[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022111266A1 - 一种锂电池报废正极材料回收过程中的除杂和处理方法 - Google Patents

一种锂电池报废正极材料回收过程中的除杂和处理方法 Download PDF

Info

Publication number
WO2022111266A1
WO2022111266A1 PCT/CN2021/129320 CN2021129320W WO2022111266A1 WO 2022111266 A1 WO2022111266 A1 WO 2022111266A1 CN 2021129320 W CN2021129320 W CN 2021129320W WO 2022111266 A1 WO2022111266 A1 WO 2022111266A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
ions
temperature
lithium
reaction
Prior art date
Application number
PCT/CN2021/129320
Other languages
English (en)
French (fr)
Inventor
容忠言
张久俊
戴林杉
隋邦杰
时一方
Original Assignee
清华四川能源互联网研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华四川能源互联网研究院 filed Critical 清华四川能源互联网研究院
Priority to JP2023532658A priority Critical patent/JP2023552175A/ja
Priority to EP21896767.7A priority patent/EP4235911A4/en
Priority to KR1020237020191A priority patent/KR20230107660A/ko
Publication of WO2022111266A1 publication Critical patent/WO2022111266A1/zh
Priority to US18/324,147 priority patent/US20230352756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/04Combinations of filters with settling tanks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides
    • C01G53/006
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/52Reclaiming serviceable parts of waste cells or batteries, e.g. recycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present application relates to the technical field of material recycling, and in particular, to a method for removing impurities and treating waste in the recycling process of scrapped positive electrode materials of lithium batteries.
  • the dissolved nickel-cobalt-manganese solution often contains a variety of metal impurities (for example, Fe, Al, Cu, Ca, Mg or Pb, etc.). If the impurities are not removed, the above impurities will affect the The quality and performance of the lithium battery cathode material synthesized after the recycling of the scrapped cathode material of the lithium battery will affect the quality and performance.
  • metal impurities for example, Fe, Al, Cu, Ca, Mg or Pb, etc.
  • the impurity removal methods for metal impurities such as Fe, Al, Ca, Mg, etc. in the prior art have the problem that the precipitation is difficult to filter and wash, resulting in the impurity precipitation remaining in the actual filtrate that cannot be filtered, and the impurity precipitation will be mixed into the subsequent steps. , eventually resulting in a high impurity content in the ternary precursor product.
  • the co-precipitation process of the precursor (or called ternary precursor) of the ternary cathode material is an important link in the preparation of the cathode material for lithium batteries.
  • the performance of the precursor product directly affects the performance of the cathode material.
  • the equipment used for precursor co-precipitation is of high value and precise manufacturing, and improving the production efficiency of the precursor is particularly critical to the cost impact of the entire recycling process.
  • an online pH meter is used to precisely control the pH value of the recovery process to ensure the quality of the precursor.
  • the applicant's research aims to solve the problem that the online pH meter is prone to lithium ion poisoning in a solution with high lithium ion concentration and affects the stability of the co-precipitation process.
  • sodium hydroxide is used as a precipitant, which greatly improves the production efficiency, reduces the amount of water in the recovery process, and reduces the size of the equipment.
  • the present invention removes lithium ions before the ternary precursor co-precipitation process, and under the premise of not significantly affecting the production efficiency of the recovery process, the hydroxides of metals such as nickel, cobalt, and manganese that are easily washed are precipitated by controlling the reaction conditions. .
  • the embodiment of the present application provides a method for removing impurities and treating waste in the recycling process of the scrap cathode material of a lithium battery.
  • the method includes: (1) in a stable environment of a first temperature higher than room temperature and a fixed first pH, controlling The flow rate of the leaching solution of the discarded positive electrode material of the lithium battery and the first alkali solution precipitation removes iron ions, aluminum ions and at least part of the copper ions to obtain a first filtrate; (2) at a second temperature higher than room temperature and a fixed first pH range , controlling the flow rate of the first filtrate, the complexing agent and the second alkaline solution to remove the lithium ions, separating the second filtrate containing lithium ions to obtain the target substance precipitation; (3) dissolving the target substance precipitation, obtaining a first solution; (4) at a third temperature higher than room temperature and a fixed fluoride ion concentration, controlling the flow rate of the first solution and the fluorine-containing precipitant to precipitate and remove calcium ions, magnesium
  • the embodiment of the present application provides a method for removing impurities and treating a waste cathode material of a lithium battery during the recovery process.
  • the method includes: adding an appropriate amount of the first bottom liquid into a first reaction kettle, The reaction temperature is maintained at a first temperature higher than room temperature; respectively, the leaching solution of the scrapped positive electrode material of the lithium battery and the first alkali solution are pumped into the first reaction kettle at a suitable flow rate to react for a first time and overflow the first reaction kettle; Wherein, during the first time, the reaction is kept stable at the first temperature, and the flow rate of the first alkali solution is adjusted to make the reaction stable at the first pH value; The separation process, and the first impurity and the first filtrate are obtained.
  • the method before performing the first separation process, further comprises: aging the mixture overflowing the first reaction kettle, maintaining the aging temperature at the first temperature, and aging the first reaction vessel. two time.
  • the method further includes: adding an appropriate amount of the second bottom liquid to the second reaction kettle, maintaining the reaction temperature in the second reaction kettle at a second temperature higher than room temperature, and then adding an appropriate amount of the second bottom liquid to the second reaction kettle.
  • a protective gas is introduced into the second reaction kettle; the first filtrate, the complexing agent and the second alkali solution are respectively pumped into the second reaction kettle at a suitable flow rate to react for the third time and overflow the second reaction kettle; wherein, during the third time, the reaction is maintained at the second temperature, and the flow rate of the second alkali solution is adjusted to make the reaction stable at the first pH range; Second separation process, and obtain the target substance precipitation and the second filtrate; wherein, the second filtrate contains lithium ions.
  • the method before performing the second separation process, further comprises: aging the mixture overflowing the second reaction kettle, maintaining the aging temperature at the second temperature, and aging the first Four times.
  • the method further includes: dissolving the precipitation of the target substance to obtain a first solution; maintaining the reaction temperature in the third reaction kettle at a third temperature higher than room temperature; The first solution and the fluorine-containing precipitant are pumped into the third reaction kettle at a suitable flow rate and overflow the third reaction kettle after the reaction for a fifth time; Carry out at the third temperature, and adjust the flow rate of the fluorine-containing precipitant to stabilize the fluoride ion concentration of the reactant in the third reaction kettle in the first concentration range; then carry out the third separation process, and obtain the second impurity and target solution.
  • the method before performing the third separation process, further comprises: aging the mixture overflowing the third reaction kettle, maintaining the aging temperature at the third temperature, and aging the first Six times; the aged mixture is allowed to stand for a seventh time.
  • the impurity removal method can continuously process the leaching solution of the waste cathode material of the lithium battery.
  • the method before performing the precipitation treatment on the leaching solution of the scrapped positive electrode material of the lithium battery, the method further includes: adding a leaching agent to the scrapped positive electrode material of the lithium battery until the pH is in the second range for dissolution, and then performing the fourth step.
  • the separation process is performed to obtain the third impurity and the leaching solution of the discarded positive electrode material of the lithium battery; wherein, the leaching agent at least comprises a reducing agent, a first acid and water.
  • the lithium battery scrap cathode material includes lithium nickel cobalt manganese oxide battery material, lithium cobalt oxide battery material, lithium cobalt manganese oxide battery material, lithium cobalt alumina battery material, lithium manganese oxide battery material one or more of the materials.
  • the method further includes: adding a third alkali solution to the target solution to obtain precursor precipitation.
  • the first base solution is deionized water or a solution with a pH of the first pH value.
  • the first temperature is any value between 50-90°C.
  • the first alkaline solution includes lithium hydroxide.
  • the first time is 2-10 h.
  • the first impurity includes one or more of ferric hydroxide, aluminum hydroxide, and copper hydroxide.
  • the second time is 0.5-2 h.
  • the second bottom liquid includes ammonia water.
  • the second temperature is any value between 40-70°C.
  • the shielding gas includes nitrogen or an inert gas.
  • the complexing agent includes ammonia.
  • the second alkaline solution includes lithium hydroxide.
  • the third time is 2-10 h.
  • the fourth time is 0.5-2 h.
  • the dissolving the precipitation of the target substance to obtain the first solution includes: adding a leaching agent to the precipitation of the target substance until the pH is in a third range for dissolution to obtain a solution containing the target substance; An appropriate amount of the fourth alkali solution is added to the solution containing the target substance until the pH is in the fourth range to obtain the first solution.
  • the third temperature is any value between 50-90°C.
  • the fluorine-containing precipitant comprises sodium fluoride solution.
  • the first concentration range is that the fluoride ion concentration is 0.005-0.1 mol/L.
  • the fifth time is 2-10 h.
  • the second impurity includes one or more of calcium fluoride, magnesium fluoride, and lead fluoride.
  • the sixth time is 0.5-2 h.
  • the seventh time is 0.5-2 h.
  • the embodiment of the present application provides a method for processing a leaching solution of scrapped positive electrode materials of lithium batteries, wherein the leachate of scrapped positive electrode materials of lithium batteries contains at least calcium ions, magnesium ions or lead ions; before removing calcium ions, magnesium ions or lead ions, the The method comprises: adding an appropriate amount of the second bottom liquid into the second reaction kettle, maintaining the reaction temperature in the second reaction kettle at a second temperature higher than room temperature, and then feeding the second reaction kettle with Protective gas; the first filtrate, the complexing agent and the second alkali solution are respectively pumped into the second reaction kettle at a suitable flow rate and overflow the second reaction kettle after the reaction for the third time; wherein, in the third time In the process, the reaction is kept stable at the second temperature, and the flow rate of the second alkali solution is adjusted to make the reaction stable in the first pH range; then the second separation process is performed to obtain the target substance precipitation and The second filtrate; wherein, the second filtrate contains lithium ions.
  • the scrapped cathode material of the lithium battery Before removing impurities from the scrapped cathode material of the lithium battery, it is necessary to dissolve the scrapped cathode material of the lithium battery in a solid state to obtain the leachate of the scrapped cathode material of the lithium battery.
  • a leaching agent can be added to the discarded positive electrode material of lithium batteries to dissolve the pH until the pH is in the second range, and then the fourth separation process is performed to obtain the third impurity and the leaching solution of discarded positive electrode materials of lithium batteries.
  • the lithium battery end-of-life cathode material may include lithium nickel cobalt manganese oxide battery material.
  • the lithium battery scrap cathode material may include one or more of lithium cobalt oxide battery materials, lithium cobalt manganese oxide battery materials, lithium cobalt alumina battery materials, and lithium manganese oxide battery materials.
  • the leaching agent may include at least a reducing agent, a first acid, and water.
  • the reducing agent may include a hydrogen peroxide solution.
  • the reducing agent may further include sulfur dioxide gas, hydrazine hydrate (N 2 H 4 ⁇ H 2 O), and the like.
  • the first acid may include sulfuric acid, hydrochloric acid, nitric acid, permanganic acid, sulfurous acid, hypochlorous acid, and the like.
  • the leaching agent can be used to dissolve the above-mentioned waste cathode materials of lithium batteries under certain conditions.
  • the certain conditions may include initial dissolution temperature, dissolution pressure, and dissolution pH.
  • the initial dissolution temperature of the lithium battery scrap cathode material may be 0°C to 80°C. More preferably, the initial dissolution temperature of the discarded cathode material of the lithium battery may be 20°C to 76°C. More preferably, the initial dissolution temperature of the discarded cathode material of the lithium battery may be 30°C-73°C. More preferably, the initial dissolution temperature of the discarded cathode material of the lithium battery may be 40°C-70°C.
  • the initial dissolution temperature of the discarded cathode material of the lithium battery may be 45°C-67°C. More preferably, the initial dissolution temperature of the discarded cathode material of the lithium battery may be 50°C-65°C. More preferably, the initial dissolution temperature of the discarded cathode material of the lithium battery may be 55°C-63°C. More preferably, the initial dissolution temperature of the discarded cathode material of the lithium battery may be 57°C-60°C. In some embodiments, the dissolving pressure of the discarded cathode material of the lithium battery may be normal pressure, that is, 101.325 kPa.
  • the dissolution pressure of the discarded cathode material of the lithium battery may also be other pressure values, which are not limited in this application.
  • the pH at which the lithium battery scrap cathode material is dissolved may be in the second range. Since the scrap cathode material of lithium battery contains a variety of metal elements, in order to fully dissolve the scrap cathode material of lithium battery, the dissolution pH of scrap cathode material of lithium battery is acidic.
  • the certain condition may further include the particle size of the discarded cathode material of the lithium battery. For example, before dissolving the scrapped cathode material of the lithium battery, the scrapped cathode material of the lithium battery can be pulverized to make it smaller than a certain particle size before dissolving. In some embodiments, the particle size of the scrapped lithium battery cathode material after crushing may include 0.01-2 mm.
  • the particle size of the scrapped cathode material of the lithium battery after crushing may include 0.02-1.5 mm. More preferably, the particle size of the scrapped positive electrode material of the lithium battery after crushing may include 0.04-1.2 mm. More preferably, the particle size of the scrapped cathode material of the lithium battery after crushing may include 0.05-0.8 mm. More preferably, the particle size of the scrapped positive electrode material of the lithium battery after crushing may include 0.06-0.4 mm. More preferably, the particle size of the scrapped positive electrode material of the lithium battery after crushing may include 0.08-0.2 mm. More preferably, the particle size of the scrapped cathode material of the lithium battery after crushing may include 0.1 mm.
  • the contact surface area between the scrapped cathode material of the lithium battery and the leaching agent after crushing is large, so the dissolution rate of the scrapped cathode material of the lithium battery is high.
  • the obtained leaching solution of the scrapped positive electrode material of the lithium battery can be further removed and treated.
  • the impurity removal and treatment process of the leaching solution of the scrapped cathode material of the lithium battery may include the following three processes: (1) the leachate of the scrapped cathode material of the lithium battery is precipitated to remove iron ions, aluminum ions and at least part of the copper ions to obtain the first filtrate; (2) ) carry out precipitation to the first filtrate to remove lithium ions, respectively obtain the second filtrate containing lithium ions and the target substance precipitation; (3) dissolve the target substance precipitation to obtain the first solution, carry out precipitation to the first solution to remove calcium ions, Magnesium ions and at least a portion of lead ions yield the target solution. Further, a third alkaline solution can also be added to the target solution to obtain a lithium battery cathode material precursor precipitation.
  • the above three impurity removal and treatment processes are all under stable reaction conditions (for example, a fixed reaction temperature within the allowable range of measurement error (the allowable range of measurement error of reaction temperature is ⁇ 2.5°C), a constant pH (The allowable range of measurement error of pH is ⁇ 0.05), the fixed pH range (the allowable range of measurement error of pH range is ⁇ 0.05), or the fixed range of fluoride ion concentration (the allowable range of measurement error of fluoride ion concentration range) Under ⁇ 0.0005mol/L), two or more reaction materials are continuously pumped into the reactor simultaneously. It should be noted that the flow velocity that the material is pumped into is relatively small with respect to the volume of the reactor, and the pH is added.
  • stable reaction conditions for example, a fixed reaction temperature within the allowable range of measurement error (the allowable range of measurement error of reaction temperature is ⁇ 2.5°C), a constant pH (The allowable range of measurement error of pH is ⁇ 0.05), the fixed pH range (the allowable range of measurement error of pH range is ⁇ 0.05),
  • the reaction is carried out under relatively stable conditions, which is different from the usual chemical reaction process: the pH value gradually changes with the addition of the precipitant until it reaches the pH value of the reaction cut-off. It is different.Two or more reaction materials continue to react in the reaction kettle, and after the reaction for a period of time (for example, the first time, the third time or the fifth time), the reaction kettle is continuously overflowed, and the subsequent reaction is filled with the reaction materials. Continuously carry out in the overflow reaction kettle, the reaction environment is more stable, and the continuous and uninterrupted operation of the production process can be realized. Since the above three reaction processes are all carried out under stable reaction conditions, high crystallinity and crystal grains can be obtained.
  • the process of removing lithium ions is also included, and the lithium ions are removed before the precipitation of the lithium battery positive electrode material precursor is prepared, so that the purpose of recycling lithium can be realized, while avoiding affecting the subsequent removal of lithium ions.
  • the control of the reaction parameters in the heterogeneous process enables the subsequent reactions to be carried out under relatively stable reaction conditions.
  • FIG. 1 is an exemplary flow chart of a method for removing impurities in a recycling process of scrapped positive electrode material of a lithium battery according to some embodiments of the present application;
  • FIG. 2 is an exemplary flow chart of a method for recovering lithium ions in a process of recycling scrap positive electrode materials of lithium batteries according to further embodiments of the present application;
  • FIG. 3 is an exemplary flow chart of a method for removing impurities in a recycling process of scrapped positive electrode materials for lithium batteries according to further embodiments of the present application;
  • 4A is an SEM picture of the filter residue shown in Example 1 of the present application.
  • 4B is an SEM picture of the filter residue shown in Example 2 of the present application.
  • Fig. 5 is according to the XRD pattern of the filter residue shown in Examples 3 and 4 of the present application;
  • Fig. 6 is according to the SEM picture of the filter residue shown in Example 3 of the present application.
  • Fig. 7A is according to the SEM picture of the filter residue shown in Example 5 of the present application.
  • FIG. 8 is a schematic diagram of an impurity removal and treatment method according to some embodiments of the present application.
  • system is a method used to distinguish different components, elements, parts, parts or assemblies at different levels.
  • impurity removal method treatment method
  • impurity removal and treatment method method for recovering lithium ions
  • impurity removal and treatment method in the recycling process of scrap cathode material for lithium batteries refer to lithium One or more steps or processes in the recycling process of end-of-life cathode material for batteries. However, other words may be replaced by other expressions if they serve the same purpose.
  • FIG. 1 is an exemplary flow chart of a method 100 for removing impurities in a recycling process of scrap cathode material of a lithium battery according to some embodiments of the present application.
  • FIG. 8 is a schematic diagram of impurity removal and treatment methods according to some embodiments of the present application.
  • the leaching solution and the first alkali solution of the scrapped cathode material of the lithium battery can be passed through the feed pump A and the feed pump B, respectively. It is pumped into the reaction kettle, and after reacting for a period of time, the discharge pipe A on the reaction kettle overflows into the aging kettle for aging, wherein the reaction kettle can be the first reaction kettle, and the aging kettle can be the first aging kettle. .
  • step 110 an appropriate amount of the first bottom liquid is added to the first reaction kettle, and the reaction temperature in the first reaction kettle is maintained at a first temperature higher than room temperature.
  • the volume of the first reaction kettle can be set according to the production requirements of the process or the feed amount of the reaction materials.
  • the volume of the first reactor can be 50L, 80L or 100L.
  • the first bottom liquid is the liquid placed in the first reaction kettle before pumping the reaction material, and the first bottom liquid is used to soak the pH meter so that the electrode of the pH meter is below the liquid level.
  • the first base liquid may be deionized water or a solution with a pH of the first pH value.
  • the solution at the first pH may be a nickel cobalt manganese solution.
  • the solution at the first pH may be an acid solution (eg, a sulfuric acid solution).
  • the pH being the first pH value reference may be made to the description of step 120, which will not be repeated here.
  • the first temperature may be higher than room temperature.
  • the first temperature may be any value between 50-90°C. More preferably, the first temperature can be any value in the range of 52-88°C. More preferably, the first temperature can be any value of 55-86°C. More preferably, the first temperature can be any value of 58-83°C. More preferably, the first temperature can be any value of 60-80°C. More preferably, the first temperature can be any value of 62-78°C. More preferably, the first temperature can be any value of 65-76°C. More preferably, the first temperature can be any value of 67-73°C. More preferably, the first temperature can be any value of 69-71°C.
  • the first temperature may be 50°C. More preferably, the first temperature may be 55°C. More preferably, the first temperature may be 60°C. More preferably, the first temperature may be 65°C. More preferably, the first temperature may be 70°C. More preferably, the first temperature may be 75°C. More preferably, the first temperature may be 80°C. More preferably, the first temperature may be 85°C. More preferably, the first temperature may be 90°C.
  • the reaction temperature in the first reaction kettle may be maintained at the first temperature by heating the first reaction kettle. The manner of heating the first reaction kettle may include electric heating, steam heating, heat-conducting oil circulating heating or far-infrared heating, which is not limited in this application.
  • the first temperature is higher than normal temperature, it is easier to crystallize to obtain crystals with large crystal grains.
