22 is the case of T23 + T89 ⁇ 20 (degrees).
  • the state of the UV line voltage changes monotonously as ⁇ +2, +1> ⁇ ⁇ +1, 0>, and is in the “normal order” defined above. That is, the state transition of the UV line voltage is not restricted by the magnitude relationship between T23 and T89.
  • the synchronous 4 pulse is in the range of the modulation factor of 60% to 90%, which is the domain.
  • the first switching phase ⁇ is in the second and third sections, and the second switching phase ⁇ is in the eighth and ninth sections.
  • the synchronous 4 pulses arrange the switching phases so that the switching does not overlap between the phases as much as possible in the divided section, and even if they overlap, the voltage harmonics maintain the "normal order" relationship.
  • the current harmonics are reduced with as few switching times as possible. Further, since the synchronous 4 pulse does not fix the switching phase, the response of the current control is also enhanced.
  • FIG. 23 is a diagram showing the current harmonic OVER ALL values of the first to fourth PWM modes with respect to the modulation factor. Further, for comparison, among the techniques described in Patent Document 5, the value of synchronous 8 pulses is shown as a conventional technique.
  • the current harmonics are increased by the smaller number of pulses as compared with the synchronous 8 pulse (1). ..
  • FIG. 24 is a diagram showing an example of the operating range of each of the first to fourth PWM modes.
  • the line shown as a "steady operating point" in FIG. 24 indicates a steady operating point from the stopped state to the maximum speed, or from the maximum speed to the decelerated state to the stopped state.
  • the horizontal axis (output frequency axis) is normalized with the value at which the line of the steady operating point reaches the maximum value as 100%.
  • the inverter moves slowly on the line of the steady operating point, but when the operation of the inverter is stopped when the speed is high, such as in the so-called coasting state, or conversely, the inverter is restarted during coasting.
  • a non-steady state such as in the case of an inverter
  • the region between the output frequency axis (modulation rate zero) is traversed in a short time from below the line of the steady operating point.
  • the state does not reach above the steady operating point line.
  • each PWM mode is shown by a rectangle with rounded corners.
  • each PWM mode is arranged as shown in the figure according to the modulation factor on the vertical axis and the output frequency on the horizontal axis.
  • there is a gap between the regions of each PWM mode so that the regions of each PWM mode can be easily distinguished, but in reality, the regions are lined up without gaps including the corners of the regions, and the PWM mode There is no undefined area.
  • synchronous 8 pulses which are the four PWM modes according to the present invention, including the asynchronous dipolar and the asynchronous unipolar, depending on at least one of the modulation factor and the output frequency command.
  • synchronous 8 pulse (2), synchronous 6 pulse and synchronous 4 pulse will be switched and used.
  • the asynchronous dipolar, the asynchronous unipolar, the synchronous 8 pulse (1), the synchronous 6 pulse, and the synchronous 4 pulse are arranged in order from the origin (A).
  • the synchronous 8 pulse (2) is arranged in the region where the modulation factor is lower than that of the synchronous 8 pulse (1).
  • each PWM mode is arranged in this way is that it is necessary to arrange the most efficient PWM mode because the current value is large and the operation time is long because the normal rated operation is performed on the line of the steady operating point. be.
  • a synchronous 8 pulse (2) is placed below the synchronous 8 pulse (1) (a region where the modulation factor is low) instead of an asynchronous unipolar. ing.
