WO2020171009A1 - リチウム回収方法 - Google Patents
リチウム回収方法 Download PDFInfo
- Publication number
- WO2020171009A1 WO2020171009A1 PCT/JP2020/006013 JP2020006013W WO2020171009A1 WO 2020171009 A1 WO2020171009 A1 WO 2020171009A1 JP 2020006013 W JP2020006013 W JP 2020006013W WO 2020171009 A1 WO2020171009 A1 WO 2020171009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- lithium
- treated
- concentration
- inorganic salt
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 308
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 307
- 238000000034 method Methods 0.000 title claims abstract description 194
- 238000011084 recovery Methods 0.000 title claims abstract description 154
- 239000007788 liquid Substances 0.000 claims abstract description 695
- 229910017053 inorganic salt Inorganic materials 0.000 claims abstract description 183
- 238000000926 separation method Methods 0.000 claims abstract description 151
- 239000013078 crystal Substances 0.000 claims abstract description 130
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 102
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims abstract description 93
- 229910052808 lithium carbonate Inorganic materials 0.000 claims abstract description 93
- 239000002244 precipitate Substances 0.000 claims abstract description 90
- 238000001704 evaporation Methods 0.000 claims abstract description 53
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 51
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 51
- 238000002425 crystallisation Methods 0.000 claims abstract description 48
- 230000008025 crystallization Effects 0.000 claims abstract description 47
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 25
- 239000003513 alkali Substances 0.000 claims description 148
- 238000000909 electrodialysis Methods 0.000 claims description 95
- 239000002253 acid Substances 0.000 claims description 75
- 239000012528 membrane Substances 0.000 claims description 73
- 239000002699 waste material Substances 0.000 claims description 66
- 239000012266 salt solution Substances 0.000 claims description 63
- 238000002386 leaching Methods 0.000 claims description 62
- 150000007522 mineralic acids Chemical class 0.000 claims description 59
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 56
- 229910001416 lithium ion Inorganic materials 0.000 claims description 56
- 238000004090 dissolution Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 20
- 238000002156 mixing Methods 0.000 claims description 18
- 238000011033 desalting Methods 0.000 claims description 15
- 230000008020 evaporation Effects 0.000 abstract description 26
- 239000007787 solid Substances 0.000 abstract description 4
- 239000012530 fluid Substances 0.000 abstract 6
- 239000012535 impurity Substances 0.000 description 94
- 229910017052 cobalt Inorganic materials 0.000 description 83
- 239000010941 cobalt Substances 0.000 description 83
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 83
- 239000000243 solution Substances 0.000 description 75
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 73
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 60
- 229910052751 metal Inorganic materials 0.000 description 53
- 239000002184 metal Substances 0.000 description 53
- 239000007864 aqueous solution Substances 0.000 description 51
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 40
- 239000007789 gas Substances 0.000 description 37
- 150000001768 cations Chemical class 0.000 description 31
- 238000005406 washing Methods 0.000 description 31
- 238000001914 filtration Methods 0.000 description 30
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 29
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 29
- 229910052791 calcium Inorganic materials 0.000 description 29
- 239000011575 calcium Substances 0.000 description 29
- 229910052749 magnesium Inorganic materials 0.000 description 29
- 239000011777 magnesium Substances 0.000 description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 238000010979 pH adjustment Methods 0.000 description 27
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 24
- -1 for example Substances 0.000 description 24
- 239000000706 filtrate Substances 0.000 description 20
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 238000005341 cation exchange Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- 150000002739 metals Chemical class 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 239000011734 sodium Substances 0.000 description 14
- 239000013522 chelant Substances 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 12
- 229910052938 sodium sulfate Inorganic materials 0.000 description 12
- 235000011152 sodium sulphate Nutrition 0.000 description 12
- 239000003011 anion exchange membrane Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 229910052783 alkali metal Inorganic materials 0.000 description 10
- 150000001340 alkali metals Chemical class 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 10
- 150000001868 cobalt Chemical class 0.000 description 10
- 239000012141 concentrate Substances 0.000 description 10
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000003456 ion exchange resin Substances 0.000 description 9
- 229920003303 ion-exchange polymer Polymers 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 8
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 8
- 229910001424 calcium ion Inorganic materials 0.000 description 8
- 238000010612 desalination reaction Methods 0.000 description 8
- 229910003002 lithium salt Inorganic materials 0.000 description 8
- 159000000002 lithium salts Chemical class 0.000 description 8
- 229910001425 magnesium ion Inorganic materials 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 230000001376 precipitating effect Effects 0.000 description 5
- 238000011085 pressure filtration Methods 0.000 description 5
- 238000003828 vacuum filtration Methods 0.000 description 5
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 230000001172 regenerating effect Effects 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- JZTPOMIFAFKKSK-UHFFFAOYSA-N O-phosphonohydroxylamine Chemical compound NOP(O)(O)=O JZTPOMIFAFKKSK-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000001099 ammonium carbonate Substances 0.000 description 3
- 235000012501 ammonium carbonate Nutrition 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000014413 iron hydroxide Nutrition 0.000 description 2
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- RSIJVJUOQBWMIM-UHFFFAOYSA-L sodium sulfate decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].[O-]S([O-])(=O)=O RSIJVJUOQBWMIM-UHFFFAOYSA-L 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- WHNBSEUOAUFJEG-UHFFFAOYSA-L [Co](O)O.[Fe] Chemical compound [Co](O)O.[Fe] WHNBSEUOAUFJEG-UHFFFAOYSA-L 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012492 regenerant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/08—Carbonates; Bicarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
- B01D61/461—Apparatus therefor comprising only a single cell, only one anion or cation exchange membrane or one pair of anion and cation membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
- B01D61/463—Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/04—Oxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
- C22B23/0415—Leaching processes with acids or salt solutions except ammonium salts solutions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/22—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/008—Wet processes by an alkaline or ammoniacal leaching
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/08—Multistage treatments, e.g. repetition of the same process step under different conditions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present disclosure relates to a lithium recovery method for recovering lithium from a liquid to be treated in which lithium is at least dissolved, and particularly to a lithium recovery method used when recovering lithium from a waste lithium-ion battery.
- the present disclosure also relates to a cobalt recovery method for recovering cobalt from a liquid to be treated in which at least cobalt and impurity metals are dissolved, and particularly to a cobalt recovery method used when recovering cobalt from a waste lithium-ion battery.
- Lithium-ion batteries are attracting attention as lightweight and high energy density batteries, and are used in large quantities as batteries for various mobile devices, electric vehicles, electrically assisted bicycles, etc.
- a lithium transition metal oxide such as lithium cobalt oxide or lithium nickel oxide is used as a positive electrode active material, and valuable metals such as cobalt and nickel cannot be recovered from a waste lithium-ion battery.
- Many methods have been proposed because they are extremely important from the viewpoint of effective use of resources.
- Patent Document 1 As a method for recovering cobalt from a waste lithium-ion battery, for example, in Patent Document 1, a waste lithium-ion battery is leached with sulfuric acid to elute cobalt, and alkali is added to this acid leachate to adjust the pH to 4-5. Then, after depositing and precipitating a salt of an impurity metal such as aluminum, which is eluted together with cobalt, as a crystal, the pH is adjusted to 7 to 10 by further adding an alkali to deposit and precipitate the cobalt salt as a crystal. By this, a method for recovering cobalt is described.
- Patent Document 2 a used lithium metal gel and a solid polymer electrolyte secondary battery are dissolved with sulfuric acid, and lithium hydroxide or ammonium hydroxide is added to a lithium sulfate-containing liquid containing lithium sulfate obtained by this.
- a salt of an impurity metal aluminum hydroxide
- the lithium sulfate-containing liquid is evaporated and concentrated, and then carbonated to give lithium contained in the lithium sulfate-containing liquid. Is described as a crystal of lithium carbonate, which is separated and recovered.
- the present disclosure aims to provide a lithium recovery method capable of recovering lithium with high purity from a liquid to be treated in which lithium and an inorganic salt are dissolved.
- a lithium recovery method includes a concentration step of evaporating and concentrating a liquid to be treated in which lithium and an inorganic salt are at least dissolved, and a liquid to be treated after the concentration step is cooled and crystallized to precipitate an inorganic salt as crystals. And a first solid-liquid separation step of separating a precipitate containing crystals of an inorganic salt from the liquid to be treated after the crystallization step, and carbon dioxide gas in the liquid to be treated after the first solid-liquid separation step. And/or adding a water-soluble carbonate, and a second solid-liquid separation step of separating a precipitate containing lithium carbonate crystals precipitated by the carbonation step from the liquid to be treated. It is characterized by having.
- the lithium recovery method of one embodiment of the present disclosure by evaporating and concentrating the liquid to be treated in the concentration step before the carbonation step, the liquid amount of the liquid to be treated is reduced and the lithium concentration in the liquid to be treated is increased. ing. Therefore, the recovery rate of lithium carbonate can be favorably improved in the carbonation step.
- the temperature of the liquid to be treated after evaporation and concentration is lowered, and the solubility is lowered until the inorganic salt contained in the liquid to be crystallized. I am letting you. Thereby, the concentration of the inorganic salt in the liquid to be treated can be reduced.
- the temperature of the liquid to be treated is raised in order to reduce the solubility of lithium carbonate, so that the solubility of the inorganic salt remaining in the liquid to be treated is increased, and crystallization of the inorganic salt can be suppressed. Therefore, when recovering lithium carbonate in the carbonation step, the purity of lithium carbonate can be increased.
- lithium can be recovered with high purity from a liquid to be treated in which lithium and an inorganic salt are dissolved.
- FIG. 3 is a photograph of the surface state of the filtration residue of Example 1.
- 5 is a photograph of the surface state of the filtration residue of Example 2.
- 7 is a photograph of the surface condition of the filtration residue of Example 3.
- the lithium recovery method of the first aspect of the present disclosure is a concentration step of evaporating and concentrating a liquid to be treated in which at least lithium and an inorganic salt are dissolved, and cooling and crystallization of the liquid to be treated after the concentration step.
- Crystallization step of precipitating inorganic salt as crystals a first solid-liquid separation step of separating a precipitate containing inorganic salt crystals from the liquid to be treated after the crystallization step, and the first solid-liquid separation step
- a solid-liquid separation step is a concentration step of evaporating and concentrating a liquid to be treated in which at least lithium and an inorganic salt are dissolved, and cooling and crystallization of the liquid to be treated after the concentration step.
- the lithium recovery method described in paragraph 0016 or paragraph 0017 preferably further includes an impurity removal step of removing at least calcium and/or magnesium contained in the liquid to be treated before the concentration step.
- the inorganic salt solution is prepared by dissolving the crystals of the inorganic salt contained in the precipitate separated from the liquid to be treated in the first solid-liquid separation step.
- a electrodialysis step of separating and recovering an inorganic acid together with an alkali from the inorganic salt solution by performing a bipolar membrane electrodialysis on the inorganic salt solution obtained by the dissolving step. It is preferable to have.
- the inorganic salt solution after desalting by the bipolar membrane electrodialysis is evaporated and concentrated in the concentration step.
- a substance such as scaling that may be an obstacle in operating electrodialysis such as calcium and/or magnesium contained in the inorganic salt solution before the electrodialysis step is used. It is preferable to further include an impurity removing step of removing at least the impurities.
- the inorganic salt contained in the inorganic salt solution is recrystallized and the crystals of the inorganic salt are separated from the inorganic salt solution before the electrodialysis step. It is preferable to further include a recrystallization step and a remelting step of dissolving the crystal of the inorganic salt obtained by the recrystallization step to generate an inorganic salt solution.
- the inorganic acid recovered in the electrodialysis step as a regenerant for a chelate resin or an ion exchange resin used in the impurity treatment step. ..
- condensed water generated in the concentration step causes a precipitate containing crystals of an inorganic salt obtained in the first solid-liquid separation step, and/or Alternatively, it is preferable to wash the precipitate containing the crystals of lithium carbonate obtained in the second solid-liquid separation step.
- an acid leaching step of leaching a waste lithium ion battery with an inorganic acid to elute lithium before the concentration step, an acid leaching step of leaching a waste lithium ion battery with an inorganic acid to elute lithium, and the acid leaching step
- a pH adjusting step of adjusting the pH by adding an alkali to the obtained lithium-containing liquid is further included, and the liquid to be treated is generated by separating the precipitate deposited by the pH adjusting step from the lithium-containing liquid.
- the liquid to be treated is generated by separating the precipitate deposited by the pH adjusting step from the lithium-containing liquid.
- the alkali recovered in the electrodialysis step is reused as an alkali added in the pH adjustment step, and the inorganic acid recovered in the electrodialysis step is converted into the acid. It is preferably reused as an inorganic acid used in the leaching step.
- a roasting step of roasting the waste lithium-ion battery is further included, and in the carbonation step, Exhaust gas generated in the roasting step is preferably mixed with the liquid to be treated as carbon dioxide gas.
- the lithium recovery method of the first aspect of the present disclosure by evaporating and concentrating the liquid to be treated in the concentration step before the carbonation step, the liquid amount of the liquid to be treated is reduced and the lithium concentration in the liquid to be treated is increased. I am letting you. Therefore, the recovery rate of lithium carbonate can be favorably improved in the carbonation step.
- the temperature of the liquid to be treated after evaporation and concentration is lowered, and the solubility is lowered until the inorganic salt contained in the liquid to be crystallized. I am letting you. Thereby, the concentration of the inorganic salt in the liquid to be treated can be reduced.
- the temperature of the liquid to be treated is raised in order to reduce the solubility of lithium carbonate, so that the solubility of the inorganic salt remaining in the liquid to be treated is increased, and crystallization of the inorganic salt can be suppressed. Therefore, when recovering lithium carbonate in the carbonation step, the purity of lithium carbonate can be increased.
- FIG. 1 shows the procedure of each step in the actual form of the lithium recovery method according to the first aspect of the present disclosure
- FIG. 2 shows a schematic configuration of a processing apparatus 10 for carrying out the lithium recovery method of FIG.
- the lithium recovery method of the present embodiment in addition to lithium, a treatment liquid containing a strong acid such as hydrochloric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, and an inorganic salt of an alkali metal or alkaline earth metal such as potassium or sodium. It can be preferably used for processing, and particularly preferably for recovering lithium from a waste lithium-ion battery.
- a case of recovering lithium from a waste lithium-ion battery will be described as an example.
- the lithium recovery method of the present embodiment is -An acid leaching step S1 of leaching a waste lithium-ion battery with an inorganic acid to elute lithium -A solid-liquid separation step S2 for separating an insoluble residue from the lithium-containing liquid obtained in the acid leaching step S1, -PH adjusting steps S3 and S5 in which an alkali is added to the lithium-containing solution after the solid-liquid separation step S2 to adjust the pH, -Solid-liquid separation steps S4 and S6 for separating precipitates from the lithium-containing solution after the pH adjustment steps S3 and S5, -Impurity removing step S7 in which a chelate treatment is performed on the liquid to be treated, in which the precipitate is separated from the lithium-containing liquid after the pH adjusting steps S3 and S5, -A concentration step S8 for evaporating and concentrating the liquid to be treated in which at least lithium and an inorganic salt are dissolved after the impurity removal step S7, -A crystallization step S9 in which the
- the lithium recovery method of the present embodiment further includes A dissolution step S13 in which crystals of an inorganic salt contained in the precipitate separated from the liquid to be treated in the solid-liquid separation step S10 are dissolved to generate an inorganic salt solution; An electrodialysis step S14 for separating and recovering an alkali and an inorganic acid from the inorganic salt solution by performing bipolar membrane electrodialysis on the inorganic salt solution after the dissolution step S13; Have.
- the waste lithium-ion batteries for which lithium is collected are used lithium-ion batteries whose charge capacity has decreased due to the use of the specified number of times of charging and discharging, as well as semi-finished products and product specifications that occur due to defects in the battery manufacturing process. Includes old model inventory items that are generated due to changes.
- the waste lithium-ion battery may be crushed or roasted, or may be powder obtained by crushing or roasting.
- the acid leaching step S1 by leaching the waste lithium ion battery described above with an inorganic acid, not only lithium but also metals such as aluminum, nickel, cobalt and iron are eluted.
- the inorganic acid for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or the like can be used, but in the present embodiment, sulfuric acid is used because of its low cost and easy handling.
- the method of leaching the waste lithium ion battery with an inorganic acid is not particularly limited, and a commonly used method can be used.
- the waste lithium-ion battery is immersed in an aqueous solution of an inorganic acid such as an aqueous solution of sulfuric acid in the acid leaching tank 1 and stirred for a predetermined time to obtain a lithium-containing solution in which the above-described metal such as lithium is dissolved.
- the concentration of the inorganic acid in the aqueous solution is preferably 1 mol to 5 mol/L, and the temperature of the aqueous solution is preferably 60° C. or higher.
- the insoluble residue is separated from the lithium-containing solution by, for example, filtering the lithium-containing solution obtained in the acid leaching step S1.
- the insoluble residue is mainly a carbon material, a metal material, or an organic material that does not dissolve in an inorganic acid.
- various filtration devices such as pressure filtration (filter press), vacuum filtration, centrifugal filtration, and known solid-liquid separation devices such as a decanter type centrifugal separation device can be used. ..
- alkali is added to the lithium-containing liquid (filtrate) after the solid-liquid separation step S2 to adjust the pH to a predetermined range, so that the above-mentioned metal in the lithium-containing liquid Of these, metals other than lithium are removed from the lithium-containing liquid.
- the alkali for example, sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used, but in the present embodiment, sodium hydroxide is used because of its low cost and easy handling.
- the method of adjusting the pH of the lithium-containing liquid is not particularly limited, and a commonly used method can be used. For example, while stirring the lithium-containing solution in the first pH adjusting tank 2 and the second pH adjusting tank 3, by adding an alkaline aqueous solution such as an aqueous solution of sodium hydroxide, the metal other than lithium in the lithium-containing solution is hydroxylated. Precipitate and precipitate as crystals of inorganic salts such as substances.
- the pH adjusting steps S3 and S5 are divided into a first pH adjusting step S3 and a second pH adjusting step S5.
- the pH of the lithium-containing liquid is adjusted to 4 to 7, preferably 4 to 6, and more preferably 4 to 5 by adding alkali.
- the impurity metal (eg, aluminum, iron) in the lithium-containing liquid is precipitated and precipitated as crystals of an inorganic salt such as hydroxide (eg, aluminum hydroxide, iron hydroxide).
- hydroxide eg, aluminum hydroxide, iron hydroxide
- the aqueous alkali solution added in the first pH adjusting step S3 has a dilute alkali concentration of less than 1.0 mol/L.
- the alkali concentration is excessively low, it is necessary to use a large amount of an alkaline aqueous solution for pH adjustment in the first pH adjusting step S3, and the amount of the lithium-containing liquid after the pH adjustment is also large.
- the lower limit of the alkali concentration is preferably 0.1 mol/L or more. Further, in order to effectively suppress the removal of cobalt in the lithium-containing liquid from the lithium-containing liquid in the first pH adjusting step S3, the alkali concentration of the aqueous solution of alkali added in the first pH adjusting step S3 is It is preferably 0.5 mol/L or less, more preferably 0.2 mol/L or less.
- a concentrated alkali concentration of 1.0 mol/L or more is used until the pH of the lithium-containing solution becomes a predetermined value smaller than 4.
- an aqueous solution of alkali having a pH of the lithium-containing solution is added to the lithium-containing solution.
- the pH of the lithium-containing liquid can be adjusted to 4 to 7.
- the above-mentioned predetermined value of the pH of the lithium-containing liquid can be set within the range of 2 to 3.
- the precipitate deposited and precipitated in the first pH step S3 is separated from the lithium-containing solution by filtering the lithium-containing solution in the next solid-liquid separation step S4, for example.
- copper etc. may be contained in addition to the impurity metal removed from the lithium-containing liquid in the first pH adjusting step S3.
- the precipitate is washed with a washing liquid, and the washing waste liquid after washing is supplied to the next second pH adjusting step S5 together with the lithium-containing liquid (filtrate).
- the lithium contained in the cleaning waste liquid can also be supplied to the carbonation step S11 from the second pH adjusting step S5 together with the lithium contained in the lithium-containing solution, and the lithium can be supplied by carbonation in the carbonation step S11 described later.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8 described later. Can be effectively used.
- the second pH adjusting step S5 an alkali is added to the lithium-containing liquid (filtrate) after the solid-liquid separation step S4 to adjust the pH to 7 or more, preferably 7 to 13, more preferably 7 to 11, and further preferably 8 Adjust to a range of ⁇ 10.
- valuable metals for example, cobalt and nickel
- inorganic salts such as hydroxides (for example, cobalt hydroxide and nickel hydroxide).
- the lithium-containing liquid is heated, for example, at a constant temperature of 30° C. to 80° C.
- the alkali concentration of the aqueous alkali solution added in the second pH adjusting step S5 is not particularly limited, but is preferably equal to or higher than that of the alkali aqueous solution used in the first pH adjusting step S3, It is preferable that the concentration is 0.2 mol/L or more.
- the precipitate that is deposited and precipitated in the second pH step S5 is separated from the lithium-containing solution by filtering the lithium-containing solution in the next solid-liquid separation step S6, for example.
- the valuable metal removed from the lithium-containing liquid in the second pH adjusting step S5 may also contain manganese or the like.
- the inorganic acid sulfuric acid in this embodiment
- alkali sulfuric acid in the present embodiment
- An inorganic salt sodium sulfate (Na 2 SO 4 ) in this embodiment
- the lithium-containing liquid after the pH adjusting steps S3 and S5 corresponds to the “processed liquid” of the lithium recovery method of the present disclosure. At least one of calcium, magnesium and silica may be further dissolved in the liquid to be treated.
- the precipitate is washed with a washing liquid, and the washing waste liquid after washing is supplied to the next impurity removing step S7 together with the liquid to be treated (filtrate).
- the lithium contained in the cleaning waste liquid can be supplied together with the lithium contained in the liquid to be treated from the impurity removal step S7 to the carbonation step S11, and the lithium is contained by carbonation in the carbonation step S11 described later. It can be collected at a high recovery rate.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8 described later. Can be effectively used.
- next impurity removing step S7 at least polyvalent cations such as calcium and/or magnesium contained in the liquid to be treated after the solid-liquid separation step S6 are removed.
- the heat exchange efficiency can be maintained high.
- polyvalent cations such as calcium or magnesium contained in the inorganic solution become cations of the bipolar membrane electrodialysis device 9.
- the method of removing calcium and magnesium from the liquid to be treated in the impurity removing step S7 is not particularly limited, and for example, the polyvalent cation removing device 4 can be used.
- the polyvalent cation removing device 4 is a device for removing divalent or more polyvalent cations such as calcium ions and magnesium ions.
- the polyvalent cation removing device 4 has a configuration in which a liquid to be treated can be passed through a column filled with a chelate resin. It can be illustrated.
- the chelate resin those capable of selectively capturing calcium ions and magnesium ions can be used, and examples thereof include iminodiacetic acid type and aminophosphoric acid type.
- polyvalent cation removing device 4 examples include a device to which a chelating agent is added and a device using an ion exchange resin.
- the impurities removed from the liquid to be treated in the impurity removal step S7 may include silica (silicate ions) in addition to calcium and magnesium.
- the liquid to be treated after the impurity removal step S7 is heated and concentrated by evaporation, that is, the liquid in the liquid to be treated is evaporated to concentrate the liquid to be treated.
- the liquid amount of the liquid to be processed is reduced and the lithium concentration in the liquid to be processed is increased. Therefore, the recovery rate of lithium carbonate can be improved in the carbonation step S11 described later.
- the concentration step S8 it is preferable to concentrate the liquid to be treated to a concentration such that lithium does not precipitate as crystals of a lithium salt such as lithium sulfate in the liquid to be treated after concentration.
- concentration of lithium in the liquid to be treated after concentration can be increased, and the recovery rate of lithium carbonate can be improved in the carbonation step S11 described later.
- the method of evaporating and concentrating the liquid to be treated in the concentrating step S8 is not particularly limited, and, for example, the evaporative concentrating device 5 can be used.
- the evaporative concentration device 5 is not particularly limited as long as the liquid to be treated can be concentrated by evaporation, and a known evaporative concentration device such as a heat pump type, an ejector driven type, a steam type, or a flash type can be used.
- a heat pump type evaporative concentrator is preferable. When a heat pump type evaporative concentrator is used, the energy used can be significantly suppressed. Further, energy can be further saved by concentrating the liquid to be treated under a reduced pressure atmosphere.
- the liquid to be treated after the concentration step S8 is cooled and crystallized.
- the temperature of the liquid to be treated after evaporation and concentration is lowered to decrease the solubility until the inorganic salt contained in the liquid to be crystallized, so that the inorganic salt in the liquid to be treated (main In embodiments, the concentration of sodium sulfate) can be reduced. Therefore, when recovering lithium carbonate in the carbonation step S11 described later, the purity of lithium carbonate can be increased.
- the method of cooling and crystallizing the liquid to be treated is not particularly limited, and for example, the cooling and crystallizing device 6 can be used.
- the cooling crystallization device 6 cools the supplied liquid to be treated in a crystallization tank to precipitate crystals of an intended inorganic salt.
- a known cooling crystallization device such as a cooling type crystallization device using a jacket or an internal coil, an external circulation cooling type crystallization device, or the like can be used and is not particularly limited.
- the temperature dependence of the solubility of a lithium salt such as lithium sulfate is smaller than that of an inorganic salt other than the lithium salt such as sodium sulfate. That is, the inorganic salt other than the lithium salt is precipitated as crystals by cooling to a temperature not lower than the precipitation temperature of the lithium salt at the supply concentration and lower than the precipitation temperature of the inorganic salt other than the lithium salt.
- the cooling temperature for precipitating sodium sulfate crystals is 30° C. or lower, preferably 5° C. or higher and 20° C. or lower.
- sodium sulfate is precipitated in the form of sodium sulfate decahydrate (Na 2 SO 4 ⁇ 10H 2 O).
- the liquid to be treated after the crystallization step S9 is filtered, for example, to separate a precipitate containing crystals of an inorganic salt (sodium sulfate in this embodiment) from the liquid to be treated.
- an inorganic salt sodium sulfate in this embodiment
- the liquid to be treated is mixed with carbon dioxide gas and/or a water-soluble carbonate is added to the liquid to be treated after the precipitate containing the crystals of the inorganic salt is separated.
- the lithium therein is deposited and precipitated as crystals of lithium carbonate.
- lithium in the liquid to be treated can be recovered as lithium carbonate.
- the carbonate for example, sodium carbonate, ammonium carbonate, potassium carbonate or the like can be used.
- the liquid crystal to be treated is mixed with carbon dioxide to precipitate and precipitate lithium carbonate crystals.
- the carbonation step S11 by using a material containing no alkali metal such as sodium, it is possible to prevent alkali metal other than lithium from mixing into the precipitated lithium carbonate crystals. Therefore, highly pure lithium carbonate can be recovered.
- the pH of the liquid to be treated will drop, and the amount of lithium carbonate deposited may decrease. Therefore, it is preferable to stop mixing the carbon dioxide gas before the pH of the liquid to be treated becomes 7 or less. Further, the pH may not be lowered by adding an alkali to the liquid to be treated. At that time, it is preferable to maintain the pH at 9 or more by adding an alkali.
- the alkali to be added sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
- the method of mixing carbon dioxide gas with the liquid to be treated is not particularly limited, and a commonly used method can be used.