  • step 120 the leaching solution of the scrapped positive electrode material of the lithium battery and the first alkaline solution are respectively pumped into the first reaction kettle at a suitable flow rate and reacted for a first time and then overflow the first reaction kettle; wherein, during the first time, the reaction is maintained to be stable It is carried out at a first temperature, and the reaction is stabilized at a first pH value by adjusting the flow rate of the first base solution.
  • the leaching solution of the scrapped cathode material of the lithium battery can be obtained by dissolving the scrapped cathode material of the lithium battery.
  • the leaching solution of the discarded cathode material of the lithium battery may be a solution containing lithium ions, nickel ions, cobalt ions, manganese ions, and the like.
  • the flow rate of the leaching solution of the scrapped cathode material of the lithium battery and the first alkaline solution can be set according to the production requirements of the process, and an appropriate flow rate can be set so that the leachate of the scrapped cathode material of the lithium battery and the first alkaline solution overflow the first reaction kettle after reacting for a first time.
  • the first reaction kettle can be 50L
  • the flow rate of the leaching solution of the discarded positive electrode material of the lithium battery can be 50-250mL/min
  • the flow rate of the first alkali solution can be controlled by stabilizing the reaction at the first pH value. .
  • the feed pipe of the leachate of the scrapped positive electrode material of the lithium battery can be extended into the bottom of the first reactor.
  • the feeding pipe of the first alkali solution can be extended into the bottom of the first reaction kettle.
  • the leaching solution of the scrapped cathode material of the lithium battery and the first alkaline solution can be pumped into the reaction kettle (ie, the first reaction kettle) through the feeding pump A and the feeding pump B, respectively.
  • the feeding pipe A and the feeding pipe B is inserted into the bottom of the reactor.
  • the first reaction kettle may include a stirring component for stirring the leaching solution of the scrapped cathode material of the lithium battery and the first alkaline solution in the first reaction kettle.
  • the first base can include lithium hydroxide.
  • the concentration of lithium hydroxide may be 1-4 mol/L. More preferably, the concentration of lithium hydroxide is 2 mol/L. More preferably, the concentration of lithium hydroxide is 3 mol/L.
  • the pH of the solution is stabilized at the first pH value may be that the pH of the solution is always equal to the first pH value or differs from the first pH value by less than a preset value (eg, 0.05, 0.10, or 0.15). For example, if the preset value is 0.10 and the first pH value is 6.3, then the pH value of the solution is 6.2, 6.25, 6.3, 6.35, 6.4 or fluctuates in the range of 6.2 to 6.4, it can be considered that the pH of the solution is stable at first pH.
  • a preset value eg, 0.05, 0.10, or 0.15
  • the flow rate of the first alkali solution is 20ml/min, the pH of the solution will decrease. At this time, the flow rate of the first alkali solution needs to be appropriately increased to increase the pH of the solution to 6.3.
  • the pH meter and the feed pump of the first alkali solution can be automatically controlled in linkage.
  • the first time may be 2-10 h. More preferably, the first time can be 2.5-8.0h. More preferably, the first time can be 3.0-7.0h. More preferably, the first time may be 3.5-7.5h. More preferably, the first time may be 4.0-7.0h. More preferably, the first time may be 4.5-6.5h. More preferably, the first time may be 5.0-6.0h. More preferably, the first time may be 5.3-5.7h. More preferably, the first time may be 3h. More preferably, the first time may be 4 hours. More preferably, the first time may be 5h. More preferably, the first time may be 6 hours. More preferably, the first time may be 7 hours. More preferably, the first time may be 8h.
  • the reaction material can be fully reacted in the first reaction kettle for 2-10 hours, and then the first reaction kettle can be fully reacted for 2-10 hours.
  • the reaction kettle overflowed to the first aging kettle.
  • the reaction conditions in the reaction process can be stabilized, and the crystal grains and crystal forms of the resulting precipitates are consistent.
  • the reaction material is allowed to stay in the first reaction kettle for 2-10 hours, so that it can be fully reacted and precipitated, so that the crystal grains obtained by the precipitation are larger, which is convenient for subsequent filtration and washing of the precipitate.
  • the continuous treatment of the leaching solution of the discarded cathode material of the lithium battery can be realized, thereby facilitating the realization of industrial large-scale impurity removal treatment.
  • Step 130 ageing the mixture overflowing the first reaction kettle, maintaining the ageing temperature at the first temperature, and ageing for a second time.
  • the aging process can be carried out in the first aging kettle.
  • the aging temperature in the first aging kettle may be maintained at the first temperature by heating the first aging kettle.
  • the manner of heating the first aging kettle may include electric heating, steam heating, heat-conducting oil circulating heating or far-infrared heating, which is not limited in this application.
  • the second time may be 0.5-2 h. More preferably, the second time may be 0.8-1.8h. More preferably, the second time may be 1.0-1.6h. More preferably, the second time may be 1.2-1.4h. More preferably, the second time may be 0.5h. More preferably, the second time may be 1 h. More preferably, the second time may be 1.5h. More preferably, the second time may be 2h.
  • the grain growth of the crystals precipitated in the reacted mixture can be increased, and the particle size distribution can be made more uniform.
  • Step 140 after which the first separation process is performed to obtain the first impurity and the first filtrate.
  • the aged mixture may be cooled to room temperature prior to the first separation process.
  • the cooling process can be carried out in a first buffer tank, and the aged mixture can be pumped into the first buffer tank for cooling.
  • the cooling method of the aged mixture can be natural cooling, air cooling or liquid cooling (eg, cooling by liquid cooling medium such as water, ethanol, ethylene glycol, isopropanol, n-hexane, etc.).
  • a first separation process can be performed on the cooled mixture to obtain a first impurity and a first filtrate.
  • the first separation process may be a solid-liquid separation process.
  • the first separation method may include filtration, gravity settling, centrifugal settling, filter press, and the like. Since different scrap cathode materials of lithium batteries contain different impurity metal elements, the conditions of the impurity removal reaction are different, and the obtained first impurities and/or the first filtrate may be different.
  • the first impurity may include at least ferric hydroxide.
  • the first impurities may also include ferric hydroxide and aluminum hydroxide.
  • the first impurity may also include copper hydroxide.
  • the first filtrate may include at least lithium ions and cobalt ions.
  • the product generated by the scrap cathode material of lithium battery for example, lithium nickel cobalt manganese oxide battery material
  • the leaching solution of scrap cathode material of lithium battery may contain lithium ion, nickel ion, aluminum ion, Iron ions, manganese ions, cobalt ions, etc.
  • the first impurities may include aluminum hydroxide, iron hydroxide, etc.
  • the first filtrate may include lithium ions, nickel ions, manganese ions, cobalt ions, and the like.
  • the above method controls the flow rate, pH value, reaction temperature, reaction time and aging time of the leaching solution of the discarded positive electrode material of the lithium battery and the first alkali solution pumped into the first reaction kettle, so that the crystal grains of the crystal are fully grown into large crystals.
  • co-precipitates of metals such as iron, aluminum, copper, and nickel can be obtained, which facilitates the first separation process and reduces the water consumption and washing time for washing in the first separation process.
  • the waste of nickel-cobalt-manganese ions in the washing process is also reduced, and the recovery rate of nickel-cobalt-manganese can be improved.
  • Example 1 is the embodiment of the impurity removal method of batch processing lithium battery scrap positive electrode material leaching solution
  • embodiment 2 is the embodiment of adopting the impurity removal method in Fig. 1.
  • Example 1 is the control group of Example 2.
  • Step 1 At room temperature, add 30L lithium battery scrap cathode material leaching solution to the 50L first reaction kettle.
  • Step 2 Use the pH meter to control the peristaltic pump on-line to pump 2 mol/L lithium hydroxide solution into the first reaction kettle, stop pumping the lithium hydroxide solution when the pH value is stable at 5.5, and make the mixture react for 1 hour. The reaction consumed a total of 4.2 L of lithium hydroxide solution.
  • Step 3 Filter the reacted mixture with a filter press with a 200-mesh filter cloth, and rinse the filter cake with 0.6 MPa high-pressure air until no filtrate flows out.
  • the internal pressure of the filter press rises rapidly, for example, when it rises to the upper pressure limit of 0.5MPa within 2 minutes, the filtration needs to be stopped, indicating that the filterability of the precipitate is poor. After the pressure drops to 0MPa, continue the filtration operation.
  • Step 4 Observe the filtered filtrate and find that the filtrate is cloudy, indicating that the precipitate is not completely filtered.
  • Step 5 Collect the filter cake after filtration to obtain 267 g of wet filter cake, and after drying, obtain 92.4 g of dry filter cake.
  • Step 6 ICP test is performed on the leaching solution, dry filter cake and filtrate of the discarded positive electrode material of the lithium battery, and SEM test is performed on the dry filter cake.
  • Step 1 10L of the filtrate in Example 1 was added to the 50L first reaction kettle as the first bottom liquid, so that the electrode of the pH meter was below the liquid level, and the first reaction kettle was heated to keep the reaction temperature constant at 70°C.
  • Step 2 Pump the leaching solution of the scrapped positive electrode material of the lithium battery and the 2mol/L lithium hydroxide solution into the first reaction kettle with a peristaltic pump respectively.
  • the pumping speed of the leaching solution of the scrapped cathode material of the lithium battery is controlled at 200ml/min, and the pumping speed of lithium hydroxide is controlled by an online pH meter, and the pumping speed of lithium hydroxide is controlled so that the pH of the mixture is 5.5.
  • the mixture overflowed from the overflow port of the first reaction kettle and entered the first aging kettle. During this process, a total of 36L lithium battery scrap cathode material leaching solution and lithium hydroxide solution were pumped into 5.04L for reaction.
  • Step 3 Heat the first aging kettle to keep the aging temperature constant at 70°C, and age the mixture in the first aging kettle for 1 hour.
  • Step 4 The aged mixture is cooled to room temperature in the first buffer tank, filtered with a filter press, and the filter cake is washed with 0.6MPa high-pressure air until no filtrate flows out. During the filtration process, the pressure of the filter press was always maintained below 0.2 MPa, indicating that the filterability of the precipitate was good.
  • Step 5 Observe the filtered filtrate and find that the filtrate is clear, indicating that the sediment is completely filtered. 51.04L of filtrate was obtained.
  • Step 6 Collect the filter cake after filtration to obtain 194.4 g of wet filter cake, and after drying, obtain 112 g of dry filter cake.
  • Step 7 ICP test is performed on the filtrate and dry filter cake, and SEM test is performed on the dry filter cake.
  • the loss rate M of nickel ion, cobalt ion and manganese ion in Example 1 (weight of dry filter cake ⁇ content of M in dry filter cake)/(content of M in leachate ⁇ total volume of leachate participating in the reaction) ⁇ 100%.
  • Removal rate M of aluminum ion, iron ion and copper ion in Example 2 (M content in leaching solution ⁇ total volume of leaching solution participating in reaction-M content in filtrate ⁇ total volume of filtrate)/(M content in leaching solution ⁇ participation The total volume of the leachate of the reaction).
  • Loss rate M of nickel ion, cobalt ion and manganese ion in Example 2 (weight of dry filter cake ⁇ content of M in dry filter cake)/(content of M in leaching solution ⁇ total volume of leaching solution participating in the reaction) ⁇ 100 %.
  • Example 2 From the calculation results of the removal rates of aluminum ions, iron ions, and copper ions in Examples 1 and 2, it can be known that the removal rates of aluminum ions, iron ions, and copper ions in Example 2 are higher than those in Example 1. The effect of removing aluminum ions, iron ions and copper ions from the leaching solution of scrapped cathode materials of lithium batteries is better. And, because the filter residue of Example 1 can hardly be washed, and the filter residue of Example 2 is enriched to a certain degree in the filter press, it can be washed with a small amount of clean water at one time, and some aluminum ions, iron ions, and copper ions are recovered to further reduce Loss rates of aluminum ions, iron ions, and copper ions.
  • FIG. 4A is an SEM picture of the filter residue shown in Example 1 of the present application
  • FIG. 4B is an SEM picture of the filter residue shown in Example 2 of the present application. It can be seen from Fig. 4A and Fig. 4B that the crystal grains of the filter residue in Example 1 are fine, the plates are formed into blocks, the aggregate structure is tight, and the compactness is high; in Example 2, the crystal grains of the filter residue are slightly larger, although the It dries to a lumpy but loose structure with low firmness. It is shown that the precipitated crystal grains are larger and the water content is lower after the method of Example 2 is used to remove impurities from the leaching solution of the scrapped positive electrode material of the lithium battery.
  • Example 1 is by adding the reaction material at one time and reacting for 1 h at room temperature, the pH of the solution is 5.5, to carry out impurity removal treatment on the leaching solution of the scrapped positive electrode material of the lithium battery;
  • Example 2 By maintaining the reaction temperature at 70 °C, the pH of the solution at 5.5, and continuously feeding the reaction materials to fully react for 3 hours and aging for 1 hour, the leaching solution of the discarded cathode material of the lithium battery is subjected to impurity removal treatment.
  • Example 2 using the same pH value of the solution as in Example 1, by fixing at a higher reaction temperature, and controlling the speed of adding the reaction material, the reaction was fully reacted for 3h and aged for 1h, so that the resulting precipitates were The larger grain size is convenient for filtering and washing the precipitate, so that the removal rate of Al, Fe and Mn metals is higher, and the effect of impurity removal is better.
  • the pH meter Since a pH meter needs to be used to monitor the pH of the solution to control the reaction process in real-time during the recycling process of scrap cathode materials for lithium batteries, the pH meter is required to have high sensitivity, and it is necessary to avoid the phenomenon of pH meter electrode poisoning.
  • Other parameters for example, the flow rate of the first alkali solution
  • the ternary precursor or called precursor precipitation
  • a fluorine-containing precipitant eg, sodium fluoride
  • the solubility of lithium fluoride is low.
  • the technical solution of the present application also needs to recover lithium ions in the process of removing impurities, and then carry out the subsequent process of removing impurities.
  • FIG. 2 is an exemplary flow chart of a method 200 for recovering lithium ions during the recovery process of scrap cathode materials of lithium batteries according to further embodiments of the present application.
  • the process of recovering lithium ions in the process of recycling scrap cathode materials of lithium batteries can be carried out in a reaction kettle and an aging kettle.
  • the first filtrate, the complexing agent and the second alkali solution can be pumped into the reactor through the feed pump A, feed pump B and feed pump C (not shown in the figure) respectively, and the reaction After a period of time, the discharge pipe A on the reaction kettle overflows into the aging kettle for aging, wherein the reaction kettle can be the second reaction kettle, and the aging kettle can be the second aging kettle.
  • step 210 an appropriate amount of the second bottom liquid is added to the second reaction kettle, and the reaction temperature in the second reaction kettle is maintained at a second temperature higher than room temperature, and then a protective gas is introduced into the second reaction kettle.
  • the volume of the second reaction kettle can be set according to the production requirements of the process or the feed amount of the reaction materials.
  • the volume of the second reactor can be 50L, 80L or 100L.
  • the second bottom liquid is the liquid placed in the second reaction kettle before pumping the reaction material, and the second bottom liquid is used to soak the pH meter so that the electrode of the pH meter is below the liquid level.
  • the second bottom liquid may be ammonia water.
  • the second temperature may be higher than room temperature.
  • the second temperature may be any value between 40-70°C. More preferably, the second temperature can be any value in the range of 43-68°C. More preferably, the second temperature can be any value of 46-66°C. More preferably, the second temperature can be any value of 48-64°C. More preferably, the second temperature can be any value of 50-62°C. More preferably, the second temperature can be any value of 52-60°C. More preferably, the second temperature can be any value of 54-58°C. More preferably, the second temperature may be 40°C. More preferably, the second temperature may be 45°C. More preferably, the second temperature may be 50°C. More preferably, the second temperature may be 55°C.
  • the second temperature may be 60°C. More preferably, the second temperature may be 65°C. More preferably, the second temperature may be 70°C.
  • the reaction temperature in the second reaction kettle may be maintained at the second temperature by heating the second reaction kettle.
  • the manner of heating the second reaction kettle may include electric heating, steam heating, heat-conducting oil circulating heating or far-infrared heating, which is not limited in this application. Since the second temperature is higher than the crystallization temperature of the prior art, it is easier to crystallize to obtain crystals with large crystal grains.
  • the shielding gas may include nitrogen or an inert gas (eg, helium, neon, or argon).
  • Step 220 the first filtrate, the complexing agent and the second alkali solution are respectively pumped into the second reaction kettle at a suitable flow rate and overflow the second reaction kettle after the reaction for the third time;
  • the reaction is stabilized at the second temperature, and the reaction is stabilized at the first pH range by adjusting the flow rate of the second base solution.
  • the flow rates of the first filtrate, the complexing agent and the second alkali solution can be set according to the production requirements of the process, and a suitable flow rate can be set to make the first filtrate, the complexing agent and the second alkali solution react for the third time and overflow the second reactor.
  • the second reactor is 50L
  • the flow rate of the first filtrate can be 40-300mL/min
  • the flow rate of the complexing agent can be set in proportion according to the flow rate of the first filtrate (for example, the flow rate of the complexing agent can be 1- 50 mL/min)
  • the flow rate of the second alkali solution can be controlled by stabilizing the reaction within the first pH range or the measurement error range.
  • the complexing agent may include ammonia, oxalic acid, ethylenediaminetetraacetic acid (EDTA), or citric acid.
  • EDTA ethylenediaminetetraacetic acid
  • the function of the complexing agent is to form complexes with nickel ions, cobalt ions and manganese ions in the first filtrate, so that the particle size of the formed precipitated grains is more uniform, which is convenient for filtration and separation.
  • the second base solution is the same as the first base solution.
  • the first alkali solution is a lithium hydroxide solution
  • the second alkali solution is also a lithium hydroxide solution.
  • the feeding pipe of the first filtrate and the feeding pipe of the complexing agent can be respectively extended into the bottom of the first reaction kettle.
  • the feeding pipe of the first filtrate and the feeding pipe of the complexing agent may be the same or two.
  • the pumping of the second alkali solution into the second reaction kettle may be by extending the feed pipe of the second alkali solution into the bottom of the second reaction kettle. As shown in FIG.
  • the first filtrate, the complexing agent and the second alkali solution can be pumped into the reaction kettle (that is, the first Two reaction kettles), feed pipe A, feed pipe B and feed pipe C (not shown in the figure) are inserted into the bottom of the reaction kettle.
  • the second reaction kettle may include a stirring component for stirring the first filtrate, the complexing agent and the second alkali solution in the second reaction kettle.
  • the pH value of the solution can be considered Stable in the first pH range.
  • the pH of the solution is lower than 10.7
  • the third time may be 2-10 h. More preferably, the third time may be 2.5-9 hours. More preferably, the third time may be 3-8h. More preferably, the third time may be 4.0-7.0h. More preferably, the third time may be 4.5-6.5h. More preferably, the third time may be 5.0-6.0h. More preferably, the third time may be 5.3-5.7 hours. More preferably, the third time may be 3h. More preferably, the third time may be 4 hours. More preferably, the third time may be 5h. More preferably, the third time may be 6 hours. More preferably, the third time may be 7h. More preferably, the third time may be 8h.
  • the reaction material can be fully reacted in the second reaction kettle for 3-8 hours, and then the second reaction kettle can be fully reacted for 3-8 hours.
  • the reaction kettle overflowed to the second aging kettle.
  • Step 230 ageing the mixture overflowing the second reaction kettle, maintaining the ageing temperature at the second temperature, and ageing for a fourth time.
  • the aging process can be carried out in a second aging kettle.
  • the aging temperature in the second aging kettle may be maintained at the second temperature by heating the second aging kettle.
  • the manner of heating the second aging kettle may include electric heating, steam heating, heat-conducting oil circulating heating or far-infrared heating, which is not limited in this application.
  • the fourth time may be 0.5-2h. More preferably, the fourth time may be 0.8-1.8h. More preferably, the fourth time may be 1.0-1.6h. More preferably, the fourth time may be 1.2-1.4h. More preferably, the fourth time may be 0.5h. More preferably, the fourth time may be 1 hour. More preferably, the fourth time may be 1.5h. More preferably, the fourth time may be 2h.
  • the grain growth of the precipitated crystals in the reacted mixture can be increased, and the particle size distribution can be made more uniform.
  • step 240 the second separation process is performed, and the target substance precipitation and the second filtrate are obtained; wherein, the second filtrate contains lithium ions.
  • the aged mixture may be cooled, and the cooled mixture may be subjected to a second separation process to obtain a precipitation of the target substance and a second filtrate.
  • the second separation process may be a solid-liquid separation process.
  • the second separation method may include filtration, gravity settling, centrifugal settling, filter press, and the like.
  • the target species precipitation may be a precipitation comprising one or more of nickel ions, cobalt ions, and manganese ions.
  • the second filtrate may include at least lithium ions.
  • the target substance (one or more of nickel ion, cobalt ion, and manganese ion) can be precipitated, so as to separate the lithium ion in the form of a solution, thereby realizing the purpose of recovering lithium.
  • Example 3 is an example of using the method for recovering lithium in FIG. 2 .
  • Example 4 is an example of a method for batch processing the first filtrate to recover lithium, and Example 4 is a control group of Example 3.
  • Step 1 10L deionized water and 300mL 23.5% ammonia water were added to the 50L second reaction kettle as the second bottom liquid, the reaction temperature was maintained at 50°C, and nitrogen was introduced as a protective gas.
  • Step 2 The first filtrate obtained in Example 2 was pumped into the second reaction kettle at a flow rate of 60 mL/min, and the 12% ammonia water was pumped into the second reaction kettle at a flow rate of 5 mL/min.
  • Use a pH meter to control the flow rate of the 4 mol/L lithium hydroxide solution pumped in real time, and control the flow rate of the lithium hydroxide solution to make the pH value of the mixture between 10.7-11.2.
  • the mixture overflowed from the overflow port of the second reaction kettle and flowed into the second aging kettle.
  • Step 3 heating the second aging kettle to make the aging temperature constant at 50°C, and aging the mixture in the second aging kettle for 1 hour.
