[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022028524A1 - 物理下行控制信道的监听方法、装置和设备 - Google Patents

物理下行控制信道的监听方法、装置和设备 Download PDF

Info

Publication number
WO2022028524A1
WO2022028524A1 PCT/CN2021/110832 CN2021110832W WO2022028524A1 WO 2022028524 A1 WO2022028524 A1 WO 2022028524A1 CN 2021110832 W CN2021110832 W CN 2021110832W WO 2022028524 A1 WO2022028524 A1 WO 2022028524A1
Authority
WO
WIPO (PCT)
Prior art keywords
repetitions
monitoring
pdcch
mapping
time interval
Prior art date
Application number
PCT/CN2021/110832
Other languages
English (en)
French (fr)
Inventor
李东儒
吴凯
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022028524A1 publication Critical patent/WO2022028524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present application relates to the field of communications, and in particular, to a method, apparatus and device for monitoring a physical downlink control channel.
  • a user equipment User Equipment, UE, also referred to as terminal equipment, terminal, etc.
  • UE User Equipment
  • terminal equipment terminal equipment
  • SS Search Space
  • a network-side device such as a base station
  • PDCCH candidates Physical Downlink Control Channel candidates
  • CCE Control Channel Element
  • the UE and the network side device need to agree on a specific SS set mapping rule, determine the SS set priority size according to the mapping rule, and map each time slot or each time slot according to the SS set priority.
  • candidate PDCCHs and CCEs in listening spans For each time slot or each monitoring span, the UE and the network side device need to agree on a specific SS set mapping rule, determine the SS set priority size according to the mapping rule, and map each time slot or each time slot according to the SS set priority.
  • candidate PDCCHs and CCEs in listening spans are candidates for each time slot or each monitoring span.
  • the above-mentioned existing SS set mapping rules are not applicable to the scenario of repeated PDCCH transmission, and are not applicable to candidate PDCCH monitoring in more than one time slot or one monitoring span.
  • the embodiments of the present application provide a method, apparatus and device for monitoring a physical downlink control channel, so as to solve the problem that the existing SS set mapping rules cannot be applied to the scenario of repeated PDCCH transmission, and are not applicable to more than one time slot or one The problem of candidate PDCCH listening on the listening span.
  • a method for monitoring a physical downlink control channel which is applied to a terminal device, and the method includes:
  • the first mapping rule monitor a candidate physical downlink control channel PDCCH within a first time interval, where the first time interval includes K time slots or K monitoring spans, and K is an integer greater than or equal to 1; wherein, the The first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; the CORESET monitoring when the resources of the N control resource sets CORESET overlap on the PDCCH monitoring opportunity rule, where N is an integer greater than 1; the mapping rule of the candidate PDCCH across time slots or across monitoring spans.
  • a device for monitoring a physical downlink control channel comprising:
  • a monitoring module configured to monitor a candidate physical downlink control channel PDCCH within a first time interval according to a first mapping rule, where the first time interval includes K time slots or K monitoring spans, and K is an integer greater than or equal to 1 ; wherein, the first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; the N control resource set CORESET occurrence resources on the PDCCH monitoring opportunity CORESET monitoring rule when overlapping, where N is an integer greater than 1; the mapping rule of the candidate PDCCH across time slots or across monitoring spans.
  • a terminal device including: a memory, a processor, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor.
  • a method for monitoring a physical downlink control channel which is applied to a network side device, and the method includes:
  • the candidate physical downlink control channel PDCCH is transmitted in a first time interval, where the first time interval includes K time slots or K listening spans, and K is an integer greater than or equal to 1; wherein, the The first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; the CORESET monitoring when the resources of the N control resource sets CORESET overlap on the PDCCH monitoring opportunity rule, where N is an integer greater than 1; the mapping rule of the candidate PDCCH across time slots or across monitoring spans.
  • a device for monitoring a physical downlink control channel comprising:
  • a transmission module configured to transmit a candidate physical downlink control channel PDCCH in a first time interval according to a first mapping rule, where the first time interval includes K time slots or K listening spans, and K is an integer greater than or equal to 1 ; wherein, the first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; the N control resource set CORESET occurrence resources on the PDCCH monitoring opportunity CORESET monitoring rule when overlapping, where N is an integer greater than 1; the mapping rule of the candidate PDCCH across time slots or across monitoring spans.
  • a sixth aspect provides a network side device, including: a memory, a processor, and a program or instruction stored on the memory and executable on the processor, when the program or instruction is executed by the processor The steps of implementing the method of the fourth aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented, or the The programs or instructions, when executed by a processor, implement the steps of the method as described in the fourth aspect.
  • a computer program product comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being executed by the processor.
  • a chip in a ninth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a terminal device or a network side device program or instruction, to achieve the The steps of the method described in one aspect, or the steps of implementing the method described in the fourth aspect.
  • the terminal device may monitor candidate PDCCHs within K time slots or K monitoring spans (ie, the first time interval) according to the first mapping rule.
  • the first mapping rule specifies the mapping priority of the first SS set within the first time interval.
  • the first mapping rule is not only applicable to the determination of the SS set mapping priority on one time slot or one monitoring span and the monitoring of candidate PDCCHs, but also applicable to the SS set mapping priority on multiple time slots or multiple monitoring spans Level determination and monitoring of candidate PDCCHs.
  • the first mapping rule can be used to indicate at least one of the following: the mapping priority of the first SS set within the above-mentioned first time interval; when multiple (that is, N) CORESETs have overlapping resources on the PDCCH monitoring opportunity CORESET monitoring rules; mapping rules for the candidate PDCCH across time slots or across monitoring spans.
  • an SS set mapping rule (or a pre-qualified rule) that can be applied to a time slot greater than or equal to 1 time slot or a monitoring span is given, so that it can be applied to a time slot greater than or equal to 1 monitoring span.
  • the embodiment of the application can also provide the monitoring rules of the CORESET that are applicable when multiple CORESET resources conflict.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied
  • FIG. 2 is a schematic flowchart of a method for monitoring a physical downlink control channel in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another method for monitoring a physical downlink control channel in an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a device for monitoring a physical downlink control channel in an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of another device for monitoring a physical downlink control channel in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal device in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a network side device in an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the following description, these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6th generation ). Generation, 6G) communication system.
  • 6th generation 6th generation
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device ( Vehicle UE, VUE), pedestrian terminal (Pedestrian UE, PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc.
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • PDA netbook
  • ultra-mobile personal computer ultra-mobile personal computer
  • UMPC
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Send Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of this application, only the NR system is used. The base station in the example is taken as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a method for monitoring a physical downlink control channel, which is executed by a terminal device, and the method includes the following process steps:
  • Step 201 According to the first mapping rule, monitor the candidate physical downlink control channel PDCCH within a first time interval, where the first time interval includes K time slots or K monitoring spans, and K is an integer greater than or equal to 1; wherein , the first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; when the resources of the N control resource sets CORESET overlap on the PDCCH monitoring opportunity The CORESET monitoring rule, where N is an integer greater than 1; the mapping rule for the candidate PDCCH across time slots or across monitoring spans.
  • the above-mentioned first SS set satisfies at least one of the following: the first SS set is the SS set on the bandwidth part BWP; the first SS set is the SS set in the search space group on the BWP; the The first SS set includes at least one SS set that carries the repeated PDCCH; the first SS set does not include the SS set that carries the repeated PDCCH; wherein the repeated PDCCH is at least part of the candidate PDCCH.
  • the first search space set (Search Spaceset, SS set) is the SS set on the bandwidth part (Bandwidth Part, BWP)
  • the first SS set is on the BWP of the cell. part or all of the SS sets, wherein the number of the first SS sets can be one or more. That is, for different BWPs of different cells, the first SS set may be one or more different SS sets, or may be the same one or more SS sets.
  • the above-mentioned first SS set is the SS set in the search space group on the BWP
  • the above-mentioned first mapping rule is used to indicate that the first SS set in the search space group is in the Mapping priority within the first time interval.
  • the first mapping rule is used to indicate the mapping priorities of all SS sets (that is, the first SS set) in the first SS group of the BWP within the first time interval.
  • the above-mentioned first SS set includes at least one SS set that bears the repeated PDCCH.
  • the repeated PDCCH may also be understood as the repeated DCI.
  • the repeated PDCCH or the repeated DCI may refer to at least one of the following: the same DCI size, the same DCI format, and the same DCI content.
  • the embodiments of the present application at least take into account the impact of the PDCCH repeated transmission scenario on the SS set mapping priority, etc., so that the above-mentioned first mapping rule can be used to determine the SS set carrying the repeated PDCCH.
  • the mapping priority is further applicable to the scenario of repeated PDCCH transmission.
  • the foregoing mapping priority may also be referred to as a monitoring priority.
  • the number of the above-mentioned candidate PDCCHs may be one or more.
  • the terminal device may monitor candidate PDCCHs within K time slots or K monitoring spans (ie, the first time interval) according to the first mapping rule.
  • the first mapping rule specifies the mapping priority of the first SS set within the first time interval.
  • the first mapping rule is not only applicable to the determination of the SS set mapping priority on one time slot or one monitoring span and the monitoring of candidate PDCCHs, but also applicable to the SS set mapping priority on multiple time slots or multiple monitoring spans Level determination and monitoring of candidate PDCCHs.
  • the first mapping rule can be used to indicate at least one of the following: the mapping priority of the first SS set within the above-mentioned first time interval; when multiple (that is, N) CORESETs have overlapping resources on the PDCCH monitoring opportunity CORESET monitoring rules; mapping rules for the candidate PDCCH across time slots or across monitoring spans.
  • an SS set mapping rule (or a pre-defined rule) that can be applied to a time slot greater than or equal to one time slot or a listening span is given, so that it can be applied to a time slot greater than or equal to one time slot or a monitoring span.
  • the first SS set includes at least one SS set bearing the repeated PDCCH, it can be applicable to the scenario of repeated PDCCH transmission.
  • this embodiment can also provide the monitoring rules of the CORESET that are applicable when multiple CORESET resources conflict.
  • the candidate PDCCHs within the first time interval may include duplicate candidate PDCCHs or do not include duplicate candidate PDCCHs.
  • each candidate PDCCH is carried by a corresponding SS set.
  • the candidate PDCCHs in each of the above-mentioned first time intervals may be different or the same candidate PDCCHs. Further optional, therefore, within different first time intervals, the candidate PDCCHs may or may not include duplicate PDCCHs. Further optionally, in the case that the candidate PDCCHs within the above-mentioned first time interval include the repeated candidate PDCCHs, the repeated candidate PDCCHs may refer to the repeated transmission or repeated transmission candidate PDCCHs.
  • the embodiments of the present application at least take into account the impact of the PDCCH repeated transmission scenario on the SS set mapping priority, etc., so that the above-mentioned first mapping rule is further applicable to the PDCCH repeated transmission scenario.
  • the value of the above K is the maximum number of repetitions of the PDCCH repeated in all cross-slots or all cross-monitoring spans of the BWP of the cell.
  • the SS set where the candidate PDCCH is located includes but is not limited to a terminal-specific search space set (UE Specific Search Spaceset, USS set) and/or a common search space set (Common Search Spaceset, CSS set).
  • UE Specific Search Spaceset USS set
  • Common Search Spaceset CSS set
  • CSS set can be Type 3 CSS set.
  • the PDCCH monitoring method in the embodiment of the present application may further include the following content:
  • joint detection and/or independent detection is performed on the candidate PDCCHs.
  • the joint detection is applicable to the case where the number of candidate PDCCHs to be monitored is multiple.
  • the candidate PDCCHs include repeated candidate PDCCHs, the repeated candidate PDCCHs are repeated within a first time interval, and the first time interval is multiple time slots or multiple listening spans, then the repeated candidate PDCCH may Joint detection within a time interval.
  • the N CORESETs have the same or different Quasi co-location (QCL) type D attributes.
  • QCL Quasi co-location
  • the PDCCH monitoring method in the embodiment of the present application may further include the following content:
  • report indication information Before monitoring the candidate physical downlink control channel PDCCH within the first time interval according to the first mapping rule, report indication information, where the indication information is used to indicate whether the first mapping rule is supported.
  • the terminal device may report in advance whether it supports the first mapping rule, so that the network side device can Configure the SS set according to the specific situation reported by the terminal device.
  • the network side device can configure the SS set according to the reported content according to the first mapping rule, so that the terminal device can further configure the SS set according to the reported content.
  • the first mapping rule detects candidate PDCCHs within the first time interval.
  • the above-mentioned indication information is used to indicate whether to support the first mapping rule when the first time interval is greater than or equal to two time slots or two listening spans.
  • At least one of the following is configured by a network side device or agreed in a protocol:
  • the maximum monitoring number of candidate PDCCHs within the first time interval can be configured by the network side device or agreed by the protocol, or the maximum number of PDCCH candidates to be monitored within one time slot or one monitoring span can be configured by the network side device or agreed by the protocol.
  • the maximum number of candidate PDCCHs to monitor can be configured by the network side device or agreed by the protocol.
  • the maximum number of non-overlapping control channel elements (Control Channel Element, CCE) within the first time interval. That is to say, the maximum number of CCEs that do not overlap within one time slot or one monitoring span can be configured by the network side device or agreed by the protocol, or the maximum number of CCEs that do not overlap within one time slot or one monitoring span can be configured by the network side device or agreed by the protocol. The maximum number of CCEs.
  • the first mapping rule indicates the mapping priority of the first SS set within the first time interval
  • the first SS set is in the first time interval.
  • Mapping priority within the first time interval determined by at least one of the following:
  • the type of the first SS set can be determined according to the type of the SS set, wherein the type of the first SS set includes the CSS set or the USS set.
  • the mapping priority of the CSS set may be higher than the mapping priority of the USS set; in another example, the mapping priority of the CSS set may be lower than the mapping priority of the USS set.
  • the index value of the first SS set can be determined according to the size of the index value of the SS set. In one example, the larger the index value of the SS set, the lower the mapping priority of the SS set. In another example, the smaller the index value of the SS set, the lower the mapping priority of the SS set.
  • the mapping priority of the SS set can be determined according to the number of repetitions of the SS set. In one example, it may be that the greater the number of repetitions of the SS set, the higher the mapping priority of the SS set.
  • the number of repetitions of the first SS set may correspond to different values in scenarios repeated in different units, including but not limited to the following situations:
  • the number of repetitions of the first SS set is equal to the number of repetitions of the first SS set. That is to say, when the first SS set is repeated according to the SS set, the number of repetitions of the first SS set is equal to the number of repetitions of the first SS set.
  • the number of repetitions of the first SS set is: all ALs configured in the first SS set are repeated The maximum number of AL repetitions among the times, or the sum of all AL repetitions configured in the first SS set. That is to say, when the first SS set is repeated according to the aggregation level AL, the number of repetitions of the first SS set is: the AL with the largest repetition number of all the ALs configured in the first SS set The number of repetitions, or the sum of the repetitions of all ALs configured in the first SS set.
  • the number of repetitions of the first SS set is: the repetition of all the DCI formats configured in the first SS set The maximum number of repetitions of the DCI format among the times, or the sum of the repetitions of all the DCI formats configured in the first SS set. That is to say, when the first SS set is repeated according to the DCI format, the number of repetitions of the first SS set is: the largest DCI format among all the repetition times of the DCI format configured in the first SS set The number of repetitions, or the sum of all the repetitions of the DCI format configured in the first SS set.
  • the mapping priority of the SS set can be determined according to the number of completed repetitions of the SS set. In one example, it may be that the more times the SS set has been repeated, the lower the mapping priority of the SS set.
  • Network side device configuration wherein the first SS set is scrambled by a specific wireless network temporary identifier RNTI or contains a specific downlink control information format DCI format. That is to say, the mapping priority of the first SS set scrambled by a specific wireless network temporary identifier RNTI or containing a specific downlink control information format DCI format can be determined by way of configuration on the network side. In an example, when the first SS set is scrambled by a paging RNTI (Paging RNTI, P-RNTI), the network side device may configure its mapping priority to be the lowest.
  • Paging RNTI Paging RNTI
  • the first SS set is scrambled by a specific wireless network temporary identifier RNTI or contains a specific downlink control information format DCI format. That is to say, the mapping priority of the first SS set scrambled by a specific RNTI or containing a specific DCI format can be determined in a manner agreed in the protocol. In an example, when the first SS set is scrambled by the P-RNTI, its mapping priority may be the lowest according to the protocol.
  • the condition (1) , (2), (3), (4), (5), (6) can also have priority ordering, for example, the priority of these conditions can be (1)>(2)>(3 )>(4)>(5)>(6), or other priority order, which is not specifically limited here.
  • the mapping priority of the first SS set in the first time interval is determined by the type of the first SS set, the index value of the first SS set and the first SS set
