[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022186257A1 - 蓄電デバイス用セパレータ及び蓄電デバイス - Google Patents

蓄電デバイス用セパレータ及び蓄電デバイス Download PDF

Info

Publication number
WO2022186257A1
WO2022186257A1 PCT/JP2022/008796 JP2022008796W WO2022186257A1 WO 2022186257 A1 WO2022186257 A1 WO 2022186257A1 JP 2022008796 W JP2022008796 W JP 2022008796W WO 2022186257 A1 WO2022186257 A1 WO 2022186257A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
storage device
less
power storage
separator
Prior art date
Application number
PCT/JP2022/008796
Other languages
English (en)
French (fr)
Inventor
直貴 町田
優紀 内田
睦士 細木原
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2022574091A priority Critical patent/JP7305895B2/ja
Priority to EP22763311.2A priority patent/EP4156340A1/en
Priority to KR1020227039204A priority patent/KR20220167311A/ko
Priority to CN202280004721.2A priority patent/CN115668629A/zh
Priority to US17/928,780 priority patent/US20240234959A1/en
Publication of WO2022186257A1 publication Critical patent/WO2022186257A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electricity storage device separator and an electricity storage device.
  • LiB lithium ion secondary batteries
  • an electricity storage device is constructed by impregnating a power generation element with a separator interposed between a positive electrode and a negative electrode with an electrolytic solution.
  • This separator has micropores that allow lithium ions to permeate during normal use of the storage device, and block the permeation of lithium ions when the storage device overheats, preventing thermal runaway. It is a thing.
  • separator for example, in Patent Document 1, a slurry containing non-conductive particles, a water-soluble polymer having a monomer unit containing an acidic group, and a particulate polymer, wherein the water-soluble polymer is within a predetermined range and the BET specific surface area of the non-conductive particles is within a predetermined range.
  • Such separators are said to improve the high-temperature cycle characteristics and safety of lithium-ion secondary batteries.
  • Patent Document 1 suppresses heat shrinkage in the electrolyte solution, and is a separator that can ensure safety even when combined with a positive electrode material having a high nickel content. There is room for further improvement.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and can suppress thermal contraction in an electrolytic solution and ensure safety even when combined with a positive electrode material having a high nickel content.
  • An object of the present invention is to provide a separator for an electricity storage device.
  • the present inventors have found that a The present inventors have found that safety can be ensured even when a separator having an interfacial peel strength between adjacent layers within a predetermined range is used in combination with a positive electrode material containing a large amount of nickel, and the present invention has been completed.
  • a layer (A) containing polyolefin A layer (B) disposed on at least one surface of the layer (A) and containing an inorganic filler, a water-insoluble binder, a water-soluble binder, and a polyacrylic acid-based dispersant;
  • a separator for an electricity storage device comprising An electricity storage device separator, wherein the heat shrinkage rate S1 of the electricity storage device separator in propylene carbonate at 140° C. is 5% or less.
  • the water-soluble binder contains cellulose ether, A power storage device separator, wherein the interfacial peel strength H between the layer (A) and the layer (B) in propylene carbonate is 3 N/m or more.
  • [5] The power storage device separator according to any one of [1], [3], and [4], wherein the heat shrinkage rate S1 is 2.5% or less.
  • [6] The power storage device separator according to any one of [1] to [5], wherein the thickness T of the power storage device separator is 3 ⁇ m or more and 16 ⁇ m or less.
  • [8] The power storage device separator according to any one of [1] to [7], wherein the power storage device separator has a puncture strength of 200 gf or more.
  • the separator for electrical storage devices in any one of ].
  • the polyacrylic acid-based dispersant is selected from the group consisting of a neutralized salt of a monovalent metal ion of polyacrylic acid and a copolymer of a neutralized salt of a monovalent metal ion of acrylic acid and acrylic acid.
  • the electricity storage device separator according to any one of [1], [3] to [9], which contains one or more selected types.
  • a positive electrode containing Li, Co, and Ni a positive electrode containing Li, Co, and Ni; a negative electrode facing the positive electrode; an electricity storage device separator according to any one of [1] to [14], which is arranged between the positive electrode and the negative electrode;
  • An electricity storage device comprising An electricity storage device, wherein the content ratios of Co and Ni in metals other than Li in the positive electrode are 20 mol % or less and 60 mol % or more, respectively.
  • the present invention it is possible to provide a power storage device separator that suppresses heat shrinkage in an electrolytic solution and ensures safety even when combined with a positive electrode material having a high nickel content.
  • (Meth)acryl as used herein means “acryl” and “methacryl” corresponding thereto.
  • means that the numerical values at both ends are included as the upper limit and the lower limit.
  • the power storage device separator according to the first aspect of the present embodiment (hereinafter also referred to as "first separator") is a layer (A) containing polyolefin and disposed on at least one surface of the layer (A). and a layer (B) containing an inorganic filler, a water-insoluble binder, a water-soluble binder, and a polyacrylic acid-based dispersant, wherein A heat shrinkage rate S1 at 140° C. is 5% or less. Since the first separator has the above structure, it can suppress heat shrinkage in the electrolytic solution and ensure safety even when combined with a positive electrode material containing a large amount of nickel.
  • the power storage device separator includes a layer (A) containing polyolefin and on at least one surface of the layer (A) and a layer (B) containing an inorganic filler, a water-insoluble binder, a water-soluble binder, and a polyacrylic acid-based dispersant, wherein the polyacrylic acid-based dispersant is , a neutralized salt of a monovalent metal ion of polyacrylic acid, and a copolymer of a neutralized salt of a monovalent metal ion of acrylic acid and acrylic acid, including one or more selected from the group consisting of
  • the water-soluble binder contains cellulose ether, and the interfacial peel strength H between the layer (A) and the layer (B) in propylene carbonate is 3 N/m or more.
  • the second separator having the above structure also suppresses heat shrinkage in the electrolyte, and can ensure safety even when combined with a positive electrode material containing a large amount of nickel.
  • the following description of the power storage device separator applies to both the first separator and the second separator.
  • the "separator for an electricity storage device of the present embodiment" will be described as including the first separator and the second separator.
  • the layer (A) contains polyolefin and functions as the base material of the separator for the electricity storage device.
  • the layer (A) preferably contains polyolefin as a main component, and the polyolefin content in the layer (A) is preferably 75% by mass or more, more preferably 85% by mass, based on the total mass of the layer (A). % by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and particularly preferably 98% by mass or more.
  • the upper limit of the content is not particularly limited, and may be 100% by mass.
  • the form of the layer (A) is not particularly limited, for example, a microporous body of polyolefin can be mentioned.
  • the microporous body of polyolefin is not particularly limited, and examples thereof include polyolefin membranes, polyolefin fiber fabrics (woven fabrics), polyolefin fiber nonwoven fabrics, and the like.
  • the polyolefin is not particularly limited, but for example, homopolymers and copolymers obtained using ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene as monomers. Examples include coalescence and multi-stage polymers, and these polymers may be used alone or in combination of two or more.
  • the polyolefin may contain at least one selected from the group consisting of polyethylene, polypropylene, and copolymers thereof, from the viewpoint of imparting appropriate melt viscosity, shutdown and meltdown properties as a separator to the layer (A). Preferably, it contains polyethylene.
  • the polyolefin may contain polypropylene.
  • the polyolefin may contain an ethylene-propylene copolymer or a mixture of polyethylene and polypropylene.
  • polyethylene examples include, but are not limited to, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), high molecular weight polyethylene (HMWPE), and Examples include ultra high molecular weight polyethylene (UHMWPE).
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • HMWPE high molecular weight polyethylene
  • UHMWPE ultra high molecular weight polyethylene
  • high molecular weight polyethylene means polyethylene with a viscosity average molecular weight (Mv) of 100,000 or more.
  • Mv viscosity average molecular weight
  • UHMWPE ultra high molecular weight polyethylene
  • HMWPE high molecular weight polyethylene
  • high density polyethylene refers to polyethylene having a density of 0.942 to 0.970 g/cm 3 .
  • the density of polyethylene refers to a value measured according to D) density gradient tube method described in JIS K7112 (1999).
  • polypropylene examples include, but are not particularly limited to, isotactic polypropylene, syndiotactic polypropylene, and atactic polypropylene.
  • copolymers of ethylene and propylene include, but are not limited to, ethylene-propylene random copolymers and ethylene-propylene rubbers.
  • the PE content is 50% by mass or more and 100% by mass or less based on the total mass of the resin components constituting the layer (A), From the viewpoint of fuse characteristics or meltdown characteristics, the content is preferably 85% by mass or more and 100% by mass or less, more preferably 90% by mass or more and 95% by mass or less.
  • the PP content is greater than 0% by mass and less than 50% by mass, based on the total mass of the resin components constituting the layer (A), and the melt viscosity And from the viewpoint of fuse characteristics, it is preferably greater than 0% by mass and 20% by mass or less, more preferably 5% by mass or more and 10% by mass or less.
  • the layer (A) may contain resins other than the polyolefins listed above.
  • resins include, but are not particularly limited to, polyethylene terephthalate, polycycloolefin, polyethersulfone, polyamide, polyimide, polyimideamide, polyaramid, polyvinylidene fluoride, nylon, polytetrafluoroethylene, and the like.
  • melt index The melt index (MI) of the layer (A) at 190° C. suppresses the high viscosity of the resin composition containing polyolefin (hereinafter also referred to as “polyolefin resin composition”) during film formation, thereby preventing the occurrence of defective products.
  • polyolefin resin composition containing polyolefin (hereinafter also referred to as “polyolefin resin composition”) during film formation, thereby preventing the occurrence of defective products.
  • it is preferably 0.02 g/10 min to 0.5 g/10 min, more preferably 0.05 g/10 min to 0.3 g/10 min. More specifically, it is preferably 0.02 g/10 min to 0.50 g/10 min, more preferably 0.05 g/10 min to 0.30 g/10 min.
  • the piercing strength of the layer (A) when converted to basis weight (g/m 2 ) (hereinafter referred to as “weight-converted piercing strength”) can be, for example, 30 gf/(g/m 2 ) or more, It is preferably 40 gf/(g/m 2 ) or more.
  • weight-converted piercing strength can be, for example, 30 gf/(g/m 2 ) or more, It is preferably 40 gf/(g/m 2 ) or more.
  • the per unit weight equivalent puncture strength is more preferably 50 gf/(g/m 2 ) or more, and even more preferably. is 60 gf/(g/m 2 ) or more, more preferably 70 gf/(g/m 2 ) or more, still more preferably 80 gf/(g/m 2 ) or more, still more preferably 90 gf/(g/m 2 ) or more. (g/m 2 ) or more.
  • the weight-converted puncture strength is not limited, but may be, for example, 200 gf/(g/m 2 ) or less, 150 gf/(g/m 2 ) or less, or 120 gf/(g /m 2 ) or less.
  • the weight-converted puncture strength can be measured by the method described in Examples below.
  • the weight-converted puncture strength can be adjusted within the above range, for example, by appropriately adjusting the values of the weight per unit area and the puncture strength by the method described later. More specifically, for example, the above range can be adjusted by adjusting the molecular weight of the polyolefin resin composition, the mixing ratio of the polyolefin resin composition and the plasticizer, the stretching temperature, and the stretching ratio.
  • the basis weight of the layer (A) is preferably 1.5 g/m 2 or more, more preferably 2.0 g/m 2 or more, still more preferably 2.5 g/m 2 or more, from the viewpoint of improving strength. From the viewpoint of improving the capacity of the electricity storage device, it is preferably 7.0 g/m 2 or less, more preferably 6.5 g/m 2 or less, and still more preferably 5.5 g/m 2 or less. be.
  • the basis weight of the layer (A) can be measured by the method described in Examples below, and can be adjusted, for example, by controlling the die lip interval, the draw ratio in the drawing step, and the like.
  • the puncture strength that is not converted to the basis weight of the layer (A) (hereinafter simply referred to as "pierce strength”) is preferably 100 gf or more from the viewpoint of suppressing breakage of the layer (A) in the impact test. More preferably 200 gf or more, still more preferably 250 gf or more, still more preferably 300 gf or more, still more preferably 350 gf or more, still more preferably 400 gf or more, particularly preferably 450 gf or more. From the viewpoint of stability during film formation of the layer (A), the puncture strength is preferably 1000 gf or less, more preferably 900 gf or less.