  • Step 4 Filter the aged mixture with a centrifuge and wash the filter cake. Among them, the water consumption for washing 100g of precipitate was 1.12L.
  • Step 5 Collect the filter cake after filtering, and perform ICP, XRD and SEM tests on the filter residue.
  • the lithium content was found to be 0.02% by ICP test, and the filter cake was considered to have been washed clean.
  • Step 1 At room temperature, 30L of the first filtrate was added to the 50L second reaction kettle, and the first filtrate was from Example 2.
  • Step 2 Use a pH meter to control the addition amount of the 4 mol/L lithium hydroxide solution pumped, and stop adding when the pH value is 10.5. The mixture was allowed to stabilize for 1 h.
  • Step 3 Filter the reacted mixture with a centrifuge, and wash the filter cake. Among them, the water consumption for washing 100g of precipitate was 2.32L.
  • Step 4 Collect the filter cake after filtration, and perform ICP and XRD tests on the filter residue.
  • the lithium content was found to be 0.03% by ICP test, and the filter cake was considered to have been washed clean.
  • Example 3 According to the water consumption for washing the filter cake in Example 3 and Example 4, when washing 100 g of precipitate, the water consumption in Example 3 is smaller, indicating that the precipitated crystal grains in Example 3 are larger than those in Example 4. Since in Example 3, the precipitation and crystallization of nickel-cobalt-manganese is carried out in a fixed pH range (eg, 10.7-11.2), the co-precipitation of nickel-cobalt-manganese hydroxide can be realized. Because the pH value at which nickel hydroxide begins to precipitate is 7.2, the pH value at which cobalt hydroxide begins to precipitate is 7.15, the pH value at which manganese hydroxide begins to precipitate is 8.1, and the pH value for complete precipitation is also different.
  • Example 4 The nickel-cobalt-manganese precipitation was precipitated and crystallized separately in different pH ranges (continuously adding lithium hydroxide solution until the pH value was 10.5), and the co-precipitation of nickel-cobalt-manganese hydroxide could not be formed. Therefore, by controlling the pH in the range of 10.7-11.2 in Example 3, it is beneficial to generate the co-precipitation of nickel-cobalt-manganese hydroxide, and the precipitated crystal grains are larger than those in Example 4.
  • the lithium content in the filter cake of Example 3 is smaller, even if the lithium content of the filter cake in Example 4 is small enough, it can be considered that it has been cleaned up,
  • the water consumption for washing 100 g of the precipitate in Example 4 was 2.32 L
  • the water consumption for washing 100 g of the precipitate in Example 3 was 1.12 L
  • the water consumption in Example 4 was twice that of Example 3. In addition, the washing time in Example 4 was longer.
  • Example 5 is the XRD patterns of the filter residues shown in Examples 3 and 4 according to the present application. It can be seen from FIG. 5 that the filter residue sample of Example 3 has obvious diffraction peaks when 2 ⁇ is 20°, 35° and 40°, which are stronger than the diffraction peaks at the corresponding positions in Example 4. It is shown that the crystallinity of the nickel-cobalt-manganese hydroxide of Example 3 is better than that of Example 4 after dehydrogenation at 500°C.
  • the obtained nickel-cobalt-manganese precipitates have larger crystal grains, realizes the co-precipitation of nickel-cobalt-manganese, and the precipitated grain structure is relatively consistent, which is convenient for better separation and recovery of lithium during filtration. ion.
  • FIG. 6 is a SEM picture of the filter residue shown in Example 3 of the present application.
  • the precipitate sample of Example 4 was obviously agglomerated after drying, and it was judged that the crystal grains were all fine crystal grains and formed a colloid. However, after the precipitation of Example 3 was dried, it naturally loosened into a sand-like shape, and it can be seen from the SEM picture that its secondary grain structure was better.
  • Example 3 Through the comparison results of Example 3 and Example 4:
  • the reaction temperature was maintained at 50 ° C, the pH of the solution was maintained between 10.7-11.2, and the reaction was fully reacted for 5h, aged For 1 h, to recover lithium ions;
  • Example 4 at room temperature, the pH of the solution was 10.5, and the reaction material was added at one time and reacted for 1 h to recover lithium ions.
  • Example 3 using the pH value of the solution similar to Example 4, by being fixed at a higher reaction temperature, and adding ammonia water as a complexing agent to make the target ion form a complex with it so as to reach the equilibrium of dissolution and precipitation,
  • the combined effect of controlling the feeding speed, prolonging the feeding time and reaction time, and increasing the aging time can make the crystal grains of the generated precipitate larger, and the grain structure is relatively consistent, which is convenient for filtration and washing of the precipitate, so that the recovery rate of lithium can be improved. higher.
  • FIG. 3 is an exemplary flow chart of a method 300 for removing impurities in a process of recycling scrap cathode materials of lithium batteries according to further embodiments of the present application.
  • the impurity removal process in the recycling process of the scrapped cathode material of the lithium battery can be carried out in the reaction kettle and the aging kettle.
  • the first solution and the fluorine-containing precipitating agent can be pumped into the reaction kettle through feed pump A and feed pump B respectively, and after a period of reaction, the discharge pipe A on the reaction kettle overflows into the reaction kettle.
  • the aging still is performed, wherein the reaction still can be the third reaction still, and the aging still can be the third aging still.
  • Step 310 dissolving the precipitation of the target substance to obtain a first solution.
  • a leaching agent may be added to the target substance precipitation for dissolution. Specifically, a leaching agent can be added to the precipitation of the target substance until the pH is in the third range for dissolution to obtain a solution containing the target substance.
  • the leaching agent includes at least a reducing agent, a first acid and water.
  • the solution containing the target substance may be a solution containing one or more of nickel ions, cobalt ions, and manganese ions.
  • a fourth base solution may be added to the solution containing the target substance to adjust the pH of the solution. Specifically, an appropriate amount of the fourth alkali solution can be added to the solution containing the target substance until the pH is in the fourth range to obtain the first solution.
  • the fourth alkali solution may be a sodium hydroxide solution. The addition amount of the fourth alkali solution is determined according to the pH of the solution. When adding the fourth alkali solution, the addition of the fourth alkali solution can be stopped by controlling the pH of the solution within the fourth range.
  • the first solution may be a solution containing one or more of nickel ions, cobalt ions, and manganese ions.
  • Step 320 maintaining the reaction temperature in the third reaction kettle at a third temperature higher than room temperature.
  • the volume of the third reaction kettle can be set according to the production requirements of the process or the feed amount of the reaction materials.
  • the volume of the third reactor can be 50L, 80L or 100L.
  • the third temperature may be higher than room temperature.
  • the third temperature is any value between 50-90°C. More preferably, the third temperature can be any value of 52-88°C. More preferably, the third temperature can be any value of 55-86°C. More preferably, the third temperature can be any value in the range of 58-83°C. More preferably, the third temperature can be any value of 60-80°C. More preferably, the third temperature can be any value of 62-78°C. More preferably, the third temperature can be any value of 65-76°C. More preferably, the third temperature can be any value of 67-73°C. More preferably, the third temperature can be any value in the range of 69-71°C.
  • the third temperature may be 50°C. More preferably, the third temperature may be 55°C. More preferably, the third temperature may be 60°C. More preferably, the third temperature may be 65°C. More preferably, the third temperature may be 70°C. More preferably, the third temperature may be 75°C. More preferably, the third temperature may be 80°C. More preferably, the third temperature may be 85°C. More preferably, the third temperature may be 90°C.
  • the reaction temperature in the third reactor can be maintained at the third temperature by heating the third reactor.
  • the manner of heating the third reaction kettle may include electric heating, steam heating, heat-conducting oil circulating heating or far-infrared heating, which is not limited in this application. Since the third temperature is higher than the crystallization temperature of the prior art, it is easier to crystallize to obtain crystals with large crystal grains.
  • step 330 the first solution and the fluorine-containing precipitant are respectively pumped into the third reaction kettle at a suitable flow rate and overflow the third reaction kettle after the reaction for a fifth time; wherein, during the fifth time, the reaction is maintained
  • the stabilization is performed at the third temperature, and the fluoride ion concentration of the reactant in the third reaction kettle is stabilized in the first concentration range by adjusting the flow rate of the fluorine-containing precipitant.
  • the concentration of fluoride ions in the reaction kettle may be 0.01-0.10 mol/L during the reaction. More preferably, the concentration of fluoride ions can be 0.012-0.09 mol/L. More preferably, the concentration of fluoride ions can be 0.013-0.06mol/L. More preferably, the concentration of fluoride ions can be 0.014-0.04mol/L. More preferably, the concentration of fluoride ions may be 0.015-0.02 mol/L.
  • the flow rates of the first solution and the fluorine-containing precipitating agent can be set according to the production requirements of the process, and an appropriate flow rate can be set to make the first solution and the fluorine-containing precipitating agent react for a fifth time and overflow the first reaction kettle.
  • the third reactor is 50L
  • the flow rate of the first solution can be 40-300mL/min
  • the flow rate of the fluorine-containing precipitant can be stabilized by stabilizing the fluoride ion concentration of the reactant in the third reactor at 40-300mL/min.
  • Control within the first concentration range or measurement error range for example, the allowable range of measurement error for the fluoride ion concentration range is ⁇ 0.0005mol/L, that is, the fluoride ion concentration range can be 0.0095-0.1005mol/L
  • fluorine-containing precipitation The flow rate of the agent is 5-100 ml/min.
  • the first solution and the fluorine-containing precipitant can be pumped into the reaction kettle (ie, the third reaction kettle) through the feeding pump A and the feeding pump B, respectively, and the feeding pipe A and the feeding pipe B are inserted into the reaction kettle Bottom of the kettle.
  • the third reaction kettle may include a stirring component for stirring the first solution and the fluorine-containing precipitant in the third reaction kettle.
  • the first concentration range may be a fluoride ion concentration of 0.005-0.1 mol/L. More preferably, the first concentration range may be 0.010-0.099 mol/L of fluoride ion concentration. More preferably, the first concentration range may be 0.020-0.095 mol/L of fluoride ion concentration. More preferably, the first concentration range may be 0.030-0.090 mol/L of fluoride ion concentration. More preferably, the first concentration range may be 0.040-0.080 mol/L of fluoride ion concentration. More preferably, the first concentration range may be 0.050-0.070 mol/L of fluoride ion concentration.
  • the first concentration range may be 0.055-0.060 mol/L of fluoride ion concentration.
  • the stabilization of the fluoride ion concentration of the solution in the first concentration range may be that the fluoride ion concentration of the solution is always at a certain value within the first concentration range or fluctuates within the first concentration range.
  • the fluoride ion concentration of the solution is 0.01mol/L, 0.011mol/L, 0.012mol/L, 0.013mol/L, 0.014mol/L, 0.015mol/L , 0.016mol/L, 0.017mol/L, 0.018mol/L, 0.019mol/L or fluctuating in the range of 0.01-0.02mol/L, it can be considered that the fluoride ion concentration of the solution is stable in the first concentration range.
  • the fluoride ion concentration of the solution can be measured in real time by the fluoride ion meter to control the pumping speed of the fluorine-containing precipitant, so that the fluoride ion concentration of the solution can be maintained in the first concentration range.
  • the measurement error range for example, the allowable range of the measurement error of the fluoride ion concentration range is ⁇ 0.0005mol/L, that is, the fluoride ion concentration range can be 0.0095-0.1005mol/L.
  • the pumping speed of the fluorine-containing precipitant is the fifth flow rate.
  • the fluoride ion concentration of the solution is lower than 0.010mol/L, and the flow rate of the fluorine-containing precipitant needs to be appropriately increased to make the solution
  • the fluoride ion concentration of the solution rises to the range of 0.010-0.015mol/L; on the contrary, when the flow rate of the fluorine-containing precipitant is 40ml/min, the fluoride ion concentration of the solution exceeds 0.015mol/L, it is necessary to appropriately reduce the fluorine-containing precipitant.
  • the flow rate is such that the fluoride ion concentration of the solution falls within the range of 0.010-0.015 mol/L.
  • the fifth time may be 2-10 h. More preferably, the fifth time may be 2.5-8.0h. More preferably, the fifth time may be 3.0-7.0h. More preferably, the fifth time may be 4.5-6.5h. More preferably, the fifth time may be 5.0-6.0h. More preferably, the fifth time may be 5.3-5.7h. More preferably, the fifth time may be 3h. More preferably, the fifth time may be 4 hours. More preferably, the fifth time may be 5h. More preferably, the fifth time may be 6h. More preferably, the fifth time may be 7h. More preferably, the fifth time may be 8h.
  • the reaction material can be fully reacted in the third reaction kettle for 3-8 hours, and then the reaction material can be fully reacted in the third reaction kettle for 3-8 hours.
  • the reaction kettle overflowed to the third aging kettle.
  • Step 340 ageing the mixture overflowing the third reaction kettle, maintaining the ageing temperature at the third temperature, and ageing for a sixth time.
  • the aging process can be carried out in the third aging kettle.
  • the aging temperature in the third aging kettle may be maintained at the third temperature by heating the third aging kettle.
  • the manner of heating the third aging kettle may include electric heating, steam heating, heat-conducting oil circulating heating or far-infrared heating, which is not limited in this application.
  • the third temperature reference may be made to the description of step 320, which is not repeated here.
  • the sixth time may be 0.5-2h. More preferably, the sixth time can be 0.8-1.8h. More preferably, the sixth time may be 1.0-1.6h. More preferably, the sixth time may be 1.2-1.4h. More preferably, the sixth time may be 0.5h. More preferably, the sixth time may be 1 hour. More preferably, the sixth time may be 1.5h. More preferably, the sixth time may be 2h.
  • the grain growth of the precipitated crystals in the reacted mixture can be increased, and the particle size distribution can be made more uniform.
  • step 350 the aged mixture is allowed to stand for a seventh time, and then a third separation process is performed to obtain the second impurity and the target solution.
  • the standing process can be carried out in a second buffer tank, and the aged mixture can be pumped into the second buffer tank for standing.
  • the seventh time may be 0.5-2 h. More preferably, the seventh time may be 0.8-1.8h. More preferably, the seventh time may be 1.0-1.6h. More preferably, the seventh time may be 1.2-1.4 hours. More preferably, the seventh time may be 0.5h. More preferably, the seventh time may be 1.0h. More preferably, the seventh time may be 1.5h. More preferably, the seventh time may be 2h.
  • a third separation process may be performed on the left-standing mixture to obtain the second impurity and the target solution.
  • the third separation process may be a solid-liquid separation process.
  • the third separation method may include filtration, gravity settling, centrifugal settling, filter press, and the like.
  • the second impurity may include at least one or more of calcium fluoride, magnesium fluoride, and lead fluoride.
  • the target solution may be a solution including one or more of nickel ions, cobalt ions, and manganese ions.
  • the aged mixture may not be allowed to stand, but the aged mixture may be directly subjected to the third separation process.
  • the target solution can also be further processed to obtain precursor precipitation.
  • a third alkali solution can be added to the target solution to obtain precursor precipitation.
  • the third base solution can be the same as the fourth base solution.
  • the third base solution may be a sodium hydroxide solution.
  • the precursor can also be precipitated and further sintered with lithium hydroxide crystals or lithium carbonate crystals to obtain a lithium battery positive electrode material.
  • the above method controls the flow rate, reaction temperature, reaction time and aging time of the first solution and the fluorine-containing precipitant pumped into the third reaction kettle, so that the crystal grains of the crystal are fully grown into large crystal grains, which is convenient for the third separation.
  • the process reduces the water consumption and washing time of washing in the third separation process, and also reduces the waste of nickel-cobalt-manganese ions in the washing process, thereby improving the recovery rate of nickel-cobalt-manganese.
  • Example 5 The method for removing calcium ion, magnesium ion and lead ion in the recycling process of the scrapped positive electrode material of the lithium battery will be described in detail below through Example 5 and Example 6. It should be noted that the reaction conditions, the reaction material and the consumption of the reaction material in Example 5 and Example 6 are only for the purpose of illustrating the method for removing calcium ions, magnesium ions and lead ions in the recycling process of the scrapped positive electrode material of the lithium battery. The scope of protection applied for. Among them, Embodiment 5 is an embodiment using the impurity removal method in FIG. 3 .
  • Example 6 is an example of an impurity removal method for batch treatment of impurities in the precipitation of a target substance, and Example 6 is a control group of Example 5.
  • Step 1 Dissolve the precipitation of the target substance containing nickel, cobalt and manganese ions with sulfuric acid and hydrogen peroxide, and control the pH value of the solution to 3.2 to react to obtain a solution containing the target substance; add NaOH solution to the solution containing the target substance to make The pH of the mixture was 5.2, resulting in a first solution.
  • Step 2 The first solution with pH value of 5.2 was added to the 50L third reaction kettle with a peristaltic pump, the flow rate was controlled to be 100mL/min, and the reaction temperature in the third reaction kettle was controlled to be 90°C.
  • the NaF solution of 0.96mol/L was added to the third reactor at a flow rate of 20mL/min; every 30min was sampled, the fluoride ion content of the reaction solution was tested, and the flow rate of the NaF solution was adjusted according to the test value, so that the fluoride ion content was controlled at 0.01mol/ Between L-0.015mol/L.
  • the mixture After fully reacting for 5 hours, the mixture overflowed from the overflow port of the third reaction kettle and entered the third aging kettle. During this process, a total of 30L of the first solution was pumped.
  • Step 3 heating the third aging kettle to keep the aging temperature constant at 90° C., and aging the mixture in the third aging kettle for 1 hour.
  • Step 4 Pump the mixture from the third aging kettle into the third buffer tank, let it stand for 1 hour, and observe that the supernatant is clear and has no floating matter.
  • Step 5 Filter the aged mixture with a filter press, collect the wet filter residue and wash it in the laboratory.
  • Step 6 Collect the filtrate to obtain a filtrate volume of 41.5L.
  • Step 7 ICP test is performed on the first solution, filtrate and filter residue, and SEM test is performed on the filter residue.
  • Step 1 Dissolve the precipitation of the target substance containing nickel, cobalt and manganese ions with concentrated sulfuric acid and hydrogen peroxide, and control the pH of the solution to 3.2 to react to obtain a solution containing the target substance; add NaOH solution to the solution containing the target substance. The pH of the mixture was brought to 5.2, resulting in a first solution.
  • Step 2 Add 40L of the first solution with a pH value of 5.2 to the 50L third reactor at one time; the reaction temperature in the third reactor is stable at 90°C.
  • Step 3 Add 81 g of NaF solid, stir for 1 hour, stop heating, and naturally cool to room temperature.
  • Step 4 stand for 24h, observe the supernatant, there are white floating objects on the surface that cannot be precipitated.
  • Step 5 Filter the aged mixture with a filter press, collect the wet filter residue, and clean it in the laboratory.
  • Step 6 Collect the filtrate to obtain a filtrate volume of 39.5L.
  • Step 7 ICP test is performed on the first solution, filtrate and filter residue, and SEM test is performed on the filter residue.
  • FIG. 7A is an SEM picture of the filter residue according to Example 5 of the present application
  • FIG. 7B is an SEM picture of the filter residue according to Example 6 of the present application. It can be seen from FIG. 7A and FIG. 7B that the filter residue in Example 5 has a clear cubic crystal structure, while the filter residue in Example 6 has tiny crystal grains, and the crystal grain structure cannot be distinguished. It is shown that the precipitated crystal grains obtained after the method of Example 5 is used to remove impurities from the first filtrate is larger than that of the method of Example 6.
  • Example 5 the reaction temperature was maintained at 90 ° C, the content of fluoride ions was controlled between 0.01mol/L-0.015mol/L, and the reaction was fully reacted for 5h and aged. 1h, standing for 1h, to remove impurities from the first solution; in Example 6, at 90°C, the reaction material was added at one time, reacted for 1h, and allowed to stand for 24h to remove impurities from the first solution.
  • Example 5 using the same reaction temperature as Example 6, by controlling the feeding rate and the fluoride ion content of the first solution, the longer reaction time, and the combined action of the aging time, the generation of The crystal grain of the precipitate is larger, which is convenient for filtration and washing of the precipitate, so that the removal rate of calcium ions is higher and the effect of impurity removal is better.
  • the above-mentioned methods for removing impurities and methods for recovering lithium in FIGS. 1-3 may be implemented independently or simultaneously.
  • the impurities contained in the scrap cathode material of lithium batteries are only one or more of iron ions, aluminum ions, and copper ions, and the impurity removal method in FIG. of removal.
  • the impurities contained in the scrap positive electrode material of the lithium battery include one or more of iron ions, aluminum ions, and copper ions, and also one or more of calcium ions, magnesium ions, and lead ions, it is possible to implement FIG. 1 .
  • the method of removing impurities and the method of recovering lithium in Fig. 3, in order to realize the removal of impurities in the scrap cathode material of lithium batteries are only one or more of calcium ions, magnesium ions, and lead ions, and the impurity removal methods in FIG. 2 and FIG. removal of impurities.
  • the possible beneficial effects of the embodiments of the present application include, but are not limited to: (1) by carrying out the precipitation reaction at a reaction temperature higher than room temperature and a fixed pH, a precipitate with large particle size, high crystallinity and low water content can be obtained , making the precipitation filtration and washing process more efficient and convenient, reducing the water consumption in the washing process, and improving the recovery rate of nickel, cobalt, and manganese in the process of recycling scrap cathode materials for lithium batteries; (2) by preparing lithium battery cathode material precursors The lithium ions are removed before the precipitation, which can achieve the purpose of recovering lithium, and at the same time avoid affecting the control of the reaction parameters in the subsequent impurity removal process, thereby improving the recovery rate of nickel, cobalt, and manganese. It should be noted that different embodiments may have different beneficial effects, and in different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sustainable Development (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了一种锂电池报废正极材料回收过程中的除杂和处理方法:包括在高于室温的第一温度和固定的第一pH值下,控制锂电池报废正极材料浸出液和第一碱溶液的流速沉淀除去铁离子、铝离子和至少部分铜离子得到第一滤液;在高于室温的第二温度和固定的第一pH范围下,控制第一滤液、络合剂和第二碱溶液的流速分离出含有锂离子的第二滤液得到目标物质沉淀;对目标物质沉淀进行溶解得到第一溶液;在高于室温的第三温度和固定的氟离子浓度下,控制第一溶液和含氟沉淀剂的流速沉淀除去钙离子、镁离子和至少部分铅离子得到目标溶液,可得到粒径大、结晶度高、含水率低的沉淀,便于洗涤,提高了锂电池报废正极材料镍钴锰的回收率。