  • the synchronous 8 pulse (1) corresponding to the first PWM mode the synchronous 8 pulse (2) corresponding to the second PWM mode, the synchronous 6 pulse corresponding to the third PWM mode of the present invention, and the third. Since each of the four synchronous pulses corresponding to the PWM mode of 4 has a common number of section divisions, the PWM mode can be smoothly switched in a short time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

三相3レベルインバータとして、少ないスイッチング回数で電流高調波全体を低減させてスイッチング損失を低減させ、複数のPWMモード間の切り替えを容易にするために、三相3レベルインバータの一相につき位相0~90度を順に等分割した第1~第9の9区間で、第1の区間で三相3レベルインバータの出力電位をゼロとし、第2と第3の区間を併せた区間内でスイッチングを一回行い残る期間は正電位に保持し、第4と第5の区間を併せた区間内でスイッチングを一回行い残る期間は出力電位をゼロとするかまたは正電位保持を継続し、第6と第7の区間を併せた区間内でスイッチングを一回行い残る期間は正電位に保持するかまたは正電位保持を継続し、第8と第9の区間を併せた区間内でスイッチングを一回行い残る期間は出力電位をゼロとするかまたは正電位保持を継続することで、第1~第9までの区間で二回から四回のいずれかのスイッチングを行う。

Description

三相3レベルインバータの駆動制御装置および駆動制御方法
 本発明は、直流電圧を三相交流電圧に変換する電力変換装置にあって、特に三相3レベルインバータの駆動制御装置および駆動制御方法に関する。
 可変速運転する交流電動機(モータ)を駆動するためには、直流電源から供給される直流電力を任意の周波数と電圧の交流電力に変換する必要がある。一般に、直流電力を交流電力に変換する電力変換装置(インバータ)は、半導体スイッチング素子を用いた主回路および前記半導体スイッチング素子を制御する制御装置から構成され、前記半導体スイッチング素子を任意のスイッチング周波数でパルス幅変調制御(PWM制御)することによって任意の周波数と電圧とを生成するものである。
 鉄道車両の分野においても、半導体スイッチング素子を用いた電力変換装置(インバータ)を用いて交流電動機(モータ)を駆動しているが、高耐圧素子を使用しているため、実現できるスイッチング周波数には上限がある。このため、一般的に、交流電動機(モータ)の駆動周波数に応じて、低速域では、駆動周波数(インバータ周波数)とスイッチング周波数が非同期である非同期PWMモードで駆動し、高速域になると、駆動周波数(インバータ周波数)とスイッチング周波数を同期させる同期PWMモードに切り替える方式を採用している。
 また、直流電源電圧が高い場合や、接続する交流電動機(モータ)や交流電源などの交流負荷に与える高調波成分を低減させたい場合には、直流電圧を2組の平滑コンデンサで分圧し、正、負および中間電位の3種類の電位を出力できる3レベル式(中性点クランプ式、NPC式とも呼ぶ)の電力変換装置(インバータ)が用いられる。
 3レベル式の電力変換装置(インバータ)の場合、特許文献1に記載されているように、駆動周波数(インバータ周波数)に応じて、低速域では非同期PWMによるダイポーラ変調モードで駆動し、高速域になると非同期PWMによるユニポーラ変調モードに切り替え、その後、さらに非同期PWMの過変調モード、同期1パルスモードに切り替えていく方式が知られている。
 3レベル式の電力変換装置(インバータ)の低損失化、高効率化のためには、2レベル式のように非同期PWMモードから同期PWMモードに切り替えることでスイッチング周波数を落とし、半導体スイッチング素子のスイッチング損失を低減させる手段が考えられる。しかし、単にスイッチング周波数を落とせば、スイッチングリップル(電流高調波)が増加し、駆動している交流電動機の損失(高調波損失)の増加を招くことになる。
 3レベル式の電力変換装置(インバータ)においてスイッチング周波数を上げることなく高調波を低減させる技術としては、特許文献2~5記載の技術が知られている。順に見ていくと、
 特許文献2に記載の技術は、特定の電圧高調波を低減させるものであって電流高調波全体を低減させることを意図したものではない。
 特許文献3に記載の技術は、いわゆる空間ベクトル変調制御(SVM制御)に属するもので、キャリア周波数一定の三角波PWM制御と比較すると不要なスイッチングを低減させることが期待されるが、電圧ベクトル誤差を最小とするように動作する原理上、電圧高調波を低減できても電流高調波を低減できるとは限らない。
 特許文献4に記載の技術は、電流高調波を低減することを意図しているが、パルスパターンの開示がなく、電流高調波を低減させる手段の詳細と効果が不明である。
 一方、特許文献5に記載の技術は、少ないスイッチング周波数で電流高調波全体(OVER ALL)を低減させることを目的とする。そのために、三相3レベルインバータの出力周波数に応じた変調波信号の一周期を12または24区間に等分割し、分割した各区間内では三相のうち一相のみがスイッチングを行い、他の二相はスイッチングを行わずに出力電位をゼロ、正で一定または負で一定のいずれかに保持する。等分割した各区間の境界でのみ、三相の各相は、等分割した各区間の出力電位をゼロまたは正で一定または負で一定のいずれかの状態に変化させるために、必要なスイッチングを行うものである。
特開2003-180084号公報 特開平8-256483号公報 特開2000-125570号公報 特開2002-78346号公報 特開2016-32373号公報
 一般的に、交流電動機を駆動する三相インバータは常に同じ変調率で定常動作している訳ではなく、実際には、様々な外乱、例えば、交流電動機の負荷側に加わる機械的な外乱や、インバータの直流電圧源に加わる電圧外乱などが加わる。これによって、交流電動機に流れる電流は常に変動し続けるため、所望の電流値に一致するように変調率を細かく操作して電流制御を行う必要がある。
 しかし、特許文献5に記載の技術は、同一区間内で三相のスイッチングが重なることを避けるため、半数のスイッチングを区間境界という固定された位相で行っている。例えば、特許文献5に記載の実施例1(図1)では、変調波信号一周期の間に一相あたり16回スイッチングを行っているが、このうち8回は区間境界でスイッチングを行っている。また、特許文献5に記載の実施例2(図3)では、変調波信号一周期の間に一相あたり8回スイッチングを行っているが、このうち4回は区間境界でスイッチングを行っている。変調率が変わっても区間境界でのスイッチング位相は変わらないので、この前後で変調率を操作しても電流は直ちには変化しない。区間内でのスイッチングを行う区間に入ることで、ようやく電流が変化するようになる。すなわち、特許文献5に記載の技術は、電流制御を行う上では応答が遅いという課題がある。
 また、一般的には、複数の同期PWMモードを備え、周波数や変調率に応じてこれらの同期PWMモードを切り替えて使用している。特許文献5に記載の技術は、実施例1(図1)と実施例2(図3)で変調波信号の一周期の区間分割数が異なることから、これらのPWMモード間をスムーズに切り替えることが難しいという課題がある。
 上記の課題を解決するために、本発明に係る三相3レベル式の電力変換装置の駆動制御装置の代表的な一つは、三相3レベルインバータの一相につき変調波信号の1/4周期である位相0~90度を順に等分割した第1~第9の9区間について、
 第1の区間で、三相3レベルインバータの出力電位をゼロとし、
 第2と第3の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は出力電位を一定の正電位に保持し、
 第4と第5の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は出力電位をゼロとするか、または当該スイッチングなしに出力電位を一定の正電位に保持することを継続し、
 第6と第7の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は出力電位を一定の正電位に保持するか、または当該スイッチングなしに出力電位を一定の正電位に保持することを継続し、
 第8と第9の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は出力電位をゼロとするか、または当該スイッチングなしに出力電位を一定の正電位に保持することを継続することで、
 第1~第9までの区間でスイッチングを二回から四回のいずれかの回数のスイッチングを行い、変調波信号の残りの3/4周期である位相90~360度では、各1/4周期毎に位相0~90度で行うスイッチングにより出力される波形と上下対称および前後対称の少なくともいずれかとなる波形が出力され、残る二相からは、一相が出力する波形とはそれぞれ120度および240度の位相のずれた対称波形が出力されるものである。
 本発明によれば、上記のような構成を取ることにより、少ないスイッチング回数で電流高調波全体(OVER ALL)を低減させ、電力変換装置(インバータ)のスイッチング損失を低減させると同時に、駆動している交流電動機の損失(高調波損失)を低減させることができる。さらに、特許文献5に記載の技術に対して、電流制御の応答を上げることができる。また、本発明の第1~4のPWMモードは、すべて区間分割数を共通にしていることから、PWMモードの切り替えもスムーズに行うことができる。
 上記した以外の課題、構成および効果は、以下の実施をするための形態における説明により明らかにされる。
本発明の実施例の内で、第1のPWMモードに相当する同期8パルス(1)のU相電圧波形を定義する図である。 同期8パルス(1)の各区間における相間のスイッチング重複状態を示す図である。 同期8パルス(1)のU相およびV相電圧波形とUV線間電圧波形を示す図である。 図3に示す拡大1部分の拡大図(位相50~130度の範囲)である。 図4に対して、T23とT9との大小関係が逆転した場合を示す図である。 図3に示す拡大2部分の拡大図(位相110~190度の範囲)である。 図6に対して、T23とT45との大小関係が逆転した場合を示す図である。 本発明の実施例の内で、第2のPWMモードに相当する同期8パルス(2)のU相電圧波形を定義する図である。 同期8パルス(2)の各区間における相間のスイッチング重複状態を示す図である。 同期8パルス(2)のU相およびV相電圧波形とUV線間電圧波形を示す図である。 図10に示す拡大部分の拡大図(位相110~190度の範囲)である。 図11に対して、T3とT4との大小関係が逆転した場合を示す図である。 本発明の実施例の内で、第3のPWMモードに相当する同期6パルスのU相電圧波形を定義する図である。 同期6パルスの各区間における相間のスイッチング重複状態を示す図である。 同期6パルスのU相およびV相電圧波形とUV線間電圧波形を示す図である。 図15に示す拡大部分の拡大図(位相110~190度の範囲)である。 図16に対して、T23とT45との大小関係が逆転した場合を示す図である。 本発明の実施例の内で、第4のPWMモードに相当する同期4パルスのU相電圧波形を定義する図である。 同期4パルスの各区間における相間のスイッチング重複状態を示す図である。 同期4パルスのU相およびV相電圧波形とUV線間電圧波形を示す図である。 図20に示す拡大部分の拡大図(位相60~140度の範囲)である。 図21に対して、T23とT89の大小関係が逆転した場合を示す図である。 変調率に対する、第1~4の各PWMモードの電流高調波OVER ALL値を示す図である。 第1~4の各PWMモードの動作範囲の一例を示す図である。 本発明の実施例に係る三相3レベルインバータによる交流電動機(モータ)の駆動システムの構成例を示す図である。
 以下、本発明を実施するための形態として、本発明の実施例について、図面を用いて説明する。なお、この実施例により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
 図25は、本発明の実施例に係る三相3レベルインバータによる交流電動機(モータ)の駆動システムの構成例を示す図である。
 図25において、直流電圧源(図示せず)が供給する直流電圧を二組の平滑コンデンサ1および2で分圧し、平滑コンデンサ1および2には、U相インバータ回路3、V相インバータ回路4およびW相インバータ回路5が並列接続される。
 U相インバータ回路3は、4つのU相インバータスイッチング素子6~9とU相クランプダイオード10および11とから構成され、V相インバータ回路4は、4つのV相インバータスイッチング素子12~15とV相クランプダイオード16および17とから構成され、W相インバータ回路5は、4つのW相インバータスイッチング素子18~21とクランプダイオード22および23とから構成される。
 インバータ制御装置24は、U相~W相インバータ回路3~5のインバータスイッチング素子を駆動するゲートパルス信号GPU1~4、GPV1~4およびGPW1~4を出力する。
 交流電動機(モータ)25は、U相~W相インバータ回路3~5の交流出力端子側に接続される。
 直流電圧源が供給する直流電圧は、二組の平滑コンデンサ1および2によって分圧される。ここで、各コンデンサ電圧をEdp、Ednとし、中性点電位をゼロとすると、U相~W相インバータ回路3~5の出力電位Eu、EvおよびEwは、正電位Edp、負電位(-Edn)および中性点電位ゼロの3種類の値を取り得る。
 ここで、中性点電圧制御が適切に行われているものと仮定して、平滑コンデンサ1および2の電圧は等しい(Edp=Edn)とする。以下での説明を簡単にするために、インバータの相電圧は、±1および0の3種類の値を取るものとする。
 以下、本発明に係る第1~第4の各PWMモードについて、順に説明する。
<第1のPWMモード>
 図1は、本発明の実施例の内で、第1のPWMモードに相当する同期8パルス(1)のU相電圧波形を定義し、その上半分に1周期のU相電圧波形を示す図である。簡単化のために、U相電圧の出力電位は、±1および0の3レベルに正規化して示している。なお、以下では、第1のPWMモードについては、同期8パルス(1)として記載する。
 同期8パルス(1)では、出力周波数に応じた変調波信号の1/4周期(0~90度)を9個の区間に等分割し、位相0度側から順に第1~第9区間と呼ぶ。
・第1区間では、出力電位をゼロとする。
・第2・第3区間内の位相α(10<α<30)で、出力電位をゼロから正電位に立ち上げる。第2・第3区間内で出力が正電位を取る期間を“T23”とすると、T23=30-αとなる。
・第4・第5区間内の位相β(30<β<50)で、出力電位を正電位からゼロに立ち下げる。第4・第5区間内で出力が正電位を取る期間を“T45”とすると、T45=β-30となる。
・第6区間内の位相γ(50<γ<60)で、出力電位をゼロから正電位に立ち上げる。第6区間内で出力が正電位を取る期間を“T6”とすると、T6=60-γとなる。
・第7・第8区間では、出力電位を正電位に固定する。
・第9区間内の位相δ(80<δ<90)で、出力電位を正電位からゼロに立ち下げる。第9区間内で出力が正電位を取る期間を“T9”とすると、T9=δ-80となる。
 また、残りの3/4周期(90~360度)については、1/4周期の波形と上下対称あるいは前後対称となる。具体的には、U相電圧波形をSU(θ)とおくと、上記のとおり、0≦θ≦90の範囲におけるSU(θ)が定義されたので、
   90≦θ≦180において、SU(θ)= SU(180-θ)
  180≦θ≦270において、SU(θ)=-SU(θ-180)
  270≦θ≦360において、SU(θ)=-SU(360-θ)
と定義される。
 さらに、U相電圧波形SU(θ)は、周期360度の周期関数であり、
  SU(θ)=SU(θ±180)
である。
 一方で、V相およびW相電圧波形は、U相電圧波形とそれぞれ120度および240度位相のずれた対称波形となる。具体的には、V相電圧波形をSV(θ)、W相電圧波形をSW(θ)とおくと、
  SV(θ)=SU(θ-120)
  SW(θ)=SU(θ-240)
と定義される。
 また、図1の下半分には、U相電圧波形の4つのスイッチング位相α、β、γおよびδ(縦軸)と変調率(横軸)との関係を示す。
 第1のPWMモードの定義域である変調率50%から90%強の範囲において、
・第1のスイッチング位相αは、第2・第3区間内
・第2のスイッチング位相βは、第5区間内
・第3のスイッチング位相γは、第6区間内
・第4のスイッチング位相δは、第9区間内
に入っている。
 図2は、同期8パルス(1)の1周期内の各区間における相間のスイッチング重複状態を示す図である。簡単化のために、U相およびV相電圧の出力電位は、±1および0の3レベルに、UV線間電圧は、±2、±1および0の5レベルに、それぞれ正規化して示す。
 U相電圧波形およびV相電圧波形において、図2では、分割された区間内で出力電位をゼロから正電位、あるいは負電位からゼロに立ち上げる場合を右上がりの斜線パターンで示す。また、分割された区間内で出力電位を正電位からゼロ、あるいはゼロから負電位に立ち下げる場合を右下がりの斜線パターンで示す。
 同様に、UV線間電圧波形においても、図2では、分割された区間内でU相・V相電圧波形のいずれかしか変化せず、立ち上がる場合は右上がりの斜線パターンで示し、立ち下がる場合を右下がりの斜線パターンで示す。
 また、分割された区間内にU相・V相電圧波形の両方が変化して、区間内にパルスが立ち上がってから立ち下がる、あるいは立ち下がってから立ち上がる場合を、図2では、交差パターンで示す。例えば、UV線間電圧波形の位相20~30度(第3区間)では、U相およびV相電圧波形の変化の順によって、UV線間電圧の出力電位は、+1→+2→+1と変化するか、あるいは、+1→0→+1と変化するかの2種類が存在し、出力電位の取り得る範囲(0~+2)を交差パターンで示している。