  • the lower limit value of the puncture strength is not limited to the example described above, and any value can be adopted as long as the film formation and battery production can be stably carried out.
  • the upper limit value of the puncture strength is not limited to the example described above, and can be appropriately set in balance with other characteristics.
  • the puncture strength can be measured by the method described in Examples below. Assuming that the layer (A) is obtained by extruding the polyolefin resin composition, the puncture strength can be increased by increasing the orientation of the molecular chains due to the shearing force or stretching applied to the molded product during extrusion. From the viewpoint of avoiding an increase in residual stress and improving thermal stability, it is preferable to control the orientation of molecular chains by shear force or stretching so as not to increase excessively.
  • the thickness of the layer (A) is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, still more preferably 5 ⁇ m or more, from the viewpoint of improving strength and voltage resistance. More specifically, it is preferably 3.0 ⁇ m or more, more preferably 4.0 ⁇ m or more, and even more preferably 5.0 ⁇ m or more. Moreover, from the viewpoint of improving the capacity of the electricity storage device, the thickness of the layer (A) is preferably 12 ⁇ m or less, more preferably 11 ⁇ m or less, and even more preferably 10 ⁇ m or less. More specifically, it is preferably 12.0 ⁇ m or less, more preferably 11.0 ⁇ m or less, and even more preferably 10.0 ⁇ m or less. The thickness of the layer (A) can be measured by the method described in Examples below, and can be adjusted, for example, by controlling the die lip interval, the draw ratio in the drawing step, and the like.
  • the porosity of the layer (A) is preferably 20% or more, more preferably 30% or more, and still more preferably 35% or more from the viewpoint of permeability, and from the viewpoint of membrane strength and withstand voltage. , preferably 70% or less, more preferably 60% or less, still more preferably 50% or less.
  • the porosity can be measured by the method described in Examples below.
  • the porosity is controlled by, for example, the mixing ratio of the polyolefin resin composition and the plasticizer, the stretching temperature, the stretching ratio, the heat setting temperature, the stretching ratio during heat setting, and the relaxation rate during heat setting. and can be adjusted by combining these.
  • the air permeability of the layer (A) is preferably 10 sec/100 cm 3 or more, more preferably 50 sec/100 cm 3 from the viewpoint of preventing an excessive current from flowing through the layer (A) between a plurality of electrodes. more preferably 80 sec/100 cm 3 or more, and from the viewpoint of permeability, preferably 1000 sec/100 cm 3 or less, more preferably 300 sec/100 cm 3 or less, still more preferably 200 sec/100 cm 3 or less, and particularly preferably 160 sec/100 cm 3 or less.
  • the air permeability can be measured by the method described in Examples below.
  • the air permeability can be adjusted by controlling the heat setting temperature, the draw ratio during heat setting, the relaxation rate during heat setting, and the like, or by combining these.
  • the absorption peak ratio Before forming the layer (B) on the surface of the layer (A), it is preferable to adjust the surface properties by subjecting the layer (A) to corona discharge treatment, plasma treatment, or the like. Such surface properties can be confirmed by ATR-IR, and more specifically, confirmed by the absorption peak ratio of 1734 cm -1 /2918 cm -1 when the surface of the layer (A) is measured by ATR-IR. be able to.
  • the absorption peak ratio at 1734 cm ⁇ 1 /2918 cm ⁇ 1 when the surface of the layer (A) on the layer (B) side is measured by ATR-IR is, for example, 0.010 to 0.180. and preferably 0.025 to 0.125.
  • the absorption peak ratio is 0.025 or more, the oxygen atom-containing functional groups mainly composed of carbonyl groups and carboxyl groups formed on the surface of the layer (A) and the water-insoluble binder in the layer (B), And the interaction with the water-soluble binder becomes large, and as a result, there is a tendency that the heat shrinkage in the electrolytic solution can be sufficiently suppressed. Further, when the absorption peak ratio is 0.125 or less, excessive impregnation of the pores of the layer (A) with the resin component contained in the coating liquid when forming the layer (B) is suppressed, resulting in As a result, the permeability tends to improve.
  • the absorption peak ratio is more preferably 0.040 to 0.105, still more preferably 0.055 to 0.085.
  • the absorption peak ratio can be measured by the method described in Examples below. Further, the absorption peak ratio can be adjusted by, for example, performing corona discharge treatment or plasma discharge treatment under preferable conditions described later.
  • the viscosity average molecular weight (Mv) of the layer (A) is preferably 400,000 or more and 1,300,000 or less, more preferably 450,000 or more and 1,200,000 or less, and still more preferably 500,000. 1,150,000 or less.
  • Mv viscosity average molecular weight
  • the melt tension during melt molding is increased, the moldability is improved, and high film strength tends to be obtained due to the entanglement of the polymers.
  • Mv can be determined from the intrinsic viscosity [ ⁇ ] at 135° C. in decalin solvent based on ASTM-D4020.
  • the layer (A) has ion conductivity, high resistance to organic solvents, and a pore size from the viewpoint of application to a lithium ion secondary battery separator, particularly a laminate type lithium ion secondary battery separator. fine ones are preferred. Therefore, the average pore size of the layer (A) is preferably 0.03 ⁇ m or more and 0.70 ⁇ m or less, more preferably 0.04 ⁇ m or more and 0.20 ⁇ m or less, still more preferably 0.05 ⁇ m or more and 0.10 ⁇ m or less, still more preferably It is 0.055 ⁇ m or more and 0.09 ⁇ m or less.
  • the average pore diameter of the layer (A) is preferably 0.03 ⁇ m or more and 0.70 ⁇ m or less from the viewpoint of ion conductivity and voltage resistance.
  • the average pore diameter is, for example, the composition ratio of the polyolefin resin composition, the type of polyolefin or plasticizer, the cooling rate of the extruded sheet, the stretching temperature, the stretching ratio, the heat setting temperature, the stretching ratio during heat setting, and the relaxation during heat setting. Adjustments can be made by controlling the rate, etc., as well as combinations thereof.
  • the average pore size can be measured using a perm porometer according to the half dry method.
  • the layer (B) is arranged on at least one surface of the layer (A) and contains an inorganic filler, a water-insoluble binder, a water-soluble binder and a polyacrylic acid-based dispersant.
  • the layer (B) has a function of suppressing shrinkage due to heat, in particular, in the separator for an electricity storage device.
  • the thickness of the layer (B) is preferably 0.5 ⁇ m or more, more preferably 0.6 ⁇ m or more, still more preferably 0.7 ⁇ m or more, and even more preferably 1.0 ⁇ m or more.
  • the thickness of the layer (B) is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and even more preferably 3 ⁇ m or less. More specifically, it is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less, and even more preferably 3.0 ⁇ m or less.
  • the layer (B) may be formed only on one side of the layer (A), or may be formed on both sides of the layer (A). When the layer (B) is formed on both sides of the layer (A), the total thickness of the layer (B) is preferably within the range described above. The thickness of the layer (B) can be measured by the method described in Examples below. can be adjusted.
  • the inorganic filler in the layer (B) is not particularly limited, but preferably has high heat resistance and electrical insulation properties and is electrochemically stable within the range of use of the lithium ion secondary battery.
  • examples of such inorganic fillers include, but are not limited to, oxide-based ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, and iron oxide; silicon nitride, titanium nitride, and Nitride ceramics such as boron nitride; silicon carbide, calcium carbonate, magnesium sulfate, aluminum sulfate, barium sulfate, aluminum hydroxide, aluminum hydroxide oxide or boehmite, potassium titanate, talc, kaolinite, dakite, nacrite, halloysite, Ceramics such as pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, asbestos,
  • At least one selected from the group consisting of alumina, boehmite, and barium sulfate is preferable from the viewpoint of stability in the lithium ion secondary battery.
  • alumina boehmite
  • barium sulfate is preferable from the viewpoint of stability in the lithium ion secondary battery.
  • boehmite synthetic boehmite is preferable because it can reduce ionic impurities that adversely affect the characteristics of the electrochemical device.
  • An inorganic filler may be used individually by 1 type, and may use multiple types together.
  • Examples of the shape of the inorganic filler include plate-like, scale-like, polyhedral, needle-like, columnar, granular, spherical, spindle-like, and block-like shapes. good.
  • the block shape is preferable from the viewpoint of the balance between permeability and heat resistance.
  • the aspect ratio of the inorganic filler is preferably 1.0 or more and 3.0 or less, more preferably 1.1 or more and 2.5 or less.
  • the aspect ratio of the inorganic filler can be obtained by image analysis of an image taken with a scanning electron microscope (SEM).
  • the specific surface area of the inorganic filler is preferably 5.0 m 2 /g or more and 20 m 2 /g or less, more preferably 5.5.0 m 2 /g or more and 18 m 2 /g or less, still more preferably , 6.0 m 2 /g or more and 16 m 2 /g or less. More specifically, it is preferably 5.0 m 2 /g or more and 20.0 m 2 /g or less, more preferably 5.5 m 2 /g or more and 18.0 m 2 /g or less, still more preferably It is 6.0 m 2 /g or more and 16.0 m 2 /g or less.
  • the specific surface area is 20 m 2 /g or less, it is preferable from the viewpoint of reducing the water adsorption amount of the power storage device separator and suppressing capacity deterioration when the cycle is repeated, and the specific surface area is 5.0 m 2 /g or more. In some cases, it is preferable from the viewpoint of suppressing deformation at a temperature exceeding the melting point of the layer (A).
  • the specific surface area of the inorganic filler can be measured using the BET adsorption method.
  • the volume average particle diameter D50 of the inorganic filler can be, for example, 1.0 ⁇ m or less, preferably 0.10 ⁇ m or more and 0.70 ⁇ m or less.
  • D50 is 0.10 ⁇ m or more, it is preferable from the viewpoint of suppressing the amount of water adsorption of the power storage device separator and suppressing capacity deterioration when cycles are repeated. It is preferable from the viewpoint of suppressing deformation at a temperature exceeding the melting point of A).
  • D50 is more preferably 0.10 ⁇ m or more and 0.60 ⁇ m or less, still more preferably 0.10 ⁇ m or more and 0.50 ⁇ m or less, and still more preferably 0.10 ⁇ m or more and 0.49 ⁇ m or less. .
  • the volume average particle diameter D50 of the inorganic filler can be measured by the method described in Examples below.
  • Methods for adjusting the volume average particle diameter D50 of the inorganic filler as described above include, for example, a method of pulverizing the inorganic filler using a ball mill, a bead mill, a jet mill, etc. to obtain a desired particle size distribution, a method of obtaining a desired particle size distribution, and a method of obtaining a desired particle size distribution. Examples include a method of blending after preparing a distribution of fillers.
  • the particle size of the inorganic filler redispersed from the layer (B) can be, for example, 1.0 ⁇ m or less, preferably 0.10 ⁇ m or more and 0.70 ⁇ m or less.
  • the particle diameter of the inorganic filler redispersed from the layer (B) is 0.10 ⁇ m or more, it is preferable from the viewpoint of suppressing the amount of moisture adsorption of the separator for an electricity storage device and suppressing capacity deterioration when repeated cycles.
  • the inorganic filler redispersed from the layer (B) having a particle size of 0.70 ⁇ m or less is preferable from the viewpoint of suppressing deformation at a temperature exceeding the melting point of the layer (A).
  • the particle size of the inorganic filler redispersed from the layer (B) is more preferably 0.10 ⁇ m or more and 0.60 ⁇ m or less, still more preferably 0.10 ⁇ m or more and 0.50 ⁇ m or less. It is more preferably 0.10 ⁇ m or more and 0.49 ⁇ m or less.
  • the particle size of the inorganic filler re-dispersed from the layer (B) can be measured by the method described in Examples below.
  • the inorganic filler is pulverized using a ball mill, bead mill, jet mill, or the like to obtain a desired particle size distribution. method, and a method of blending after preparing fillers with a plurality of particle size distributions.
  • the primary particle size of the inorganic filler in the layer (B) can be, for example, 1.0 ⁇ m or less, preferably 0.10 ⁇ m or more and 0.70 ⁇ m or less.