Description

一种锂电池报废正极材料回收过程中的除杂和处理方法
交叉引用
本申请要求2020年11月26日提交的中国申请号202011347197.8的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及材料回收技术领域,特别涉及一种锂电池报废正极材料回收过程中的除杂和处理方法。
背景技术
在锂电池报废正极材料的回收过程中,溶出的镍钴锰溶液中往往含有多种金属杂质(例如,Fe、Al、Cu、Ca、Mg或Pb等),如果杂质不去除,上述杂质会对锂电池报废正极材料回收后合成的锂电池正极材料的品质和性能造成影响。
现有技术中对Fe、Al、Ca、Mg等金属杂质的除杂方法,存在沉淀难以过滤和洗涤的问题,造成实际的滤液中残留不能过滤的杂质沉淀,该杂质沉淀会混入后续的步骤中,最终造成三元前驱体产品中杂质含量高。同时,由于沉淀难以过滤和洗涤,在过滤过程中对过滤设备的要求较高、对清洗用水的需求量增大,并且需要更多时间进行过滤,甚至有部分胶状滤渣含液率高,且易堵塞过滤材料,导致无法洗涤,使得过滤和洗涤的操作难度加大,镍钴锰金属的回收率降低,回收成本升高。
此外,三元正极材料的前驱体(或称为三元前驱体)共沉淀过程是锂电池正极材料制备的重要环节。前驱体产品的性能直接影响正极材料的性能。用于前驱体共沉淀的设备价值高、制造精密,提高前驱体的生产效率对于整个回收过程的成本影响尤为关键。在通常的三元前驱体共沉淀过程中,采用在线pH计对回 收过程的pH值进行精确的控制,以保证前驱体的品质。申请人的研究旨在解决在线pH计在锂离子浓度高的溶液中,容易出现锂离子中毒现象,并影响共沉淀过程的稳定性。同时,采用氢氧化钠作为沉淀剂,大大提高生产效率,减少回收过程中水的用量,缩小设备体积。基于以上两个原因,本发明在三元前驱体共沉淀过程前去除锂离子,在不显著影响回收过程生产效率的前提下,通过控制反应条件沉淀容易洗涤的镍钴锰等金属的氢氧化物。
因此,有必要提供一种锂电池报废正极材料回收过程中的除杂和处理方法。
发明内容
本申请实施例提供一种锂电池报废正极材料回收过程中的除杂和处理方法,所述方法包括:(1)在高于室温的第一温度和固定的第一pH的稳定环境下,控制锂电池报废正极材料浸出液和第一碱溶液的流速沉淀除去铁离子、铝离子和至少部分铜离子,得到第一滤液;(2)在高于室温的第二温度和固定的第一pH范围下,控制所述第一滤液、络合剂和第二碱溶液的流速将锂离子去除,分离出含有锂离子的第二滤液,得到目标物质沉淀;(3)对所述目标物质沉淀进行溶解,得到第一溶液;(4)在高于室温的第三温度和固定的氟离子浓度下,控制所述第一溶液和含氟沉淀剂的流速沉淀除去钙离子、镁离子和至少部分铅离子,得到目标溶液;所述除杂和处理方法在可连续操作的溢流反应釜中进行。
本申请实施例提供一种锂电池报废正极材料回收过程中的除杂和处理方法,所述方法包括:在第一反应釜中加入适量第一底液,并将所述第一反应釜中的反应温度维持在高于室温的第一温度;分别将锂电池报废正极材料浸出液和第一碱溶液以适宜流速泵入所述第一反应釜中反应第一时间后溢出所述第一反应釜;其中,在所述第一时间里,维持反应稳定在所述第一温度下进行,并且通过调整所述第一碱溶液的流速使得所述反应稳定在第一pH值下进行;之 后进行第一分离过程,并得到第一杂质和第一滤液。
在一些实施例中,在进行第一分离过程之前,所述方法还包括:将溢出所述第一反应釜的混合物进行陈化,将陈化温度维持在所述第一温度,并陈化第二时间。
在一些实施例中,所述方法还包括:在第二反应釜中加入适量第二底液,并将所述第二反应釜中的反应温度维持在高于室温的第二温度,之后向所述第二反应釜中通入保护气体;分别将所述第一滤液、络合剂和第二碱溶液以适宜流速泵入所述第二反应釜中反应第三时间后溢出所述第二反应釜;其中,在所述第三时间里,维持反应稳定在所述第二温度下进行,并且通过调整所述第二碱溶液的流速使得所述反应稳定在第一pH范围进行;之后进行第二分离过程,并得到目标物质沉淀和第二滤液;其中,所述第二滤液中含有锂离子。
在一些实施例中,在进行第二分离过程之前,所述方法还包括:将溢出所述第二反应釜的混合物进行陈化,将陈化温度维持在所述第二温度,并陈化第四时间。
在一些实施例中,所述方法还包括:对所述目标物质沉淀进行溶解,得到第一溶液;将所述第三反应釜中的反应温度维持在高于室温的第三温度;分别将所述第一溶液和含氟沉淀剂以适宜流速泵入所述第三反应釜中反应第五时间后溢出所述第三反应釜;其中,在所述第五时间里,维持反应稳定在所述第三温度下进行,并且通过调整所述含氟沉淀剂的流速使得所述第三反应釜中反应物的氟离子浓度稳定在第一浓度范围;之后进行第三分离过程,并得到第二杂质和目标溶液。
在一些实施例中,在进行第三分离过程之前,所述方法还包括:将溢出所述第三反应釜的混合物进行陈化,将陈化温度维持在所述第三温度,并陈化第六时间;将陈化后的混合物静置第七时间。
在一些实施例中,所述除杂方法能够连续对所述锂电池报废正极材料浸 出液进行处理。
在一些实施例中,在对锂电池报废正极材料浸出液进行沉淀处理之前,所述方法还包括:在所述锂电池报废正极材料中加入浸出剂至pH为第二范围进行溶解,之后进行第四分离过程,并得到第三杂质和所述锂电池报废正极材料浸出液;其中,所述浸出剂至少包括还原剂、第一酸和水。
在一些实施例中,所述锂电池报废正极材料包括锂镍钴锰氧化物电池材料、锂钴氧化物电池材料、锂钴锰氧化物电池材料、锂钴氧化铝电池材料、锂锰氧化物电池材料中的一种或多种。
在一些实施例中,所述方法还包括:在所述目标溶液中加入第三碱溶液,得到前驱体沉淀。
在一些实施例中,所述第一底液为去离子水或pH为所述第一pH值的溶液。
在一些实施例中,所述第一温度为50-90℃中任一值。
在一些实施例中,所述第一碱溶液包括氢氧化锂。
在一些实施例中,所述第一pH值为pH=5.5-6.7中任一值。
在一些实施例中,所述第一时间为2-10h。
在一些实施例中,所述第一杂质包括氢氧化铁、氢氧化铝和氢氧化铜中的一种或多种。
在一些实施例中,所述第二时间为0.5-2h。
在一些实施例中,所述第二底液包括氨水。
在一些实施例中,所述第二温度为40-70℃中任一值。
在一些实施例中,所述保护气体包括氮气或惰性气体。
在一些实施例中,所述络合剂包括氨水。
在一些实施例中,所述第二碱溶液包括氢氧化锂。
在一些实施例中,所述第一pH范围为pH=10.5-11.8。
在一些实施例中,所述第三时间为2-10h。
在一些实施例中,所述第四时间为0.5-2h。
在一些实施例中,所述对所述目标物质沉淀进行溶解,得到第一溶液包括:在所述目标物质沉淀中加入浸出剂至pH为第三范围进行溶解,得到含有目标物质的溶液;向所述含有目标物质的溶液中加入适量的第四碱溶液至pH为第四范围,得到所述第一溶液。
在一些实施例中,所述第三范围为pH=0-4。
在一些实施例中,所述第四范围为pH=4.5-6.5。
在一些实施例中,所述第三温度为50-90℃中任一值。
在一些实施例中,所述含氟沉淀剂包括氟化钠溶液。
在一些实施例中,所述第一浓度范围为氟离子浓度为0.005-0.1mol/L。
在一些实施例中,所述第五时间为2-10h。
在一些实施例中,所述第二杂质包括氟化钙、氟化镁、氟化铅中的一种或多种。
在一些实施例中,所述第六时间为0.5-2h。
在一些实施例中,所述第七时间为0.5-2h。
本申请实施例提供一种锂电池报废正极材料浸出液的处理方法,所述锂电池报废正极材料浸出液中至少包含钙离子、镁离子或铅离子;在除去钙离子、镁离子或铅离子之前,所述方法包括:在第二反应釜中加入适量第二底液,并将所述第二反应釜中的反应温度维持在高于室温的第二温度,之后向所述第二反应釜中通入保护气体;分别将第一滤液、络合剂和第二碱溶液以适宜流速泵入所述第二反应釜中反应第三时间后溢出所述第二反应釜;其中,在所述第三时间里,维持反应稳定在所述第二温度下进行,并且通过调整所述第二碱溶液的流速使得所述反应稳定在第一pH范围进行;之后进行第二分离过程,并得到目标物质沉淀和第二滤液;其中,所述第二滤液中含有锂离子。
在对锂电池报废正极材料进行除杂之前,需要对固态的锂电池报废正极材料进行溶解以得到锂电池报废正极材料浸出液。具体的,可以在锂电池报废正极材料中加入浸出剂至pH为第二范围进行溶解,之后进行第四分离过程,并得到第三杂质和锂电池报废正极材料浸出液。在一些实施例中,锂电池报废正极材料可以包括锂镍钴锰氧化物电池材料。在一些实施例中,锂电池报废正极材料可以包括锂钴氧化物电池材料、锂钴锰氧化物电池材料、锂钴氧化铝电池材料、锂锰氧化物电池材料中的一种或多种。在一些实施例中,浸出剂至少可以包括还原剂、第一酸和水。在一些实施例中,还原剂可以包括过氧化氢溶液。在一些实施例中,还原剂还可以包括二氧化硫气体、水合肼(N 2H 4·H 2O)等。在一些实施例中,第一酸可以包括硫酸、盐酸、硝酸、高锰酸、亚硫酸、次氯酸等。
在一些实施例中,浸出剂可以用于在一定条件下对上述锂电池报废正极材料进行溶解。在一些实施例中,该一定条件可以包括起始溶解温度、溶解压力和溶解pH。在一些实施例中,锂电池报废正极材料的起始溶解温度可以是0℃-80℃。较为优选地,锂电池报废正极材料的起始溶解温度可以是20℃-76℃。较为优选地,锂电池报废正极材料的起始溶解温度可以是30℃-73℃。较为优选地,锂电池报废正极材料的起始溶解温度可以是40℃-70℃。较为优选地,锂电池报废正极材料的起始溶解温度可以是45℃-67℃。较为优选地,锂电池报废正极材料的起始溶解温度可以是50℃-65℃。较为优选地,锂电池报废正极材料的起始溶解温度可以是55℃-63℃。较为优选地,锂电池报废正极材料的起始溶解温度可以是57℃-60℃。在一些实施例中,锂电池报废正极材料的溶解压力可以是常压,即101.325kPa。在一些实施例中,锂电池报废正极材料的溶解压力还可以是其他压力值,本申请对此不作限制。在一些实施例中,溶解锂电池报废正极材料的pH可以为第二范围。由于锂电池报废正极材料含有多种金属元素,为了充分溶解锂电池报废正极材料,锂电池报废正极材料的溶 解pH偏酸性。例如,第二范围可以是pH=0-2.5。较为优选地,第二范围可以是pH=0.2-2.3。较为优选地,第二范围可以是pH=0.4-2.2。较为优选地,第二范围可以是pH=0.5-2.0。较为优选地,第二范围可以是pH=0.6-1.8。较为优选地,第二范围可以是pH=0.7-1.6。较为优选地,第二范围可以是pH=0.8-1.4。较为优选地,第二范围可以是pH=0.9-1.2。更为优选地,溶解pH可以是pH=1.0。在一些实施例中,该一定条件还可以包括锂电池报废正极材料的粒度。例如,在溶解锂电池报废正极材料之前,可以对锂电池报废正极材料进行粉碎处理,使其小于一定粒度后再进行溶解。在一些实施例中,粉碎后的锂电池报废正极材料的粒度可以包括0.01-2mm。较为优选地,粉碎后的锂电池报废正极材料的粒度可以包括0.02-1.5mm。较为优选地,粉碎后的锂电池报废正极材料的粒度可以包括0.04-1.2mm。较为优选地,粉碎后的锂电池报废正极材料的粒度可以包括0.05-0.8mm。较为优选地,粉碎后的锂电池报废正极材料的粒度可以包括0.06-0.4mm。较为优选地,粉碎后的锂电池报废正极材料的粒度可以包括0.08-0.2mm。更为优选地,粉碎后的锂电池报废正极材料的粒度可以包括0.1mm。在锂电池报废正极材料的溶解过程中,粉碎后的锂电池报废正极材料与浸出剂的接触表面积大,因此锂电池报废正极材料的溶解速率高。
得到的锂电池报废正极材料浸出液可以进一步进行除杂和处理。锂电池报废正极材料浸出液的除杂和处理过程可以包括以下三个过程:(1)对锂电池报废正极材料浸出液进行沉淀除去铁离子、铝离子和至少部分铜离子,得到第一滤液;(2)对第一滤液进行沉淀去除锂离子,分别得到含有锂离子的第二滤液和目标物质沉淀;(3)将目标物质沉淀进行溶解,得到第一溶液,对第一溶液进行沉淀除去钙离子、镁离子和至少部分铅离子,得到目标溶液。进一步地,还可以向目标溶液中加入第三碱溶液,得到锂电池正极材料前驱体沉淀。
上述三个除杂和处理过程都是在稳定的反应条件(例如,在测量误差允许的范围内固定不变的反应温度(反应温度的测量误差允许范围为±2.5℃)、 固定不变的pH值(pH的测量误差允许范围为±0.05)、固定不变的pH范围(pH范围的测量误差允许范围为±0.05)或固定不变的氟离子浓度范围(氟离子浓度范围的测量误差允许范围为±0.0005mol/L)下,连续向反应釜中同时泵入两种或多种反应物料。需要说明的是,物料泵入的流速相对于反应釜的容积而言相对较小,加上pH计、氟离子计和恒温设备的控制,可认为反应是在相对稳定的条件下进行,这与通常的化学反应过程:pH值随着沉淀剂的加入逐渐改变,直至达到反应截止的pH值,是不同的。两种或多种反应物料在反应釜中持续进行反应,反应一段时间(例如,第一时间、第三时间或第五时间)后连续溢出反应釜,后续反应在充满反应物料的溢流反应釜中持续进行,反应环境更为稳定,且可实现生产过程的连续不间断运行。由于上述三个反应过程都是在稳定的反应条件下进行,因此可以得到结晶度高,晶粒大的沉淀,便于过滤洗涤。上述除杂和处理过程中还包括去除锂离子的过程,在制备锂电池正极材料前驱体沉淀前将锂离子去除,可以实现回收锂的目的,同时避免影响后续除杂过程中反应参数的控制,使得后续反应可以在相对稳定的反应条件下进行。
附图说明
本申请将以示例性实施例的方式进一步说明,其中:
图1是根据本申请一些实施例所示的锂电池报废正极材料回收过程中的除杂方法的示例性流程图;
图2是根据本申请又一些实施例所示的锂电池报废正极材料回收过程中回收锂离子的方法的示例性流程图;
图3是根据本申请又一些实施例所示的锂电池报废正极材料回收过程中的除杂方法的示例性流程图;
图4A是根据本申请实施例1所示的滤渣的SEM图片;
图4B是根据本申请实施例2所示的滤渣的SEM图片;
图5是根据本申请实施例3和4所示的滤渣的XRD图谱;
图6是根据本申请实施例3所示的滤渣的SEM图片;
图7A是根据本申请实施例5所示的滤渣的SEM图片;
图7B是根据本申请实施例6所示的滤渣的SEM图片;以及
图8是根据本申请一些实施例所示的除杂和处理方法的示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。本文中使用的“除杂方法”、“处理方法”、“除杂和处理方法”、“回收锂离子的方法”或“锂电池报废正极材料回收过程中的除杂和处理方法”是指锂电池报废正极材料回收过程中的一个或多个步骤或过程。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。用于本申请的数值范围是为了简明扼要表述包括在该范围的每一个数值。
下面将根据图1-图3对锂电池报废正极材料浸出液的除杂过程进行详细阐述。
图1是根据本申请一些实施例所示的锂电池报废正极材料回收过程中的除杂方法100的示例性流程图。
锂电池报废正极材料回收过程中的除杂过程可以在反应釜和陈化釜中进行。图8是根据本申请一些实施例所示的除杂和处理方法的示意图,如图8所示,可以将锂电池报废正极材料浸出液和第一碱溶液分别通过进料泵A和进料泵B泵入反应釜中,反应一段时间后通过反应釜上的出料管A溢流进陈化釜进行陈化,其中,反应釜可以为第一反应釜,陈化釜可以为第一陈化釜。