 図3は、同期8パルス(1)のU相およびV相電圧波形とUV線間電圧波形を示す図である。図2では、UV線間電圧波形において、分割された区間内でU相およびV相電圧波形のスイッチングが重複する区間を交差パターンで示したが、波形の対称性から交差パターン(90~100度)を中心にして、図3に示す位相50~130度の範囲を“拡大1”とし、その拡大図を図4に示す。また、交差パターン(130~170度)を中心にして、図3に示す位相110~190度の範囲を“拡大2”とし、その拡大図を図6に示す。
 3レベルインバータの線間電圧は±2、±1、0の5レベルを取り、隣接する2つのレベルを往来する4つの状態に分類できる。
  <+2、+1> +2、+1の間を往来
  <+1、 0> +1、 0の間を往来
  <-1、 0> -1、 0の間を往来
  <-2、-1> -2、-1の間を往来
 これら4つの状態を、<+2、+1>→<+1、0>→<0、-1>→<-1、-2>のように単調減少する、あるいは逆に、<-2、-1>→<-1、0>→<0、+1>→<+1、+2>のように単調増加することを、ここでは“正順”と呼ぶ。この状態が“正順”で推移する場合には、出力電位の変化が緩やかになり、出力電圧高調波は小さくなる。
 図6に示す位相110~190度の範囲において、T23<T45である場合には、UV線間電圧の状態は、<+1、0>→<0、-1>と単調に遷移しており、先に定義した“正順”になっていることが分かる。
 一方、図7は、図6に対し位相110~190度の範囲において、T23とT45の大小関係が逆転した場合(T23>T45)を示す図である。図7では、UV線間電圧の状態は、<+1、0>→<0、-1>→<0、+1>→<0、-1>と推移し、先に定義した“正順”になっていないことが分かる。このような“正順”にならない区間が存在すると、電圧高調波が増加してしまう要因となる。以上から、“正順”となり、電圧高調波を低減できる条件は、T23<T45であることが分かる。
 図4に示す位相50~130度の範囲において、T23>10(度)-T9、すなわちT23+T9>10(度)である場合には、UV線間電圧の状態は、<+2、+1>→<+1、0>と単調に遷移し、先に定義した“正順”になっていることが分かる。
 一方、図5は、図4に対し位相50~130度の範囲において、T23とT9の大小関係が逆転した場合を示す。具体的には、図4のT23+T9>10(度)に対して、図5はT23+T9<10(度)の場合である。図5においても、UV線間電圧の状態は、<+2、+1>→<+1、0>と推移し、こちらも先に定義した“正順”になっていることが分かる。すなわち、位相50~130度の範囲においては、T23とT9との大小関係に制約を受けないことになる。
 以上のように、同期8パルス(1)は、定義域である変調率50%から90%強の範囲において、
・第1のスイッチング位相αは、第2・第3区間内
・第2のスイッチング位相βは、第5区間内
・第3のスイッチング位相γは、第6区間内
・第4のスイッチング位相δは、第9区間内
に入っている。
 また、制約条件として、第2・第3区間内において正電位を取る期間T23は、第4・第5区間内において正電位を取る期間T45よりも小さいこと(T23<T45)が挙げられる。
 このとき、同期8パルス(1)は、分割された区間内でできるだけ相間でスイッチングが重複しないようにスイッチング位相が配置され、また重複する場合であっても、“正順”の関係を保持して電圧高調波を低減することにより、できるだけ少ないスイッチング回数で電流高調波を低減するものである。さらに、同期8パルス(1)は、スイッチング位相を固定していないことから、電流制御の応答も高められる。
<第2のPWMモード>
 図8は、本発明の実施例の内で、第2のPWMモードに相当する同期8パルス(2)のU相電圧波形を定義し、その上半分に1周期のU相電圧波形を示す図である。簡単化のために、U相電圧の出力電位は±1および0の3レベルに正規化して示している。なお、以下では、第2のPWMモードについては、同期8パルス(2)として記載する。
 同期8パルス(2)では、出力周波数に応じた変調波信号の1/4周期(0~90度)を9個の区間に等分割し、位相0度側から順に第1~第9区間と呼ぶ。
・第1・第2区間では、出力電位をゼロとする。
・第3区間内の位相α(20<α<30)で、出力電位をゼロから正電位に立ち上げる。
第3区間内で出力が正電位を取る期間を“T3”とすると、T3=30-αとなる。
・第4区間内の位相β(30<β<40)で、出力電位を正電位からゼロに立ち下げる。第4区間内で出力が正電位を取る期間を“T4”とすると、T4=β-30となる。
・第5・第6区間では、出力電位をゼロに固定する。
・第7区間内の位相γ(60<γ<70)で、出力電位をゼロから正電位に立ち上げる。第7区間内で出力が正電位を取る期間を“T7”とすると、T7=70-γとなる。
・第8区間内の位相δ(70<δ<80)で、出力電位を正電位からゼロに立ち下げる。第8区間内で出力が正電位を取る期間を“T8”とすると、T8=δ-70となる。
・第9区間では、出力電位をゼロとする。
 また、残りの3/4周期(90~360度)については、1/4周期の波形と上下対称あるいは前後対称となる。具体的には、U相電圧波形をSU(θ)とおくと、上記のとおり、0≦θ≦90の範囲におけるSU(θ)が定義されたので、
   90≦θ≦180において、SU(θ)= SU(180-θ)
  180≦θ≦270において、SU(θ)=-SU(θ-180)
  270≦θ≦360において、SU(θ)=-SU(360-θ)
と定義される。
 さらに、U相電圧波形SU(θ)は、周期360度の周期関数であり、
  SU(θ)=SU(θ±180)
である。
 一方で、V相およびW相電圧波形は、U相電圧波形とそれぞれ120度および240度位相のずれた対称波形となる。具体的には、V相電圧波形をSV(θ)、W相電圧波形をSW(θ)とおくと、
  SV(θ)=SU(θ-120)
  SW(θ)=SU(θ-240)
と定義される。
 また、図8の下半分には、U相電圧波形のスイッチング位相α、β、γおよびδと変調率との関係を示す。
 同期8パルス(2)の定義域である変調率0%から50%弱の範囲において、
・第1のスイッチング位相αは、第3区間内
・第2のスイッチング位相βは、第4区間内
・第3のスイッチング位相γは、第7区間内
・第4のスイッチング位相δは、第8区間内
に入っている。
 図9は、同期8パルス(2)の各区間における相間のスイッチング重複状態を示す図である。簡単化のために、U相およびV相電圧の出力電位は、±1および0の3レベルに、UV線間電圧は、±2、±1および0の5レベルに、それぞれ正規化して示す。
 U相電圧波形およびV相電圧波形において、図9では、分割された区間内に出力電位をゼロから正電位、あるいは負電位からゼロに立ち上げる場合を、右上がりの斜線パターンで示す。また、分割された区間内で出力電位を正電位からゼロ、あるいはゼロから負電位に立ち下げる場合を、右下がりの斜線パターンで示す。
 同様に、UV線間電圧波形において、分割された区間内でU相・V相電圧波形のいずれかしか変化せず、立ち上がる場合は右上がりの斜線パターンで示し、立ち下がる場合を右下がりの斜線パターンで示す。
 また、分割された区間内にU相・V相電圧波形の両方が変化して、区間内にパルスが立ち上がってから立ち下がる、あるいは立ち下がってから立ち上がる場合を、図9では交差パターンで示す。例えば、UV線間電圧波形の位相140~160度では、U相およびV相電圧波形の変化の順によって、UV線間電圧の出力電位は、0→+1→0と変化するか、あるいは、0→-1→0と変化するかの2種類が存在し、出力電位の取り得る範囲(-1~+1)を交差パターンで示している。
 図10は、同期8パルス(2)のU相およびV相電圧波形とUV線間電圧波形を示す図である。図9のUV線間電圧波形において、分割された区間内でU相およびV相電圧波形のスイッチングが重複する区間を交差パターンで示したが、波形の対称性から交差パターン(140~160度)を中心にして位相110~190度の範囲を拡大した図を図11に示す。
 図11から、UV線間電圧の状態は、<+1、0>→<-1、0>と単調に遷移し、先に定義した“正順”になっていることが分かる。
 図12は、図11に対してT3とT4の大小関係が逆転した場合を示す図である。UV線間電圧の状態は、<+1、0>→<-1、0>→<+1、0>→<-1、0>と推移し、先に定義した“正順”になっていないことが分かる。このような“正順”にならない区間が存在すると、電圧高調波が増加してしまう要因となる。以上から、“正順”となり、電圧高調波を低減できる条件は、T3<T4であることが分かる。
 以上のように、同期8パルス(2)は、定義域である変調率0%から50%弱の範囲において、
・第1のスイッチング位相αは、第3区間内
・第2のスイッチング位相βは、第4区間内
・第3のスイッチング位相γは、第7区間内
・第4のスイッチング位相δは、第8区間内
に入っている。
 また、制約条件として、第3区間内において正電位を取る期間T3は、第4区間内において正電位を取る期間T4よりも小さいこと(T3<T4)が挙げられる。
 このとき、同期8パルス(2)は、分割された区間内でできるだけ相間でスイッチングが重複しないようにスイッチング位相を配置し、また重複する場合であっても“正順”の関係を保持して電圧高調波を低減することにより、できるだけ少ないスイッチング回数で電流高調波を低減するものである。さらに、同期8パルス(2)は、スイッチング位相を固定していないことから、電流制御の応答も高められる。