  • the primary particle diameter of the inorganic filler in the layer (B) is 0.10 ⁇ m or more, it is preferable from the viewpoint of suppressing the amount of moisture adsorption of the electricity storage device separator and suppressing capacity deterioration when repeated cycles. It is preferable that the primary particle size of the inorganic filler in B) is 0.70 ⁇ m or less from the viewpoint of suppressing deformation at a temperature exceeding the melting point of the layer (A).
  • the primary particle size of the inorganic filler in the layer (B) is more preferably 0.10 ⁇ m or more and 0.60 ⁇ m or less, still more preferably 0.10 ⁇ m or more and 0.50 ⁇ m or less, and still more preferably. is 0.10 ⁇ m or more and 0.49 ⁇ m or less.
  • the primary particle size of the inorganic filler in the layer (B) can be measured by the method described in Examples below.
  • Examples of the method for adjusting the primary particle size of the inorganic filler in the layer (B) as described above include a method of pulverizing the inorganic filler using a ball mill, bead mill, jet mill, or the like to obtain a desired particle size distribution; A method of blending after preparing fillers with a plurality of particle size distributions may be mentioned.
  • the maximum particle size of the inorganic filler in the layer (B) is preferably 2.5 ⁇ m or less, more preferably 2.0 ⁇ m or less, and even more preferably 1.5 ⁇ m or less.
  • the maximum particle size can be measured by the method described in Examples below.
  • the content of the inorganic filler in the layer (B) is preferably 80% by mass or more and 99% by mass or less, more preferably 85% by mass or more and 98% by mass or less, based on the mass of the layer (B). , more preferably 90% by mass or more and 98% by mass or less, and still more preferably 92% by mass or more and 98% by mass or less.
  • a content of 80% by mass or more is preferable from the viewpoint of ion permeability and suppression of deformation at temperatures exceeding the melting point of the layer (A). Further, when the content is 99% by mass or less, it is preferable from the viewpoint of maintaining the bonding strength between the inorganic fillers or the interfacial bonding strength between the inorganic filler and the layer (A).
  • the water-insoluble binder in layer (B) is defined as a particulate polymer having a glass transition temperature of 10° C. or less, which is dispersed in water in particulate form. Dispersion in the form of particles in water is not limited to the following, but for example, the particle size distribution of the water-insoluble binder can be measured based on the method described in the examples below, and the polymer at 25 ° C. It can be confirmed from the fact that when 1.0 g of the dried product is dissolved in 100 g of water, the insoluble content is 90% by mass or more.
  • the water-insoluble binder is considered to bind the inorganic filler in the form of dots in the electrolytic solution, and achieves both heat resistance and permeability.
  • water-insoluble binder examples include, but are not limited to, styrene-butadiene-based latex, acrylonitrile-butadiene-based latex, acrylic latex (methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer , and acrylonitrile-acrylate copolymer, etc.).
  • Acrylic latex is preferable from the viewpoint of freedom of molecular design.
  • acrylic acid esters that can constitute acrylic latex include, but are not limited to, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl amethacrylate, and the like.
  • (Meth)acrylic acid alkyl esters can be mentioned. These acrylic acid esters may be used alone or in combination of two or more.
  • the water-insoluble binder may contain a crosslinkable monomer unit from the viewpoint of making the amount of the insoluble matter in the electrolytic solution appropriate.
  • the monomer that can constitute the crosslinkable monomer unit is not particularly limited. Examples include monomers having functional groups. These may be used individually by 1 type, or may use 2 or more types together. Specific examples of the above monomers are not particularly limited, but include polyoxyethylene diacrylate, polyoxyethylene dimethacrylate, polyoxypropylene diacrylate, polyoxypropylene dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane triacrylate. , trimethylolpropane trimethacrylate and other polyfunctional (meth)acrylates. These may be used individually by 1 type, or may use 2 or more types together.
  • the inorganic filler, the water-soluble binder, the polyacrylic acid-based dispersant, and the layer (A) are secured by hydrogen bonding.
  • an acrylic latex having a functional group that hydrogen bonds with a carboxyl group, a carbonyl group, or a hydroxyl group, and/or a self-crosslinking structure during or after polymerization is particularly preferable.
  • acrylic latexes include units derived from acrylic acid and the like, units derived from acrylamide and/or glycidyl (meth)acrylate, allyl glycidyl ether, methyl glycidyl acrylate, and the like, in addition to units derived from acrylic acid esters described above. Examples thereof include copolymers having units derived from the above.
  • the polymerization method of the above copolymer is not particularly limited, emulsion polymerization is preferred.
  • the emulsion polymerization method is not particularly limited, and known methods can be used.
  • the method of adding the monomers and other components is not particularly limited, and any of a batch addition method, a divisional addition method, and a continuous addition method can be employed. , or multi-stage polymerization of three or more stages can be employed.
  • a water-insoluble binder may be used individually by 1 type, and may use multiple types together.
  • the volume average particle size of the water-insoluble binder is preferably 10 to 500 nm from the viewpoint of binding strength and permeability.
  • the volume average particle diameter is 10 nm or more, the permeability tends to be improved by preventing excessive clogging of the pores of the layer (A). It tends to prevent a decrease and improve heat resistance.
  • the particle size is more preferably 20 to 350 nm, still more preferably 30 to 200 nm.
  • the volume-average particle diameter can be measured by the method described in the examples below. can be adjusted by
  • the glass transition temperature (Tg) of the water-insoluble binder is preferably ⁇ 40° C. or higher and 10° C. or lower from the viewpoint of binding properties.
  • the glass transition temperature is more preferably -40°C or higher and 0°C or lower, and more preferably -40°C or higher and -5°C or lower.
  • the glass transition temperature can be measured by the method described in Examples below.
  • the glass transition temperature can be adjusted, for example, by adjusting the polymerization time, polymerization temperature, and raw material composition ratio when producing the water-insoluble binder.
  • the content of the water-insoluble binder is preferably 1 to 12% by mass, more preferably 1%, based on 100% by mass of the inorganic filler in the layer (B). 10% by mass, more preferably 2 to 8% by mass, and even more preferably 3 to 6% by mass or less.
  • the water-soluble binder in the layer (B) has a weight-average molecular weight of 20,000 or more and an insoluble content of less than 1.0% by mass when 1.0 g of the polymer is dissolved in 100 g of water at 25°C. Defined as a polymer, it binds the inorganic filler in the form of a film in the electrolytic solution and has the function of contributing to heat resistance.
  • the water-soluble binder in the first separator layer (B) include, but are not limited to, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), cellulose ether, polyacrylamide, poly(meth)acrylic acid, polyvinylacetamide, polyethyleneimine, polyethylene oxide, polystyrenesulfonic acid, xanthan gum, guar gum and the like.
  • PVA polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • cellulose ether polyacrylamide
  • poly(meth)acrylic acid polyvinylacetamide
  • polyethyleneimine polyethyleneimine
  • polyethylene oxide polystyrenesulfonic acid
  • xanthan gum guar gum
  • the water-soluble binder in layer (B) of the second separator comprises cellulose ether.
  • Water-soluble binders in the layer (B) of the second separator include, in addition to cellulose ether, PVA, PVP, polyacrylamide, poly(meth)acrylic acid, polyvinylacetamide, polyethyleneimine, polyethyleneoxide, polystyrenesulfonic acid, xanthan gum, It may contain guar gum and the like.
  • the water-soluble binder may be used alone or in combination of multiple types.
  • the water-soluble binder may be a copolymer of at least one selected from the above and another copolymer component.
  • the weight-average molecular weight can be measured by the method described in Examples below, and can be adjusted, for example, by adjusting the polymerization time, polymerization temperature, raw material composition ratio, raw material charging order, stirring speed, etc., when producing the water-soluble binder. can be done.
  • the fact that the layer (B) contains a water-soluble binder can be confirmed by, for example, immersing the separator in water, dissolving the water-soluble component in the water layer, filtering the resulting water layer component, and performing gel permeation chromatography or the like.
  • the degree of etherification of the cellulose ether is preferably 0.5 or more, more preferably 0.6 or more, and preferably 1.5 or less, more preferably 1.0 or less.
  • the degree of etherification refers to the degree of substitution of a hydroxyl group to a carboxymethyl group or the like per anhydroglucose unit in cellulose.
  • the degree of etherification can theoretically take values from 0 to 3. When the degree of etherification is within the above range, the cellulose ether tends to be excellent in water solubility and binding strength.
  • the degree of etherification can be measured, for example, by neutralization titration of the ash content of the cellulose ether.
  • the weight average molecular weight of the water-soluble binder is preferably 20,000 or more, more preferably 50,000 or more, and preferably 600,000 or less, more preferably 400,000 or less.
  • the content of the water-soluble binder is 0.05 to 2.4% by mass, with the content of the inorganic filler in the layer (B) being 100% by mass, from the viewpoint of permeability, heat resistance and coatability. is preferable, more preferably 0.1 to 2.4% by mass, still more preferably 0.1 to 2.0% by mass, still more preferably 0.15 to 2.0% by mass, and further It is preferably 0.2 to 1.0% by mass, and more preferably 0.3 to 0.8% by mass.
  • the polyacrylic acid-based dispersant in the layer (B) has a weight-average molecular weight of 500 or more and an insoluble content of less than 1.0% by weight when 1.0 g of the polymer is dissolved in 100 g of water at 25°C. Defined as a polymer having an acrylic acid skeleton of 10,000 or less, it adsorbs to the surface of the inorganic filler and contributes to dispersibility and binding in the electrolyte.
  • Specific examples of the polyacrylic acid-based dispersant in the first separator layer (B) include, but are not limited to, acrylic acid, sodium acrylate, lithium acrylate, and ammonium acrylate as monomers.
  • Examples include homopolymers and copolymers.
  • a neutralized salt of a monovalent metal ion of polyacrylic acid and a neutralized salt of a monovalent metal ion of acrylic acid and acrylic acid It is preferable to include one or more selected from the group consisting of a copolymer, and specific examples of such a polyacrylic acid-based dispersant include, but are not limited to, sodium polyacrylate and lithium polyacrylate etc.
  • the polyacrylic acid-based dispersant in the second separator layer (B) is a neutralized salt of a monovalent metal ion of polyacrylic acid, and a neutralized salt of a monovalent metal ion of acrylic acid and acrylic acid. Copolymer of, one or more selected from the group consisting of.
  • the polyacrylic acid-based dispersant in the second separator layer (B) is a neutralized salt of a monovalent metal ion of polyacrylic acid and a neutralized salt of a monovalent metal ion of acrylic acid and acrylic acid. Aside from polymers, homopolymers and copolymers obtained by using acrylic acid, sodium acrylate, lithium acrylate and ammonium acrylate as monomers may also be included.
  • the polyacrylic acid-based dispersant may be used alone or in combination of multiple types.
  • the layer (B) contains a polyacrylic acid-based dispersant, for example, by immersing the separator in water, dissolving the water-soluble component in the water layer, filtering the resulting water layer component, and performing gel permeation chromatography It can be detected by measuring the molecular weight by photography or the like, and analyzing the dry matter of the aqueous layer component with an infrared spectrometer, a nuclear magnetic resonance spectrometer, an energy dispersive X-ray spectrometer, or the like.
  • the weight average molecular weight of the polyacrylic acid-based dispersant is preferably 500 or more, more preferably 1,000 or more, and preferably 10,000 or less, more preferably 8,000 or less.
  • the weight-average molecular weight of the water-soluble binder can be adjusted.
  • the content of the polyacrylic acid-based dispersant is 0.1 to 2.4% by mass when the content of the inorganic filler in the layer (B) is 100% by mass, from the viewpoint of improving permeability and dispersibility. is preferably 0.1 to 2.0% by mass, still more preferably 0.2 to 1.0% by mass, and even more preferably 0.3 to 0.8% by mass .
  • Thermal shrinkage rate S1 (Physical properties of separator for power storage device) (Thermal shrinkage rate S1)
  • the thermal contraction rate S1 of the first separator at 140° C. in propylene carbonate is 5% or less. Since the heat shrinkage rate S1 is 5% or less, deformation due to heating of the separator in the battery is suppressed and short-circuiting between the positive and negative electrodes is prevented even when combined with a positive electrode material having a high nickel content. be able to. From this point of view, the heat shrinkage rate S1 is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and even more preferably 3.5%.