步骤110,在第一反应釜中加入适量第一底液,并将第一反应釜中的反应温度维持在高于室温的第一温度。
第一反应釜的容积可以根据工艺生产需求或反应物料的进料量进行设置。例如,第一反应釜的容积可以为50L、80L或100L。第一底液是在泵入反应物料前放置于第一反应釜中的液体,第一底液用于浸泡pH计以使pH计的电极位于液面以下。在一些实施例中,第一底液可以为去离子水或pH为第一pH值的溶液。例如,第一pH值的溶液可以是镍钴锰溶液。又例如,第一pH值的溶液可以是酸溶液(例如,硫酸溶液)。关于pH为第一pH值的更多内容可以参见步骤120的描述,在此不作赘述。
第一温度可以高于室温。在一些实施例中,第一温度可以为50-90℃中任一值。较为优选地,第一温度可以为52-88℃中任一值。较为优选地,第一温度可以为55-86℃中任一值。较为优选地,第一温度可以为58-83℃中任一值。较为优选地,第一温度可以为60-80℃中任一值。较为优选地,第一温度可以为62-78℃中任一值。较为优选地,第一温度可以为65-76℃中任一值。较为优选地,第一温度可以为67-73℃中任一值。较为优选地,第一温度可以为69-71℃中任一值。较为优选地,第一温度可以为50℃。较为优选地,第一温度可以为55℃。较为优选地,第一温度可以为60℃。较为优选地,第一温度可以为65℃。较为优选地,第一温度可以为70℃。较为优选地,第一温度可以为75℃。较为优选地,第一温度可以为80℃。较为优选地,第一温度可以为85℃。更为优选地,第一温度可以为90℃。在一些实施例中,可以通过加热第一反应釜以使第 一反应釜中的反应温度维持在第一温度。加热第一反应釜的方式可以包括电加热、蒸汽加热、导热油循环加热或远红外加热,本申请对此不作限制。
由于第一温度高于常温,从而更容易结晶得到大晶粒的晶体。
步骤120,分别将锂电池报废正极材料浸出液和第一碱溶液以适宜流速泵入第一反应釜中反应第一时间后溢出第一反应釜;其中,在第一时间里,维持所述反应稳定在第一温度下进行,并且通过调整第一碱溶液的流速使得所述反应稳定在第一pH值下进行。
锂电池报废正极材料浸出液可以通过对锂电池报废正极材料溶解得到,关于获得锂电池报废正极材料浸出液的更多内容可以参见前述内容,在此不作赘述。在一些实施例中,锂电池报废正极材料浸出液可以为含有锂离子、镍离子、钴离子、锰离子等的溶液。锂电池报废正极材料浸出液和第一碱溶液的流速可以根据工艺生产需求进行设置,可以设置适宜的流速使锂电池报废正极材料浸出液和第一碱溶液反应第一时间后溢出第一反应釜。例如,可以根据生产的规模,第一反应釜为50L,锂电池报废正极材料浸出液的流速可以为50-250mL/min,第一碱溶液的流速可以通过使反应稳定在第一pH值下进行控制。将锂电池报废正极材料浸出液泵入第一反应釜时,可以将锂电池报废正极材料浸出液的进料管伸入第一反应釜的底部。向第一反应釜中泵入第一碱溶液时,可以将第一碱溶液的进料管伸入第一反应釜的底部。如图8所示,锂电池报废正极材料浸出液和第一碱溶液可以分别通过进料泵A和进料泵B泵入反应釜(即,第一反应釜),进料管A和进料管B插入反应釜底部。在一些实施例中,第一反应釜中可以包括搅拌组件,用于给第一反应釜中的锂电池报废正极材料浸出液和第一碱溶液进行搅拌。
在一些实施例中,第一碱可以包括氢氧化锂。氢氧化锂的浓度可以为1-4mol/L。较为优选地,氢氧化锂的浓度为2mol/L。较为优选地,氢氧化锂的浓度为3mol/L。在一些实施例中,第一pH值为pH=5.5-6.7中任一值。较为优选 地,第一pH值为pH=5.7-6.5中任一值。较为优选地,第一pH值为pH=5.9-6.3中任一值。较为优选地,第一pH值为pH=6.0-6.2中任一值。较为优选地,第一pH值可以为pH=5.5。较为优选地,第一pH值可以为pH=5.8。较为优选地,第一pH值可以为pH=6.0。较为优选地,第一pH值可以为pH=6.3。较为优选地,第一pH值可以为pH=6.5。较为优选地,第一pH值可以为pH=6.7。在一些实施例中,溶液的pH稳定在第一pH值可以是溶液的pH始终与第一pH值相等或与第一pH值的差值小于预设值(例如,0.05、0.10或0.15)。例如,预设值为0.10,第一pH值为6.3,则溶液的pH值为6.2、6.25、6.3、6.35、6.4或在6.2~6.4的范围内波动时,都可以认为该溶液的pH稳定在第一pH值。向第一反应釜中泵入第一碱溶液时,可以通过pH计实时测量溶液的pH值来控制第一碱溶液的泵入速度,从而使溶液的pH稳定在第一pH值或测量误差范围(例如,pH的测量误差允许范围为±0.05,即第一pH值可以为pH=5.45-6.75中任一值)或与第一pH值的差值在预设范围内。例如,第一pH值需要为pH=6.3,当第一碱溶液的流速为20ml/min时导致溶液的pH下降,此时则需要适当提高第一碱溶液的流速以使溶液的pH上升至6.3;反之,当第一碱溶液的流速为30ml/min时导致溶液的pH上升,则需要适当降低第一碱溶液的流速以使溶液的pH下降至6.3。需要说明的是,通过pH计实时测量溶液的pH值来控制第一碱溶液的泵入速度可以通过将PH计和第一碱溶液的进料泵进行自动联动控制。
在一些实施例中,第一时间可以为2-10h。较为优选地,第一时间可以为2.5-8.0h。较为优选地,第一时间可以为3.0-7.0h。较为优选地,第一时间可以为3.5-7.5h。较为优选地,第一时间可以为4.0-7.0h。较为优选地,第一时间可以为4.5-6.5h。较为优选地,第一时间可以为5.0-6.0h。较为优选地,第一时间可以为5.3-5.7h。较为优选地,第一时间可以为3h。较为优选地,第一时间可以为4h。较为优选地,第一时间可以为5h。较为优选地,第一时间可以为6h。较为优选地,第一时间可以为7h。更为优选地,第一时间可以为8h。通 过设置第一反应釜的容积和溢出口位置(例如,溢出口设置在第一反应釜的中部偏上位置),可以使得反应物料在第一反应釜中充分反应2-10h,再从第一反应釜中溢出至第一陈化釜。
通过将反应温度维持在第一温度、将溶液的pH稳定在第一pH值,可以使反应过程中的反应条件较为稳定,生成的沉淀的晶粒和晶型一致。同时,使反应物料在第一反应釜中停留2-10h,可以使其充分反应和沉淀,这样沉淀得到的晶体的晶粒较大,便于后续对沉淀进行过滤和洗涤。此外,通过连续向第一反应釜中泵入反应物料进行连续反应,可以实现对锂电池报废正极材料浸出液的连续处理,进而便于实现工业大规模除杂处理。
步骤130,将溢出第一反应釜的混合物进行陈化,将陈化温度维持在第一温度,并陈化第二时间。
该陈化过程可以在第一陈化釜中进行。在一些实施例中,可以通过加热第一陈化釜以使第一陈化釜中的陈化温度维持在第一温度。加热第一陈化釜的方式可以包括电加热、蒸汽加热、导热油循环加热或远红外加热,本申请对此不作限制。关于第一温度的更多内容可以参见步骤110的描述,在此不作赘述。在一些实施例中,第二时间可以为0.5-2h。较为优选地,第二时间可以为0.8-1.8h。较为优选地,第二时间可以为1.0-1.6h。较为优选地,第二时间可以为1.2-1.4h。较为优选地,第二时间可以为0.5h。较为优选地,第二时间可以为1h。较为优选地,第二时间可以为1.5h。更为优选地,第二时间可以为2h。
通过将充分反应后的混合物进行陈化第二时间,可以使得反应后的混合物中沉淀的晶体的晶粒生长增大,并使其粒径分布更加均匀。
步骤140,之后进行第一分离过程,并得到第一杂质和第一滤液。
在进行第一分离过程前,可以将陈化后的混合物冷却至室温。该冷却过程可以在第一缓冲罐中进行,可以将陈化后的混合物泵入第一缓冲罐中进行冷却。陈化后的混合物的冷却方式可以为自然冷却、风冷或液冷(如,通过水、乙醇、 乙二醇、异丙醇、正己烷等液体冷却介质冷却)。
在一些实施例中,可以对冷却后的混合物进行第一分离过程,得到第一杂质和第一滤液。具体的,第一分离过程可以是固液分离过程。例如,第一分离方法可以包括过滤、重力沉降、离心沉降、压滤等。由于不同的锂电池报废正极材料含有不同的杂质金属元素,因此除杂反应的条件不同,得到的第一杂质和/或第一滤液可以不同。在一些实施例中,第一杂质可以至少包括氢氧化铁。在一些实施例中,第一杂质还可以包括氢氧化铁和氢氧化铝。在一些实施例中,第一杂质还可以包括氢氧化铜。在一些实施例中,第一滤液可以至少包括有锂离子和钴离子。例如,锂电池报废正极材料(例如,锂镍钴锰氧化物电池材料)生成的产物锂电池正极材料中不含铝元素时,锂电池报废正极材料浸出液可以包含锂离子、镍离子、铝离子、铁离子、锰离子、钴离子等;第一pH值可以是pH=5.5,用于除去铝离子、铁离子等杂质金属元素离子。此时第一杂质可以包括氢氧化铝、氢氧化铁等,第一滤液可以包含有锂离子、镍离子、锰离子、钴离子等。
上述方法通过控制锂电池报废正极材料浸出液和第一碱溶液的泵入第一反应釜中的流速、pH值、反应温度、反应时间和陈化时间,以使晶体的晶粒充分生长为大晶粒,此外,在固定的pH值下反应,可以得到铁、铝、铜、镍等金属的共沉淀物,便于进行第一分离过程,减少了在第一分离过程中洗涤的用水量和洗涤时间,同时也减少了洗涤过程中镍钴锰离子的浪费,进而可以提高镍钴锰的回收率。
下面将通过实施例1和实施例2对锂电池报废正极材料回收过程中的除去铁离子和铝离子的方法进行详细阐述。需注意的是,实施例1和实施例2中的反应条件、反应物料和反应物料的用量仅为了说明锂电池报废正极材料回收过程中除去铁离子和铝离子的方法,不限制本申请的保护范围。其中,实施例1为批量处理锂电池报废正极材料浸出液的除杂方法的实施例,实施例2为采 用图1中除杂方法的实施例。实施例1是实施例2的对照组。
实施例1
步骤1:在室温下,向50L第一反应釜中加入30L锂电池报废正极材料浸出液。
步骤2:用pH计在线控制蠕动泵向第一反应釜中泵入2mol/L的氢氧化锂溶液,直到pH值稳定在5.5时停止泵入氢氧化锂溶液,并使混合物反应1小时。反应共消耗氢氧化锂溶液4.2L。
步骤3:用200目滤布的压滤机过滤反应后的混合物,并用0.6MPa高压空气吹洗滤饼,直到没有滤液流出。在过滤过程中,如果压滤机内部压力上升快,例如,2分钟内上升到压力上限0.5MPa时,则需停止过滤,说明该沉淀的过滤性差。等到压力下降为0MPa后,再继续过滤操作。
步骤4:观察过滤后的滤液,发现滤液混浊,说明沉淀物未过滤完全。
步骤5:收集过滤后的滤饼,得到湿滤饼267g,烘干后,得到干滤饼92.4g。
步骤6:对锂电池报废正极材料浸出液、干滤饼、滤液进行ICP测试,对干滤饼进行SEM测试。
实施例2
步骤1:向50L第一反应釜中加入10L实施例1中的滤液作为第一底液,以使pH计的电极位于液面以下,加热第一反应釜使反应温度恒定在70℃。
步骤2:分别用蠕动泵将锂电池报废正极材料浸出液和2mol/L氢氧化锂溶液泵入第一反应釜中。锂电池报废正极材料浸出液的泵入速度控制在200ml/min,氢氧化锂的泵入速度由在线pH计控制,控制氢氧化锂的泵入速度使混合物的pH为5.5。充分反应3h后,混合物从第一反应釜的溢流口中溢出,进入第一陈化釜。在此过程中,共泵入36L锂电池报废正极材料浸出液和氢氧化锂溶液为5.04L进行反应。
步骤3:加热第一陈化釜使陈化温度恒定在70℃,将混合物在第一陈化 釜内陈化1h。
步骤4:将陈化后的混合物在第一缓冲罐中冷却至室温后用压滤机过滤,并用0.6MPa高压空气清洗滤饼,直到没有滤液流出。过滤过程中,压滤机的压力始终维持在低于0.2MPa,说明该沉淀的过滤性好。
步骤5:观察过滤后的滤液,发现滤液清澈,说明沉淀物过滤完全。得到滤液51.04L。
步骤6:收集过滤后的滤饼,得到湿滤饼194.4g,烘干后,得到干滤饼112g。
步骤7:对滤液、干滤饼进行ICP测试,对干滤饼进行SEM测试。
实施例1和实施例2中滤饼的含水率计算:
实施例1中滤饼的含水率W1=(267g-92.4g)/267g=65.4%;
实施例2中滤饼的含水率W2=(194.4g-112g)/194.4g=42.4%;
由实施例1和2的含水率计算结果可知:实施例2相对于实施例1的滤饼的含水率更低,说明实施例2中过滤过程中固液分离更彻底,图4A和图4B对照表明实施例2中沉淀的晶粒比实施例1的更大,且因为部分镍离子在固定pH=5.5时与铝离子和铁离子共沉淀,改善了氢氧化铝沉淀的结构,使其不再为胶体状,因此更易过滤。
根据实施例1和实施例2的ICP测试结果,可以得到下表中的数据:
Figure PCTCN2021129320-appb-000001
Figure PCTCN2021129320-appb-000002
表1 ICP分析结果
根据表1可以进一步计算实施例1和实施例2的金属离子去除率:实施例1中铝离子、铁离子、铜离子的去除率M=(浸出液中的M含量×参与反应的浸出液总体积-滤液中M含量×滤液总体积)/(浸出液中的M含量×参与反应的浸出液总体积)×100%。分别计算得到铝离子的去除率:Al去除率=(156×30L-10.8×34.2L)/(156×30L)×100%=92.1%;铁离子的去除率:Fe去除率=(52.6×30L-0.88×34.2L)/(52.6×30L)×100%=98.1%;铜离子的去除率:Cu去除率=(12.5×30L-8.12×34.2L)/(12.5×30L)×100%=26%。
实施例1中镍离子、钴离子、锰离子的损失率M=(干滤饼的重量×干滤饼中M的含量)/(浸出液中M含量×参与反应的浸出液总体积)×100%。分别计算得到镍离子的损失率:Ni损失率=(92.4g×0.42)/(53700×30L/1000)×100%=2.4%;钴离子的损失率:Co损失率=(92.4g×0.074)/(10700×30L/1000)×100%=2.13%;钴离子的损失率:Mn损失率=(92.4g×0.006)/(8620×30L/1000)×100%=0.21%。
实施例2中的铝离子、铁离子、铜离子的去除率M=(浸出液中的M含量×参与反应的浸出液总体积-滤液中M含量×滤液总体积)/(浸出液中的M含量×参与反应的浸出液总体积)。分别计算得到铝离子的去除率:Al去除率=(156×36L-0)/(156×36L)=100%;铁离子的去除率:Fe去除率=(52.6×36L-0.5×51.04L)/(52.6×36L)=98.65%;铜离子的去除率:Cu去除率=(12.5×36L- 6.2×51.04L)/(12.5×36L)=29.7%。
实施例2中镍离子、钴离子、锰离子的损失率M=(干滤饼的重量×干滤饼中M的含量)/(溶出液中M含量×参与反应的溶出液总体积)×100%。分别计算得到镍离子的损失率:Ni损失率=(112g×0.31)/(53700×36L/1000g/L)×100%=1.8%;钴离子的损失率:Co损失率=(112g×0.028)/(10700×36L/1000g/L)×100%=0.8%;锰离子的损失率:Mn损失率=(112g×0.0042)/(8620×36L/1000g/L)×100%=0.15%。
由实施例1和2中铝离子、铁离子、铜离子的去除率计算结果可知:实施例2中铝离子、铁离子、铜离子的去除率比实施例1中更高,表明实施例2对锂电池报废正极材料浸出液中去除铝离子、铁离子、铜离子的效果更好。并且,由于实施例1的滤渣几乎无法洗涤,而实施例2的滤渣在压滤机中富集到一定程度,可以用少量清水一次性洗涤,回收部分铝离子、铁离子、铜离子,进一步降低铝离子、铁离子、铜离子的损失率。