- carbon dioxide gas can be uniformly mixed with the liquid to be treated by supplying carbon dioxide gas into the liquid to be treated in the form of fine bubbles through a nozzle while stirring the liquid to be treated in the carbonation tank 7.
- the lithium in the liquid to be treated and carbon dioxide can be reacted efficiently.
- the liquid to be treated may be sprayed in an atmosphere of carbon dioxide to react with the carbon dioxide.
- the solubility of lithium carbonate decreases as the temperature increases, it is preferable to heat the liquid to be treated in the carbonation step S11. As a result, the solubility of lithium carbonate produced by the reaction between lithium in the liquid to be treated and carbon dioxide gas decreases, so that the amount of precipitated lithium carbonate crystals can be increased. Further, by heating the liquid to be treated, the solubility of the inorganic salt (sodium sulfate in the present embodiment) remaining in the liquid to be treated is increased, and crystallization of the inorganic salt can be suppressed. Therefore, the precipitation of the inorganic salt crystals together with the lithium carbonate crystals can be suppressed, so that the purity of the lithium carbonate can be increased when the lithium carbonate is recovered in the carbonation step.
- the liquid containing lithium carbonate crystals is separated from the lithium-containing liquid by filtering the liquid to be treated after the carbonation step S11, for example.
- the precipitate separated from the lithium-containing liquid is washed with water or the like to remove impurities and increase the purity of lithium carbonate.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8. It is available.
- the liquid to be treated (filtrate) after the solid-liquid separation step S12 is not particularly limited, but since it contains impurities, part of it is discharged as blow liquid, but part of it is re-introduced into the system. It is preferable to circulate. As a result, lithium remaining in the liquid to be treated can be recovered, so that lithium can be recovered at a high recovery rate.
- the cleaning waste liquid after cleaning the precipitate containing the lithium carbonate crystals described above is also circulated again in the system together with the liquid to be treated after the solid-liquid separation step S12.
- the liquid to be treated after the solid-liquid separation step S12 When the liquid to be treated after the solid-liquid separation step S12 is circulated again in the system, it may be supplied to the evaporative concentration device 5 to be evaporated and concentrated in the concentration step S8, but preferably the first pH adjusting tank 2 and / Or supply to the second pH adjusting tank 3. Since the liquid to be treated after the solid-liquid separation step S12 is alkaline, it can be used as an alkali added in the pH adjusting steps S3 and S5. Furthermore, when the liquid to be treated after the solid-liquid separation step S12 contains a large amount of carbonate ions (CO 3 2 ⁇ ), the heat transfer of the heat exchanger of the evaporative concentration apparatus 5 when evaporating and concentrating in the concentration step S8. Crystals of carbonate are deposited on the surface.
- CO 3 2 ⁇ carbonate ions
- the lithium-containing liquid after the solid-liquid separation steps S2 and S4 is acidic, the liquid to be treated after the solid-liquid separation step S12 is neutralized with the lithium-containing liquid to use carbonate ions as carbon dioxide gas. By removing from the liquid, it is possible to prevent precipitation of carbonate crystals on the heat transfer surface of the heat exchanger of the evaporative concentration device 5 in the concentration step S8.
- the crystals of the inorganic salt (sodium sulfate in this embodiment) contained in the precipitate separated from the liquid to be treated in the solid-liquid separation step S10 (cooling crystallization device 6) are dissolved in the dissolution step S13 (dissolution tank 8). Is supplied to.
- the dissolving step S13 the inorganic salt crystals are dissolved in the dissolving tank 8 to have a desired concentration using, for example, water to form an inorganic salt solution.
- the temperature at this time is not particularly limited and may be a temperature at which the crystals of the inorganic salt can be dissolved.
- the water used for dissolving the inorganic salt is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8. It can be effectively used.
- the generated inorganic salt solution is supplied to the bipolar membrane electrodialysis device 9.
- the bipolar membrane electrodialysis device 9 separates and recovers the alkali and the inorganic acid from the inorganic salt solution after the dissolution step S13.
- the bipolar membrane electrodialysis device 9 for example, as shown in FIG. 3, a cell 90 including an anion exchange membrane 91, a cation exchange membrane 92, and two bipolar membranes 93, 94 between an anode 95 and a cathode 96.
- a three-chamber cell type bipolar membrane electrodialysis device in which a plurality of cells are laminated can be suitably used.
- the bipolar membrane electrodialysis device 9 of the present embodiment forms a desalting chamber R1 with the anion exchange membrane 91 and the cation exchange membrane 92, and the acid chamber R2 is provided between the anion exchange membrane 91 and one bipolar membrane 93. And an alkali chamber R3 is formed between the cation exchange membrane 92 and the other bipolar membrane 94.
- An anode chamber R4 and a cathode chamber R5 are formed outside each of the bipolar films 93, 94.
- An anode 95 is arranged in the anode chamber R4 and a cathode 96 is arranged in the cathode chamber R5.
- an inorganic salt solution is introduced into the desalting chamber R1, and pure water is introduced into each of the acid chamber R2 and the alkaline chamber R3. Accordingly, when the inorganic salt solution contains, for example, sodium sulfate, in the desalting chamber R1, sodium ions (Na + ) pass through the cation exchange membrane 92, and sulfate ions (SO 4 2 ⁇ ) It passes through the anion exchange membrane 91.
- the supplied pure water is dissociated into hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) in the bipolar films 93 and 94, and hydrogen ions ( H + ) combines with sulfate ions (SO 4 2 ⁇ ) to generate sulfuric acid (H 2 SO 4 ), and in the alkaline chamber R3, hydroxide ions (OH ⁇ ) combine with sodium ions (Na + ). Sodium hydroxide (NaOH) is produced.
- sulfuric acid H 2 SO 4
- sodium hydroxide NaOH
- the pure water introduced into the acid chamber R2 and the alkaline chamber R3 may be condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8.
- the demineralized diluted inorganic salt solution (desalination solution) discharged from the desalination chamber R1 is not particularly limited, it contains a small amount of lithium, so that the concentration step S8 (evaporation concentration device 5 It is preferable to supply to () and concentrate again, and then to carbonate in the carbonation step S11. Thereby, lithium can be recovered at a high recovery rate.
- the desalted solution is supplied to the concentration step S8 in the present embodiment, when calcium and/or magnesium remains in the desalted solution, the desalted solution is supplied to the impurity removal step S7. Good. As a result, calcium and magnesium can be supplied to the concentration step S8 after being removed from the desalted solution. Further, the desalted solution may be supplied to the first pH adjusting step S3. Thereby, when cobalt remains in the desalination solution, the recovery rate of cobalt can be increased.
- the inorganic acid (sulfuric acid in the present embodiment) recovered from the acid chamber R2 is not particularly limited, but is supplied to the acid leaching tank 1 and the inorganic acid leaching the waste lithium ion battery in the acid leaching step S1. It is preferably reused as an acid. Further, it is preferable to supply the polyvalent cation removing device 4 and reuse it as a regenerating liquid of the chelate resin or the ion exchange resin used in the impurity treatment step S7.
- the alkali (sodium hydroxide in the present embodiment) recovered from the alkali chamber R3 is supplied to the pH adjusting tanks 2 and 3, but is not particularly limited, and the lithium-containing liquid is used in the pH adjusting steps S3 and S5. It is preferable to reuse it as an alkali for pH adjustment. Further, it is preferable to supply the polyvalent cation removing device 4 and reuse it as a regenerating liquid of the chelate resin or the ion exchange resin used in the impurity treatment step S7.
- the lithium recovery method of the present embodiment described above by evaporating and concentrating the liquid to be treated in the concentrating step S8 before the carbonation step S11, the amount of the liquid to be treated is reduced and the lithium concentration in the liquid to be treated is reduced. Is increasing. Therefore, the recovery rate of the lithium carbonate crystals in the carbonation step S11 can be favorably improved.
- the temperature of the liquid to be treated after evaporation and concentration is lowered and the inorganic salt (in this embodiment, sulfuric acid) contained in the liquid to be treated is reduced. Since the solubility is lowered until the sodium) crystallizes, the concentration of the inorganic salt in the liquid to be treated can be reduced.
- the carbonation step S11 the temperature of the liquid to be treated is raised for the purpose of lowering the solubility of lithium carbonate, so that the solubility of the inorganic salt remaining in the liquid to be treated is increased and crystallization of the inorganic salt can be suppressed. .. Therefore, when recovering lithium carbonate in the carbonation step S11, the purity of lithium carbonate can be increased.
- the lithium remaining in the liquid to be treated is circulated in the system without discarding the liquid to be treated after the crystals of lithium carbonate are recovered in the carbonation step S11. Collected. Therefore, lithium can be recovered at a high recovery rate.
- the crystal of the inorganic salt (sodium sulfate in the present embodiment) contained in the precipitate separated from the liquid to be treated in the solid-liquid separation step S10 is dissolved in the dissolution step S13.
- the bipolar membrane electrodialysis is performed in the electrodialysis step S14 to recover the inorganic acid and the alkali from the inorganic salt solution, and the diluted inorganic salt solution after desalting is evaporated in the concentration step S8.
- concentration lithium contained in the dilute inorganic salt solution is recovered in the carbonation step S11. Therefore, lithium can be recovered at a high recovery rate.
- the inorganic acids and alkalis recovered in the electrodialysis step S14 are circulated and reused in the acid leaching step S1, the pH adjusting steps S3, S5, and the impurity removing step S7, so that each step S1, S3, S5, S7 is performed. It is possible to reduce the amount of inorganic acid or alkali used in.
- polyvalent cations such as calcium and magnesium contained in the liquid to be treated are removed in the impurity removing step S7.
- the amount of impurities in the liquid to be treated from which the precipitate has been separated in the solid-liquid separation process S12 after the carbonation process S11 is reduced, and most of the liquid to be processed after the solid-liquid separation process S12 is returned to the system. It can circulate. Therefore, more lithium remaining in the liquid to be treated after the solid-liquid separation step S12 can be recovered, so that lithium can be recovered at a high recovery rate.
- the condensed water generated in the concentration step S8 is used for various treatments, so that the condensed water can be effectively used. Furthermore, by washing the crystals obtained in the solid-liquid separation steps S4, S6, S10, and S12 with condensed water, the recovery rate of each crystal can be favorably improved.
- the lithium recovery method of the first aspect is not limited to the embodiments of FIGS. 1 and 2, and does not depart from the gist of the present disclosure. Various changes are possible in.
- the impurity removal step S7 for removing at least calcium and/or magnesium is performed on the liquid to be treated before the concentration step S8, but instead of or in addition to this, the impurity removal step S7 is performed. Then, the inorganic salt solution before the electrodialysis step S14 may be similarly subjected to the impurity removing step of removing at least calcium and/or magnesium.
- the alkali recovered in the electrodialysis step S14 is supplied to the first pH adjusting step S3 and the second pH adjusting step S5, but it is configured to be supplied to only one of them. May be.
- the pH adjusting steps S3 and S5 include the first pH adjusting step S3 and the second pH adjusting step S5, but three pH adjusting steps S3 and S5 are included depending on the components contained in the waste lithium ion battery. It may be configured to include the above steps, or may be configured to include only one step.
- the inorganic salt (sodium sulfate in this embodiment) contained in the inorganic salt solution is recrystallized.
- the method of recrystallizing the inorganic salt contained in the inorganic salt solution is not particularly limited, and for example, cooling crystallization by the cooling crystallization device 10 similar to the cooling crystallization device 6 of the crystallization step S9 described above is used. be able to.
- the inorganic salt solution may be concentrated in advance to a concentration of the inorganic salt suitable for crystallization of the inorganic salt.
- the cooling crystallization device 10 is used in the recrystallization step S13-1, but any crystallization method by which highly pure crystals are deposited may be used, and for example, an evaporation crystallization device may be used. it can.
- the inorganic salt crystals are separated from the aqueous solution containing the inorganic salt crystals, and the recrystallized inorganic salt crystals are collected.
- various filtration devices such as pressure filtration (filter press), vacuum filtration, centrifugal filtration, and known solid-liquid separation devices such as a decanter type centrifugal separation device can be used. ..
- the crystals of the recovered inorganic salt are dissolved in the re-dissolution tank 11 using, for example, water so as to have a desired concentration, and an inorganic salt solution is regenerated.
- the temperature at this time is not particularly limited and may be a temperature at which the crystals of the inorganic salt can be dissolved.
- the water used for dissolving the inorganic salt is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8. It can be effectively used.
- the regenerated inorganic salt solution is supplied to the bipolar membrane electrodialysis device 9.
- the impurities removed from the inorganic salt solution in the recrystallization step S13-1 to the re-dissolution step S13-3 may contain calcium and/or magnesium in addition to silica.
- silica contained in the inorganic salt solution is removed before the electrodialysis step S14.
- the amount of impurities in the inorganic solution electrodialyzed in the electrodialysis step S14 is also reduced, so that the performance of the bipolar membrane can be maintained high.
- the dilute inorganic salt solution (desalted solution) after the electrodialysis step S14 is supplied to the evaporative concentration apparatus 5 and evaporated and concentrated again in the concentration step S8, the amount of impurities in the desalted solution is reduced. In the concentration step S8, it is possible to suppress the generation and adhesion of scale on the heat transfer surface of the heat exchanger of the evaporative concentration device 5.
- the embodiment of FIGS. 1 and 2 may further include a roasting step S0 of roasting the waste lithium-ion battery before the acid leaching step S1.
- the method of roasting the waste lithium ion battery is not particularly limited, and a known roasting device 12 can be used.
- the exhaust gas generated in the roasting device 12 (roasting step S0) is supplied to the carbonation tank 7, and the exhaust gas is mixed with the liquid to be treated as carbon dioxide in the carbonation step S11. doing. As a result, the amount of carbon dioxide gas used in the carbonation step S11 can be reduced. It is needless to say that the roasting step S0 of roasting the waste lithium-ion battery before the acid leaching step S1 can also be executed in the embodiments of FIGS. 4 and 5.
- a second embodiment of the lithium recovery method of the present disclosure is a concentration step of heating and evaporating and concentrating a liquid to be treated in which lithium and an inorganic salt are at least dissolved at a low pressure lower than atmospheric pressure.
- a carbonation step of mixing carbon dioxide gas and/or adding a water-soluble carbonate to the liquid to be treated after the concentration step, and a precipitate containing lithium carbonate crystals deposited by the carbonation step to be treated liquid
- the temperature of the liquid to be treated is equal to or higher than the evaporation temperature of the liquid to be treated in the concentration step.
- the liquid to be treated is evaporated and concentrated under a pressure of 10 kPa or more and 70 kPa or less in the concentration step.
- an inorganic salt contained in the liquid to be treated is precipitated as crystals and separated from the liquid to be treated after the concentration step.
- an acid leaching step of leaching a waste lithium ion battery with an inorganic acid to elute lithium, and an acid leaching step are performed before the concentration step.
- a pH adjusting step of adjusting the pH by adding an alkali to the obtained lithium-containing liquid is further included, and the liquid to be treated is generated by separating the precipitate deposited by the pH adjusting step from the lithium-containing liquid. It is preferable.
- the alkali recovered in the electrodialysis step is reused as an alkali added in the pH adjustment step, and the inorganic acid recovered in the electrodialysis step is converted into the acid. It is preferably reused as an inorganic acid used in the leaching step.
- the lithium recovery method of the second aspect of the present disclosure by evaporating and concentrating the liquid to be treated in the concentration step before the carbonation step, the liquid amount of the liquid to be treated is reduced and the lithium concentration in the liquid to be treated is increased. I am letting you. Therefore, the recovery rate of lithium carbonate can be favorably improved in the carbonation step.
- the concentration step by evaporating and concentrating the liquid to be treated under low pressure, the temperature of the liquid to be treated after evaporative concentration can be lowered as compared with evaporating and concentrating the liquid to be treated under atmospheric pressure. Therefore, there is a large room for raising the temperature of the liquid to be treated in the subsequent carbonation step, and the evaporation temperature of the liquid to be treated (boiling point of water contained in the liquid to be treated) is lowered under low pressure. Energy required for evaporative concentration can be suppressed to a low level to save energy.
- the inorganic salt contained in the liquid to be treated is crystallized, so that the temperature of the liquid to be treated during carbonation is higher than the evaporation temperature of the liquid to be treated in the concentration step.
- the solubility of the inorganic salt remaining in the liquid to be treated is increased, and crystallization of the inorganic salt can be suppressed during carbonation.
- the solubility of lithium carbonate decreases, and the amount of lithium carbonate crystals recovered can be increased. Therefore, highly pure lithium carbonate can be obtained with high efficiency.
- FIG. 8 shows the procedure of each step in the embodiment of the lithium recovery method of the second aspect of the present disclosure
- FIG. 9 shows a schematic configuration of the processing apparatus 10 for carrying out the lithium recovery method of FIG.
- the lithium recovery method of the present embodiment in addition to lithium, a treatment liquid containing a strong acid such as hydrochloric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, and an inorganic salt of an alkali metal or alkaline earth metal such as potassium or sodium. It can be preferably used for processing, and particularly preferably for recovering lithium from a waste lithium-ion battery.
- a case of recovering lithium from a waste lithium-ion battery will be described as an example.
- the lithium recovery method of the present embodiment is -An acid leaching step S1 of leaching a waste lithium-ion battery with an inorganic acid to elute lithium -A solid-liquid separation step S2 for separating an insoluble residue from the lithium-containing liquid obtained in the acid leaching step S1, -PH adjusting steps S3 and S5 in which an alkali is added to the lithium-containing solution after the solid-liquid separation step S2 to adjust the pH, -Solid-liquid separation steps S4 and S6 for separating precipitates from the lithium-containing solution after the pH adjustment steps S3 and S5, -Impurity removing step S7 in which a chelate treatment is performed on the liquid to be treated, in which the precipitate is separated from the lithium-containing liquid after the pH adjusting steps S3 and S5, -A concentration step S8 for evaporating and concentrating the liquid to be treated in which at least lithium and an inorganic salt are dissolved after the impurity removal step S7, -A solid-liquid separation step S9 for
- the lithium recovery method of the present embodiment further includes -A dissolution step S12 in which crystals of an inorganic salt contained in the precipitate separated from the liquid to be treated in the solid-liquid separation step S9 are dissolved to generate an inorganic salt solution; An electrodialysis step S13 for separating and recovering an alkali and an inorganic acid from the inorganic salt solution by performing a bipolar membrane electrodialysis on the inorganic salt solution after the dissolution step S12, Have.
- the waste lithium-ion battery for which lithium is to be collected is the same as that in the above-described first mode.
- the acid leaching step S1 by leaching the waste lithium ion battery described above with an inorganic acid, not only lithium but also metals such as aluminum, nickel, cobalt and iron are eluted.
- the inorganic acid for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or the like can be used, but hydrochloric acid is used in the present embodiment.
- the method of leaching the waste lithium ion battery with an inorganic acid is not particularly limited, and a commonly used method can be used.
- the waste lithium-ion battery is immersed in an aqueous solution of an inorganic acid such as an aqueous solution of hydrochloric acid in the acid leaching tank 1 and stirred for a predetermined time to obtain a lithium-containing solution in which the above-described metal such as lithium is dissolved.
- the insoluble residue is separated from the lithium-containing solution by, for example, filtering the lithium-containing solution obtained in the acid leaching step S1.
- the insoluble residue is mainly a carbon material, a metal material, or an organic material that does not dissolve in an inorganic acid.
- various filtration devices such as pressure filtration (filter press), vacuum filtration, centrifugal filtration, and known solid-liquid separation devices such as a decanter type centrifugal separation device can be used. ..
- alkali is added to the lithium-containing liquid (filtrate) after the solid-liquid separation step S2 to adjust the pH to a predetermined range, so that the above-mentioned metal in the lithium-containing liquid Of these, metals other than lithium are removed from the lithium-containing liquid.
- the alkali for example, sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used, but in the present embodiment, sodium hydroxide is used because of its low cost and easy handling.
- the method of adjusting the pH of the lithium-containing liquid is not particularly limited, and a commonly used method can be used. For example, while stirring the lithium-containing solution in the first pH adjusting tank 2 and the second pH adjusting tank 3, by adding an alkaline aqueous solution such as an aqueous solution of sodium hydroxide, the metal other than lithium in the lithium-containing solution is hydroxylated. Precipitate and precipitate as crystals of inorganic salts such as substances.
- the pH adjusting steps S3 and S5 are divided into a first pH adjusting step S3 and a second pH adjusting step S5.
- the pH of the lithium-containing liquid is adjusted to 4 to 7, preferably 4 to 6, and more preferably 4 to 5 by adding alkali.
- the impurity metal (eg, aluminum, iron) in the lithium-containing liquid is precipitated and precipitated as crystals of an inorganic salt such as hydroxide (eg, aluminum hydroxide, iron hydroxide).
- hydroxide eg, aluminum hydroxide, iron hydroxide
- the aqueous alkali solution added in the first pH adjusting step S3 has a dilute alkali concentration of less than 1.0 mol/L.
- the alkali concentration is excessively low, it is necessary to use a large amount of an alkaline aqueous solution for pH adjustment in the first pH adjusting step S3, and the amount of the lithium-containing liquid after the pH adjustment is also large.
- the lower limit of the alkali concentration is preferably 0.1 mol/L or more. Further, in order to effectively suppress the removal of cobalt in the lithium-containing liquid from the lithium-containing liquid in the first pH adjusting step S3, the alkali concentration of the aqueous solution of alkali added in the first pH adjusting step S3 is It is preferably 0.5 mol/L or less, more preferably 0.2 mol/L or less.
- a concentrated alkali concentration of 1.0 mol/L or more is used until the pH of the lithium-containing solution becomes a predetermined value smaller than 4.
- an aqueous solution of alkali having a pH of the lithium-containing solution is added to the lithium-containing solution.
- the pH of the lithium-containing liquid can be adjusted to 4 to 7.
- the above-mentioned predetermined value of the pH of the lithium-containing liquid can be set within the range of 2 to 3.
- the precipitate deposited and precipitated in the first pH step S3 is separated from the lithium-containing solution by filtering the lithium-containing solution in the next solid-liquid separation step S4, for example.
- copper etc. may be contained in addition to the impurity metal removed from the lithium-containing liquid in the first pH adjusting step S3.
- the precipitate is washed with a washing liquid, and the washing waste liquid after washing is supplied to the next second pH adjusting step S5 together with the lithium-containing liquid (filtrate).
- the lithium contained in the cleaning waste liquid can be supplied to the carbonation step S10 from the second pH adjusting step S5 together with the lithium contained in the lithium-containing solution.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8 described later. Can be effectively used.
- the second pH adjusting step S5 alkali is added to the lithium-containing liquid after the solid-liquid separation step S4 to adjust the pH to 7 or more, preferably 7 to 13, more preferably 7 to 11, and further preferably 8 to 10. Adjust to.
- valuable metals for example, cobalt and nickel
- inorganic salts such as hydroxides (for example, cobalt hydroxide and nickel hydroxide).
- the lithium-containing liquid is heated, for example, at a constant temperature of 30° C. to 80° C.
- the alkali concentration of the aqueous alkali solution added in the second pH adjusting step S5 is not particularly limited, but is preferably equal to or higher than that of the alkali aqueous solution used in the first pH adjusting step S3, It is preferable that the concentration is 0.2 mol/L or more.
- the precipitate that is deposited and precipitated in the second pH step S5 is separated from the lithium-containing solution by filtering the lithium-containing solution in the next solid-liquid separation step S6, for example.
- the valuable metal removed from the lithium-containing liquid in the second pH adjusting step S5 may also contain manganese or the like.
- the inorganic acid hydroochloric acid in the present embodiment
- alkali in the present embodiment
- An inorganic salt sodium chloride (NaCl) in this embodiment
- the lithium-containing liquid after the pH adjusting steps S3 and S5 corresponds to the “processed liquid” of the lithium recovery method of the present disclosure. At least one of calcium, magnesium and silica may be further dissolved in the liquid to be treated.
- the precipitate is washed with a washing liquid, and the washing waste liquid after washing is supplied to the next impurity removing step S8 together with the liquid to be treated (filtrate).
- the lithium contained in the cleaning waste liquid can be supplied together with the lithium contained in the liquid to be treated from the impurity removal step S8 to the carbonation step S10, and the lithium is contained by carbonation in the carbonation step S10 described later. It can be collected at a high recovery rate.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8 described later. Can be effectively used.
- next impurity removing step S7 at least polyvalent cations such as calcium and/or magnesium contained in the liquid to be treated after the solid-liquid separation step S6 are removed.
- the heat exchange efficiency can be maintained high.
- the liquid to be treated contains calcium, magnesium or the like
- polyvalent cations such as calcium or magnesium contained in the inorganic solution become cations of the bipolar membrane electrodialysis device 9.
- the method of removing calcium and magnesium from the liquid to be treated in the impurity removing step S7 is not particularly limited, and for example, the polyvalent cation removing device 4 can be used.
- the polyvalent cation removing device 4 is a device that removes divalent or more polyvalent cations such as calcium ions and magnesium ions.
- the polyvalent cation removing device 4 is provided with an ion exchange resin inside, and the liquid to be treated is an ion exchange resin. As an example, it is possible to bring them into contact with each other to adsorb calcium ions or magnesium ions.
- Other examples of the polyvalent cation removing device 4 include a device in which a liquid to be treated can be passed through a column filled with a chelate resin.
- the chelate resin those capable of selectively capturing calcium ions and magnesium ions can be used, and examples thereof include iminodiacetic acid type and aminophosphoric acid type.
- the polyvalent cation removing device 4 may include a device to which a chelating agent is added.
- the impurities removed from the liquid to be treated in the impurity removal step S7 may include silica (silicate ions) in addition to calcium and magnesium.
- the liquid to be treated after the impurity removal step S7 is heated and concentrated by evaporation, that is, the liquid in the liquid to be treated is evaporated to concentrate the liquid to be treated.
- the liquid amount of the liquid to be processed is reduced and the lithium concentration in the liquid to be processed is increased. Therefore, the recovery rate of lithium carbonate can be improved in the carbonation step S10 described below.
- the concentration step S8 it is preferable to evaporate and concentrate the liquid to be treated to a concentration at which lithium does not precipitate as crystals of a lithium salt such as lithium chloride in the liquid to be treated after concentration.
- a lithium salt such as lithium chloride
- the concentration of the inorganic salt in the liquid to be treated may be crystallized due to the concentration of the inorganic salt in the liquid to be treated being evaporated and concentrated.
- the inorganic salt contained in the liquid to be treated may or may not be precipitated as crystals in the concentration step S8.
- the inorganic salt contained in the liquid to be treated is precipitated as crystals in the concentration step S8, and the precipitate is separated from the liquid to be treated in the next solid-liquid separation step S9.
- the method of evaporating and concentrating the liquid to be treated in the concentrating step S8 is not particularly limited, and, for example, the evaporative concentrating device 5 can be used.
- the evaporative concentration device 5 is not particularly limited as long as the liquid to be treated can be concentrated by evaporation, and a known evaporative concentration device such as a heat pump type, an ejector driven type, a steam type, or a flash type can be used.
- a heat pump type evaporative concentrator is preferable. When a heat pump type evaporative concentrator is used, the energy used can be significantly suppressed.
- the evaporative concentration apparatus 5 is maintained at a low pressure inside by connecting a vacuum pump (not shown), and in the concentration step S8, the liquid to be treated is heated at a low pressure lower than atmospheric pressure to evaporate and concentrate. doing.