<第3のPWMモード>
 図13は、本発明の実施例の内で、第3のPWMモードに相当する同期6パルスのU相電圧波形を定義し、その上半分に1周期のU相電圧波形を示す図である。簡単化のために、U相電圧の出力電位は、±1および0の3レベルに正規化して示している。なお、以下では、第3のPWMモードについては、同期6パルスとして記載する。
 同期6パルスでは、出力周波数に応じた変調波信号の1/4周期(0~90度)を9個の区間に等分割し、位相0度側から順に第1~第9区間と呼ぶ。
・第1区間では、出力電位をゼロとする。
・第2・第3区間内の位相α(10<α<30)で、出力電位をゼロから正電位に立ち上げる。第2・第3区間内で出力が正電位を取る期間を“T23”とすると、T23=30-αとなる。
・第4・第5区間内の位相β(30<β<50)で、出力電位を正電位からゼロに立ち下げる。第4・第5区間内で出力が正電位を取る期間を“T45”とする。T45=β-30となる。
・第6区間内の位相γ(50<γ<60)で、出力電位をゼロから正電位に立ち上げる。第6区間内で出力が正電位を取る期間を“T6”とすると、T6=60-γとなる。
・第7~第9区間では、出力電位を正電位に固定する。
 また、残りの3/4周期(90~360度)については、1/4周期の波形と上下対称あるいは前後対称となる。具体的には、U相電圧波形をSU(θ)とおくと、上記のとおり0≦θ≦90の範囲においてSU(θ)が定義されたので、
   90≦θ≦180において、SU(θ)= SU(180-θ)
  180≦θ≦270において、SU(θ)=-SU(θ-180)
  270≦θ≦360において、SU(θ)=-SU(360-θ)
と定義される。
 さらに、U相電圧波形SU(θ)は、周期360度の周期関数であり、
  SU(θ)=SU(θ±180)
である。
 一方、V相およびW相電圧波形は、U相電圧波形とそれぞれ120度および240度位相のずれた対称波形となる。具体的には、V相電圧波形をSV(θ)、W相電圧波形をSW(θ)とおくと、
  SV(θ)=SU(θ-120)
  SW(θ)=SU(θ-240)
と定義される。
 また、図13の下半分には、U相電圧波形のスイッチング位相α、βおよびγと変調率との関係を示す。
 同期6パルスの定義域である変調率50%から90%強の範囲において、
・第1のスイッチング位相αは、第2・第3区間内
・第2のスイッチング位相βは、第4・第5区間内
・第3のスイッチング位相γは、第6区間内
に入っている。
 図14は、同期6パルスの各区間における相間のスイッチング重複状態を示す図である。簡単化のために、U相およびV相電圧の出力電位は、±1および0の3レベルに、UV線間電圧は、±2、±1および0の5レベルに正規化して示す。
 U相電圧波形およびV相電圧波形において、分割された区間内に出力電位をゼロから正電位、あるいは負電位からゼロに立ち上げる場合を、右上がりの斜線パターンで示す。また、分割された区間内で出力電位を正電位からゼロ、あるいはゼロから負電位に立ち下げる場合を、右下がりの斜線パターンで示す。
 同様に、UV線間電圧波形において、分割された区間内でU相・V相電圧波形のいずれかしか変化せず、立ち上がる場合は右上がりの斜線パターンで示し、立ち下がる場合を右下がりの斜線パターンで示す。
 ここで、分割された区間内にU相・V相電圧波形の両方が変化して、区間内にパルスが立ち上がってから立ち下がる、あるいは立ち下がってから立ち上がる場合を、交差パターンで示す。例えば、UV線間電圧波形の位相130~170度では、U相およびV相電圧波形の変化の順によって、UV線間電圧の出力電位は、0→+1→0と変化するか、あるいは、0→-1→0と変化するかの2種類が存在し、出力電位の取り得る範囲(-1~+1)を交差パターンで示している。
 図15は、同期6パルスのU相およびV相電圧波形とUV線間電圧波形を示す。図14では、UV線間電圧波形において、分割された区間内でU相およびV相電圧波形のスイッチングが重複する区間を交差パターンで示したが、波形の対称性から交差パターン(130~170度)を中心にして位相110~190度の範囲を拡大した図を図16に示す。
 図16から、UV線間電圧の状態は、<+1、0>→<-1、0>と単調に遷移し、先に定義した“正順”になっていることが分かる。
 図17は、図16に対してT23とT45の大小関係が逆転した場合を示す図である。UV線間電圧の状態は、<+1、0>→<-1、0>→<+1、0>→<-1、0>と推移し、先に定義した“正順”になっていないことが分かる。このような“正順”にならない区間が存在すると、電圧高調波が増加してしまう要因となる。以上から、“正順”となり、電圧高調波を低減できる条件は、T23<T45であることが分かる。
 以上のように、同期6パルスは、定義域である変調率50%から90%強の範囲において、
・第1のスイッチング位相αは、第2・第3区間内
・第2のスイッチング位相βは、第4・第5区間内
・第3のスイッチング位相γは、第6区間内
に入っている。
 また、制約条件として、第2・第3区間内において正電位を取る期間T23は、第4・第5区間内において正電位を取る期間T45よりも小さいこと(T23<T45)が挙げられる。
 このとき、同期6パルスは、分割された区間内でできるだけ相間でスイッチングが重複しないようにスイッチング位相を配置し、また重複する場合であっても“正順”の関係を保持して電圧高調波を低減することにより、できるだけ少ないスイッチング回数で電流高調波を低減するものである。さらに、同期6パルスは、スイッチング位相を固定していないことから、電流制御の応答も高められる。
<第4のPWMモード>
 図18は、本発明の実施例の内で、第4のPWMモードに相当する同期4パルスのU相電圧波形を定義し、その上半分に1周期のU相電圧波形を示す図である。簡単化のために、U相電圧の出力電位は±1および0の3レベルに正規化して示している。なお、以下では、第4のPWMモードについては、同期4パルスとして記載する。
 同期4パルスでは、出力周波数に応じた変調波信号の1/4周期(0~90度)を9個の区間に等分割し、位相0度側から順に第1~第9区間と呼ぶ。
・第1区間では、出力電位をゼロとする。
・第2・第3区間内の位相α(10<α<30)で、出力電位をゼロから正電位に立ち上げる。第2・第3区間内で出力が正電位を取る期間を“T23”とすると、T23=30-αとなる。
・第4~第7区間では、出力電位を正電位に固定する。
・第8・第9区間内の位相β(70<β<90)で、出力電位を正電位からゼロに立ち下げる。第8・第9区間内で出力が正電位を取る期間を“T89”とすると、T89=β-70となる。
 また、残りの3/4周期(90~360度)については、1/4周期の波形と上下対称あるいは前後対称となる。具体的には、U相電圧波形をSU(θ)とおくと、上記より0≦θ≦90の範囲においてSU(θ)が定義されたので、
   90≦θ≦180において、SU(θ)= SU(180-θ)
  180≦θ≦270において、SU(θ)=-SU(θ-180)
  270≦θ≦360において、SU(θ)=-SU(360-θ)
と定義される。
 さらに、U相電圧波形SU(θ)は、周期360度の周期関数であり、
  SU(θ)=SU(θ±180)
である。
 一方、V相およびW相電圧波形は、U相電圧波形とそれぞれ120度および240度位相のずれた対称波形となる。具体的には、V相電圧波形をSV(θ)、W相電圧波形をSW(θ)とおくと、
  SV(θ)=SU(θ-120)
  SW(θ)=SU(θ-240)
と定義される。
 また、図18の下半分には、U相電圧波形のスイッチング位相αおよびβと変調率との関係を示す。
 第4のPWMモードの定義域である変調率60%強から90%強の範囲において、
・第1のスイッチング位相αは、第2・第3区間内
・第2のスイッチング位相βは、第8・第9区間内
に入っている。
 図19は、同期4パルスの各区間における相間のスイッチング重複状態を示す図である。簡単化のために、U相およびV相電圧の出力電位は、±1および0の3レベルに、UV線間電圧は、±2、±1および0の5レベルに正規化して示す。
 U相電圧波形およびV相電圧波形において、分割された区間内に出力電位をゼロから正電位、あるいは負電位からゼロに立ち上げる場合を、右上がりの斜線パターンで示す。また、分割された区間内で出力電位を正電位からゼロ、あるいはゼロから負電位に立ち下げる場合を、右下がりの斜線パターンで示す。
 同様に、UV線間電圧波形において、分割された区間内でU相・V相電圧波形のいずれかしか変化せず、立ち上がる場合は右上がりの斜線パターンで示し、立ち下がる場合を右下がりの斜線パターンで示す。
 ここで、分割された区間内にU相・V相電圧波形の両方が変化して、区間内にパルスが立ち上がってから立ち下がる、あるいは立ち下がってから立ち上がる場合を交差パターンで示す。例えば、UV線間電圧波形の位相90~110度では、U相およびV相電圧波形の変化の順によって、UV線間電圧の出力電位は、+1→+2→+1と変化するか、あるいは、+1→0→+1と変化するかの2種類が存在し、出力電位の取り得る範囲(0~+2)を交差パターンで示している。
 図20は、同期4パルスのU相およびV相電圧波形とUV線間電圧波形を示す。図19では、UV線間電圧波形において、分割された区間内でU相およびV相電圧波形のスイッチングが重複する区間を交差パターンで示し、波形の対称性から交差パターン(90~110度)を中心にして位相60~140度の範囲を拡大した図を図21に示す。
 図21から、UV線間電圧の状態は、<+2、+1>→<+1、0>と単調に遷移しており、先に定義した“正順”になっていることが分かる。
 図22は、図21に対してT23とT89の大小関係が逆転した場合を示す図である。具体的には、図21は、T23>20-T89、すなわちT23+T89>20(度)の場合であり、図22は、T23+T89<20(度)の場合である。図22においても、UV線間電圧の状態は、<+2、+1>→<+1、0>と単調に推移し、先に定義した“正順”になっていることが分かる。すなわち、UV線間電圧の状態遷移は、T23とT89の大小関係には制約を受けない。
 以上のように、同期4パルスは、定義域である変調率60%強から90%強の範囲において、
・第1のスイッチング位相αは、第2・第3区間内
・第2のスイッチング位相βは、第8・第9区間内
に入っている。
 このとき、同期4パルスは、分割された区間内でできるだけ相間でスイッチングが重複しないようにスイッチング位相を配置し、また重複する場合であっても、“正順”の関係を保持して電圧高調波を低減することにより、できるだけ少ないスイッチング回数で電流高調波を低減するものである。さらに、同期4パルスは、スイッチング位相を固定していないことから、電流制御の応答も高められる。
 次に、図23は、変調率に対する、第1~4の各PWMモードの電流高調波OVER ALL値を示す図である。また、比較のために、特許文献5に記載の技術の内、同期8パルスの値を従来技術として示している。
 第1のPWMモードに相当する同期8パルス(1)は、特許文献5に記載の技術と遜色ない性能を有していることが分かる。
 また、第3のPWMモードに相当する同期6パルスおよび第4のPWMモードに相当する同期4パルスは、同期8パルス(1)に比べるとパルス数が少ない分だけ電流高調波が増加している。
 図24は、第1~4の各PWMモードの動作範囲の一例を示す図である。
 図24で「定常動作点」として示す線は、停止状態から最高速度まで加速、あるいは最高速度から減速して停止状態に至るまでの定常的な動作点を示す。横軸(出力周波数軸)は、定常動作点の線が最大値に至る値を100%として正規化している。
 通常の運転時は、定常動作点の線上をゆっくりと推移するが、いわゆる惰行状態など速度が出ている状態でインバータの動作を停止させる場合や、逆に、惰行中からインバータの再起動をかけた場合などの非定常状態(過渡状態)では、定常動作点の線より下側から出力周波数軸(変調率ゼロ)の間の領域を短時間で縦断する。
 一方で、状態が定常動作点の線より上側に至ることは無い。
 図24では、各PWMモードの動作範囲を角丸付き矩形で示している。図示のように、縦軸の変調率および横軸の出力周波数に応じて、図示のように各PWMモードを配置している。なお、説明の都合上、各PWMモードの領域を見分けやすいように各PWMモードの領域の間に隙間を空けているが、実際には領域の隅部も含めて隙間なく並んでおり、PWMモードが未定義の領域は存在しない。
 運転時には、図24に示す各PWMモードの配置において、変調率および出力周波数指令の少なくともいずれかに応じて、非同期ダイポーラ、非同期ユニポーラを含め、本発明に係る4つのPWMモードである、同期8パルス(1)、同期8パルス(2)、同期6パルスおよび同期4パルスを切り替えて使用することになる。
 定常動作点の線上では、原点(A)から順に、非同期ダイポーラ、非同期ユニポーラ、同期8パルス(1)、同期6パルス、同期4パルスと切り替わるように配置する。一方で、同期8パルス(1)より変調率が低い領域は、同期8パルス(2)を配置する。
 各PWMモードをこのように配置するのは、定常動作点の線上は通常の定格動作を行うため電流値も多く、動作時間も長いため、最も効率の良いPWMモードを配置する必要があるためである。
 また、定常動作点の線上を移動するときはゆっくり推移するため、PWMモードの切り替えには時間的な猶予がある。実際、原点(A)から動作点(E)まで推移するには、一般的に数十秒から数分のオーダーを要する。このため、非同期ユニポーラから同期8パルス(1)へのPWMモード切替えに多少時間を要しても問題ない。
 一方、惰行中からの再起動時は、短時間で行う必要がある。動作点(B)から動作点(D)あるいは動作点(C)から動作点(E)まで推移するには、一般的に数百ms程度しか要しない。このように極めて短時間でPWMモードをスムーズに推移させるために、同期8パルス(1)の下側(変調率が低い領域)には、非同期ユニポーラではなく、同期8パルス(2)を配置している。
 本発明では、第1のPWMモードに相当する同期8パルス(1)、第2のPWMモードに相当する同期8パルス(2)、本発明の第3のPWMモードに相当する同期6パルスおよび第4のPWMモードに相当する同期4パルスそれぞれは、区間分割数を共通化していることから、短時間でのPWMモード切替えをスムーズに行うことができる。
 以上、本発明の実施例について説明したが、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 1     P側平滑コンデンサ
 2     N側平滑コンデンサ
 3     U相インバータ回路
 4     V相インバータ回路
 5     W相インバータ回路
 6~ 9  U相インバータスイッチング素子
10、11  U相クランプダイオード
12~15  V相インバータスイッチング素子
16、17  V相クランプダイオード
18~21  W相インバータスイッチング素子
22、23  W相クランプダイオード
24     インバータ制御装置
25     モータ
Edp    P側平滑コンデンサ電圧
Edn    N側平滑コンデンサ電圧
Eu     U相インバータ電圧
Ev     V相インバータ電圧
Ew     W相インバータ電圧
GPU1~4 U相インバータゲートパルス
GPV1~4 V相インバータゲートパルス
GPW1~4 W相インバータゲートパルス
 α     第1~4のPWMモードにおける第1のスイッチング位相
 β     第1~4のPWMモードにおける第2のスイッチング位相
 γ     第1~3のPWMモードにおける第3のスイッチング位相
 δ     第1~2のPWMモードにおける第4のスイッチング位相
T2     第2の分割区間において正電位を取る期間
T3     第3の分割区間において正電位を取る期間
T4     第4の分割区間において正電位を取る期間
T5     第5の分割区間において正電位を取る期間
T6     第6の分割区間において正電位を取る期間
T7     第7の分割区間において正電位を取る期間
T8     第8の分割区間において正電位を取る期間
T9     第9の分割区間において正電位を取る期間
T23    T2とT3の和、T23=T2+T3
T45    T4とT5の和、T45=T4+T5
T89    T8とT9の和、T89=T8+T9

Claims (16)

  1.  三相3レベルインバータの一相につき変調波信号の1/4周期である位相0~90度を順に等分割した第1~第9の9区間について、
     第1の区間で、前記三相3レベルインバータの出力電位をゼロとし、
     第2と第3の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は前記出力電位を一定の正電位に保持し、
     第4と第5の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は前記出力電位をゼロとするか、または当該スイッチングなしに前記出力電位を前記一定の正電位に保持することを継続し、
     第6と第7の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は前記出力電位を前記一定の正電位に保持するか、または当該スイッチングなしに前記出力電位を前記一定の正電位に保持することを継続し、
     第8と第9の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は前記出力電位をゼロとするか、または当該スイッチングなしに前記出力電位を前記一定の正電位に保持することを継続することで、
     前記第1~前記第9までの区間で二回から四回のいずれかの回数のスイッチングを行い、
     前記変調波信号の残りの3/4周期である前記位相90~360度では、各1/4周期毎に前記位相0~90度で行うスイッチングにより出力される波形と上下対称および前後対称の少なくともいずれかとなる波形が出力され、
     残る二相からは、前記一相が出力する波形とはそれぞれ120度および240度の位相のずれた対称波形が出力される
    ことを特徴とする三相3レベルインバータの駆動制御装置。
  2.  請求項1に記載の三相3レベルインバータの駆動制御装置であって、