图4A是根据本申请实施例1所示的滤渣的SEM图片,图4B是根据本申请实施例2所示的滤渣的SEM图片。从图4A和图4B可以看出,实施例1中滤渣的晶粒细小,板结成块状,聚集团结构紧密,紧实度高;实施例2中滤渣的晶粒稍大,虽然在烘干后结为块状,但结构松散,紧实度较低。表明采用实施例2的方法对锂电池报废正极材料浸出液进行除杂后得到沉淀的晶粒更大、含水率更低。
通过实施例1和实施例2的对比结果:实施例1通过在室温下、溶液pH为5.5、一次性加入反应物料并反应1h,以对锂电池报废正极材料浸出液进行除杂处理;实施例2通过将反应温度维持在70℃、溶液的pH维持在5.5,连续进料使反应物料充分反应3h、陈化1h,以对锂电池报废正极材料浸出液进行除杂处理。可以得知:实施例2中,使用与实施例1相同的溶液pH值,通过固定在较高的反应温度,并控制加入反应物料的速度充分反应3h和陈化1h, 可以使得生成的沉淀的晶粒较大,便于对沉淀进行过滤和洗涤,从而使得Al、Fe、Mn金属的去除率更高,除杂的效果更好。
由于锂电池报废正极材料回收过程中需要用到pH计监控溶液的pH以对反应过程进行实时控制,因此要求该pH计具有较高的灵敏度,以及需要避免pH计电极发生中毒的现象。本申请人发现,在锂电池报废正极材料回收过程中溶液中的锂离子,当PH>7时,容易使pH计电极中毒,从而导致难以监测溶液中的真实pH值,进而难以控制反应过程中的其他参数(例如,第一碱溶液的流速),不利于进行共沉淀制备三元前驱体(或称为前驱体沉淀)时的反应条件的控制。此外,又由于在后续除去钙离子、镁离子或铅离子时,使用了含氟沉淀剂(如,氟化钠)进行沉淀(具体内容可以参见图3的描述),而氟化锂的溶解度低,会作为杂质与钙离子、镁离子或铅离子一起被除去,从而会导致锂电池报废正极材料回收过程中锂离子的回收率降低。因此,本申请的技术方案在除杂过程中还需要先回收锂离子,再进行后续除杂过程。
图2是根据本申请又一些实施例所示的锂电池报废正极材料回收过程中回收锂离子的方法200的示例性流程图。
锂电池报废正极材料回收过程中回收锂离子的过程可以在反应釜和陈化釜中进行。如图8所示,可以将第一滤液、络合剂和第二碱溶液分别通过进料泵A、进料泵B和进料泵C(图中未示出)泵入反应釜中,反应一段时间后通过反应釜上的出料管A溢流进陈化釜进行陈化,其中,反应釜可以为第二反应釜,陈化釜可以为第二陈化釜。
步骤210,在第二反应釜中加入适量第二底液,并将第二反应釜中的反应温度维持在高于室温的第二温度,之后向第二反应釜中通入保护气体。
第二反应釜的容积可以根据工艺生产需求或反应物料的进料量进行设置。例如,第二反应釜的容积可以为50L、80L或100L。第二底液是在泵入反应物料前放置于第二反应釜中的液体,第二底液用于浸泡pH计以使pH计的电极 位于液面以下。在一些实施例中,第二底液可以为氨水。
第二温度可以高于室温。在一些实施例中,第二温度可以为40-70℃中任一值。较为优选地,第二温度可以为43-68℃中任一值。较为优选地,第二温度可以为46-66℃中任一值。较为优选地,第二温度可以为48-64℃中任一值。较为优选地,第二温度可以为50-62℃中任一值。较为优选地,第二温度可以为52-60℃中任一值。较为优选地,第二温度可以为54-58℃中任一值。较为优选地,第二温度可以为40℃。较为优选地,第二温度可以为45℃。较为优选地,第二温度可以为50℃。较为优选地,第二温度可以为55℃。较为优选地,第二温度可以为60℃。较为优选地,第二温度可以为65℃。更为优选地,第二温度可以为70℃。在一些实施例中,可以通过加热第二反应釜以使第二反应釜中的反应温度维持在第二温度。加热第二反应釜的方式可以包括电加热、蒸汽加热、导热油循环加热或远红外加热,本申请对此不作限制。由于第二温度高于现有技术的结晶温度,从而更容易结晶得到大晶粒的晶体。
在一些实施例中,保护气体可以包括氮气或惰性气体(如,氦气、氖气或氩气)。
步骤220,分别将第一滤液、络合剂和第二碱溶液以适宜流速泵入第二反应釜中反应第三时间后溢出所述第二反应釜;其中,在第三时间里,维持所述反应稳定在第二温度下进行,并且通过调整第二碱溶液的流速使得所述反应稳定在第一pH范围进行。
第一滤液、络合剂和第二碱溶液的流速可以根据工艺生产需求进行设置,可以设置适宜的流速使第一滤液、络合剂和第二碱溶液反应第三时间后溢出第二反应釜。例如,第二反应釜为50L,第一滤液的流速可以为40-300mL/min,络合剂的流速可以根据第一滤液的流速按比例进行设置(例如,络合剂的流速可以为1-50mL/min),第二碱溶液的流速可以通过使反应稳定在第一pH范围或测量误差范围内进行控制。在一些实施例中,络合剂可以包括氨水、草酸、乙 二胺四乙酸(EDTA)或柠檬酸。络合剂的作用是与第一滤液中的镍离子、钴离子和锰离子形成络合物,使形成的沉淀晶粒粒度更加均匀,便于进行过滤分离。
在一些实施例中,第二碱溶液与第一碱溶液相同。例如,第一碱溶液为氢氧化锂溶液,第二碱溶液也为氢氧化锂溶液。将第一滤液和络合剂泵入第二反应釜时,可以将第一滤液的进料管和络合剂的进料管分别伸入第一反应釜的底部。在一些实施例中,第一滤液的进料管和络合剂的进料管可以是同一个,也可以是两个。向第二反应釜中泵入第二碱溶液可以是将第二碱溶液的进料管伸入第二反应釜的底部。如图8所示,第一滤液、络合剂和第二碱溶液可以分别通过进料泵A、进料泵B和进料泵C(图中未示出)泵入反应釜(即,第二反应釜),进料管A、进料管B和进料管C(图中未示出)插入反应釜底部。在一些实施例中,第二反应釜中可以包括搅拌组件,用于给第二反应釜中的第一滤液、络合剂和第二碱溶液进行搅拌。
在一些实施例中,第一pH范围可以为pH=10.5-11.8。较为优选地,第一pH范围可以为pH=10.6-11.7。较为优选地,第一pH范围可以为pH=10.7-11.6。较为优选地,第一pH范围可以为pH=10.8-11.5。较为优选地,第一pH范围可以为pH=10.9-11.4。较为优选地,第一pH范围可以为pH=11.0-11.3。更为优选地,第一pH范围可以为pH=11.1-11.2。在一些实施例中,溶液的pH稳定在第一pH范围可以是溶液的pH始终处于第一pH范围内某一值或在第一pH范围内波动。例如,第一pH范围为10.8-11.5,则溶液的pH值为10.8、10.9、11.0、11.1、11.2、11.3、11.4、11.5或在10.8-11.5的范围内波动时,都可以认为该溶液的pH稳定在第一pH范围。向第二反应釜中泵入第二碱溶液时,可以通过pH计实时测量溶液的pH值来控制第二碱溶液的泵入速度,从而使溶液的pH稳定在第一pH范围或测量误差范围(pH范围的测量误差允许范围为±0.05,即第一pH范围可以为pH=10.45-11.85)内。例如,第一pH范围需要为pH=10.7-11.6,第二碱溶液的流速为80ml/min时导致溶液的pH低于10.7,则需要适当 提高第二碱溶液的流速以使溶液的pH上升至pH=10.7-11.6的范围内;反之,当第二碱溶液的流速为200ml/min时导致溶液的pH超过11.6,则需要适当降低第二碱溶液的流速以使溶液的pH下降至pH=10.7-11.6的范围内。
在一些实施例中,第三时间可以为2-10h。较为优选地,第三时间可以为2.5-9h。较为优选地,第三时间可以为3-8h。较为优选地,第三时间可以为4.0-7.0h。较为优选地,第三时间可以为4.5-6.5h。较为优选地,第三时间可以为5.0-6.0h。较为优选地,第三时间可以为5.3-5.7h。较为优选地,第三时间可以为3h。较为优选地,第三时间可以为4h。较为优选地,第三时间可以为5h。较为优选地,第三时间可以为6h。较为优选地,第三时间可以为7h。更为优选地,第三时间可以为8h。通过设置第二反应釜的容积和溢出口位置(例如,溢出口设置在第二反应釜的中部偏上位置),可以使得反应物料在第二反应釜中充分反应3-8h,再从第二反应釜中溢出至第二陈化釜。
通过连续向第二反应釜中泵入第一滤液、络合剂和第二碱溶液进行连续反应,并使上述混合物在第二反应釜中停留2-10h,可以使其充分反应和沉淀,这样可以实现对第一滤液的连续处理。
步骤230,将溢出第二反应釜的混合物进行陈化,将陈化温度维持在第二温度,并陈化第四时间。
该陈化过程可以在第二陈化釜中进行。在一些实施例中,可以通过加热第二陈化釜以使第二陈化釜中的陈化温度维持在第二温度。加热第二陈化釜的方式可以包括电加热、蒸汽加热、导热油循环加热或远红外加热,本申请对此不作限制。关于第二温度的更多内容可以参见步骤210的描述,在此不作赘述。在一些实施例中,第四时间可以为0.5-2h。较为优选地,第四时间可以为0.8-1.8h。较为优选地,第四时间可以为1.0-1.6h。较为优选地,第四时间可以为1.2-1.4h。较为优选地,第四时间可以为0.5h。较为优选地,第四时间可以为1h。较为优选地,第四时间可以为1.5h。更为优选地,第四时间可以为2h。
通过将充分反应后的混合物进行陈化第四时间,可以使得反应后的混合物中沉淀晶体的晶粒生长增大,并使其粒径分布更加均匀。
步骤240,之后进行第二分离过程,并得到目标物质沉淀和第二滤液;其中,第二滤液中含有锂离子。
在一些实施例中,可以将陈化后的混合物进行冷却,并对冷却后的混合物进行第二分离过程,得到目标物质沉淀和第二滤液。具体的,第二分离过程可以是固液分离过程。例如,第二分离方法可以包括过滤、重力沉降、离心沉降、压滤等。在一些实施例中,目标物质沉淀可以是包含镍离子、钴离子、锰离子中一种或多种的沉淀。在一些实施例中,第二滤液可以至少包括有锂离子。
通过上述方法可以将目标物质(镍离子、钴离子、锰离子中一种或多种)进行沉淀,从而将锂离子以溶液的形式进行分离出来,从而实现回收锂的目的。
下面将通过实施例3和实施例4对锂电池报废正极材料回收过程中回收锂离子的方法进行详细阐述。需注意的是,实施例3和实施例4中的反应条件、反应物料和反应物料的用量仅为了说明锂电池报废正极材料回收过程中回收锂离子的方法,不限制本申请的保护范围。其中,实施例3为采用图2中回收锂的方法的实施例。实施例4为批量处理第一滤液回收锂的方法的实施例,实施例4是实施例3的对照组。
实施例3
步骤1:在50L第二反应釜中加入10L去离子水、300mL 23.5%的氨水作为第二底液,维持反应温度为50℃,通入氮气作为保护气体。
步骤2:将实施例2中得到的第一滤液以60mL/min的流速泵入第二反应釜,将12%的氨水以5mL/min的流速泵入第二反应釜。用pH计实时控制泵入4mol/L氢氧化锂溶液的流速,控制氢氧化锂溶液的流速使混合物的pH值在10.7-11.2之间。充分反应5h后,混合物从第二反应釜的溢流口中溢出,流入第二陈化釜。
步骤3:加热第二陈化釜使陈化温度恒定在50℃,将混合物在第二陈化釜内陈化1h。
步骤4:用离心机对陈化后的混合物进行过滤,并洗涤滤饼。其中,洗涤100g沉淀的用水量为1.12L。
步骤5:收集过滤后的滤饼,并对滤渣进行ICP、XRD和SEM测试。经ICP测试得到锂含量为0.02%,认为滤饼已洗涤干净。
实施例4
步骤1:在室温下,在50L第二反应釜中加入30L第一滤液,第一滤液来自实施例2。
步骤2:用pH计控制泵入4mol/L氢氧化锂溶液的加入量,直到pH值为10.5时停止加入。使混合物稳定反应1h。
步骤3:用离心机过滤反应后的混合物,并洗涤滤饼。其中,洗涤100g沉淀的用水量为2.32L。
步骤4:收集过滤后的滤饼,并对滤渣进行ICP和XRD测试。经ICP测试得到锂含量为0.03%,认为滤饼已洗涤干净。
根据实施例3和实施例4中洗涤滤饼的用水量可知:洗涤100g沉淀时,实施例3的用水量更小,表明实施例3中沉淀的晶粒比实施例4的更大。由于实施例3中,镍钴锰的沉淀结晶是在一个固定的pH范围(如,10.7-11.2)下进行,可以实现镍钴锰氢氧化物的共沉淀。因为氢氧化镍开始沉淀的pH值为7.2,氢氧化钴开始沉淀的pH值为7.15,氢氧化锰开始沉淀的pH值为8.1,完全沉淀的pH值也各不相同,因此实施例4中,镍钴锰沉淀在不同的pH范围(持续加入氢氧化锂溶液至pH值为10.5时停止)分别沉淀结晶,无法形成镍钴锰氢氧化物的共沉淀。因此,实施例3中通过控制pH在10.7-11.2范围内,有利于生成镍钴锰氢氧化物的共沉淀,沉淀的晶粒比实施例4中更大。
根据实施例3和实施例4中滤渣的锂含量测试结果可知:实施例3的滤 饼中锂含量更小,即使实施例4中滤饼的锂含量也足够小,可以认为已经清洗干净了,但实施例4中洗涤100g沉淀的用水量为2.32L,实施例3中洗涤100g沉淀的用水量为1.12L,实施例4中的用水量是实施例3中用水量的两倍。此外,实施例4中的洗涤时间更长。
图5是根据本申请实施例3和4所示的滤渣的XRD图谱。从图5可以看出,实施例3的滤渣样品在2θ为20°、35°和40°时出现明显的衍射峰,且比实施例4中对应位置的衍射峰更强。表明实施例3的镍钴锰氢氧化物在经过500℃脱氢后结晶度比实施例4更好。说明采用实施例3的方法回收锂离子后,得到的镍钴锰沉淀的晶粒更大,实现了镍钴锰的共沉淀,沉淀晶粒结构相对一致,便于在过滤时更好的分离回收锂离子。
图6是根据本申请实施例3所示的滤渣的SEM图片。实施例4的沉淀物样品在烘干后,明显结块,判断晶粒都为细小的晶粒,并形成胶状物。而实施例3的沉淀烘干后,自然松散成沙状,从SEM图片中可以看出其二次晶粒结构较好。
通过实施例3和实施例4的对比结果:实施例3中通过加入氨水作为络合剂,将反应温度维持在50℃、将溶液的pH维持在10.7-11.2之间,并充分反应5h、陈化1h,以回收锂离子;实施例4中通过在室温下、溶液pH为10.5、一次性加入反应物料并反应1h,以回收锂离子。可以得知:实施例3中,使用与实施例4相似的溶液pH值,通过固定在较高的反应温度,并加入氨水作为络合剂使目标离子与其形成络合物从而达到溶解沉淀平衡、控制加料速度,延长加料时间和反应时间并且增加陈化时间的共同作用,可以使得生成的沉淀的晶粒较大,晶粒结构相对一致,便于对沉淀进行过滤和洗涤,从而使得锂的回收率更高。
图3是根据本申请又一些实施例所示的锂电池报废正极材料回收过程中的除杂方法300的示例性流程图。
锂电池报废正极材料回收过程中的除杂过程可以在反应釜和陈化釜中进行。如图8所示,可以将第一溶液和含氟沉淀剂分别通过进料泵A和进料泵B泵入反应釜中,反应一段时间后通过反应釜上的出料管A溢流进陈化釜进行陈化,其中,反应釜可以为第三反应釜,陈化釜可以为第三陈化釜。
步骤310,对目标物质沉淀进行溶解,得到第一溶液。
在一些实施例中,可以在目标物质沉淀中加入浸出剂进行溶解。具体的,可以在目标物质沉淀中加入浸出剂至pH为第三范围进行溶解,得到含有目标物质的溶液。浸出剂至少包括还原剂、第一酸和水,关于浸出剂的更多内容可以参见前述描述,在此不作赘述。在一些实施例中,第三范围可以为pH=0-4。较为优选地,第三范围可以为pH=0.5-3.5。较为优选地,第三范围可以为pH=1.0-3.5。较为优选地,第三范围可以为pH=1.5-3.0。较为优选地,第三范围可以为pH=2.0-2.5。在一些实施例中,含有目标物质的溶液可以为包含镍离子、钴离子、锰离子中一种或多种的溶液。