  • the heat shrinkage rate S1 is not intended to be limited, but from the same viewpoint as above, it is preferably within the range described above. That is, the heat shrinkage S1 of the second separator in propylene carbonate at 140° C. is preferably 5% or less, more preferably 5.0% or less, and still more preferably 4.0% or less.
  • the thermal shrinkage rate S1 can be measured by the method described in Examples below.
  • the thermal shrinkage rate S1 can be obtained, for example, by subjecting the surface of the layer (A) to a surface treatment such as a corona discharge treatment under preferable conditions described later, and by using a water-insoluble binder, a water-soluble binder, and a polyacrylic acid-based binder as the layer (B).
  • a surface treatment such as a corona discharge treatment under preferable conditions described later
  • a water-insoluble binder, a water-soluble binder, and a polyacrylic acid-based binder as the layer (B).
  • the heat shrinkage rate S2 of the power storage device separator of the present embodiment at 150° C. in air is preferably 5% or less.
  • the heat shrinkage rate S2 is preferably 5.0% or less, more preferably 4.0% or less, even more preferably 3.5% or less, and still more preferably 3.0%. or less, even more preferably 2.5% or less, even more preferably 2.0% or less, even more preferably 1.5% or less, and even more preferably 1.0% It is preferably 0.5% or less, particularly preferably 0.5% or less.
  • the thermal shrinkage rate S2 can be measured by the method described in Examples below.
  • the heat shrinkage ratio S2 tends to fall within the range described above, for example, by using a combination of a water-insoluble binder, a water-soluble binder, and a polyacrylic acid-based dispersant as the layer (B). In addition to the factors described above, the value tends to be further reduced by adjusting the volume average particle diameter D50 of the inorganic filler to the preferable range described above.
  • the thickness T of the power storage device separator of the present embodiment is preferably 3 ⁇ m or more and 16 ⁇ m or less from the viewpoint of heat resistance, permeability, and battery capacity. More specifically, it is preferably 3.0 ⁇ m or more and 16.0 ⁇ m or less. When the thickness T is 3 ⁇ m or more, the heat resistance tends to be improved, and when the thickness T is 16 ⁇ m or less, the permeability and battery capacity tend to be improved. From the same point of view, the thickness T is more preferably 3 ⁇ m or more and 15 ⁇ m or less, and still more preferably 3 ⁇ m or more and 14 ⁇ m or less.
  • the ratio of the thickness T B to the thickness T of the layer (B) is preferably 0.1 to 0.3 as T B /T. More specifically, it is preferably 0.10 to 0.30.
  • T B /T is 0.3 or less, strength tends to improve, and when T B /T is 0.1 or more, safety tends to improve.
  • T B /T is more preferably 0.14 to 0.27, still more preferably 0.18 to 0.25.
  • the thickness T and T B /T can be measured by the method described in Examples below.
  • the puncture strength of the power storage device separator of the present embodiment is preferably 100 gf or more, more preferably 200 gf or more, still more preferably 250 gf or more, from the viewpoint of suppressing breakage of the separator in an impact test. It is more preferably 300 gf or more, still more preferably 350 gf or more, still more preferably 400 gf or more, and particularly preferably 450 gf or more. From the viewpoint of stability during film formation of the layer (A), the puncture strength is preferably 1000 gf or less, more preferably 900 gf or less. The puncture strength can be measured by the method described in Examples below. The puncture strength can be adjusted by, for example, the molecular weight of the polyolefin resin composition of the layer (A), the mixing ratio of the polyolefin resin composition and the plasticizer, the stretching temperature, and the stretching ratio.
  • the weight-converted puncture strength of the power storage device separator of the present embodiment is 20 gf/(g/m 2 ) or more.
  • the layer (A) tends to be difficult to break in an impact test of the electricity storage device.
  • the weight-converted puncture strength is more preferably 25 gf/(g/m 2 ) or more, and even more preferably.
  • the weight-converted puncture strength is not limited, but may be, for example, 150 gf/(g/m 2 ) or less, 130 gf/(g/m 2 ) or less, or 100 gf/(g /m 2 ) or less.
  • the above weight-converted piercing strength can be calculated by measuring the piercing strength and weight per unit area according to the method described in Examples below.
  • the basis weight equivalent puncture strength can be adjusted by, for example, the molecular weight of the polyolefin resin composition of the layer (A), the mixing ratio of the polyolefin resin composition and the plasticizer, the stretching temperature, the stretching ratio, and the basis weight of the layer (B). .
  • the air permeability of the power storage device separator of the present embodiment is preferably 30 to 500 seconds/100 cc from the viewpoint of reducing battery resistance while ensuring safety.
  • the air permeability is 30 sec/100 cc or more, the flow of large current can be effectively prevented, and when the air permeability is 500 sec/100 cc or less, the resistance of the battery tends to decrease.
  • the air permeability is more preferably 50 to 500 seconds/100 cc, still more preferably 50 to 400 seconds/100 cc, and even more preferably 50 to 300 seconds/100 cc.
  • the air permeability can be measured by the method described in Examples below.
  • the air permeability is, for example, the air permeability of the layer (A), the thickness of the layer (B), the volume average particle size of the inorganic filler, the water-insoluble binder, the water-soluble binder, and the content of the polyacrylic acid-based dispersant. It can be adjusted by the amount or the like.
  • the interfacial peel strength H between the layer (A) and the layer (B) in the propylene carbonate of the second separator is 3 N/m or more from the viewpoint of heat resistance. From the same point of view, the interfacial peel strength H of the second separator is preferably 4 N/m or more, more preferably 5 N/m or more, still more preferably 8 N/m or more, and still more preferably 10 N /m or more, and more preferably 12 N/m or more. Moreover, the interfacial peel strength H of the second separator is preferably 40 N/m or less from the viewpoint of permeability.
  • the interfacial peel strength H is more preferably 35 N/m or less, still more preferably 25 N/m or less.
  • the reason why the second separator can suppress thermal shrinkage in the electrolytic solution and ensure safety even when combined with a positive electrode material containing a large amount of nickel is not limited to the following reasons. It is estimated as follows. That is, since the second separator has an interfacial peel strength H of 3 N/m or more, when applied as a separator for an electric storage device, the layer (B) is strongly bonded to the layer (A) even in the electrolyte.
  • the layer (B) containing a predetermined polyacrylic acid-based dispersant and a water-soluble binder to more effectively exhibit the ability to suppress heat shrinkage, and is therefore safe even for high-nickel positive electrodes. It is thought that it is possible to ensure the reliability.
  • the interfacial peel strength H is not intended to be limited, it is preferably within the above range from the same viewpoint as above. That is, the interfacial peel strength H between the layer (A) and the layer (B) in the propylene carbonate of the first separator is preferably 3 N/m or more from the viewpoint of heat resistance.
  • the interfacial peel strength H of the first separator is more preferably 4 N/m or more, still more preferably 5 N/m or more, still more preferably 8 N/m or more, and still more preferably It is 10 N/m or more, and more preferably 12 N/m or more.
  • the interfacial peel strength H of the first separator is preferably 40 N/m or less from the viewpoint of permeability. From the same point of view, the interfacial peel strength H of the first separator is more preferably 35 N/m or less, still more preferably 25 N/m or less.
  • the interfacial peel strength H can be measured by the method described in Examples below.
  • the interfacial peel strength H can be obtained, for example, by subjecting the surface of the layer (A) to a surface treatment such as corona discharge treatment under the preferable conditions described later, and using a water-insoluble binder, a water-soluble binder and polyacrylic acid as the layer (B).
  • a surface treatment such as corona discharge treatment under the preferable conditions described later
  • a water-insoluble binder, a water-soluble binder and polyacrylic acid as the layer (B).
  • a system dispersant etc.
  • it tends to fall within the range described above.
  • it can be adjusted by the volume average particle size of the inorganic filler, the content of the water-insoluble binder, the water-soluble binder, the polyacrylic acid-based dispersant, and the like.
  • the method for producing the separator for an electricity storage device of the present embodiment is not particularly limited, and can include a step of producing a layer (A) and a step of forming a layer (B) on at least one surface of the layer (A). .
  • Various known methods can be employed in the step of producing the layer (A), for example, (1) A method of melt-kneading a polyolefin resin composition and a pore-forming material to form a sheet, stretching the sheet if necessary, and extracting the pore-forming material to form a porous sheet; (2) A method of melt-kneading a polyolefin resin composition, extruding it at a high draw ratio, and then exfoliating the polyolefin crystal interface by heat treatment and stretching to make it porous; (3) A method in which a polyolefin resin composition and an inorganic filler are melt-kneaded to form a sheet, and then the interface between the polyolefin and the inorganic filler is exfoliated by stretching to make the sheet porous. (4) A method of dissolving a polyolefin resin composition and then immersing it in a poor solvent for polyolefin to solidify the polyolefin and at the same time remove the solvent to
  • the method for producing the layer (A) As an example of the method for producing the layer (A), a method of melt-kneading the polyolefin resin composition and the pore-forming material to form a sheet, and then extracting the pore-forming material will be described below.
  • the polyolefin resin composition and the pore-forming material are melt-kneaded.
  • a melt-kneading method for example, a polyolefin resin and, if necessary, other additives are introduced into a resin kneading device such as an extruder, a feeder, a Laboplastomill, a kneading roll, a Banbury mixer, etc., while heating and melting the resin component.
  • a method of introducing and kneading a pore-forming material in an arbitrary ratio can be mentioned.
  • Pore formers can include plasticizers, inorganic materials, or combinations thereof.
  • plasticizers include, but are not limited to, nonvolatile solvents capable of forming a uniform solution above the melting point of polyolefin, such as hydrocarbons such as liquid paraffin and paraffin wax; esters such as dioctyl phthalate and dibutyl phthalate. class: higher alcohols such as oleyl alcohol and stearyl alcohol;
  • liquid paraffin has high compatibility with polyethylene and/or polypropylene when the polyolefin resin is polyethylene and/or polypropylene. It is preferable because it tends to be easier to carry out stretching.
  • the inorganic material is not particularly limited, and examples include oxide-based ceramics such as alumina, silica (silicon oxide), titania, zirconia, magnesia, ceria, yttria, zinc oxide, and iron oxide; silicon nitride, titanium nitride, nitride Nitride ceramics such as boron; silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite , asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, silica sand, and other ceramics; and glass fiber. These are used individually by 1 type or in combination of 2 or more types. Among these inorganic materials, silica, alumina, and titania are preferred from the viewpoint of electrochemical stability, and silica is particularly
  • the melted and kneaded material is formed into a sheet.
  • the method for producing the sheet-shaped molding is not particularly limited, but for example, the melt-kneaded product is extruded into a sheet through a T-die or the like, brought into contact with a heat conductor, and heated sufficiently above the crystallization temperature of the resin component.
  • a method of solidifying by cooling to a low temperature can be mentioned.
  • the heat conductor used for cooling and solidification is not particularly limited, but examples thereof include metal, water, air, plasticizer, and the like. Among these, it is preferable to use a metal roll because the efficiency of heat conduction is high.
  • the die lip interval when extruding the melt-kneaded material from the T-die into a sheet is preferably 200 ⁇ m or more and 3,000 ⁇ m or less, more preferably 500 ⁇ m or more and 2,500 ⁇ m or less.
  • die buildup and the like are reduced, the influence of streaks, defects, and the like on film quality is small, and the risk of film breakage, etc. in the subsequent stretching process tends to be reduced.
  • the die lip interval is 3,000 ⁇ m or less, the cooling rate is high, and uneven cooling can be prevented, and there is a tendency to maintain the thickness stability of the sheet.
  • the sheet-like compact may be rolled.
  • Rolling can be performed, for example, by a press method using a double belt press machine or the like.
  • Rolling tends to increase the orientation of the surface layer portion in particular.
  • the rolling surface ratio is preferably more than 1 times and 3 times or less, and more preferably more than 1 time and 2 times or less.
  • the rolling ratio exceeds 1, the plane orientation tends to increase and the film strength of the finally obtained layer (A) tends to increase.
  • the rolling ratio is 3 times or less, the orientation difference between the surface layer portion and the center portion is small, and there is a tendency that a uniform porous structure can be formed in the thickness direction of the film.
  • the pore-forming material is removed from the sheet-like compact to form a layer (A).
  • a method for removing the pore-forming material for example, there is a method of immersing the sheet-like molding in an extraction solvent to extract the pore-forming material, followed by sufficiently drying.