     前記第2と前記第3の区間を併せた区間内および前記第4と前記第5の区間を併せた区間内それぞれでスイッチングを一回行い、
     前記第6の区間内でスイッチングを一回行い、
     前記第9の区間内でスイッチングを一回行うことで、
     前記第1~前記第9までの区間で四回のスイッチングを行い、
     前記第2と前記第3の区間を併せた区間内および前記第4と前記第5の区間を併せた区間内それぞれで行うスイッチングのタイミングを調整して、前記第2と前記第3の区間を併せた区間内で前記出力電位を前記一定の正電位に保持する時間が、前記第4と前記第5の区間を併せた区間内で前記出力電位を前記一定の正電位に保持する時間よりも短い
    ことを特徴とする三相3レベルインバータの駆動制御装置。
  3.  請求項1に記載の三相3レベルインバータの駆動制御装置であって、
     前記第3および前記第4の区間内それぞれでスイッチングを一回行い、
     前記第7および前記第8の区間内それぞれでスイッチングを一回行うことで、
     前記第1~前記第9までの区間で四回のスイッチングを行い、
     前記第3の区間内および前記第4の区間内それぞれで行うスイッチングのタイミングを調整して、前記第3の区間内で前記出力電位を前記一定の正電位に保持する時間が、前記第4の区間内で前記出力電位を前記一定の正電位に保持する時間よりも短い
    ことを特徴とする三相3レベルインバータの駆動制御装置。
  4.  請求項1に記載の三相3レベルインバータの駆動制御装置であって、
     前記第2と前記第3の区間を併せた区間内および前記第4と前記第5の区間を併せた区間内それぞれでスイッチングを一回行い、
     前記第6の区間内でスイッチングを一回行うことで、
     前記第1~前記第9までの区間で三回のスイッチングを行い、
     前記第2と前記第3の区間を併せた区間内および前記第4と前記第5の区間を併せた区間内それぞれで行うスイッチングのタイミングを調整して、前記第2と前記第3の区間を併せた区間内で前記出力電位を前記一定の正電位に保持する時間が、前記第4と前記第5の区間を併せた区間内で前記出力電位を前記一定の正電位に保持する時間よりも短い
    ことを特徴とする三相3レベルインバータの駆動制御装置。
  5.  請求項1に記載の三相3レベルインバータの駆動制御装置であって、
     前記第2と前記第3の区間を併せた区間内でスイッチングを一回行い、
     前記第8と前記第9の区間を併せた区間内でスイッチングを一回行うことで、
     前記第1~前記第9までの区間で二回のスイッチングを行う
    ことを特徴とする三相3レベルインバータの駆動制御装置。
  6.  請求項2~5のいずれか1項に記載の三相3レベルインバータの駆動制御装置による駆動制御が、変調率および出力周波数指令の少なくともいずれかに応じて切り替わって実行される
    ことを特徴とする三相3レベルインバータの駆動制御装置。
  7.  請求項2~5のいずれか1項に記載の三相3レベルインバータの駆動制御装置による駆動制御が、前記三相3レベルインバータにより駆動される交流負荷の定常動作点が取り得る出力周波数の範囲に対して、変調率に応じて切り替わって実行される
    ことを特徴とする三相3レベルインバータの駆動制御装置。
  8.  低い変調率から当該変調率を大きくすることに合わせて、請求項3に記載の三相3レベルインバータの駆動制御装置による駆動制御、請求項2に記載の三相3レベルインバータの駆動制御装置による駆動制御、請求項4に記載の三相3レベルインバータの駆動制御装置による駆動制御および請求項5に記載の三相3レベルインバータの駆動制御装置による駆動制御が順に切り替わって実行される
    ことを特徴とする三相3レベルインバータの駆動制御装置。
  9.  三相3レベルインバータの一相につき変調波信号の1/4周期である位相0~90度を順に第1~第9の9区間に等分割し、
     第1の区間で、前記三相3レベルインバータの出力電位をゼロとし、
     第2と第3の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は前記出力電位を一定の正電位に保持し、
     第4と第5の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は前記出力電位をゼロとするか、または当該スイッチングなしに前記出力電位を前記一定の正電位に保持することを継続し、
     第6と第7の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は前記出力電位を前記一定の正電位に保持するか、または当該スイッチングなしに前記出力電位を前記一定の正電位に保持することを継続し、
     第8と第9の区間を併せた区間内で、スイッチングを一回行い当該スイッチング後の残る期間は前記出力電位をゼロとするか、または当該スイッチングなしに前記出力電位を前記一定の正電位に保持することを継続することで、
     前記第1~前記第9までの区間で二回から四回のいずれかの回数のスイッチングを行い、
     前記変調波信号の残りの3/4周期である前記位相90~360度では、各1/4周期毎に前記位相0~90度で行うスイッチングにより出力される波形と上下対称および前後対称の少なくともいずれかとなる波形を出力させ、
     残る二相は、前記一相の出力波形とはそれぞれ120度および240度の位相のずれた対称波形を出力させる
    ことを特徴とする三相3レベルインバータの駆動制御方法。
  10.  請求項9に記載の三相3レベルインバータの駆動制御方法であって、
     前記第2と前記第3の区間を併せた区間内および前記第4と前記第5の区間を併せた区間内それぞれでスイッチングを一回行い、
     前記第6の区間内でスイッチングを一回行い、
     前記第9の区間内でスイッチングを一回行うことで、
     前記第1~前記第9までの区間で四回のスイッチングを行い、
     前記第2と前記第3の区間を併せた区間内および前記第4と前記第5の区間を併せた区間内それぞれで行うスイッチングのタイミングを調整して、前記第2と前記第3の区間を併せた区間内で前記出力電位を前記一定の正電位に保持する時間を、前記第4と前記第5の区間を併せた区間内で前記出力電位を前記一定の正電位に保持する時間よりも短くする
    ことを特徴とする三相3レベルインバータの駆動制御方法。
  11.  請求項9に記載の三相3レベルインバータの駆動制御方法であって、
     前記第3および前記第4の区間内それぞれでスイッチングを一回行い、
     前記第7および前記第8の区間内それぞれでスイッチングを一回行うことで、
     前記第1~前記第9までの区間で四回のスイッチングを行い、
     前記第3の区間内および前記第4の区間内それぞれで行うスイッチングのタイミングを調整して、前記第3の区間内で前記出力電位を前記一定の正電位に保持する時間を、前記第4の区間内で前記出力電位を前記一定の正電位に保持する時間よりも短くする
    ことを特徴とする三相3レベルインバータの駆動制御方法。
  12.  請求項9に記載の三相3レベルインバータの駆動制御方法であって、
     前記第2と前記第3の区間を併せた区間内および前記第4と前記第5の区間を併せた区間内それぞれでスイッチングを一回行い、
     前記第6の区間内でスイッチングを一回行うことで、
     前記第1~前記第9までの区間で三回のスイッチングを行い、
     前記第2と前記第3の区間を併せた区間内および前記第4と前記第5の区間を併せた区間内それぞれで行うスイッチングのタイミングを調整して、前記第2と前記第3の区間を併せた区間内で前記出力電位を前記一定の正電位に保持する時間を、前記第4と前記第5の区間を併せた区間内で前記出力電位を前記一定の正電位に保持する時間よりも短くする
    ことを特徴とする三相3レベルインバータの駆動制御方法。
  13.  請求項9に記載の三相3レベルインバータの駆動制御方法であって、
     前記第2と前記第3の区間を併せた区間内でスイッチングを一回行い、
     前記第8と前記第9の区間を併せた区間内でスイッチングを一回行うことで、
     前記第1~前記第9までの区間で二回のスイッチングを行う
    ことを特徴とする三相3レベルインバータの駆動制御方法。
  14.  請求項10~13のいずれか1項に記載の三相3レベルインバータの駆動制御方法を、変調率および出力周波数指令の少なくともいずれかに応じて切り替える
    ことを特徴とする三相3レベルインバータの駆動制御方法。
  15.  請求項10~13のいずれか1項に記載の三相3レベルインバータの駆動方法を、前記三相3レベルインバータにより駆動される交流負荷の定常動作点が取り得る出力周波数の範囲に対して、変調率に応じて切り替える
    ことを特徴とする三相3レベルインバータの駆動制御方法。
  16.  低い変調率から当該変調率を大きくすることに合わせて、請求項11に記載の三相3レベルインバータの駆動制御方法、請求項10に記載の三相3レベルインバータの駆動制御方法、請求項12に記載の三相3レベルインバータの駆動制御方法および請求項13に記載の三相3レベルインバータの駆動制御方法を順に切り替える
    ことを特徴とする三相3レベルインバータの駆動制御方法。
PCT/JP2021/047190 2020-12-25 2021-12-21 三相3レベルインバータの駆動制御装置および駆動制御方法 WO2022138608A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022571481A JP7494321B2 (ja) 2020-12-25 2021-12-21 三相3レベルインバータの駆動制御装置および駆動制御方法
CN202180083509.5A CN116584029A (zh) 2020-12-25 2021-12-21 三相三电平逆变器的驱动控制装置和驱动控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020216301 2020-12-25
JP2020-216301 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138608A1 true WO2022138608A1 (ja) 2022-06-30

Family

ID=82159329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047190 WO2022138608A1 (ja) 2020-12-25 2021-12-21 三相3レベルインバータの駆動制御装置および駆動制御方法

Country Status (3)

Country Link
JP (1) JP7494321B2 (ja)
CN (1) CN116584029A (ja)
WO (1) WO2022138608A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115811244A (zh) * 2023-02-10 2023-03-17 希望森兰科技股份有限公司 中点电位可控的低谐波二极管钳位三电平同步过调制算法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331856A (ja) * 1995-05-30 1996-12-13 Toshiba Corp 電力変換装置
JPH0937592A (ja) * 1995-07-21 1997-02-07 Toyo Electric Mfg Co Ltd 3レベルインバータのpwm制御方法および制御装置
JPH09182454A (ja) * 1995-12-26 1997-07-11 Toyo Electric Mfg Co Ltd スイッチング損失を低減化した3レベルインバータのpwm制御方法および装置
EP2312739A1 (en) * 2009-09-29 2011-04-20 Weg S.A. Optimal pulse width modulation for multi-level inverter systems
JP2016032373A (ja) * 2014-07-29 2016-03-07 株式会社日立製作所 3レベル三相インバータの駆動制御装置
WO2016104370A1 (ja) * 2014-12-24 2016-06-30 三菱電機株式会社 電力変換装置
JP2018023210A (ja) * 2016-08-03 2018-02-08 株式会社日立製作所 電力変換装置および電力変換方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331856A (ja) * 1995-05-30 1996-12-13 Toshiba Corp 電力変換装置
JPH0937592A (ja) * 1995-07-21 1997-02-07 Toyo Electric Mfg Co Ltd 3レベルインバータのpwm制御方法および制御装置
JPH09182454A (ja) * 1995-12-26 1997-07-11 Toyo Electric Mfg Co Ltd スイッチング損失を低減化した3レベルインバータのpwm制御方法および装置
EP2312739A1 (en) * 2009-09-29 2011-04-20 Weg S.A. Optimal pulse width modulation for multi-level inverter systems
JP2016032373A (ja) * 2014-07-29 2016-03-07 株式会社日立製作所 3レベル三相インバータの駆動制御装置
WO2016104370A1 (ja) * 2014-12-24 2016-06-30 三菱電機株式会社 電力変換装置
JP2018023210A (ja) * 2016-08-03 2018-02-08 株式会社日立製作所 電力変換装置および電力変換方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115811244A (zh) * 2023-02-10 2023-03-17 希望森兰科技股份有限公司 中点电位可控的低谐波二极管钳位三电平同步过调制算法

Also Published As

Publication number Publication date
JP7494321B2 (ja) 2024-06-03
JPWO2022138608A1 (ja) 2022-06-30
CN116584029A (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
US6411530B2 (en) Drive and power supply with phase shifted carriers
US5621634A (en) Power converter
CN107425758B (zh) 用于控制电动机控制装置的方法和系统
Tan et al. Carrier-based PWM methods with common-mode voltage reduction for five-phase coupled inductor inverter
TWI660566B (zh) 電力變換裝置
US11855553B1 (en) Multi-level inverter with mixed device types
JP4929863B2 (ja) 電力変換装置
JP2004266884A (ja) スイッチング電源式電源装置およびそれを用いた核磁気共鳴イメージング装置
JP6208089B2 (ja) 3レベル三相インバータの駆動制御装置
JP5459304B2 (ja) 電流形電力変換装置
JPH05211776A (ja) インバータ
WO2022138608A1 (ja) 三相3レベルインバータの駆動制御装置および駆動制御方法
JP5121755B2 (ja) 電力変換装置
EP0727870A2 (en) Power converter
Darijevic et al. Analysis of dead-time effects in a five-phase open-end drive with unequal DC link voltages
WO2019167244A1 (ja) 電力変換装置および電動機システム
Agelidis et al. An optimum modulation strategy for a novel" notch" commutated 3-/spl Phi/PWM inverter
Lewicki et al. Space-vector pulsewidth modulation for a seven-level cascaded H-bridge inverter with the control of DC-link voltages
Baranwal et al. A modified four-step commutation to suppress common-mode voltage during commutations in open-end winding matrix converter drives
JP4132316B2 (ja) 三相電圧形インバータの制御方法
WO2018092315A1 (ja) 電力変換装置およびこれを用いた電動機駆動装置
JPWO2018127945A1 (ja) 電力変換装置
Zhu et al. Common-mode voltage reduction methods for medium-voltage current source inverter-fed drives
JP2005237194A (ja) 電気車の制御装置
JP3177085B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571481

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180083509.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910751

Country of ref document: EP

Kind code of ref document: A1