- the temperature of the liquid to be treated rises, but under low pressure the evaporation temperature of the liquid to be treated (boiling point of water contained in the liquid to be treated) is lower than under atmospheric pressure, so evaporation at low pressure
- the temperature of the liquid to be treated after evaporating and concentrating becomes correspondingly lower. Therefore, a large room for raising the temperature of the liquid to be treated can be secured in the carbonation step S10 described later.
- the evaporation temperature of the liquid to be treated decreases under low pressure, the energy required for evaporating and concentrating the liquid to be treated can be kept low to save energy.
- the pressure inside the evaporative concentration apparatus 5, that is, the atmospheric pressure when evaporating and concentrating the liquid to be treated is not particularly limited, but is preferably 10 kPa or more and 70 kPa or less, and 15 kPa or more and 50 kPa or less. Is more preferable.
- the evaporation temperature of the liquid to be treated is preferably 45° C. or higher and 95° C. or lower, and more preferably 55° C. or higher and 80° C. or lower in view of the relationship with the pressure (saturated water vapor pressure curve).
- the temperature of the liquid to be treated after evaporation and concentration can be set to a suitable low temperature that does not excessively decrease. Therefore, when raising the temperature of the liquid to be treated in the carbonation step S10 described later. The energy required for it can be kept low. Further, since the evaporative concentration device 5 does not need to have a very high pressure resistance, the manufacturing cost of the device can be kept low. On the other hand, when the pressure is 70 kPa or less, the temperature of the liquid to be treated after evaporation and concentration can be set to a suitable low temperature that does not rise excessively. There is enough room to raise. Further, the energy required for evaporative concentration of the liquid to be treated does not become too large, and energy saving can be effectively achieved.
- a temperature sensor is provided in a liquid pool of the liquid to be treated at the bottom of the evaporative concentration device 5 or in a supply path of the liquid to be treated between the evaporative concentration device 5 and a carbonation tank 7 described later.
- the evaporation temperature of the liquid to be treated (the temperature of the liquid to be treated after evaporative concentration) is monitored by the temperature sensor.
- a pressure sensor is provided in the space above the evaporative concentration apparatus 5, and the pressure inside the evaporative concentration apparatus 5 (atmospheric pressure when evaporating and concentrating the liquid to be treated) is a pressure sensor. Being monitored by.
- the precipitate containing the crystals of the inorganic salt is separated from the liquid to be processed after the concentration process S8 by filtering, for example.
- the liquid to be treated is mixed with carbon dioxide gas and/or a water-soluble carbonate is added to the liquid to be treated after the precipitate containing the crystals of the inorganic salt is separated.
- the lithium therein is deposited and precipitated as crystals of lithium carbonate.
- lithium in the liquid to be treated can be recovered as lithium carbonate.
- the carbonate for example, sodium carbonate, ammonium carbonate, potassium carbonate or the like can be used.
- this carbonation step S10 it is preferable to mix carbon dioxide gas into the liquid to be treated to precipitate and precipitate lithium carbonate crystals.
- a material containing no alkali metal such as sodium it is possible to prevent alkali metal other than lithium from mixing into the precipitated lithium carbonate crystals. Therefore, highly pure lithium carbonate can be recovered.
- the pH of the liquid to be treated will drop, and the amount of lithium carbonate deposited may decrease. Therefore, it is preferable to stop mixing the carbon dioxide gas before the pH of the liquid to be treated becomes 7 or less. Further, the pH may not be lowered by adding an alkali to the liquid to be treated. At that time, it is preferable to maintain the pH at 9 or more by adding an alkali.
- the alkali to be added sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
- the method of mixing carbon dioxide with the liquid to be treated is not particularly limited, and a commonly used method can be used.
- carbon dioxide gas can be uniformly mixed with the liquid to be treated by supplying carbon dioxide gas into the liquid to be treated in the form of fine bubbles through a nozzle while stirring the liquid to be treated in the carbonation tank 7.
- the lithium in the liquid to be treated and carbon dioxide can be reacted efficiently.
- the liquid to be treated may be sprayed in an atmosphere of carbon dioxide to react with the carbon dioxide.
- the temperature of the liquid to be treated is set to be equal to or higher than the evaporation temperature of the liquid to be treated in the concentration step S8. If the temperature of the liquid to be treated is low during carbonation, the inorganic salt (sodium chloride in this embodiment) contained in the liquid to be treated may be crystallized. Therefore, by heating the liquid to be treated in the carbonation step S10 and raising the temperature of the liquid to be treated at the time of carbonation above the evaporation temperature of the liquid to be treated, the inorganic substances remaining in the liquid to be treated during carbonation are increased. The solubility of the salt is increased, and crystallization of the inorganic salt can be suppressed. Therefore, when recovering lithium carbonate in the carbonation step S10, the purity of lithium carbonate can be increased.
- the inorganic salt sodium chloride in this embodiment
- the temperature of the liquid to be treated during carbonation is not particularly limited as long as it is equal to or higher than the vaporization temperature of the liquid to be treated, but is preferably higher than the vaporization temperature of the liquid to be treated, and preferably lower than 100°C.
- the method of heating the liquid to be treated in the carbonation step S10 is not particularly limited, and a method of heating the liquid to be treated in the carbonation tank 7 using a known heating means such as a heater is used. You can The liquid to be treated may be heated in advance by using a preheating means such as a heat exchanger before supplying the liquid to be treated to the carbonation tank 7.
- the solubility of lithium carbonate decreases as the temperature of the liquid to be treated increases. Therefore, the temperature of the liquid to be treated rises in the carbonation step S10, so that the solubility of lithium carbonate produced by the reaction between lithium in the liquid to be treated and carbon dioxide gas decreases. Therefore, the amount of lithium carbonate crystals deposited can be increased.
- the amount of lithium carbonate crystals recovered can be increased and the amount of inorganic salt crystals precipitated can be suppressed, so that highly pure lithium carbonate can be obtained with high efficiency.
- the liquid to be treated after the carbonation step S10 is filtered, for example, to separate the precipitate containing lithium carbonate crystals from the lithium-containing liquid.
- the precipitate separated from the lithium-containing liquid is washed with water or the like to remove impurities and improve the purity of lithium carbonate.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8. It is available.
- the liquid to be treated (filtrate) after the solid-liquid separation step S11 is not particularly limited, but since it contains impurities, part of it is discharged as blow liquid, but part of it is re-introduced into the system. It is preferable to circulate. As a result, lithium remaining in the liquid to be treated can be recovered, so that lithium can be recovered at a high recovery rate.
- the cleaning waste liquid after cleaning the precipitate containing the lithium carbonate crystals is also circulated in the system together with the liquid to be treated after the solid-liquid separation step S11.
- the liquid to be treated after the solid-liquid separation step S11 When the liquid to be treated after the solid-liquid separation step S11 is circulated in the system again, it may be supplied to the evaporative concentration apparatus 5 to be evaporated and concentrated in the concentration step S8, but preferably the first pH adjusting tank 2 and / Or supply to the second pH adjusting tank 3. Since the liquid to be treated after the solid-liquid separation step S11 is alkaline, it can be used as an alkali added in the pH adjusting steps S3 and S5. Furthermore, when the liquid to be treated after the solid-liquid separation step S11 contains a large amount of carbonate ions (CO 3 2 ⁇ ), the heat transfer of the heat exchanger of the evaporative concentration apparatus 5 when evaporating and concentrating in the concentration step S8. Crystals of carbonate are deposited on the surface.
- CO 3 2 ⁇ carbonate ions
- the lithium-containing liquid after the solid-liquid separation steps S2 and S4 is acidic, the liquid to be treated after the solid-liquid separation step S11 is neutralized with the lithium-containing liquid to use carbonate ions as carbon dioxide gas. By removing from the liquid, it is possible to prevent precipitation of carbonate crystals on the heat transfer surface of the heat exchanger of the evaporative concentration device 5 in the concentration step S8.
- the crystals of the inorganic salt (sodium chloride in this embodiment) contained in the precipitate generated in the concentration step S8 (evaporative concentration device 5) and separated from the liquid to be treated in the solid-liquid separation step S9 are dissolved in the dissolution step. It is supplied to S12 (melting tank 8).
- the inorganic salt crystals are dissolved in the dissolving tank 8 to have a desired concentration using, for example, water to produce an inorganic salt solution.
- the temperature at this time is not particularly limited and may be a temperature at which the crystals of the inorganic salt can be dissolved.
- the water used for dissolving the inorganic salt is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8. It can be effectively used.
- the generated inorganic salt solution is supplied to the bipolar membrane electrodialysis device 9.
- the bipolar membrane electrodialysis device 9 separates and recovers the alkali and the inorganic acid from the inorganic salt solution after the dissolution step S12.
- a cell 90 including an anion exchange membrane 91, a cation exchange membrane 92, and two bipolar membranes 93, 94 between an anode 95 and a cathode 96.
- a three-chamber cell type bipolar membrane electrodialysis device in which a plurality of cells are laminated can be suitably used.
- the bipolar membrane electrodialysis device 9 of the present embodiment forms a desalting chamber R1 with the anion exchange membrane 91 and the cation exchange membrane 92, and the acid chamber R2 is provided between the anion exchange membrane 91 and one bipolar membrane 93. And an alkali chamber R3 is formed between the cation exchange membrane 92 and the other bipolar membrane 94.
- An anode chamber R4 and a cathode chamber R5 are formed outside each of the bipolar films 93, 94.
- An anode 95 is arranged in the anode chamber R4 and a cathode 96 is arranged in the cathode chamber R5.
- an inorganic salt solution is introduced into the desalting chamber R1, and pure water is introduced into each of the acid chamber R2 and the alkaline chamber R3.
- the inorganic salt solution contains, for example, sodium chloride
- sodium ions (Na + ) pass through the cation exchange membrane 92 and chloride ions (Cl ⁇ ) remain in the anion chamber in the desalting chamber R1. It passes through the ion exchange membrane 91.
- the supplied pure water is dissociated into hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) in the bipolar films 93 and 94, and hydrogen ions ( H + ) combines with chloride ions (Cl ⁇ ) to generate hydrochloric acid (HCl), and in the alkaline chamber R3, hydroxide ions (OH ⁇ ) combine with sodium ions (Na + ) to form sodium hydroxide (HCl). NaOH) is produced.
- hydrochloric acid HCl
- sodium hydroxide NaOH
- the pure water introduced into the acid chamber R2 and the alkaline chamber R3 may be condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8.
- the demineralized diluted inorganic salt solution (desalination solution) discharged from the desalination chamber R1 is not particularly limited, but is supplied to the evaporative concentration device 5 because it contains a small amount of lithium. It is preferable to evaporate and concentrate again in the concentration step S8.
- the inorganic acid (hydrochloric acid in the present embodiment) recovered from the acid chamber R2 is not particularly limited, but is supplied to the acid leaching tank 1 so as to leach the waste lithium ion battery in the acid leaching step S1. It is preferably reused as an acid. Further, it is preferable to supply the polyvalent cation removing device 4 and reuse it as a regenerating liquid of the chelate resin or the ion exchange resin used in the impurity treatment step S7.
- the alkali (sodium hydroxide in the present embodiment) recovered from the alkali chamber R3 is supplied to the pH adjusting tanks 2 and 3, but is not particularly limited, and the lithium-containing liquid is used in the pH adjusting steps S3 and S5. It is preferable to reuse it as an alkali for pH adjustment. Further, it is preferable to supply the polyvalent cation removing device 4 and reuse it as a regenerating liquid of the chelate resin or the ion exchange resin used in the impurity treatment step S7.
- the lithium recovery method of the present embodiment described above by evaporating and concentrating the liquid to be treated in the concentrating step S8 before the carbonation step S10, the amount of the liquid to be treated is reduced and the lithium concentration in the liquid to be treated is reduced. Is increasing. Therefore, the recovery rate of the lithium carbonate crystals in the carbonation step S10 can be favorably improved.
- the inorganic salt (sodium chloride in the present embodiment) contained in the liquid to be treated is crystallized.
- the solubility of the inorganic salt remaining in the liquid to be treated is increased, and crystallization of the inorganic salt can be suppressed during carbonation.
- the solubility of lithium carbonate decreases and the amount of lithium carbonate crystals recovered increases. Therefore, highly pure lithium carbonate can be obtained with high efficiency.
- the first pH adjusting tank 2, the second pH adjusting tank 3, the evaporative concentrating device are disposed without discarding the liquid to be treated after the lithium carbonate crystals are recovered in the carbonation step S10.
- the lithium remaining in the liquid to be treated is recovered by circulating it in the system such as No. 5 or the like. Therefore, lithium can be recovered at a high recovery rate.
- the crystal of the inorganic salt (sodium chloride in the present embodiment) contained in the precipitate separated from the liquid to be treated in the solid-liquid separation step S9 is dissolved in the dissolution step S12.
- a bipolar membrane electrodialysis is performed in the electrodialysis step S13 to recover the inorganic acid and the alkali from the inorganic salt solution, and the diluted inorganic salt solution after desalting is evaporated in the concentration step S8.
- concentration lithium contained in the dilute inorganic salt solution is recovered in the carbonation step S10. Therefore, lithium can be recovered at a high recovery rate.
- the inorganic acids and alkalis recovered in the electrodialysis step S13 are circulated and reused in the acid leaching step S1, the pH adjusting steps S3, S5, and the impurity removing step S7, so that each step S1, S3, S5, S7 is performed. It is possible to reduce the amount of inorganic acid or alkali used in.
- polyvalent cations such as calcium and magnesium contained in the liquid to be treated are removed in the impurity removing step S7.
- the amount of impurities in the liquid to be treated from which the precipitate has been separated in the solid-liquid separation process S11 after the carbonation process S10 is reduced, so that most of the liquid to be processed after the solid-liquid separation process S11 is returned to the system. It can circulate. Therefore, more lithium remaining in the liquid to be treated after the solid-liquid separation step S11 can be recovered, and thus lithium can be recovered at a high recovery rate.
- the condensed water generated in the concentration step S8 is used for various treatments, so that the condensed water can be effectively used. Further, by washing the crystals obtained in the solid-liquid separation steps S4, S6, S9, and S11 with condensed water, the recovery rate of each crystal can be improved satisfactorily.
- the lithium recovery method of the second aspect is not limited to the embodiment of FIG. 8 and FIG. 9 and does not depart from the gist of the present disclosure. Various changes are possible in.
- the impurity removing step S7 of removing at least calcium and/or magnesium is performed on the liquid to be treated before the concentration step S8, but instead of or in addition to this, the impurity removing step S7 is performed. Then, the inorganic salt solution before the electrodialysis step S13 may similarly be subjected to an impurity removing step of removing at least calcium and/or magnesium.
- the alkali recovered in the electrodialysis step S13 is supplied to the first pH adjusting step S3 and the second pH adjusting step S5, but it is configured to be supplied to only one of them. May be.
- the pH adjusting steps S3 and S5 include the first pH adjusting step S3 and the second pH adjusting step S5, but three pH adjusting steps S3 and S5 are included depending on the components contained in the waste lithium-ion battery. It may be configured to include the above steps, or may be configured to include only one step.
- the inorganic salt (sodium chloride in this embodiment) contained in the inorganic salt solution is recrystallized.
- the method of recrystallizing the inorganic salt contained in the inorganic salt solution is not particularly limited, and evaporative crystallization by the evaporative crystallizer 13 can be used, for example.
- evaporative crystallization the inorganic salt solution is heated to evaporate the solvent, and the concentration of the inorganic salt is increased to precipitate crystals of the inorganic salt.
- the evaporative concentration device 5 may be used to crystallize the inorganic salt contained in the inorganic salt solution without separately installing the evaporative crystallization device 10.
- the inorganic salt crystals are separated from the aqueous solution containing the inorganic salt crystals, and the recrystallized inorganic salt crystals are recovered.
- various filtration devices such as pressure filtration (filter press), vacuum filtration, centrifugal filtration, and known solid-liquid separation devices such as a decanter type centrifugal separation device can be used. ..
- the crystals of the recovered inorganic salt are dissolved in the re-dissolution tank 11 using water, for example, so as to have a desired concentration, and an inorganic salt solution is regenerated.
- the temperature at this time is not particularly limited and may be a temperature at which the crystals of the inorganic salt can be dissolved.
- the water used for dissolving the inorganic salt is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S8. It can be effectively used.
- the regenerated inorganic salt solution is supplied to the bipolar membrane electrodialysis device 9.
- the impurities removed from the inorganic salt solution in the recrystallization step S12-1 to the redissolution step S12-3 may include calcium and/or magnesium in addition to silica.
- silica contained in the inorganic salt solution is removed before the electrodialysis step S13.
- the amount of impurities in the inorganic solution electrodialyzed in the electrodialysis step S13 is also reduced, so that the performance of the bipolar membrane can be maintained high.
- the dilute inorganic salt solution (desalted solution) after the electrodialysis step S13 is supplied to the evaporative concentration apparatus 5 and evaporated and concentrated again in the concentration step S8, the amount of impurities in the desalted solution is reduced. In the concentration step S8, it is possible to suppress the generation and adhesion of scale on the heat transfer surface of the heat exchanger of the evaporative concentration device 5.
- a roasting step S0 of roasting the waste lithium-ion battery may be further included before the acid leaching step S1.
- the method of roasting the waste lithium ion battery is not particularly limited, and a known roasting device 12 can be used.
- the exhaust gas generated in the roasting device 12 (roasting step S0) is supplied to the carbonation tank 7, and the exhaust gas is mixed with the liquid to be treated as carbon dioxide in the carbonation step S10. doing. As a result, the amount of carbon dioxide gas used in the carbonation step S10 can be reduced. Further, the liquid to be treated can be heated in the carbonation step S10. It is needless to say that the roasting step S0 of roasting the waste lithium-ion battery before the acid leaching step S1 can also be executed in the embodiments of FIGS. 11 and 12.
- the lithium recovery method of the above-described embodiment exemplifies the case of recovering lithium from a waste lithium-ion battery
- the lithium recovery method of the present disclosure is applicable to a method used to recover lithium from a waste lithium-ion battery. Is not limited.
- Cobalt recovery method Recovery of valuable metal cobalt from waste lithium-ion batteries is extremely important from the viewpoint of effective use of resources.
- the pH of the acid leachate is set to 4 or more in order to remove the impurity metal such as aluminum from the acid leachate.
- cobalt crystals may be precipitated and precipitated together with the salt crystals of, and cobalt may be removed from the acid leachate together with impurity metals, and the recovery rate of cobalt may be low during subsequent cobalt recovery. ..
- the present disclosure aims to provide a cobalt recovery method capable of recovering cobalt at a high recovery rate from a liquid to be treated in which cobalt and impurity metals are dissolved.
- the present inventor as a result of intensive studies to solve the above problems, when the salt of the impurity metal is precipitated as crystals by adjusting the pH of the liquid to be treated in which cobalt and the impurity metal are at least dissolved, to be treated It has been found that when the concentration of the aqueous alkali solution added to the solution is high, cobalt salt crystals precipitate together with the impurity metal salt crystals, and cobalt is removed from the liquid to be treated together with the impurity metal.
- the cobalt recovery method of the present disclosure has been completed as a result of further research based on such knowledge. That is, the present disclosure provides the following method for recovering cobalt.
- an aqueous alkali solution is added to an acidic liquid to be treated in which cobalt and an impurity metal are at least dissolved to adjust the pH to 4 to 7, thereby precipitating a salt of the impurity metal as crystals.
- the alkali concentration of the aqueous alkali solution added in the first pH adjusting step is 0.1 mol/L or more.
- an alkali having an alkali concentration of 1.0 mol/L or more is used until the pH of the liquid to be treated reaches a predetermined value smaller than 4. It is preferable that the pH of the liquid to be treated is adjusted to 4 to 7 by adding the aqueous solution of 1 to the liquid to be treated and then adding the aqueous solution of alkali having an alkali concentration of less than 1.0 mol/L to the liquid to be treated. ..
- lithium is dissolved in the liquid to be treated, and a concentration step of evaporating and concentrating the liquid to be treated after the second solid-liquid separation step, It is preferable to have a carbonation step of mixing carbon dioxide gas and/or adding a water-soluble carbonate to the liquid to be treated after the concentration step.
- a third solid-liquid separation step of separating a precipitate containing crystals of lithium carbonate precipitated by the carbonation step from a liquid to be treated and the third solid-liquid separation step.
- the alkali concentration is less than 1.0 mol/L for the liquid to be treated in which cobalt and the impurity metal are dissolved.
- FIG. 15 shows the procedure of each step in the embodiment of the cobalt recovery method of the present disclosure
- FIG. 16 shows a schematic configuration of the processing apparatus 10 for carrying out the cobalt recovery method of FIG.
- the cobalt recovery method of the present embodiment will be described by taking the case of recovering lithium in addition to cobalt from a waste lithium-ion battery as an example.
- the cobalt recovery method of this embodiment is -An acid leaching step S1 of leaching a waste lithium-ion battery with an inorganic acid to elute cobalt and lithium; -Solid-liquid separation step S2 for separating insoluble residues from the liquid to be treated obtained in the acid leaching step S1, and-Adding an aqueous alkali solution to the liquid to be treated after the solid-liquid separation step S2 to adjust the pH to 4 to 7.
- a first pH adjusting step S3 for adjusting, -A solid-liquid separation step S4 (corresponding to the "first solid-liquid separation step” described in paragraph 0163) for separating the precipitate containing the crystals of the impurity metal salt precipitated by the first pH adjusting step S3 from the liquid to be treated; -A second pH adjusting step S5 of adjusting the pH to 7 or more by adding an aqueous alkali solution to the liquid to be treated after the solid-liquid separation step S4; -A solid-liquid separation step S6 (corresponding to the "second solid-liquid separation step” described in paragraph 0163) for separating the precipitate containing the cobalt salt crystals precipitated by the second pH adjusting step S5 from the liquid to be treated, -A concentration step S7 of evaporating and concentrating the liquid to be treated after the solid-liquid separation step S6, -A carbonation step S8 of mixing carbon dioxide gas and/or adding a water-soluble carbonate to the liquid to be treated after the concentration step S7, -A solid-
- the waste lithium-ion battery for which cobalt is to be recovered is the same as the lithium recovery method described above.
- the acid leaching step S1 not only cobalt and lithium but also metals such as aluminum, nickel and iron are eluted by leaching the above-mentioned waste lithium-ion battery with an inorganic acid.
- an inorganic acid for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid or the like can be used, but in the present embodiment, sulfuric acid is used because of its low cost and easy handling.
- the method of leaching the waste lithium ion battery with an inorganic acid is not particularly limited, and a commonly used method can be used.
- the waste lithium-ion battery is immersed in an aqueous solution of an inorganic acid such as a sulfuric acid aqueous solution in the acid leaching tank 1 and stirred for a predetermined time to obtain an acidic liquid to be treated in which the above-described metal such as cobalt is dissolved.
- the concentration of the inorganic acid in the aqueous solution is preferably 1 mol to 5 mol/L, and the temperature of the aqueous solution is preferably 60° C. or higher.
- the insoluble residue is separated from the liquid to be treated by, for example, filtering the liquid to be treated obtained in the acid leaching step S1.
- the insoluble residue is mainly a carbon material, a metal material, or an organic material that does not dissolve in an inorganic acid.
- various filtration devices such as pressure filtration (filter press), vacuum filtration, centrifugal filtration, and known solid-liquid separation devices such as a decanter type centrifugal separation device can be used. ..
- an aqueous alkali solution is added to the liquid to be treated (filtrate) after the solid-liquid separation step S2 to adjust the pH to 4 to 7, preferably 4 to 6, and more preferably 4 to 5. adjust.
- the impurity metal eg, aluminum or iron
- sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used as the alkali, lithium hydroxide is used in the present embodiment.
- the method of adjusting the pH of the liquid to be treated in the first pH adjusting step S3 is not particularly limited, and a commonly used method can be used. For example, by adding an alkaline aqueous solution such as an aqueous solution of lithium hydroxide while stirring the liquid to be treated in the first pH adjusting tank 2, the impurity metals in the liquid to be treated are converted into hydroxides (for example, aluminum hydroxide and water). It precipitates and precipitates as crystals of an inorganic salt such as iron oxide.
- the first pH adjusting step S3 is preferably performed while heating the liquid to be treated at a constant temperature of, for example, 30°C to 80°C.
- the aqueous alkali solution added in the first pH adjusting step S3 has a dilute alkali concentration of less than 1.0 mol/L.
- the lower limit of the alkali concentration is preferably 0.1 mol/L or more.
- the alkali concentration of the aqueous solution of alkali added in the first pH adjusting step S3 is It is preferably 0.5 mol/L or less, more preferably 0.2 mol/L or less.
- a concentrated alkali concentration of 1.0 mol/L or more is used until the pH of the liquid to be treated reaches a predetermined value smaller than 4.
- an aqueous solution of an alkali having a low alkali concentration of less than 1.0 mol/L is added to the solution to be treated.
- the pH of the liquid to be treated can be adjusted to 4 to 7.
- the predetermined value of the pH of the liquid to be treated can be set within the range of 2 to 3.
- the precipitate deposited and precipitated in the first pH step S3 is separated from the liquid to be treated in the next solid-liquid separation step S4 by filtering the liquid to be treated, for example.
- the impurity metal removed from the liquid to be treated in the first pH step S3 may further contain copper or the like.
- the precipitate is washed with a washing liquid, and the washing waste liquid after washing is supplied to the next second pH adjusting step S5 together with the liquid to be treated (filtrate).
- the lithium contained in the cleaning waste liquid can be supplied together with the lithium contained in the liquid to be treated from the second pH adjusting step S5 to the carbonation step S8. Can be recovered at a high recovery rate.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S7 described later. Can be effectively used.
- an aqueous solution of alkali is added to the liquid to be treated (filtrate) after the solid-liquid separation step S4 to adjust the pH to 7 or more, preferably 7 to 13, more preferably 7 to 11, and further preferably. Adjust to 8-10.
- valuable metals such as cobalt and nickel are removed from the liquid to be treated.
- sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used as the alkali, lithium hydroxide is used in the present embodiment.
- the method of adjusting the pH of the liquid to be treated is not particularly limited, and a commonly used method can be used.
- an aqueous alkali solution such as an aqueous lithium hydroxide solution
- the valuable metal in the liquid to be treated is converted into a hydroxide (for example, iron cobalt hydroxide, Further, it is precipitated and precipitated as crystals of an inorganic salt such as nickel hydroxide).
- a cobalt salt such as cobalt hydroxide.
- the second pH adjusting step S5 is preferably performed while heating the liquid to be treated at a constant temperature of, for example, 30°C to 80°C.
- the alkali concentration of the aqueous alkali solution added in the second pH adjusting step S5 is not particularly limited, but is preferably equal to or higher than that of the alkali aqueous solution used in the first pH adjusting step S3, It is preferable that the concentration is 0.2 mol/L or more.
- the precipitate deposited and precipitated in the second pH step S5 is separated from the liquid to be treated in the next solid-liquid separation step S6 by filtering the liquid to be treated, for example.
- the valuable metal removed from the liquid to be treated in the second pH adjusting step S5 may further contain manganese or the like.
- the liquid to be treated (filtrate) after the solid-liquid separation step S6 contains anions (for example, sulfate ions) of lithium and an inorganic acid.
- the precipitate is washed with a washing liquid, and the washing waste liquid after washing is supplied to the next concentration step S7 together with the liquid to be treated (filtrate).
- the lithium contained in the cleaning waste liquid can be supplied to the carbonation step S8 from the concentration step S7 together with the lithium contained in the liquid to be treated. It can be recovered with a recovery rate.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S7. It is available.
- the first pH adjusting step S3 and the second pH adjusting step S5 by using lithium hydroxide as an alkali to be used, as compared with the case of using a hydroxide of another alkali metal such as sodium hydroxide, it will be described later.
- the lithium carbonate crystals precipitated in the carbonation step S8 the mixing of alkali metals other than lithium such as sodium can be suppressed. Therefore, highly pure lithium carbonate can be recovered.
- the liquid to be treated containing lithium after the solid-liquid separation step S6 is evaporated and concentrated by heating, that is, the liquid to be treated is concentrated by evaporating the water in the liquid to be treated.
- the liquid amount of the liquid to be processed is reduced and the lithium concentration in the liquid to be processed is increased. Therefore, the recovery rate of lithium carbonate can be improved in the carbonation step S8 described later.
- the temperature of the concentrated liquid to be treated can be raised by evaporating and concentrating the liquid to be treated, and the recovery rate of lithium carbonate can be improved in the carbonation step S8 described later. .. Since the solubility of lithium carbonate decreases as the temperature increases, the solubility of lithium carbonate generated by the reaction between lithium in the liquid to be treated and carbon dioxide gas decreases as the temperature of the liquid to be treated increases in the carbonation step S8. Therefore, the amount of crystals of lithium carbonate deposited can be increased.
- the concentration step S7 it is preferable to concentrate the liquid to be treated to a concentration such that lithium does not precipitate as crystals of a lithium salt such as lithium sulfate in the liquid to be treated after concentration.
- concentration of lithium in the liquid to be treated after concentration can be increased, and the recovery rate of lithium carbonate can be improved in the carbonation step S8 described later.
- a solid-liquid separation step of separating it from the liquid to be treated may be performed.
- the method of evaporating and concentrating the liquid to be treated is not particularly limited, and, for example, the evaporative concentration device 5 can be used.
- the evaporative concentration device 5 is not particularly limited as long as the liquid to be treated can be concentrated by evaporation, and a known evaporative concentration device such as a heat pump type, an ejector driven type, a steam type, or a flash type can be used.
- a heat pump type evaporative concentrator is preferable. When a heat pump type evaporative concentrator is used, the energy used can be significantly suppressed. Further, energy can be further saved by concentrating the liquid to be treated under a reduced pressure atmosphere.
- next carbonation step S8 carbon dioxide is mixed with the liquid to be treated after the concentration step S7 and/or a water-soluble carbonate is added to deposit lithium in the liquid to be treated as crystals of lithium carbonate, Allow to settle. Thereby, lithium in the liquid to be treated can be recovered as lithium carbonate.
- the carbonate for example, sodium carbonate, ammonium carbonate, potassium carbonate or the like can be used.
- the liquid crystal to be treated is mixed with carbon dioxide gas to precipitate and precipitate lithium carbonate crystals.
- the carbonation step S8 by using a material containing no alkali metal such as sodium, it is possible to prevent alkali metal other than lithium from mixing into the precipitated lithium carbonate crystals. Therefore, highly pure lithium carbonate can be recovered.
- the method of mixing carbon dioxide with the liquid to be treated is not particularly limited, and a commonly used method can be used.
- carbon dioxide gas can be uniformly mixed with the liquid to be treated by supplying carbon dioxide gas into the liquid to be treated in the form of fine bubbles from the nozzle while stirring the liquid to be treated in the carbonation tank 7. Lithium in the liquid to be treated and carbon dioxide can be reacted efficiently.
- the liquid to be treated may be sprayed in an atmosphere of carbon dioxide to react with the carbon dioxide.
- solubility of lithium carbonate decreases as the temperature increases, it is preferable to heat the liquid to be treated in the carbonation step S8. As a result, the solubility of lithium carbonate produced by the reaction between lithium in the liquid to be treated and carbon dioxide gas decreases, so that the amount of precipitated lithium carbonate crystals can be increased.
- the liquid to be treated after the carbonation step S8 is filtered, for example, to separate precipitates containing lithium carbonate crystals from the liquid to be treated.
- the precipitate separated from the liquid to be treated can be washed with water or the like to remove impurities and increase the purity of lithium carbonate.
- the water used for washing the precipitate is not particularly limited, but it is preferable to use the condensed water generated when the liquid to be treated is evaporated and concentrated in the concentration step S7. It is available.
- the washing waste liquid after washing the precipitate is preferably supplied to the bipolar membrane electrodialysis device 6 in the electrodialysis step S10 described later together with the liquid to be treated (filtrate) after the solid-liquid separation step S9.
- the liquid to be treated after the solid-liquid separation step S9 is supplied to the bipolar membrane electrodialysis device 6 to separate and recover the alkali and inorganic acid from the liquid to be treated.
- the bipolar membrane electrodialysis device 9 for example, as shown in FIG. 17, a cell 90 including an anion exchange membrane 91, a cation exchange membrane 92, and two bipolar membranes 93, 94 between an anode 95 and a cathode 96.
- a three-chamber cell type bipolar membrane electrodialysis device in which a plurality of cells are laminated can be suitably used.
- the bipolar membrane electrodialysis device 9 of the present embodiment forms a desalting chamber R1 with the anion exchange membrane 91 and the cation exchange membrane 92, and the acid chamber R2 is provided between the anion exchange membrane 91 and one bipolar membrane 93. And an alkali chamber R3 is formed between the cation exchange membrane 92 and the other bipolar membrane 94.
- An anode chamber R4 and a cathode chamber R5 are formed outside each of the bipolar films 93, 94.
- An anode 95 is arranged in the anode chamber R4 and a cathode 96 is arranged in the cathode chamber R5.
- the liquid to be treated is introduced into the desalting chamber R1 and pure water is introduced into the acid chamber R2 and the alkaline chamber R3 respectively, so that the liquid to be treated is anion of lithium and an inorganic acid (this embodiment).
- lithium ions Li +
- sulfate ions SO 4 2 ⁇
- the supplied pure water is dissociated into hydrogen ions (H + ) and hydroxide ions (OH ⁇ ) in the bipolar films 93 and 94, and hydrogen ions ( H + ) combines with sulfate ions (SO 4 2 ⁇ ) to generate sulfuric acid (H 2 SO 4 ), and in the alkaline chamber R3, hydroxide ions (OH ⁇ ) combine with lithium ions (Li + ) Lithium hydroxide (LiOH) is produced.
- the dilute desalination liquid (desalination liquid) discharged from the desalting chamber R1 is not particularly limited, but since it contains a small amount of lithium, at least a part of the concentration step S7 ( It is preferable to supply it to the evaporative concentrating device 5) or the impurity removing process (multivalent cation removing device) before the concentrating process S7 described later, concentrate again in the concentrating process S7, and then carbonate in the carbonating process S8. Thereby, lithium can be recovered at a high recovery rate.
- the desalted solution is supplied to the concentration step S7 in this embodiment, it may be supplied to the first pH adjustment step S3. Thereby, when cobalt remains in the desalination solution, the recovery rate of cobalt can be increased.
- the inorganic acid (sulfuric acid in the present embodiment) recovered from the acid chamber R2 is not particularly limited, but is supplied to the acid leaching tank 1 and the inorganic acid leaching the waste lithium ion battery in the acid leaching step S1. It is preferably reused as an acid.
- the alkali (lithium hydroxide in the present embodiment) recovered from the alkali chamber R3 is supplied to the pH adjusting tanks 2 and 3, but is not particularly limited, and the liquid to be treated in the pH adjusting steps S3 and S5. It is preferable to reuse it as an alkali for pH adjustment.
- the alkali concentration is 1.
- the cobalt recovery method of the present embodiment since a dilute alkaline aqueous solution having an alkali concentration of less than 1.0 mol/L is used in the first pH adjusting step S3, carbon dioxide for recovering lithium thereafter is used.
- the liquid amount of the liquid to be processed supplied to the liquefying process S8 becomes large, the liquid amount of the liquid to be processed is reduced by evaporating and concentrating the liquid to be processed in the concentrating process S7 before the carbonation process S8. Increasing the lithium concentration in the liquid. Therefore, the recovery rate of lithium carbonate can be favorably improved in the carbonation step S8.
- the solubility of lithium carbonate decreases and the amount of lithium carbonate deposited can be increased.
- the aqueous alkali solution having an alkali concentration of 1.0 mol/L or more is applied until the pH of the liquid to be treated reaches a predetermined value.
- an aqueous solution of alkali having an alkali concentration of less than 1.0 mol/L is added to the liquid to be treated so that an aqueous alkali solution used for pH adjustment. The amount can be reduced.
- the inorganic acid and the alkali recovered in the electrodialysis step S10 are circulated and reused in the acid leaching step S1 and the pH adjusting steps S3 and S5, respectively.
- the amount of inorganic acid or alkali used in S1, S3, S5 can be reduced.
- the cobalt recovery method of the present disclosure is not limited to the embodiments of FIGS. 15 and 16, and various modifications are possible without departing from the spirit of the present disclosure. Can be changed.
- the alkali recovered in the electrodialysis step S10 is supplied to the first pH adjusting step S3 and the second pH adjusting step S5, but it is configured to be supplied to only one of them. May be.
- At least a part of the diluted liquid to be treated (desalted liquid) after the lithium hydroxide is recovered in the electrodialysis process S10 is supplied to the concentration process S7.
- it may be configured to supply to the electrodialysis step S10.
- the concentration step S7 is provided before the carbonation step S8, but the concentration step S7 does not necessarily have to be provided.
- at least a part of the diluted liquid to be treated (desalted liquid) after the lithium hydroxide is recovered in the electrodialysis process S10 can be configured to be supplied to the carbonation process S8.
- polyvalent cations having a valence of 2 or more in the liquid to be treated may be removed.
- polyvalent cations such as calcium ions and magnesium ions are present in the liquid to be treated, these polyvalent cations are deposited in the cation exchange membrane of the bipolar membrane electrodialysis device 9 to reduce the performance of the membrane.
- the specific structure for removing the polyvalent cations is not particularly limited, and for example, a known polyvalent cation removing device capable of passing a liquid to be treated through a column filled with a chelate resin is exemplified. You can As the chelate resin, those capable of selectively capturing calcium ions and magnesium ions can be used, and examples thereof include iminodiacetic acid type and aminophosphoric acid type. Other examples of the polyvalent cation removing device include a device adding a chelating agent and a device utilizing an ion exchange resin. The impurities removed from the liquid to be treated may contain silica (silicate ions) in addition to calcium and magnesium.
- a roasting step S0 of roasting the waste lithium-ion battery may be further provided before the acid leaching step S1.
- the method of roasting the waste lithium ion battery is not particularly limited, and a known roasting device 12 can be used.
- the exhaust gas generated in the roasting device 12 is supplied to the carbonation tank 7 (carbonation step S8) and mixed with the liquid to be treated as carbon dioxide gas. ing. Thereby, the amount of carbon dioxide gas used in the carbonation step S8 can be reduced.
- the method of recovering lithium in the steps after the concentration step S7 is not particularly limited, and the lithium recovery method of the present disclosure described above may be used.
- the lithium recovery method of the above-described embodiment uses the cobalt recovery method of the present disclosure in the acid leaching step S1 to the solid-liquid separation step S6.
- the cobalt recovery method of the above-described embodiment exemplifies the case of recovering cobalt from a waste lithium-ion battery
- the cobalt recovery method of the present disclosure is used to recover cobalt from a waste lithium-ion battery.
- the method is not limited.
- Test Example The present inventor conducted the following test on the alkali concentration of the aqueous solution of alkali added in the first pH adjusting step S3. Specifically, a process (first pH adjusting step S3) of adjusting the pH of the liquid to be processed by adding an alkaline aqueous solution to 200 ml of the liquid to be processed having the components shown in Table 1 below was performed. An aqueous solution of lithium hydroxide was used as the aqueous solution of alkali to be added.
- the alkali concentration of the lithium hydroxide aqueous solution was 0.2 mol/L (Example 1), 0.5 mol/L (Example 2), and 1.0 mol/L (Example 3), and the pH of the liquid to be treated was 4
- the addition amount of the lithium hydroxide aqueous solution was adjusted so as to be 0.7.
- the amount of the lithium hydroxide aqueous solution added was 418.6 ml in Example 1, 168.5 ml in Example 2, and 86.3 ml in Example 3.
- the content of lithium in the liquid to be treated was increased by 582 mg in Example 1, 585 mg in Example 2, and 599 mg in Example 3 by the addition of the aqueous lithium hydroxide solution.