在一些实施例中,可以向含有目标物质的溶液中加入第四碱溶液调节溶液的pH。具体的,可以向含有目标物质的溶液中加入适量的第四碱溶液至pH为第四范围,得到第一溶液。在一些实施例中,第四碱溶液可以为氢氧化钠溶液。第四碱溶液的加入量根据溶液的pH而定,加入第四碱溶液时,可以控制溶液的pH在第四范围内即可停止加入第四碱溶液。在一些实施例中,第四范围可以为pH=4.5-6.5。较为优选地,第四范围可以为pH=4.8-6.3。较为优选地,第四范围可以为pH=5.0-6.0。较为优选地,第四范围可以为pH=5.2-5.8。较为优选地,第四范围可以为pH=5.4-5.6。第一溶液可以是包含镍离子、钴离子、锰离子中一种或多种的溶液。
步骤320,将第三反应釜中的反应温度维持在高于室温的第三温度。
第三反应釜的容积可以根据工艺生产需求或反应物料的进料量进行设置。例如,第三反应釜的容积可以为50L、80L或100L。
第三温度可以高于室温。在一些实施例中,第三温度为50-90℃中任一值。较为优选地,第三温度可以为52-88℃中任一值。较为优选地,第三温度可以为55-86℃中任一值。较为优选地,第三温度可以为58-83℃中任一值。较为优选地,第三温度可以为60-80℃中任一值。较为优选地,第三温度可以为62-78℃中任一值。较为优选地,第三温度可以为65-76℃中任一值。较为优选地,第三温度可以为67-73℃中任一值。较为优选地,第三温度可以为69-71℃中任一值。较为优选地,第三温度可以为50℃。较为优选地,第三温度可以为55℃。较为优选地,第三温度可以为60℃。较为优选地,第三温度可以为65℃。较为优选地,第三温度可以为70℃。较为优选地,第三温度可以为75℃。较为优选地,第三温度可以为80℃。较为优选地,第三温度可以为85℃。更为优选地,第三温度可以为90℃。在一些实施例中,可以通过加热第三反应釜以使第三反应釜中的反应温度维持在第三温度。加热第三反应釜的方式可以包括电加热、蒸汽加热、导热油循环加热或远红外加热,本申请对此不作限制。由于第三温度高于现有技术的结晶温度,从而更容易结晶得到大晶粒的晶体。
步骤330,分别将第一溶液和含氟沉淀剂以适宜流速泵入第三反应釜中反应第五时间后溢出所述第三反应釜;其中,在所述第五时间里,维持所述反应稳定在第三温度下进行,并且通过调整含氟沉淀剂的流速使得第三反应釜中反应物的氟离子浓度稳定在第一浓度范围。
在泵入第一溶液前,可以向第三反应釜中加入适量的含氟沉淀剂作为底液。在一些实施例中,反应中反应釜内氟离子的浓度可以为0.01-0.10mol/L。较为优选地,氟离子的浓度可以为0.012-0.09mol/L。较为优选地,含氟离子的浓度可以为0.013-0.06mol/L。较为优选地,氟离子的浓度可以为0.014-0.04mol/L。较为优选地,氟离子的浓度可以为0.015-0.02mol/L。
第一溶液和含氟沉淀剂的流速可以根据工艺生产需求进行设置,可以设置适宜的流速使第一溶液和含氟沉淀剂反应第五时间后溢出第一反应釜。例如, 在一些实施例中,第三反应釜为50L,第一溶液的流速可以为40-300mL/min,含氟沉淀剂的流速可以通过使第三反应釜中反应物的氟离子浓度稳定在第一浓度范围或测量误差范围(例如,氟离子浓度范围的测量误差允许范围为±0.0005mol/L,即氟离子浓度范围可以为0.0095-0.1005mol/L)内进行控制,例如,含氟沉淀剂的流速为5-100ml/min。将第一溶液泵入第三反应釜时,可以将第一溶液的进料管伸入第三反应釜的底部。向第三反应釜中泵入含氟沉淀剂时,可以将含氟沉淀剂的进料管伸入第三反应釜的底部。如图8所示,第一溶液和含氟沉淀剂可以分别通过进料泵A和进料泵B泵入反应釜(即,第三反应釜),进料管A和进料管B插入反应釜底部。在一些实施例中,第三反应釜中可以包括搅拌组件,用于给第三反应釜中的第一溶液和含氟沉淀剂进行搅拌。
在一些实施例中,第一浓度范围可以为氟离子浓度为0.005-0.1mol/L。较为优选地,第一浓度范围可以为氟离子浓度为0.010-0.099mol/L。较为优选地,第一浓度范围可以为氟离子浓度为0.020-0.095mol/L。较为优选地,第一浓度范围可以为氟离子浓度为0.030-0.090mol/L。较为优选地,第一浓度范围可以为氟离子浓度为0.040-0.080mol/L。较为优选地,第一浓度范围可以为氟离子浓度为0.050-0.070mol/L。更为优选地,第一浓度范围可以为氟离子浓度为0.055-0.060mol/L。在一些实施例中,溶液的氟离子浓度稳定在第一浓度范围可以是溶液的氟离子浓度始终处于第一浓度范围内某一值或在第一浓度范围内波动。例如,第一浓度范围为0.01-0.02mol/L,则溶液的氟离子浓度为0.01mol/L、0.011mol/L、0.012mol/L、0.013mol/L、0.014mol/L、0.015mol/L、0.016mol/L、0.017mol/L、0.018mol/L、0.019mol/L或在0.01-0.02mol/L的范围内波动时,都可以认为该溶液的氟离子浓度稳定在第一浓度范围。向第三反应釜中泵入含氟沉淀剂时,可以通过氟离子计实时测量溶液的氟离子浓度来控制含氟沉淀剂的泵入速度,从而使溶液的氟离子浓度维持在第一浓度范围或测量误差范围(例如,氟离子浓度范围的测量误差允许范围为±0.0005mol/L,即氟离子浓度范围 可以为0.0095-0.1005mol/L)内。含氟沉淀剂的泵入速度即为第五流速。例如,第一浓度范围为0.010-0.015mol/L,含氟沉淀剂的流速为10ml/min时溶液的氟离子浓度低于0.010mol/L,则需要适当提高含氟沉淀剂的流速以使溶液的氟离子浓度上升至0.010-0.015mol/L的范围内;反之,当含氟沉淀剂的流速为40ml/min时溶液的氟离子浓度超过0.015mol/L,则需要适当降低含氟沉淀剂的流速以使溶液的氟离子浓度下降至0.010-0.015mol/L的范围内。
在一些实施例中,第五时间可以为2-10h。较为优选地,第五时间可以为2.5-8.0h。较为优选地,第五时间可以为3.0-7.0h。较为优选地,第五时间可以为4.5-6.5h。较为优选地,第五时间可以为5.0-6.0h。较为优选地,第五时间可以为5.3-5.7h。较为优选地,第五时间可以为3h。较为优选地,第五时间可以为4h。较为优选地,第五时间可以为5h。较为优选地,第五时间可以为6h。较为优选地,第五时间可以为7h。更为优选地,第五时间可以为8h。通过设置第三反应釜的容积和溢出口位置(例如,溢出口设置在第三反应釜的中部偏上位置),可以使得反应物料在第三反应釜中充分反应3-8h,再从第三反应釜中溢出至第三陈化釜。
通过连续向第三反应釜中泵入第一溶液和含氟沉淀剂进行连续反应,并使上述混合物在第三反应釜中停留2-10h,可以使其充分反应和沉淀,这样可以实现对第一溶液的连续处理。
步骤340,将溢出第三反应釜的混合物进行陈化,将陈化温度维持在第三温度,并陈化第六时间。
该陈化过程可以在第三陈化釜中进行。在一些实施例中,可以通过加热第三陈化釜以使第三陈化釜中的陈化温度维持在第三温度。加热第三陈化釜的方式可以包括电加热、蒸汽加热、导热油循环加热或远红外加热,本申请对此不作限制。关于第三温度的更多内容可以参见步骤320的描述,在此不作赘述。
在一些实施例中,第六时间可以为0.5-2h。较为优选地,第六时间可以 为0.8-1.8h。较为优选地,第六时间可以为1.0-1.6h。较为优选地,第六时间可以为1.2-1.4h。较为优选地,第六时间可以为0.5h。较为优选地,第六时间可以为1h。较为优选地,第六时间可以为1.5h。更为优选地,第六时间可以为2h。
通过将充分反应后的混合物进行陈化第六时间,可以使得反应后的混合物中沉淀晶体的晶粒生长增大,并使其粒径分布更加均匀。
步骤350,将陈化后的混合物静置第七时间,之后进行第三分离过程,并得到第二杂质和目标溶液。
该静置过程可以在第二缓冲罐中进行,可以将陈化后的混合物泵入第二缓冲罐中进行静置。在一些实施例中,第七时间可以为0.5-2h。较为优选地,第七时间可以为0.8-1.8h。较为优选地,第七时间可以为1.0-1.6h。较为优选地,第七时间可以为1.2-1.4h。较为优选地,第七时间可以为0.5h。较为优选地,第七时间可以为1.0h。较为优选地,第七时间可以为1.5h。更为优选地,第七时间可以为2h。
在一些实施例中,可以对静置后的混合物进行第三分离过程,得到第二杂质和目标溶液。具体的,第三分离过程可以是固液分离过程。例如,第三分离方法可以包括过滤、重力沉降、离心沉降、压滤等。在一些实施例中,第二杂质可以至少包括氟化钙、氟化镁、氟化铅中一种或多种。在一些实施例中,目标溶液可以为包括有镍离子、钴离子、锰离子中一种或多种的溶液。在一些实施例中,可以将陈化后的混合物不进行静置,而是直接将陈化后的混合物进行第三分离过程。
在一些实施例中,还可以对目标溶液进行进一步处理,以得到前驱体沉淀。具体的,可以在目标溶液中加入第三碱溶液,得到前驱体沉淀。在一些实施例中,第三碱溶液可以与第四碱溶液相同。例如,第三碱溶液可以为氢氧化钠溶液。在一些实施例中,还可以将前驱体沉淀和氢氧化锂晶体或碳酸锂晶体 进一步烧结处理,得到锂电池正极材料。
上述方法通过控制第一溶液和含氟沉淀剂泵入第三反应釜中的流速、反应温度、反应时间和陈化时间,以使晶体的晶粒充分生长为大晶粒,便于进行第三分离过程,减少了在第三分离过程中洗涤的用水量和洗涤时间,同时也减少了洗涤过程中镍钴锰离子的浪费,进而可以提高镍钴锰的回收率。
下面将通过实施例5和实施例6对锂电池报废正极材料回收过程中除去钙离子、镁离子和铅离子的方法进行详细阐述。需注意的是,实施例5和实施例6中的反应条件、反应物料和反应物料的用量仅为了说明锂电池报废正极材料回收过程中除去钙离子、镁离子和铅离子的方法,不限制本申请的保护范围。其中,实施例5为采用图3中的除杂方法的实施例。实施例6为批量处理目标物质沉淀中杂质的除杂方法的实施例,实施例6是实施例5的对照组。
实施例5
步骤1:将含有镍、钴、锰离子的目标物质沉淀用硫酸和双氧水进行溶解,控制溶液的pH值为3.2进行反应,得到含有目标物质的溶液;向含有目标物质的溶液中加入NaOH溶液使混合物的pH值为5.2,得到第一溶液。
步骤2:用蠕动泵向50L第三反应釜中加入pH值为5.2的第一溶液,流速控制为100mL/min,第三反应釜内反应温度控制为90℃。同时将0.96mol/L的NaF溶液以20mL/min的流速加入第三反应釜;每30min取样,测试反应液氟离子含量,根据测试值调节NaF溶液的流速,使氟离子含量控制在0.01mol/L-0.015mol/L之间。充分反应5h后,混合物从第三反应釜的溢流口中溢出,进入第三陈化釜。在此过程中,共泵入30L第一溶液。
步骤3:加热第三陈化釜使陈化温度恒定在90℃,将混合物在第三陈化釜内陈化1h。
步骤4:将混合物从第三陈化釜泵入第三缓冲罐,静置1h,观察上清液澄清、无漂浮物。
步骤5:用压滤机对陈化后的混合物进行过滤,收集湿滤渣后在实验室进行清洗。
步骤6:收集滤液,得到滤液体积为41.5L。
步骤7:对第一溶液、滤液和滤渣进行ICP测试,对滤渣进行SEM测试。
实施例6
步骤1:将含有镍、钴、锰离子的目标物质沉淀用浓硫酸和双氧水进行溶解,控制溶液的pH值为3.2进行反应,得到含有目标物质的溶液;向含有目标物质的溶液中加入NaOH溶液使混合物的pH值为5.2,得到第一溶液。
步骤2:向50L第三反应釜中一次性加入40L pH值为5.2的第一溶液;第三反应釜中的反应温度稳定在90℃。
步骤3:加入NaF固体81g,搅拌1小时,停止加热,自然冷却至室温。
步骤4:静置24h,观察上清液,表面有白色漂浮物无法沉淀。
步骤5:用压滤机对陈化后的混合物进行过滤,收集湿滤渣后,在实验室进行清洗。
步骤6:收集滤液,得到滤液体积为39.5L。
步骤7:对第一溶液、滤液和滤渣进行ICP测试,对滤渣进行SEM测试。
根据实施例5和实施例6的ICP测试结果,可以得到下表中的数据:
Figure PCTCN2021129320-appb-000003
表2 ICP分析结果
根据表2可以进一步计算实施例5和实施例6的钙离子去除率:
实施例5中钙离子的去除率:Ca去除率=(第一溶液中Ca含量×原液体积-滤液中Ca含量×滤液体积)/(原液中Ca含量×原液体积)=(294×30L-3.38×41.5L) /(294×30L)×100%=98.4%。
实施例6中钙离子的去除率:Ca去除率=(原液中Ca含量×原液体积-滤液中Ca含量×滤液体积)/(原液中Ca含量×原液体积)=(294×40L-21×39.5L)/(294×40L)=92.9%。
由实施例5和6中钙离子的去除率计算结果可知:实施例5中钙离子的去除率比实施例6中更高,表明实施例5对第一溶液中去除钙离子的效果更好。
图7A是根据本申请实施例5所示的滤渣的SEM图片,图7B是根据本申请实施例6所示的滤渣的SEM图片。从图7A和图7B可以看出,实施例5中的滤渣有清晰的立方体晶体结构,而实施6中的滤渣则晶粒微小,无法分辨晶粒结构。表明采用实施例5的方法比采用实施例6的方法对第一滤液进行除杂后得到沉淀的晶粒更大。
通过实施例5和实施例6的对比结果:实施例5中通过将反应温度维持在90℃、将氟离子含量控制在0.01mol/L-0.015mol/L之间,并充分反应5h、陈化1h、静置1h,以对第一溶液进行除杂处理;实施例6通过在90℃下、一次性加入反应物料并反应1h、静置24h,以对第一溶液进行除杂处理。可以得知:实施例5中,使用与实施例6相同的反应温度、通过控制加入第一溶液的加料速度和氟离子含量、较长的反应时间、和陈化时间的共同作用,可以使得生成的沉淀的晶粒较大,便于对沉淀进行过滤和洗涤,从而使得钙离子的去除率更高,除杂的效果更好。
应当理解的是,上述图1-3中的除杂方法和锂回收的方法,可以单独实施,也可以同时实施。在实际除杂过程中,可以根据杂质的种类进行确定。例如,锂电池报废正极材料中含有的杂质仅为铁离子、铝离子、铜离子中一种或多种,可以仅实施图1中的除杂方法,即可实现对锂电池报废正极材料中杂质的去除。又例如,锂电池报废正极材料中含有的杂质有铁离子、铝离子、铜离子中一种或多种,也含有钙离子、镁离子、铅离子中一种或多种,则可以实施 图1-图3中的除杂方法和锂回收的方法,以实现对锂电池报废正极材料中杂质的去除。又例如,锂电池报废正极材料中含有的杂质仅为钙离子、镁离子、铅离子中一种或多种,可以实施图2和图3中的除杂方法,以实现对锂电池报废正极材料中杂质的去除。
本申请实施例可能带来的有益效果包括但不限于:(1)通过在高于室温的反应温度和固定的pH下进行沉淀反应,可以得到粒径大、结晶度高、含水率低的沉淀,使得沉淀过滤和洗涤过程更加高效和便捷,减少了洗涤过程中的用水量,提高了锂电池报废正极材料回收过程中镍钴锰的回收率;(2)通过在制备锂电池正极材料前驱体沉淀先前将锂离子去除,可以实现回收锂的目的,同时避免影响后续除杂过程中反应参数的控制,提高了镍钴锰的回收率。需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
应当注意的是,以上实施例仅用以说明本发明的技术方案而非限制技术方案,本领域的普通技术人员应当理解,那些对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,均应涵盖在本发明的权利要求范围当中。