  • the method of extracting the pore-forming material may be batch or continuous.
  • the amount of the pore-forming material remaining in the layer (A) is preferably less than 1% by mass with respect to the total mass of the layer (A).
  • the extraction solvent used for extracting the pore-forming material it is preferable to use a solvent that is a poor solvent for the polyolefin resin, a good solvent for the pore-forming material, and has a boiling point lower than the melting point of the polyolefin resin.
  • extraction solvents include, but are not limited to, hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; hydrofluoroethers and hydrofluorocarbons.
  • extraction solvents such as ethanol and isopropanol; ethers such as diethyl ether and tetrahydrofuran; and ketones such as acetone and methyl ethyl ketone.
  • extraction solvents may be recovered by an operation such as distillation and reused.
  • an aqueous solution of sodium hydroxide, potassium hydroxide, or the like can be used as an extraction solvent.
  • Stretching may be performed before extracting the pore-forming material from the sheet-like compact.
  • the layer (A) obtained by extracting the pore-forming material from the sheet-like formed body may be treated. Further, the treatment may be performed before and after extracting the pore-forming material from the sheet-like compact.
  • biaxial stretching is preferable from the viewpoint of improving the strength of the resulting layer (A).
  • the sheet-shaped molding is stretched in the biaxial direction at a high magnification, the molecules are oriented in the plane direction, and the finally obtained layer (A) becomes difficult to tear and has a high puncture strength.
  • stretching methods include simultaneous biaxial stretching, sequential biaxial stretching, multistage stretching, and multiple stretching.
  • simultaneous biaxial stretching is preferable from the viewpoints of improvement in puncture strength, uniformity of stretching, and shutdown properties.
  • Sequential biaxial stretching is preferable from the viewpoint of ease of control of plane orientation.
  • the simultaneous biaxial stretching means that stretching in the MD (the machine direction during continuous molding of the layer (A)) and stretching in the TD (the direction crossing the MD of the layer (A) at an angle of 90°) are performed at the same time. It refers to the stretching method used, and the stretching ratio in each direction may be different. Sequential biaxial stretching refers to a stretching method in which MD and TD stretching are independently applied, and when stretching is carried out in MD or TD, the other direction is unconstrained or fixed at a fixed length. state.
  • the draw ratio is preferably in the range of 20 times or more and 100 times or less, and more preferably in the range of 25 times or more and 70 times or less.
  • the draw ratio in each axial direction is preferably in the range of 4 to 10 times in MD, 4 to 10 times in TD, 5 to 8 times in MD, and 5 to 8 times in TD. is more preferably in the range of When the total area magnification is 20 times or more, the obtained layer (A) tends to have sufficient strength. Productivity tends to be obtained.
  • the layer (A) is preferably heat-treated for the purpose of heat setting.
  • a stretching operation performed at a predetermined temperature atmosphere and a predetermined stretching rate, and / or for the purpose of reducing stretching stress, relaxation performed at a predetermined temperature atmosphere and a predetermined relaxation rate. operations.
  • the relaxation operation may be performed after the stretching operation.
  • the stretching operation is performed by stretching the MD and/or TD of the membrane by 1.1 times or more, more preferably 1.2 times or more, from the viewpoint of obtaining a layer (A) with further high strength and high porosity. preferable.
  • a relaxation operation is a reduction operation to MD and/or TD of a membrane.
  • the relaxation rate is the value obtained by dividing the dimension of the membrane after the relaxation operation by the dimension of the membrane before the relaxation operation. When both MD and TD are relaxed, it is a value obtained by multiplying the relaxation rate of MD and the relaxation rate of TD.
  • the relaxation rate is preferably 1.0 or less, more preferably 0.97 or less, even more preferably 0.95 or less.
  • the relaxation rate is preferably 0.5 or more from the viewpoint of film quality.
  • the relaxation operation may be performed in both MD and TD, or may be performed in either MD or TD.
  • the stretching and relaxation operations after the extraction of the plasticizer are preferably performed in the TD.
  • the temperature in the stretching and relaxation operations is preferably lower than the melting point (hereinafter also referred to as "Tm") of the polyolefin resin, more preferably in the range of 1°C to 25°C lower than Tm. It is preferable from the viewpoint of the balance between reduction in heat shrinkage and porosity that the temperature in the stretching and relaxation operations is within the above range.
  • layer (B) is formed on at least one surface of layer (A).
  • a coating liquid for forming the layer (B) is applied to the layer (A).
  • the surface of the layer (A) on the layer (B) side is subjected to corona discharge.
  • Hydrophilization by treatment or the like is preferable.
  • the hydrophilization treatment is preferably corona discharge treatment or plasma treatment, and more preferably corona discharge treatment.
  • the absorption peak ratio at 1734 cm ⁇ 1 /2918 cm ⁇ 1 when the surface of the layer (A) on the layer (B) side is measured by ATR-IR is 0.025 to 0.125.
  • the treatment conditions are such that Such treatment conditions are not particularly limited, but can be adjusted by adjusting the strength of the corona treatment, the distance between the discharge electrode and the layer (A), and the like.
  • the intensity of corona treatment is preferably 1 W/(m 2 /min) to 50 W/(m 2 /min). When the corona treatment intensity is 1 W/(m 2 /min) or more, there is a tendency that the discharge to the layer (A) is stably performed.
  • the absorption peak ratio is more preferably 3 W/(m 2 /min) to 45 W/(m 2 /min), still more preferably 5 W/(m 2 /min) to 35 W/(m 2 /min), more preferably 7 W/(m 2 /min) to 30 W/(m 2 /min), still more preferably 9 W/(m 2 /min) to 25 W/(m 2 /min) ), more preferably 11 W/(m 2 /min) or more and less than 20 W/(m 2 /min), particularly preferably 13 W/(m 2 /min) to 15 W/(m 2 /min) be.
  • the hydrophilization can also be carried out by plasma treatment.
  • the plasma treatment conditions are such that the absorption peak ratio at 1734 cm ⁇ 1 /2918 cm ⁇ 1 when the surface of the layer (A) on the layer (B) side is measured by ATR-IR is 0.025 to 0. It is preferable that the processing conditions are such that 0.125 is obtained.
  • Such treatment conditions are not particularly limited, but, for example, the conditions can be appropriately adjusted in consideration of the fact that the value of the absorption peak ratio tends to increase by increasing the applied voltage during plasma processing.
  • the coating liquid for forming the layer (B) one containing an inorganic filler, a water-insoluble binder, a water-soluble binder, and a polyacrylic acid-based dispersant can be used. By using these components together, a layer (B) containing an inorganic filler, a water-insoluble binder, a water-soluble binder, and a polyacrylic acid-based dispersant is formed, and as a result, 140 The heat shrinkage rate S1 at °C becomes 5% or less. After coating the layer (A) with the coating liquid, the layer (A) is dried to remove the solvent of the coating liquid, form the layer (B), and obtain the power storage device separator of the present embodiment.
  • the coating liquid preferably contains water from the viewpoint of uniformly dispersing and dissolving the inorganic filler, water-insoluble binder, water-soluble binder, and polyacrylic acid-based dispersant.
  • water in addition to water, solvents such as methanol, ethanol, and isopropyl alcohol may be contained within a range that does not impair the solubility and dispersibility.
  • the coating liquid may contain a surfactant or the like in order to stabilize dispersion or improve coatability, adjust the contact angle of the surface of the layer (B), and crosslink the binder for the purpose of improving heat resistance.
  • Wetting agents; antifoaming agents; pH adjusters containing acids and alkalis; and various additives such as cross-linking agents may be added.
  • the total amount of these additives to be added is preferably 20 parts by mass or less for the active ingredient (the mass of the dissolved additive component when the additive is dissolved in a solvent) per 100 parts by mass of the inorganic filler. , more preferably 10 parts by mass or less, still more preferably 5 parts by mass or less, even more preferably 3 parts by mass or less, still more preferably 1 part by mass or less, and even more preferably 0.5 parts by mass or less is.
  • Additives include anionic surfactants such as higher fatty acid salts, alkylsulfonates, alpha olefinsulfonates, alkanesulfonates, alkylbenzenesulfonates, sulfosuccinates, alkyl sulfates, alkyl Ether sulfate, alkyl phosphate, alkyl ether phosphate, alkyl ether carboxylate, alpha sulfo fatty acid methyl ester, methyl taurate and the like.
  • anionic surfactants such as higher fatty acid salts, alkylsulfonates, alpha olefinsulfonates, alkanesulfonates, alkylbenzenesulfonates, sulfosuccinates, alkyl sulfates, alkyl Ether sulfate, alkyl phosphate, alkyl ether phosphate, alkyl ether carboxylate, alpha sul
  • nonionic surfactants include glycerin fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene alkylene alkyl ethers, polyoxyethylene -polyoxypropylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters, fatty acid alkanolamides, alkyl glucosides and the like.
  • Amphoteric surfactants include, for example, alkylbetaines, fatty acid amidopropylbetaines, alkylamine oxides, and the like.
  • Examples of cationic surfactants include alkyltrimethylammonium salts, dialkyldimethylammonium salts, alkyldimethylbenzylammonium salts, alkylpyridinium salts and the like.
  • polymer surfactants such as fluorine-based surfactants, cellulose derivatives, polycarboxylates, polystyrenesulfonates, and the like can be used.
  • Examples of cross-linking agents include epoxy-based cross-linking agents, oxazoline-based cross-linking agents, and metal chelate-based cross-linking agents.
  • Examples of the metal chelate-based cross-linking agent include, but are not particularly limited to, ammonium zirconium carbonate.
  • the method of dispersing or dissolving the inorganic filler and the polyacrylic acid-based dispersant in the medium of the coating liquid is not particularly limited as long as it can realize the dispersion characteristics of the coating liquid necessary for the coating process.
  • examples include ball mills, bead mills, planetary ball mills, vibrating ball mills, sand mills, colloid mills, attritors, roll mills, high-speed impeller dispersion, dispersers, homogenizers, high-speed impact mills, ultrasonic dispersion, and mechanical stirring using stirring blades.
  • the method of applying the coating liquid to the layer (A) is not particularly limited as long as it can achieve the required layer thickness or coating area.
  • Examples include gravure coater method, small diameter gravure coater method, reverse roll Coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod coater method, squeeze coater method, cast coater method, die coater method, screen printing method, spray coating construction method, etc.
  • the method for removing the solvent from the coating film after coating is not particularly limited as long as it does not adversely affect the layer (A). Examples thereof include a method of drying at a temperature below the melting point of the material constituting the layer (A) while fixing the layer (A), a method of drying under reduced pressure at a low temperature, and the like. Part of the solvent may also remain as long as it does not significantly affect the device characteristics.
  • the power storage device separator described above may further have an optional layer on the surface of either the layer (A) or the layer (B). That is, when the layer (B) is arranged on one side of the layer (A), an optional layer is further provided on the surface of the layer (B), and an optional layer is provided on the surface of the layer (A).
  • This embodiment includes both the embodiment in which the layer is provided and the embodiment in which any layer is provided on both the layers (A) and (B). Further, in the case where the layer (B) is arranged on both sides of the layer (A), an embodiment in which an arbitrary layer is further provided on the surface of one layer (B), and both layers (B) Any aspect in which an arbitrary layer is provided on the surface of is included in the present embodiment.
  • Optional layers include, for example, thermoplastic polymer-containing layers that can function as adhesive layers.
  • the existence form (pattern) of the thermoplastic polymer-containing layer may be, for example, a state in which the thermoplastic polymer exists in a mutually dispersed state over the entire surface of the multilayer porous membrane, or a state in which the thermoplastic polymer exists in a sea-island pattern.
  • the arrangement pattern includes, for example, dots, stripes, grids, stripes, tortoise shells, random patterns, and combinations thereof.
  • the optional layer includes a porous layer that does not correspond to the layer (B) in this embodiment.
  • the type, total number, existence form (pattern), and thickness of these arbitrary layers are not particularly limited, and can be appropriately adjusted in consideration of being within a range that does not impair the effects of the present embodiment. .
  • the power storage device of the present embodiment includes the power storage device separator of the present embodiment.
  • a typical example of the configuration of the electricity storage device of the present embodiment includes, but is not limited to, a positive electrode, an electricity storage device separator, a negative electrode, and optionally an electrolytic solution.
  • Specific examples of electricity storage devices include lithium batteries, lithium secondary batteries, lithium ion secondary batteries, sodium secondary batteries, sodium ion secondary batteries, magnesium secondary batteries, magnesium ion secondary batteries, and calcium secondary batteries. , calcium ion secondary battery, aluminum secondary battery, aluminum ion secondary battery, nickel metal hydride battery, nickel cadmium battery, electric double layer capacitor, lithium ion capacitor, redox flow battery, lithium sulfur battery, lithium air battery, zinc air battery etc.
  • lithium batteries lithium secondary batteries, lithium ion secondary batteries, nickel hydride batteries, or lithium ion capacitors are preferable, and lithium ion secondary batteries are more preferable, from the viewpoint of practicality.
  • the positive electrode the negative electrode, the electrolytic solution, and other members of the electric storage device, various known ones can be appropriately used according to the type of the electric storage device.
  • the power storage device separator of the present embodiment can ensure safety even when combined with a positive electrode material having a high nickel content
  • the power storage device of the present embodiment including the power storage device separator has a nickel content of It is preferable to apply a positive electrode material with a large amount to the positive electrode. That is, the power storage device separator of this embodiment is arranged between a positive electrode containing Li, Co, and Ni, a negative electrode facing the positive electrode, and the positive electrode and the negative electrode.
  • An electricity storage device comprising the electricity storage device separator according to any one of the above items, wherein the content ratios of Co and Ni in metals other than Li in the positive electrode are 20 mol% or less and 60 mol% or more, respectively. Preferably.
  • the content ratio of Co is preferably 0.1 to 20 mol % from the viewpoint of battery stability and cost.
  • the content ratio of Co is 20 mol % or less, there is a tendency that the production cost can be reduced.
  • the content ratio of Co is more preferably 1 to 15 mol %, still more preferably 3 to 10 mol %.
  • the Ni content is preferably 60 to 99 mol %.
  • the content ratio of Ni is more preferably 70 to 97 mol %, still more preferably 80 to 95 mol %.
  • G-B2 registered trademark
  • [Absorption peak ratio] 670-IR manufactured by Agilent Technologies Inc. was used for the surface of the layer (A) after corona treatment, germanium was used for the prism, and a single reflection ATR method was used at an incident angle of 45 degrees. , 256 integrations, and IR spectra were collected at a resolution of 4 cm ⁇ 1 .
  • the resulting chart was subjected to linear type baseline correction using analytical software Agilent Resolution Pro with correction points of 1600 cm ⁇ 1 , 1900 cm ⁇ 1 , 2700 cm ⁇ 1 and 3000 cm ⁇ 1 .
  • a peak is detected from the obtained spectrum, and the absorption peak intensity at 1734 cm ⁇ 1 derived from the carbonyl group formed by the surface treatment and the absorption peak intensity at 2918 cm ⁇ 1 derived from the polyethylene contained in the layer (A) are absorbed. peak ratio.
  • the coating liquid was subjected to laser particle size distribution measurement. That is, the volume average particle size distribution of the inorganic filler was measured using a measuring device manufactured by Microtrac Bell Co., Ltd. (trade name “Microtrac MT3300EX”). If necessary, the particle size distribution of the inorganic filler was adjusted using the particle size distribution of the water or water-insoluble binder as a baseline. The particle size (D50 particle size) at which the cumulative frequency is 50% was defined as the volume average particle size of the inorganic filler.
  • the inorganic filler in layer (B) of the separator was redispersed and subjected to laser particle size distribution measurement. Specifically, ammonium polycarboxylate ( “SN Dispersant 5468” manufactured by SAN NOPCO Co., Ltd.) as a dispersing agent was added to 10 mL of an aqueous solution adjusted to have a solid content of 1 wt%. After being immersed for a period of time, the layer (B) was scraped off with a spatula or the like to obtain a sample. The particle size distribution of the inorganic filler was measured using a measuring device manufactured by Microtrac Bell Co., Ltd.
  • Primary particle size of inorganic filler in layer (B) The separator is freeze-fractured, conducting treatment is performed with C paste and Os coating, and then a surface scanning electron microscope (Hitachi High Technology HITACHI S-4800) is used. was arbitrarily set according to the particle diameter so that the number of particles was observed), and an electron image of a cross-sectional SEM image of the layer (B) was photographed in three fields at an accelerating voltage of 1.0 kV.
  • the "primary particle size” was defined as the particle size of individual particles dispersed in a matrix alone, or the smallest particle size of aggregated particles. Ten diameters of circles circumscribing each inorganic filler present in the observed visual field were randomly measured, and the average value was adopted.
  • Maximum particle size of inorganic filler in layer (B) The separator is freeze-fractured, conducting treatment is performed with C paste and Os coating, and then a surface scanning electron microscope (Hitachi High Technology HITACHI S-4800) is used. was arbitrarily set according to the particle diameter so that the number of particles was observed), and an electron image of a cross-sectional SEM image of the layer (B) was photographed in three fields at an accelerating voltage of 1.0 kV. The diameter of a circle circumscribing each inorganic filler present in the observed field of view was measured, and the maximum value was taken as the maximum particle diameter of the inorganic filler.
  • volume average particle size of water-insoluble binder A water dispersion containing a water-insoluble binder was subjected to particle size measurement by a light scattering method. That is, the volume-average particle size distribution of the water-insoluble binder was measured using a measuring device manufactured by LEED & NORTHRUP (trade name: "MICROTRAC UPA150"). The particle size (D50 particle size) at which the cumulative frequency is 50% was defined as the volume average particle size of the water-insoluble binder.
  • the glass transition temperature (Tg) was defined as the intersection of a straight line obtained by extending the base line of the obtained DSC curve to the high temperature side and the tangent line at the point of inflection.
  • Weight-average molecular weight of water-soluble binder and polyacrylic acid-based dispersant A water-soluble binder or a polyacrylic acid-based dispersant was dried at 130° C. for 5 hours to prepare a sample. After dissolving 0.1 g of a sample in 100 mL of an eluent, the solution was filtered using a membrane filter to obtain a measurement sample. The weight average molecular weight (Mw) of each measurement sample was measured by gel permeation chromatography (manufactured by Hitachi High-Tech Science Co., Ltd., "Chromaster").
  • the layer (B) is cut while controlling a speed of 0.1 ⁇ m/s in the vertical direction and 2 ⁇ m/s in the horizontal direction with a diamond cutting blade having a width of 1 mm. ) was pre-cut until a thickness of .
  • the coating layer is peeled off for 10 seconds at a speed of 2 ⁇ m / s in the horizontal direction, and the cutting blade unit width is measured at the time of peeling.
  • the average value of horizontal force was taken as the value of interfacial peel strength H between layer (A) and layer (B) in propylene carbonate.
  • Thermal shrinkage rate S1 (%) The separator was cut to 50 mm in the MD direction and 50 mm in the TD direction, and sandwiched between Teflon sheets (thickness: 100 ⁇ m, 60 mm square). This laminate is housed in a package (thickness 35 ⁇ m, 100 mm square) composed of an aluminum laminate film, 0.5 mL of propylene carbonate is injected, the separator is soaked with propylene carbonate, the remaining piece is sealed, and a sample is obtained. did. After the sample was stored stationary for 24 hours, it was placed in an oven at 140° C. for 1 hour.
  • a positive electrode (positive electrode sheet) was prepared by using a rectangular sheet with a short side of 90 mm and a long side of 150 mm, and a lead tab made of aluminum foil not coated with an active material and having a length of 20 mm on the upper part of the short side (positive electrode sheet).
  • a negative electrode (negative electrode sheet) was prepared on a rectangular sheet having a short side of 90 mm and a long side of 150 mm, and a lead tab of a copper foil not coated with an active material and having a length of 20 mm on the short side.
  • An electrode plate laminate was produced by alternately stacking 73 positive electrode sheets and 74 negative electrode sheets and separating them with separators.
  • the separator was a strip-shaped separator having a width of 155 mm, and was alternately folded in a 90-fold manner to produce an electrode plate laminate. After pressing the electrode plate laminate into a flat plate, the laminate was placed in an aluminum laminate film and heat-sealed on three sides. The positive electrode lead tab and the negative electrode lead tab were led out from one side of the laminate film. Further, after drying, the above non-aqueous electrolyte was poured into the container, and the remaining one side was sealed.
  • the lithium ion secondary battery manufactured in this manner was designed to have a capacity of 40 Ah.
  • the lithium ion secondary battery produced as described above was charged to a battery voltage of 4.2 V at a discharge current of 0.5 C under an environment of 25°C.
  • the charged battery was placed in an oven, heated from room temperature to 150° C. at a rate of 5° C./min, left at 150° C. for a predetermined time, and checked for ignition.
  • the test results were evaluated based on the following criteria. S: No ignition occurred even after standing for 90 minutes or more.
  • B Ignited when left for 50 minutes or more and less than 70 minutes.
  • C Ignited when left for 30 minutes or more and less than 50 minutes.
  • D Ignition occurred during temperature rise or after standing for less than 30 minutes.
  • the surface temperature of the battery was the temperature measured with a thermocouple (K type seal type) at a position 1 cm from the bottom side of the battery exterior body.
  • D Fired in one or more cells.
  • the lithium ion secondary battery produced in the above safety evaluation 1 is charged at 25 ° C. with a discharge current of 0.5 C to a battery voltage of 4.2 V, and further the current value is increased from 3 mA while maintaining 4.2 V.
  • the initial charge after the battery production was performed for a total of about 6 hours by the method of starting throttling, and then the battery was discharged to a battery voltage of 3.0 V with a current.
  • the total time is about 3 hours.
  • Rate characteristics (%) at 10C (10C discharge capacity/1C discharge capacity) x 100 Rate characteristics at 10C were evaluated according to the following criteria.
  • Example 1 Preparation of layer (A) 1 part by mass of pentaerythrityl-tetrakis-[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] as an antioxidant for 100 parts by mass of polyethylene having a viscosity average molecular weight of 800,000
  • a mixture of polymers and the like was obtained by adding and dry-blending using a tumbler blender. The resulting mixture was purged with nitrogen and then supplied to a twin-screw extruder through a feeder under a nitrogen atmosphere.
  • Liquid paraffin (kinematic viscosity at 37.78° C.
  • the gel sheet was led to a simultaneous biaxial tenter stretching machine and biaxially stretched.
  • the set stretching conditions were MD magnification of 7.0 times, TD magnification of 6.4 times, and set temperature of 127°C.
  • it was introduced into a methylene chloride tank and fully immersed in methylene chloride to extract and remove liquid paraffin, and then dried to remove methylene chloride to obtain a porous body.
  • the porous body was guided to a TD tenter and heat-set.
  • the heat setting temperature was 126° C.
  • the maximum TD magnification was 1.5 times
  • the relaxation rate was 0.86 to obtain a layer (A) having a thickness of 9.0 ⁇ m.
  • aluminum hydroxide oxide aluminum hydroxide oxide
  • D50 0.40 ⁇ m
  • dispersant 1 sodium polyacrylate; weight average molecular weight 6,000; 1 0.0 g dissolved in 100 g of water (less than 1.0% by mass of insoluble matter
  • Acrylic latex 1 (80% by mass of units derived from butyl acrylate, 16% by mass of units derived from methyl methacrylate, 3% by mass of units derived from acrylic acid, and 3% by mass derived from acrylamide) was added to the mixed solution after treatment as a water-insoluble binder.
  • One surface of layer (A) was subjected to corona discharge treatment at a treatment intensity of 15 W/(m 2 /min).
  • a coating liquid was applied to the surface after such treatment using a gravure coater. Thereafter, the coating solution on layer (A) was dried at 60° C. to remove water, and layer (B) having a thickness of 3.0 ⁇ m was formed on one surface of layer (A) to obtain a separator. .
  • Table 1 shows the physical properties of the obtained separator and the evaluation results of the battery including the separator.
  • Examples 2 to 68 and Comparative Examples 1 to 14 The electricity storage device separator was produced and evaluated in the same manner as in Example 1, except that the layers (A) and (B) shown in Tables 1 to 12 were used.
  • the weight of the layer (A) is determined by controlling the thickness of the gel sheet to be cast, and the porosity and air permeability are controlled by controlling the biaxial stretching temperature and the heat setting temperature. were adjusted to the numerical values shown in each table by controlling the biaxial stretching temperature and the biaxial stretching ratio.