- FIGS. 20 to 22 show the surface condition of the filtration residue obtained by filtering the liquid to be treated after pH adjustment.
- 20 shows the first embodiment
- FIG. 21 shows the second embodiment
- FIG. 22 shows the third embodiment.
- the alkaline concentration of the alkaline aqueous solution added to the liquid to be treated in the first pH adjusting step S3 is 1.0 mol/L
- the cobalt recovery rate of the liquid to be treated (filtrate) after pH adjustment Is less than 85%
- the alkali concentration is less than 1.0 mol/L
- the cobalt recovery rate of the liquid to be treated (filtrate) after pH adjustment is 85% or more. It was confirmed that a large amount of cobalt remained in the liquid (filtrate).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Hydrology & Water Resources (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Removal Of Specific Substances (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
リチウム及び無機塩が溶解した被処理液からリチウムを高純度で回収することができるリチウム回収方法を提供する。リチウム回収方法は、リチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程S8と、濃縮工程S8後の被処理液を冷却晶析して無機塩を結晶として析出させる晶析工程S9と、晶析工程S9後の被処理液から無機塩の結晶を含む析出物を分離する固液分離工程S10と、固液分離工程後S10の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程S11と、炭酸化工程S11により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程S12と、を有する。
Description
本開示は、リチウムが少なくとも溶解した被処理液からリチウムを回収するリチウム回収方法、特に、廃リチウムイオン電池からリチウムを回収する際に用いられるリチウム回収方法に関する。
また、本開示は、コバルト及び不純物金属が少なくとも溶解した被処理液からコバルトを回収するコバルト回収方法、特に、廃リチウムイオン電池からコバルトを回収する際に用いられるコバルト回収方法に関する。
リチウムイオン電池は、軽量かつ高エネルギー密度の電池として注目されており、各種携帯機器、電気自動車、電動アシスト自転車などのバッテリーとして大量に使用されている。このリチウムイオン電池の正極には、正極活物質として例えばコバルト酸リチウムやニッケル酸リチウムなどのリチウム遷移金属酸化物が使用されており、廃リチウムイオン電池から有価金属のコバルトやニッケルを回収することは資源の有効利用の観点から極めて重要であるため、多くの方法が提案されている。
廃リチウムイオン電池からコバルトを回収する方法として、例えば特許文献1には、廃リチウムイオン電池を硫酸で浸出してコバルトを溶出させ、この酸浸出液にアルカリを添加してpHを4~5に調整して、コバルトとともに溶出しているアルミニウムなどの不純物金属の塩を結晶として析出、沈殿させた後、さらにアルカリの添加によりpHを7~10に調整して、コバルト塩を結晶として析出、沈殿させることで、コバルトを回収する方法が記載されている。
一方で、廃リチウムイオン電池からリチウムを回収する方法は、リチウムの単価が低いこともあり、あまり多くは提案されていない。しかし、リチウムイオン電池の需要はますます増加しており、今後も廃棄物の増加が予想されるため、リチウムを効率よく回収することができれば有益である。
特許文献2には、使用済みのリチウム金属ゲル及び固体ポリマー電解質二次電池を硫酸で溶解し、これにより得られる硫酸リチウムを含有する硫酸リチウム含有液に水酸化リチウム又は水酸化アンモニウムを添加して中和することで、不純物金属の塩(水酸化アルミニウム)を結晶として析出させて分離し、そして、硫酸リチウム含有液を蒸発濃縮した後に炭酸化を行うことによって、硫酸リチウム含有液に含まれるリチウムを炭酸リチウムの結晶として析出させて、分離、回収する方法が記載されている。
しかしながら、特許文献2に記載の方法では、硫酸リチウム含有液から不純物(水酸化アルミニウム)を除去する際の中和において水酸化アンモニウムを用いると、中和後の硫酸リチウム含有液に無機塩の硫酸アンモニウムが含まれる。硫酸リチウム含有液に無機塩が含まれた状態で炭酸化を行うと、濃縮により硫酸リチウム含有液中の無機塩濃度が上がっていることから結晶化する可能性もある。そのため、炭酸化の際に炭酸リチウムに無機塩が含まれることになるため、回収する炭酸リチウムの純度が低下するという点で、改良の余地がある。
本開示は、上記課題を解決するために、リチウム及び無機塩が溶解した被処理液からリチウムを高純度で回収することができるリチウム回収方法を提供することを目的とする。
本開示の一態様のリチウム回収方法は、リチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程と、前記濃縮工程後の被処理液を冷却晶析して無機塩を結晶として析出させる晶析工程と、前記晶析工程後の被処理液から無機塩の結晶を含む析出物を分離する第1固液分離工程と、前記第1固液分離工程後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程と、前記炭酸化工程により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する第2固液分離工程と、を有することを特徴とする。
本開示の一態様のリチウム回収方法によれば、炭酸化工程前に濃縮工程において被処理液を蒸発濃縮することで、被処理液の液量を減らして被処理液中のリチウム濃度を増加させている。よって、炭酸化工程において炭酸リチウムの回収率を良好に向上することができる。
さらに、濃縮工程後の晶析工程において、被処理液を冷却晶析することで、蒸発濃縮後の被処理液の温度を下げて被処理液に含まれる無機塩が結晶化するまで溶解度を低下させている。これにより、被処理液中の無機塩の濃度を減少することができる。そのうえ、炭酸化工程においては、炭酸リチウムの溶解度を下げる目的で被処理液の温度を上げるため、被処理液に残存する無機塩の溶解度が上がり、無機塩の結晶化を抑制することができる。よって、炭酸化工程において炭酸リチウムを回収する際に、炭酸リチウムの純度を高めることができる。
本開示のリチウム回収方法によれば、リチウム及び無機塩が溶解した被処理液からリチウムを高純度で回収することができる。
以下、本開示のリチウム回収方法の実態形態について添付図面を参照して説明する。なお、以下の説明において「~」は以上以下を意味する。
第1態様のリチウム回収方法
本開示の第1態様のリチウム回収方法は、リチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程と、前記濃縮工程後の被処理液を冷却晶析して無機塩を結晶として析出させる晶析工程と、前記晶析工程後の被処理液から無機塩の結晶を含む析出物を分離する第1固液分離工程と、前記第1固液分離工程後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程と、前記炭酸化工程により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する第2固液分離工程と、を有することを特徴とする。
本開示の第1態様のリチウム回収方法は、リチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程と、前記濃縮工程後の被処理液を冷却晶析して無機塩を結晶として析出させる晶析工程と、前記晶析工程後の被処理液から無機塩の結晶を含む析出物を分離する第1固液分離工程と、前記第1固液分離工程後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程と、前記炭酸化工程により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する第2固液分離工程と、を有することを特徴とする。
段落0016に記載のリチウム回収方法においては、前記第2固液分離工程後の被処理液の少なくとも一部を前記濃縮工程において蒸発濃縮することが好ましい。
また、段落0016又は段落0017に記載のリチウム回収方法においては、前記濃縮工程前に被処理液に含まれるカルシウム及び/又はマグネシウムを少なくとも除去する不純物除去工程をさらに有することが好ましい。
また、段落0016から段落0018のいずれかに記載のリチウム回収方法においては、前記第1固液分離工程において被処理液から分離された析出物に含まれる無機塩の結晶を溶解して無機塩溶液を生成する溶解工程と、前記溶解工程により得られた無機塩溶液に対してバイポーラ膜電気透析を行うことにより該無機塩溶液からアルカリとともに無機酸を分離して回収する電気透析工程と、をさらに有することが好ましい。
また、段落0019に記載のリチウム回収方法においては、前記バイポーラ膜電気透析による脱塩後の無機塩溶液を前記濃縮工程において蒸発濃縮することが好ましい。
また、段落0019又は段落0020に記載のリチウム回収方法においては、前記電気透析工程前に無機塩溶液に含まれるカルシウム及び/又はマグネシウム等の電気透析を運転するうえでスケーリング等の支障がでる物質を少なくとも除去する不純物除去工程をさらに有することが好ましい。
また、段落0019から段落0021のいずれかに記載のリチウム回収方法においては、前記電気透析工程前に無機塩溶液に含まれる無機塩を再結晶させるとともに該無機塩の結晶を無機塩溶液から分離させる再結晶工程と、前記再結晶工程により得られた無機塩の結晶を溶解して無機塩溶液を生成する再溶解工程と、をさらに有することが好ましい。
また、段落0019から段落0022のいずれかに記載のリチウム回収方法においては、前記濃縮工程で発生する凝縮水を、前記溶解工程における無機塩の溶解に利用することが好ましい。
また、段落0019から段落0022のいずれかに記載のリチウム回収方法においては、前記電気透析工程で回収した無機酸を、前記不純物処理工程で用いるキレート樹脂又はイオン交換樹脂の再生液に利用するが好ましい。
また、段落0016から段落0024のいずれかに記載のリチウム回収方法においては、前記濃縮工程で発生する凝縮水により、前記第1固液分離工程により得られる無機塩の結晶を含む析出物、及び/又は、前記第2固液分離工程により得られる炭酸リチウムの結晶を含む析出物を洗浄することが好ましい。
また、段落0016から段落0025のいずれかに記載のリチウム回収方法においては、前記濃縮工程前に、廃リチウムイオン電池を無機酸で浸出してリチウムを溶出する酸浸出工程と、前記酸浸出工程により得られたリチウム含有液にアルカリを添加してpHを調整するpH調整工程と、をさらに有し、前記pH調整工程により析出した析出物をリチウム含有液から分離することで被処理液が生成されることが好ましい。
また、段落0026に記載のリチウム回収方法においては、前記第2固液分離工程後の被処理液の少なくとも一部を前記pH調整工程で添加するアルカリとして再利用することが好ましい。
また、段落0026又は段落0027に記載のリチウム回収方法においては、前記電気透析工程で回収したアルカリを前記pH調整工程で添加するアルカリとして再利用し、前記電気透析工程で回収した無機酸を前記酸浸出工程で用いる無機酸として再利用することが好ましい。
また、段落0026から段落0028のいずれかに記載のリチウム回収方法においては、前記濃縮工程で発生する凝縮水により、前記pH調整工程により析出した析出物を洗浄することが好ましい。
また、段落0026から段落0029のいずれかに記載のリチウム回収方法においては、前記酸浸出工程前に、前記廃リチウムイオン電池を焙焼する焙焼工程をさらに有し、前記炭酸化工程では、前記焙焼工程で発生した排気ガスを炭酸ガスとして被処理液に混合することが好ましい。
本開示の第1態様のリチウム回収方法によれば、炭酸化工程前に濃縮工程において被処理液を蒸発濃縮することで、被処理液の液量を減らして被処理液中のリチウム濃度を増加させている。よって、炭酸化工程において炭酸リチウムの回収率を良好に向上することができる。
さらに、濃縮工程後の晶析工程において、被処理液を冷却晶析することで、蒸発濃縮後の被処理液の温度を下げて被処理液に含まれる無機塩が結晶化するまで溶解度を低下させている。これにより、被処理液中の無機塩の濃度を減少することができる。そのうえ、炭酸化工程においては、炭酸リチウムの溶解度を下げる目的で被処理液の温度を上げるため、被処理液に残存する無機塩の溶解度が上がり、無機塩の結晶化を抑制することができる。よって、炭酸化工程において炭酸リチウムを回収する際に、炭酸リチウムの純度を高めることができる。
図1は、本開示の第一態様のリチウム回収方法の実態形態について各工程の手順を示し、図2は、図1のリチウム回収方法を実施する処理装置10の概略構成を示す。本実施形態のリチウム回収方法は、リチウムに加えて、塩酸、硫酸、フッ酸、リン酸などの強酸と、カリウム、ナトリウムなどのアルカリ金属又はアルカリ土類金属との無機塩を含む被処理液を処理するのに好適に用いることができ、特に、廃リチウムイオン電池からリチウムを回収するのに好適に用いることができる。以下では、廃リチウムイオン電池からリチウムを回収する場合を例にして説明する。
本実施形態のリチウム回収方法は、
‐廃リチウムイオン電池を無機酸で浸出してリチウムを溶出する酸浸出工程S1と、
‐酸浸出工程S1により得られたリチウム含有液から不溶残渣を分離する固液分離工程S2と、
‐固液分離工程S2後のリチウム含有液にアルカリを添加してpHを調整するpH調整工程S3,S5と、
‐pH調整工程S3,S5後のリチウム含有液から析出物を分離する固液分離工程S4,S6と、
‐pH調整工程S3,S5後のリチウム含有液から析出物を分離した被処理液に対してキレート処理を行う不純物除去工程S7と、
‐不純物除去工程S7後のリチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程S8と、
‐濃縮工程S8後の被処理液を冷却晶析して無機塩を結晶として析出させる晶析工程S9と、
‐晶析工程S9後の被処理液から無機塩の結晶を含む析出物を分離する固液分離工程S10(段落0016に記載の「第1固液分離工程」に該当)と、
‐固液分離工程S10後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程S11と、
‐炭酸化工程S11により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程S12(段落0016に記載の「第2固液分離工程」に該当)と、を有する。本実施形態のリチウム回収方法は、さらに、
‐固液分離工程S10において被処理液から分離された析出物に含まれる無機塩の結晶を溶解して無機塩溶液を生成する溶解工程S13と、
‐溶解工程S13後の無機塩溶液に対してバイポーラ膜電気透析を行うことにより該無機塩溶液からアルカリ及び無機酸を分離して回収する電気透析工程S14と、
を有する。
‐廃リチウムイオン電池を無機酸で浸出してリチウムを溶出する酸浸出工程S1と、
‐酸浸出工程S1により得られたリチウム含有液から不溶残渣を分離する固液分離工程S2と、
‐固液分離工程S2後のリチウム含有液にアルカリを添加してpHを調整するpH調整工程S3,S5と、
‐pH調整工程S3,S5後のリチウム含有液から析出物を分離する固液分離工程S4,S6と、
‐pH調整工程S3,S5後のリチウム含有液から析出物を分離した被処理液に対してキレート処理を行う不純物除去工程S7と、
‐不純物除去工程S7後のリチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程S8と、
‐濃縮工程S8後の被処理液を冷却晶析して無機塩を結晶として析出させる晶析工程S9と、
‐晶析工程S9後の被処理液から無機塩の結晶を含む析出物を分離する固液分離工程S10(段落0016に記載の「第1固液分離工程」に該当)と、
‐固液分離工程S10後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程S11と、
‐炭酸化工程S11により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程S12(段落0016に記載の「第2固液分離工程」に該当)と、を有する。本実施形態のリチウム回収方法は、さらに、
‐固液分離工程S10において被処理液から分離された析出物に含まれる無機塩の結晶を溶解して無機塩溶液を生成する溶解工程S13と、
‐溶解工程S13後の無機塩溶液に対してバイポーラ膜電気透析を行うことにより該無機塩溶液からアルカリ及び無機酸を分離して回収する電気透析工程S14と、
を有する。
リチウムを回収する対象の廃リチウムイオン電池は、所定の充放電回数の使用により充電容量が低下した使用済みのリチウムイオン電池の他、電池製造工程内での不具合などで発生する半製品、製品仕様変更に伴って発生する旧型式在庫整理品などを含む。廃リチウムイオン電池は、粉砕又は焙焼処理がなされていてもよいし、粉砕及び焙焼処理がなされて得られる粉末であってもよい。
まず、酸浸出工程S1では、上述した廃リチウムイオン電池を無機酸で浸出することにより、リチウムの他、例えばアルミニウム、ニッケル、コバルト、鉄などの金属を溶出する。無機酸としては、例えば硫酸、塩酸、硝酸、リン酸などを用いることができるが、本実施形態では低コストかつ扱いやすい点で硫酸が用いられている。
酸浸出工程S1において、廃リチウムイオン電池を無機酸で浸出する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、酸浸出槽1内で廃リチウムイオン電池を例えば硫酸水溶液などの無機酸の水溶液に浸漬させて所定時間攪拌することで、上述したリチウムなどの金属が溶解したリチウム含有液を得る。酸浸出工程S1では、水溶液中の無機酸の濃度が1mol~5mol/Lであることが好ましく、水溶液の温度は60℃以上が好ましい。
次の固液分離工程S2では、酸浸出工程S1により得られたリチウム含有液を例えばろ過することにより、リチウム含有液から不溶残渣を分離する。不溶残渣は、主に無機酸に溶解しない炭素材料、金属材料、有機材料である。固液分離する方法としては、例えば、加圧ろ過(フィルタープレス)、真空ろ過、遠心ろ過などの各種ろ過装置や、デカンター型のような遠心分離装置など公知の固液分離装置を用いることができる。なお、以下の固液分離工程S4,S6,S10,S12などにおいても同様である。
次のpH調整工程S3,S5では、固液分離工程S2後のリチウム含有液(ろ液)にアルカリを添加し、pHを所定の範囲に調整することにより、リチウム含有液中の上述した金属のうち、リチウム以外の金属をリチウム含有液から除去する。アルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができるが、本実施形態では低コストかつ扱いやすい点で水酸化ナトリウムが用いられている。
pH調整工程S3,S5において、リチウム含有液のpHを調整する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、第1pH調整槽2及び第2pH調整槽3内でリチウム含有液を攪拌しながら例えば水酸化ナトリウム水溶液などのアルカリの水溶液を添加することで、リチウム含有液中のリチウム以外の金属を水酸化物などの無機塩の結晶として析出、沈殿させる。本実施形態では、pH調整工程S3,S5は、第1pH調整工程S3と第2pH調整工程S5とに分けられている。
第1pH調整工程S3では、アルカリの添加によりリチウム含有液のpHを4~7、好ましくは4~6、より好ましくは4~5に調整する。これにより、リチウム含有液中の不純物金属(例えばアルミニウム、鉄)を水酸化物(例えば水酸化アルミニウム、水酸化鉄)などの無機塩の結晶として析出、沈殿させる。第1pH調整工程S3では、リチウム含有液を例えば30℃~80℃で一定温度に加温しながら行うことが好ましい。
第1pH調整工程S3で添加されるアルカリの水溶液は、アルカリ濃度が1.0mol/L未満と希薄であることが好ましい。これにより、詳細は後述するが、第1pH調整工程S3でリチウム含有液中のコバルトが不純物金属とともにコバルト塩の結晶として析出、沈殿してリチウム含有液から除去されることを抑制できる。ただし、アルカリ濃度が過度に低いと、第1pH調整工程S3においてpH調整のためにアルカリの水溶液を大量に使用する必要があるうえ、pH調整後のリチウム含有液の液量も多量となるため、アルカリ濃度の下限は、0.1mol/L以上であることが好ましい。また、第1pH調整工程S3でリチウム含有液中のコバルトがリチウム含有液から除去されることを効果的に抑制するためには、第1pH調整工程S3で添加されるアルカリの水溶液のアルカリ濃度は、0.5mol/L以下であることが好ましく、0.2mol/L以下であることがより好ましい。
なお、この第1pH調整工程S3においては、pH調整に使用するアルカリの水溶液量を減らすために、リチウム含有液のpHが4より小さい所定値となるまでは1.0mol/L以上の濃いアルカリ濃度を有するアルカリの水溶液をリチウム含有液に添加し、リチウム含有液のpHが所定値となった後は、1.0mol/L未満の薄いアルカリ濃度を有するアルカリの水溶液をリチウム含有液に添加することで、リチウム含有液のpHを4~7に調整することもできる。上述したリチウム含有液のpHの所定値としては、2~3の範囲内で設定することができる。
第1pH工程S3で析出、沈殿した析出物は、次の固液分離工程S4において、リチウム含有液を例えばろ過することでリチウム含有液から分離される。なお、第1pH調整工程S3でリチウム含有液から除去される不純物金属には、その他、銅などが含まれていてもよい。固液分離工程S4においては、析出物を洗浄液で洗浄し、洗浄した後の洗浄廃液をリチウム含有液(ろ液)とともに、次の第2pH調整工程S5に供給することが好ましい。これにより、洗浄廃液に含まれるリチウムについてもリチウム含有液に含まれるリチウムとともに第2pH調整工程S5から炭酸化工程S11に供給することができ、後述する炭酸化工程S11で炭酸化することで、リチウムを高回収率で回収することができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、後述する濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。
第2pH調整工程S5では、固液分離工程S4後のリチウム含有液(ろ液)にアルカリを添加して、pHを7以上、好ましくは7~13、より好ましくは7~11、さらに好ましくは8~10の範囲に調整する。これにより、リチウム含有液中の有価金属(例えばコバルト、ニッケル)を水酸化物(例えば水酸化コバルト、水酸化ニッケル)などの無機塩の結晶として析出、沈殿させる。第2pH調整工程S5では、リチウム含有液を例えば30℃~80℃で一定温度に加温しながら行うことが好ましい。第2pH調整工程S5で添加されるアルカリの水溶液のアルカリ濃度は、特に限定されるものではないが、第1pH調整工程S3で使用したアルカリの水溶液のアルカリ濃度以上であることが好ましく、さらにはアルカリ濃度が0.2mol/L以上であることが好ましい。
第2pH工程S5で析出、沈殿した析出物は、次の固液分離工程S6において、リチウム含有液を例えばろ過することでリチウム含有液から分離される。なお、第2pH調整工程S5でリチウム含有液から除去される有価金属には、その他、マンガンなどが含まれていてもよい。
一方、固液分離工程S6後のリチウム含有液(ろ液)には、リチウムの他、酸浸出工程S1及びpH調整工程S3,S5において添加された無機酸(本実施形態では硫酸)及びアルカリ(本実施形態では水酸化ナトリウム)によって無機塩(本実施形態では硫酸ナトリウム(Na2SO4))が溶解している。このpH調整工程S3,S5後のリチウム含有液が本開示のリチウム回収方法の「被処理液」に該当する。この被処理液には、さらにカルシウム、マグネシウム及びシリカのうちの少なくとも1つが溶解されていてもよい。
固液分離工程S6においては、析出物を洗浄液で洗浄し、洗浄した後の洗浄廃液を被処理液(ろ液)とともに、次の不純物除去工程S7に供給することが好ましい。これにより、洗浄廃液に含まれるリチウムについても被処理液に含まれるリチウムとともに不純物除去工程S7から炭酸化工程S11に供給することができ、後述する炭酸化工程S11で炭酸化することで、リチウムを高回収率で回収することができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、後述する濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。
次の不純物除去工程S7では、固液分離工程S6後の被処理液に含まれるカルシウム及び/又はマグネシウム等の多価陽イオンを少なくとも除去する。被処理液に不純物として含まれるカルシウムやマグネシウム等を除去することにより、後述する濃縮工程S8において、蒸発濃縮装置5の熱交換器の伝熱面にスケールが発生して付着することを抑制することができ、熱交換効率を高く維持することができる。また、被処理液にカルシウムやマグネシウム等が含まれていると、後述する電気透析工程S14において、無機溶液中に含まれるカルシウムやマグネシウム等の多価陽イオンがバイポーラ膜電気透析装置9の陽イオン交換膜内で析出し、膜の性能低下を招くおそれがある。そのため、予め被処理液からカルシウムやマグネシウム等の電気透析を運転するうえでスケーリング等の支障がでる物質を除去することにより、バイポーラ膜電気透析装置9の陽イオン交換膜への悪影響を防止することができ、電気透析の性能を高く維持することができる。
不純物除去工程S7において、被処理液からカルシウムやマグネシウムを除去する方法については特に限定されるものではなく、例えば多価陽イオン除去装置4を用いることができる。多価陽イオン除去装置4は、カルシウムイオンやマグネシウムイオンなどの2価以上の多価陽イオンを除去する装置であり、例えば、キレート樹脂を充填したカラムに被処理液を通液可能な構成を例示することができる。キレート樹脂としては、カルシウムイオンやマグネシウムイオンを選択的に捕捉可能なものを使用することができ、例えば、イミノジ酢酸型、アミノリン酸型などを例示することができる。多価陽イオン除去装置4としては、その他に、キレート剤を添加するものや、イオン交換樹脂を利用するものなどを挙げることができる。なお、不純物除去工程S7で被処理液から除去する不純物には、カルシウムやマグネシウムに加えて、シリカ(ケイ酸イオン)が含まれていてもよい。
次の濃縮工程S8では、不純物除去工程S7後の被処理液を加熱することにより蒸発濃縮する、すなわち、被処理液中の水分を蒸発させることで被処理液を濃縮する。これにより、被処理液の液量が減少し、被処理液中のリチウム濃度が増加する。よって、後述する炭酸化工程S11において炭酸リチウムの回収率を向上することができる。
濃縮工程S8では、濃縮後の被処理液にリチウムが例えば硫酸リチウムなどのリチウム塩の結晶として析出しない程度の濃度まで被処理液を濃縮することが好ましい。これにより、濃縮後の被処理液におけるリチウムの濃度を高くすることができ、後述する炭酸化工程S11において炭酸リチウムの回収率を向上することができる。
濃縮工程S8において、被処理液を蒸発濃縮する方法については特に限定されるものではなく、例えば蒸発濃縮装置5を用いることができる。蒸発濃縮装置5としては、被処理液を蒸発により濃縮可能であれば特に限定されず、例えばヒートポンプ型、エゼクター駆動型、スチーム型、フラッシュ型などの公知の蒸発濃縮装置を用いることができるが、好ましくはヒートポンプ型の蒸発濃縮装置である。ヒートポンプ型の蒸発濃縮装置を用いた場合には、使用するエネルギーを著しく抑制することができる。また、減圧雰囲気下で被処理液の濃縮を行うことで、さらに省エネルギー化を図ることができる。
次の晶析工程S9では、濃縮工程S8後の被処理液を冷却晶析する。この晶析工程S9においては、蒸発濃縮後の被処理液の温度を低下させて、被処理液に含まれる無機塩が結晶化するまで溶解度を下げることで、被処理液中の無機塩(本実施形態では硫酸ナトリウム)の濃度を減少させることができる。そのため、後述する炭酸化工程S11において炭酸リチウムを回収する際に、炭酸リチウムの純度を高めることができる。
晶析工程S9において、被処理液を冷却晶析する方法については特に限定されるものではなく、例えば冷却晶析装置6を用いることができる。冷却晶析装置6は、供給された被処理液を晶析槽内で冷却して、目的とする無機塩の結晶を析出させるものである。冷却晶析装置6としては、例えばジャケットや内部コイルによる冷却方式の晶析装置、外部循環冷却式の晶析装置などの公知の冷却晶析装置を用いることができ、特に限定されない。
晶析工程S9においては、無機塩によって飽和溶解度や溶解度の温度依存性が異なることを利用して、目的の無機塩の結晶のみを析出させる。本実施形態においては、硫酸リチウムなどのリチウム塩の溶解度の温度依存性が、硫酸ナトリウムなどのリチウム塩以外の無機塩のそれに比べて小さいことを利用している。すなわち、供給濃度におけるリチウム塩の析出温度以上であってリチウム塩以外の無機塩の析出温度以下に冷却することによってリチウム塩以外の無機塩を結晶として析出させる。具体的に硫酸ナトリウムの結晶を析出させるための冷却温度としては、30℃以下、好ましくは5℃以上20℃以下である。このとき、硫酸ナトリウムは、硫酸ナトリウム十水和物(Na2SO4・10H2O)の形で析出する。
次の固液分離工程S10では、晶析工程S9後の被処理液を例えばろ過することにより、被処理液から無機塩(本実施形態では硫酸ナトリウム)の結晶を含む析出物を分離する。
次の炭酸化工程S11では、上述した無機塩の結晶を含む析出物が分離された後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加することにより、被処理液中のリチウムを炭酸リチウムの結晶として析出、沈殿させる。これにより、被処理液中のリチウムを炭酸リチウムとして回収することができる。炭酸塩としては、例えば炭酸ナトリウム、炭酸アンモニウム、炭酸カリウムなどを用いることができる。
この炭酸化工程S11においては、被処理液に炭酸ガスを混合することにより炭酸リチウムの結晶を析出、沈殿させることが好ましい。このように、炭酸化工程S11において、例えばナトリウムなどのアルカリ金属を含まない材料を用いることにより、析出する炭酸リチウムの結晶にリチウム以外のアルカリ金属が混入することを抑制することができる。よって、純度の高い炭酸リチウムを回収することができる。
ただし、炭酸ガスの混合を続けると被処理液のpHが下がるため、炭酸リチウムの析出量が減少する場合がある。そのため、被処理液のpHが7以下になる前に炭酸ガスの混合を止めることが好ましい。また、被処理液にアルカリを添加することで、pHが下がらないようにしてもよい。その際には、アルカリ添加によりpHを9以上に維持することが好ましい。添加するアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができる。
炭酸化工程S11において、被処理液に炭酸ガスを混合する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、炭酸化槽7内で被処理液を攪拌しながら被処理液中に炭酸ガスをノズルにより微細な気泡の状態で供給することで、被処理液に炭酸ガスを均一に混合することができ、被処理液中のリチウムと炭酸ガスとを効率よく反応させることができる。また、被処理液を炭酸ガスの雰囲気下に噴霧することで炭酸ガスと反応させてもよい。
炭酸リチウムの溶解度は温度が高くなるほど低くなるため、炭酸化工程S11においては、被処理液を加温することが好ましい。これにより、被処理液中のリチウムと炭酸ガスとの反応で生じる炭酸リチウムの溶解度が低下するので、炭酸リチウムの結晶の析出量を増やすことができる。また、被処理液を加温することで、被処理液に残存する無機塩(本実施形態では硫酸ナトリウム)の溶解度が上がり、無機塩の結晶化を抑制することができる。よって、炭酸リチウムの結晶とともに無機塩の結晶が析出することを抑制できるので、炭酸化工程において炭酸リチウムを回収する際に、炭酸リチウムの純度を高めることができる。
次の固液分離工程S12では、炭酸化工程S11後の被処理液を例えばろ過することにより、リチウム含有液から炭酸リチウムの結晶を含む析出物を分離する。固液分離工程S12においては、リチウム含有液から分離した析出物を水などで洗浄することで、不純物を除去し、炭酸リチウムの純度を上げることができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。
固液分離工程S12後の被処理液(ろ液)は、特に限定されるわけではないが、不純物が含まれているため、一部はブロー液として排出するが、一部は再度系内に循環することが好ましい。これにより被処理液中に残存するリチウムを回収できるため、リチウムを高回収率で回収することができる。なお、上述した炭酸リチウムの結晶を含む析出物を洗浄した後の洗浄廃液についても固液分離工程S12後の被処理液とともに、再度系内に循環することが好ましい。
固液分離工程S12後の被処理液を再度系内に循環する際には、蒸発濃縮装置5に供給して濃縮工程S8で蒸発濃縮してもよいが、好ましくは、第1pH調整槽2及び/又は第2pH調整槽3に供給する。固液分離工程S12後の被処理液はアルカリ性のため、pH調整工程S3,S5で添加するアルカリとして利用できる。さらには、固液分離工程S12後の被処理液が炭酸イオン(CO3
2-)を多く含んでいると、濃縮工程S8において蒸発濃縮される際に蒸発濃縮装置5の熱交換器の伝熱面に炭酸塩の結晶が析出する。そこで、固液分離工程S2,S4後のリチウム含有液は酸性であることから、該リチウム含有液で固液分離工程S12後の被処理液を中和して炭酸イオンを炭酸ガスとして該被処理液から抜くことで、濃縮工程S8において蒸発濃縮装置5の熱交換器の伝熱面に炭酸塩の結晶が析出することを防止することができる。
一方で、固液分離工程S10(冷却晶析装置6)において被処理液から分離された析出物に含まれる無機塩(本実施形態では硫酸ナトリウム)の結晶は、溶解工程S13(溶解槽8)に供給される。溶解工程S13では、溶解槽8内で無機塩の結晶を所望の濃度となるように例えば水を用いて溶解して、無機塩溶液を生成する。このときの温度は、特に限定されるものではなく、無機塩の結晶を溶解できる温度であればよい。また、無機塩の溶解に用いる水は、特に限定されるものではないが、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。生成された無機塩溶液は、バイポーラ膜電気透析装置9に供給される。
次の電気透析工程S14では、バイポーラ膜電気透析装置9により、溶解工程S13後の無機塩溶液からアルカリ及び無機酸を分離して回収する。バイポーラ膜電気透析装置9としては、例えば図3に示すように、陽極95と陰極96との間に、陰イオン交換膜91、陽イオン交換膜92及び2つのバイポーラ膜93,94を備えるセル90が複数積層された三室セル方式のバイポーラ膜電気透析装置を好適に使用することができる。本実施形態のバイポーラ膜電気透析装置9は、陰イオン交換膜91及び陽イオン交換膜92により脱塩室R1を形成し、陰イオン交換膜91及び一方のバイポーラ膜93との間に酸室R2を形成し、陽イオン交換膜92と他方のバイポーラ膜94との間にアルカリ室R3を形成している。各バイポーラ膜93,94の外側には陽極室R4と陰極室R5とが形成されており、陽極室R4に陽極95が、陰極室R5に陰極96が、それぞれ配置されている。
この電気透析工程S14では、脱塩室R1に無機塩溶液を導入し、酸室R2及びアルカリ室R3にそれぞれ純水を導入する。これにより、無機塩溶液が例えば硫酸ナトリウムを含んでいる場合には、脱塩室R1においては、ナトリウムイオン(Na+)は陽イオン交換膜92を通過し、硫酸イオン(SO4
2-)は陰イオン交換膜91を通過する。一方、酸室R2及びアルカリ室R3においては、供給された純水がバイポーラ膜93,94において水素イオン(H+)及び水酸化物イオン(OH-)に解離され、酸室R2では水素イオン(H+)が硫酸イオン(SO4
2-)と結合して硫酸(H2SO4)が生成され、アルカリ室R3では水酸化物イオン(OH-)がナトリウムイオン(Na+)と結合して水酸化ナトリウム(NaOH)が生成される。これにより、酸室R2から無機酸として硫酸(H2SO4)が、アルカリ室R3からアルカリとして水酸化ナトリウム(NaOH)が、それぞれ回収される。なお、酸室R2及びアルカリ室R3に導入される純水は、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用してもよい。
脱塩室R1から排出される脱塩後の希薄な無機塩溶液(脱塩液)は、特に限定されるわけではないが、リチウムをわずかに含んでいるため、濃縮工程S8(蒸発濃縮装置5)に供給して、再び濃縮した後に炭酸化工程S11で炭酸化することが好ましい。これにより、リチウムを高回収率で回収することができる。なお、脱塩液は、本実施形態では濃縮工程S8に供給しているが、脱塩液にカルシウム及び/又はマグネシウムが残っている場合には、脱塩液を不純物除去工程S7に供給してもよい。これにより、カルシウムやマグネシウムを脱塩液から除去した後に濃縮工程S8に供給することができる。また、脱塩液は、第1pH調整工程S3に供給してもよい。これにより、脱塩液にコバルトが残存している場合に、コバルトの回収率を上げることができる。
また、酸室R2から回収した無機酸(本実施形態では硫酸)は、特に限定されるわけではないが、酸浸出槽1に供給して、酸浸出工程S1において廃リチウムイオン電池を浸出する無機酸として再利用することが好ましい。さらに、多価陽イオン除去装置4に供給して、不純物処理工程S7で用いるキレート樹脂又はイオン交換樹脂の再生液として再利用することが好ましい。
また、アルカリ室R3から回収したアルカリ(本実施形態では水酸化ナトリウム)は、特に限定されるわけではないが、pH調整槽2,3に供給して、pH調整工程S3,S5においてリチウム含有液のpH調整のためのアルカリとして再利用することが好ましい。さらに、多価陽イオン除去装置4に供給して、不純物処理工程S7で用いるキレート樹脂又はイオン交換樹脂の再生液として再利用することが好ましい。
上述した本実施形態のリチウム回収方法によれば、炭酸化工程S11前に濃縮工程S8において被処理液を蒸発濃縮することで、被処理液の液量を減らして被処理液中のリチウム濃度を増加させている。よって、炭酸化工程S11において炭酸リチウムの結晶の回収率を良好に向上することができる。
また、濃縮工程S8後の晶析工程S9において、被処理液を冷却晶析することで、蒸発濃縮後の被処理液の温度を下げて被処理液に含まれる無機塩(本実施形態では硫酸ナトリウム)が結晶化するまで溶解度を下げているため、被処理液中の無機塩の濃度を減少することができる。そのうえ、炭酸化工程S11においては、炭酸リチウムの溶解度を下げる目的で被処理液の温度を上げるため、被処理液に残存する無機塩の溶解度が上がり、無機塩の結晶化を抑制することができる。よって、炭酸化工程S11において炭酸リチウムを回収する際に、炭酸リチウムの純度を高めることができる。
また、本実施形態のリチウム回収方法によれば、炭酸化工程S11において炭酸リチウムの結晶を回収後の被処理液を廃棄することなく、系内に循環させて被処理液中に残存するリチウムを回収している。よって、リチウムを高回収率で回収することができる。
また、本実施形態のリチウム回収方法によれば、固液分離工程S10において被処理液から分離された析出物に含まれる無機塩(本実施形態では硫酸ナトリウム)の結晶を溶解工程S13で溶解して無機塩溶液とした後、電気透析工程S14においてバイポーラ膜電気透析を行うことで、無機塩溶液から無機酸及びアルカリを回収するとともに、脱塩後の希薄な無機塩溶液を濃縮工程S8において蒸発濃縮した後、炭酸化工程S11において希薄な無機塩溶液に含まれるリチウムを回収している。よって、リチウムを高回収率で回収することができる。さらに、電気透析工程S14において回収した無機酸及びアルカリを、酸浸出工程S1、pH調整工程S3,S5、不純物除去工程S7に循環させて再利用することで、各工程S1,S3,S5,S7において使用する無機酸やアルカリの量を減らすことができる。
また、本実施形態のリチウム回収方法によれば、不純物除去工程S7において被処理液に含まれるカルシウムやマグネシウム等の多価陽イオンを除去している。これにより、炭酸化工程S11後の固液分離工程S12で析出物を分離した被処理液中の不純物の量が減ることで、固液分離工程S12後の被処理液の多くを再度系内に循環することができる。よって、固液分離工程S12後の被処理液中に残存するリチウムをより多く回収できるため、リチウムを高回収率で回収することができる。さらに、電気透析工程S14において電気透析される無機溶液中の不純物の量も減るので、バイポーラ電気透析装置9の陽イオン交換膜がスケーリングにより性能低下することを防止でき、バイポーラ膜の性能を高く維持することができる。
また、本実施形態のリチウム回収方法によれば、濃縮工程S8で発生する凝縮水を各種の処理に用いているので、凝縮水を有効利用することができる。さらに、凝縮水を用いて各固液分離工程S4,S6,S10,S12により得られた結晶を洗浄することにより、各結晶の回収率を良好に向上することができる。
以上、第一態様のリチウム回収方法の一実施形態について説明したが、第一態様のリチウム回収方法は図1及び図2の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない限りにおいて種々の変更が可能である。
例えば、図1及び図2の実施形態では、濃縮工程S8前の被処理液に対してカルシウム及び/又はマグネシウムを少なくとも除去する不純物除去工程S7を行っているが、これに代えて又はこれに加えて、電気透析工程S14前の無機塩溶液に対して同様にカルシウム及び/又はマグネシウムを少なくとも除去する不純物除去工程を行ってもよい。
また、図1及び図2の実施形態では、電気透析工程S14で回収したアルカリを第1pH調整工程S3及び第2pH調整工程S5に供給しているが、いずれか一方にのみ供給するように構成してもよい。
また、図1及び図2の実施形態では、pH調整工程S3,S5が第1pH調整工程S3及び第2pH調整工程S5を含んでいるが、廃リチウムイオン電池に含まれる成分に応じて、3つ以上の工程を含むように構成してもよいし、1つの工程のみを含むように構成してもよい。
また、図1及び図2の実施形態において、図4及び図5に示すように、溶解工程S13後で電気透析工程S14前に、無機塩溶液に含まれる例えばシリカなどの不純物を除去するための処理工程を行ってもよい。この処理工程は、不純物除去工程S7に代えて又は不純物除去工程S7に加えて行うことができる。
具体的には、まず、再結晶工程S13-1において無機塩溶液に含まれる無機塩(本実施形態では硫酸ナトリウム)を再結晶させる。無機塩溶液に含まれる無機塩を再結晶させる方法については特に限定されるものではなく、例えば上述した晶析工程S9の冷却晶析装置6と同様の冷却晶析装置10による冷却晶析を用いることができる。つまり、無機塩とシリカとで飽和溶解度や溶解度の温度依存性が異なることを利用して無機塩の結晶のみを析出させることができ、供給濃度におけるシリカの析出温度以上であって無機塩の析出温度以下に冷却することによって無機塩の結晶を析出させる。このとき、硫酸ナトリウムは、硫酸ナトリウム十水和物(Na2SO4・10H2O)の形で析出する。なお、無機塩溶液は、事前に無機塩の晶析に適した無機塩の濃度まで濃縮してもよい。本実施形態では、再結晶工程S13-1において冷却晶析装置10を使用しているが、純度の高い結晶が析出される晶析方法であればよく、例えば蒸発晶析装置などを用いることもできる。
無機塩の結晶を再析出させた後、固液分離工程S13-2において無機塩の結晶を含む水溶液から該無機塩の結晶を分離し、再結晶処理した無機塩の結晶を回収する。固液分離する方法としては、例えば、加圧ろ過(フィルタープレス)、真空ろ過、遠心ろ過などの各種ろ過装置や、デカンター型のような遠心分離装置など公知の固液分離装置を用いることができる。
そして、再溶解工程S13-3において、回収した無機塩の結晶を再溶解槽11内で所望の濃度となるように例えば水を用いて溶解して、無機塩溶液を再度生成する。このときの温度は、特に限定されるものではなく、無機塩の結晶を溶解できる温度であればよい。また、無機塩の溶解に用いる水は、特に限定されるものではないが、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。再度生成された無機塩溶液は、バイポーラ膜電気透析装置9に供給される。なお、再結晶工程S13-1から再溶解工程S13-3で無機塩溶液から除去される不純物には、シリカに加えて、カルシウム及び/又はマグネシウムが含まれていてもよい。
図4及び図5の実施形態では、電気透析工程S14前に無機塩溶液に含まれるシリカを除去している。これにより、電気透析工程S14において電気透析される無機溶液中の不純物の量も減るので、バイポーラ膜の性能を高く維持することができる。さらに、電気透析工程S14後の希薄な無機塩溶液(脱塩液)を蒸発濃縮装置5に供給して濃縮工程S8において再び蒸発濃縮するにあたり、脱塩液の不純物の量が減っていることで、濃縮工程S8において、蒸発濃縮装置5の熱交換器の伝熱面にスケールが発生して付着することを抑制することができる。そのうえ、炭酸化工程S11後の固液分離工程S12で析出物を分離した被処理液中の不純物の量が減ることで、固液分離工程S12後の被処理液の多くを再度系内に循環することができる。よって、固液分離工程S12後の被処理液中に残存するリチウムをより多く回収できるため、リチウムを高回収率で回収することができる。
また、図1及び図2の実施形態において、図6及び図7に示すように、酸浸出工程S1前に、廃リチウムイオン電池を焙焼する焙焼工程S0をさらに有していてもよい。焙焼工程S0において、廃リチウムイオン電池を焙焼する方法については特に限定されるものではなく、公知の焙焼装置12を用いることができる。
図6及び図7の実施形態では、焙焼装置12(焙焼工程S0)で発生した排気ガスを炭酸化槽7に供給し、炭酸化工程S11において排気ガスを炭酸ガスとして被処理液に混合している。これにより、炭酸化工程S11において使用する炭酸ガスの量を減らすことができる。なお、図4及び図5の実施形態についても、酸浸出工程S1前に廃リチウムイオン電池を焙焼する焙焼工程S0を実行可能であることはいうまでもない。
第2態様のリチウム回収方法
本開示の第2態様のリチウム回収方法は、リチウム及び無機塩が少なくとも溶解した被処理液を大気圧よりも圧力が低い低圧下で加熱して蒸発濃縮する濃縮工程と、前記濃縮工程後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程と、前記炭酸化工程により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程と、を含み、前記炭酸化工程では、被処理液の温度が前記濃縮工程における被処理液の蒸発温度以上とされていることを特徴とする。
本開示の第2態様のリチウム回収方法は、リチウム及び無機塩が少なくとも溶解した被処理液を大気圧よりも圧力が低い低圧下で加熱して蒸発濃縮する濃縮工程と、前記濃縮工程後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程と、前記炭酸化工程により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程と、を含み、前記炭酸化工程では、被処理液の温度が前記濃縮工程における被処理液の蒸発温度以上とされていることを特徴とする。
段落0089に記載のリチウム回収方法においては、前記濃縮工程では10kPa以上70kPa以下の圧力下で被処理液を蒸発濃縮することが好ましい。
また、段落0089又は段落0090に記載のリチウム回収方法においては、前記固液分離工程後の被処理液の少なくとも一部を前記濃縮工程において蒸発濃縮することが好ましい。
また、段落0089から段落0091のいずれかに記載のリチウム回収方法においては、前記濃縮工程では、被処理液に含まれる無機塩を結晶として析出させ、前記濃縮工程後の被処理液から分離された析出物に結晶として含まれる無機塩を溶解して無機塩溶液を生成する溶解工程と、前記溶解工程により得られた無機塩溶液に対してバイポーラ膜電気透析を行うことにより該無機塩溶液からアルカリとともに無機酸を分離して回収する電気透析工程と、をさらに含むことが好ましい。
また、段落0089から段落0092のいずれかに記載のリチウム回収方法においては、前記濃縮工程前に、廃リチウムイオン電池を無機酸で浸出してリチウムを溶出する酸浸出工程と、前記酸浸出工程により得られたリチウム含有液にアルカリを添加してpHを調整するpH調整工程と、をさらに含み、前記pH調整工程により析出した析出物をリチウム含有液から分離することで被処理液が生成されることが好ましい。
また、段落0093に記載のリチウム回収方法においては、前記固液分離工程後の被処理液の少なくとも一部を前記pH調整工程で添加するアルカリとして再利用することが好ましい。
また、段落0093又は段落0094に記載のリチウム回収方法においては、前記電気透析工程で回収したアルカリを前記pH調整工程で添加するアルカリとして再利用し、前記電気透析工程で回収した無機酸を前記酸浸出工程で用いる無機酸として再利用することが好ましい。
本開示の第2態様のリチウム回収方法によれば、炭酸化工程前に濃縮工程において被処理液を蒸発濃縮することで、被処理液の液量を減らして被処理液中のリチウム濃度を増加させている。よって、炭酸化工程において炭酸リチウムの回収率を良好に向上することができる。
また、濃縮工程において、低圧下で被処理液を蒸発濃縮することにより、大気圧下で被処理液を蒸発濃縮するよりも、蒸発濃縮後の被処理液の温度を低くすることができる。そのため、その後の炭酸化工程において被処理液の温度を上げる余地を大きく確保できるうえ、低圧下では被処理液の蒸発温度(被処理液に含まれる水の沸点)が下がるので、被処理液の蒸発濃縮に必要なエネルギーを低く抑えて省エネルギー化を図ることができる。そして、炭酸化工程において被処理液の温度が低いと、被処理液に含まれる無機塩が結晶化するため、炭酸化時の被処理液の温度を濃縮工程における被処理液の蒸発温度よりも上げることで、被処理液に残存する無機塩の溶解度が上がり、炭酸化の際に無機塩の結晶化を抑制することができる。また、炭酸化時に被処理液の温度が高いと、炭酸リチウムの溶解度が下がり、炭酸リチウムの結晶の回収量を増やすことができる。よって、高純度の炭酸リチウムを高効率で得ることが高めることができる。
図8は、本開示の第2態様のリチウム回収方法の実施形態について各工程の手順を示し、図9は、図8のリチウム回収方法を実施する処理装置10の概略構成を示す。本実施形態のリチウム回収方法は、リチウムに加えて、塩酸、硫酸、フッ酸、リン酸などの強酸と、カリウム、ナトリウムなどのアルカリ金属又はアルカリ土類金属との無機塩を含む被処理液を処理するのに好適に用いることができ、特に、廃リチウムイオン電池からリチウムを回収するのに好適に用いることができる。以下では、廃リチウムイオン電池からリチウムを回収する場合を例にして説明する。
本実施形態のリチウム回収方法は、
‐廃リチウムイオン電池を無機酸で浸出してリチウムを溶出する酸浸出工程S1と、
‐酸浸出工程S1により得られたリチウム含有液から不溶残渣を分離する固液分離工程S2と、
‐固液分離工程S2後のリチウム含有液にアルカリを添加してpHを調整するpH調整工程S3,S5と、
‐pH調整工程S3,S5後のリチウム含有液から析出物を分離する固液分離工程S4,S6と、
‐pH調整工程S3,S5後のリチウム含有液から析出物を分離した被処理液に対してキレート処理を行う不純物除去工程S7と、
‐不純物除去工程S7後のリチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程S8と、
‐濃縮工程S8後の被処理液から無機塩の結晶を含む析出物を分離する固液分離工程S9と、
‐固液分離工程S9後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程S10と、
‐炭酸化工程S10により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程S11と、
を含む。本実施形態のリチウム回収方法は、さらに、
‐固液分離工程S9において被処理液から分離された析出物に含まれる無機塩の結晶を溶解して無機塩溶液を生成する溶解工程S12と、
‐溶解工程S12後の無機塩溶液に対してバイポーラ膜電気透析を行うことにより該無機塩溶液からアルカリ及び無機酸を分離して回収する電気透析工程S13と、
を有する。
‐廃リチウムイオン電池を無機酸で浸出してリチウムを溶出する酸浸出工程S1と、
‐酸浸出工程S1により得られたリチウム含有液から不溶残渣を分離する固液分離工程S2と、
‐固液分離工程S2後のリチウム含有液にアルカリを添加してpHを調整するpH調整工程S3,S5と、
‐pH調整工程S3,S5後のリチウム含有液から析出物を分離する固液分離工程S4,S6と、
‐pH調整工程S3,S5後のリチウム含有液から析出物を分離した被処理液に対してキレート処理を行う不純物除去工程S7と、
‐不純物除去工程S7後のリチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程S8と、
‐濃縮工程S8後の被処理液から無機塩の結晶を含む析出物を分離する固液分離工程S9と、
‐固液分離工程S9後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程S10と、
‐炭酸化工程S10により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程S11と、
を含む。本実施形態のリチウム回収方法は、さらに、
‐固液分離工程S9において被処理液から分離された析出物に含まれる無機塩の結晶を溶解して無機塩溶液を生成する溶解工程S12と、
‐溶解工程S12後の無機塩溶液に対してバイポーラ膜電気透析を行うことにより該無機塩溶液からアルカリ及び無機酸を分離して回収する電気透析工程S13と、
を有する。
リチウムを回収する対象の廃リチウムイオン電池は、上述した第1態様と同様である。
まず、酸浸出工程S1では、上述した廃リチウムイオン電池を無機酸で浸出することにより、リチウムの他、例えばアルミニウム、ニッケル、コバルト、鉄などの金属を溶出する。無機酸としては、例えば硫酸、塩酸、硝酸、リン酸などを用いることができるが、本実施形態では塩酸が用いられている。
酸浸出工程S1において、廃リチウムイオン電池を無機酸で浸出する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、酸浸出槽1内で廃リチウムイオン電池を例えば塩酸水溶液などの無機酸の水溶液に浸漬させて所定時間攪拌することで、上述したリチウムなどの金属が溶解したリチウム含有液を得る。
次の固液分離工程S2では、酸浸出工程S1により得られたリチウム含有液を例えばろ過することにより、リチウム含有液から不溶残渣を分離する。不溶残渣は、主に無機酸に溶解しない炭素材料、金属材料、有機材料である。固液分離する方法としては、例えば、加圧ろ過(フィルタープレス)、真空ろ過、遠心ろ過などの各種ろ過装置や、デカンター型のような遠心分離装置など公知の固液分離装置を用いることができる。なお、以下の固液分離工程S4,S6,S9,S11などにおいても同様である。
次のpH調整工程S3,S5では、固液分離工程S2後のリチウム含有液(ろ液)にアルカリを添加し、pHを所定の範囲に調整することにより、リチウム含有液中の上述した金属のうち、リチウム以外の金属をリチウム含有液から除去する。アルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができるが、本実施形態では低コストかつ扱いやすい点で水酸化ナトリウムが用いられている。
pH調整工程S3,S5において、リチウム含有液のpHを調整する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、第1pH調整槽2及び第2pH調整槽3内でリチウム含有液を攪拌しながら例えば水酸化ナトリウム水溶液などのアルカリの水溶液を添加することで、リチウム含有液中のリチウム以外の金属を水酸化物などの無機塩の結晶として析出、沈殿させる。本実施形態では、pH調整工程S3,S5は、第1pH調整工程S3と第2pH調整工程S5とに分けられている。
第1pH調整工程S3では、アルカリの添加によりリチウム含有液のpHを4~7、好ましくは4~6、より好ましくは4~5に調整する。これにより、リチウム含有液中の不純物金属(例えばアルミニウム、鉄)を水酸化物(例えば水酸化アルミニウム、水酸化鉄)などの無機塩の結晶として析出、沈殿させる。第1pH調整工程S3では、リチウム含有液を例えば30℃~80℃で一定温度に加温しながら行うことが好ましい。
第1pH調整工程S3で添加されるアルカリの水溶液は、アルカリ濃度が1.0mol/L未満と希薄であることが好ましい。これにより、詳細は後述するが、第1pH調整工程S3でリチウム含有液中のコバルトが不純物金属とともにコバルト塩の結晶として析出、沈殿してリチウム含有液から除去されることを抑制できる。ただし、アルカリ濃度が過度に低いと、第1pH調整工程S3においてpH調整のためにアルカリの水溶液を大量に使用する必要があるうえ、pH調整後のリチウム含有液の液量も多量となるため、アルカリ濃度の下限は、0.1mol/L以上であることが好ましい。また、第1pH調整工程S3でリチウム含有液中のコバルトがリチウム含有液から除去されることを効果的に抑制するためには、第1pH調整工程S3で添加されるアルカリの水溶液のアルカリ濃度は、0.5mol/L以下であることが好ましく、0.2mol/L以下であることがより好ましい。
なお、この第1pH調整工程S3においては、pH調整に使用するアルカリの水溶液量を減らすために、リチウム含有液のpHが4より小さい所定値となるまでは1.0mol/L以上の濃いアルカリ濃度を有するアルカリの水溶液をリチウム含有液に添加し、リチウム含有液のpHが所定値となった後は、1.0mol/L未満の薄いアルカリ濃度を有するアルカリの水溶液をリチウム含有液に添加することで、リチウム含有液のpHを4~7に調整することもできる。上述したリチウム含有液のpHの所定値としては、2~3の範囲内で設定することができる。
第1pH工程S3で析出、沈殿した析出物は、次の固液分離工程S4において、リチウム含有液を例えばろ過することでリチウム含有液から分離される。なお、第1pH調整工程S3でリチウム含有液から除去される不純物金属には、その他、銅などが含まれていてもよい。固液分離工程S4においては、析出物を洗浄液で洗浄し、洗浄した後の洗浄廃液をリチウム含有液(ろ液)とともに、次の第2pH調整工程S5に供給することが好ましい。これにより、洗浄廃液に含まれるリチウムについてもリチウム含有液に含まれるリチウムとともに第2pH調整工程S5から炭酸化工程S10に供給することができ、後述する炭酸化工程S10で炭酸化することで、リチウムを高回収率で回収することができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、後述する濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。
第2pH調整工程S5では、固液分離工程S4後のリチウム含有液にアルカリを添加して、pHを7以上、好ましくは7~13、より好ましくは7~11、さらに好ましくは8~10の範囲に調整する。これにより、リチウム含有液中の有価金属(例えばコバルト、ニッケル)を水酸化物(例えば水酸化コバルト、水酸化ニッケル)などの無機塩の結晶として析出、沈殿させる。第2pH調整工程S5では、リチウム含有液を例えば30℃~80℃で一定温度に加温しながら行うことが好ましい。第2pH調整工程S5で添加されるアルカリの水溶液のアルカリ濃度は、特に限定されるものではないが、第1pH調整工程S3で使用したアルカリの水溶液のアルカリ濃度以上であることが好ましく、さらにはアルカリ濃度が0.2mol/L以上であることが好ましい。
第2pH工程S5で析出、沈殿した析出物は、次の固液分離工程S6において、リチウム含有液を例えばろ過することでリチウム含有液から分離される。なお、第2pH調整工程S5でリチウム含有液から除去される有価金属には、その他、マンガンなどが含まれていてもよい。
一方、固液分離工程S6後のリチウム含有液には、リチウムの他、酸浸出工程S1及びpH調整工程S3,S5において添加された無機酸(本実施形態では塩酸)及びアルカリ(本実施形態では水酸化ナトリウム)によって無機塩(本実施形態では塩化ナトリウム(NaCl))が溶解している。このpH調整工程S3,S5後のリチウム含有液が本開示のリチウム回収方法の「被処理液」に該当する。この被処理液には、さらにカルシウム、マグネシウム及びシリカのうちの少なくとも1つが溶解されていてもよい。
固液分離工程S6においては、析出物を洗浄液で洗浄し、洗浄した後の洗浄廃液を被処理液(ろ液)とともに、次の不純物除去工程S8に供給することが好ましい。これにより、洗浄廃液に含まれるリチウムについても被処理液に含まれるリチウムとともに不純物除去工程S8から炭酸化工程S10に供給することができ、後述する炭酸化工程S10で炭酸化することで、リチウムを高回収率で回収することができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、後述する濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。
次の不純物除去工程S7では、固液分離工程S6後の被処理液に含まれるカルシウム及び/又はマグネシウム等の多価陽イオンを少なくとも除去する。被処理液に不純物として含まれるカルシウムやマグネシウム等を除去することにより、後述する濃縮工程S8において、蒸発濃縮装置5の熱交換器の伝熱面にスケールが発生して付着することを抑制することができ、熱交換効率を高く維持することができる。また、被処理液にカルシウムやマグネシウム等が含まれていると、後述する電気透析工程S13において、無機溶液中に含まれるカルシウムやマグネシウム等の多価陽イオンがバイポーラ膜電気透析装置9の陽イオン交換膜内で析出し、膜の性能低下を招くおそれがある。そのため、予め被処理液からカルシウムやマグネシウム等の電気透析を運転するうえでスケーリング等の支障がでる物質を除去することにより、バイポーラ膜電気透析装置9の陽イオン交換膜への悪影響を防止することができ、電気透析の性能を高く維持することができる。
不純物除去工程S7において、被処理液からカルシウムやマグネシウムを除去する方法については特に限定されるものではなく、例えば多価陽イオン除去装置4を用いることができる。多価陽イオン除去装置4は、カルシウムイオンやマグネシウムイオンなどの2価以上の多価陽イオンを除去する装置であり、例えば、イオン交換樹脂を内部に備えていて被処理液をイオン交換樹脂に接触させてカルシウムイオンやマグネシウムイオンを吸着可能な構成のもの例示することができる。多価陽イオン除去装置4としては、その他に、キレート樹脂を充填したカラムに被処理液を通液可能な構成のものを例示することができる。キレート樹脂としては、カルシウムイオンやマグネシウムイオンを選択的に捕捉可能なものを使用することができ、例えば、イミノジ酢酸型、アミノリン酸型などを例示することができる。また多価陽イオン除去装置4としては、キレート剤を添加するものなどを挙げることができる。なお、不純物除去工程S7で被処理液から除去する不純物には、カルシウムやマグネシウムに加えて、シリカ(ケイ酸イオン)が含まれていてもよい。
次の濃縮工程S8では、不純物除去工程S7後の被処理液を加熱することにより蒸発濃縮する、すなわち、被処理液中の水分を蒸発させることで被処理液を濃縮する。これにより、被処理液の液量が減少し、被処理液中のリチウム濃度が増加する。よって、後述する炭酸化工程S10において炭酸リチウムの回収率を向上することができる。
濃縮工程S8では、濃縮後の被処理液にリチウムが例えば塩化リチウムなどのリチウム塩の結晶として析出しない程度の濃度まで被処理液を蒸発濃縮することが好ましい。これにより、濃縮後の被処理液におけるリチウムの濃度を高くすることができ、後述する炭酸化工程S10において炭酸リチウムの回収率を向上することができる。
この濃縮工程S8では、被処理液の蒸発濃縮により、被処理液中の無機塩はその濃度が上がるため結晶化する可能性がある。被処理液に含まれる無機塩は、濃縮工程S8で結晶として析出させてもよいし、析出させなくてもよい。本実施形態では、濃縮工程S8で被処理液に含まれる無機塩を結晶として析出させており、析出物を次の固液分離工程S9で被処理液から分離している。
濃縮工程S8において、被処理液を蒸発濃縮する方法については特に限定されるものではなく、例えば蒸発濃縮装置5を用いることができる。蒸発濃縮装置5としては、被処理液を蒸発により濃縮可能であれば特に限定されず、例えばヒートポンプ型、エゼクター駆動型、スチーム型、フラッシュ型などの公知の蒸発濃縮装置を用いることができるが、好ましくはヒートポンプ型の蒸発濃縮装置である。ヒートポンプ型の蒸発濃縮装置を用いた場合には、使用するエネルギーを著しく抑制することができる。
蒸発濃縮装置5は、図示しない真空ポンプが接続されていることで内部が低圧に維持されており、濃縮工程S8では被処理液を大気圧よりも圧力の低い低圧下で加熱することにより蒸発濃縮している。被処理液を蒸発濃縮すると被処理液の温度は高くなるが、低圧下では大気圧下よりも被処理液の蒸発温度(被処理液に含まれる水の沸点)が下がるので、低圧下で蒸発濃縮することにより、蒸発濃縮後の被処理液の温度はその分低くなる。そのため、後述する炭酸化工程S10において被処理液の温度を上げる余地を大きく確保することができる。そのうえ、低圧下では被処理液の蒸発温度が下がるので、被処理液の蒸発濃縮に必要なエネルギーを低く抑えて省エネルギー化を図ることができる。
蒸発濃縮装置5の内部の圧力、すなわち、被処理液を蒸発濃縮する際の雰囲気圧力は、特に限定されるものではないが、10kPa以上70kPa以下であることが好ましく、15kPa以上50kPa以下であることがより好ましい。被処理液の蒸発温度は、上記圧力との関係(飽和水蒸気圧曲線)で、45℃以上95℃以下であることが好ましく、55℃以上80℃以下であることがより好ましい。
上記圧力が10kPa以上であることで、蒸発濃縮後の被処理液の温度を過度に下がらない好適な低温度にすることができるため、後述する炭酸化工程S10で被処理液の温度を上げる際に必要なエネルギーを低く抑えることができる。また、蒸発濃縮装置5を耐圧性能が非常に高いものとする必要がないため、装置の製造コストを低く抑えることができる。一方で、上記圧力が70kPa以下であることで、蒸発濃縮後の被処理液の温度を過度に上がらない好適な低温度にすることができるため、後述する炭酸化工程S10で被処理液の温度を上げる余地を十分に確保することができる。また、被処理液の蒸発濃縮に必要なエネルギーが大きくなり過ぎず、省エネルギー化を効果的に図ることができる。
図示は省略するが、蒸発濃縮装置5の底の被処理液の液溜り部、又は蒸発濃縮装置5と後述する炭酸化槽7との間の被処理液の供給路には、温度センサが設けられており、被処理液の蒸発温度(蒸発濃縮後の被処理液の温度)が温度センサによって監視されている。また、蒸発濃縮装置5の上部の空間には、図示は省略するが圧力センサが設けられており、蒸発濃縮装置5の内部の圧力(被処理液を蒸発濃縮する際の雰囲気圧力)が圧力センサによって監視されている。
次の固液分離工程S9では、濃縮工程S8後の被処理液を例えばろ過することにより、被処理液から無機塩(本実施形態では塩化ナトリウム)の結晶を含む析出物を分離する。
次の炭酸化工程S10では、上述した無機塩の結晶を含む析出物が分離された後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加することにより、被処理液中のリチウムを炭酸リチウムの結晶として析出、沈殿させる。これにより、被処理液中のリチウムを炭酸リチウムとして回収することができる。炭酸塩としては、例えば炭酸ナトリウム、炭酸アンモニウム、炭酸カリウムなどを用いることができる。
この炭酸化工程S10においては、被処理液に炭酸ガスを混合することにより炭酸リチウムの結晶を析出、沈殿させることが好ましい。このように、炭酸化工程S10において、例えばナトリウムなどのアルカリ金属を含まない材料を用いることにより、析出する炭酸リチウムの結晶にリチウム以外のアルカリ金属が混入することを抑制することができる。よって、純度の高い炭酸リチウムを回収することができる。
ただし、炭酸ガスの混合を続けると被処理液のpHが下がるため、炭酸リチウムの析出量が減少する場合がある。そのため、被処理液のpHが7以下になる前に炭酸ガスの混合を止めることが好ましい。また、被処理液にアルカリを添加することで、pHが下がらないようにしてもよい。その際には、アルカリ添加によりpHを9以上に維持することが好ましい。添加するアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができる。
炭酸化工程S10において、被処理液に炭酸ガスを混合する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、炭酸化槽7内で被処理液を攪拌しながら被処理液中に炭酸ガスをノズルにより微細な気泡の状態で供給することで、被処理液に炭酸ガスを均一に混合することができ、被処理液中のリチウムと炭酸ガスとを効率よく反応させることができる。また、被処理液を炭酸ガスの雰囲気下に噴霧することで炭酸ガスと反応させてもよい。
炭酸化工程S10では、被処理液の温度が濃縮工程S8における被処理液の蒸発温度以上とされている。炭酸化の際に被処理液の温度が低いと、被処理液に含まれる無機塩(本実施形態では塩化ナトリウム)が結晶化する可能性がある。そのため、炭酸化工程S10において被処理液を加温して、被処理液の蒸発温度よりも炭酸化時の被処理液の温度を上げることで、炭酸化の際に被処理液に残存する無機塩の溶解度が上がり、無機塩の結晶化を抑制することができる。よって、炭酸化工程S10において炭酸リチウムを回収する際に、炭酸リチウムの純度を高めることができる。
炭酸化時の被処理液の温度は、被処理液の蒸発温度以上であれば特に限定されないが、被処理液の蒸発温度より高いことが好ましく、100℃未満であることが好ましい。炭酸化工程S10において被処理液を加温する方法としては特に限定されるものではなく、例えばヒーター等の公知の加熱手段を用いて炭酸化槽7内の被処理液を加熱する方法を用いることができる。なお、炭酸化槽7に被処理液を供給する前に予め熱交換器等の予熱手段を用いて被処理液を加温するように構成してもよい。
また、炭酸リチウムの溶解度は被処理液の温度が高くなるほど低くなる。そのため、炭酸化工程S10において被処理液の温度が上がることにより、被処理液中のリチウムと炭酸ガスとの反応で生じる炭酸リチウムの溶解度が低下する。よって、炭酸リチウムの結晶の析出量を増やすことができる。
このように、炭酸リチウムの結晶の回収量を増加できるとともに無機塩の結晶の析出量を抑制できるので、高純度の炭酸リチウムを高効率で得ることができる。
次の固液分離工程S11では、炭酸化工程S10後の被処理液を例えばろ過することにより、リチウム含有液から炭酸リチウムの結晶を含む析出物を分離する。固液分離工程S11においては、リチウム含有液から分離した析出物を水などで洗浄することで、不純物を除去し、炭酸リチウムの純度を上げることができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。
固液分離工程S11後の被処理液(ろ液)は、特に限定されるわけではないが、不純物が含まれているため、一部はブロー液として排出するが、一部は再度系内に循環することが好ましい。これにより被処理液中に残存するリチウムを回収できるため、リチウムを高回収率で回収することができる。なお、上述した炭酸リチウムの結晶を含む析出物を洗浄した後の洗浄廃液についても固液分離工程S11後の被処理液とともに、再度系内に循環することが好ましい。
固液分離工程S11後の被処理液を再度系内に循環する際には、蒸発濃縮装置5に供給して濃縮工程S8で蒸発濃縮してもよいが、好ましくは、第1pH調整槽2及び/又は第2pH調整槽3に供給する。固液分離工程S11後の被処理液はアルカリ性のため、pH調整工程S3,S5で添加するアルカリとして利用できる。さらには、固液分離工程S11後の被処理液が炭酸イオン(CO3
2-)を多く含んでいると、濃縮工程S8において蒸発濃縮される際に蒸発濃縮装置5の熱交換器の伝熱面に炭酸塩の結晶が析出する。そこで、固液分離工程S2,S4後のリチウム含有液は酸性であることから、該リチウム含有液で固液分離工程S11後の被処理液を中和して炭酸イオンを炭酸ガスとして該被処理液から抜くことで、濃縮工程S8において蒸発濃縮装置5の熱交換器の伝熱面に炭酸塩の結晶が析出することを防止することができる。
一方で、濃縮工程S8(蒸発濃縮装置5)で生成されて固液分離工程S9において被処理液から分離された析出物に含まれる無機塩(本実施形態では塩化ナトリウム)の結晶は、溶解工程S12(溶解槽8)に供給される。溶解工程S12では、溶解槽8内で無機塩の結晶を所望の濃度となるように例えば水を用いて溶解して、無機塩溶液を生成する。このときの温度は、特に限定されるものではなく、無機塩の結晶を溶解できる温度であればよい。また、無機塩の溶解に用いる水は、特に限定されるものではないが、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。生成された無機塩溶液は、バイポーラ膜電気透析装置9に供給される。
次の電気透析工程S13では、バイポーラ膜電気透析装置9により、溶解工程S12後の無機塩溶液からアルカリ及び無機酸を分離して回収する。バイポーラ膜電気透析装置9としては、例えば図10に示すように、陽極95と陰極96との間に、陰イオン交換膜91、陽イオン交換膜92及び2つのバイポーラ膜93,94を備えるセル90が複数積層された三室セル方式のバイポーラ膜電気透析装置を好適に使用することができる。本実施形態のバイポーラ膜電気透析装置9は、陰イオン交換膜91及び陽イオン交換膜92により脱塩室R1を形成し、陰イオン交換膜91及び一方のバイポーラ膜93との間に酸室R2を形成し、陽イオン交換膜92と他方のバイポーラ膜94との間にアルカリ室R3を形成している。各バイポーラ膜93,94の外側には陽極室R4と陰極室R5とが形成されており、陽極室R4に陽極95が、陰極室R5に陰極96が、それぞれ配置されている。
この電気透析工程S13では、脱塩室R1に無機塩溶液を導入し、酸室R2及びアルカリ室R3にそれぞれ純水を導入する。これにより、無機塩溶液が例えば塩化ナトリウムを含んでいる場合には、脱塩室R1においては、ナトリウムイオン(Na+)は陽イオン交換膜92を通過し、塩化物イオン(Cl-)は陰イオン交換膜91を通過する。一方、酸室R2及びアルカリ室R3においては、供給された純水がバイポーラ膜93,94において水素イオン(H+)及び水酸化物イオン(OH-)に解離され、酸室R2では水素イオン(H+)が塩化物イオン(Cl-)と結合して塩酸(HCl)が生成され、アルカリ室R3では水酸化物イオン(OH-)がナトリウムイオン(Na+)と結合して水酸化ナトリウム(NaOH)が生成される。これにより、酸室R2から無機酸として塩酸(HCl)が、アルカリ室R3からアルカリとして水酸化ナトリウム(NaOH)が、それぞれ回収される。なお、酸室R2及びアルカリ室R3に導入される純水は、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用してもよい。
脱塩室R1から排出される脱塩後の希薄な無機塩溶液(脱塩液)は、特に限定されるわけではないが、リチウムをわずかに含んでいるため、蒸発濃縮装置5に供給して、濃縮工程S8において再び蒸発濃縮することが好ましい。
また、酸室R2から回収した無機酸(本実施形態では塩酸)は、特に限定されるわけではないが、酸浸出槽1に供給して、酸浸出工程S1において廃リチウムイオン電池を浸出する無機酸として再利用することが好ましい。さらに、多価陽イオン除去装置4に供給して、不純物処理工程S7で用いるキレート樹脂又はイオン交換樹脂の再生液として再利用することが好ましい。
また、アルカリ室R3から回収したアルカリ(本実施形態では水酸化ナトリウム)は、特に限定されるわけではないが、pH調整槽2,3に供給して、pH調整工程S3,S5においてリチウム含有液のpH調整のためのアルカリとして再利用することが好ましい。さらに、多価陽イオン除去装置4に供給して、不純物処理工程S7で用いるキレート樹脂又はイオン交換樹脂の再生液として再利用することが好ましい。
上述した本実施形態のリチウム回収方法によれば、炭酸化工程S10前に濃縮工程S8において被処理液を蒸発濃縮することで、被処理液の液量を減らして被処理液中のリチウム濃度を増加させている。よって、炭酸化工程S10において炭酸リチウムの結晶の回収率を良好に向上することができる。
また、炭酸化工程S10において、被処理液の温度が低いと、被処理液に含まれる無機塩(本実施形態では塩化ナトリウム)が結晶化するため、被処理液を加温して炭酸化時の被処理液の温度を蒸発温度よりも上げることで、被処理液に残存する無機塩の溶解度が上がり、炭酸化の際に無機塩の結晶化を抑制することができる。また、炭酸化時に被処理液の温度が高いと、炭酸リチウムの溶解度が下がり、炭酸リチウムの結晶の回収量も増える。よって、高純度の炭酸リチウムを高効率で得ることが高めることができる。
また、本実施形態のリチウム回収方法によれば、炭酸化工程S10において炭酸リチウムの結晶を回収後の被処理液を廃棄することなく、第1pH調整槽2、第2pH調整槽3、蒸発濃縮装置5などの系内に循環させて被処理液中に残存するリチウムを回収している。よって、リチウムを高回収率で回収することができる。
また、本実施形態のリチウム回収方法によれば、固液分離工程S9において被処理液から分離された析出物に含まれる無機塩(本実施形態では塩化ナトリウム)の結晶を溶解工程S12で溶解して無機塩溶液とした後、電気透析工程S13においてバイポーラ膜電気透析を行うことで、無機塩溶液から無機酸及びアルカリを回収するとともに、脱塩後の希薄な無機塩溶液を濃縮工程S8において蒸発濃縮した後、炭酸化工程S10において希薄な無機塩溶液に含まれるリチウムを回収している。よって、リチウムを高回収率で回収することができる。さらに、電気透析工程S13において回収した無機酸及びアルカリを、酸浸出工程S1、pH調整工程S3,S5、不純物除去工程S7に循環させて再利用することで、各工程S1,S3,S5,S7において使用する無機酸やアルカリの量を減らすことができる。
また、本実施形態のリチウム回収方法によれば、不純物除去工程S7において被処理液に含まれるカルシウムやマグネシウム等の多価陽イオンを除去している。これにより、炭酸化工程S10後の固液分離工程S11で析出物を分離した被処理液中の不純物の量が減ることで、固液分離工程S11後の被処理液の多くを再度系内に循環することができる。よって、固液分離工程S11後の被処理液中に残存するリチウムをより多く回収できるため、リチウムを高回収率で回収することができる。さらに、電気透析工程S13において電気透析される無機溶液中の不純物の量も減るので、バイポーラ電気透析装置9の陽イオン交換膜がスケーリングにより性能低下することを防止でき、バイポーラ膜の性能を高く維持することができる。
また、本実施形態のリチウム回収方法によれば、濃縮工程S8で発生する凝縮水を各種の処理に用いているので、凝縮水を有効利用することができる。さらに、凝縮水を用いて各固液分離工程S4,S6,S9,S11により得られた結晶を洗浄することにより、各結晶の回収率を良好に向上することができる。
以上、第2態様のリチウム回収方法の一実施形態について説明したが、第2態様のリチウム回収方法は図8及び図9の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない限りにおいて種々の変更が可能である。
例えば、図8及び図9の実施形態では、濃縮工程S8前の被処理液に対してカルシウム及び/又はマグネシウムを少なくとも除去する不純物除去工程S7を行っているが、これに代えて又はこれに加えて、電気透析工程S13前の無機塩溶液に対して同様にカルシウム及び/又はマグネシウムを少なくとも除去する不純物除去工程を行ってもよい。
また、図8及び図9の実施形態では、電気透析工程S13で回収したアルカリを第1pH調整工程S3及び第2pH調整工程S5に供給しているが、いずれか一方にのみ供給するように構成してもよい。
また、図8及び図9の実施形態では、pH調整工程S3,S5が第1pH調整工程S3及び第2pH調整工程S5を含んでいるが、廃リチウムイオン電池に含まれる成分に応じて、3つ以上の工程を含むように構成してもよいし、1つの工程のみを含むように構成してもよい。
また、図8及び図9の実施形態において、図11及び図12に示すように、溶解工程S12後で電気透析工程S13前に、無機塩溶液に含まれる例えばシリカなどの不純物を除去するための処理工程を行ってもよい。この処理工程は、不純物除去工程S7に代えて又は不純物除去工程S7に加えて行うことができる。
具体的には、まず、再結晶工程S12-1において無機塩溶液に含まれる無機塩(本実施形態では塩化ナトリウム)を再結晶させる。無機塩溶液に含まれる無機塩を再結晶させる方法については特に限定されるものではなく、例えば蒸発晶析装置13による蒸発晶析を用いることができる。蒸発晶析は、無機塩溶液を加熱して溶媒を蒸発させ、無機塩の濃度を上げることで無機塩の結晶を析出させる。なお、無機塩溶液の蒸発は大気圧よりも圧力の低い低圧下で行うことが好ましい。蒸発晶析においては、蒸発晶析装置10を別途に設置せずに、蒸発濃縮装置5を使って無機塩溶液に含まれる無機塩を結晶化させてもよい。
無機塩の結晶を再析出させた後、固液分離工程S12-2において無機塩の結晶を含む水溶液から該無機塩の結晶を分離し、再結晶処理した無機塩の結晶を回収する。固液分離する方法としては、例えば、加圧ろ過(フィルタープレス)、真空ろ過、遠心ろ過などの各種ろ過装置や、デカンター型のような遠心分離装置など公知の固液分離装置を用いることができる。
そして、再溶解工程S12-3において、回収した無機塩の結晶を再溶解槽11内で所望の濃度となるように例えば水を用いて溶解して、無機塩溶液を再度生成する。このときの温度は、特に限定されるものではなく、無機塩の結晶を溶解できる温度であればよい。また、無機塩の溶解に用いる水は、特に限定されるものではないが、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。再度生成された無機塩溶液は、バイポーラ膜電気透析装置9に供給される。なお、再結晶工程S12-1から再溶解工程S12-3で無機塩溶液から除去される不純物には、シリカに加えて、カルシウム及び/又はマグネシウムが含まれていてもよい。
図11及び図12の実施形態では、電気透析工程S13前に無機塩溶液に含まれるシリカを除去している。これにより、電気透析工程S13において電気透析される無機溶液中の不純物の量も減るので、バイポーラ膜の性能を高く維持することができる。さらに、電気透析工程S13後の希薄な無機塩溶液(脱塩液)を蒸発濃縮装置5に供給して濃縮工程S8において再び蒸発濃縮するにあたり、脱塩液の不純物の量が減っていることで、濃縮工程S8において、蒸発濃縮装置5の熱交換器の伝熱面にスケールが発生して付着することを抑制することができる。そのうえ、炭酸化工程S10後の固液分離工程S11で析出物を分離した被処理液中の不純物の量が減ることで、固液分離工程S11後の被処理液の多くを再度系内に循環することができる。よって、固液分離工程S11後の被処理液中に残存するリチウムをより多く回収できるため、リチウムを高回収率で回収することができる。
また、図8及び図9の実施形態において、図13及び図14に示すように、酸浸出工程S1前に、廃リチウムイオン電池を焙焼する焙焼工程S0をさらに有していてもよい。焙焼工程S0において、廃リチウムイオン電池を焙焼する方法については特に限定されるものではなく、公知の焙焼装置12を用いることができる。
図13及び図14の実施形態では、焙焼装置12(焙焼工程S0)で発生した排気ガスを炭酸化槽7に供給し、炭酸化工程S10において排気ガスを炭酸ガスとして被処理液に混合している。これにより、炭酸化工程S10において使用する炭酸ガスの量を減らすことができる。また、炭酸化工程S10において被処理液を加温することができる。なお、図11及び図12の実施形態についても、酸浸出工程S1前に廃リチウムイオン電池を焙焼する焙焼工程S0を実行可能であることはいうまでもない。
上述した実施形態のリチウム回収方法は、廃リチウムイオン電池からリチウムを回収する場合を例にしているが、本開示のリチウム回収方法は、廃リチウムイオン電池からリチウムを回収するために用いられる方法には限定されない。
コバルト回収方法
廃リチウムイオン電池から有価金属のコバルトを回収することは資源の有効利用の観点から極めて重要である。しかし。背景技術における特許文献1に記載の廃リチウムイオン電池からコバルトを回収する方法では、酸浸出液からアルミニウムなどの不純物金属を除去するために酸浸出液のpHを4以上にするが、この際、不純物金属の塩の結晶と一緒にコバルト塩の結晶も析出、沈殿して不純物金属とともにコバルトが酸浸出液から除去され、その後のコバルト回収の際にコバルトの回収率が低くなるおそれがあるとの課題がある。
廃リチウムイオン電池から有価金属のコバルトを回収することは資源の有効利用の観点から極めて重要である。しかし。背景技術における特許文献1に記載の廃リチウムイオン電池からコバルトを回収する方法では、酸浸出液からアルミニウムなどの不純物金属を除去するために酸浸出液のpHを4以上にするが、この際、不純物金属の塩の結晶と一緒にコバルト塩の結晶も析出、沈殿して不純物金属とともにコバルトが酸浸出液から除去され、その後のコバルト回収の際にコバルトの回収率が低くなるおそれがあるとの課題がある。
本開示は、上記課題を解決するために、コバルト及び不純物金属が溶解した被処理液からコバルトを高回収率で回収することができるコバルト回収方法を提供することを目的とする。
本発明者は、上記課題を解決すべく鋭意検討を行った結果、コバルト及び不純物金属が少なくとも溶解した被処理液のpHを調整することで不純物金属の塩を結晶として析出させる際に、被処理液に添加するアルカリの水溶液の濃度が高いと、不純物金属の塩の結晶と一緒にコバルト塩の結晶が析出して、被処理液から不純物金属とともにコバルトが除去されることを見出した。本開示のコバルト回収方法は、このような知見に基づいて更に研究を重ねた結果、完成されたものである。即ち、本開示は下記態様のコバルト回収方法を提供する。
本開示のコバルト回収方法は、コバルト及び不純物金属が少なくとも溶解した酸性の被処理液にアルカリの水溶液を添加してpHを4~7に調整することで、該不純物金属の塩を結晶として析出させる第1pH調整工程と、前記第1pH調整工程により析出した不純物金属の塩の結晶を含む析出物を被処理液から分離する第1固液分離工程と、前記第1固液分離工程後の被処理液にアルカリの水溶液を添加してpHを7以上に調整することで、コバルト塩の結晶を析出させる第2pH調整工程と、前記第2pH調整工程により析出したコバルト塩の結晶を含む析出物を被処理液から分離する第2固液分離工程と、を有し、前記第1pH調整工程で添加されるアルカリの水溶液のアルカリ濃度が1.0mol/L未満であることを特徴とする。
段落0163に記載のコバルト回収方法においては、前記第1pH調整工程で添加されるアルカリの水溶液のアルカリ濃度が0.1mol/L以上であることが好ましい。
また、段落0163又は段落0164に記載のコバルト回収方法においては、前記第1pH調整工程では、被処理液のpHが4より小さい所定値となるまでは1.0mol/L以上のアルカリ濃度を有するアルカリの水溶液を被処理液に添加し、その後、1.0mol/L未満のアルカリ濃度を有するアルカリの水溶液を被処理液に添加して、被処理液のpHを4~7に調整することが好ましい。
また、段落0163から段落0165のいずれかに記載のコバルト回収方法においては、被処理液にリチウムが溶解しており、前記第2固液分離工程後の被処理液を蒸発濃縮する濃縮工程と、前記濃縮工程後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程と、を有することが好ましい。
また、段落0166に記載のコバルト回収方法においては、前記炭酸化工程により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する第3固液分離工程と、前記第3固液分離工程後の被処理液に対してバイポーラ膜電気透析を行うことにより該被処理液からアルカリを分離して回収する電気透析工程と、をさらに有し、前記電気透析工程で回収したアルカリを前記第1pH調整工程及び/又は前記第2pH調整工程で用いるアルカリとして再利用することが好ましい。
本開示のコバルト回収方法によれば、コバルト及び不純物金属が溶解した被処理液に対して、第1pH調整工程で被処理液から不純物金属を除去する際に、アルカリ濃度が1.0mol/L未満の希薄なアルカリの水溶液で被処理液のpH調整を行うことで、被処理液からコバルトが不純物金属とともに除去されることを抑制することができる。よって、第2pH調整工程に供給される被処理液中のコバルトの量を高く維持することができるので、第2pH調整工程においてコバルトを高回収率で回収することができる。
図15は、本開示のコバルト回収方法の実施形態について各工程の手順を示し、図16は、図15のコバルト回収方法を実施する処理装置10の概略構成を示す。本実施形態のコバルト回収方法は、廃リチウムイオン電池からコバルトに加えてリチウムを回収する場合を例にして説明する。
本実施形態のコバルト回収方法は、
‐廃リチウムイオン電池を無機酸で浸出してコバルト及びリチウムを溶出する酸浸出工程S1と、
‐酸浸出工程S1により得られた被処理液から不溶残渣を分離する固液分離工程S2と、‐固液分離工程S2後の被処理液にアルカリの水溶液を添加してpHを4~7に調整する第1pH調整工程S3と、
‐第1pH調整工程S3により析出した不純物金属の塩の結晶を含む析出物を被処理液から分離する固液分離工程S4(段落0163に記載の「第1固液分離工程」に該当)と、
‐固液分離工程S4後の被処理液にアルカリの水溶液を添加してpHを7以上に調整する第2pH調整工程S5と、
‐第2pH調整工程S5により析出したコバルト塩の結晶を含む析出物を被処理液から分離する固液分離工程S6(段落0163に記載の「第2固液分離工程」に該当)と、
‐固液分離工程S6後の被処理液を蒸発濃縮する濃縮工程S7と、
‐濃縮工程S7後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程S8と、
‐炭酸化工程S8により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程S9(段落0167に記載の「第3固液分離工程」に該当)と、
‐固液分離工程S9後の被処理液に対してバイポーラ膜電気透析を行うことにより該被処理液から少なくとも水酸化リチウムを含むアルカリ及び無機酸を分離して回収する電気透析工程S10と、
を有する。
‐廃リチウムイオン電池を無機酸で浸出してコバルト及びリチウムを溶出する酸浸出工程S1と、
‐酸浸出工程S1により得られた被処理液から不溶残渣を分離する固液分離工程S2と、‐固液分離工程S2後の被処理液にアルカリの水溶液を添加してpHを4~7に調整する第1pH調整工程S3と、
‐第1pH調整工程S3により析出した不純物金属の塩の結晶を含む析出物を被処理液から分離する固液分離工程S4(段落0163に記載の「第1固液分離工程」に該当)と、
‐固液分離工程S4後の被処理液にアルカリの水溶液を添加してpHを7以上に調整する第2pH調整工程S5と、
‐第2pH調整工程S5により析出したコバルト塩の結晶を含む析出物を被処理液から分離する固液分離工程S6(段落0163に記載の「第2固液分離工程」に該当)と、
‐固液分離工程S6後の被処理液を蒸発濃縮する濃縮工程S7と、
‐濃縮工程S7後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程S8と、
‐炭酸化工程S8により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する固液分離工程S9(段落0167に記載の「第3固液分離工程」に該当)と、
‐固液分離工程S9後の被処理液に対してバイポーラ膜電気透析を行うことにより該被処理液から少なくとも水酸化リチウムを含むアルカリ及び無機酸を分離して回収する電気透析工程S10と、
を有する。
コバルトを回収する対象の廃リチウムイオン電池は、上述したリチウム回収方法と同様である。
まず、酸浸出工程S1では、上述した廃リチウムイオン電池を無機酸で浸出することによりコバルト及びリチウムの他、例えばアルミニウム、ニッケル、鉄などの金属を溶出する。無機酸としては、例えば硫酸、塩酸、硝酸、リン酸などを用いることができるが、本実施形態では低コストかつ扱いやすい点で硫酸が用いられている。
酸浸出工程S1において、廃リチウムイオン電池を無機酸で浸出する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、酸浸出槽1内で廃リチウムイオン電池を例えば硫酸水溶液などの無機酸の水溶液に浸漬させて所定時間攪拌することで、上述したコバルトなどの金属が溶解した酸性の被処理液を得る。酸浸出工程S1では、水溶液中の無機酸の濃度が1mol~5mol/Lであることが好ましく、水溶液の温度は60℃以上が好ましい。
次の固液分離工程S2では、酸浸出工程S1により得られた被処理液を例えばろ過することにより、被処理液から不溶残渣を分離する。不溶残渣は、主に無機酸に溶解しない炭素材料、金属材料、有機材料である。固液分離する方法としては、例えば、加圧ろ過(フィルタープレス)、真空ろ過、遠心ろ過などの各種ろ過装置や、デカンター型のような遠心分離装置など公知の固液分離装置を用いることができる。なお、以下の固液分離工程S4,S6,S9などにおいても同様である。
次の第1pH調整工程S3では、固液分離工程S2後の被処理液(ろ液)にアルカリの水溶液を添加し、pHを4~7、好ましくは4~6、より好ましくは4~5に調整する。これにより、被処理液中の上述した金属のうち、不純物金属(例えばアルミニウム、鉄)を被処理液から除去する。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができるが、本実施形態では水酸化リチウムが用いられている。
第1pH調整工程S3において、被処理液のpHを調整する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、第1pH調整槽2内で被処理液を攪拌しながら例えば水酸化リチウム水溶液などのアルカリの水溶液を添加することで、被処理液中の不純物金属を水酸化物(例えば水酸化アルミニウム、水酸化鉄)などの無機塩の結晶として析出、沈殿させる。第1pH調整工程S3では、被処理液を例えば30℃~80℃で一定温度に加温しながら行うことが好ましい。
第1pH調整工程S3で添加されるアルカリの水溶液は、アルカリ濃度が1.0mol/L未満と希薄である。これにより、詳細は後述するが、第1pH調整工程S3で被処理液中のコバルトが不純物金属とともにコバルト塩の結晶として析出、沈殿して被処理液から除去されることを抑制できる。ただし、アルカリ濃度が過度に低いと、第1pH調整工程S3においてpH調整のためにアルカリの水溶液を大量に使用する必要があるうえ、pH調整後の被処理液の液量も多量となるため、アルカリ濃度の下限は、0.1mol/L以上であることが好ましい。また、第1pH調整工程S3で被処理液中のコバルトが被処理液から除去されることを効果的に抑制するためには、第1pH調整工程S3で添加されるアルカリの水溶液のアルカリ濃度は、0.5mol/L以下であることが好ましく、0.2mol/L以下であることがより好ましい。
なお、この第1pH調整工程S3においては、pH調整に使用するアルカリの水溶液量を減らすために、被処理液のpHが4より小さい所定値となるまでは1.0mol/L以上の濃いアルカリ濃度を有するアルカリの水溶液を被処理液に添加し、被処理液のpHが所定値となった後は、1.0mol/L未満の薄いアルカリ濃度を有するアルカリの水溶液を被処理液に添加することで、被処理液のpHを4~7に調整することもできる。上述した被処理液のpHの所定値としては、2~3の範囲内で設定することができる。
第1pH工程S3で析出、沈殿した析出物は、次の固液分離工程S4において、被処理液を例えばろ過することで被処理液から分離される。なお、第1pH工程S3で被処理液から除去される不純物金属には、その他、銅などが含まれていてもよい。固液分離工程S4においては、析出物を洗浄液で洗浄し、洗浄した後の洗浄廃液を被処理液(ろ液)とともに、次の第2pH調整工程S5に供給することが好ましい。これにより、洗浄廃液に含まれるリチウムについても被処理液に含まれるリチウムとともに第2pH調整工程S5から炭酸化工程S8に供給することができ、後述する炭酸化工程S8で炭酸化することで、リチウムを高回収率で回収することができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、後述する濃縮工程S7において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。
第2pH調整工程S5では、固液分離工程S4後の被処理液(ろ液)にアルカリの水溶液を添加して、pHを7以上、好ましくは7~13、より好ましくは7~11、さらに好ましくは8~10に調整する。これにより、被処理液中の上述した金属のうち、コバルト、さらにはニッケルなどの有価金属を被処理液から除去する。アルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを用いることができるが、本実施形態では水酸化リチウムが用いられている。
第2pH調整工程S5において、被処理液のpHを調整する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば、第2pH調整槽3内で被処理液を攪拌しながら例えば水酸化リチウム水溶液などのアルカリの水溶液を添加することで、被処理液中の有価金属を水酸化物(例えば水酸化鉄コバルト、さらには水酸化ニッケル)などの無機塩の結晶として析出、沈殿させる。これにより、被処理液中のコバルトを水酸化コバルトなどのコバルト塩として回収することができる。第2pH調整工程S5では、被処理液を例えば30℃~80℃で一定温度に加温しながら行うことが好ましい。第2pH調整工程S5で添加されるアルカリの水溶液のアルカリ濃度は、特に限定されるものではないが、第1pH調整工程S3で使用したアルカリの水溶液のアルカリ濃度以上であることが好ましく、さらにはアルカリ濃度が0.2mol/L以上であることが好ましい。
第2pH工程S5で析出、沈殿した析出物は、次の固液分離工程S6において、被処理液を例えばろ過することで被処理液から分離される。なお、第2pH調整工程S5で被処理液から除去される有価金属には、その他、マンガンなどが含まれていてもよい。一方、固液分離工程S6後の被処理液(ろ液)中には、リチウム及び無機酸の陰イオン(例えば硫酸イオン)が含まれている。
固液分離工程S6においては、析出物を洗浄液で洗浄し、洗浄した後の洗浄廃液を被処理液(ろ液)とともに、次の濃縮工程S7に供給することが好ましい。これにより、洗浄廃液に含まれるリチウムについても被処理液に含まれるリチウムとともに濃縮工程S7から炭酸化工程S8に供給することができ、後述する炭酸化工程S8で炭酸化することで、リチウムを高回収率で回収することができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、濃縮工程S7において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。
なお、この第1pH調整工程S3及び第2pH調整工程S5において、使用するアルカリを水酸化リチウムとすることにより、水酸化ナトリウムなどの他のアルカリ金属の水酸化物を用いた場合に比べて、後述する炭酸化工程S8において析出する炭酸リチウムの結晶について、例えばナトリウムなどのリチウム以外のアルカリ金属の混入を抑制することができる。よって、純度の高い炭酸リチウムを回収することができる。
次の濃縮工程S7では、固液分離工程S6後のリチウムを含有する被処理液を加熱することにより蒸発濃縮する、すなわち、被処理液中の水分を蒸発させることで被処理液を濃縮する。これにより、被処理液の液量が減少して被処理液中のリチウム濃度が増加する。よって、後述する炭酸化工程S8において炭酸リチウムの回収率を向上することができる。
また、濃縮工程S7では、被処理液を蒸発濃縮することにより、濃縮後の被処理液の温度を高くすることができ、後述する炭酸化工程S8において炭酸リチウムの回収率を向上することができる。炭酸リチウムの溶解度は温度が高くなるほど低くなるため、炭酸化工程S8において、被処理液の温度が高くなることにより、被処理液中のリチウムと炭酸ガスとの反応で生じる炭酸リチウムの溶解度が低下するため、炭酸リチウムの結晶の析出量を増やすことができる。
濃縮工程S7では、濃縮後の被処理液にリチウムが例えば硫酸リチウムなどのリチウム塩の結晶として析出しない程度の濃度まで被処理液を濃縮することが好ましい。これにより、濃縮後の被処理液におけるリチウムの濃度を高くすることができ、後述する炭酸化工程S8において炭酸リチウムの回収率を向上することができる。なお、濃縮工程S7で析出物が析出した場合には、被処理液からこれを分離する固液分離工程を行ってもよい。
濃縮工程S7において、被処理液を蒸発濃縮する方法については特に限定されるものではなく、例えば蒸発濃縮装置5を用いることができる。蒸発濃縮装置5としては、被処理液を蒸発により濃縮可能であれば特に限定されず、例えばヒートポンプ型、エゼクター駆動型、スチーム型、フラッシュ型などの公知の蒸発濃縮装置を用いることができるが、好ましくはヒートポンプ型の蒸発濃縮装置である。ヒートポンプ型の蒸発濃縮装置を用いた場合には、使用するエネルギーを著しく抑制することができる。また、減圧雰囲気下で被処理液の濃縮を行うことで、さらに省エネルギー化を図ることができる。
次の炭酸化工程S8では、濃縮工程S7後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加することにより、被処理液中のリチウムを炭酸リチウムの結晶として析出、沈殿させる。これにより、被処理液中のリチウムを炭酸リチウムとして回収することができる。炭酸塩としては、例えば炭酸ナトリウム、炭酸アンモニウム、炭酸カリウムなどを用いることができる。
この炭酸化工程S8においては、被処理液に炭酸ガスを混合することにより炭酸リチウムの結晶を析出、沈殿させることが好ましい。このように、炭酸化工程S8において、例えばナトリウムなどのアルカリ金属を含まない材料を用いることにより、析出する炭酸リチウムの結晶にリチウム以外のアルカリ金属が混入することを抑制することができる。よって、純度の高い炭酸リチウムを回収することができる。
炭酸化工程S8において、被処理液に炭酸ガスを混合する方法については特に限定されるものではなく、通常行われている方法を用いることができる。例えば炭酸化槽7内で被処理液を攪拌しながら被処理液中に炭酸ガスをノズルにより微細な気泡の状態で供給することで、被処理液に炭酸ガスを均一に混合することができ、被処理液中のリチウムと炭酸ガスとを効率よく反応させることができる。また、被処理液を炭酸ガスの雰囲気下に噴霧することで炭酸ガスと反応させてもよい。
炭酸リチウムの溶解度は温度が高くなるほど低くなるため、炭酸化工程S8においては、被処理液を加温することが好ましい。これにより、被処理液中のリチウムと炭酸ガスとの反応で生じる炭酸リチウムの溶解度が低下するので、炭酸リチウムの結晶の析出量を増やすことができる。
次の固液分離工程S9では、炭酸化工程S8後の被処理液を例えばろ過することにより、被処理液から炭酸リチウムの結晶を含む析出物を分離する。固液分離工程S9においては、被処理液から分離した析出物を水などで洗浄することで、不純物を除去し、炭酸リチウムの純度を上げることができる。この析出物の洗浄に用いる水は、特に限定されるものではないが、濃縮工程S7において被処理液を蒸発濃縮した際に発生する凝縮水を利用することが好ましく、これにより、凝縮水の有効利用が可能である。なお、析出物を洗浄した後の洗浄廃液は、固液分離工程S9後の被処理液(ろ液)とともに、後述する電気透析工程S10のバイポーラ膜電気透析装置6に供給することが好ましい。
次の電気透析工程S10では、固液分離工程S9後の被処理液をバイポーラ膜電気透析装置6に供給することにより、該被処理液からアルカリ及び無機酸を分離して回収する。バイポーラ膜電気透析装置9としては、例えば図17に示すように、陽極95と陰極96との間に、陰イオン交換膜91、陽イオン交換膜92及び2つのバイポーラ膜93,94を備えるセル90が複数積層された三室セル方式のバイポーラ膜電気透析装置を好適に使用することができる。本実施形態のバイポーラ膜電気透析装置9は、陰イオン交換膜91及び陽イオン交換膜92により脱塩室R1を形成し、陰イオン交換膜91及び一方のバイポーラ膜93との間に酸室R2を形成し、陽イオン交換膜92と他方のバイポーラ膜94との間にアルカリ室R3を形成している。各バイポーラ膜93,94の外側には陽極室R4と陰極室R5とが形成されており、陽極室R4に陽極95が、陰極室R5に陰極96が、それぞれ配置されている。
この電気透析工程S10では、脱塩室R1に被処理液を導入し、酸室R2及びアルカリ室R3にそれぞれ純水を導入することで、被処理液がリチウムと無機酸の陰イオン(本実施形態では硫酸イオン)とを含む場合、脱塩室R1においては、リチウムイオン(Li+)は陽イオン交換膜92を通過し、硫酸イオン(SO4
2-)は陰イオン交換膜91を通過する。一方、酸室R2及びアルカリ室R3においては、供給された純水がバイポーラ膜93,94において水素イオン(H+)及び水酸化物イオン(OH-)に解離され、酸室R2では水素イオン(H+)が硫酸イオン(SO4
2-)と結合して硫酸(H2SO4)が生成され、アルカリ室R3では水酸化物イオン(OH-)がリチウムイオン(Li+)と結合して水酸化リチウム(LiOH)が生成される。これにより、酸室R2から無機酸として硫酸(H2SO4)が、アルカリ室R3からアルカリとして水酸化リチウム(LiOH)が、それぞれ回収される。なお、酸室R2及びアルカリ室R3に導入される純水は、濃縮工程S8において被処理液を蒸発濃縮した際に発生する凝縮水を利用してもよい。
脱塩室R1から排出される脱塩後の希薄な被処理液(脱塩液)は、特に限定されるわけではないが、リチウムをわずかに含んでいるため、少なくとも一部を濃縮工程S7(蒸発濃縮装置5)又は後述する濃縮工程S7前の不純物除去工程(多価陽イオン除去装置)に供給して、再び濃縮工程S7で濃縮した後に炭酸化工程S8で炭酸化することが好ましい。これにより、リチウムを高回収率で回収することができる。なお、脱塩液は、本実施形態では濃縮工程S7に供給しているが、第1pH調整工程S3に供給してもよい。これにより、脱塩液にコバルトが残存している場合に、コバルトの回収率を上げることができる。
また、酸室R2から回収した無機酸(本実施形態では硫酸)は、特に限定されるわけではないが、酸浸出槽1に供給して、酸浸出工程S1において廃リチウムイオン電池を浸出する無機酸として再利用することが好ましい。
また、アルカリ室R3から回収したアルカリ(本実施形態では水酸化リチウム)は、特に限定されるわけではないが、pH調整槽2,3に供給して、pH調整工程S3,S5において被処理液のpH調整のためのアルカリとして再利用することが好ましい。
上述した本実施形態のコバルト回収方法によれば、コバルト及び不純物金属が溶解した被処理液に対して、第1pH調整工程S3で被処理液から不純物金属を除去する際に、アルカリ濃度が1.0mol/L未満の希薄なアルカリの水溶液で被処理液のpH調整を行うことで、被処理液からコバルトが不純物金属とともに除去されることを抑制することができる。よって、第2pH調整工程S5に供給される被処理液中のコバルトの量を高く維持することができるので、第2pH調整工程S5においてコバルトを高回収率で回収することができる。
また、本実施形態のコバルト回収方法によれば、第1pH調整工程S3においてアルカリ濃度が1.0mol/L未満の希薄なアルカリの水溶液を使用しているため、その後のリチウムを回収するための炭酸化工程S8に供給される被処理液の液量が多量となるが、炭酸化工程S8前に濃縮工程S7において被処理液を蒸発濃縮することで、被処理液の液量を減らして被処理液中のリチウム濃度を増加させている。よって、炭酸化工程S8において炭酸リチウムの回収率を良好に向上することができる。そのうえ、被処理液の蒸発濃縮に伴い、炭酸化工程S8に供給される被処理液の温度が高くなるので、炭酸リチウムの溶解度が低下して、炭酸リチウムの析出量を増やすことができる。
なお、第1pH調整工程S3で被処理液のpHを4~7に調整する際に、被処理液のpHが所定値となるまではアルカリ濃度が1.0mol/L以上のアルカリの水溶液を被処理液に添加し、被処理液のpHが所定値となった後、アルカリ濃度が1.0mol/L未満のアルカリの水溶液を被処理液に添加することで、pH調整に使用するアルカリの水溶液量を減らすことができる。
また、本実施形態のコバルト回収方法によれば、電気透析工程S10において回収した無機酸及びアルカリを、それぞれ酸浸出工程S1及びpH調整工程S3,S5に循環させて再利用することで、各工程S1,S3,S5において使用する無機酸やアルカリの量を減らすことができる。
以上、本開示のコバルト回収方法の一実施形態について説明したが、本開示のコバルト回収方法は図15及び図16の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない限りにおいて種々の変更が可能である。
例えば、図15及び図16の実施形態では、電気透析工程S10で回収したアルカリを第1pH調整工程S3及び第2pH調整工程S5に供給しているが、いずれか一方にのみ供給するように構成してもよい。
また、図15及び図16の実施形態では、電気透析工程S10により水酸化リチウムを回収した後の希薄な被処理液(脱塩液)について、少なくとも一部を濃縮工程S7に供給しているが、これに代えて又はこれに加えて、電気透析工程S10に供給するように構成してもよい。
また、図15及び図16の実施形態のでは、炭酸化工程S8の前に濃縮工程S7を有しているが、濃縮工程S7は必ずしも有している必要はない。なお、この場合、電気透析工程S10により水酸化リチウムを回収した後の希薄な被処理液(脱塩液)について、少なくとも一部を炭酸化工程S8に供給するように構成することができる。
また、図15及び図16の実施形態において、濃縮工程S7前の被処理液及び/又は電気透析工程S10に供給する被処理液に対して、被処理液中の2価以上の多価陽イオン(代表的には、カルシウムイオンやマグネシウムイオン)の不純物を除去するように構成してもよい。被処理液中にカルシウムイオンやマグネシウムイオンなどの多価陽イオンが存在していると、この多価陽イオンがバイポーラ膜電気透析装置9の陽イオン交換膜内で析出し、膜の性能低下を招くおそれがあるが、多価陽イオンを事前に被処理液中から除去することで、バイポーラ膜電気透析装置9における陽イオン交換膜への悪影響を防止することができる。この多価陽イオンの除去の具体的な構成は、特に限定されるものではなく、例えばキレート樹脂を充填したカラムに被処理液を通液可能な公知の多価陽イオン除去装置を例示することができる。キレート樹脂としては、カルシウムイオンやマグネシウムイオンを選択的に捕捉可能なものを使用することができ、例えば、イミノジ酢酸型、アミノリン酸型などを例示することができる。多価陽イオン除去装置としては、その他に、キレート剤を添加するものや、イオン交換樹脂を利用するものなどを挙げることができる。なお、被処理液から除去する不純物には、カルシウムやマグネシウムに加えて、シリカ(ケイ酸イオン)が含まれていてもよい。
また、図15及び図16の実施形態において、図18及び図19に示すように、酸浸出工程S1前に、廃リチウムイオン電池を焙焼する焙焼工程S0をさらに有していてもよい。焙焼工程S0において、廃リチウムイオン電池を焙焼する方法については特に限定されるものではなく、公知の焙焼装置12を用いることができる。
図18及び図19の実施形態では、焙焼装置12(焙焼工程S0)で発生した排気ガスを炭酸化槽7(炭酸化工程S8)に供給して、炭酸ガスとして被処理液に混合している。これにより、炭酸化工程S8において使用する炭酸ガスの量を減らすことができる。
また、図15及び図16の実施形態において、濃縮工程S7以後の工程におけるリチウムの回収方法については、特に限定されるものではなく、上述した本開示のリチウム回収方法であってもよい。なお、上述した実施形態のリチウム回収方法は、酸浸出工程S1から固液分離工程S6において本開示のコバルト回収方法が用いられている。
また、上述した実施形態のコバルト回収方法は、廃リチウムイオン電池からコバルトを回収する場合を例にしているが、本開示のコバルト回収方法は、廃リチウムイオン電池からコバルトを回収するために用いられる方法には限定されない。
試験例
第1pH調整工程S3で添加されるアルカリの水溶液のアルカリ濃度について、本発明者は以下の試験を行った。具体的に、以下の表1に示す成分を有する被処理液200mlに対して、アルカリの水溶液を添加することで被処理液のpHを調整する処理(第1pH調整工程S3)を行った。添加するアルカリの水溶液としては水酸化リチウム水溶液を使用した。水酸化リチウム水溶液のアルカリ濃度は、0.2mol/L(実施例1)、0.5mol/L(実施例2)、1.0mol/L(実施例3)とし、被処理液のpHが4.7となるように水酸化リチウム水溶液の添加量を調整した。水酸化リチウム水溶液の添加量は、実施例1では418.6ml、実施例2では168.5ml、実施例3では86.3mlであった。なお、水酸化リチウム水溶液の添加により、被処理液中のリチウムの含有量は、実施例1で582mg、実施例2で585mg、実施例3で599mg、さらに増加する。
第1pH調整工程S3で添加されるアルカリの水溶液のアルカリ濃度について、本発明者は以下の試験を行った。具体的に、以下の表1に示す成分を有する被処理液200mlに対して、アルカリの水溶液を添加することで被処理液のpHを調整する処理(第1pH調整工程S3)を行った。添加するアルカリの水溶液としては水酸化リチウム水溶液を使用した。水酸化リチウム水溶液のアルカリ濃度は、0.2mol/L(実施例1)、0.5mol/L(実施例2)、1.0mol/L(実施例3)とし、被処理液のpHが4.7となるように水酸化リチウム水溶液の添加量を調整した。水酸化リチウム水溶液の添加量は、実施例1では418.6ml、実施例2では168.5ml、実施例3では86.3mlであった。なお、水酸化リチウム水溶液の添加により、被処理液中のリチウムの含有量は、実施例1で582mg、実施例2で585mg、実施例3で599mg、さらに増加する。
そして、pH調整後の被処理液をろ紙を用いてろ過し、ろ過により得られたろ液に含まれる各成分の含有量を測定した。その結果を表2に示す。
一方で、pH調整後の被処理液のろ過により得られたろ過残渣の表面状態を確認した。その結果を図20から図22に示す。なお、図20が実施例1を示し、図21が実施例2を示し、図22が実施例3を示している。図22によれば、実施例3ではろ過残渣に水酸化コバルトが含まれていることを目視にて確認できたが、図20及び図21によれば、実施例1,2ではろ過残渣に水酸化コバルトが含まれていることを目視では確認できなかった。
以上の結果から、図20から図22によると、第1pH調整工程S3で被処理液に添加するアルカリ水溶液のアルカリ濃度が1.0mol/Lの場合には、被処理液のpH調整後のろ過残渣に多くのコバルト塩が含まれていることが確認された。また、表2によると、第1pH調整工程S3で被処理液に添加するアルカリ水溶液のアルカリ濃度が1.0mol/Lの場合には、pH調整後の被処理液(ろ液)のコバルト回収率が85%を下回っているのに対して、アルカリ濃度が1.0mol/L未満の場合には、pH調整後の被処理液(ろ液)のコバルト回収率が85%以上であり、被処理液(ろ液)にコバルトが多く残存していることが確認された。
このように、第1pH調整工程S3で被処理液に添加するアルカリ水溶液のアルカリ濃度を1.0mol/L未満とすることで、第1pH調整工程S3において被処理液からコバルトが不純物金属(例えばアルミニウム)とともに除去されることを抑制でき、次の第2pH調整工程S5に供給される被処理液中のコバルトの含有量を高く維持できることが分かる。よって、第2pH調整工程S5においてコバルトを高回収率で回収することが可能である。
S0 焙焼工程
S1 酸浸出工程
S3 第1pH調整工程(pH調整工程)
S5 第2pH調整工程(pH調整工程)
S7 不純物除去工程
S8 濃縮工程
S9 晶析工程
S10 固液分離工程(第1固液分離工程)
S11 炭酸化工程
S12 固液分離工程(第2固液分離工程)
S13 溶解工程
S13-1 再結晶工程
S13-3 再溶解工程
S14 電気透析工程
S1 酸浸出工程
S3 第1pH調整工程(pH調整工程)
S5 第2pH調整工程(pH調整工程)
S7 不純物除去工程
S8 濃縮工程
S9 晶析工程
S10 固液分離工程(第1固液分離工程)
S11 炭酸化工程
S12 固液分離工程(第2固液分離工程)
S13 溶解工程
S13-1 再結晶工程
S13-3 再溶解工程
S14 電気透析工程
Claims (7)
- リチウム及び無機塩が少なくとも溶解した被処理液を蒸発濃縮する濃縮工程と、
前記濃縮工程後の被処理液を冷却晶析して無機塩を結晶として析出させる晶析工程と、
前記晶析工程後の被処理液から無機塩の結晶を含む析出物を分離する第1固液分離工程と、
前記第1固液分離工程後の被処理液に炭酸ガスを混合する及び/又は水溶性の炭酸塩を添加する炭酸化工程と、
前記炭酸化工程により析出した炭酸リチウムの結晶を含む析出物を被処理液から分離する第2固液分離工程と、を有する、リチウム回収方法。 - 前記第2固液分離工程後の被処理液の少なくとも一部を前記濃縮工程において蒸発濃縮する、請求項1に記載のリチウム回収方法。
- 前記第1固液分離工程において被処理液から分離された析出物に結晶として含まれる無機塩を溶解して無機塩溶液を生成する溶解工程と、
前記溶解工程により得られた無機塩溶液に対してバイポーラ膜電気透析を行うことにより該無機塩溶液からアルカリとともに無機酸を分離して回収する電気透析工程と、をさらに有する、請求項1又は2に記載のリチウム回収方法。 - 前記バイポーラ膜電気透析による脱塩後の無機塩溶液を前記濃縮工程において蒸発濃縮する、請求項3に記載のリチウム回収方法。
- 前記濃縮工程前に、
廃リチウムイオン電池を無機酸で浸出してリチウムを溶出する酸浸出工程と、
前記酸浸出工程により得られたリチウム含有液にアルカリを添加してpHを調整するpH調整工程と、をさらに有し、
前記pH調整工程により析出した析出物をリチウム含有液から分離することで被処理液が生成される、請求項1から4のいずれかに記載のリチウム回収方法。 - 前記第2固液分離工程後の被処理液の少なくとも一部を前記pH調整工程で添加するアルカリとして再利用する、請求項5に記載のリチウム回収方法。
- 前記電気透析工程で回収したアルカリを前記pH調整工程で添加するアルカリとして再利用し、前記電気透析工程で回収した無機酸を前記酸浸出工程で用いる無機酸として再利用する、請求項3を引用する請求項5又は6に記載のリチウム回収方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410197802.XA CN118063026A (zh) | 2019-02-20 | 2020-02-17 | 锂回收方法 |
CN202080015371.0A CN113453788A (zh) | 2019-02-20 | 2020-02-17 | 锂回收方法 |
KR1020217024265A KR20210129042A (ko) | 2019-02-20 | 2020-02-17 | 리튬 회수 방법 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019028550A JP7051114B2 (ja) | 2019-02-20 | 2019-02-20 | リチウム回収方法 |
JP2019-028543 | 2019-02-20 | ||
JP2019-028550 | 2019-02-20 | ||
JP2019028543A JP7106121B2 (ja) | 2019-02-20 | 2019-02-20 | コバルト回収方法 |
JP2019-134361 | 2019-07-22 | ||
JP2019134361A JP2021017627A (ja) | 2019-07-22 | 2019-07-22 | リチウム回収方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020171009A1 true WO2020171009A1 (ja) | 2020-08-27 |
Family
ID=72143518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/006013 WO2020171009A1 (ja) | 2019-02-20 | 2020-02-17 | リチウム回収方法 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20210129042A (ja) |
CN (2) | CN113453788A (ja) |
WO (1) | WO2020171009A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113387376A (zh) * | 2021-06-28 | 2021-09-14 | 四川能投鼎盛锂业有限公司 | 一种高效快速沉锂生产电池级碳酸锂工艺 |
WO2022097715A1 (ja) * | 2020-11-06 | 2022-05-12 | 出光興産株式会社 | 水酸化リチウムの製造方法 |
JP2023529256A (ja) * | 2021-05-07 | 2023-07-10 | ヨン・ブン・コーポレーション | 乾式溶融方法を利用した廃リチウム二次電池からリチウムを回収する方法 |
WO2023132297A1 (en) * | 2022-01-05 | 2023-07-13 | Jx Nippon Mining & Metals Corporation | Method for recovering metals from lithium ion battery waste |
EP4240880A4 (en) * | 2020-11-04 | 2024-07-24 | Basf Corp | PROCESS FOR OBTAINING WATER FOR DOWNSTREAM PROCESSES |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102702799B1 (ko) * | 2023-07-28 | 2024-09-05 | 주식회사 씨디에스홀딩스 | 지하에서 채취한 저농도 리튬염수를 기반으로 한 2중의 표면적 증발유도형 농축·유가금속회수로 이루어진 하이브리드식 고순도 탄산리튬 자동제조 장치 및 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003001218A (ja) * | 2001-06-21 | 2003-01-07 | Taiheiyo Cement Corp | 塩素分および鉛分の含有量が高い廃棄物の処理方法 |
WO2011132282A1 (ja) * | 2010-04-22 | 2011-10-27 | Uehara Haruo | リチウム回収装置及びその方法 |
JP2012171827A (ja) * | 2011-02-21 | 2012-09-10 | Jx Nippon Mining & Metals Corp | リチウム含有水溶液からのリチウム回収方法 |
JP2012172223A (ja) * | 2011-02-23 | 2012-09-10 | Jx Nippon Mining & Metals Corp | リチウム回収方法 |
WO2019026977A1 (ja) * | 2017-08-02 | 2019-02-07 | Jx金属株式会社 | ナトリウム除去方法ならびに、金属濃縮方法及び金属回収方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5077788A (en) | 1989-07-06 | 1991-12-31 | Taro, Inc. | System and method for processing telephone communication |
CA2319285A1 (en) | 2000-09-13 | 2002-03-13 | Hydro-Quebec | A method for neutralizing and recycling spent lithium metal polymer rechargeable batteries |
CN101928084B (zh) * | 2009-06-23 | 2012-06-27 | 笹仓机械工程有限公司 | 含无机盐废液的处理方法及装置 |
CN104105803B (zh) * | 2012-02-10 | 2016-04-06 | 住友金属矿山株式会社 | 锂的回收方法 |
WO2013153692A1 (ja) * | 2012-04-13 | 2013-10-17 | 旭化成株式会社 | リチウム回収方法 |
AU2013201833B2 (en) * | 2012-08-13 | 2014-07-17 | Reed Advanced Materials Pty Ltd | Processing of Lithium Containing Ore |
CN107653378A (zh) * | 2017-08-25 | 2018-02-02 | 金川集团股份有限公司 | 一种废旧镍钴锰锂离子电池中有价金属的回收方法 |
-
2020
- 2020-02-17 CN CN202080015371.0A patent/CN113453788A/zh active Pending
- 2020-02-17 WO PCT/JP2020/006013 patent/WO2020171009A1/ja active Application Filing
- 2020-02-17 CN CN202410197802.XA patent/CN118063026A/zh active Pending
- 2020-02-17 KR KR1020217024265A patent/KR20210129042A/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003001218A (ja) * | 2001-06-21 | 2003-01-07 | Taiheiyo Cement Corp | 塩素分および鉛分の含有量が高い廃棄物の処理方法 |
WO2011132282A1 (ja) * | 2010-04-22 | 2011-10-27 | Uehara Haruo | リチウム回収装置及びその方法 |
JP2012171827A (ja) * | 2011-02-21 | 2012-09-10 | Jx Nippon Mining & Metals Corp | リチウム含有水溶液からのリチウム回収方法 |
JP2012172223A (ja) * | 2011-02-23 | 2012-09-10 | Jx Nippon Mining & Metals Corp | リチウム回収方法 |
WO2019026977A1 (ja) * | 2017-08-02 | 2019-02-07 | Jx金属株式会社 | ナトリウム除去方法ならびに、金属濃縮方法及び金属回収方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4240880A4 (en) * | 2020-11-04 | 2024-07-24 | Basf Corp | PROCESS FOR OBTAINING WATER FOR DOWNSTREAM PROCESSES |
WO2022097715A1 (ja) * | 2020-11-06 | 2022-05-12 | 出光興産株式会社 | 水酸化リチウムの製造方法 |
JP2023529256A (ja) * | 2021-05-07 | 2023-07-10 | ヨン・ブン・コーポレーション | 乾式溶融方法を利用した廃リチウム二次電池からリチウムを回収する方法 |
CN113387376A (zh) * | 2021-06-28 | 2021-09-14 | 四川能投鼎盛锂业有限公司 | 一种高效快速沉锂生产电池级碳酸锂工艺 |
CN113387376B (zh) * | 2021-06-28 | 2023-03-03 | 四川能投鼎盛锂业有限公司 | 一种高效快速沉锂生产电池级碳酸锂工艺 |
WO2023132297A1 (en) * | 2022-01-05 | 2023-07-13 | Jx Nippon Mining & Metals Corporation | Method for recovering metals from lithium ion battery waste |
EP4335821A3 (en) * | 2022-01-05 | 2024-06-26 | JX Metals Corporation | Method for recovering metals from lithium ion battery waste |
EP4339158A3 (en) * | 2022-01-05 | 2024-07-03 | JX Metals Corporation | Method for recovering metals from lithium ion battery waste |
Also Published As
Publication number | Publication date |
---|---|
CN113453788A (zh) | 2021-09-28 |
CN118063026A (zh) | 2024-05-24 |
KR20210129042A (ko) | 2021-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020171009A1 (ja) | リチウム回収方法 | |
JP7101995B2 (ja) | リチウム回収方法 | |
JP7106121B2 (ja) | コバルト回収方法 | |
JP6619826B2 (ja) | 高純度の炭酸リチウム、及び他の高純度のリチウム含有化合物を調製するためのプロセス | |
US9255012B2 (en) | Method for recovering lithium carbonate | |
WO2016182337A1 (ko) | 수산화리튬 및 탄산리튬의 제조 방법 | |
CN112151903B (zh) | 一种锂电池报废正极材料回收过程中的除杂和处理方法 | |
JP7051114B2 (ja) | リチウム回収方法 | |
JP2021172537A (ja) | 水酸化リチウムの製造方法 | |
CN101928084B (zh) | 含无机盐废液的处理方法及装置 | |
CN114655969A (zh) | 高杂磷酸铁锂正极废料回收制备碳酸锂和磷酸铁的方法 | |
JP2023103930A (ja) | 廃リチウムイオン電池からリチウムを回収する方法 | |
JP7321531B2 (ja) | コバルト回収方法 | |
JP7350318B2 (ja) | コバルト回収方法 | |
WO2021181997A1 (ja) | コバルト回収方法 | |
CN117509688A (zh) | 一种废旧磷酸铁锂正极材料全组分高效回收方法 | |
JP2021017627A (ja) | リチウム回収方法 | |
CN109207721B (zh) | 一种从含钒原料焙烧熟料浸出溶液中结晶分离偏钒酸铵的方法 | |
TW202138316A (zh) | 偏光板製造廢液之處理方法 | |
CN116855774B (zh) | 一种硫酸稀土镁皂废水处置与镁资源循环工艺 | |
CN114774715B (zh) | 从锂溶液中分离锂与三元金属离子m的方法 | |
CN118343803A (zh) | 一种碳酸锂的精制方法 | |
TWI398412B (zh) | Process and apparatus for treating waste liquid containing inorganic salt | |
KR20240132582A (ko) | 2차전지 폐기물 처리 무방류 시스템 및 이를 이용한 2차전지 폐기물 처리 무방류 재활용 공정 | |
KR20240132580A (ko) | 2차전지 폐기물 재활용 공정에서의 전기투석을 이용한 수산화리튬의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20759902 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20759902 Country of ref document: EP Kind code of ref document: A1 |