Claims (23)

  1. 一种锂电池报废正极材料回收过程中的除杂和处理方法,其中,
    (1)在高于室温的第一温度和固定的第一pH值的稳定环境下,控制锂电池报废正极材料浸出液和第一碱溶液的流速沉淀除去铁离子、铝离子和至少部分铜离子,得到第一滤液;
    (2)在高于室温的第二温度和固定的第一pH范围下,控制所述第一滤液、络合剂和第二碱溶液的流速将锂离子去除,分离出含有锂离子的第二滤液,得到目标物质沉淀;
    (3)对所述目标物质沉淀进行溶解,得到第一溶液;
    (4)在高于室温的第三温度和固定的氟离子浓度下,控制所述第一溶液和含氟沉淀剂的流速沉淀除去钙离子、镁离子和至少部分铅离子,得到目标溶液;
    所述除杂和处理方法在可连续操作的溢流反应釜中进行。
  2. 根据权利要求1所述的方法,其中,所述在高于室温的第一温度和固定的第一pH值的稳定环境下,控制锂电池报废正极材料浸出液和第一碱溶液的流速沉淀除去铁离子、铝离子和至少部分铜离子,得到第一滤液包括:
    分别将所述锂电池报废正极材料浸出液和第一碱溶液以适宜流速泵入第一反应釜中反应第一时间后溢出所述第一反应釜,之后进行第一分离过程,并得到含有所述铁离子、铝离子和至少部分铜离子的沉淀和所述第一滤液;其中,在所述第一时间里,维持反应稳定在所述第一温度下进行,并且通过调整所述第一碱溶液的流速使得所述反应稳定在第一pH值下进行。
  3. 根据权利要求2所述的方法,其中,在进行第一分离过程之前,所述方法还包括:
    将溢出所述第一反应釜的混合物进行陈化,将陈化温度维持在所述第一温度,并陈化第二时间。
  4. 根据权利要求1所述的方法,其中,所述在高于室温的第二温度和固定的第一pH范围下,控制所述第一滤液、络合剂和第二碱溶液的流速将锂离子去除,分离出含有锂离子的第二滤液,得到目标物质沉淀包括:
    分别将所述第一滤液、络合剂和第二碱溶液以适宜流速泵入第二反应釜中反应第三时间后溢出所述第二反应釜,之后进行第二分离过程,并得到所述目标物质沉淀和所述含有锂离子的第二滤液;其中,在所述第三时间里,维持反应稳定在所述第二温度下进行,并且通过调整所述第二碱溶液的流速使得所述反应稳定在第一pH范围进行。
  5. 根据权利要求4所述的方法,其中,在进行第二分离过程之前,所述方法还包括:
    将溢出所述第二反应釜的混合物进行陈化,将陈化温度维持在所述第二温度,并陈化第四时间。
  6. 根据权利要求1所述的方法,其中,所述对所述目标物质沉淀进行溶解,得到第一溶液包括:
    在所述目标物质沉淀中加入浸出剂至pH为第三范围进行溶解,得到含有目标物质的溶液;其中,所述浸出剂至少包括还原剂、第一酸和水;
    向所述含有目标物质的溶液中加入适量的第四碱溶液至pH为第四范围,得到所述第一溶液。
  7. 根据权利要求1所述的方法,其中,所述在高于室温的第三温度和固定的氟离子浓度下,控制所述第一溶液和含氟沉淀剂的流速沉淀除去钙离子、镁离子和至少部分铅离子,得到目标溶液包括:
    分别将所述第一溶液和含氟沉淀剂以适宜流速泵入第三反应釜中反应第五 时间后溢出所述第三反应釜,之后进行第三分离过程,并得到所述含有钙离子、镁离子和至少部分铅离子的沉淀和所述目标溶液;其中,在所述第五时间里,维持反应稳定在所述第三温度下进行,并且通过调整所述含氟沉淀剂的流速使得所述第三反应釜中反应物的氟离子浓度稳定在第一浓度范围。
  8. 根据权利要求7所述的方法,其中,在进行第三分离过程之前,所述方法还包括:
    将溢出所述第三反应釜的混合物进行陈化,将陈化温度维持在所述第三温度,并陈化第六时间;
    将陈化后的混合物静置第七时间。
  9. 根据权利要求1-8中任一项所述的方法,其中,在对所述锂电池报废正极材料浸出液进行沉淀处理之前,所述方法还包括:
    在锂电池报废正极材料中加入浸出剂至pH为第二范围进行溶解,之后进行第四分离过程,并得到第三杂质和所述锂电池报废正极材料浸出液;其中,所述浸出剂至少包括还原剂、第一酸和水。
  10. 根据权利要求1-8中任一项所述的方法,其中,所述方法还包括:
    在所述目标溶液中加入第三碱溶液,得到前驱体沉淀。
  11. 根据权利要求1-8中任一项所述的方法,其中,所述锂电池报废正极材料包括锂镍钴锰氧化物电池材料、锂钴氧化物电池材料、锂钴锰氧化物电池材料、锂钴氧化铝电池材料、锂锰氧化物电池材料中的一种或多种。
  12. 根据权利要求1-8中任一项所述的方法,其中,所述第一pH值为pH=5.5-6.7中任一值。
  13. 根据权利要求1-8中任一项所述的方法,其中,所述第一温度为50-90℃中任一值。
  14. 根据权利要求1-8中任一项所述的方法,其中,所述第一碱溶液包括氢氧化锂。
  15. 根据权利要求1-8中任一项所述的方法,其中,所述第二温度为40-70℃中任一值。
  16. 根据权利要求1-8中任一项所述的方法,其中,所述络合剂包括氨水。
  17. 根据权利要求1-8中任一项所述的方法,其中,所述第二碱溶液包括氢氧化锂。
  18. 根据权利要求1-8中任一项所述的方法,其中,所述第一pH范围为pH=10.5-11.8。
  19. 根据权利要求6所述的方法,其中,所述第三范围为pH=0-4。
  20. 根据权利要求6所述的方法,其中,所述第四范围为pH=4.5-6.5。
  21. 根据权利要求1-8中任一项所述的方法,其中,所述第三温度为50-90℃中任一值。
  22. 根据权利要求1-8中任一项所述的方法,其中,所述含氟沉淀剂包括氟化钠溶液。
  23. 根据权利要求7或8所述的方法,其中,所述第一浓度范围为氟离子浓度为0.005-0.1mol/L。
PCT/CN2021/129320 2020-11-26 2021-11-08 一种锂电池报废正极材料回收过程中的除杂和处理方法 WO2022111266A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023532658A JP2023552175A (ja) 2020-11-26 2021-11-08 リチウム電池の廃棄正極材料の回収工程における不純物除去および処理方法
EP21896767.7A EP4235911A4 (en) 2020-11-26 2021-11-08 METHOD FOR TREATING AND REMOVING IMPURITIES IN A PROCESS FOR RECOVERY OF DISPOSED POSITIVE ELECTRODE MATERIAL FROM A LITHIUM BATTERY
KR1020237020191A KR20230107660A (ko) 2020-11-26 2021-11-08 리튬 전지의 스크랩 양극 재료의 재활용 공정에서 불순물 제거 및 처리 방법
US18/324,147 US20230352756A1 (en) 2020-11-26 2023-05-25 Methods for impurity removal and treatment in recycling process of scrap positive electrode materials of lithium batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011347197.8A CN112151903B (zh) 2020-11-26 2020-11-26 一种锂电池报废正极材料回收过程中的除杂和处理方法
CN202011347197.8 2020-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/324,147 Continuation US20230352756A1 (en) 2020-11-26 2023-05-25 Methods for impurity removal and treatment in recycling process of scrap positive electrode materials of lithium batteries

Publications (1)

Publication Number Publication Date
WO2022111266A1 true WO2022111266A1 (zh) 2022-06-02

Family

ID=73887399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129320 WO2022111266A1 (zh) 2020-11-26 2021-11-08 一种锂电池报废正极材料回收过程中的除杂和处理方法

Country Status (6)

Country Link
US (1) US20230352756A1 (zh)
EP (1) EP4235911A4 (zh)
JP (1) JP2023552175A (zh)
KR (1) KR20230107660A (zh)
CN (3) CN112820974B (zh)
WO (1) WO2022111266A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112820974B (zh) * 2020-11-26 2022-06-14 清华四川能源互联网研究院 一种锂电池报废正极材料回收过程中的除杂和处理方法
CN113046559B (zh) * 2021-03-05 2022-03-01 华东理工大学 从退役锂离子电池正极材料中回收锂、钴、镍、锰的方法
CN115582082B (zh) * 2022-10-18 2023-10-27 长春生物制品研究所有限责任公司 一种基于在线检控体系生产氢氧化铝佐剂的系统及工艺
CN116377249B (zh) * 2023-05-12 2024-05-17 中南大学 一种废旧三元正极材料的高压碱浸回收工艺及其设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439907A (zh) * 2018-11-22 2019-03-08 湖南邦普循环科技有限公司 一种从回收废锂离子电池过程中的酸浸液中除铁铝的方法
US20190123402A1 (en) * 2012-04-04 2019-04-25 Worcester Polytechnic Institute Charge material for recycled lithium-ion batteries
CN109837392A (zh) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 锂离子电池正极材料废料的回收及再生方法
CN111041217A (zh) * 2019-12-28 2020-04-21 湖南金源新材料股份有限公司 三元电池废料综合回收中制取萃前液的方法
CN111092273A (zh) * 2019-09-14 2020-05-01 湖南金源新材料股份有限公司 从三元电池废料中综合回收钴镍锰锂元素的新方法
CN111392750A (zh) * 2020-04-02 2020-07-10 天齐锂业股份有限公司 一种从废旧锂离子电池中除杂回收锂的方法
CN112151903A (zh) * 2020-11-26 2020-12-29 清华四川能源互联网研究院 一种锂电池报废正极材料回收过程中的除杂和处理方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW501294B (en) * 2001-06-15 2002-09-01 Ind Tech Res Inst Metal recovery method of wasted lithium ion battery using sulfuric acid
WO2012025568A2 (en) * 2010-08-24 2012-03-01 Akkuser Oy Metal ion recovery from battery waste
CN102092798A (zh) * 2010-12-01 2011-06-15 兰州金川新材料科技股份有限公司 一种锂离子电池正极材料前驱体的连续合成方法
CN102088124A (zh) * 2010-12-24 2011-06-08 佛山市邦普循环科技有限公司 一种高纯度多金属元素固体混合盐及其制备方法和应用
CN102276070A (zh) * 2011-05-27 2011-12-14 中节能六合天融环保科技有限公司 一种用于分离含锰废水中钙、镁离子的复合试剂
WO2013036983A1 (en) * 2011-09-15 2013-03-21 Orocobre Limited Process for producing lithium carbonate from concentrated lithium brine
EP2631987A1 (en) * 2012-02-24 2013-08-28 Rec Alkaline Oy Metal ion recovery from battery waste using ammonia
CN102674483B (zh) * 2012-05-14 2013-11-06 江门市芳源环境科技开发有限公司 一种用废电池正极材料制备球形氢氧化镍的方法
CN102703706B (zh) * 2012-06-01 2015-03-25 奇瑞汽车股份有限公司 一种从废旧钴酸锂电池中回收有价金属的方法
CN103199320B (zh) * 2013-03-28 2015-05-27 四川天齐锂业股份有限公司 镍钴锰三元正极材料回收利用的方法
JP2017115179A (ja) * 2015-12-22 2017-06-29 日本リサイクルセンター株式会社 有価物の回収方法
CN105958148B (zh) * 2016-05-17 2018-10-23 长沙理工大学 一种从废旧镍钴锰酸锂电池材料中回收有价金属的方法
CN106410313A (zh) * 2016-11-24 2017-02-15 荆门市格林美新材料有限公司 废旧电池中镍钴锰三元正极材料修复再生的方法
CN108767354B (zh) * 2018-05-29 2021-02-26 中南大学 一种从废旧锂离子电池正极材料中回收有价金属的方法
CN108878866B (zh) * 2018-06-28 2020-11-17 山东理工大学 利用废旧锂离子电池三元正极材料制备三元材料前驱体及回收锂的方法
CN108878837B (zh) * 2018-06-28 2020-09-25 山东理工大学 基于废旧锂电池正极材料制备铝酸锂改性的三元正极材料的方法
CN109234546A (zh) * 2018-09-17 2019-01-18 合肥国轩高科动力能源有限公司 一种废旧锂电池正极粉料连续浸取系统及浸取工艺
CN109338105A (zh) * 2018-10-16 2019-02-15 长沙矿冶研究院有限责任公司 一种从含镍钴锰锂的混合溶液中高效分离有价金属的方法
CN109755539A (zh) * 2019-02-21 2019-05-14 湖南邦普循环科技有限公司 利用锂离子电池正极废料制作铝掺杂三元前驱体的方法
CN110233306A (zh) * 2019-07-09 2019-09-13 郑州中科新兴产业技术研究院 一种废旧锂离子电池回收三元正极材料前驱体的方法
CN111115662B (zh) * 2019-12-31 2021-03-09 清华四川能源互联网研究院 一种锂电池材料回收方法
CN111261967A (zh) * 2020-01-22 2020-06-09 宁波容百新能源科技股份有限公司 一种废旧锂电池的回收方法及回收制备的电池级镍钴锰混合晶体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190123402A1 (en) * 2012-04-04 2019-04-25 Worcester Polytechnic Institute Charge material for recycled lithium-ion batteries
CN109439907A (zh) * 2018-11-22 2019-03-08 湖南邦普循环科技有限公司 一种从回收废锂离子电池过程中的酸浸液中除铁铝的方法
CN109837392A (zh) * 2019-01-25 2019-06-04 宁波行殊新能源科技有限公司 锂离子电池正极材料废料的回收及再生方法
CN111092273A (zh) * 2019-09-14 2020-05-01 湖南金源新材料股份有限公司 从三元电池废料中综合回收钴镍锰锂元素的新方法
CN111041217A (zh) * 2019-12-28 2020-04-21 湖南金源新材料股份有限公司 三元电池废料综合回收中制取萃前液的方法
CN111392750A (zh) * 2020-04-02 2020-07-10 天齐锂业股份有限公司 一种从废旧锂离子电池中除杂回收锂的方法
CN112151903A (zh) * 2020-11-26 2020-12-29 清华四川能源互联网研究院 一种锂电池报废正极材料回收过程中的除杂和处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4235911A4 *

Also Published As

Publication number Publication date
US20230352756A1 (en) 2023-11-02
CN112786988A (zh) 2021-05-11
CN112820974B (zh) 2022-06-14
CN112786988B (zh) 2022-06-14
CN112151903B (zh) 2021-03-09
JP2023552175A (ja) 2023-12-14
KR20230107660A (ko) 2023-07-17
CN112820974A (zh) 2021-05-18
EP4235911A1 (en) 2023-08-30
CN112151903A (zh) 2020-12-29
EP4235911A4 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
WO2022111266A1 (zh) 一种锂电池报废正极材料回收过程中的除杂和处理方法
JP7376862B2 (ja) Ncma高ニッケル四元系前駆体の湿式合成法
CN111129632A (zh) 废旧三元锂离子电池正负极混合材料回收方法
WO2020019920A1 (zh) 一种由红土镍矿硝酸浸出液制备三元正极材料的方法
CN109439907A (zh) 一种从回收废锂离子电池过程中的酸浸液中除铁铝的方法
CN108123185A (zh) 废旧锰酸锂电池中有价金属回收方法
CN115301196B (zh) 一种钛掺杂改性锰系锂离子筛及其制备方法
WO2020171009A1 (ja) リチウム回収方法
CN114314672A (zh) 一种铼酸铵的纯化方法
CN116621235B (zh) 镍铁铜锰前驱体及其制备方法、正极材料、正极和电池
KR102057026B1 (ko) 수산화물(들) 을 함유할 수 있는 혼합 탄산염 제조 방법
CN113548701A (zh) 一种锂离子筛的制备和应用方法
CN104229906A (zh) 利用表面处理过程产生的含镍废水制备电镀级硫酸镍的方法和设备
CN116902943A (zh) 一种可调控比表面的磷酸铁的制备方法
CN112456520A (zh) 一种用锂辉石、锂聚合物和盐湖矿石混合生产单水氢氧化锂的工艺
CN112758964A (zh) 一种用锂辉石和盐湖矿石混合生产碳酸锂的工艺
CN112591772A (zh) 一种用锂辉石和盐湖矿石混合生产单水氢氧化锂的工艺
WO2023051728A1 (zh) 从含锂溶液中回收锂的方法
CN114684871A (zh) 一种硫酸盐体系锂离子电池正极材料前驱体降低硫含量的方法
CN112725621A (zh) 基于碳酸根固相转换法从废旧锂电池分离镍钴锰的方法
CN114956189B (zh) 一种电池级硫酸锰制备方法
CN113772751B (zh) 一种利用低镍锍直接制备硫酸镍的方法、硫酸镍及其应用
CN112259820B (zh) 一种利用废旧锂电池制备核壳型三元正极材料的方法
CN112520764A (zh) 一种用盐湖矿石与锂聚合物混合生产氢氧化锂的工艺
CN112645364A (zh) 一种用锂辉石和锂聚合物混合生产碳酸锂的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532658

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021896767

Country of ref document: EP

Effective date: 20230524

ENP Entry into the national phase

Ref document number: 20237020191

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE