[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022117039A1 - Srs的功控指示方法、资源集簇的划分方法和设备 - Google Patents

Srs的功控指示方法、资源集簇的划分方法和设备 Download PDF

Info

Publication number
WO2022117039A1
WO2022117039A1 PCT/CN2021/135085 CN2021135085W WO2022117039A1 WO 2022117039 A1 WO2022117039 A1 WO 2022117039A1 CN 2021135085 W CN2021135085 W CN 2021135085W WO 2022117039 A1 WO2022117039 A1 WO 2022117039A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs resource
srs
tpc
clusters
cluster
Prior art date
Application number
PCT/CN2021/135085
Other languages
English (en)
French (fr)
Other versions
WO2022117039A9 (zh
Inventor
施源
拉盖施塔玛拉卡
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022117039A1 publication Critical patent/WO2022117039A1/zh
Publication of WO2022117039A9 publication Critical patent/WO2022117039A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • the present application belongs to the field of communication technologies, and specifically relates to a power control indication method for a Sounding Reference Signal (SRS), a method for dividing resource clusters, and a device (the device may refer to a terminal or a network-side device).
  • SRS Sounding Reference Signal
  • the device may refer to a terminal or a network-side device.
  • New Radio As a fifth-generation mobile communication system, New Radio (NR) needs to support an unprecedented number of application scenarios, and it also needs to support traditional frequency bands, new high frequency bands and beam modes at the same time, which brings great influence to the design of power control. challenge.
  • NR New Radio
  • the embodiments of the present application provide an SRS power control indication method, resource cluster division method and device, which can solve the problem that TRP independent SRS power control cannot be implemented in a multi-TRP scenario.
  • a first aspect provides an SRS power control indication method, the method includes: a terminal receives downlink control information DCI, where the DCI includes a target transmission power control TPC domain set, and the target TPC domain set is used to indicate at least one Power control parameters corresponding to each of the multiple SRS resource clusters in the uplink carrier; the SRS is sent according to the power control parameters.
  • a method for dividing SRS resource clusters includes: a terminal determines at least two SRS resource clusters; wherein the SRS resource clusters include SRS resource sets and/or SRS resources, The at least two SRS resource clusters are divided according to one of the following ways: the configuration sequence of the SRS resource sets or the sequence of identification IDs; the configuration sequence of the SRS resources or the sequence of identification IDs; the SRS resources The sequence of clusters; the sequence of the SRS resources; the parameters associated with the SRS resource set.
  • a third aspect provides an SRS power control indication method, the method includes: a network side device sends DCI, where the DCI includes a target transmission power control TPC domain set, where the target TPC domain set is used to indicate at least one uplink Power control parameters corresponding to multiple SRS resource clusters in the carrier; receiving SRS, the SRS sent by the terminal according to the power control parameters.
  • a method for dividing SRS resource clusters includes: a network side device determines at least two SRS resource clusters; wherein the SRS resource clusters include SRS resource sets and/or SRS resources, the at least two SRS resource clusters are divided according to one of the following ways: the configuration sequence of the SRS resource sets or the sequence of identification IDs; the configuration sequence of the SRS resources or the sequence of identification IDs; the A sequence of SRS resource sets; a sequence of the SRS resources; and parameters associated with the SRS resource sets.
  • a terminal comprising: a receiving module configured to receive DCI, where the DCI includes a target transmission power control TPC domain set, and the target TPC domain set is used to indicate multiple SRSs in at least one uplink carrier Power control parameters corresponding to each resource cluster; a sending module, configured to send the SRS according to the power control parameters.
  • a terminal comprising: a determination module configured to determine at least two SRS resource clusters; wherein the SRS resource clusters include SRS resource sets and/or SRS resources, the at least two SRS resource clusters
  • the resource set clusters are divided according to one of the following ways: the configuration sequence of the SRS resource sets or the sequence of identification IDs; the configuration sequence of the SRS resources or the sequence of identification IDs; the sequence of the SRS resource clusters; The sequence of the SRS resources; the parameters associated with the SRS resource set.
  • a network side device including: a sending module configured to send DCI, where the DCI includes a target transmission power control TPC domain set, and the target TPC domain set is used to indicate multiple Power control parameters corresponding to each of the SRS resource clusters; a receiving module, configured to receive an SRS, the SRS sent by the terminal according to the power control parameters.
  • a network-side device comprising: a determination module configured to determine at least two SRS resource clusters; wherein, the SRS resource clusters include SRS resource sets and/or SRS resources, and the at least two SRS resource clusters include SRS resource sets and/or SRS resources.
  • the SRS resource clusters are divided according to one of the following methods: the configuration sequence of the SRS resource sets or the sequence of identification IDs; the configuration sequence of the SRS resources or the sequence of identification IDs; the sequence of the SRS resource clusters ; the sequence of the SRS resources; the parameters associated with the SRS resource set.
  • a terminal in a ninth aspect, includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor Implement the method as described in the first aspect, or implement the method as described in the second aspect.
  • a tenth aspect provides a network-side device, the network-side device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the When executed by the processor, the method as described in the third aspect is implemented, or the method as described in the fourth aspect is implemented.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, any one of the first to fourth aspects is implemented Methods.
  • a twelfth aspect provides a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being When executed by the processor, the method described in any one of the first aspect to the fourth aspect is implemented.
  • a thirteenth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first to fourth aspects The method of any of the aspects.
  • the DCI received by the terminal includes a target TPC domain set, where the target TPC domain set is used to indicate power control parameters corresponding to each of multiple SRS resource clusters in at least one uplink carrier.
  • the embodiments of the present application can realize the independent power control of the SRS under each TRP, solve the problem that the power control of the SRS independent of the TRP cannot be realized in a multi-TRP scenario, and improve the transmission efficiency of the SRS.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a power control indication method of an SRS according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for dividing resource clusters of SRS according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for indicating a power control of an SRS according to another embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for dividing resource clusters of SRS according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network side device according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
  • NR New Radio
  • FIG. 1 shows a schematic diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, and wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Next Generation Node B (gNB), Home Node B, Home Evolved Node B, WLAN Access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. In the application embodiments, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides an SRS power control indication method 200, the method can be executed by a terminal, in other words, the method can be executed by software or hardware installed in the terminal, and the method includes the following step.
  • the terminal receives downlink control information (Downlink Control Information, DCI), where the DCI includes a target transmission power control (Transmit Power Control, TPC) domain set, and the target TPC domain set is used to indicate at least one uplink carrier. Power control parameters corresponding to each of the SRS resource clusters.
  • DCI Downlink Control Information
  • TPC Transmission Power Control
  • S204 Send the SRS according to the power control parameter.
  • the target TPC domain set may include one or more TPC domains.
  • each TPC field is in one-to-one correspondence with each uplink carrier, and one TPC field is used to indicate power control parameters corresponding to multiple SRS resource clusters in one uplink carrier, and the power control parameter may be a closed-loop power adjustment amount. Wait.
  • a TPC field corresponding to the uplink carrier may be used to indicate power control parameters corresponding to the two SRS resource clusters.
  • one uplink carrier may also correspond to multiple TPC domains, there are multiple SRS resource clusters in the uplink carrier, and one TPC domain is used to indicate power control parameters corresponding to one SRS resource cluster.
  • the two TPC fields corresponding to the uplink carrier may be used to respectively indicate power control parameters corresponding to the two SRS resource clusters.
  • one SRS resource cluster may correspond to one transmission and reception point (Transmission and Reception Point, TRP), so that the power control of the SRSs in the SRS resource clusters of multiple TRPs can be implemented through DCI.
  • TRP Transmission and Reception Point
  • the SRS resource set cluster mentioned in the various embodiments of this application generally includes (or is associated with) one or more SRS resource sets, and each SRS resource set includes (or is associated with) one or more SRS resources. It should be noted that, other technical terms may also be used to describe the SRS resource set cluster, such as an SRS cluster, a set of SRS resource sets, and the like.
  • the DCI received by the terminal includes a target TPC domain set, and the target TPC domain set is used to indicate the respective power control parameters corresponding to multiple SRS resource clusters in at least one uplink carrier .
  • the embodiments of the present application facilitate the realization of the independent power control of the SRS under each TRP, can solve the problem that the power control of the SRS independent of the TRP cannot be realized in a multi-TRP scenario, and improve the transmission efficiency of the SRS.
  • the indication method of the TPC domain is for the DCI of type (type) A, and this case is introduced into the method 1 and the method 2.
  • the DCI is of type type A
  • multiple TPC domains in the target TPC domain set are in one-to-one correspondence with multiple uplink carriers indicated by high-layer parameters
  • one TPC domain indicates one of the uplink carriers.
  • Power control parameters corresponding to each of the multiple SRS resource clusters in the carrier For example, in DCI, the TPC field in a type A transport block (block) corresponds to the uplink carrier indicated in the carrier index (cc-IndexInOneCC-Set) in the carrier resource set, and one TPC field indicates one uplink carrier. The corresponding power control parameters of each of the multiple SRS resource clusters.
  • the overhead of the TPC field is a fixed value, and one TPC field indicates power control parameters corresponding to each of multiple (eg, two) SRS resource clusters in one uplink carrier.
  • the overhead of one TPC field is fixed at 4 bits, and includes the power control parameter modification commands of two SRS resource clusters.
  • the terminal does not need to interpret the indication field (corresponding to the SRS resource cluster not configured), so as to save terminal overhead.
  • the overhead of the TPC domain is related to the number of SRS resource clusters in the uplink carrier corresponding to the TPC domain. That is, the overhead of one TPC domain is related to the number of SRS resource clusters configured in the uplink carrier indicated in cc-IndexInOneCC-Set. For example, if the number of SRS resource clusters in a carrier is 1, the overhead of the TPC domain corresponding to the carrier is 2 bits; if the number of SRS resource clusters in a carrier is 2, then the TPC domain corresponding to the carrier has 2 bits. The overhead is 4bit.
  • the DCI is of type type A
  • the target TPC domain set includes a first TPC domain set and a second TPC domain set
  • the first TPC domain set includes multiple TPC domains
  • the first TPC domain set includes multiple TPC domains.
  • Two TPC domain sets include one or more TPC domains, and any one TPC domain in the first TPC domain set and the second TPC domain set indicates the power control parameters of one SRS resource cluster in one uplink carrier , where one uplink carrier may include multiple SRS resource clusters.
  • a TPC domain in a type A block in the DCI corresponds to an SRS resource cluster in the uplink carrier indicated in cc-IndexInOneCC-Set .
  • the TPC domains in the first TPC domain set and the TPC domains in the second TPC domain set are in one-to-one correspondence with the uplink carriers indicated by the higher layer parameters.
  • the first set of TPC domains may be referred to as the set of basic TPC domains
  • the set of second TPC domains may be referred to as the set of additional TPC domains.
  • the sequence of TPC domains in the additional TPC domain set and the sequence of TPC domains in the basic TPC domain set are in one-to-one correspondence with the sequence of uplink carriers indicated in cc-IndexInOneCC-Set.
  • the order of the multiple TPC domains in the first TPC domain set and the one or more TPC domains in the second TPC domain set satisfies one of the following: an extension order corresponding manner; a staggered order corresponding manner.
  • the extension order corresponding manner includes: the TPC domains in the second TPC domain set are all located after or before the TPC domains in the first TPC domain set; that is, the extension order corresponding manner refers to the second TPC domain
  • the TPC domains in the set are all located after the TPC domains in the first TPC domain set, and vice versa, as described in the following examples 1 and 2.
  • Example 1 the corresponding manner of extension order, and the number of TPC domains in the second TPC domain set is only related to the number of uplink carriers (or simply referred to as carriers) indicated in cc-IndexInOneCC-Set.
  • the sequence of uplink carriers indicated in cc-IndexInOneCC-Set is uplink carrier 1, uplink carrier 2, uplink carrier 3, uplink carrier 4, and uplink carrier 5.
  • the first TPC domain set is TPC 1, TPC2, TPC3, TPC4, and TPC 5, respectively corresponding to the first set cluster of uplink carrier 1 (in some subsequent examples, the SRS resource cluster is referred to as set cluster for short), and the first set of uplink carrier 2.
  • the cluster is the first set of uplink carrier 3, the first set of uplink carrier 4, and the first set of uplink carrier 5.
  • the second TPC domain set is TPC 1-1, TPC 2-1, TPC 3-1, TPC 4-1, TPC 5-1, which correspond to the second set cluster of uplink carrier 1, and the uplink
  • the second set of carrier 2 the second set of uplink carrier 3, the second set of uplink carrier 4, and the second set of uplink carrier 5.
  • TPC 1 TPC 2
  • TPC 3 TPC 4-1
  • TPC 5 TPC 5
  • uplink carrier 2 is the second set cluster
  • uplink carrier 3 is the second set cluster
  • uplink carrier 4 is the second set cluster
  • uplink carrier 5 is the second set cluster
  • the number of TPCs of the above-mentioned type A block remains unchanged, but the terminal can ignore the TPC 2-1 field , without interpretation to save overhead.
  • Example 2 the corresponding manner of extension order, and the number in the second TPC domain set is related to the number of uplink carriers and the number of set clusters indicated in cc-IndexInOneCC-Set.
  • the sequence of uplink carriers indicated in cc-IndexInOneCC-Set is uplink carrier 1, uplink carrier 2, uplink carrier 3, uplink carrier 4, and uplink carrier 5.
  • the first TPC domain set is TPC 1, TPC2, TPC3, TPC4, and TPC 5, which correspond to the first set of uplink carrier 1, the first set of uplink carrier 2, the first set of uplink carrier 3, and the first set of uplink carrier 4.
  • set cluster the first set cluster of uplink carrier 5.
  • only two set clusters are configured on uplink carriers 2 and 5 of the terminal, and only one set cluster is configured on the other uplink carriers.
  • the second TPC domain set includes only TPC2-1 and TPC5-1, which correspond to the second set cluster of uplink carrier 2 and the second set cluster of uplink carrier 5 respectively.
  • TPC 1, TPC 2, TPC 3, TPC 4, TPC 5, TPC2-1, TPC 5-1 which correspond to the first set cluster of uplink carrier 1 and uplink carrier 2 respectively.
  • the first set cluster is the first set of uplink carrier 3, the first set of uplink carrier 4, the first set of uplink carrier 5, the second set of uplink carrier 2, and the second set of uplink carrier 5.
  • the interleaving sequence corresponding manner mentioned above includes: the TPC domain in the first TPC domain set and the TPC domain in the second TPC domain set are in a one-to-one correspondence with the uplink carrier indicated by the high layer parameter. Next, multiple TPC domains in the first TPC domain set and one or more TPC domains in the second TPC domain set are arranged in a staggered order.
  • Example 3 the interleaving sequence corresponds to the method, and the additional number in the TPC domain set is only related to the number of uplink carriers indicated in cc-IndexInOneCC-Set.
  • Example 1 The corresponding assumptions in this example can refer to Example 1.
  • the order of TPCs in a type A block is as follows, TPC 1, TPC 1-1, TPC 2, TPC 2-1, TPC 3, TPC 3-1, TPC 4, TPC 4-1, TPC 5, TPC 5-1, corresponding to the first set of uplink carrier 1, the second set of uplink carrier 1, the first set of uplink carrier 2, the second set of uplink carrier 2, the first set of uplink carrier 3, and the first set of uplink carrier 3.
  • Two sets of clusters the first set of uplink carrier 4, the second set of uplink carrier 4, the first set of uplink carrier 5, and the second set of uplink carrier 5.
  • Example 4 Corresponding manner of interleaving order, and the number in the second TPC domain set is related to the number of uplink carriers and the number of set clusters indicated in cc-IndexInOneCC-Set.
  • Example 2 The corresponding assumptions in this example can refer to Example 2.
  • TPC 1 TPC 2, TPC 2-1, TPC 3, TPC 4, TPC 5, TPC 5-1, respectively corresponding to the first set cluster of uplink carrier 1, the uplink carrier 2 first set cluster, uplink carrier 2 second set cluster, uplink carrier 3 first set cluster, uplink carrier 4 first set cluster, uplink carrier 5 first set cluster, uplink carrier 5 second set cluster.
  • the order of TPCs in a type A block is as follows, TPC 1, TPC 2-1, TPC 2, TPC 3, TPC 4, TPC 5-1, TPC 5.
  • TPC 1 corresponds to the first set of uplink carrier 1, the second set of uplink carrier 2, the first set of uplink carrier 2, the first set of uplink carrier 3, the first set of uplink carrier 4, and the second set of uplink carrier 5.
  • cluster corresponds to the first set cluster of uplink carrier 5.
  • the number of TPC domains in the second set of TPC domains is related to at least one of the following:
  • the total number of the multiple uplink carriers, the multiple uplink carriers may be indicated by a high layer parameter (eg, cc-IndexInOneCC-Set).
  • a high layer parameter eg, cc-IndexInOneCC-Set.
  • the number of TPC domains in the second set of TPC domains is only related to the number of the uplink carriers in 1), and the method further includes the following steps: if the target uplink carrier is configured with the first SRS If the resource cluster is clustered but the second SRS resource cluster is not configured, the terminal ignores the TPC domain corresponding to the target uplink carrier in the second TPC domain set, and does not interpret it.
  • the target uplink carrier mentioned here may be any one or more of the uplink carriers indicated by the above-mentioned higher layer parameters.
  • the sequence of the second TPC domain set and the first TPC domain set may not be limited, or the sequence of the TPC domains may not be limited.
  • the DCI sent by the network side device is not limited to the above The sequence is not limited.
  • the terminal is not expected to limit at least one of the following:
  • the target TPC domain set supports a partial independent coding manner or a joint coding manner.
  • a certain TPC domain occupies 4 bits, the first 2 bits are used to indicate the first set cluster, and the last 2 bits are used to indicate the second set cluster; for another example, a certain TPC domain occupies 4 bits, using the joint coding method, each code point contains two Power control parameter indication of a set cluster.
  • the indication method of the TPC domain is for the DCI of type (type) B, and this case is divided into method 3 and method 4 for introduction.
  • the DCI is of type type B
  • a TPC domain (including only one TPC domain) in the target TPC domain set corresponds to an uplink carrier indicated by a high-level parameter
  • the TPC domain indicates one of the Power control parameters corresponding to each of the multiple SRS resource clusters in the uplink carrier.
  • a TPC domain in a type B block includes power control parameter modification commands corresponding to multiple set clusters.
  • the target TPC domain set includes a TPC domain.
  • this TPC domain is also referred to as a TPC domain set in this specification.
  • the overhead of the TPC field is a fixed value, and the TPC field indicates respective power control parameters corresponding to multiple (eg, two) SRS resource clusters in the uplink carrier.
  • the overhead of the TPC field is fixed at 4 bits, and includes power control parameter modification commands of two SRS resource clusters.
  • the terminal in the case where the SRS resource cluster is not configured, the terminal does not need to interpret the indication field (corresponding to the SRS resource cluster not configured), so as to save terminal overhead.
  • the overhead of the TPC domain is related to the number of SRS resource clusters in the uplink carrier corresponding to the TPC domain. That is, the overhead of the TPC domain is related to the number of SRS resource clusters configured in the uplink carrier indicated in cc-IndexInOneCC-Set. For example, if the number of SRS resource clusters in the carrier is 1, the overhead of the TPC domain is 2 bits; if the number of SRS resource clusters in the carrier is 2, the overhead of the TPC domain is 4 bits.
  • the DCI is of type type B
  • the target TPC domain set includes a first TPC domain and a second TPC domain
  • the target TPC domain set includes only the first TPC domain
  • the The first TPC field and the second TPC field indicate the power control parameters of one SRS resource cluster in one of the uplink carriers, for example, the first TPC field indicates the power control parameters of the first SRS resource cluster in the uplink carrier ;
  • the second TPC field indicates the power control parameters of the second SRS resource cluster in the uplink carrier.
  • the number of TPC domains in the target TPC domain set (or whether the second TPC domain exists) is related to the number of the SRS resource set clusters in the uplink carrier. That is, the number of TPC domains in the target TPC domain set is related to the number of set clusters configured in the uplink carrier corresponding to the block where it is located.
  • the number of set clusters can be one or two, and correspondingly, the number of TPC domains can also be one or more. 2.
  • the number of TPC domains in the target TPC domain set (or whether the second TPC domain exists) is independent of the number of the SRS resource clusters in the uplink carrier, and the method further includes : If the uplink carrier is configured with the first SRS resource cluster but not configured with the second SRS resource cluster, the terminal ignores the second TPC field.
  • Example 5 and Example 6 are described below.
  • Example 5 the number of TPC domains in the target TPC domain set is independent of the number of set clusters.
  • a type B block corresponds to uplink carrier 1
  • the first TPC domain is TPC 1
  • TPC1 corresponds to the first set cluster of uplink carrier 1
  • the second TPC domain is TPC1-1
  • TPC1-1 corresponds to the second set cluster of uplink carrier 1 .
  • TPC1, TPC 1-1 respectively correspond to the first set cluster of uplink carrier 1 and the second set cluster of uplink carrier 1.
  • the terminal does not interpret the TPC1-1 field.
  • Example 6 the number of TPC domains in the target TPC domain set is related to the number of set clusters.
  • a type B block corresponds to uplink carrier 1
  • the first TPC domain is TPC 1
  • TPC1 corresponds to the first set cluster of uplink carrier 1.
  • the second TPC domain is TPC1-1
  • TPC1-1 corresponds to the second set cluster of uplink carrier 1.
  • the order of TPCs in a type A block is as follows, TPC1, TPC1-1, respectively correspond to the first set cluster of uplink carrier 1, the uplink carrier 1 The second set cluster.
  • the TPC sequence in a type A block is as follows, TPC1, corresponding to the first set cluster of uplink carrier 1.
  • the target TPC domain set supports a partial independent coding mode or a joint coding mode.
  • a certain TPC domain occupies 4 bits, the first 2 bits are used to indicate the first set cluster, and the last 2 bits are used to indicate the second set cluster; for another example, a certain TPC domain occupies 4 bits, using the joint coding method, each code point contains two Power control parameter indication of a set cluster.
  • the foregoing embodiments all describe the power control indication method of the SRS.
  • the following will introduce the method for dividing the SRS resource cluster in several embodiments.
  • the method for dividing SRS resource clusters introduced in the subsequent embodiments may be implemented in combination with any of the foregoing embodiments, or may be implemented independently.
  • the plurality of the SRS resource set clusters mentioned in Embodiment 100 are distinguished according to the configuration order of the SRS resource sets or the order of identification IDs; wherein, the configuration order includes the configuration time from front to back or from the back Forward; the order of the IDs includes small to large or large to small.
  • any two of the SRS resource set clusters include the same number of SRS resource sets.
  • the number of SRS resource sets configured in the second set cluster is consistent with the number of SRS resource sets configured in the first set cluster, that is, the number is equal.
  • the first half of the sets are the first set cluster
  • the second half of the sets are the second set cluster, and vice versa, wherein the first half of the set and the second half of the set are according to the configuration.
  • the number of sets is determined.
  • Example 1 Determine from front to back according to the configuration order of the SRS resource set, and determine the first set cluster and the second set cluster according to the number of SRS resource sets.
  • a total of 6 sets are configured in the network. According to the order of configuration in the SRS-config field, they are set 2, set 3, set 1, set 4, set 5, and set 6, where set 2 indicates that the ID of the set is 2. , and so on.
  • the first set cluster set 2, set 3, set1; the second set cluster: set4, set 5, set 6.
  • Example 2 according to the order of SRS resource set IDs from small to large, and determine the first set cluster and the second set cluster according to the number of sets.
  • a total of 6 sets are configured in the network. According to the order of configuration in the SRS-config field, they are set 2, set 3, set 1, set 4, set 5, and set 6, where set 2 indicates that the ID of the set is 2. , and so on.
  • the first set cluster set 1, set 2, set3; the second set cluster: set4, set 5, set6.
  • the first embodiment can also indicate the number of the first set cluster and/or the second set cluster through the first signaling, and the first signaling includes DCI, a media access control control unit (Media Access Control-Control Element, MAC CE), at least one of Radio Resource Control (Radio Resource Control, RRC). That is, the first embodiment further includes the following step: the terminal receives the first indication signaling, where the first indication signaling is used to indicate the number of SRS resource sets included in the SRS resource set cluster.
  • the first indication signaling is used to indicate the number of SRS resource sets included in the SRS resource set cluster.
  • the first indication signaling indicates that the front part set configured by the terminal is the first set cluster, and the rear part set is the second set cluster, and vice versa, the front part set and the rear part set are determined according to the indicated number of sets .
  • Example 3 Determine according to the configuration sequence, and determine the first set cluster and the second set cluster according to the number of sets indicated by the first signaling.
  • the network is configured with 6 sets, which are set 2, set 3, set 1, set 4, set 5, and set 6 according to the order of configuration in the SRS-config field, where set 2 indicates that the ID of the set is 2 , and so on.
  • the first signaling indicates that the number of clusters in the first set is 2, the number of clusters in the second set is 4 by default. Then: the first set cluster: set 2, set 3; the second set cluster: set1, set4, set 5, set 6.
  • first signaling indicates that the number of clusters in the first set is 2, and indicates that the number of clusters in the second set is 3. Then the first set cluster: set 2, set 3; the second set cluster: set1, set4, set 5.
  • Embodiment 1 may also indicate the starting position + number of the first set cluster and/or the second set cluster, or the starting ID + number, etc. through second signaling, where the second signaling includes DCI, MAC CE, at least one of RRC.
  • the first embodiment further includes the following step: the terminal receives second indication signaling, where the second indication signaling is used to indicate at least one of the following target SRS resource set clusters in the multiple SRS resource set clusters:
  • the ID of the starting SRS resource set included such as the ID of the first SRS resource set included in the target SRS resource set cluster.
  • the number of included SRS resource sets such as the number of all SRS resource sets included in the target SRS resource set cluster.
  • the target SRS resource cluster mentioned in this example may be all the SRS resource clusters in the multiple SRS resource clusters, and may also be one or more SRS resource clusters therein.
  • the second indication signaling indicates that the front part set configured by the terminal is the first set cluster, and the rear part set is the second set cluster, and vice versa, the front part set and the rear part set are according to the instructions of the first set cluster and Or the specific location where the second set cluster is indicated is determined.
  • the SRS resource set may also be distinguished by the location of the SRS resource set of a specific usage (usage).
  • a plurality of the SRS resource set clusters are distinguished according to the SRS resource sets for specific purposes.
  • the specific-purpose SRS resource sets are located at adjacent positions of two SRS resource set clusters.
  • the position of the Xth specific-purpose SRS resource set is used to determine the Xth SRS resource set cluster and the (X+1)th SRS resource set cluster, where X is an integer greater than or equal to 1.
  • the position of the Y-th said purpose-specific SRS resource set is used to determine the (Y-1)-th SRS resource set cluster and the Y-th SRS resource set cluster, where Y is an integer greater than or equal to 2.
  • the specific-purpose SRS resource set satisfies at least one of the following:
  • the SRS resource set for the specific usage is predefined, for example, the specific usage can be any one agreed upon in the protocol.
  • the specific-purpose SRS resource set is determined according to the transmission mode of the physical uplink shared channel PUSCH. For example, when the transmission mode of the PUSCH configuration is codebook, the specific-purpose SRS resource set is codebook, and if the transmission mode of the PUSCH configuration is non-codebook (nonCodebook), the specific-purpose SRS resource set is nonCodebook.
  • the basis for dividing the set clusters includes: the configuration order of the SRS resource set + the SRS resource set that needs to be full of a specific usage is configured in the adjacent positions of the two set clusters in the order of the set clusters.
  • codebook transmission is configured in PUSCH, and the specific usage is codebook.
  • the network is configured with a total of 7 sets, which are set 2, set 3, set 1, set 4, set 5, set 6, and set 7 according to the order of configuration in the SRS-config field, and the corresponding usages are the antennas Switching (antenna switching), beam management (beam management), codebook, codebook, noncodebook, beam management, antenna switching, where set 2 indicates that the ID of the set is 2, and so on.
  • the set of the first codebook corresponds to the first set cluster
  • the set of the second codebook corresponds to the second set cluster. Then: the first set cluster: set 2, set 3, set 1; the second set cluster: set 4, set 5, set 6, set 7.
  • the set of the first codebook corresponds to the second set cluster
  • the set of the second codebook corresponds to the first set cluster. Then: the first set cluster: set 4, set 5, set 6, set 7; the second set cluster: set 2, set 3, set 1.
  • the basis for dividing the set cluster includes: the configuration sequence of the SRS resource set + the position of the Xth SRS resource set for the specific purpose is used to determine the Xth SRS resource set cluster and the (X+1)th SRS resource cluster.
  • codebook transmission is configured in PUSCH, and the specific usage is codebook.
  • This example assumes that the network is configured with a total of 7 sets, which are set 2, set 3, set 1, set 4, set 5, set 6, and set 7 according to the order of configuration in the SRS-config field.
  • the corresponding usages are antenna switching. , beam management, codebook, noncodebook, beam management, codebook, antenna switching where set 2 means the ID of the set is 2, and so on.
  • the first codebook and its preceding set correspond to the first set cluster
  • the first set cluster set 2, set 3, set 1
  • the second set cluster set 4, set 5, set 6, set 7.
  • the division basis of the set cluster includes: the configuration sequence of the SRS resource set + the position of the Y-th specific-purpose SRS resource set is used to determine the (Y-1)-th SRS resource set cluster and the first SRS resource set.
  • Y SRS resource clusters This example assumes that codebook transmission is configured in PUSCH, and the specific usage is codebook.
  • This example assumes that the network is configured with a total of 7 sets, which are set 2, set 3, set 1, set 4, set 5, set 6, and set 7 according to the order of configuration in the SRS-config field.
  • the corresponding usages are antenna switching. , codebook, beam management, codebook, noncodebook, beam management, antenna switching where set 2 means the ID of the set is 2, and so on.
  • the set before the second codebook corresponds to the first set cluster
  • the second codebook and the sets after it correspond to the second set cluster
  • Y 2 in this example. That is: the first set cluster: set 2, set 3, set 1; the second set cluster: set 4, set 5, set 6, set 7.
  • the multiple SRS resource clusters mentioned in Embodiment 100 are distinguished according to the configuration sequence of SRS resources or the sequence of identification IDs; wherein, the configuration sequence includes from front to back or from back to front; The order of the IDs includes from small to large or from large to small.
  • any two SRS resource clusters include an equal number of SRS resources.
  • the number of SRS resources configured in the second set cluster is consistent with the number of SRS resources configured in the first set cluster, that is, the number is equal.
  • the sets associated with the first half of the resources belong to the first set cluster, and the sets associated with the second half of the resources belong to the second set cluster, and vice versa.
  • the first half of the resources and the second half of the resources are configured according to the configuration. The number of resources is determined.
  • the number of resources associated with all sets in the first set cluster and/or the number of resources associated with all sets in the second set cluster may also be indicated by third signaling, where the third signaling includes DCI, MAC CE, at least one of RRC. That is, Embodiment 2 further includes the following step: the terminal receives third indication signaling, where the third indication signaling is used to indicate the number of SRS resources included in the SRS resource cluster.
  • the third indication signaling is used to indicate that among all the configured SRS resources, the sets associated with the first half of the resources belong to the first set cluster, and the sets associated with the second half of the resources belong to the second set cluster, and vice versa, the first half of the resources And the latter half of the resources are determined according to the number of configured resources.
  • Embodiment 2 may also indicate the starting position + number of the first set cluster and/or the second set cluster, or the starting ID + number, etc. through fourth signaling, where the fourth signaling includes DCI, MAC CE, at least one of RRC.
  • the second embodiment further includes the following step: the terminal receives fourth indication signaling, where the fourth indication signaling is used to indicate at least one of the following target SRS resource clusters in the multiple SRS resource clusters:
  • the ID of the starting SRS resource included such as the ID of the first SRS resource included in the target SRS resource cluster.
  • the number of included SRS resources such as the number of all SRS resources included in the target SRS resource cluster.
  • the target SRS resource cluster mentioned in this example may be all the SRS resource clusters in the multiple SRS resource clusters, and may also be one or more SRS resource clusters therein.
  • the fourth indication signaling indicates that the set associated with the previous part of the resource belongs to the first set cluster, and the set associated with the latter part of the resource belongs to the second set cluster, and vice versa, the former part of the resource and the latter part of the resource are according to the instructions of the first set cluster.
  • the specific location at which the resource associated within the set cluster and/or the resource associated within the second set cluster is indicated is determined.
  • the same SRS resource should not be associated with the two SRS resources of the two SRS resource clusters, that is, the terminal does not expect the same SRS resource to be used by more than one of the SRS resource sets. cluster association.
  • embodiment 100 further includes the step of: receiving configuration information, where the configuration information is used to configure at least one of the following:
  • the multiple set clusters are the first set cluster and the second set cluster.
  • the first set cluster sequence and/or the associated resource sequence in the first set cluster may be configured according to the prior art, and this embodiment may additionally configure the first set cluster The second set cluster sequence and/or the associated resource sequence within the second set cluster.
  • the configuration parameter srs-ResourceSetToAddModList corresponds to the first set cluster
  • the configuration parameter srs-ResourceSetToAddModList-v17 corresponds to the second set cluster
  • the second set cluster sequence and/or the associated resource sequence in the second set cluster is additionally configured.
  • the configuration parameter srs-ResourceSetToAddModList corresponds to the first set cluster;
  • the configuration parameter srs-ResourceSetToAddModList-v17 corresponds to the second set cluster;
  • the configuration parameter srs-ResourceToAddModList indicates that the resources in the sequence are used to associate sets in the first set cluster;
  • configure The parameter srs-ResourceToAddModList-v17 indicates that the resources in the sequence are used to associate sets in the second set cluster.
  • the SRS resource set in the SRS resource set cluster is determined according to the parameters associated with the SRS resource set; and/or; the specific-purpose SRS resource set in the SRS resource set cluster is determined according to the SRS resource set Determined by the parameters associated with the specific use of the SRS resource set.
  • any two SRS resource sets in one of the SRS resource sets meet at least one of the following: have the same path loss reference RS, have the same spatial beam information, have the same associated RS, and be associated with the same transmission
  • the receiving point TRP index is associated with the same control resource set resource pool index, has the same power control parameter index, and has the same closed-loop power control index group.
  • the SRS resource sets in different SRS resource clusters satisfy at least one of the following: have different pathloss reference RSs, have different spatial beam configurations, have different associated RSs, and associate different SRS resource IDs , associated with different TRP indexes, associated with different control resource set resource pool indexes (CORESET pool indexes), with different power control parameter indexes, and with different closed-loop power control index groups.
  • SRS resource clusters can be divided according to the parameters associated with the SRS resource set. This condition can be independent, or can be combined with the methods provided in the above Embodiments 1 to 3. A set with a specific usage is restricted.
  • the power control parameter index mentioned above may be configured under each SRS set, for example, when the power control parameter index is an optional configuration parameter and does not need to be configured, the default index is used.
  • the power of the SRS can be obtained by the following formula:
  • the power control parameter index has no effect.
  • t in each of the above formulas represents a power control parameter index or an SRS resource cluster index.
  • the embodiments of the present application further provide a SRS resource cluster division method, as shown in FIG. 3 , the method includes: Follow the steps below:
  • the terminal determines at least two SRS resource clusters, the SRS resource clusters include SRS resource sets and/or SRS resources, and the at least two SRS resource clusters are divided according to one of the following methods: Configuration of SRS resource sets sequence or sequence of identification IDs; configuration sequence of SRS resources or sequence of identification IDs; sequence of SRS resource clusters; sequence of SRS resources; parameters associated with SRS resource sets.
  • At least two SRS resource clusters may be determined in various ways, wherein one SRS resource cluster may correspond to one TRP.
  • one SRS resource cluster may correspond to one TRP.
  • the SRS power control indication method and resource cluster division method are described in detail above with reference to FIG. 2 and FIG. 3 .
  • a method for indicating a power control of an SRS and a method for dividing a resource cluster according to another embodiment of the present application will be described in detail below with reference to FIG. 4 and FIG. 5 . It can be understood that the interaction between the network side device and the terminal described from the network side device is the same as the description of the terminal side in the methods shown in FIG. 2 and FIG. 3 , and related descriptions are appropriately omitted to avoid repetition.
  • FIG. 4 is a schematic flowchart of the implementation of the SRS power control indication method according to the embodiment of the present application, which can be applied to a network side device. As shown in FIG. 4 , the method 400 includes the following steps.
  • the network side device sends DCI, where the DCI includes a target transmission power control TPC domain set, where the target TPC domain set is used to indicate power control parameters corresponding to each of multiple SRS resource clusters in at least one uplink carrier.
  • S404 Receive an SRS, where the SRS is sent by the terminal according to the power control parameter.
  • the DCI sent by the network side device includes a target TPC domain set, where the target TPC domain set is used to indicate power control parameters corresponding to multiple SRS resource clusters in at least one uplink carrier.
  • the embodiments of the present application facilitate the realization of the independent power control of the SRS under each TRP, can solve the problem that the power control of the SRS independent of the TRP cannot be realized in a multi-TRP scenario, and improve the transmission efficiency of the SRS.
  • FIG. 5 is a schematic flowchart of an implementation of a method for dividing a resource cluster of an SRS according to an embodiment of the present application, which can be applied to a network side device. As shown in FIG. 5 , the method 500 includes the following steps.
  • the network side device determines at least two SRS resource clusters, the SRS resource clusters include SRS resource sets and/or SRS resources, and the at least two SRS resource clusters are divided according to one of the following methods: SRS resource sets The sequence of configuration of SRS resources or the sequence of identification IDs; the configuration sequence of SRS resources or the sequence of identification IDs; the sequence of SRS resource clusters; the sequence of SRS resources; and the parameters associated with SRS resource sets.
  • At least two SRS resource clusters may be determined in various ways, wherein one SRS resource cluster may correspond to one TRP.
  • one SRS resource cluster may correspond to one TRP.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present application. As shown in FIG. 6 , the terminal 600 includes the following modules.
  • the receiving module 602 may be configured to receive DCI, where the DCI includes a target transmission power control TPC domain set, where the target TPC domain set is used to indicate respective power control parameters corresponding to multiple SRS resource clusters in at least one uplink carrier.
  • the sending module 604 is configured to send the SRS according to the power control parameter.
  • the DCI received by the terminal includes a target TPC domain set, where the target TPC domain set is used to indicate power control parameters corresponding to each of multiple SRS resource clusters in at least one uplink carrier.
  • the embodiments of the present application facilitate the realization of the independent power control of the SRS under each TRP, can solve the problem that the power control of the SRS independent of the TRP cannot be realized in a multi-TRP scenario, and improve the transmission efficiency of the SRS.
  • the TPC domains in the target TPC domain set are in one-to-one correspondence with the uplink carriers indicated by high-layer parameters, and one TPC domain indicates multiple SRS resource sets in one uplink carrier. Power control parameters corresponding to each cluster.
  • the overhead of the TPC domain is a fixed value.
  • the overhead of the TPC domain is related to the number of SRS resource clusters in the uplink carrier corresponding to the TPC domain.
  • the DCI is of type type A
  • the target TPC domain set includes a first TPC domain set and a second TPC domain set
  • Any TPC field in the set indicates the power control parameter of one SRS resource cluster in one of the uplink carriers.
  • the TPC domains in the first TPC domain set and the TPC domains in the second TPC domain set are in one-to-one correspondence with the uplink carriers.
  • the order of a plurality of TPC domains in the first TPC domain set and one or more TPC domains in the second TPC domain set satisfies one of the following: an extension order corresponding manner; Corresponding way of staggered order.
  • the corresponding manner of the extension order includes: the TPC domains in the second TPC domain set are all located after or before the TPC domains in the first TPC domain set.
  • the number of TPC domains in the second TPC domain set is related to at least one of the following: the number of multiple uplink carriers; the SRS resources in each uplink carrier the number of clusters.
  • the number of TPC domains in the second set of TPC domains is only related to the number of the uplink carriers, and the receiving module 602 may be configured to: if the target uplink carrier is configured with the first In one SRS resource cluster but the second SRS resource cluster is not configured, the TPC domain corresponding to the target uplink carrier in the second TPC domain set is ignored.
  • the terminal does not expect to limit at least one of the following: the sequence of the first TPC domain set and the second TPC domain set; the TPC domains in the first TPC domain set and the sequence of the TPC domains in the second TPC domain set.
  • the DCI is type B
  • the target TPC domain set includes a first TPC domain and a second TPC domain or only the first TPC domain, the first TPC domain and The second TPC field indicates a power control parameter of one SRS resource cluster in one of the uplink carriers.
  • the number of TPC domains in the target TPC domain set is related to the number of the SRS resource set clusters in the uplink carrier.
  • the number of TPC domains in the target TPC domain set is irrelevant to the number of the SRS resource set clusters in the uplink carrier, and the receiving module 602 may be configured to: if the uplink The first SRS resource cluster is configured in the carrier but the second SRS resource cluster is not configured, and the second TPC field is ignored.
  • the target TPC domain set supports a partial independent coding manner or a joint coding manner.
  • a plurality of the SRS resource clusters are distinguished according to the configuration sequence of the SRS resource sets or the sequence of the identification ID; wherein, the configuration sequence includes the configuration time from front to back or from back to front; The order of the IDs includes small to large or large to small.
  • any two of the SRS resource set clusters include the same number of SRS resource sets.
  • the receiving module 602 may be configured to: receive first indication signaling, where the first indication signaling is used to indicate the number of SRS resource sets included in the SRS resource set cluster.
  • the receiving module 602 may be configured to: receive second indication signaling, where the second indication signaling is used to indicate the following of the target SRS resource cluster in the multiple SRS resource clusters At least one of: the starting position of the included SRS resource set; the ID of the included starting SRS resource set; the number of the included SRS resource set.
  • a plurality of the SRS resource set clusters are distinguished according to SRS resource sets for specific purposes.
  • the special-purpose SRS resource set is located at a position adjacent to two SRS resource set clusters; or the position of the X-th special-purpose SRS resource set is used to determine the X-th SRS resource set.
  • the SRS resource set and the (X+1)th SRS resource set, X is an integer greater than or equal to 1; or the position of the Yth specific-purpose SRS resource set is used to determine the (Y-1)th The SRS resource cluster and the Y-th SRS resource cluster, where Y is an integer greater than or equal to 2.
  • the specific-purpose SRS resource set satisfies at least one of the following: if the number of the specific-purpose SRS resource set is less than 2, the terminal considers that there is only one SRS resource set cluster ;
  • the special-purpose SRS resource set is predefined; the special-purpose SRS resource set is determined according to the transmission mode of the physical uplink shared channel PUSCH.
  • a plurality of the SRS resource clusters are distinguished according to the configuration sequence of SRS resources or the sequence of identification IDs; wherein, the configuration sequence includes from front to back or from back to front; The order includes small to large or large to small.
  • any two of the SRS resource clusters include the same number of SRS resources.
  • the receiving module 602 may be configured to: receive third indication signaling, where the third indication signaling is used to indicate the number of SRS resources included in the SRS resource cluster.
  • the receiving module 602 may be configured to: receive fourth indication signaling, where the fourth indication signaling is used to indicate the following of the target SRS resource cluster in the multiple SRS resource clusters At least one of: the starting position of the included SRS resources; the ID of the included starting SRS resources; the number of the included SRS resources.
  • the terminal does not expect the same SRS resource to be associated with more than one SRS resource cluster.
  • the receiving module 602 may be configured to: receive configuration information, where the configuration information is used to configure at least one of the following: a sequence of the SRS resource cluster; Sequence of SRS resources.
  • the SRS resource set in the SRS resource set cluster is determined according to the parameters associated with the SRS resource set; and/or the SRS resource set for a specific purpose in the SRS resource set cluster It is determined according to the parameters associated with the specific-purpose SRS resource set.
  • any two SRS resource sets in one of the SRS resource sets meet at least one of the following: have the same path loss reference RS, have the same spatial beam information, and have the same associated RS , associated with the same TRP index of the sending and receiving point, associated with the same control resource set resource pool index, with the same power control parameter index, and with the same closed-loop power control index group.
  • the SRS resource sets in different SRS resource sets meet at least one of the following: have different path loss reference RSs, have different spatial beam configurations, have different associated RSs, and have different associated RSs.
  • Different SRS resource IDs are associated with different TRP indexes, associated with different control resource set resource pool indexes, have different power control parameter indexes, and have different closed-loop power control index groups.
  • the terminal 600 may refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the terminal 600 are respectively in order to realize the corresponding process in the method 200, And can achieve the same or equivalent technical effects, for the sake of brevity, details are not repeated here.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application. As shown in FIG. 7 , the terminal 700 includes the following modules.
  • a determination module 702 configured to determine at least two SRS resource clusters; wherein, the SRS resource clusters include SRS resource sets and/or SRS resources, and the at least two SRS resource clusters are divided according to one of the following methods : the configuration sequence of the SRS resource set or the sequence of the identification ID; the configuration sequence of the SRS resource or the sequence of the ID ID; the sequence of the SRS resource cluster; the sequence of the SRS resource; the SRS resource set associated parameters.
  • At least two SRS resource clusters may be determined in various ways, wherein one SRS resource cluster may correspond to one TRP.
  • one SRS resource cluster may correspond to one TRP.
  • the terminal 700 may refer to the process of the method 300 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the terminal 700 are respectively in order to implement the corresponding process in the method 300, And can achieve the same or equivalent technical effects, for the sake of brevity, details are not repeated here.
  • the terminal in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in the terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the terminal in this embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the terminal provided in this embodiment of the present application can implement each process implemented by the method embodiments in FIG. 2 to FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • FIG. 8 is a schematic structural diagram of a network side device according to an embodiment of the present application. As shown in FIG. 8 , the network side device 800 includes the following modules.
  • the sending module 802 is configured to send DCI, where the DCI includes a target transmission power control TPC domain set, where the target TPC domain set is used to indicate power control parameters corresponding to each of multiple SRS resource clusters in at least one uplink carrier.
  • the receiving module 804 is configured to receive an SRS, where the SRS is sent by the terminal according to the power control parameter.
  • the DCI sent by the network side device includes a target TPC domain set, where the target TPC domain set is used to indicate power control parameters corresponding to multiple SRS resource clusters in at least one uplink carrier.
  • the embodiments of the present application can solve the problem that TRP-independent SRS power control cannot be implemented in a multi-TRP scenario, facilitate the implementation of SRS independent power control under each TRP, and improve SRS transmission efficiency.
  • each unit/module and the above-mentioned other operations and/or functions in the network-side device 800 are for implementing the method 400 , respectively. and can achieve the same or equivalent technical effects.
  • no further description is given here.
  • Fig. 9 is a schematic structural diagram of a network side device according to an embodiment of the present application. As shown in Fig. 9 , the network side device 900 includes the following modules.
  • the determining module 902 can be used to determine at least two SRS resource clusters; wherein, the SRS resource clusters include SRS resource sets and/or SRS resources, and the at least two SRS resource clusters are performed in one of the following ways Divided: the configuration sequence of the SRS resource set or the sequence of identification IDs; the configuration sequence of the SRS resources or the sequence of identification IDs; the sequence of the SRS resource clusters; the sequence of the SRS resources; the SRS resource Set associated parameters.
  • At least two SRS resource clusters may be determined in various ways, wherein one SRS resource cluster may correspond to one TRP.
  • one SRS resource cluster may correspond to one TRP.
  • each unit/module and the above-mentioned other operations and/or functions in the network-side device 900 are for the purpose of implementing the method 500 , respectively. and can achieve the same or equivalent technical effects.
  • no further description is given here.
  • an embodiment of the present application further provides a communication device 1000, including a processor 1001, a memory 1002, a program or instruction stored in the memory 1002 and executable on the processor 1001,
  • a communication device 1000 including a processor 1001, a memory 1002, a program or instruction stored in the memory 1002 and executable on the processor 1001
  • the communication device 1000 is a terminal
  • the program or instruction is executed by the processor 1001
  • each process of the above-mentioned embodiments of the SRS power control instruction method and the resource cluster division method can be achieved, and the same technical effect can be achieved.
  • each process of the above-mentioned embodiments of the SRS power control instruction method and the resource cluster division method can be achieved, and the same technical effect can be achieved, which is: To avoid repetition, I will not repeat them here.
  • FIG. 11 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, a processor 1110 and other components .
  • the terminal 1100 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1104 may include a graphics processor (Graphics Processing Unit, GPU) 11041 and a microphone 11042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1106 may include a display panel 11061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072 .
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 1101 receives the downlink data from the network side device, and then processes it to the processor 1110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 1109 may be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1109 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM) ), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • ErasablePROM ErasablePROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs or instructions, etc. Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1110.
  • the radio frequency unit 1101 is configured to receive downlink control information DCI, where the DCI includes a target transmission power control TPC domain set, and the target TPC domain set is used to indicate at least one uplink carrier in a plurality of SRS resource clusters corresponding to each Power control parameters; the radio frequency unit 1101 is configured to send the SRS according to the power control parameters.
  • a processor 1110 configured to determine at least two SRS resource clusters; wherein, the SRS resource clusters include SRS resource sets and/or SRS resources, and the at least two SRS resource clusters are divided according to one of the following methods : the configuration sequence of the SRS resource set or the sequence of the identification ID; the configuration sequence of the SRS resource or the sequence of the ID ID; the sequence of the SRS resource cluster; the sequence of the SRS resource; the SRS resource set associated parameters.
  • the DCI received by the terminal includes a target TPC domain set, where the target TPC domain set is used to indicate power control parameters corresponding to each of multiple SRS resource clusters in at least one uplink carrier.
  • the embodiments of the present application facilitate the realization of the independent power control of the SRS under each TRP, can solve the problem that the power control of the SRS independent of the TRP cannot be realized in a multi-TRP scenario, and improve the transmission efficiency of the SRS.
  • At least two SRS resource clusters may be determined in various ways, wherein one SRS resource cluster may correspond to one TRP.
  • one SRS resource cluster may correspond to one TRP.
  • the terminal 1100 provided in this embodiment of the present application can also implement the processes of the above-mentioned SRS power control indication method and resource cluster division method, and can achieve the same technical effect, which is not repeated here to avoid repetition.
  • the network-side device 1200 includes: an antenna 121 , a radio frequency device 122 , and a baseband device 123 .
  • the antenna 121 is connected to the radio frequency device 122 .
  • the radio frequency device 122 receives information through the antenna 121, and sends the received information to the baseband device 123 for processing.
  • the baseband device 123 processes the information to be sent and sends it to the radio frequency device 122, and the radio frequency device 122 processes the received information and sends it out through the antenna 121.
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 123 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 123 , where the baseband apparatus 123 includes a processor 124 and a memory 125 .
  • the baseband device 123 may include, for example, at least one baseband board on which a plurality of chips are arranged, as shown in FIG. 12 , one of the chips is, for example, the processor 124 , which is connected to the memory 125 to call a program in the memory 125 to execute
  • the network-side device shown in the above method embodiments operates.
  • the baseband device 123 may further include a network interface 126 for exchanging information with the radio frequency device 122, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: an instruction or program stored in the memory 125 and executable on the processor 124, and the processor 124 invokes the instruction or program in the memory 125 to execute the instruction or program shown in FIG. 8 or FIG. 9 . In order to avoid repetition, it is not repeated here.
  • the embodiments of the present application further provide a readable storage medium, the readable storage medium may be volatile or non-volatile, and a program or an instruction is stored on the readable storage medium, the program or When the instruction is executed by the processor, each process of the above-mentioned embodiments of the SRS power control instruction method and the resource cluster division method can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not described here.
  • the processor may be the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the above-mentioned SRS power control instruction method .
  • the various processes of the embodiments of the method for dividing a resource cluster can achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a computer program product, where the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement each process of the foregoing resource allocation method embodiments, And can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • An embodiment of the present application further provides a communication device, which is configured to perform each process of the foregoing resource allocation method embodiment, and can achieve the same technical effect. To avoid repetition, details are not described here.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course hardware can also be used, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network side device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种SRS的功控指示方法、资源集簇的划分方法和设备,能够解决在多TRP场景下无法实现TRP独立的SRS的功率控制的问题。所述方法包括:终端接收下行控制信息DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;根据所述功控参数发送SRS。

Description

SRS的功控指示方法、资源集簇的划分方法和设备
交叉引用
本申请要求在2020年12月02日在中国提交的申请号为202011391238.3、发明名称为“SRS的功控指示方法、资源集簇的划分方法和设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种探测参考信号(Sounding Reference Signal,SRS)的功控指示方法、资源集簇的划分方法和设备(该设备可以是指终端或网络侧设备)。
背景技术
作为第五代移动通信系统,新空口(NewRadio,NR)需要支持空前多的应用场景,还需要同时支持传统的频段、新的高频段以及波束方式,者对功率控制的设计带来很大的挑战。
相关技术中,仅支持单发送接收节点(Transmission Receiver Point,TRP)场景下探测参考信号(Sounding ReferenceSignal,SRS)的功率控制。随着技术的发展,需要支持多TRP的场景。在多TRP场景下,如何实现TRP独立的SRS的功率控制将会变得必要,而相关技术中尚未给出有效的解决方案。
发明内容
本申请实施例提供一种SRS的功控指示方法、资源集簇的划分方法和设备,能够解决在多TRP场景下无法实现TRP独立的SRS的功率控制的问题。
第一方面,提供了一种SRS的功控指示方法,所述方法包括:终端接收下行控制信息DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功 控参数;根据所述功控参数发送SRS。
第二方面,提供了一种SRS的资源集簇的划分方法,所述方法包括:终端确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:所述SRS资源集的配置顺序或标识ID的顺序;所述SRS资源的配置顺序或标识ID的顺序;所述SRS资源集簇的序列;所述SRS资源的序列;所述SRS资源集关联的参数。
第三方面,提供了一种SRS的功控指示方法,所述方法包括:网络侧设备发送DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;接收SRS,所述SRS是终端根据所述功控参数发送的。
第四方面,提供了一种SRS的资源集簇的划分方法,所述方法包括:网络侧设备确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:所述SRS资源集的配置顺序或标识ID的顺序;所述SRS资源的配置顺序或标识ID的顺序;所述SRS资源集簇的序列;所述SRS资源的序列;所述SRS资源集关联的参数。
第五方面,提供了一种终端,包括:接收模块,用于接收DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;发送模块,用于根据所述功控参数发送SRS。
第六方面,提供了一种终端,包括:确定模块,用于确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:所述SRS资源集的配置顺序或标识ID的顺序;所述SRS资源的配置顺序或标识ID的顺序;所述SRS资源集簇的序列;所述SRS资源的序列;所述SRS资源集关联的参数。
第七方面,提供了一种网络侧设备,包括:发送模块,用于发送DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;接收模块,用于接收SRS,所述SRS是终端根据所述功控参数发送的。
第八方面,提供了一种网络侧设备,包括:确定模块,用于确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:所述SRS资源集的配置顺序或标识ID的顺序;所述SRS资源的配置顺序或标识ID的顺序;所述SRS资源集簇的序列;所述SRS资源的序列;所述SRS资源集关联的参数。
第九方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法,或者实现如第二方面所述的方法。
第十方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法,或者实现如第四方面所述的方法。
第十一方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面至第四方面任一方面所述的方法。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现如第一方面至第四方面任一方面所述的方法。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面至第四方面任一方面所述的方法。
在本申请实施例中,终端接收的DCI中包括目标TPC域集合,该目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。本申请实施例可以实现每个TRP下SRS的独立功率控制,解决在多TRP场景下无法实现TRP独立的SRS的功率控制的问题,提高SRS的传输效率。
附图说明
图1是根据本申请的一个实施例的无线通信系统的示意图;
图2是根据本申请的一个实施例的SRS的功控指示方法的示意性流程图;
图3是根据本申请的一个实施例的SRS的资源集簇的划分方法的示意性流程图;
图4是根据本申请的另一个实施例的SRS的功控指示方法的示意性流程图;
图5是根据本申请的另一个实施例的SRS的资源集簇的划分方法的示意性流程图;
图6是根据本申请的一个实施例的终端的结构示意图;
图7是根据本申请的另一个实施例的终端的结构示意图;
图8是根据本申请的一个实施例的网络侧设备的结构示意图;
图9是根据本申请的另一个实施例的网络侧设备的结构示意图;
图10是根据本申请的一个实施例的通信设备的结构示意图;
图11是根据本申请的一个实施例的终端的结构示意图;
图12是根据本申请的一个实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实 施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的示意图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、 行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、下一代节点B(gNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的探测参考信号(Sounding Reference Signal,SRS)的功控指示方法、资源集簇的划分方法和设备(该设备可以是指终端或网络侧设备)进行详细地说明。
如图2所示,本申请的一个实施例提供一种SRS的功控指示方法200,该方法可以由终端执行,换言之,该方法可以由安装在终端的软件或硬件来执行,该方法包括如下步骤。
S202:终端接收下行控制信息(Downlink Control Information,DCI),所述DCI包括目标传输功率控制(Transmit Power Control,TPC)域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。
S204:根据所述功控参数发送SRS。
该实施例中,目标TPC域集合内可以包括一个或多个TPC域。可选地,每个TPC域与每个上行载波一一对应,一个TPC域用于指示一个上行载波内多个SRS资源集簇各自对应的功控参数,该功控参数可以是闭环功率调整量等。例如,在某一个上行载波内的SRS资源集簇的数量是两个时,与该上行载波对应的一个TPC域可以用于指示这两个SRS资源集簇各自对应的功控参数。可选地,一个上行载波还可以对应多个TPC域,该上行载波内有多 个SRS资源集簇,一个TPC域用于指示一个SRS资源集簇对应的功控参数。例如,在某一个上行载波内的SRS资源集簇的数量是两个时,与该上行载波对应的两个TPC域可以用于分别指示这两个SRS资源集簇各自对应的功控参数。
该实施例中,一个SRS资源集簇可以对应一个发送接收点(Transmission and Reception Point,TRP),这样,通过DCI可以实现对多个TRP的SRS资源集簇中的SRS进行功率控制。
本申请各个实施例中提到的SRS资源集簇中通常包括(或称关联)有一个或多个SRS资源集,每个SRS资源集包括(或称关联)有一个或多个SRS资源。需要说明是的是,还可以用其他的技术术语来描述SRS资源集簇,如SRS簇,SRS资源集的集合等。
本申请实施例提供的SRS的功控指示方法,终端接收的DCI中包括目标TPC域集合,该目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。本申请实施例便于实现每个TRP下SRS的独立功率控制,可以解决在多TRP场景下无法实现TRP独立的SRS的功率控制的问题,提高SRS的传输效率。
为详细说明本申请实施例提供的SRS的功控指示方法,以下将分几种情况对实施例100进行介绍。
情况一
该情况一中,TPC域的指示方法对于类型(type)A的DCI,该情况一分方法1和方法2进行介绍。
方法1:可选地,所述DCI为类型type A,所述目标TPC域集合内的多个TPC域与高层参数指示的多个上行载波一一对应,一个所述TPC域指示一个所述上行载波内的多个SRS资源集簇各自对应的功控参数。例如,在DCI中,一个type A的传输块(block)内的TPC域与载波资源集中的载波索引(cc-IndexInOneCC-Set)中指示的上行载波一一对应,一个TPC域指示一个上行载波内的多SRS资源集簇各自对应的功控参数。
在一个例子中,所述TPC域的开销为固定值,一个所述TPC域指示一个所述上行载波内的多个(如两个)SRS资源集簇各自对应的功控参数。例如,一个TPC域的开销固定为4比特(bit),包含两个SRS资源集簇的功控参数修改命令。该例子中,针对没有配置SRS资源集簇的情况,则终端无需解读该(没有配置的SRS资源集簇对应的)指示域,以便于节约终端开销。
在另一个例子中,所述TPC域的开销与所述TPC域对应的所述上行载波内的SRS资源集簇的数量相关。也即,一个TPC域的开销与cc-IndexInOneCC-Set中指示的上行载波中配置的SRS资源集簇数量有关。例如,若某一个载波内的SRS资源集簇数量为1,则该载波对应的TPC域的开销为2bit;若某一个载波内的SRS资源集簇数量为2,则该载波对应的TPC域的开销为4bit。
方法2:可选地,所述DCI为类型type A,所述目标TPC域集合包括第一TPC域集合和第二TPC域集合,所述第一TPC域集合包括多个TPC域,所述第二TPC域集合包括一个或多个TPC域,所述第一TPC域集合和所述第二TPC域集合中的任意一个TPC域指示一个所述上行载波内的一个SRS资源集簇的功控参数,其中,一个上行载波可以包括多个SRS资源集簇。该实施例相对于现有技术而言,通过额外增加TPC域集合的方式,DCI中一个type A block内的一个TPC域与cc-IndexInOneCC-Set中指示的上行载波中的一个SRS资源集簇对应。
可选地,所述第一TPC域集合内的TPC域以及所述第二TPC域集合内的TPC域,均与高层参数指示的所述上行载波一一对应。
后续实施例可以将第一TPC域集合称作是基础TPC域集合,将第二TPC域集合称作是额外增加TPC域集合。该例子中,所述额外增加TPC域集合内的TPC域顺序和基础TPC域集合内的TPC域顺序都与cc-IndexInOneCC-Set中指示的上行载波顺序一一对应。
可选地,所述第一TPC域集合内的多个TPC域与所述第二TPC域集合内的一个或多个TPC域的顺序满足如下之一:扩展顺序对应方式;交错顺序 对应方式。
以下将分几个例子中分别对上述扩展顺序对应方式和交错顺序对应方式进行介绍。
所述扩展顺序对应方式包括:所述第二TPC域集合内的TPC域均位于所述第一TPC域集合内的TPC域之后或之前;也即:所述扩展顺序对应方式指第二TPC域集合内的TPC域都位于第一TPC域集合内的TPC域之后,反之亦然,以下分例1和例2进行说明。
例1,扩展顺序对应方式,且第二TPC域集合内的TPC域的数量仅与cc-IndexInOneCC-Set中指示的上行载波(或简称为载波)数量有关。
该例子假设:cc-IndexInOneCC-Set中指示的上行载波顺序为上行载波1,上行载波2,上行载波3,上行载波4,上行载波5。则第一TPC域集合是TPC 1,TPC2,TPC3,TPC4,TPC 5,分别对应上行载波1第一set簇(后续一些例子中将SRS资源集簇简称为set簇),上行载波2第一set簇,上行载波3第一set簇,上行载波4第一set簇,上行载波5第一set簇。
在进行扩展顺序对应方式后,第二TPC域集合是TPC 1-1,TPC 2-1,TPC 3-1,TPC 4-1,TPC 5-1,分别对应上行载波1第二set簇,上行载波2第二set簇,上行载波3第二set簇,上行载波4第二set簇,上行载波5第二set簇。
具体的,一个type A block内的TPC顺序如下,TPC 1,TPC 2,TPC 3,TPC 4,TPC 5,TPC 1-1,TPC 2-1,TPC 3-1,TPC 4-1,TPC 5-1,分别对应上行载波1第一set簇,上行载波2第一set簇,上行载波3第一set簇,上行载波4第一set簇,上行载波5第一set簇,上行载波1第二set簇,上行载波2第二set簇,上行载波3第二set簇,上行载波4第二set簇,上行载波5第二set簇。
在其他的例子中,假设在上行载波2中没有被配置2个set簇(即仅有1个set簇),则上述一个type A block的TPC数量不变,但终端可以忽略TPC 2-1域,不进行解读,以节约开销。
例2,扩展顺序对应方式,且第二TPC域集合内的数量与cc-IndexInOneCC-Set中指示的上行载波数量以及set簇数量有关。
该例子假设:cc-IndexInOneCC-Set中指示的上行载波顺序为上行载波1,上行载波2,上行载波3,上行载波4,上行载波5。则第一TPC域集合是TPC 1,TPC2,TPC3,TPC4,TPC 5,分别对应上行载波1第一set簇,上行载波2第一set簇,上行载波3第一set簇,上行载波4第一set簇,上行载波5第一set簇。
该例子中仅在终端的上行载波2和5中配置了2个set簇,其余上行载波仅配置了一个set簇。
在进行扩展顺序对应方式后,第二TPC域集合仅包括TPC2-1和TPC 5-1,分别对应上行载波2第二set簇,上行载波5第二set簇。
具体的,一个type A block内的TPC顺序如下,TPC 1,TPC 2,TPC 3,TPC 4,TPC 5,TPC2-1,TPC 5-1,分别对应上行载波1第一set簇,上行载波2第一set簇,上行载波3第一set簇,上行载波4第一set簇,上行载波5第一set簇,上行载波2第二set簇,上行载波5第二set簇。
前文提到的交错顺序对应方式包括:在所述第一TPC域集合内的TPC域以及所述第二TPC域集合内的TPC域,均与高层参数指示的所述上行载波一一对应的情况下,所述第一TPC域集合内的多个TPC域与所述第二TPC域集合内的一个或多个TPC域按照交错顺序排列。
例3,交错顺序对应方式,且额外增加TPC域集合内的数量仅与cc-IndexInOneCC-Set中指示的上行载波数量有关。
该例子中相应的假设条件可以参考例1。
该例子中,一个type A block内的TPC顺序如下,TPC 1,TPC 1-1,TPC 2,TPC 2-1,TPC 3,TPC 3-1,TPC 4,TPC 4-1,TPC 5,TPC 5-1,分别对应上行载波1第一set簇,上行载波1第二set簇,上行载波2第一set簇,上行载波2第二set簇,上行载波3第一set簇,上行载波3第二set簇,上行载波4第一set簇,上行载波4第二set簇,上行载波5第一set簇,上行 载波5第二set簇。
在其他的例子中,假设在上行载波2中没有被配置2个set簇(即仅有1个set簇),则上述一个type A block的TPC数量不变,但终端忽略TPC 2-1域,不进行解读。
例4,交错顺序对应方式,且第二TPC域集合内的数量与cc-IndexInOneCC-Set中指示的上行载波数量以及set簇数量有关。
该例子中相应的假设条件可以参考例2。
具体的,一个type A block内的TPC顺序如下,TPC 1,TPC 2,TPC 2-1,TPC 3,TPC 4,TPC 5,TPC 5-1,分别对应上行载波1第一set簇,上行载波2第一set簇,上行载波2第二set簇,上行载波3第一set簇,上行载波4第一set簇,上行载波5第一set簇,上行载波5第二set簇。
或者,第二TPC域位于第一TPC域之前时,具体的,一个type A block内的TPC顺序如下,TPC 1,TPC 2-1,TPC 2,TPC 3,TPC 4,TPC 5-1,TPC 5,分别对应上行载波1第一set簇,上行载波2第二set簇,上行载波2第一set簇,上行载波3第一set簇,上行载波4第一set簇,上行载波5第二set簇,上行载波5第一set簇。
在情况一的前文各个实施例中,可选地,所述第二TPC域集合内的TPC域的数量与如下至少之一相关:
1)多个所述上行载波的总数量,这多个所述上行载波可以是高层参数(如cc-IndexInOneCC-Set)指示的。
2)每个所述上行载波内的SRS资源集簇的数量。
在一个例子中,所述第二TPC域集合内的TPC域的数量仅与1)中的所述上行载波的数量相关,所述方法还包括如下步骤:若目标上行载波中配置了第一SRS资源集簇但没有配置第二SRS资源集簇,所述终端忽略所述第二TPC域集合内对应于所述目标上行载波的TPC域,不进行解读。该处提到的目标上行载波可以是上述高层参数指示的上行载波中的任意一个或多个。
可选地,在情况1中,还可以不限制第二TPC域集合与第一TPC域集 合的先后顺序,或者,不限制TPC域之间的先后顺序,如,网络侧设备发送的DCI对上述先后顺序不进行限制。例如,所述终端不期望限制如下至少之一:
1)所述第一TPC域集合和所述第二TPC域集合的先后顺序。
2)所述第一TPC域集合内的TPC域与所述第二TPC域集合内的TPC域的先后顺序。
情况一中,可选地,所述目标TPC域集合支持部分独立编码方式或联合编码方式。例如,某一个TPC域占用4bits,前2bits用于指示第一set簇,后2bits用于指示第二set簇;又例如,某一个TPC域占用4bits,用联合编码方式,每个码点包含两个set簇的功控参数指示。
情况二
该情况二中,TPC域的指示方法对于类型(type)B的DCI,该情况二分方法3和方法4进行介绍。