  • the number of repetitions is determined by multiple mapping conditions.
  • the multiple mapping conditions may be: the mapping priority of the CSS set in the type of the agreed SS set is higher than the mapping priority of the USS set; the smaller the index value of the agreed SS set, the higher the mapping priority of the SS set; It is agreed that the greater the number of repetitions of the SS set, the higher the mapping priority of the SS set.
  • the priority order among the above multiple mapping conditions is: (1)>(3)>(2).
  • the existing SS sets are as follows: USS set1, repetition times 2; USS set2, repetition times 3; USS set3 repetition times 2; CSS set1, repetition times 2; CSS set2, repetition times 1. Then, according to the above three conditions, the priority order of SS set is uniquely determined: CSS set1>CSS set2>USS set2>USS set1>USS set3.
  • the mapping priority of the first SS set in the first time interval is determined by the type of the first SS set, the index value of the first SS set and the first SS set
  • the number of completed repetitions of the set is determined by multiple mapping conditions.
  • the multiple mapping conditions may be that the mapping priority of the CSS set in the type of the agreed SS set is higher than the mapping priority of the USS set; the smaller the index value of the SS set is, the higher the priority of the SS set is; the agreed SS set has a higher priority; The higher the number of completed repetitions, the lower the priority.
  • the existing SS sets are as follows: USS set1, completed repetitions 2; USS set2, completed repetitions 3; USS set3 completed repetitions 2; CSS set1, completed repetitions of 2; CSS set2, completed repetitions of 2 1. Then, according to the above three conditions, the priority order of SS set is uniquely determined: CSS set2>CSS set1>USS set1>USS set2>USS set2.
  • the mapping priority of the first SS set within the first time interval is determined by the type of the first SS set, the index value of the first SS set, the first SS set
  • the number of repetitions of the set and the number of completed repetitions of the first SS set are determined by multiple mapping conditions.
  • the multiple mapping conditions may be that the mapping priority of the CSS set in the type of the agreed SS set is higher than the mapping priority of the USS set; the smaller the index value of the SS set is, the higher the priority of the SS set is; the agreed SS set has a higher priority; The higher the number of repetitions and the number of completed repetitions, the higher the priority.
  • the existing SS sets are as follows: USS set1, repetitions 3, completed repetitions 2; USS set2, repetitions 3, completed repetitions 3; USS set3, repetitions 2, completed repetitions 2; CSS set1, repetitions 4.
  • the number of completed repetitions is 2; CSS set2, the number of repetitions is 3, and the number of completed repetitions is 1.
  • the priority order of SS set is uniquely determined: CSS set1>CSS set2>USS set2>USS set1>USS set3.
  • mapping priority of the first SS set within the first time interval at least the number of repetitions of the first SS set and/or the number of completed repetitions of the first SS set can be considered, so that the indication can be made.
  • the above-mentioned mapping rule for mapping priorities that is, the first mapping rule, is applicable to the scenario of PDCCH repeated transmission (PDCCH enhancement).
  • protocol agreement in this embodiment of the present application may refer to a pre-appointment, a pre-definition, or a pre-stipulation.
  • the first M time slots or K monitoring spans of the K time slots may be monitored according to the The number of completed repetitions of the SS set within the M listening spans, dynamically adjust the mapping priority on the subsequent time slots in the K time slots or the listening spans in the K listening spans, such as the M+1th time slot or M+1 Mapping priority on the listening span. That is to say, when the first time interval includes multiple time slots or multiple listening spans, dynamic adjustment of mapping priorities on some time slots or listening spans in the first time interval can be implemented.
  • the above-mentioned M is an integer smaller than K
  • the above-mentioned M+1 is an integer smaller than or equal to K.
  • the above CORESET monitoring rule includes:
  • the first CORESET is associated with a second SS set, and the second SS set is based on the first mapping rule in the first CORESET
  • the overbooking rule (ie, the mapping rule) applicable to the PDCCH repetition scheme according to the embodiment of the present application will be described below with reference to specific examples.
  • the protocol stipulates that the mapping priority conditions are: (I) the mapping priority of the CSS set is higher than that of the USS set; (II) the smaller the SS setindex, the higher the mapping priority; (III) the mapping priority including the above repeated transmission The higher the number of repetitions of the PDCCH candidate, the higher the priority of the SS set.
  • the sequence of UE detecting the search space set in a time slot is:
  • the protocol stipulates that the mapping priority conditions are: (i) the mapping priority of the CSS set is higher than that of the USS set; (ii) the smaller the SS setindex, the higher the mapping priority; (iii) the above-mentioned repeated transmission is included The higher the number of repetitions of the PDCCH candidate, the higher the priority of the SS set; (iv) the number of detected SS sets.
  • the priority of the current SS set is determined according to the number of SS sets detected before the current time slot or the monitoring span.
  • the network configures all PDCCHcandidates in USS set1 for repeated transmission, and the number of repetitions is 3, which are repeated in 3 time slots respectively.
  • the priority of the USS set1 in the first time slot of transmission is determined according to the above conditions i, ii, and iii, and the priority of the USS set1 is moved one bit backward (lowered) or forward in the next time slot of repeated transmission. Move one bit (raise) until the priority of this USS set1 is lowered to the lowest or raised to the highest, or all 3 transfers have been completed.
  • an embodiment of the present application provides a method for monitoring a physical downlink control channel, which is performed by a network side device, and the method includes the following process steps:
  • Step 301 According to the first mapping rule, transmit the candidate physical downlink control channel PDCCH within a first time interval, where the first time interval includes K time slots or K listening spans, and K is an integer greater than or equal to 1; wherein , the first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; when the resources of the N control resource sets CORESET overlap on the PDCCH monitoring opportunity The CORESET monitoring rule, where N is an integer greater than 1; the mapping rule for the candidate PDCCH across time slots or across monitoring spans.
  • the above-mentioned first SS set satisfies at least one of the following: the first SS set is the SS set on the bandwidth part BWP; the first SS set is the SS set in the search space group on the BWP; the The first SS set includes at least one SS set that carries the repeated PDCCH; the first SS set does not include the SS set that carries the repeated PDCCH; wherein the repeated PDCCH is at least part of the candidate PDCCH.
  • the first SS set is the SS set on the BWP
  • the first SS set is part or all of the SS sets on the BWP of the cell, wherein the number of the above-mentioned first SS set There can be one or more. That is, for different BWPs of different cells, the first SS set may be one or more different SS sets, or may be the same one or more SS sets.
  • the above-mentioned first mapping rule is used to indicate that the first SS set in the search space group is in the first SS set in the search space group. Mapping priority within a time interval.
  • the first mapping rule is used to indicate the mapping priorities of all SS sets (that is, the first SS set) in the first SS group of the BWP within the first time interval.
  • the above-mentioned first SS set includes at least one SS set that bears the repeated PDCCH.
  • the repeated PDCCH may also be understood as the repeated DCI.
  • the repeated PDCCH or the repeated DCI may refer to at least one of the following: the same DCI size, the same DCI format, and the same DCI content.
  • the embodiments of the present application at least take into account the impact of the PDCCH repeated transmission scenario on the SS set mapping priority, etc., so that the above-mentioned first mapping rule can be used to determine the SS set carrying the repeated PDCCH.
  • the mapping priority is further applicable to the scenario of repeated PDCCH transmission.
  • the foregoing mapping priority may also be referred to as a monitoring priority.
  • the number of the above-mentioned candidate PDCCHs may be one or more.
  • the network side device may transmit the candidate PDCCH within K time slots or K listening spans (ie, the first time interval) according to the first mapping rule.
  • the first mapping rule specifies the mapping priority of the first SS set within the first time interval.
  • the first mapping rule is not only applicable to the determination of the SS set mapping priority on one time slot or one monitoring span and the monitoring of candidate PDCCHs, but also applicable to the SS set mapping priority on multiple time slots or multiple monitoring spans Level determination and monitoring of candidate PDCCHs.
  • the first mapping rule can be used to indicate at least one of the following: the mapping priority of the first SS set within the above-mentioned first time interval; when multiple (that is, N) CORESETs have overlapping resources on the PDCCH monitoring opportunity CORESET monitoring rules; mapping rules for the candidate PDCCH across time slots or across monitoring spans.
  • an SS set mapping rule (or a pre-qualified rule) that can be applied to a time slot greater than or equal to 1 time slot or a monitoring span is given, so that it can be applied to a time slot greater than or equal to 1 monitoring span.
  • this embodiment can also provide the monitoring rules of the CORESET that are applicable when multiple CORESET resources conflict.
  • the candidate PDCCHs within the first time interval may include duplicate candidate PDCCHs or do not include duplicate candidate PDCCHs.
  • each candidate PDCCH is carried by a corresponding SS set.
  • the candidate PDCCHs in each of the above-mentioned first time intervals may be different or the same candidate PDCCHs. Further optional, therefore, in different first time intervals, the candidate PDCCH may contain duplicate PDCCHs or may not contain duplicate PDCCHs. Further optionally, in the case that the candidate PDCCHs within the above-mentioned first time interval include the repeated candidate PDCCHs, the repeated candidate PDCCHs may refer to the repeated transmission or repeated transmission candidate PDCCHs.
  • the embodiments of the present application at least take into account the impact of the PDCCH repeated transmission scenario on the SS set mapping priority, etc., so that the above-mentioned first mapping rule is further applicable to the PDCCH repeated transmission scenario.
  • the value of the above K is the maximum number of repetitions of the PDCCH repeated in all cross-slots or all cross-monitoring spans of the BWP of the cell.
  • the SS set where the above-mentioned repeated candidate PDCCHs are located includes but is not limited to the terminal-specific search space set USS set and/or the first type of public search space set CSS set.
  • CSS set can be Type 3 CSS set.
  • the N CORESETs have the same or different QCL type D attributes.
  • the method for monitoring the PDCCH in this embodiment of the present application may further include at least one of the following:
  • the network side device can configure the maximum number of candidate PDCCHs to be monitored in one time slot or one monitoring span, or the network side device can configure the maximum number of candidate PDCCHs to be monitored in multiple time slots or multiple monitoring spans .
  • the first mapping rule indicates the mapping priority of the first SS set within the first time interval
  • the first SS set is in the first time interval.
  • Mapping priority within the first time interval determined by at least one of the following:
  • the type of the first SS set may be determined according to the type of the SS set, wherein the type of the first SS set includes the CSS set or the USS set.
  • the mapping priority of the CSS set may be higher than the mapping priority of the USS set; in another example, the mapping priority of the CSS set may be lower than the mapping priority of the USS set.
  • the index value of the first SS set can be determined according to the size of the index value of the SS set. In one example, the larger the index value of the SS set, the lower the mapping priority of the SS set. In another example, the smaller the index value of the SS set, the lower the mapping priority of the SS set.
  • the mapping priority of the SS set can be determined according to the number of repetitions of the SS set. In one example, it may be that the greater the number of repetitions of the SS set, the higher the mapping priority of the SS set.
  • the number of repetitions of the first SS set may correspond to different values in scenarios repeated in different units, including but not limited to the following situations:
  • the number of repetitions of the first SS set is equal to the number of repetitions of the first SS set. That is to say, when the first SS set is repeated according to the SS set, the number of repetitions of the first SS set is equal to the number of repetitions of the first SS set.
  • the number of repetitions of the first SS set is: all ALs configured in the first SS set are repeated The maximum number of AL repetitions among the times, or the sum of all AL repetitions configured in the first SS set. That is to say, when the first SS set is repeated according to the aggregation level AL, the number of repetitions of the first SS set is: the AL with the largest repetition number of all the ALs configured in the first SS set The number of repetitions, or the sum of the repetitions of all ALs configured in the first SS set.
  • the number of repetitions of the first SS set is: the repetition of all the DCI formats configured in the first SS set The maximum number of repetitions of the DCI format among the times, or the sum of the repetitions of all the DCI formats configured in the first SS set. That is to say, when the first SS set is repeated according to the DCI format, the number of repetitions of the first SS set is: the largest DCI format among all the repetition times of the DCI format configured in the first SS set The number of repetitions, or the sum of all the repetitions of the DCI format configured in the first SS set.
  • the mapping priority of the SS set can be determined according to the number of completed repetitions of the SS set. In one example, it may be that the more times the SS set has been repeated, the lower the mapping priority of the SS set.
  • Network side device configuration wherein the first SS set is scrambled by a specific wireless network temporary identifier RNTI or contains a specific downlink control information format DCI format. That is to say, the mapping priority of the first SS set scrambled by a specific wireless network temporary identifier RNTI or containing a specific downlink control information format DCI format can be determined by way of configuration on the network side. In an example, when the first SS set is scrambled by the P-RNTI, the network side device can configure its mapping priority to be the lowest.
  • the first SS set is scrambled by a specific wireless network temporary identifier RNTI or contains a specific downlink control information format DCI format. That is to say, the mapping priority of the first SS set scrambled by a specific RNTI or containing a specific DCI format can be determined in a manner agreed in the protocol. In an example, when the first SS set is scrambled by the P-RNTI, its mapping priority may be the lowest according to the protocol.
  • the mapping priority of the SS set is determined by multiple conditions in the above conditions (1), (2), (3), (4), (5), (6), the condition (1) ), (2), (3), (4), (5), (6) can also have priority ordering, for example, the priority of these conditions can be (1)>(2)>( 3)>(4)>(5)>(6), which may be other priority orders, which are not specifically limited here.
  • the mapping priority of the first SS set in the first time interval is determined by the type of the first SS set, the index value of the first SS set and the first SS set
  • the number of repetitions is determined by multiple mapping conditions.
  • the multiple mapping conditions may be: the mapping priority of the CSS set in the type of the agreed SS set is higher than the mapping priority of the USS set; the smaller the index value of the agreed SS set, the higher the mapping priority of the SS set; It is agreed that the greater the number of repetitions of the SS set, the higher the mapping priority of the SS set.
  • the priority order among the above multiple mapping conditions is: (1)>(3)>(2).
  • the existing SS sets are as follows: USS set1, repetition times 2; USS set2, repetition times 3; USS set3 repetition times 2; CSS set1, repetition times 2; CSS set2, repetition times 1. Then, according to the above three conditions, the priority order of SS set is uniquely determined: CSS set1>CSS set2>USS set2>USS set1>USS set3.
  • the mapping priority of the first SS set in the first time interval is determined by the type of the first SS set, the index value of the first SS set and the first SS set
  • the number of completed repetitions of the set is determined by multiple mapping conditions.
  • the multiple mapping conditions may be that the mapping priority of the CSS set in the type of the agreed SS set is higher than the mapping priority of the USS set; the smaller the index value of the SS set is, the higher the priority of the SS set is; the agreed SS set has a higher priority; The higher the number of completed repetitions, the lower the priority.
  • the existing SS sets are as follows: USS set1, the number of repetitions completed is 2; USS set2, the number of repetitions completed is 3; USS set3, the number of repetitions completed is 2; CSS set1, the number of repetitions completed is 2; CSS set2, the number of repetitions completed is 1. Then, according to the above three conditions, the priority order of SS set is uniquely determined as: CSS set2>CSS set1>USS set1>USS set2>USS set2.
  • the mapping priority of the first SS set within the first time interval is determined by the type of the first SS set, the index value of the first SS set, the first SS set
  • the number of repetitions of the set and the number of completed repetitions of the first SS set are determined by multiple mapping conditions.
  • the multiple mapping conditions may be that the mapping priority of the CSS set in the type of the agreed SS set is higher than the mapping priority of the USS set; the smaller the index value of the SS set is, the higher the priority of the SS set is; the agreed SS set has a higher priority; The higher the number of repetitions and the number of completed repetitions, the higher the priority.
  • the existing SS sets are as follows: USS set1, repetitions 3, completed repetitions 2; USS set2, repetitions 3, completed repetitions 3; USS set3, repetitions 2, completed repetitions 2; CSS set1, repetitions 4.
  • the number of completed repetitions is 2; CSS set2, the number of repetitions is 3, and the number of completed repetitions is 1.
  • the priority order of SS set is uniquely determined: CSS set1>CSS set2>USS set2>USS set1>USS set3.
  • mapping priority of the first SS set within the first time interval at least the number of repetitions of the first SS set and/or the number of completed repetitions of the first SS set can be considered, so that the indication can be made.
  • the above-mentioned mapping rule for mapping priorities that is, the first mapping rule, is applicable to the scenario of PDCCH repeated transmission (PDCCH enhancement).
  • protocol agreement in this embodiment of the present application may refer to a pre-appointment, a pre-definition, or a pre-stipulation.
  • the above CORESET monitoring rule includes:
  • the first CORESET is associated with a second SS set, and the second SS set is based on the first mapping rule in the first CORESET
  • the PDCCH monitoring method in the embodiment of the present application may further include the following content:
  • the candidate physical downlink control channel PDCCH Before transmitting the candidate physical downlink control channel PDCCH within the first time interval according to the first mapping rule, receive indication information reported by the terminal equipment, where the indication information is used to indicate whether the terminal equipment supports the first mapping rule.
  • the candidate physical downlink control channel PDCCH within the first time interval according to the first mapping rule before transmitting the candidate physical downlink control channel PDCCH within the first time interval according to the first mapping rule, it may receive in advance whether it supports the first mapping rule reported by the terminal equipment, so as to report according to the terminal equipment. According to the specific situation, configure the SS set.
  • the indication information is used to indicate whether the terminal device supports the first mapping rule when the first time interval is greater than or equal to two time slots or two listening spans.
  • the execution subject may be a monitoring device for a physical downlink control channel, or, in the monitoring device for a physical downlink control channel, a method for monitoring A control module that executes the monitoring method of the physical downlink control channel.
  • the method for monitoring the physical downlink control channel performed by the monitoring device for the physical downlink control channel is taken as an example to describe the monitoring device for the physical downlink control channel provided by the embodiment of the present application.
  • an embodiment of the present application provides an apparatus 400 for monitoring a physical downlink control channel, and the apparatus 400 for monitoring a physical downlink control channel includes:
  • the monitoring module 401 is configured to monitor a candidate physical downlink control channel PDCCH within a first time interval according to a first mapping rule, where the first time interval includes K time slots or K monitoring spans, and K is greater than or equal to 1 Integer; wherein, the first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; the occurrence of N control resource sets CORESET on the PDCCH monitoring opportunity CORESET monitoring rule when resources overlap, wherein N is an integer greater than 1; the mapping rule of the candidate PDCCH across time slots or across monitoring spans.
  • the above-mentioned first SS set satisfies at least one of the following:
  • the first SS set is the SS set on the bandwidth part BWP; the first SS set is the SS set in the search space group on the BWP; the first SS set includes at least one SS set that bears a repeated PDCCH; The first SS set does not include an SS set bearing a repeated PDCCH; wherein the repeated PDCCH is at least part of the candidate PDCCH.
  • the apparatus 400 for monitoring a physical downlink control channel in this embodiment of the present application at least one of the following is configured by a network side device or stipulated in a protocol:
  • the maximum monitoring number of candidate PDCCHs within the first time interval the maximum number of non-overlapping control channel elements CCEs within the first time interval.
  • the mapping priority of the first SS set within the first time interval is determined by at least one of the following:
  • the number of repetitions of the first SS set is equal to the first SS set.
  • the number of repetitions of the SS set; when the first SS set is repeated according to the aggregation level AL, the number of repetitions of the first SS set is: the maximum number of repetitions of all the ALs configured in the first SS set The number of repetitions of the AL, or the sum of the number of repetitions of all the ALs configured in the first SS set; when the first SS set is repeated according to DCI format, the number of repetitions of the first SS set is: The maximum number of repetitions of DCI format in the number of repetitions of all DCI formats configured in the first SS set, or the sum of the number of repetitions of all DCI formats configured in the first SS set.
  • the device 400 for monitoring a physical downlink control channel in this embodiment of the present application if the repetition times of the first SS set is larger, the index value of the first SS set is larger; or if the The smaller the number of repetitions of the first SS set, the larger the index value of the first SS set.
  • the device 400 for monitoring a physical downlink control channel in this embodiment of the present application may further include a processing module, where the processing module is configured to perform one of the following operations:
  • the above-mentioned N CORESETs have the same or different quasi-co-located QCL type D attributes.
  • the above-mentioned CORESET monitoring rule includes:
  • the first CORESET is associated with a second SS set, and the second SS set is based on the first mapping rule in the first CORESET
  • the device 400 for monitoring the physical downlink control channel in this embodiment of the present application may further include:
  • a reporting module configured to report indication information before monitoring the candidate physical downlink control channel PDCCH within the first time interval according to the first mapping rule, where the indication information is used to indicate whether the terminal device supports the first mapping rules.
  • the above-mentioned indication information is used to indicate whether the terminal device supports when the first time interval is greater than or equal to two time slots or two The first mapping rule when monitoring spans.
  • the above-mentioned candidate PDCCHs include repeated candidate PDCCHs.
  • the device 400 for monitoring the physical downlink control channel in this embodiment of the present application may further include:
  • a detection module configured to perform joint detection and/or independent detection on the candidate PDCCH within the first time interval.
  • the SS set where the candidate PDCCH is located includes a terminal-specific search space set USS set and/or a common search space set CSS set.
  • the terminal device may monitor candidate PDCCHs within K time slots or K monitoring spans (ie, the first time interval) according to the first mapping rule.
  • the first mapping rule specifies the mapping priority of the first SS set within the first time interval.
  • the first mapping rule is not only applicable to the determination of the SS set mapping priority on one time slot or one monitoring span and the monitoring of candidate PDCCHs, but also applicable to the SS set mapping priority on multiple time slots or multiple monitoring spans Level determination and monitoring of candidate PDCCHs.
  • the first mapping rule can be used to indicate at least one of the following: the mapping priority of the first SS set within the above-mentioned first time interval; when multiple (that is, N) CORESETs have overlapping resources on the PDCCH monitoring opportunity CORESET monitoring rules; mapping rules for the candidate PDCCH across time slots or across monitoring spans.
  • an SS set mapping rule (or a pre-qualified rule) that can be applied to a time slot greater than or equal to 1 time slot or a monitoring span is given, so that it can be applied to a time slot greater than or equal to 1 monitoring span.
  • this embodiment can also provide the monitoring rules of the CORESET that are applicable when multiple CORESET resources conflict.
  • the device for monitoring the physical downlink control channel in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal device.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include, but is not limited to, the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machine, or self-service machine, etc., which are not specifically limited in the embodiments of the present application.
  • the device for monitoring the physical downlink control channel in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the device for monitoring the physical downlink control channel provided by the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the execution subject may be the monitoring device of the physical downlink control channel, or, the method used in the monitoring device of the physical downlink control channel.
  • the method for monitoring the physical downlink control channel performed by the monitoring device for the physical downlink control channel is taken as an example to describe the monitoring device for the physical downlink control channel provided by the embodiment of the present application.
  • an embodiment of the present application provides an apparatus 500 for monitoring a physical downlink control channel, and the apparatus 500 for monitoring a physical downlink control channel includes:
  • a transmission module 501 configured to transmit a candidate physical downlink control channel PDCCH in a first time interval according to a first mapping rule, where the first time interval includes K time slots or K listening spans, and K is greater than or equal to 1 Integer; wherein, the first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; the occurrence of N control resource sets CORESET on the PDCCH monitoring opportunity CORESET monitoring rule when resources overlap, wherein N is an integer greater than 1; the mapping rule of the candidate PDCCH across time slots or across monitoring spans.
  • the above-mentioned first SS set satisfies at least one of the following:
  • the first SS set is the SS set on the bandwidth part BWP; the first SS set is the SS set in the search space group on the BWP; the first SS set includes at least one SS set that bears a repeated PDCCH; The first SS set does not include an SS set bearing a repeated PDCCH; wherein the repeated PDCCH is at least part of the candidate PDCCH.
  • the device 500 for monitoring a physical downlink control channel in this embodiment of the present application may further include a configuration module, where the configuration module is configured to:
  • the mapping priority of the first SS set within the first time interval is determined by at least one of the following:
  • the number of repetitions of the first SS set is equal to the first SS set.
  • the number of repetitions of the SS set; when the first SS set is repeated according to the aggregation level AL, the number of repetitions of the first SS set is: the maximum number of repetitions of all the ALs configured in the first SS set The number of repetitions of the AL, or the sum of the number of repetitions of all the ALs configured in the first SS set; when the first SS set is repeated according to DCI format, the number of repetitions of the first SS set is: The maximum number of repetitions of DCI format in the number of repetitions of all DCI formats configured in the first SS set, or the sum of the number of repetitions of all DCI formats configured in the first SS set.
  • the device 500 for monitoring a physical downlink control channel in this embodiment of the present application, if the repetition times of the first SS set is larger, the index value of the first SS set is larger; or if the The smaller the number of repetitions of the first SS set, the larger the index value of the first SS set.
  • the above-mentioned N CORESETs have the same or different quasi-co-located QCL type D attributes.
  • the above CORESET monitoring rule includes:
  • the first CORESET is associated with a second SS set, and the second SS set is based on the first mapping rule in the first CORESET
  • the device 500 for monitoring the physical downlink control channel in this embodiment of the present application may further include:
  • a receiving module configured to receive the indication information reported by the terminal equipment before transmitting the candidate physical downlink control channel PDCCH within the first time interval according to the first mapping rule, where the indication information is used to indicate whether the terminal equipment supports the first mapping rule.
  • the indication information is used to indicate whether the terminal device supports when the first time interval is greater than or equal to two time slots or two time slots. the first mapping rule when a monitoring span is used.
  • the above-mentioned candidate PDCCHs include repeated candidate PDCCHs.
  • the SS set where the candidate PDCCH is located is the terminal-specific search space set USS set and/or the public search space set CSS set.
  • the network side device may transmit the candidate PDCCH within K time slots or K listening spans (ie, the first time interval) according to the first mapping rule.
  • the first mapping rule specifies the mapping priority of the first SS set within the first time interval.
  • the first mapping rule is not only applicable to the determination of the SS set mapping priority on one time slot or one monitoring span and the monitoring of candidate PDCCHs, but also applicable to the SS set mapping priority on multiple time slots or multiple monitoring spans determination and monitoring of candidate PDCCHs.
  • the first mapping rule can be used to indicate at least one of the following: the mapping priority of the first SS set within the above-mentioned first time interval; when multiple (that is, N) CORESETs have overlapping resources on the PDCCH monitoring opportunity CORESET monitoring rules; mapping rules for the candidate PDCCH across time slots or across monitoring spans.
  • an SS set mapping rule (or a pre-qualified rule) that can be applied to a time slot greater than or equal to 1 time slot or a monitoring span is given, so that it can be applied to a time slot greater than or equal to 1 monitoring span.
  • this embodiment can also provide the monitoring rules of the CORESET that are applicable when multiple CORESET resources conflict.
  • the device for monitoring the physical downlink control channel in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a network-side device.
  • the apparatus may be a network side device.
  • the network-side device may include, but is not limited to, the types of the network-side device 12 listed above.
  • the device for monitoring the physical downlink control channel in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the device for monitoring the physical downlink control channel provided by the embodiment of the present application can implement each process implemented by the method embodiment in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • an embodiment of the present application further provides a communication device 600, including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601,
  • a communication device 600 including a processor 601, a memory 602, a program or instruction stored in the memory 602 and executable on the processor 601
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each process of the above-mentioned embodiment of the method for monitoring the physical downlink control channel corresponding to FIG. 2 can be realized, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device
  • the program or instruction is executed by the processor 601
  • each process of the above-mentioned embodiment of the method for monitoring the physical downlink control channel corresponding to FIG. 3 can be realized, and the same technical effect can be achieved. In order to avoid repetition , which will not be repeated here.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710 and other components .
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through a power management system, so as to manage charging, discharging, and power consumption through the power management system management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or less components than shown, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processor (Graphics Processing Unit, GPU) 7041 and a microphone 7042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 706 may include a display panel 7061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 701 receives the downlink data from the network side device, and then processes it to the processor 710; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 709 may be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a storage program or instruction area and a storage data area, wherein the storage program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM) ), erasable programmable read-only memory (ErasablePROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • ErasablePROM ErasablePROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 710 may include one or more processing units; optionally, the processor 710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 710.
  • the processor 710 is configured to monitor a candidate physical downlink control channel PDCCH within a first time interval according to a first mapping rule, where the first time interval includes K time slots or K monitoring spans, where K is greater than or equal to Integer of 1; wherein, the first mapping rule is used to indicate at least one of the following: the mapping priority of the first search space set SS set within the first time interval; N control resource sets on the PDCCH monitoring opportunity CORESET monitoring rule when resources overlap in CORESET, wherein, N is an integer greater than 1; the mapping rule of the candidate PDCCH across time slots or across monitoring spans.
  • the terminal device may monitor candidate PDCCHs within K time slots or K monitoring spans (ie, the first time interval) according to the first mapping rule.
  • the first mapping rule specifies the mapping priority of the first SS set within the first time interval.
  • the first mapping rule is not only applicable to the determination of the SS set mapping priority on one time slot or one monitoring span and the monitoring of candidate PDCCHs, but also applicable to the SS set mapping priority on multiple time slots or multiple monitoring spans Level determination and monitoring of candidate PDCCHs.
  • the first mapping rule can be used to indicate at least one of the following: the mapping priority of the first SS set within the above-mentioned first time interval; when multiple (that is, N) CORESETs have overlapping resources on the PDCCH monitoring opportunity CORESET monitoring rules; mapping rules for the candidate PDCCH across time slots or across monitoring spans.
  • an SS set mapping rule (or a pre-qualified rule) that can be applied to a time slot greater than or equal to 1 time slot or a monitoring span is given, so that it can be applied to a time slot greater than or equal to 1 monitoring span.
  • this embodiment can also provide the monitoring rules of the CORESET that are applicable when multiple CORESET resources conflict.
  • the radio frequency unit 701 is configured to, before monitoring the candidate physical downlink control channel PDCCH within the first time interval according to the first mapping rule, report indication information, where the indication information is used to indicate whether the first a mapping rule.
  • the terminal device may report in advance whether it supports the first mapping rule, so that the network side device can Configure the SS set according to the specific situation reported by the terminal device.
  • the network side device can configure the SS set according to the reported content according to the first mapping rule, so that the terminal device can further configure the SS set according to the reported content.
  • the first mapping rule detects candidate PDCCHs within the first time interval.
  • the processor 710 is configured to perform one of the following operations: adjust the first SS set according to the number of completed repetitions of the first SS set in the first M time slots of the K time slots The mapping priority of set on the M+1th time slot in the K time slots; according to the completed repetition times of the first SS set in the first M listening spans among the K listening spans , adjust the mapping priority of the first SS set on the M+1 th monitoring span in the K monitoring spans.
  • the first M time slots or K monitoring spans of the K time slots may be monitored according to the The number of completed repetitions of the SS set within the M listening spans, dynamically adjust the mapping priority on the subsequent time slots in the K time slots or the listening spans in the K listening spans, such as the M+1th time slot or M+1 Mapping priority on the listening span. That is to say, when the first time interval includes multiple time slots or multiple listening spans, dynamic adjustment of mapping priorities on some time slots or listening spans in the first time interval can be implemented.
  • the network device 800 includes: an antenna 801 , a radio frequency device 802 , and a baseband device 803 .
  • the antenna 801 is connected to the radio frequency device 802 .
  • the radio frequency device 802 receives information through the antenna 801, and sends the received information to the baseband device 803 for processing.
  • the baseband device 803 processes the information to be sent and sends it to the radio frequency device 802
  • the radio frequency device 802 processes the received information and sends it out through the antenna 801 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 803 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 803 .
  • the baseband apparatus 803 includes a processor 804 and a memory 805 .
  • the baseband device 803 may include, for example, at least one baseband board on which a plurality of chips are arranged, as shown in FIG. 80 , one of the chips is, for example, the processor 804 , which is connected to the memory 805 to call a program in the memory 805 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 803 may further include a network interface 806 for exchanging information with the radio frequency device 802, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention further includes: instructions or programs stored in the memory 805 and executable on the processor 804, and the processor 804 invokes the instructions or programs in the memory 805 to execute the modules shown in FIG. 5 .
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each of the foregoing embodiments of the method for monitoring a physical downlink control channel is implemented. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal or the network side device described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a computer program product, where the computer program product includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being When executed, the processor implements each process of the above-mentioned corresponding embodiments of the method for monitoring the physical downlink control channel, and can achieve the same technical effect. To avoid repetition, details are not described here.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a terminal device or a network-side device program or instruction to implement the above
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run a terminal device or a network-side device program or instruction to implement the above
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种物理下行控制信道的监听方法、装置和设备,属于通信领域,该方法包括:根据第一映射规则,监听第一时间间隔内的候选PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;所述第一映射规则用于指示以下至少一项:第一SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个CORESET发生资源重叠时的CORESET监听规则,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。

Description

物理下行控制信道的监听方法、装置和设备
交叉引用
本申请要求在2020年08月07日提交中国专利局、申请号为202010791677.7、发明名称为“物理下行控制信道的监听方法、装置和设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种物理下行控制信道的监听方法、装置和设备。
背景技术
在移动通信系统中,当用户设备(User Equipment,UE,也可称为终端设备、终端等)被配置有不止一个搜索空间(Search Space,SS)集(set)时,由于每个SS set的监听时机(monitoring occasion)都是独立配置的,候选物理下行控制信道(Physical Downlink Control Channelcandidates,PDCCH candidates)或控制信道元素(Control Channel Element,CCE)的数量在时隙(slot)之间变化。因此,允许网络侧设备(比如基站)为UE配置每个时隙的或每个监听跨度(span)的候选PDCCH或CCE的数量超过UE的能力限制,即超额限定(overbooking)。对于每个时隙或每个监听跨度,UE和网络侧设备需要约定特定的SS set映射规则,根据该映射规则来确定SS set优先级大小并按照SS set优先级来映射每个时隙或每个监听跨度中的候选PDCCH和CCE。
但是,上述现有SS set映射规则,并不适用于PDCCH重复传输的场景,且并不适用于大于1个时隙或1个监听跨度下的候选PDCCH监听。
发明内容
本申请实施例提供了一种物理下行控制信道的监听方法、装置和设备,以能够解决现有的SS set映射规则无法适用于PDCCH重复传输场景,且不适用于大于1个时隙或1个监听跨度上的候选PDCCH监听的问题。
第一方面,提供了一种物理下行控制信道的监听方法,应用于终端设备,所述方法包括:
根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
第二方面,提供了一种物理下行控制信道的监听装置,所述装置包括:
监听模块,用于根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
第三方面,提供了一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种物理下行控制信道的监听方法,应用于网络侧设备,所述方法包括:
根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等 于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
第五方面,提供了一种物理下行控制信道的监听装置,所述装置包括:
传输模块,用于根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
第六方面提供了一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第四方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者所述程序或指令被处理器执行时实现如第四方面所述的方法的步骤。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被处理器执行时实现如第四方面所述的方法的步骤,或者所述程序或指令被处理器执行时实现如第四方面所述的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行终端设备或网络侧设备程序或指令,实现如第一方面所述的方法的步骤,或者实现如第四方面所述的方法的步骤。
在本申请实施例中,终端设备可以根据第一映射规则监听K个时隙或K个监听跨度(即第一时间间隔)内的候选PDCCH。该第一映射规则规定了第一SS set在该第一时间间隔内的映射优先级。同时,该第一映射规则不仅适用于一个时隙或一个监听跨度上的SS set映射优先级的确定以及候选PDCCH的监听,还可以适用于多个时隙或多个监听跨度上SS set映射优先级的确定及候选PDCCH的监听。具体地,该第一映射规则可以用于指示以下至少一项:第一SS set在上述第一时间间隔内的映射优先级;在PDCCH监听时机上多个(即N个)CORESET发生资源重叠时的CORESET监听规则;所述候选PDCCH跨时隙或跨监听跨度的映射规则。本申请实施例,给出一种能够适用于大于或等于1个时隙或1个监听跨度内的SS set映射规则(或超前限定规则),以能够适用于大于1个时隙或1个监听跨度上的候选PDCCH监听。同时,该申请实施例还可以给出多个CORESET资源冲突时,适用的CORESET的监听规则。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例中一种物理下行控制信道的监听方法的流程示意图;
图3是本申请实施例中另一种物理下行控制信道的监听方法的流程示意图;
图4是本申请实施例中一种物理下行控制信道的监听装置的结构示意图;
图5是本申请实施例中另一种物理下行控制信道的监听装置的结构示意图;
图6是本申请实施例中一种通信设备的结构示意图;
图7是本申请实施例中一种终端设备的结构示意图;
图8是本申请实施例中一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如 第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile InternetDevice,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle UE,VUE)、行人终端(Pedestrian UE,PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的副链路反馈资源配置方法进行详细地说明。
参见图2所示,本申请实施例提供一种物理下行控制信道的监听方法,由终端设备执行,该方法包括以下流程步骤:
步骤201:根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听 时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
可选的,上述第一SS set满足以下至少一项:所述第一SS set为带宽部分BWP上的SS set;所述第一SS set为BWP上的搜索空间组中的SS set;所述第一SS set包含至少一个承载有重复PDCCH的SS set;所述第一SS set不包含承载有重复PDCCH的SS set;其中,所述重复PDCCH为所述候选PDCCH中的至少部分。
进一步可选的,在上述第一搜索空间集合(Search Spaceset,SS set)为带宽部分(Bandwidth Part,BWP)上的SS set的情况下,可以理解为,该第一SS set为小区的BWP上的部分或全部SS set,其中,上述第一SS set的数量可以有一个或多个。也就是说,针对不同的小区的不同的BWP,第一SS set可以是不同的一个或多个SS set,还可以是相同的一个或多个SS set。
进一步可选的,在上述第一SS set为BWP上的搜索空间组中的SS set的情况下,可以理解为,上述第一映射规则用于指示搜索空间组中的第一SS set在所述第一时间间隔内的映射优先级。在一个示例中,该第一映射规则用于指示BWP的第一个SS group中全部SS set(即第一SS set)在该第一时间间隔内的映射优先级。
进一步可选的,在上述第一SS set包含至少一个承载有重复PDCCH的SS set的情况下。其中,重复的PDCCH也可以理解为重复的DCI。进一步地,重复的PDCCH或重复的DCI可以指以下至少一项相同:DCI大小相同、DCI格式相同、DCI内容相同。如此,本申请实施例在监听候选PDCCH时,至少考虑到了PDCCH重复传输场景对SS set映射优先级等带来的影响,以使得上述第一映射规则可以用于确定承载有重复PDCCH的SS set的映射优先级,进一步适用于PDCCH重复传输的场景。可选的,上述映射优先级也可称为监听优先级。
可选的,上述候选PDCCH的数量可以是一个或多个。
在本申请实施例中,终端设备可以根据第一映射规则监听K个时隙或K个监听跨度(即第一时间间隔)内的候选PDCCH。该第一映射规则规定了第一SS set在该第一时间间隔内的映射优先级。同时,该第一映射规则不仅适用于一个时隙或一个监听跨度上的SS set映射优先级的确定以及候选PDCCH的监听,还可以适用于多个时隙或多个监听跨度上SS set映射优先级的确定及候选PDCCH的监听。具体地,该第一映射规则可以用于指示以下至少一项:第一SS set在上述第一时间间隔内的映射优先级;在PDCCH监听时机上多个(即N个)CORESET发生资源重叠时的CORESET监听规则;所述候选PDCCH跨时隙或跨监听跨度的映射规则。本申请实施例,给出一种能够适用于大于或等于1个时隙或监听跨度内的SS set映射规则(或超前限定规则),以能够适用于大于1个时隙或1个监听跨度上的候选PDCCH监听,并可以在第一SS set中包含至少一个承载有重复PDCCH的SS set时,能够适用于PDCCH重复传输的场景。同时,该实施例还可以给出多个CORESET资源冲突时,适用的CORESET的监听规则。
可选的,上述第一时间间隔内的候选PDCCH中可以包含重复的候选PDCCH或不包含重复的候选PDCCH。
需要说明的是,每个候选PDCCH由其对应的一个SS set来进行承载。在每一个上述第一时间间隔内的候选PDCCH可以是不同的或相同的候选PDCCH。进一步可选的,因此,在不同的第一时间间隔内,候选PDCCH可能包含重复的PDCCH,也可能不包含重复的PDCCH。进一步可选的,在上述第一时间间隔内的候选PDCCH中包含重复的候选PDCCH的情况下,该重复的候选PDCCH可以指重复发送的或重复传输的候选PDCCH。如此,本申请实施例在监听候选PDCCH时,至少考虑到了PDCCH重复传输场景对SS set映射优先级等带来的影响,以使得上述第一映射规则进一步适用于PDCCH重复传输的场景。
可选地,上述K的取值为所述小区的BWP的所有跨时隙或所有跨监听跨度内重复PDCCH的最大重复次数。
可选地,上述候选PDCCH所在的SS set包括但不限于终端专用搜索空间集合(UE Specific Search Spaceset,USS set)和/或的公共搜索空间集合(Common Search Spaceset,CSS set)。其中,CSS set可以是Type 3 CSS set。
可选地,在本申请实施例的PDCCH的监听方法中,还可以包括以下内容:
在所述第一时间间隔内,对所述候选PDCCH进行联合检测和/或独立检测。其中,联合检测适用于需要监听的候选PDCCH的数量为多个的情况。
例如,候选PDCCH中包括重复的候选PDCCH,该重复的候选PDCCH在第一时间间隔内重复,且第一时间间隔为多个时隙或多个监听跨度,则可以对该重复的候选PDCCH进行第一时间间隔内的联合检测。
可选地,所述N个CORESET有相同或不同的准共址(Quasi co-location,QCL)类型D属性。
可选地,在本申请实施例的PDCCH的监听方法中,还可以包括以下内容:
在所述根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH之前,上报指示信息,所述指示信息用于指示是否支持所述第一映射规则。
在本申请实施例中,终端设备在根据上述第一映射规则检测(或监听)第一时间间隔内的候选PDCCH之前,可以预先上报其自身是否支持该第一映射规则,以使网络侧设备可以根据终端设备上报的具体情况进行SS set的配置。在一个示例中,若终端设备上报其自身在所述第一时间间隔内支持上述第一映射规则,则网络侧设备可以根据上报的内容根据第一映射规则配置SS set,进一步使得终端设备可以根据该第一映射规则来检测该第一时间间隔内的候选PDCCH。
可选地,上述指示信息用于指示是否支持当所述第一时间间隔为大于或等于两个时隙或两个监听跨度时的所述第一映射规则。
可选地,在本申请实施例的PDCCH的监听方法中,以下至少一项由网络侧设备配置或协议约定:
(1)在所述第一时间间隔内候选PDCCH的最大监听数量。也就是说,可以由网络侧设备配置或协议约定一个时隙或一个监听跨度内被监听的最大候选PDCCH数量,也可以由网络侧设备配置或协议约定多个时隙或多个监听跨度内被监听的最大候选PDCCH数量。
(2)在所述第一时间间隔内不重叠的控制信道单元(Control Channel Element,CCE)的最大数量。也就是说,可以由网络侧设备配置或协议约定一个时隙或一个监听跨度内不重叠的最大CCE数量,也可以由网络侧设备配置或协议约定多个时隙或多个监听跨度内不重叠的最大CCE数量。
可选的,在本申请实施例的PDCCH的监听方法中,在所述第一映射规则指示第一SS set在所述第一时间间隔内的映射优先级时,该第一SS set在所述第一时间间隔内的映射优先级,由以下至少一项确定:
(1)所述第一SS set的类型。也就是说,SS set的映射优先级可以根据SS set的类型来确定,其中,所述第一SS set的类型包括CSS set或USS set。在一个示例中,CSS set的映射优先级可以高于USS set的映射优先级;在另一个示例中,CSS set的映射优先级可以低于USS set的映射优先级。
(2)所述第一SS set的索引值。也就是说,SS set的映射优先级可以根据SS set的索引值大小来确定。在一个示例中,可以是SS set的索引值越大,SS set的映射优先级越低。在另一个示例中,可以是SS set的索引值越小,SS set的映射优先级越低。
(3)所述第一SS set的重复次数。也就是说,SS set的映射优先级可以根据SS set的重复次数来确定。在一个示例中,可以是SS set的重复次数越大,SS set的映射优先级越高。
可选地,该第一SS set的重复次数在以不同单位重复的场景中可以对应不同的取值,包括但不限于以下几种情形:
(a)在所述第一SS set以SS set为单位进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数。也就是说,在所述第一SS set按照SS set进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数。
(b)在所述第一SS set以聚合等级(Aggregation Level,AL)为单位进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL重复次数之和。也就是说,在所述第一SS set按照聚合等级AL进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL的重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL的重复次数之和。
(c)在所述第一SS set以下行控制信息格式DCI format为单位进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format的重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format的重复次数之和。也就是说,在所述第一SS set按照DCI format进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format重复次数之和。
可选地,该第一SS set的重复次数与所述第一SS set的索引值之间可以存在一定的映射关系,具体地,若该第一SS set的重复次数越大,则该第一SS set的索引值越大;或者,若该第一SS set的重复次数越小,该第一SS set的索引值越大。进一步可选的,若该第一SS set中的多个SS set的重复次数相同,则该多个重复次数相同的SS set的索引值的映射顺序可以随机。
(4)所述第一SS set的已完成重复次数。也就是说,SS set的映射优先 级可以根据SS set的已完成重复次数来确定。在一个示例中,可以是SS set的已重复次数越多,SS set的映射优先级越低。
(5)网络侧设备配置,其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。也就是说,可以通过网络侧配置的方式确定由特定的无线网络临时标识RNTI加扰或包含特定的下行控制信息格式DCI format的所述第一SS set的映射优先级。在一个示例中,当所述第一SS set由寻呼RNTI(Paging RNTI,P-RNTI)加扰时,可以由网络侧设备配置其映射优先级最低。
(6)协议约定,其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。也就是说,可以由协议约定的方式确定由特定的RNTI加扰或包含特定的DCI format的所述第一SS set的映射优先级。在一个示例中,当所述第一SS set由P-RNTI加扰时,可以由协议约定其映射优先级最低。
可选地,当SS set的映射优先级由上述条件(1),(2),(3),(4),(5),(6)中的多个条件来确定时,条件(1),(2),(3),(4),(5),(6)之间也可以存在优先级高低排序,例如,这些条件的优先级高低可以是(1)>(2)>(3)>(4)>(5)>(6),也可以是其他优先级顺序,在此不做具体限定。
在一个示例中,所述第一SS set在所述第一时间间隔内的映射优先级,由所述第一SS set的类型、所述第一SS set的索引值和所述第一SS set的重复次数多个映射条件来确定。此时,多个映射条件分别可以是:约定SS set的类型中CSS set的映射优先级高于USS set的映射优先级;约定SS set的索引值越小该SS set的映射优先级越高;约定SS set的重复次数越大该SS set的映射优先级越高。且上述多个映射条件间的优先级排序为:(1)>(3)>(2)。现有如下SS set:USS set1,重复次数2;USS set2,重复次数3;USS set3重复次数2;CSS set1,重复次数为2;CSS set2,重复次数为1。则按照 上述三个条件来唯一的确定SS set优先级顺序为:CSS set1>CSS set2>USS set2>USS set1>USS set3。
在另一个示例中,所述第一SS set在所述第一时间间隔内的映射优先级,由所述第一SS set的类型、所述第一SS set的索引值和所述第一SS set的已完成重复次数多个映射条件来确定。此时,多个映射条件分别可以是约定SS set的类型中CSS set的映射优先级高于USS set的映射优先级;约定SS set的索引值越小该SS set优先级越高;约定SS set的已完成重复次数越大优先级越低。且(1)>(4)>(2)。现有如下SS set:USS set1,已完成重复次数2;USS set2,已完成重复次数3;USS set3已完成重复次数2;CSS set1,已完成重复次数为2;CSS set2,已完成重复次数为1。则按照上述三个条件来唯一的确定SS set优先级顺序为:CSS set2>CSS set1>USS set1>USS set2>USS set2。
在又一个示例中,所述第一SS set在所述第一时间间隔内的映射优先级,由所述第一SS set的类型、所述第一SS set的索引值、所述第一SS set的重复次数和所述第一SS set的已完成重复次数多个映射条件来确定。此时,多个映射条件分别可以是约定SS set的类型中CSS set的映射优先级高于USS set的映射优先级;约定SS set的索引值越小该SS set优先级越高;约定SS set的重复次数和已完成重复次数越大优先级越高。且(1)>(3)>(4)>(2)。现有如下SS set:USS set1,重复次数3,已完成重复次数2;USS set2,重复次数3,已完成重复次数3;USS set3,重复次数2,已完成重复次数2;CSS set1,重复次数4,已完成重复次数为2;CSS set2,重复次数3,已完成重复次数为1。则按照上述三个条件来唯一的确定SS set优先级顺序为:CSS set1>CSS set2>USS set2>USS set1>USS set3。
可以理解,在确定第一SS set在第一时间间隔内的映射优先级时,至少考虑所述第一SS set的重复次数和/或所述第一SS set的已完成重复次数,可以使指示上述映射优先级的映射规则即第一映射规则适用于PDCCH重复传 输(PDCCH增强)的场景。
需要说明的是,本申请实施例中的协议约定可以指预先约定、预先定义或预先规定。
可选地,在本申请实施例的PDCCH的监听方法中,还可以包括以下内容之一:
(1)根据所述第一SS set在所述K个时隙中的前M个时隙内的已完成重复次数,调整所述第一SS set在所述K个时隙中的第M+1个时隙上的映射优先级。
(2)根据所述第一SS set在所述K个监听跨度中的前M个监听跨度内的已完成重复次数,调整所述第一SS set在所述K个监听跨度中的第M+1个监听跨度上的映射优先级。
在本申请实施例中,根据上述第一映射规则监听K个时隙或K个监听跨度内的候选PDCCH的过程中,可以根据该K个时隙的前M个时隙或K个监听跨度中M个监听跨度内SS set的已完成重复次数,动态调整该K个时隙中后续时隙或K个监听跨度中监听跨度上的映射优先级,比如第M+1个时隙或M+1监听跨度上的映射优先级。也就是说,在该在第一时间间隔包括多个时隙或多个监听跨度时,可以实现对该第一时间间隔中部分时隙或监听跨度上的映射优先级动态调整。
其中,上述M为小于K的整数,上述M+1为小于或等于K的整数。
可选地,在本申请实施例的PDCCH的监听方法中,上述CORESET监听规则,包括:
在所述PDCCH监听时机上,监听所述N个CORESET中的第一CORESET,所述第一CORESET与第二SS set关联,所述第二SS set是基于所述第一映射规则在所述第一SS set中确定的最高映射优先级的SS set。
下面结合具体示例对本申请实施例的适用于PDCCH repetition方案的overbooking规则(即映射规则)进行说明。
在一个具体示例中,协议约定映射优先级条件为:(I)CSS set的映射优先级高于USS set;(II)SS setindex越小的映射优先级越高;(III)包括上述重复传输的PDCCH candidate的重复次数越高的SS set优先级越高。
可选地,网络配置CSS set 2中AL=4的PDCCHcandidate进行重复传输,且重复次数为2;CSS set 1中未配置PDCCHcandidate的重复传输;USS set1中全部PDCCHcandidate进行重复传输,且重复次数为3;USS set3中DCI format 1-1和DCI format 0-1进行重复传输,重复次数为3。USS set2中没有配置PDCCHcandidate的重复传输。且K=1,第一时间间隔为1个时隙。
按照本申请实施例中的映射规则,UE在一个时隙内检测搜索空间集的顺序为:
Option 1:CSS set2>CSS set1>USS set 1>USS set3>USS set2(采用条件I、II、III);
Option 2:CSS set1>CSS set2>USS set 1>USS set2>USS set3(采用条件I、II);
Option 3:USS set 1>USS set3>CSS set2>CSS set1>USS set2(采用条件III)。
在另一个具体示例中,协议约定映射优先级条件为:(i)CSS set的映射优先级高于USS set;(ii)SS setindex越小的映射优先级越高;(iii)包括上述重复传输的PDCCH candidate的重复次数越高的SS set优先级越高;(iv)已检测的SS set次数。
可选地,根据当前时隙或监听跨度之前已检测的SS set次数,来判断当前SS set的优先级。例如,网络配置USS set1中全部PDCCHcandidate进行重复传输,且重复次数为3,分别在3个时隙上重复。该USS set1在传输的第一个时隙内优先级按照上述条件i、ii、iii来确定,在下一个重复传输的时隙内该USS set1的优先级往后移动一位(降低)或往前移动一位(升高),直到该USS set1的优先级被降到最低或升到最高,或已经完成全部3次传输 为止。
参见图3所示,本申请实施例提供一种物理下行控制信道的监听方法,由通网络侧设备执行,该方法包括以下流程步骤:
步骤301:根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
可选地,上述第一SS set满足以下至少一项:所述第一SS set为带宽部分BWP上的SS set;所述第一SS set为BWP上的搜索空间组中的SS set;所述第一SS set包含至少一个承载有重复PDCCH的SS set;所述第一SS set不包含承载有重复PDCCH的SS set;其中,所述重复PDCCH为所述候选PDCCH中的至少部分。
可选地,在上述第一SS set为BWP上的SS set的情况下,可以理解为,该第一SS set为小区的BWP上的部分或全部SS set,其中,上述第一SS set的数量可以有一个或多个。也就是说,针对不同的小区的不同的BWP,第一SS set可以是不同的一个或多个SS set,还可以是相同的一个或多个SS set。
可选地,在上述第一SS set为BWP上的搜索空间组中的SS set的情况下,可以理解为,上述第一映射规则用于指示搜索空间组中的第一SS set在所述第一时间间隔内的映射优先级。在一个示例中,该第一映射规则用于指示BWP的第一个SS group中全部SS set(即第一SS set)在该第一时间间隔内的映射优先级。
可选地,在上述第一SS set包含至少一个承载有重复PDCCH的SS set的情况下。其中,重复的PDCCH也可以理解为重复的DCI。进一步地,重 复的PDCCH或重复的DCI可以指以下至少一项相同:DCI大小相同、DCI格式相同、DCI内容相同。如此,本申请实施例在监听候选PDCCH时,至少考虑到了PDCCH重复传输场景对SS set映射优先级等带来的影响,以使得上述第一映射规则可以用于确定承载有重复PDCCH的SS set的映射优先级,进一步适用于PDCCH重复传输的场景。可选的,上述映射优先级也可称为监听优先级。
可选地,上述候选PDCCH的数量可以是一个或多个。
在本申请实施例中,网络侧设备可以根据第一映射规则在K个时隙或K个监听跨度(即第一时间间隔)内传输候选PDCCH。该第一映射规则规定了第一SS set在该第一时间间隔内的映射优先级。同时,该第一映射规则不仅适用于一个时隙或一个监听跨度上的SS set映射优先级的确定以及候选PDCCH的监听,还可以适用于多个时隙或多个监听跨度上SS set映射优先级的确定及候选PDCCH的监听。具体地,该第一映射规则可以用于指示以下至少一项:第一SS set在上述第一时间间隔内的映射优先级;在PDCCH监听时机上多个(即N个)CORESET发生资源重叠时的CORESET监听规则;所述候选PDCCH跨时隙或跨监听跨度的映射规则。本申请实施例,给出一种能够适用于大于或等于1个时隙或1个监听跨度内的SS set映射规则(或超前限定规则),以能够适用于大于1个时隙或1个监听跨度上的候选PDCCH监听,并可以在第一SS set中包含至少一个承载有重复PDCCH的SS set时,能够适用于PDCCH重复传输的场景。同时,该实施例还可以给出多个CORESET资源冲突时,适用的CORESET的监听规则。
可选地,上述第一时间间隔内的候选PDCCH中可以包含重复的候选PDCCH或不包含重复的候选PDCCH。
需要说明的是,每个候选PDCCH由其对应的一个SS set来进行承载。在每一个上述第一时间间隔内的候选PDCCH可以是不同的或相同的候选PDCCH。进一步可选的,因此,在不同的第一时间间隔内,候选PDCCH可 能包含重复的PDCCH,也可能不包含重复的PDCCH。进一步可选的,在上述第一时间间隔内的候选PDCCH中包含重复的候选PDCCH的情况下,该重复的候选PDCCH可以指重复发送的或重复传输的候选PDCCH。如此,本申请实施例在监听候选PDCCH时,至少考虑到了PDCCH重复传输场景对SS set映射优先级等带来的影响,以使得上述第一映射规则进一步适用于PDCCH重复传输的场景。
可选地,上述K的取值为所述小区的BWP的所有跨时隙或所有跨监听跨度内重复PDCCH的最大重复次数。
进一步可选的,上述重复的候选PDCCH所在的SS set包括但不限于终端专用搜索空间集USS set和/或第一类型的公共搜索空间集CSS set。其中,CSS set可以是Type 3 CSS set。
可选地,所述N个CORESET有相同或不同的QCL类型D属性。
可选地,在本申请实施例的PDCCH的监听方法中,还可以包括以下至少一项:
(1)配置在所述第一时间间隔内候选PDCCH的最大监听数量。也就是说,可以由网络侧设备配置一个时隙或一个监听跨度内被监听的最大候选PDCCH数量,也可以由网络侧设备配置多个时隙或多个监听跨度内被监听的最大候选PDCCH数量。
(2)配置在所述第一时间间隔内不重叠的控制信道单元CCE的最大数量。也就是说,可以由网络侧设备配置一个时隙或一个监听跨度内不重叠的最大CCE数量,也可以由网络侧设备配置多个时隙或多个监听跨度内不重叠的最大CCE数量。
可选地,在本申请实施例的PDCCH的监听方法中,在所述第一映射规则指示第一SS set在所述第一时间间隔内的映射优先级时,该第一SS set在所述第一时间间隔内的映射优先级,由以下至少一项确定:
(1)所述第一SS set的类型。也就是说,SS set的映射优先级可以根据 SS set的类型来确定,其中,所述第一SS set的类型包括CSS set或USS set。在一个示例中,CSS set的映射优先级可以高于USS set的映射优先级;在另一个示例中,CSS set的映射优先级可以低于USS set的映射优先级。
(2)所述第一SS set的索引值。也就是说,SS set的映射优先级可以根据SS set的索引值大小来确定。在一个示例中,可以是SS set的索引值越大,SS set的映射优先级越低。在另一个示例中,可以是SS set的索引值越小,SS set的映射优先级越低。
(3)所述第一SS set的重复次数。也就是说,SS set的映射优先级可以根据SS set的重复次数来确定。在一个示例中,可以是SS set的重复次数越大,SS set的映射优先级越高。
可选地,该第一SS set的重复次数在以不同单位重复的场景中可以对应不同的取值,包括但不限于以下几种情形:
(a)在所述第一SS set以SS set为单位进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数。也就是说,在所述第一SS set按照SS set进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数。
(b)在所述第一SS set以聚合等级(Aggregation Level,AL)为单位进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL重复次数之和。也就是说,在所述第一SS set按照聚合等级AL进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL的重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL的重复次数之和。
(c)在所述第一SS set以下行控制信息格式DCI format为单位进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format的重复次数中最大的DCI format重复次数,或者所述第一SS set中配 置的全部DCI format的重复次数之和。也就是说,在所述第一SS set按照DCI format进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format重复次数之和。
可选地,该第一SS set的重复次数与所述第一SS set的索引值之间可以存在一定的映射关系,具体地,若该第一SS set的重复次数越大,则该第一SS set的索引值越大;或者,若该第一SS set的重复次数越小,该第一SS set的索引值越大。进一步可选的,若该第一SS set中的多个SS set的重复次数相同,则该多个重复次数相同的SS set的索引值的映射顺序可以随机。
(4)所述第一SS set的已完成重复次数。也就是说,SS set的映射优先级可以根据SS set的已完成重复次数来确定。在一个示例中,可以是SS set的已重复次数越多,SS set的映射优先级越低。
(5)网络侧设备配置,其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。也就是说,可以通过网络侧配置的方式确定由特定的无线网络临时标识RNTI加扰或包含特定的下行控制信息格式DCI format的所述第一SS set的映射优先级。在一个示例中,当所述第一SS set由P-RNTI加扰时,可以由网络侧设备配置其映射优先级最低。
(6)协议约定,其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。也就是说,可以由协议约定的方式确定由特定的RNTI加扰或包含特定的DCI format的所述第一SS set的映射优先级。在一个示例中,当所述第一SS set由P-RNTI加扰时,可以由协议约定其映射优先级最低。
可选地的,当SS set的映射优先级由上述条件(1),(2),(3),(4),(5),(6)中的多个条件来确定时,条件(1),(2),(3),(4),(5),(6)之间也可以存在优先级高低排序,例如,这些条件的优先级高低可以是(1)>(2) >(3)>(4)>(5)>(6),可以是其他优先级顺序,在此不做具体限定。
在一个示例中,所述第一SS set在所述第一时间间隔内的映射优先级,由所述第一SS set的类型、所述第一SS set的索引值和所述第一SS set的重复次数多个映射条件来确定。此时,多个映射条件分别可以是:约定SS set的类型中CSS set的映射优先级高于USS set的映射优先级;约定SS set的索引值越小该SS set的映射优先级越高;约定SS set的重复次数越大该SS set的映射优先级越高。且上述多个映射条件间的优先级排序为:(1)>(3)>(2)。现有如下SS set:USS set1,重复次数2;USS set2,重复次数3;USS set3重复次数2;CSS set1,重复次数为2;CSS set2,重复次数为1。则按照上述三个条件来唯一的确定SS set优先级顺序为:CSS set1>CSS set2>USS set2>USS set1>USS set3。
在另一个示例中,所述第一SS set在所述第一时间间隔内的映射优先级,由所述第一SS set的类型、所述第一SS set的索引值和所述第一SS set的已完成重复次数多个映射条件来确定。此时,多个映射条件分别可以是约定SS set的类型中CSS set的映射优先级高于USS set的映射优先级;约定SS set的索引值越小该SS set优先级越高;约定SS set的已完成重复次数越大优先级越低。且(1)>(4)>(2)。现有如下SS set:USS set1,已完成重复次数2;USS set2,已完成重复次数3;USS set3已完成重复次数2;CSS set1,已完成重复次数为2;CSS set2,已完成重复次数为1。则按照上述三个条件来唯一的确定SS set优先级顺序为:CSS set2>CSS set1>USS set1>USS set2>USS set2。
在又一个示例中,所述第一SS set在所述第一时间间隔内的映射优先级,由所述第一SS set的类型、所述第一SS set的索引值、所述第一SS set的重复次数和所述第一SS set的已完成重复次数多个映射条件来确定。此时,多个映射条件分别可以是约定SS set的类型中CSS set的映射优先级高于USS set的映射优先级;约定SS set的索引值越小该SS set优先级越高;约定SS set 的重复次数和已完成重复次数越大优先级越高。且(1)>(3)>(4)>(2)。现有如下SS set:USS set1,重复次数3,已完成重复次数2;USS set2,重复次数3,已完成重复次数3;USS set3,重复次数2,已完成重复次数2;CSS set1,重复次数4,已完成重复次数为2;CSS set2,重复次数3,已完成重复次数为1。则按照上述三个条件来唯一的确定SS set优先级顺序为:CSS set1>CSS set2>USS set2>USS set1>USS set3。
可以理解,在确定第一SS set在第一时间间隔内的映射优先级时,至少考虑所述第一SS set的重复次数和/或所述第一SS set的已完成重复次数,可以使指示上述映射优先级的映射规则即第一映射规则适用于PDCCH重复传输(PDCCH增强)的场景。
需要说明的是,本申请实施例中的协议约定可以指预先约定、预先定义或预先规定。
可选地,在本申请实施例的PDCCH的监听方法中,上述CORESET监听规则,包括:
在所述PDCCH监听时机上,监听所述N个CORESET中的第一CORESET,所述第一CORESET与第二SS set关联,所述第二SS set是基于所述第一映射规则在所述第一SS set中确定的最高映射优先级的SS set。
可选地,在本申请实施例的PDCCH的监听方法中,还可以包括以下内容:
在所述根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH之前,接收终端设备上报的指示信息,所述指示信息用于指示所述终端设备是否支持所述第一映射规则。
在本申请实施例中,在根据第一映射规则在第一时间间隔内传输候选物理下行控制信道PDCCH之前,可以预先接收终端设备上报的其自身是否支持该第一映射规则,以根据终端设备上报的具体情况进行SS set的配置。
可选地,所述指示信息用于指示所述终端设备是否支持当所述第一时间 间隔为大于或等于两个时隙或两个监听跨度时的所述第一映射规则。
需要说明的是,本申请实施例提供的由终端设备执行的物理下行控制信道的监听方法,执行主体可以为物理下行控制信道的监听装置,或者,该物理下行控制信道的监听装置中的用于执行物理下行控制信道的监听方法的控制模块。本申请实施例中以物理下行控制信道的监听装置执行物理下行控制信道的监听方法为例,说明本申请实施例提供的物理下行控制信道的监听装置。
参见图4所示,本申请实施例提供一种物理下行控制信道的监听装置400,该物理下行控制信道的监听装置400包括:
监听模块401,用于根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
可选的,在本申请实施例的物理下行控制信道的监听装置400中,上述第一SS set满足以下至少一项:
所述第一SS set为带宽部分BWP上的SS set;所述第一SS set为BWP上的搜索空间组中的SS set;所述第一SS set包含至少一个承载有重复PDCCH的SS set;所述第一SS set不包含承载有重复PDCCH的SS set;其中,所述重复PDCCH为所述候选PDCCH中的至少部分。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,以下至少一项由网络侧设备配置或协议约定:
在所述第一时间间隔内候选PDCCH的最大监听数量;在所述第一时间间隔内不重叠的控制信道单元CCE的最大数量。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,所述第一SS set在所述第一时间间隔内的映射优先级,由以下至少一项确定:
所述第一SS set的类型;所述第一SS set的索引值;所述第一SS set的重复次数;所述第一SS set的已完成重复次数;网络侧设备配置或协议约定,其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,在所述第一SS set按照SS set进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数;在所述第一SS set按照聚合等级AL进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL的重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL的重复次数之和;在所述第一SS set按照DCI format进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format的重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format的重复次数之和。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,若所述第一SS set的重复次数越大,则所述第一SS set的索引值越大;或者若所述第一SS set的重复次数越小,则所述第一SS set的索引值越大。
可选地,本申请实施例的物理下行控制信道的监听装置400,还可以包括处理模块,所述处理模块用于执行以下操作之一:
根据所述第一SS set在所述K个时隙中的前M个时隙内的已完成重复次数,调整所述第一SS set在所述K个时隙中的第M+1个时隙上的映射优先级;根据所述第一SS set在所述K个监听跨度中的前M个监听跨度内的已完成重复次数,调整所述第一SS set在所述K个监听跨度中的第M+1个监听跨度上的映射优先级。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,上述 N个CORESET有相同或不同的准共址QCL类型D属性。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,上述CORESET监听规则,包括:
在所述PDCCH监听时机上,监听所述N个CORESET中的第一CORESET,所述第一CORESET与第二SS set关联,所述第二SS set是基于所述第一映射规则在所述第一SS set中确定的最高映射优先级的SS set。
可选地,本申请实施例的物理下行控制信道的监听装置400,还可以包括:
上报模块,用于在所述根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH之前,上报指示信息,所述指示信息用于指示所述终端设备是否支持所述第一映射规则。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,上述指示信息用于指示所述终端设备是否支持当所述第一时间间隔为大于或等于两个时隙或两个监听跨度时的所述第一映射规则。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,上述候选PDCCH中包含重复的候选PDCCH。
可选地,本申请实施例的物理下行控制信道的监听装置400,还可以包括:
检测模块,用于在所述第一时间间隔内,对所述候选PDCCH进行联合检测和/或独立检测。
可选地,在本申请实施例的物理下行控制信道的监听装置400中,上述候选PDCCH所在的SS set包括终端专用搜索空间集合USS set和/或公共搜索空间集合CSS set。
在本申请实施例中,终端设备可以根据第一映射规则监听K个时隙或K个监听跨度(即第一时间间隔)内的候选PDCCH。该第一映射规则规定了第一SS set在该第一时间间隔内的映射优先级。同时,该第一映射规则不仅适 用于一个时隙或一个监听跨度上的SS set映射优先级的确定以及候选PDCCH的监听,还可以适用于多个时隙或多个监听跨度上SS set映射优先级的确定及候选PDCCH的监听。具体地,该第一映射规则可以用于指示以下至少一项:第一SS set在上述第一时间间隔内的映射优先级;在PDCCH监听时机上多个(即N个)CORESET发生资源重叠时的CORESET监听规则;所述候选PDCCH跨时隙或跨监听跨度的映射规则。本申请实施例,给出一种能够适用于大于或等于1个时隙或1个监听跨度内的SS set映射规则(或超前限定规则),以能够适用于大于1个时隙或1个监听跨度上的候选PDCCH监听,并可以在第一SS set中包含至少一个承载有重复PDCCH的SS set时,能够适用于PDCCH重复传输的场景。同时,该实施例还可以给出多个CORESET资源冲突时,适用的CORESET的监听规则。
本申请实施例中的物理下行控制信道的监听装置可以是装置,也可以是终端设备中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的物理下行控制信道的监听装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的物理下行控制信道的监听装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的由网络侧设备执行的物理下行控制信道的监听方法,执行主体可以为物理下行控制信道的监听装置,或者,该物理下行控制信道的监听装置中的用于执行物理下行控制信道的监听方法的 控制模块。本申请实施例中以物理下行控制信道的监听装置执行物理下行控制信道的监听方法为例,说明本申请实施例提供的物理下行控制信道的监听装置。
参见图5所示,本申请实施例提供一种物理下行控制信道的监听装置500,该物理下行控制信道的监听装置500包括:
传输模块501,用于根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,上述第一SS set满足以下至少一项:
所述第一SS set为带宽部分BWP上的SS set;所述第一SS set为BWP上的搜索空间组中的SS set;所述第一SS set包含至少一个承载有重复PDCCH的SS set;所述第一SS set不包含承载有重复PDCCH的SS set;其中,所述重复PDCCH为所述候选PDCCH中的至少部分。
可选地,本申请实施例的物理下行控制信道的监听装置500,还可以包括配置模块,所述配置模块用于:
配置在所述第一时间间隔内候选PDCCH的最大监听数量;和/或配置在所述第一时间间隔内不重叠的控制信道单元CCE的最大数量。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,上述第一SS set在所述第一时间间隔内的映射优先级,由以下至少一项确定:
所述第一SS set的类型;所述第一SS set的索引值;所述第一SS set的重复次数;所述第一SS set的已完成重复次数;网络侧设备配置或协议约定, 其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,在所述第一SS set按照SS set进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数;在所述第一SS set按照聚合等级AL进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL的重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL的重复次数之和;在所述第一SS set按照DCI format进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format的重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format的重复次数之和。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,若所述第一SS set的重复次数越大,则所述第一SS set的索引值越大;或者若所述第一SS set的重复次数越小,则所述第一SS set的索引值越大。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,上述N个CORESET有相同或不同的准共址QCL类型D属性。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,上述CORESET监听规则,包括:
在所述PDCCH监听时机上,监听所述N个CORESET中的第一CORESET,所述第一CORESET与第二SS set关联,所述第二SS set是基于所述第一映射规则在所述第一SS set中确定的最高映射优先级的SS set。
可选地,本申请实施例的物理下行控制信道的监听装置500,还可以包括:
接收模块,用于在所述根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH之前,接收终端设备上报的指示信息,所述指示信息用于指示所述终端设备是否支持所述第一映射规则。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,所述指示信息用于指示所述终端设备是否支持当所述第一时间间隔为大于或等于两个时隙或两个监听跨度时的所述第一映射规则。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,上述候选PDCCH中包含重复的候选PDCCH。
可选地,在本申请实施例的物理下行控制信道的监听装置500中,上述候选PDCCH所在的SS set为终端专用搜索空间集合USS set和/或公共搜索空间集合CSS set。
在本申请实施例中,网络侧设备可以根据第一映射规则在K个时隙或K个监听跨度(即第一时间间隔)内传输候选PDCCH。该第一映射规则规定了第一SS set在该第一时间间隔内的映射优先级。同时,该第一映射规则不仅适用于一个时隙或一个监听跨度上SS set映射优先级的确定以及候选PDCCH的监听,还可以适用于多个时隙或多个监听跨度上SS set映射优先级的确定及候选PDCCH的监听。具体地,该第一映射规则可以用于指示以下至少一项:第一SS set在上述第一时间间隔内的映射优先级;在PDCCH监听时机上多个(即N个)CORESET发生资源重叠时的CORESET监听规则;所述候选PDCCH跨时隙或跨监听跨度的映射规则。本申请实施例,给出一种能够适用于大于或等于1个时隙或1个监听跨度内的SS set映射规则(或超前限定规则),以能够适用于大于1个时隙或1个监听跨度上的候选PDCCH监听,并可以在第一SS set中包含至少一个承载有重复PDCCH的SS set时,能够适用于PDCCH重复传输的场景。同时,该实施例还可以给出多个CORESET资源冲突时,适用的CORESET的监听规则。
本申请实施例中的物理下行控制信道的监听装置可以是装置,也可以是网络侧设备中的部件、集成电路、或芯片。该装置可以是网络侧设备。示例性的,网络侧设备可以包括但不限于上述所列举的网络侧设备12的类型。
本申请实施例中的物理下行控制信道的监听装置可以为具有操作系统的 装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的物理下行控制信道的监听装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601,存储器602,存储在存储器602上并可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述图2对应的物理下行控制信道的监听方法实施例的各个过程,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述图3对应的物理下行控制信道的监听方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、以及处理器710等部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单 元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701将来自网络侧设备的下行数据接收后,给处理器710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器710可包括一个或多个处理单元;可选的,处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,处理器710,用于根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;其中,所述第一映射规则用于指示以下至少一项:第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET 监听规则,其中,N为大于1的整数;所述候选PDCCH跨时隙或跨监听跨度的映射规则。
在本申请实施例中,终端设备可以根据第一映射规则监听K个时隙或K个监听跨度(即第一时间间隔)内的候选PDCCH。该第一映射规则规定了第一SS set在该第一时间间隔内的映射优先级。同时,该第一映射规则不仅适用于一个时隙或一个监听跨度上的SS set映射优先级的确定以及候选PDCCH的监听,还可以适用于多个时隙或多个监听跨度上SS set映射优先级的确定及候选PDCCH的监听。具体地,该第一映射规则可以用于指示以下至少一项:第一SS set在上述第一时间间隔内的映射优先级;在PDCCH监听时机上多个(即N个)CORESET发生资源重叠时的CORESET监听规则;所述候选PDCCH跨时隙或跨监听跨度的映射规则。本申请实施例,给出一种能够适用于大于或等于1个时隙或1个监听跨度内的SS set映射规则(或超前限定规则),以能够适用于大于1个时隙或1个监听跨度上的候选PDCCH监听。同时,该实施例还可以给出多个CORESET资源冲突时,适用的CORESET的监听规则。
可选地,射频单元701,用于在所述根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH之前,上报指示信息,所述指示信息用于指示是否支持所述第一映射规则。
在本申请实施例中,终端设备在根据上述第一映射规则检测(或监听)第一时间间隔内的候选PDCCH之前,可以预先上报其自身是否支持该第一映射规则,以使网络侧设备可以根据终端设备上报的具体情况进行SS set的配置。在一个示例中,若终端设备上报其自身在所述第一时间间隔内支持上述第一映射规则,则网络侧设备可以根据上报的内容根据第一映射规则配置SS set,进一步使得终端设备可以根据该第一映射规则来检测该第一时间间隔内的候选PDCCH。
可选地,处理器710,用于执行以下操作之一:根据所述第一SS set在 所述K个时隙中的前M个时隙内的已完成重复次数,调整所述第一SS set在所述K个时隙中的第M+1个时隙上的映射优先级;根据所述第一SS set在所述K个监听跨度中的前M个监听跨度内的已完成重复次数,调整所述第一SS set在所述K个监听跨度中的第M+1个监听跨度上的映射优先级。
在本申请实施例中,根据上述第一映射规则监听K个时隙或K个监听跨度内的候选PDCCH的过程中,可以根据该K个时隙的前M个时隙或K个监听跨度中M个监听跨度内SS set的已完成重复次数,动态调整该K个时隙中后续时隙或K个监听跨度中监听跨度上的映射优先级,比如第M+1个时隙或M+1监听跨度上的映射优先级。也就是说,在该在第一时间间隔包括多个时隙或多个监听跨度时,可以实现对该第一时间间隔中部分时隙或监听跨度上的映射优先级动态调整。
本申请实施例还提供了一种网络侧设备。如图8所示,该网络设备800包括:天线801、射频装置802、基带装置803。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收信息,将接收的信息发送给基带装置803进行处理。在下行方向上,基带装置803对要发送的信息进行处理,并发送给射频装置802,射频装置802对收到的信息进行处理后经过天线801发送出去。
上述频带处理装置可以位于基带装置803中,以上实施例中网络侧设备执行的方法可以在基带装置803中实现,该基带装置803包括处理器804和存储器805。
基带装置803例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图80所示,其中一个芯片例如为处理器804,与存储器805连接,以调用存储器805中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置803还可以包括网络接口806,用于与射频装置802交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器805上并可在处理器804上运行的指令或程序,处理器804调用存储器805中的指令或程序执行图5所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述任一物理下行控制信道的监听方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端或网络侧设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现上述各对应的物理下行控制信道的监听方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行终端设备或网络侧设备程序或指令,实现上述各对应的物理下行控制信道的监听方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还 包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (46)

  1. 一种物理下行控制信道的监听方法,应用于终端设备,其中,所述方法包括:
    根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;
    其中,所述第一映射规则用于指示以下至少一项:
    第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;
    在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;
    所述候选PDCCH跨时隙或跨监听跨度的映射规则。
  2. 根据权利要求1所述的方法,其中,所述第一SS set满足以下至少一项:
    所述第一SS set为带宽部分BWP上的SS set;
    所述第一SS set为BWP上的搜索空间组中的SS set;
    所述第一SS set包含至少一个承载有重复PDCCH的SS set;
    所述第一SS set不包含承载有重复PDCCH的SS set;
    其中,所述重复PDCCH为所述候选PDCCH中的至少部分。
  3. 根据权利要求1所述的方法,其中,以下至少一项由网络侧设备配置或协议约定:
    在所述第一时间间隔内候选PDCCH的最大监听数量;
    在所述第一时间间隔内不重叠的控制信道单元CCE的最大数量。
  4. 根据权利要求1所述的方法,其中,所述第一SS set在所述第一时间间隔内的映射优先级,由以下至少一项确定:
    所述第一SS set的类型;
    所述第一SS set的索引值;
    所述第一SS set的重复次数;
    所述第一SS set的已完成重复次数;
    网络侧设备配置或协议约定。其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。
  5. 根据权利要求4所述的方法,其中,在所述第一SS set按照SS set进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数;
    在所述第一SS set按照聚合等级AL进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL的重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL的重复次数之和;
    在所述第一SS set按照DCI format进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format的重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format的重复次数之和。
  6. 根据权利要求4所述的方法,其中,若所述第一SS set的重复次数越大,则所述第一SS set的索引值越大;或者
    若所述第一SS set的重复次数越小,所述第一SS set的索引值越大。
  7. 根据权利要求4所述的方法,其中,所述方法还包括以下之一:
    根据所述第一SS set在所述K个时隙中的前M个时隙内的已完成重复次数,调整所述第一SS set在所述K个时隙中的第M+1个时隙上的映射优先级;
    根据所述第一SS set在所述K个监听跨度中的前M个监听跨度内的已完成重复次数,调整所述第一SS set在所述K个监听跨度中的第M+1个监听跨度上的映射优先级。
  8. 根据权利要求1所述的方法,其中,所述N个CORESET有相同或不同的准共址QCL类型D属性。
  9. 根据权利要求1所述的方法,其中,所述CORESET监听规则,包括:
    在所述PDCCH监听时机上,监听所述N个CORESET中的第一CORESET,所述第一CORESET与第二SS set关联,所述第二SS set是基于所述第一映射规则在所述第一SS set中确定的最高映射优先级的SS set。
  10. 根据权利要求1所述的方法,其中,在所述根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH之前,所述方法还包括:
    上报指示信息,所述指示信息用于指示所述终端设备是否支持所述第一映射规则。
  11. 根据权利要求10所述的方法,其中,所述指示信息用于指示所述终端设备是否支持当所述第一时间间隔为大于或等于两个时隙或两个监听跨度时的所述第一映射规则。
  12. 根据权利要求1所述的方法,其中,所述候选PDCCH中包含重复的候选PDCCH。
  13. 根据权利要求1或12所述的方法,其中,所述方法还包括:
    在所述第一时间间隔内,对所述候选PDCCH进行联合检测和/或独立检测。
  14. 根据权利要求1所述的方法,其中,所述候选PDCCH所在的SS set包括终端专用搜索空间集合USS set和/或公共搜索空间集合CSS set。
  15. 一种物理下行控制信道的监听方法,应用于网络侧设备,其中,所述方法包括:
    根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;
    其中,所述第一映射规则用于指示以下至少一项:
    第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;
    在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的 CORESET监听规则,其中,N为大于1的整数;
    所述候选PDCCH跨时隙或跨监听跨度的映射规则。
  16. 根据权利要求15所述的方法,其中,所述第一SS set满足以下至少一项:
    所述第一SS set为带宽部分BWP上的SS set;
    所述第一SS set为BWP上的搜索空间组中的SS set;
    所述第一SS set包含至少一个承载有重复PDCCH的SS set;
    所述第一SS set不包含承载有重复PDCCH的SS set;
    其中,所述重复PDCCH为所述候选PDCCH中的至少部分。
  17. 根据权利要求15所述的方法,其中,所述方法还包括:
    配置在所述第一时间间隔内候选PDCCH的最大监听数量;和/或
    配置在所述第一时间间隔内不重叠的控制信道单元CCE的最大数量。
  18. 根据权利要求15所述的方法,其中,所述第一SS set在所述第一时间间隔内的映射优先级,由以下至少一项确定:
    所述第一SS set的类型;
    所述第一SS set的索引值;
    所述第一SS set的重复次数;
    所述第一SS set的已完成重复次数;
    网络侧设备配置或协议约定,其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。
  19. 根据权利要求18所述的方法,其中,在所述第一SS set按照SS set进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数;
    在所述第一SS set按照聚合等级AL进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL的重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL的重复次数之和;
    在所述第一SS set按照DCI format进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format的重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format的重复次数之和。
  20. 根据权利要求18所述的方法,其中,若所述第一SS set的重复次数越大,则所述第一SS set的索引值越大;或者
    若所述第一SS set的重复次数越小,则所述第一SS set的索引值越大。
  21. 根据权利要求15所述的方法,其中,所述N个CORESET有相同或不同的准共址QCL类型D属性。
  22. 根据权利要求15所述的方法,其中,所述CORESET监听规则,包括:
    在所述PDCCH监听时机上,监听所述N个CORESET中的第一CORESET,所述第一CORESET与第二SS set关联,所述第二SS set是基于所述第一映射规则在所述第一SS set中确定的最高映射优先级的SS set。
  23. 根据权利要求15所述的方法,其中,在所述根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH之前,所述方法还包括:
    接收终端设备上报的指示信息,所述指示信息用于指示所述终端设备是否支持所述第一映射规则。
  24. 根据权利要求23所述的方法,其中,所述指示信息用于指示所述终端设备是否支持当所述第一时间间隔为大于或等于两个时隙或两个监听跨度时的所述第一映射规则。
  25. 根据权利要求15所述的方法,其中,所述候选PDCCH中包含重复的候选PDCCH。
  26. 根据权利要求15所述的方法,其中,所述候选PDCCH所在的SS set为终端专用搜索空间集合USS set和/或公共搜索空间集合CSS set。
  27. 一种物理下行控制信道的监听装置,其中,包括:
    监听模块,用于根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;
    其中,所述第一映射规则用于指示以下至少一项:
    第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;
    在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;
    所述候选PDCCH跨时隙或跨监听跨度的映射规则。
  28. 根据权利要求27所述的装置,其中,所述第一SS set满足以下至少一项:
    所述第一SS set为带宽部分BWP上的SS set;
    所述第一SS set为BWP上的搜索空间组中的SS set;
    所述第一SS set包含至少一个承载有重复PDCCH的SS set;
    所述第一SS set不包含承载有重复PDCCH的SS set;
    其中,所述重复PDCCH为所述候选PDCCH中的至少部分。
  29. 根据权利要求27所述的装置,其中,所述第一SS set在所述第一时间间隔内的映射优先级,由以下至少一项确定:
    所述第一SS set的类型;
    所述第一SS set的索引值;
    所述第一SS set的重复次数;
    所述第一SS set的已完成重复次数;
    网络侧设备配置或协议约定,其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。
  30. 根据权利要求29所述的装置,其中,在所述第一SS set按照SS set进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数;
    在所述第一SS set按照聚合等级AL进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL的重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL的重复次数之和;
    在所述第一SS set按照DCI format进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format的重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format的重复次数之和。
  31. 根据权利要求29所述的装置,其中,若所述第一SS set的重复次数越大,则所述第一SS set的索引值越大;或者
    若所述第一SS set的重复次数越小,则所述第一SS set的索引值越大。
  32. 根据权利要求29所述的装置,其中,所述装置还包括处理模块,所述处理模块用于执行以下操作之一:
    根据所述第一SS set在所述K个时隙中的前M个时隙内的已完成重复次数,调整所述第一SS set在所述K个时隙中的第M+1个时隙上的映射优先级;
    根据所述第一SS set在所述K个监听跨度中的前M个监听跨度内的已完成重复次数,调整所述第一SS set在所述K个监听跨度中的第M+1个监听跨度上的映射优先级。
  33. 根据权利要求27所述的装置,其中,所述CORESET监听规则,包括:
    在所述PDCCH监听时机上,监听所述N个CORESET中的第一CORESET,所述第一CORESET与第二SS set关联,所述第二SS set是基于所述第一映射规则在所述第一SS set中确定的最高映射优先级的SS set。
  34. 根据权利要求27所述的装置,其中,所述装置还包括:
    上报模块,用于在所述根据第一映射规则,监听第一时间间隔内的候选物理下行控制信道PDCCH之前,上报指示信息,所述指示信息用于指示所 述终端设备是否支持所述第一映射规则。
  35. 根据权利要求27所述的装置,其中,所述装置还包括:
    检测模块,用于在所述第一时间间隔内,对所述候选PDCCH进行联合检测和/或独立检测。
  36. 一种物理下行控制信道的监听装置,其中,包括:
    传输模块,用于根据第一映射规则,在第一时间间隔内传输候选物理下行控制信道PDCCH,所述第一时间间隔包括K个时隙或K个监听跨度,K为大于或等于1的整数;
    其中,所述第一映射规则用于指示以下至少一项:
    第一搜索空间集合SS set在所述第一时间间隔内的映射优先级;
    在PDCCH监听时机上N个控制资源集CORESET发生资源重叠时的CORESET监听规则,其中,N为大于1的整数;
    所述候选PDCCH跨时隙或跨监听跨度的映射规则。
  37. 根据权利要求36所述的装置,其中,所述第一SS set满足以下至少一项:
    所述第一SS set为带宽部分BWP上的SS set;
    所述第一SS set为BWP上的搜索空间组中的SS set;
    所述第一SS set包含至少一个承载有重复PDCCH的SS set;
    所述第一SS set不包含承载有重复PDCCH的SS set;
    其中,所述重复PDCCH为所述候选PDCCH中的至少部分。
  38. 根据权利要求36所述的装置,其中,所述装置还包括配置模块,所述配置模块用于:
    配置在所述第一时间间隔内候选PDCCH的最大监听数量;和/或
    配置在所述第一时间间隔内不重叠的控制信道单元CCE的最大数量。
  39. 根据权利要求36所述的装置,其中,所述第一SS set在所述第一时间间隔内的映射优先级,由以下至少一项确定:
    所述第一SS set的类型;
    所述第一SS set的索引值;
    所述第一SS set的重复次数;
    所述第一SS set的已完成重复次数;
    网络侧设备配置或协议约定,其中,所述第一SS set由特定无线网络临时标识RNTI加扰或包含特定下行控制信息格式DCI format。
  40. 根据权利要求39所述的装置,其中,在所述第一SS set按照SS set进行重复的情况下,所述第一SS set的重复次数等于所述第一SS set的重复次数;
    在所述第一SS set按照聚合等级AL进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部AL的重复次数中最大的AL重复次数,或者所述第一SS set中配置的全部AL的重复次数之和;
    在所述第一SS set按照DCI format进行重复的情况下,所述第一SS set的重复次数为:所述第一SS set中配置的全部DCI format的重复次数中最大的DCI format重复次数,或者所述第一SS set中配置的全部DCI format的重复次数之和。
  41. 根据权利要求39所述的装置,其中,若所述第一SS set的重复次数越大,则所述第一SS set的索引值越大;或者
    若所述第一SS set的重复次数越小,则所述第一SS set的索引值越大。
  42. 根据权利要求36所述的装置,其中,所述CORESET监听规则,包括:
    在所述PDCCH监听时机上,监听所述N个CORESET中的第一CORESET,所述第一CORESET与第二SS set关联,所述第二SS set是基于所述第一映射规则在所述第一SS set中确定的最高映射优先级的SS set。
  43. 根据权利要求36所述的装置,其中,所述装置还包括:
    接收模块,用于在所述根据第一映射规则,在第一时间间隔内传输候选 物理下行控制信道PDCCH之前,接收终端设备上报的指示信息,所述指示信息用于指示所述终端设备是否支持所述第一映射规则。
  44. 一种终端设备,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被处理器执行时实现如权利要求1至14中任一项所述的方法的步骤。
  45. 一种网络侧设备,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求15至26中任一项所述的方法的步骤。
  46. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求所述程序或指令被处理器执行时实现如权利要求1至14中任一项所述的方法的步骤,或者所述程序或指令被处理器执行时实现如权利要求15至26中任一项所述的方法的步骤。
PCT/CN2021/110832 2020-08-07 2021-08-05 物理下行控制信道的监听方法、装置和设备 WO2022028524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010791677.7 2020-08-07
CN202010791677.7A CN114071749A (zh) 2020-08-07 2020-08-07 物理下行控制信道的监听方法、装置和设备

Publications (1)

Publication Number Publication Date
WO2022028524A1 true WO2022028524A1 (zh) 2022-02-10

Family

ID=80117011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110832 WO2022028524A1 (zh) 2020-08-07 2021-08-05 物理下行控制信道的监听方法、装置和设备

Country Status (2)

Country Link
CN (1) CN114071749A (zh)
WO (1) WO2022028524A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731490A (zh) * 2022-02-25 2022-07-08 北京小米移动软件有限公司 映射关系的确定方法及装置、存储介质
CN118317332A (zh) * 2022-12-30 2024-07-09 北京历正科技有限责任公司 一种非周期信号监听方法、装置、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351002A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 候选pdcch的优先级确定及监听方法、装置、存储介质、基站、终端
CN110383729A (zh) * 2017-12-08 2019-10-25 Lg电子株式会社 用于在无线通信系统中发送或接收信号的方法及其装置
WO2020022660A1 (ko) * 2018-07-25 2020-01-30 엘지전자 주식회사 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383729A (zh) * 2017-12-08 2019-10-25 Lg电子株式会社 用于在无线通信系统中发送或接收信号的方法及其装置
CN110351002A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 候选pdcch的优先级确定及监听方法、装置、存储介质、基站、终端
WO2020022660A1 (ko) * 2018-07-25 2020-01-30 엘지전자 주식회사 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Corrections on Search Space Design", 3GPP DRAFT; R1-1804370 CORRECTIONS ON SEARCH SPACE DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 6 April 2018 (2018-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051413256 *
SPREADTRUM COMMUNICATIONS: "On PDCCH candidate priority rules", 3GPP DRAFT; R1-1804214_ON PDCCH CANDIDATE PRIORITY RULES_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 6 April 2018 (2018-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051413163 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114731490A (zh) * 2022-02-25 2022-07-08 北京小米移动软件有限公司 映射关系的确定方法及装置、存储介质
CN118317332A (zh) * 2022-12-30 2024-07-09 北京历正科技有限责任公司 一种非周期信号监听方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114071749A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2022089565A1 (zh) 辅小区组信息的配置、获取方法及通信设备
US20230126936A1 (en) Measurement indication method, terminal, and network-side device
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2022228341A1 (zh) 上行信道的传输参数方法、终端及网络侧设备
US20230261836A1 (en) Resource configuration method, apparatus, device, and readable storage medium
CN114422094A (zh) Pdcp重复的配置、激活或去激活方法和终端
WO2022028524A1 (zh) 物理下行控制信道的监听方法、装置和设备
CN114071495B (zh) 初始接入方法及装置、终端及网络侧设备
US20230163814A1 (en) Auxiliary information transmission method, terminal device, and network device
WO2022188737A1 (zh) 上行传输方法、装置及终端
EP4307589A1 (en) Semi-static harq-ack codebook generating method and terminal
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
WO2022028521A1 (zh) Sps pdsch的类型指示方法、装置、终端及网络侧设备
WO2022117039A1 (zh) Srs的功控指示方法、资源集簇的划分方法和设备
CN115175351A (zh) 上行传输方法、终端及网络侧设备
US20230354471A1 (en) Search space group switching method and apparatus
CN113839728A (zh) Dci检测方法、发送方法及相关设备
US20230164798A1 (en) Resource transmission method, resource transmission apparatus, and communications device
US20230189259A1 (en) Resource transmission method, resource transmission apparatus, and communications device
WO2022194026A1 (zh) 传输上行mcs指示信息的方法, 终端及网络侧设备
WO2022028597A1 (zh) 控制辅小区的方法、终端及网络侧设备
CN114650120B (zh) 信息确定方法、装置及通信设备
WO2022017466A1 (zh) 消息发送、消息接收方法、装置及通信设备
CN114641013A (zh) 信息传输方法、装置、终端及网络侧设备
US20230422269A1 (en) Channel transmission behavior determining method and apparatus and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852331

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21852331

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 01/08/2023 )

122 Ep: pct application non-entry in european phase

Ref document number: 21852331

Country of ref document: EP

Kind code of ref document: A1