方法3:可选地,所述DCI为类型type B,所述目标TPC域集合内的一个TPC域(仅包括一个TPC域)与高层参数指示的一个上行载波对应,该TPC域指示一个所述上行载波内的多个SRS资源集簇各自对应的功控参数。例如,在DCI中,一个type B的block内的一个TPC域包括多个set簇各自对应的功控参数修改命令。
需要说明是的是,方法3中,针对type B的block,目标TPC域集合包括一个TPC域,为了便于统一,本说明书也将这一个TPC域称作是TPC域集合。
在一个例子中,所述TPC域的开销为固定值,所述TPC域指示所述上行载波内的多个(如两个)SRS资源集簇各自对应的功控参数。例如,该TPC域的开销固定为4比特(bit),包含两个SRS资源集簇的功控参数修改命令。该例子中,针对没有配置SRS资源集簇的情况,则终端无需解读该(没有配置的SRS资源集簇对应的)指示域,以便于节约终端开销。
在另一个例子中,所述TPC域的开销与所述TPC域对应的所述上行载 波内的SRS资源集簇的数量相关。也即,该TPC域的开销与cc-IndexInOneCC-Set中指示的上行载波中配置的SRS资源集簇数量有关。例如,若上述载波内的SRS资源集簇数量为1,则该TPC域的开销为2bit;若上述载波内的SRS资源集簇数量为2,则该TPC域的开销为4bit。
方法4:可选地,所述DCI为类型type B,所述目标TPC域集合包括第一TPC域和第二TPC域;或所述目标TPC域集合仅包括所述第一TPC域,所述第一TPC域和所述第二TPC域指示一个所述上行载波内的一个SRS资源集簇的功控参数,例如,第一TPC域指示上行载波内的第一SRS资源集簇的功控参数;第二TPC域指示该上行载波内的第二SRS资源集簇的功控参数。
可选地,所述目标TPC域集合内的TPC域的数量(或者称所述第二TPC域是否存在)与所述上行载波内的所述SRS资源集簇的数量相关。也即,目标TPC域集合内的TPC域的数量与所在的block对应的上行载波中配置的set簇数量有关,set簇可以为1个或2个,相应地,TPC域也可以为1个或2个。
可选地,所述目标TPC域集合内的TPC域的数量(或者称所述第二TPC域是否存在)与所述上行载波内的所述SRS资源集簇的数量无关,所述方法还包括:若所述上行载波中配置了所述第一SRS资源集簇但没有配置所述第二SRS资源集簇,所述终端忽略所述第二TPC域。
以下分例5和例6进行说明。
例5,所述目标TPC域集合内的TPC域的数量与set簇数量无关。例如,一个type B block对应上行载波1,第一TPC域是TPC 1,则TPC1对应上行载波1第一set簇;第二TPC域为TPC1-1,TPC1-1对应上行载波1第二set簇。
具体的,一个type A block内的TPC顺序如下,TPC1,TPC 1-1,分别对应上行载波1第一set簇,上行载波1第二set簇。
在其他的例子中,假设终端在所述block对应的上行载波中没有被配置第二set簇,则终端对TPC1-1域不进行解读。
例6,所述目标TPC域集合内的TPC域的数量与set簇数量有关。一个type B block对应上行载波1,第一TPC域是TPC 1,则TPC1对应上行载波1第一set簇。第二TPC域为TPC1-1,TPC1-1对应上行载波1第二set簇。
例如,当终端在所述block对应的上行载波中被配置第二set簇时,一个type A block内的TPC顺序如下,TPC1,TPC 1-1,分别对应上行载波1第一set簇,上行载波1第二set簇。
又例如,当终端在所述block对应的上行载波中没有被配置第二set簇时,一个type A block内的TPC顺序如下,TPC1,对应上行载波1第一set簇。
情况二中,可选地,所述目标TPC域集合支持部分独立编码方式或联合编码方式。例如,某一个TPC域占用4bits,前2bits用于指示第一set簇,后2bits用于指示第二set簇;又例如,某一个TPC域占用4bits,用联合编码方式,每个码点包含两个set簇的功控参数指示。
前文各个实施例介绍的均是SRS的功控指示方法,以下将分几个实施例,对SRS资源集簇的划分方法进行介绍。后续实施例介绍的SRS资源集簇的划分方法可以与前文任意实施例进行组合实施,还可以是单独实施。
实施例一
在一个例子中,实施例100中提到的多个所述SRS资源集簇按照SRS资源集的配置顺序或标识ID的顺序区分;其中,所述配置顺序包括按照配置时间从前往后或从后往前;所述ID的顺序包括从小到大或从大到小。
可选地,多个所述SRS资源集簇中,任意两个所述SRS资源集簇包括的SRS资源集的数量相等。
例如,在两个SRS资源集簇(简称set簇)的情况下,满足第二set簇内配置的SRS resource set数量与第一set簇内配置的SRS resource set数量保持一致,即数量相等。例如,配置的全部SRS resource set(简称set)中,前一半set为第一set簇,后一半set为第二set簇,反之亦然,其中,所述前一半set和后一半set是按照配置的set数量确定的。
为详细说明实施例一,以下将结合几个具体的例子进行说明。
例1,根据SRS resource set的配置顺序从前往后确定,且根据SRS资源集的数量确定第一set簇和第二set簇。
例如,网络共配置6个set,按照在SRS-config域中配置的顺序来看,分别为set 2,set 3,set1,set4,set 5,set 6,其中set 2表示该set的ID为2,以此类推。
则:第一set簇:set 2,set 3,set1;第二set簇:set4,set 5,set 6。
例2,根据SRS resource set ID的顺序从小到大,且根据set数量确定第一set簇和第二set簇。
例如,网络共配置6个set,按照在SRS-config域中配置的顺序来看,分别为set 2,set 3,set1,set4,set 5,set 6,其中set 2表示该set的ID为2,以此类推。
根据SRS resource set ID的顺序进行划分后,则:第一set簇:set 1,set 2,set3;第二set簇:set4,set 5,set6。
可选的,实施例一还可以通过第一信令指示第一set簇和/或第二set簇的数量,所述第一信令包括DCI,媒体接入控制控制单元(Media Access Control-Control Element,MAC CE),无线资源控制(Radio Resource Control,RRC)中至少一项。也即,实施例一还包括如下步骤:终端接收第一指示信令,所述第一指示信令用于指示SRS资源集簇中包括的SRS资源集的数量。
例如,第一指示信令指示终端配置的前部分set为第一set簇,后部分set为第二set簇,反之亦然,所述前部分set和后部分set是按照指示的set数量确定的。
为详细说明,以下将结合几个具体的例子进行说明。
例3,根据配置顺序确定,且根据第一信令指示的set数量确定第一set簇和第二set簇。
例如,网络共配置6个set,按照在SRS-config域中配置的顺序来看,分别为set 2,set 3,set1,set4,set 5,set 6,其中set 2表示该set的ID为2,以此类推。
若第一信令指示第一set簇数量为2,则第二set簇数量默认为4。则:第一set簇:set 2,set 3;第二set簇:set1,set4,set 5,set 6。
若第一信令指示第一set簇数量为2,且指示第二set簇数量为3。则第一set簇:set 2,set 3;第二set簇:set1,set4,set 5。
可选的,实施例一还可以通过第二信令指示第一set簇和/或第二set簇的起始位置+数量,或起始ID+数量等,所述第二信令包括DCI,MAC CE,RRC中至少一项。例如,实施例一还包括如下步骤:终端接收第二指示信令,所述第二指示信令用于指示多个所述SRS资源集簇中目标SRS资源集簇的如下至少之一:
1)包括的SRS资源集的起始位置,如目标SRS资源集簇包括的第一个SRS资源集。
2)包括的起始SRS资源集的ID,如目标SRS资源集簇包括的第一个SRS资源集的ID。
3)包括的SRS资源集的数量,如目标SRS资源集簇包括的全部SRS资源集的数量。
该例子中提到的目标SRS资源集簇可以是多个所述SRS资源集簇中全部SRS资源集簇,还可以是其中的一个或多个SRS资源集簇。
例如,第二指示信令指示终端配置的前部分set为第一set簇,后部分set为第二set簇,反之亦然,所述前部分set和后部分set是按照指示第一set簇和或第二set簇被指示的具体位置确定。
可选的,实施例一还可以通过特定用途(usage)的SRS resource set位置进行区分SRS资源集簇。多个所述SRS资源集簇按照特定用途的SRS资源集进行区分。
例如,所述特定用途的SRS资源集位于两个SRS资源集簇相邻的位置上。
又例如,第X个所述特定用途的SRS资源集的位置用于确定第X个SRS资源集簇和第(X+1)个SRS资源集簇,X是大于或等于1的整数。
在例如,第Y个所述特定用途的SRS资源集的位置用于确定第(Y-1) 个SRS资源集簇和第Y个SRS资源集簇,Y是大于或等于2的整数。
可选地,所述特定用途的SRS资源集满足如下至少之一:
1)若所述特定用途的SRS资源集的数量小于2个,则所述终端认为仅有一个SRS资源集簇。
2)所述特定用途的SRS资源集是预定义的,例如,所述特定的usage可以是协议约定的任一个。
3)所述特定用途的SRS资源集根据物理上行共享信道PUSCH的传输模式确定。例如,当PUSCH配置的传输模式是码本(codebook),则特定用途的SRS资源集为codebook,若PUSCH配置的传输模式是非码本(nonCodebook),则特定用途的SRS资源集为nonCodebook。
为详细说明,以下将结合几个具体的例子进行说明。
例4,该例子中,set簇的划分依据包括:SRS resource set的配置顺序+需要满特定usage的SRS resource set按set簇顺序配置在两个set簇相邻的位置上。该例子假设PUSCH中配置的是codebook传输,此时特定usage为codebook。
该例子假设网络共配置7个set,按照在SRS-config域中配置的顺序来看,分别为set 2,set 3,set1,set4,set 5,set 6,set 7,分别对应的usage为天线切换(antenna switching),波束管理(beam management),codebook,codebook,noncodebook,beam management,antenna switching,其中set 2表示该set的ID为2,以此类推。
例如,根据正序的set簇顺序,第一个codebook的set对应第一set簇,第二个codebook的set对应第二set簇。则:第一set簇:set 2,set 3,set 1;第二set簇:set 4,set 5,set 6,set 7。
又例如,根据逆序的set簇顺序,第一个codebook的set对应第二set簇,第二个codebook的set对应第一set簇。则:第一set簇:set 4,set 5,set 6,set 7;第二set簇:set 2,set 3,set 1。
例5中,set簇的划分依据包括:SRS resource set的配置顺序+第X个所 述特定用途的SRS资源集的位置用于确定第X个SRS资源集簇和第(X+1)个SRS资源集簇。该例子假设PUSCH中配置的是codebook传输,此时特定usage为codebook。
该例子假设网络共配置7个set,按照在SRS-config域中配置的顺序来看,分别为set 2,set 3,set1,set4,set 5,set 6,set 7分别对应的usage为antenna switching,beam management,codebook,noncodebook,beam management,codebook,antenna switching其中set 2表示该set的ID为2,以此类推。
例如,根据正序的set簇顺序,第一个codebook及其之前的set对应第一set簇,第一个codebook之后的set对应第二set簇,也即X=1。则:第一set簇:set 2,set 3,set 1;第二set簇:set 4,set 5,set 6,set 7。
例6,该例子中,set簇的划分依据包括:SRS resource set的配置顺序+第Y个所述特定用途的SRS资源集的位置用于确定第(Y-1)个SRS资源集簇和第Y个SRS资源集簇。该例子假设PUSCH中配置的是codebook传输,此时特定usage为codebook。
该例子假设网络共配置7个set,按照在SRS-config域中配置的顺序来看,分别为set 2,set 3,set1,set4,set 5,set 6,set 7分别对应的usage为antenna switching,codebook,beam management,codebook,noncodebook,beam management,antenna switching其中set 2表示该set的ID为2,以此类推。
例如,根据正序的set簇顺序,第二个codebook之前的的set对应第一set簇,第二个codebook及其之后的set对应第二set簇,该例子中Y=2。即:第一set簇:set 2,set 3,set 1;第二set簇:set 4,set 5,set 6,set 7。
实施例二
在一个例子中,实施例100中提到的多个所述SRS资源集簇按照SRS资源的配置顺序或标识ID的顺序区分;其中,所述配置顺序包括从前往后或从后往前;所述ID的顺序包括从小到大或从大到小。
可选的,多个所述SRS资源集簇中,任意两个所述SRS资源集簇包括的SRS资源的数量相等。例如,在两个SRS资源集簇(简称set簇)的情况下, 满足第二set簇内配置的SRS resource数量与第一set簇内配置的SRS resource数量保持一致,即数量相等。例如,配置的全部SRS resource中,前一半resource关联的set属于第一set簇,后一半resource关联的set属于第二set簇,反之亦然,所述前一半resource和后一半resource是按照配置的resource数量确定的。
可选的,实施例二还可以通过第三信令指示第一set簇内所有set关联的resource数量和/或第二set簇内所有set关联的resource数量,所述第三信令包括DCI,MAC CE,RRC中至少一项。也即,实施例二还包括如下步骤:终端接收第三指示信令,所述第三指示信令用于指示所述SRS资源集簇中包括的SRS资源的数量。
例如,第三指示信令用于指示配置的全部SRS resource中,前一半resource关联的set属于第一set簇,后一半resource关联的set属于第二set簇,反之亦然,所述前一半resource和后一半resource是按照配置的resource数量确定的。
可选的,实施例二还可以通过第四信令指示第一set簇和/或第二set簇的起始位置+数量,或起始ID+数量等,所述第四信令包括DCI,MAC CE,RRC中至少一项。例如,实施例二还包括如下步骤:终端接收第四指示信令,所述第四指示信令用于指示多个所述SRS资源集簇中目标SRS资源集簇的如下至少之一:
1)包括的SRS资源的起始位置,如目标SRS资源集簇包括的第一个SRS资源。
2)包括的起始SRS资源的ID,如目标SRS资源集簇包括的第一个SRS资源的ID。
3)包括的SRS资源的数量,如目标SRS资源集簇包括的全部SRS资源的数量。
该例子中提到的目标SRS资源集簇可以是多个所述SRS资源集簇中全部SRS资源集簇,还可以是其中的一个或多个SRS资源集簇。
例如,第四指示信令指示前部分resource关联的set属于第一set簇,后部分resource关联的set属于第二set簇,反之亦然,所述前部分resource和后部分resource是按照指示第一set簇内关联的resource和/或第二set簇内关联的resource被指示的具体位置确定。
可选的,实施例二中,同一个SRS资源不应该分别关联在两个SRS资源簇的两个SRS资源中,也即所述终端不期望同一个SRS资源被多于一个所述SRS资源集簇关联。
实施例三
在一个例子中,实施例100还包括如下步骤:接收配置信息,所述配置信息用于配置如下至少之一:
1)SRS资源集簇的序列。
2)SRS资源集簇内的SRS资源的序列。
该实施例假设多个set簇为第一set簇和第二set簇,第一set簇序列和/或第一set簇内关联的resource序列可以按照现有技术配置,该实施例可以额外配置第二set簇序列和/或第二set簇内关联的resource序列。
例如,配置参数srs-ResourceSetToAddModList,对应第一set簇;配置参数srs-ResourceSetToAddModList-v17,对应第二set簇
又例如,额外配置第二set簇序列和/或第二set簇内关联的resource序列。配置参数srs-ResourceSetToAddModList,对应第一set簇;配置参数srs-ResourceSetToAddModList-v17,对应第二set簇;配置参数srs-ResourceToAddModList,表示序列中的resource都用于关联第一set簇内的set;配置参数srs-ResourceToAddModList-v17,表示序列中的resource都用于关联第二set簇内的set。
实施例四
实施例100中所述SRS资源集簇内的SRS资源集是根据所述SRS资源集关联的参数确定的;和/或;所述SRS资源集簇内的特定用途的SRS资源集是根据所述特定用途的SRS资源集关联的参数确定的。
可选地,一个所述SRS资源集簇内的任意两个SRS资源集满足如下至少之一:具有相同的路损参考RS,具有相同的空间波束信息,具有相同的关联RS,关联相同的发送接收点TRP索引,关联相同的控制资源集资源池索引,具有相同的功率控制参数索引,具有相同的闭环功控索引组。
可选地,不同的所述SRS资源集簇内的SRS资源集满足如下至少之一:具有不同的路损参考RS,具有不同的空间波束配置,具有不同的关联RS,关联不同的SRS资源ID,关联不同的TRP索引,关联不同的控制资源集资源池索引(CORESET pool index),具有不同的功率控制参数索引,具有不同的闭环功控索引组。
该实施例可以根据SRS resource set关联的参数划分SRS资源集簇,该条件可以单独,也可以结合以上实施例一至实施例三提供的方法,对set簇内的所有进行限制,或对set簇内拥有特定usage的set进行限制。
可选地,上述提到的功率控制参数索引可以在每个SRS set下进行配置,例如,功率控制参数索引为可选配置参数无需配置时,使用默认索引。
该实施例可以通过如下公式得到SRS的功率:
Figure PCTCN2021135085-appb-000001
该公式中各个参数的含义可以参照相关技术中的介绍。
其中,当SRS功率跟随PUSCH的功率调整时,上述公式满足如下关系:
h b,f,c(i,l,t)=f b,f,c(i,l)
即功率控制参数索引不起作用。
其中,当SRS功率不跟随PUSCH的功率调整时:
Figure PCTCN2021135085-appb-000002
上述各个公式中的t表示功率控制参数索引或SRS资源集簇索引。
基于上述各个实施例介绍的SRS的功控指示方法以及SRS的资源集簇的 划分方法,本申请实施例还提供一种SRS的资源集簇的划分方法,如图3所示,所述方法包括如下步骤:
S302:终端确定至少两个SRS资源集簇,所述SRS资源集簇包括SRS资源集和/或SRS资源,至少两个SRS资源集簇是按照如下方式之一进行划分的:SRS资源集的配置顺序或标识ID的顺序;SRS资源的配置顺序或标识ID的顺序;SRS资源集簇的序列;SRS资源的序列;SRS资源集关联的参数。
本申请实施例的具体实施方式可以参照前文实施例一至实施例四的介绍,为避免重复,在此不再重复介绍。
本申请实施例提供的SRS的资源集簇的划分方法,可以通过多种方式确定出至少两个SRS资源集簇,其中,一个SRS资源集簇可以对应一个TRP。在多TRP场景下,便于通过DCI实现SRS的独立功率控制,提高SRS的传输效率。
以上结合图2和图3详细描述了根据本申请实施例的SRS的功控指示方法、资源集簇的划分方法。下面将结合图4和图5详细描述根据本申请另一实施例的SRS的功控指示方法、资源集簇的划分方法。可以理解的是,从网络侧设备描述的网络侧设备与终端的交互与图2和图3所示的方法中的终端侧的描述相同,为避免重复,适当省略相关描述。
图4是本申请实施例的SRS的功控指示方法实现流程示意图,可以应用在网络侧设备。如图4所示,该方法400包括如下步骤。
S402:网络侧设备发送DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。
S404:接收SRS,所述SRS是终端根据所述功控参数发送的。
在本申请实施例中,网络侧设备发送的DCI中包括目标TPC域集合,该目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。本申请实施例便于实现每个TRP下SRS的独立功率控制, 可以解决在多TRP场景下无法实现TRP独立的SRS的功率控制的问题,提高SRS的传输效率。
图5是本申请实施例的SRS的资源集簇的划分方法实现流程示意图,可以应用在网络侧设备。如图5所示,该方法500包括如下步骤。
S502:网络侧设备确定至少两个SRS资源集簇,所述SRS资源集簇包括SRS资源集和/或SRS资源,至少两个SRS资源集簇是按照如下方式之一进行划分的:SRS资源集的配置顺序或标识ID的顺序;SRS资源的配置顺序或标识ID的顺序;SRS资源集簇的序列;SRS资源的序列;SRS资源集关联的参数。
本申请实施例提供的SRS的资源集簇的划分方法,可以通过多种方式确定出至少两个SRS资源集簇,其中,一个SRS资源集簇可以对应一个TRP。在多TRP场景下,便于通过DCI实现SRS的独立功率控制,提高SRS的传输效率。
图6是根据本申请实施例的终端的结构示意图,如图6所示,终端600包括如下模块。
接收模块602,可以用于接收DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。
发送模块604,用于根据所述功控参数发送SRS。
在本申请实施例中,终端接收的DCI中包括目标TPC域集合,该目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。本申请实施例便于实现每个TRP下SRS的独立功率控制,可以解决在多TRP场景下无法实现TRP独立的SRS的功率控制的问题,提高SRS的传输效率。
可选地,作为一个实施例,所述目标TPC域集合内的TPC域与高层参数指示的所述上行载波一一对应,一个所述TPC域指示一个所述上行载波内的多个SRS资源集簇各自对应的功控参数。
可选地,作为一个实施例,所述TPC域的开销为固定值。
可选地,作为一个实施例,所述TPC域的开销与所述TPC域对应的所述上行载波内的SRS资源集簇的数量相关。
可选地,作为一个实施例,所述DCI为类型type A,所述目标TPC域集合包括第一TPC域集合和第二TPC域集合,所述第一TPC域集合和所述第二TPC域集合中的任意一个TPC域指示一个所述上行载波内的一个SRS资源集簇的功控参数。
可选地,作为一个实施例,所述第一TPC域集合内的TPC域以及所述第二TPC域集合内的TPC域,均与所述上行载波一一对应。
可选地,作为一个实施例,所述第一TPC域集合内的多个TPC域与所述第二TPC域集合内的一个或多个TPC域的顺序满足如下之一:扩展顺序对应方式;交错顺序对应方式。
可选地,作为一个实施例,所述扩展顺序对应方式包括:所述第二TPC域集合内的TPC域均位于所述第一TPC域集合内的TPC域之后或之前。
可选地,作为一个实施例,所述第二TPC域集合内的TPC域的数量与如下至少之一相关:多个所述上行载波的数量;每个所述上行载波内的所述SRS资源集簇的数量。
可选地,作为一个实施例,所述第二TPC域集合内的TPC域的数量仅与所述上行载波的数量相关,接收模块602,可以用于:若目标上行载波中配置了所述第一SRS资源集簇但没有配置所述第二SRS资源集簇,忽略所述第二TPC域集合内对应于所述目标上行载波的TPC域。
可选地,作为一个实施例,所述终端不期望限制如下至少之一:所述第一TPC域集合和所述第二TPC域集合的先后顺序;所述第一TPC域集合内的TPC域与所述第二TPC域集合内的TPC域的先后顺序。
可选地,作为一个实施例,所述DCI为类型type B,所述目标TPC域集合包括第一TPC域和第二TPC域或仅包括所述第一TPC域,所述第一TPC域和所述第二TPC域指示一个所述上行载波内的一个SRS资源集簇的功控 参数。
可选地,作为一个实施例,所述目标TPC域集合内的TPC域的数量与所述上行载波内的所述SRS资源集簇的数量相关。
可选地,作为一个实施例,所述目标TPC域集合内的TPC域的数量与所述上行载波内的所述SRS资源集簇的数量无关,接收模块602,可以用于:若所述上行载波中配置了所述第一SRS资源集簇但没有配置所述第二SRS资源集簇,忽略所述第二TPC域。
可选地,作为一个实施例,所述目标TPC域集合支持部分独立编码方式或联合编码方式。
可选地,作为一个实施例,多个所述SRS资源集簇按照SRS资源集的配置顺序或标识ID的顺序区分;其中,所述配置顺序包括按照配置时间从前往后或从后往前;所述ID的顺序包括从小到大或从大到小。
可选地,作为一个实施例,多个所述SRS资源集簇中,任意两个所述SRS资源集簇包括的SRS资源集的数量相等。
可选地,作为一个实施例,接收模块602,可以用于:接收第一指示信令,所述第一指示信令用于指示所述SRS资源集簇中包括的SRS资源集的数量。
可选地,作为一个实施例,接收模块602,可以用于:接收第二指示信令,所述第二指示信令用于指示多个所述SRS资源集簇中目标SRS资源集簇的如下至少之一:包括的SRS资源集的起始位置;包括的起始SRS资源集的ID;包括的SRS资源集的数量。
可选地,作为一个实施例,多个所述SRS资源集簇按照特定用途的SRS资源集进行区分。
可选地,作为一个实施例,所述特定用途的SRS资源集位于两个SRS资源集簇相邻的位置上;或第X个所述特定用途的SRS资源集的位置用于确定第X个SRS资源集簇和第(X+1)个SRS资源集簇,X是大于或等于1的整数;或第Y个所述特定用途的SRS资源集的位置用于确定第(Y-1)个 SRS资源集簇和第Y个SRS资源集簇,Y是大于或等于2的整数。
可选地,作为一个实施例,所述特定用途的SRS资源集满足如下至少之一:若所述特定用途的SRS资源集的数量小于2个,则所述终端认为仅有一个SRS资源集簇;所述特定用途的SRS资源集是预定义的;所述特定用途的SRS资源集根据物理上行共享信道PUSCH的传输模式确定。
可选地,作为一个实施例,多个所述SRS资源集簇按照SRS资源的配置顺序或标识ID的顺序区分;其中,所述配置顺序包括从前往后或从后往前;所述ID的顺序包括从小到大或从大到小。
可选地,作为一个实施例,多个所述SRS资源集簇中,任意两个所述SRS资源集簇包括的SRS资源的数量相等。
可选地,作为一个实施例,接收模块602,可以用于:接收第三指示信令,所述第三指示信令用于指示至所述SRS资源集簇中包括的SRS资源的数量。
可选地,作为一个实施例,接收模块602,可以用于:接收第四指示信令,所述第四指示信令用于指示多个所述SRS资源集簇中目标SRS资源集簇的如下至少之一:包括的SRS资源的起始位置;包括的起始SRS资源的ID;包括的SRS资源的数量。
可选地,作为一个实施例,所述终端不期望同一个SRS资源被多于一个所述SRS资源集簇关联。
可选地,作为一个实施例,接收模块602,可以用于:接收配置信息,所述配置信息用于配置如下至少之一:所述SRS资源集簇的序列;所述SRS资源集簇内的SRS资源的序列。
可选地,作为一个实施例,所述SRS资源集簇内的SRS资源集是根据所述SRS资源集关联的参数确定的;和/或所述SRS资源集簇内的特定用途的SRS资源集是根据所述特定用途的SRS资源集关联的参数确定的。
可选地,作为一个实施例,一个所述SRS资源集簇内的任意两个SRS资源集满足如下至少之一:具有相同的路损参考RS,具有相同的空间波束信 息,具有相同的关联RS,关联相同的发送接收点TRP索引,关联相同的控制资源集资源池索引,具有相同的功率控制参数索引,具有相同的闭环功控索引组。
可选地,作为一个实施例,不同的所述SRS资源集簇内的SRS资源集满足如下至少之一:具有不同的路损参考RS,具有不同的空间波束配置,具有不同的关联RS,关联不同的SRS资源ID,关联不同的TRP索引,关联不同的控制资源集资源池索引,具有不同的功率控制参数索引,具有不同的闭环功控索引组。
根据本申请实施例的终端600可以参照对应本申请实施例的方法200的流程,并且,该终端600中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图7是根据本申请实施例的终端的结构示意图,如图7所示,终端700包括如下模块。
确定模块702,用于确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:所述SRS资源集的配置顺序或标识ID的顺序;所述SRS资源的配置顺序或标识ID的顺序;所述SRS资源集簇的序列;所述SRS资源的序列;所述SRS资源集关联的参数。
本申请实施例中,可以通过多种方式确定出至少两个SRS资源集簇,其中,一个SRS资源集簇可以对应一个TRP。在多TRP场景下,便于通过DCI实现SRS的独立功率控制,提高SRS的传输效率。
根据本申请实施例的终端700可以参照对应本申请实施例的方法300的流程,并且,该终端700中的各个单元/模块和上述其他操作和/或功能分别为了实现方法300中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本申请实施例中的终端可以是装置,也可以是终端中的部件、集成电路、 或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的终端可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的终端能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图8是根据本申请实施例的网络侧设备的结构示意图,如图8所示,网络侧设备800包括如下模块。
发送模块802,用于发送DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。
接收模块804,用于接收SRS,所述SRS是终端根据所述功控参数发送的。
在本申请实施例中,网络侧设备发送的DCI中包括目标TPC域集合,该目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。本申请实施例可以解决在多TRP场景下无法实现TRP独立的SRS的功率控制的问题,便于实现每个TRP下SRS的独立功率控制,提高SRS的传输效率。
根据本申请实施例的网络侧设备800可以参照对应本申请实施例的方法400的流程,并且,该网络侧设备800中的各个单元/模块和上述其他操作和/或功能分别为了实现方法400中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图9是根据本申请实施例的网络侧设备的结构示意图,如图9所示,网 络侧设备900包括如下模块。
确定模块902,可以用于确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:所述SRS资源集的配置顺序或标识ID的顺序;所述SRS资源的配置顺序或标识ID的顺序;所述SRS资源集簇的序列;所述SRS资源的序列;所述SRS资源集关联的参数。
本申请实施例中,可以通过多种方式确定出至少两个SRS资源集簇,其中,一个SRS资源集簇可以对应一个TRP。在多TRP场景下,便于通过DCI实现SRS的独立功率控制,提高SRS的传输效率。
根据本申请实施例的网络侧设备900可以参照对应本申请实施例的方法500的流程,并且,该网络侧设备900中的各个单元/模块和上述其他操作和/或功能分别为了实现方法500中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
可选的,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001,存储器1002,存储在存储器1002上并可在所述处理器1001上运行的程序或指令,例如,该通信设备1000为终端时,该程序或指令被处理器1001执行时实现上述SRS的功控指示方法、资源集簇的划分方法实施例的各个过程,且能达到相同的技术效果。该通信设备1000为网络侧设备时,该程序或指令被处理器1001执行时实现上述SRS的功控指示方法、资源集簇的划分方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、以及处理器1110等部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通 过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101将来自网络侧设备的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1110可包括一个或多个处理单元;可选的,处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户 界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,射频单元1101,用于接收下行控制信息DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;射频单元1101,用于根据所述功控参数发送SRS。
处理器1110,用于确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:所述SRS资源集的配置顺序或标识ID的顺序;所述SRS资源的配置顺序或标识ID的顺序;所述SRS资源集簇的序列;所述SRS资源的序列;所述SRS资源集关联的参数。
在本申请实施例中,终端接收的DCI中包括目标TPC域集合,该目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数。本申请实施例便于实现每个TRP下SRS的独立功率控制,可以解决在多TRP场景下无法实现TRP独立的SRS的功率控制的问题,提高SRS的传输效率。
另外,本申请实施例中,可以通过多种方式确定出至少两个SRS资源集簇,其中,一个SRS资源集簇可以对应一个TRP。在多TRP场景下,便于通过DCI实现SRS的独立功率控制,提高SRS的传输效率。
本申请实施例提供的终端1100还可以实现上述SRS的功控指示方法、资源集簇的划分方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备1200包括:天线121、射频装置122、基带装置123。天线121与射频装置122连接。在上行方向上,射频装置122通过天线121接收信息,将接收的信息发送给基带装置123进行处理。在下行方向上,基带装置123对要发送的信息进行处理,并发送给射频装置122,射频装置122对收到的信 息进行处理后经过天线121发送出去。
上述频带处理装置可以位于基带装置123中,以上实施例中网络侧设备执行的方法可以在基带装置123中实现,该基带装置123包括处理器124和存储器125。
基带装置123例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为处理器124,与存储器125连接,以调用存储器125中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置123还可以包括网络接口126,用于与射频装置122交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器125上并可在处理器124上运行的指令或程序,处理器124调用存储器125中的指令或程序执行图8或图9所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是易失性的,也可以是非易失性的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述SRS的功控指示方法、资源集簇的划分方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器可以为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述SRS的功控指示方法、资源集簇的划分方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品存储于非瞬态的存储介质,所述计算机程序产品被至少一个处理器执行以实现上述资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种通信设备,被配置成用于执行上述资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (41)

  1. 一种探测参考信号SRS的功控指示方法,所述方法包括:
    终端接收下行控制信息DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;
    根据所述功控参数发送SRS。
  2. 根据权利要求1所述的方法,其中,所述目标TPC域集合内的TPC域与所述上行载波一一对应,一个所述TPC域指示一个所述上行载波内的多个SRS资源集簇各自对应的功控参数。
  3. 根据权利要求2所述的方法,其中,
    所述TPC域的开销为固定值。
  4. 根据权利要求2所述的方法,其中,
    所述TPC域的开销与所述TPC域对应的所述上行载波内的SRS资源集簇的数量相关。
  5. 根据权利要求1所述的方法,其中,所述DCI为类型type A,所述目标TPC域集合包括第一TPC域集合和第二TPC域集合,
    所述第一TPC域集合和所述第二TPC域集合中的任意一个TPC域指示一个所述上行载波内的一个SRS资源集簇的功控参数。
  6. 根据权利要求5所述的方法,其中,
    所述第一TPC域集合内的TPC域以及所述第二TPC域集合内的TPC域,均与所述上行载波一一对应。
  7. 根据权利要求5所述的方法,其中,
    所述第一TPC域集合内的多个TPC域与所述第二TPC域集合内的一个或多个TPC域的顺序满足如下之一:
    扩展顺序对应方式;
    交错顺序对应方式。
  8. 根据权利要求7所述的方法,其中,
    所述扩展顺序对应方式包括:所述第二TPC域集合内的TPC域均位于所述第一TPC域集合内的TPC域之后或之前。
  9. 根据权利要求5或7所述的方法,其中,所述第二TPC域集合内的TPC域的数量与如下至少之一相关:
    多个所述上行载波的数量;
    每个所述上行载波内的所述SRS资源集簇的数量。
  10. 根据权利要求9所述的方法,其中,所述第二TPC域集合内的TPC域的数量仅与所述上行载波的数量相关,所述方法还包括:
    若目标上行载波中配置了所述第一SRS资源集簇但没有配置所述第二SRS资源集簇,所述终端忽略所述第二TPC域集合内对应于所述目标上行载波的TPC域。
  11. 根据权利要求1所述的方法,其中,所述DCI为类型type B,所述目标TPC域集合包括第一TPC域和第二TPC域或仅包括所述第一TPC域,
    所述第一TPC域和所述第二TPC域指示一个所述上行载波内的一个SRS资源集簇的功控参数。
  12. 根据权利要求11所述的方法,其中,
    所述目标TPC域集合内的TPC域的数量与所述上行载波内的所述SRS资源集簇的数量相关。
  13. 根据权利要求11所述的方法,其中,所述目标TPC域集合内的TPC域的数量与所述上行载波内的所述SRS资源集簇的数量无关,所述方法还包括:
    若所述上行载波中配置了所述第一SRS资源集簇但没有配置所述第二SRS资源集簇,所述终端忽略所述第二TPC域。
  14. 根据权利要求5或11所述的方法,其中,所述目标TPC域集合支持部分独立编码方式或联合编码方式。
  15. 根据权利要求1至14任一项所述的方法,其中,多个所述SRS资源集簇按照SRS资源集的配置顺序或标识ID的顺序区分;
    其中,所述配置顺序包括按照配置时间从前往后或从后往前;
    所述ID的顺序包括从小到大或从大到小。
  16. 根据权利要求15所述的方法,其中,多个所述SRS资源集簇中,任意两个所述SRS资源集簇包括的SRS资源集的数量相等。
  17. 根据权利要求15所述的方法,其中,所述方法还包括:接收第一指示信令,所述第一指示信令用于指示所述SRS资源集簇中包括的SRS资源集的数量。
  18. 根据权利要求15所述的方法,其中,所述方法还包括:接收第二指示信令,所述第二指示信令用于指示多个所述SRS资源集簇中目标SRS资源集簇的如下至少之一:
    包括的SRS资源集的起始位置;
    包括的起始SRS资源集的ID;
    包括的SRS资源集的数量。
  19. 根据权利要求15所述的方法,其中,多个所述SRS资源集簇按照特定用途的SRS资源集进行区分。
  20. 根据权利要求19所述的方法,其中,
    所述特定用途的SRS资源集位于两个SRS资源集簇相邻的位置上;或
    第X个所述特定用途的SRS资源集的位置用于确定第X个SRS资源集簇和第(X+1)个SRS资源集簇,X是大于或等于1的整数;或
    第Y个所述特定用途的SRS资源集的位置用于确定第(Y-1)个SRS资源集簇和第Y个SRS资源集簇,Y是大于或等于2的整数。
  21. 根据权利要求20所述的方法,其中,所述特定用途的SRS资源集满足如下至少之一:
    若所述特定用途的SRS资源集的数量小于2个,则所述终端认为仅有一个SRS资源集簇;
    所述特定用途的SRS资源集是预定义的;
    所述特定用途的SRS资源集根据物理上行共享信道PUSCH的传输模式 确定。
  22. 根据权利要求1至14任一项所述的方法,其中,多个所述SRS资源集簇按照SRS资源的配置顺序或标识ID的顺序区分;
    其中,所述配置顺序包括从前往后或从后往前;
    所述ID的顺序包括从小到大或从大到小。
  23. 根据权利要求22所述的方法,其中,多个所述SRS资源集簇中,任意两个所述SRS资源集簇包括的SRS资源的数量相等。
  24. 根据权利要求22所述的方法,其中,所述方法还包括:接收第三指示信令,所述第三指示信令用于指示至所述SRS资源集簇中包括的SRS资源的数量。
  25. 根据权利要求22所述的方法,其中,所述方法还包括:接收第四指示信令,所述第四指示信令用于指示多个所述SRS资源集簇中目标SRS资源集簇的如下至少之一:
    包括的SRS资源的起始位置;
    包括的起始SRS资源的ID;
    包括的SRS资源的数量。
  26. 根据权利要求1至14任一项所述的方法,其中,所述方法还包括:接收配置信息,所述配置信息用于配置如下至少之一:
    所述SRS资源集簇的序列;
    所述SRS资源集簇内的SRS资源的序列。
  27. 根据权利要求1至14任一项所述的方法,其中,
    所述SRS资源集簇内的SRS资源集是根据所述SRS资源集关联的参数确定的;和/或
    所述SRS资源集簇内的特定用途的SRS资源集是根据所述特定用途的SRS资源集关联的参数确定的。
  28. 根据权利要求27所述的方法,其中,一个所述SRS资源集簇内的任意两个SRS资源集满足如下至少之一:
    具有相同的路损参考RS,具有相同的空间波束信息,具有相同的关联RS,关联相同的发送接收点TRP索引,关联相同的控制资源集资源池索引,具有相同的功率控制参数索引,具有相同的闭环功控索引组。
  29. 根据权利要求27所述的方法,其中,不同的所述SRS资源集簇内的SRS资源集满足如下至少之一:
    具有不同的路损参考RS,具有不同的空间波束配置,具有不同的关联RS,关联不同的SRS资源ID,关联不同的TRP索引,关联不同的控制资源集资源池索引,具有不同的功率控制参数索引,具有不同的闭环功控索引组。
  30. 一种SRS的资源集簇的划分方法,所述方法包括:
    终端确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:
    所述SRS资源集的配置顺序或标识ID的顺序;
    所述SRS资源的配置顺序或标识ID的顺序;
    所述SRS资源集簇的序列;
    所述SRS资源的序列;
    所述SRS资源集关联的参数。
  31. 一种SRS的功控指示方法,所述方法包括:
    网络侧设备发送DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;
    接收SRS,所述SRS是终端根据所述功控参数发送的。
  32. 一种SRS的资源集簇的划分方法,所述方法包括:
    网络侧设备确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:
    所述SRS资源集的配置顺序或标识ID的顺序;
    所述SRS资源的配置顺序或标识ID的顺序;
    所述SRS资源集簇的序列;
    所述SRS资源的序列;
    所述SRS资源集关联的参数。
  33. 一种终端,包括:
    接收模块,用于接收DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;
    发送模块,用于根据所述功控参数发送SRS。
  34. 一种终端,包括:
    确定模块,用于确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:
    所述SRS资源集的配置顺序或标识ID的顺序;
    所述SRS资源的配置顺序或标识ID的顺序;
    所述SRS资源集簇的序列;
    所述SRS资源的序列;
    所述SRS资源集关联的参数。
  35. 一种网络侧设备,包括:
    发送模块,用于发送DCI,所述DCI包括目标传输功率控制TPC域集合,所述目标TPC域集合用于指示至少一个上行载波内的多个SRS资源集簇各自对应的功控参数;
    接收模块,用于接收SRS,所述SRS是终端根据所述功控参数发送的。
  36. 一种网络侧设备,包括:
    确定模块,用于确定至少两个SRS资源集簇;其中,所述SRS资源集簇包括SRS资源集和/或SRS资源,所述至少两个SRS资源集簇是按照如下方式之一进行划分的:
    所述SRS资源集的配置顺序或标识ID的顺序;
    所述SRS资源的配置顺序或标识ID的顺序;
    所述SRS资源集簇的序列;
    所述SRS资源的序列;
    所述SRS资源集关联的参数。
  37. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至30任一项所述的方法。
  38. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求31或32所述的方法。
  39. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至30任一项所述的方法,或者实现如权利要求31或32所述的方法。
  40. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至30任一项所述的方法,或者实现如权利要求31或32所述的方法。
  41. 一种计算机程序产品,所述计算机程序产品存储于非瞬态的存储介质,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至30任一项所述的方法,或者实现如权利要求31或32所述的方法。
PCT/CN2021/135085 2020-12-02 2021-12-02 Srs的功控指示方法、资源集簇的划分方法和设备 WO2022117039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011391238.3 2020-12-02
CN202011391238.3A CN114585067B (zh) 2020-12-02 2020-12-02 Srs的功控指示方法、资源集簇的划分方法和设备

Publications (2)

Publication Number Publication Date
WO2022117039A1 true WO2022117039A1 (zh) 2022-06-09
WO2022117039A9 WO2022117039A9 (zh) 2022-11-24

Family

ID=81768848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135085 WO2022117039A1 (zh) 2020-12-02 2021-12-02 Srs的功控指示方法、资源集簇的划分方法和设备

Country Status (2)

Country Link
CN (1) CN114585067B (zh)
WO (1) WO2022117039A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031576A1 (zh) * 2022-08-11 2024-02-15 北京小米移动软件有限公司 探测参考信号srs的功率控制方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117915460A (zh) * 2022-10-10 2024-04-19 北京紫光展锐通信技术有限公司 上行功率控制方法与装置、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN110167168A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 传输探测参考信号的方法和装置
US20190356431A1 (en) * 2018-05-21 2019-11-21 Qualcomm Incorporated Choosing an srs resource set when multiple sets are configured
CN110536392A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置、设备及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332286B (zh) * 2015-06-30 2022-01-28 中兴通讯股份有限公司 频谱资源分配方法及装置
US11026226B2 (en) * 2018-07-06 2021-06-01 Qualcomm Incorporated Feedback design for multi-transmission reception point transmission
CN110859004B (zh) * 2018-08-23 2023-12-08 维沃移动通信有限公司 用于确定物理上行共享信道发送功率的方法和设备
CN112703753B (zh) * 2019-01-23 2023-03-21 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
WO2020162717A1 (ko) * 2019-02-07 2020-08-13 엘지전자 주식회사 무선 통신 시스템에서 액세스 및 상향링크 전송을 수행하는 방법 및 이에 대한 장치
CN110536394B (zh) * 2019-03-29 2024-04-05 中兴通讯股份有限公司 功率控制方法、装置和系统
CN112970294B (zh) * 2019-04-08 2023-01-31 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
CN111263430B (zh) * 2019-04-30 2021-11-09 维沃移动通信有限公司 Srs功率控制方法和设备
CN111901021B (zh) * 2020-02-18 2024-11-08 中兴通讯股份有限公司 确定发送参数、发送功率、phr的方法、装置及介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174466A1 (en) * 2018-01-22 2019-06-06 Intel Corporation Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration
CN110167168A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 传输探测参考信号的方法和装置
US20190356431A1 (en) * 2018-05-21 2019-11-21 Qualcomm Incorporated Choosing an srs resource set when multiple sets are configured
CN110536392A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置、设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031576A1 (zh) * 2022-08-11 2024-02-15 北京小米移动软件有限公司 探测参考信号srs的功率控制方法及装置

Also Published As

Publication number Publication date
WO2022117039A9 (zh) 2022-11-24
CN114585067B (zh) 2024-06-07
CN114585067A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2022117035A1 (zh) Pusch的调度传输方法、终端和网络侧设备
WO2022152176A1 (zh) 传输处理方法及相关设备
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
WO2023025016A1 (zh) 传输处理方法、装置及设备
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
WO2022206997A1 (zh) 功率控制参数指示方法、终端及网络侧设备
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2022214070A1 (zh) 上行功率确定方法和设备
WO2022117039A1 (zh) Srs的功控指示方法、资源集簇的划分方法和设备
WO2023078327A1 (zh) 上行传输信息确定、上行传输以及上行传输配置的方法
WO2022188794A1 (zh) 半静态harq-ack码本的生成方法及终端
WO2022152206A1 (zh) 功率控制方法、装置及用户设备
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
WO2022001848A1 (zh) 一种传输处理方法、装置及终端
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
US20240147565A1 (en) Tci state indication method and apparatus, terminal, and network side device
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
WO2023006017A1 (zh) 功控参数的确定方法、装置及通信设备
WO2022188836A1 (zh) Cot确定方法、上行传输方法和设备
WO2022127679A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2022194026A1 (zh) 传输上行mcs指示信息的方法, 终端及网络侧设备
WO2022033424A1 (zh) 资源传输方法、装置及通信设备
WO2022028597A1 (zh) 控制辅小区的方法、终端及网络侧设备
WO2022179498A1 (zh) 初始下行bwp的scs的指示方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900065

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21900065

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2024)