  • a layer (B) having a thickness of 1.5 ⁇ m was formed on both sides of the layer (A) (the total thickness of the layer (B) was 3.5 ⁇ m). 0 ⁇ m).
  • Example 69 The exposed surface of the layer (A) of Example 33 was subjected to corona discharge treatment at a treatment intensity of 10 W/(m 2 /min).
  • a water dispersion of the following acrylic latex 5 (solid content: 30% by mass) was pattern-coated on the surface after such treatment using a gravure roll with a dot diameter of 200 ⁇ m and a dot pattern of 5 ⁇ m deep, and dried at 60°C. to remove water from the coating liquid.
  • a separator having thermoplastic polymer-containing layers on both sides was obtained by performing the same process on the layer (B) side, except for the corona discharge treatment.
  • the diameter of the dots formed on the separator was 250 ⁇ m, and the interval between the dots was 300 ⁇ m.
  • Example 70 Acrylic latex 5 was applied using a gravure roll in which a dot diameter of 200 ⁇ m and a depth of 5 ⁇ m were printed on both the surface where the layer (A) of Example 53 was exposed and the surface where the layer (B) was exposed.
  • a water dispersion (solid content: 30% by mass) was pattern-coated and dried at 60° C. to remove water from the coating liquid to obtain a separator having thermoplastic polymer-containing layers on both sides.
  • the diameter of the dots formed on the separator was 250 ⁇ m, and the interval between the dots was 300 ⁇ m.
  • the maximum particle diameters of the inorganic filler in the layer (B) were measured from cross-sectional observation, and the maximum particle diameters were 0.85 ⁇ m and 1.92 ⁇ m, respectively.
  • acrylic latexes 2-4 The following materials were used as acrylic latexes 2-4, dispersants 2-6, water-soluble polymers 2-3, and additives 2-3 in each table.
  • Dispersant 2 Lithium polyacrylate (weight average molecular weight 6,000; less than 1.0% by mass of insoluble matter when 1.0 g is dissolved in 100 g of water)
  • Dispersant 3 A copolymer having 50% by mass of units derived from sodium acrylate and 50% by mass of units derived from acrylonitrile (weight average molecular weight 6,000; insoluble when 1.0 g is dissolved in 100 g of water less than 1.0% by mass)
  • Dispersant 4 A copolymer containing 89% by mass of units derived from sodium acrylate and 11% by mass of units derived from sodium 3-allyloxy-2-hydroxypropanesulfonate (weight average molecular weight of 6000; 1.0 g of water in 100 g Less than 1.0% by mass of insoluble matter when dissolved in Dispersant 5: ammonium polyacrylate (weight average molecular weight 6,000; less than 1.0% by mass of insoluble matter when 1.0 g is dissolved in 100 g of water)
  • Water-soluble polymer 2 Polyvinyl alcohol (weight average molecular weight 150,000; less than 1.0% by mass of insoluble matter when 1.0 g is dissolved in 100 g of water)
  • Water-soluble polymer 3 polyvinylpyrrolidone (weight average molecular weight 360,000; less than 1.0% by mass of insoluble content when 1.0 g is dissolved in 100 g of water)
  • Additive 2 Polyoxyethylene alkylene alkyl ether (Emulgen LS-110 manufactured by Kao Corporation; 0.10% by mass with respect to the amount of inorganic filler) and ammonium zirconium carbonate (metal chelate-based cross-linking agent; 1.0% with respect to the amount of inorganic filler 0% by mass)
  • Additive 3 Polyoxyethylene alkylene alkyl ether (Emulgen LS-110 manufactured by Kao Corporation; 0.50% by mass relative to the amount of inorganic filler)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)
  • Refuse Collection And Transfer (AREA)
  • Vending Machines For Individual Products (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

ポリオレフィンを含む層(A)と、 前記層(A)の少なくとも一面上に配され、かつ、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含む層(B)と、 を備える蓄電デバイス用セパレータであって、 前記蓄電デバイス用セパレータのプロピレンカーボネート中における140℃下での熱収縮率S1が、5%以下である、蓄電デバイス用セパレータ。

Description

蓄電デバイス用セパレータ及び蓄電デバイス
 本発明は、蓄電デバイス用セパレータ及び蓄電デバイスに関する。
 近年、リチウムイオン二次電池(LiB)に代表される蓄電デバイスの開発が活発に行われている。一般に、蓄電デバイスは、正極と負極との間にセパレータを介在させた発電要素に、電解液を含浸させて構成される。このセパレータ中には微小な孔が形成されており、蓄電デバイスを通常使用する際はリチウムイオンを透過し、蓄電デバイスの異常発熱時にはリチウムイオンの透過を遮断し、熱暴走を防止する機能を有するものである。
 セパレータとしては、例えば、特許文献1において、非導電性粒子と、酸性基を含有する単量体単位を有する水溶性重合体と、粒子状重合体とを含むスラリーであって、水溶性重合体の量が所定の範囲にあり、且つ、非導電性粒子のBET比表面積が所定の範囲にあるスラリーを、ポリオレフィン系基材に塗工して得られるセパレータ(無機塗工セパレータ)が提案されている。かかるセパレータは、リチウムイオン二次電池の高温サイクル特性及び安全性を向上させるとされている。
特開2019-140114号公報
 特にハイグレード車載LiBにおいて、近年、電気自動車の航続距離を延ばすために、電池の高容量化の試みが盛んである。ここで、正極中のNi比率を向上させると容量が向上することと、希少金属であるCo量が減り、低コスト化できることから、正極材料のハイニッケル化が一つのトレンドとなっている。
 ただし、正極材料のニッケル含有比率が増えると、熱分解温度が下がり、発熱量も大きくなるため、これまででは熱暴走に至らなかった電池温度でも発火や熱暴走等の事故につながる可能性がある。このような動作環境を想定すれば、電池の安全性を担保させる役割を果たすセパレータには、収縮、破膜に伴う僅かな短絡も許されなくなっている。
 他方、電池容量の向上の観点から、充放電反応に寄与しないセパレータには薄膜化が求められており、セパレータの絶対強度を担保するべく、単位樹脂重量当たりの強度を向上させることが求められている。しかしながら、このようなセパレータは熱により収縮しやすく、電池の熱的安全性が低下する傾向にある。また、セパレータの熱収縮率は一般的に空気中で測定されているが、電池の発熱時、無機塗工セパレータの塗工層において結着剤として機能する高分子材料は、カーボネート系電解液中で膨潤することで強度が低下し、塗工層の強度や、塗工層とポリオレフィン系基材との結着強度が低下する傾向にある。そのため、空気中で測定した熱収縮が低い無機塗工セパレータであっても、電解液で満たされた電池内においては熱収縮が増大し、安全性を担保できなくなる可能性がある。このような状況において従来の無機塗工セパレータでは安全性を担保できなくなりつつある。
 上述のとおり、特許文献1に記載の技術は、電解液中での熱収縮を抑制し、ニッケル含有量の多い正極材料と組み合わせた場合であっても安全性を確保できるセパレータとする観点から、更なる改善の余地がある。
 本発明は、上記従来技術が有する課題に鑑みてなされたものであり、電解液中での熱収縮を抑制し、ニッケル含有量の多い正極材料と組み合わせた場合にあっても安全性を確保できる蓄電デバイス用セパレータを提供することを課題とする。
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、所定の成分を含む層を有し、所定環境下での熱収縮率が所定範囲にある及び/又は所定条件下で測定される層間の界面剥離強度が所定範囲にあるセパレータであれば、ニッケル含有量の多い正極材料と組み合わせた場合にあっても安全性を確保できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を包含する。
[1]
 ポリオレフィンを含む層(A)と、
 前記層(A)の少なくとも一面上に配され、かつ、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含む層(B)と、
 を備える蓄電デバイス用セパレータであって、
 前記蓄電デバイス用セパレータのプロピレンカーボネート中における140℃下での熱収縮率S1が、5%以下である、蓄電デバイス用セパレータ。
[2]
 ポリオレフィンを含む層(A)と、
 前記層(A)の少なくとも一面上に配され、かつ、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含む層(B)と、
 を備える蓄電デバイス用セパレータであって、
 前記ポリアクリル酸系分散剤が、ポリアクリル酸の一価の金属イオンの中和塩、及び、アクリル酸の一価の金属イオンの中和塩とアクリル酸との共重合体、からなる群より選ばれる1種以上を含み、
 前記水溶性バインダが、セルロースエーテルを含み、
 プロピレンカーボネート中における前記層(A)と前記層(B)との間の界面剥離強度Hが3N/m以上である、蓄電デバイス用セパレータ。
[3]
 前記層(A)の目付換算突刺強度が、40gf/(g/m)以上である、[1]又は[2]に記載の蓄電デバイス用セパレータ。
[4]
 前記蓄電デバイス用セパレータの空気中における150℃下での熱収縮率S2が、5%以下である、[1]~[3]のいずれかに記載の蓄電デバイス用セパレータ。
[5]
 前記熱収縮率S1が、2.5%以下である、[1]、[3]、[4]のいずれかに記載の蓄電デバイス用セパレータ。
[6]
 前記蓄電デバイス用セパレータの厚みTが3μm以上16μm以下である、[1]~[5]のいずれかに記載の蓄電デバイス用セパレータ。
[7]
 層(B)の厚みTと前記厚みTとの比が、T/Tとして、0.1~0.3である、[1]~[6]のいずれかに記載の蓄電デバイス用セパレータ。
[8]
 蓄電デバイス用セパレータの突刺強度が、200gf以上である、[1]~[7]のいずれかに記載の蓄電デバイス用セパレータ。
[9]
 層(A)における層(B)側の表面をATR-IRで測定した際の1734cm-1/2918cm-1の吸収ピーク比が、0.025~0.125である、[1]~[8]のいずれかに記載の蓄電デバイス用セパレータ。
[10]
 前記ポリアクリル酸系分散剤が、ポリアクリル酸の一価の金属イオンの中和塩、及び、アクリル酸の一価の金属イオンの中和塩とアクリル酸との共重合体、からなる群より選ばれる1種以上を含む、[1]、[3]~[9]のいずれかに記載の蓄電デバイス用セパレータ。
[11]
 前記水溶性バインダが、セルロースエーテルを含む、[1]、[3]~[10]のいずれかに記載の蓄電デバイス用セパレータ。
[12]
 前記無機フィラーのD50粒子径が、0.1μm以上0.7μm以下である、[1]~[11]のいずれかに記載の蓄電デバイス用セパレータ。
[13]
 前記蓄電デバイス用セパレータの透気度が、50~500秒/100ccである、[1]~[12]のいずれかに記載の蓄電デバイス用セパレータ。
[14]
 前記層(A)の透気度が、30~450秒/100ccである、[1]~[13]のいずれかに記載の蓄電デバイス用セパレータ。
[15]
 LiとCoとNiとを含む正極と、
 前記正極に対向する負極と、
 前記正極と前記負極との間に配される、[1]~[14]のいずれかに記載の蓄電デバイス用セパレータと、
 を備える蓄電デバイスであって、
 前記正極中のLi以外の金属中の前記Co及びNiの含有比率が、それぞれ、20mоl%以下及び60mоl%以上である、蓄電デバイス。
 本発明によれば、電解液中での熱収縮を抑制し、ニッケル含有量の多い正極材料と組み合わせた場合にあっても安全性を確保できる蓄電デバイス用セパレータを提供することができる。
 以下に本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。本明細書における「(メタ)アクリル」とは、「アクリル」、及びそれに対応する「メタクリル」を意味する。また、本明細書での「~」とは、特に断りがない場合、その両端の数値を上限値、及び下限値として含む意味である。
[蓄電デバイス用セパレータ]
 本実施形態の第1の態様に係る蓄電デバイス用セパレータ(以下、「第1のセパレータ」ともいう。)は、ポリオレフィンを含む層(A)と、前記層(A)の少なくとも一面上に配され、かつ、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含む層(B)と、を備える蓄電デバイス用セパレータであって、前記蓄電デバイス用セパレータのプロピレンカーボネート中における140℃下での熱収縮率S1が、5%以下である。第1のセパレータは、上記構成を有するため、電解液中での熱収縮を抑制し、ニッケル含有量の多い正極材料と組み合わせた場合にあっても安全性を確保できる。
 また、本実施形態の第2の態様に係る蓄電デバイス用セパレータ(以下、「第2のセパレータ」ともいう。)は、ポリオレフィンを含む層(A)と、前記層(A)の少なくとも一面上に配され、かつ、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含む層(B)と、を備える蓄電デバイス用セパレータであって、前記ポリアクリル酸系分散剤が、ポリアクリル酸の一価の金属イオンの中和塩、及び、アクリル酸の一価の金属イオンの中和塩とアクリル酸との共重合体、からなる群より選ばれる1種以上を含み、前記水溶性バインダが、セルロースエーテルを含み、プロピレンカーボネート中における前記層(A)と前記層(B)との間の界面剥離強度Hが3N/m以上である。上記構成を有する第2のセパレータもまた、電解液中での熱収縮を抑制し、ニッケル含有量の多い正極材料と組み合わせた場合にあっても安全性を確保できる。
 なお、本明細書において、特に断りがない限り、蓄電デバイス用セパレータに関する以降の説明は、第1のセパレータ及び第2のセパレータの双方に係るものとする。また、「本実施形態の蓄電デバイス用セパレータ」は第1のセパレータ及び第2のセパレータを包含するものとして説明する。
(層(A))
 層(A)は、ポリオレフィンを含むものであり、蓄電デバイス用セパレータの基材として機能する。層(A)は、ポリオレフィンを主成分として含むことが好ましく、層(A)におけるポリオレフィンの含有量としては、層(A)の全質量に対して、好ましくは75質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、より更に好ましくは95質量%以上、特に好ましくは98質量%以上である。上記含有量の上限は特に限定されず、100質量%であってもよい。
 層(A)の形態としては、特に限定されないが、例えば、ポリオレフィンの微多孔質体が挙げられる。ポリオレフィンの微多孔質体としても特に限定されないが、例えば、ポリオレフィンの膜、ポリオレフィン系繊維の織物(織布)、ポリオレフィン系繊維の不織布等が挙げられる。
 (ポリオレフィン)
 ポリオレフィンとしては、特に限定されないが、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテン等をモノマーとして用いて得られる、単独重合体、共重合体及び多段重合体等が挙げられ、これらの重合体を単独で用いても、2種以上を混合して用いてもよい。ポリオレフィンは、層(A)にセパレータとして適切な溶融粘度、シャットダウン及びメルトダウン特性を付与する観点から、ポリエチレン、ポリプロピレン、及びこれらの共重合体からなる群から選択される少なくとも一つを含むことが好ましく、ポリエチレンを含むことがより好ましい。また、本実施形態においては、諸物性を調整する観点から、ポリオレフィンがポリプロピレンを含むものであってもよく、例えば、ポリオレフィンがエチレン-プロピレン共重合体、又はポリエチレンとポリプロピレンの混合物を含むものであってもよい。
 ポリエチレンの具体例としては、特に限定されないが、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、高分子量ポリエチレン(HMWPE)、及び超高分子量ポリエチレン(UHMWPE)等が挙げられる。
 本実施形態において、高分子量ポリエチレン(HMWPE)とは、粘度平均分子量(Mv)が10万以上のポリエチレンを意味する。一般に、超高分子量ポリエチレン(UHMWPE)のMvは、100万以上であるため、本実施形態における高分子量ポリエチレン(HMWPE)は、定義上、UHMWPEを包含する。
 本実施形態において、高密度ポリエチレンとは密度0.942~0.970g/cmのポリエチレンをいう。なお、本実施形態においてポリエチレンの密度とは、JIS K7112(1999)に記載のD)密度勾配管法に従って測定した値をいう。
 ポリプロピレンの具体例としては、特に限定されないが、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、及びアタクティックポリプロピレン等が挙げられる。
 エチレンとプロピレンとの共重合体の具体例としては、特に限定されないが、エチレン-プロピレンランダム共重合体、及びエチレンプロピレンラバー等が挙げられる。
 層(A)におけるポリオレフィン(PO)がポリエチレン(PE)を含む場合、PE含有量は、層(A)を構成する樹脂成分の全質量を基準として、50質量%以上100質量%以下であり、ヒューズ特性又はメルトダウン特性の観点から、好ましくは85質量%以上100質量%以下であり、より好ましくは90質量%以上95質量%以下である。
 層(A)におけるPOがポリプロピレン(PP)を含む場合、PP含有量は、層(A)を構成する樹脂成分の全質量を基準として、0質量%より大きく50質量%未満であり、溶融粘度及びヒューズ特性の観点から、好ましくは0質量%より大きく20質量%以下であり、より好ましくは5質量%以上10質量%以下である。
 層(A)は、上記に挙げたポリオレフィン以外の樹脂を含んでいてもよい。かかる樹脂としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルホン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリフッ化ビニリデン、ナイロン、ポリテトラフルオロエチレン等が挙げられる。
 (メルトインデックス)
 層(A)の190℃でのメルトインデックス(MI)は、製膜時にポリオレフィンを含む樹脂組成物(以下、「ポリオレフィン樹脂組成物」ともいう。)の高粘度を抑制して不良品の発生を抑制するという観点から、0.02g/10min~0.5g/10minであることが好ましく、0.05g/10min~0.3g/10minであることがより好ましい。より詳細には、0.02g/10min~0.50g/10minであることが好ましく、0.05g/10min~0.30g/10minであることがより好ましい。
 (目付換算突刺強度)
 層(A)の目付(g/m)に換算されたときの突刺強度(以下、「目付換算突刺強度」という。)は、例えば30gf/(g/m)以上とすることができ、40gf/(g/m)以上であることが好ましい。層(A)が40gf/(g/m)以上の目付換算突刺強度を有する場合、蓄電デバイスの衝撃試験において層(A)が破断し難くなる傾向にある。層(A)の強度を維持しながら蓄電デバイスの安全性、例えば耐衝撃性を向上させるという観点から、目付換算突刺強度は、より好ましくは50gf/(g/m)以上であり、更に好ましくは60gf/(g/m)以上であり、より更に好ましくは70gf/(g/m)以上であり、一層好ましくは80gf/(g/m)以上であり、より一層好ましくは90gf/(g/m)以上である。目付換算突刺強度は、限定されるものではないが、例えば、200gf/(g/m)以下であってもよく、150gf/(g/m)以下であってもよく、120gf/(g/m)以下であってもよい。
 上記目付換算突刺強度は、後述する実施例に記載の方法により測定することができる。また、上記目付換算突刺強度は、例えば、後述する方法等により目付及び突刺強度の値を適宜調整することにより、上記範囲に調整することができる。より具体的には、例えば、ポリオレフィン樹脂組成物の分子量、ポリオレフィン樹脂組成物と可塑剤の混合比率、延伸温度、延伸倍率を調整することで上記範囲に調整することができる。
 (目付)
 層(A)の目付は、強度を向上させる観点から、好ましくは1.5g/m以上であり、より好ましくは2.0g/m以上であり、更に好ましくは2.5g/m以上であり、また蓄電デバイスの容量を向上させる観点から、好ましくは7.0g/m以下であり、より好ましくは6.5g/m以下であり、更に好ましくは5.5g/m以下である。層(A)の目付は、後述する実施例に記載の方法により測定することができ、例えば、ダイリップ間隔、延伸工程における延伸倍率等を制御することにより調整することができる。
 (突刺強度)
 層(A)の目付に換算されていない突刺強度(以下、単に「突刺強度」という。)については、衝撃試験において層(A)の破断を抑制する観点から、100gf以上であることが好ましく、より好ましくは200gf以上であり、更に好ましくは250gf以上であり、より更に好ましくは300gf以上であり、一層好ましくは350gf以上であり、より一層好ましくは400gf以上であり、特に好ましくは450gf以上である。また、層(A)の製膜時の安定性の観点から、上記突刺強度は、1000gf以下であることが好ましく、より好ましくは900gf以下である。
 ただし、上記突刺強度の下限値は、上述した例に限定されず、製膜および電池製造を安定して実施できる値であれば採用することができる。また、上記突刺強度の上限値としても、上述した例に限定されず、他の特性とのバランスで適宜設定することができる。
 上記突刺強度は、後述する実施例に記載の方法により測定することができる。
 ポリオレフィン樹脂組成物を押出成形して層(A)を得ることを想定すると、押出時に成形品に掛かる剪断力又は延伸による分子鎖の配向の増加により、上記突刺強度を高めることができる。残留応力の増加を避けて熱安定性を向上させる観点から、剪断力又は延伸による分子鎖の配向が過度に増加しないように制御することが好ましい。
 (厚み)
 層(A)の厚みは、強度や耐電圧性を向上させる観点から、好ましくは3μm以上であり、より好ましくは4μm以上であり、更に好ましくは5μm以上である。より詳細には、好ましくは3.0μm以上であり、より好ましくは4.0μm以上であり、更に好ましくは5.0μm以上である。また、蓄電デバイスの容量を向上させる観点から、層(A)の厚みは、好ましくは12μm以下であり、より好ましくは11μm以下であり、更に好ましくは10μm以下である。より詳細には、好ましくは12.0μm以下であり、より好ましくは11.0μm以下であり、更に好ましくは10.0μm以下である。層(A)の厚みは、後述する実施例に記載の方法により測定することができ、例えば、ダイリップ間隔、延伸工程における延伸倍率等を制御することにより調整することができる。
 (気孔率)
 層(A)の気孔率は、透過性の観点から、好ましくは20%以上であり、より好ましくは30%以上であり、更に好ましくは35%以上であり、また膜強度や耐電圧の観点から、好ましくは70%以下であり、より好ましくは60%以下であり、更に好ましくは50%以下である。
 上記気孔率は、後述する実施例に記載の方法により測定することができる。
 また、上記気孔率は、例えば、ポリオレフィン樹脂組成物と可塑剤の混合比率、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、及び熱固定時の緩和率等を制御すること、並びにこれらを組み合わせることにより調整することができる。
 (透気度)
 層(A)の透気度は、複数の電極間に層(A)を介して過剰な電流が流れないようにするという観点から、好ましくは10sec/100cm以上、より好ましくは50sec/100cm以上であり、更に好ましくは80sec/100cm以上であり、また透過性の観点から、好ましくは1000sec/100cm以下であり、より好ましくは300sec/100cm以下であり、更に好ましくは200sec/100cm以下であり、特に好ましくは160sec/100cm以下である。
 上記透気度は、後述する実施例に記載の方法により測定することができる。
 また、上記透気度は、例えば、熱固定温度、熱固定時の延伸倍率、及び熱固定時の緩和率等を制御すること、並びにこれらを組み合わせることにより調整することができる。
 (吸収ピーク比)
 層(A)の表面上に層(B)を形成する前に、層(A)にコロナ放電処理やプラズマ処理等を実施することによって表面性状を調整することが好ましい。かかる表面性状は、ATR-IRによって確認することができ、より具体的には、層(A)の表面をATR-IRで測定した際の1734cm-1/2918cm-1の吸収ピーク比によって確認することができる。本実施形態において、層(A)における層(B)側の表面をATR-IRで測定した際の1734cm-1/2918cm-1の吸収ピーク比は、例えば0.010~0.180とすることができ、0.025~0.125であることが好ましい。
 上記吸収ピーク比が0.025以上である場合、層(A)の表面に形成されたカルボニル基、カルボキシル基を主とする酸素原子含有官能基と、層(B)中の非水溶性バインダ、及び水溶性バインダとの相互作用が大きくなり、結果として電解液中での熱収縮を十分に抑制できる傾向にある。また、上記吸収ピーク比が0.125以下である場合、層(B)を形成する際の塗工液中に含まれる樹脂成分の層(A)の孔への過度な含浸を抑制し、結果として透過性が向上する傾向にある。
 上記観点から、上記吸収ピーク比は0.040~0.105であることがより好ましく、更に好ましくは0.055~0.085である。
 上記吸収ピーク比は、後述する実施例に記載の方法により測定することができる。
 また、上記吸収ピーク比は、例えば、後述する好ましい条件によりコロナ放電処理やプラズマ放電処理を行う等によって調整することができる。
 (粘度平均分子量)
 層(A)の粘度平均分子量(Mv)は、好ましくは400,000以上1,300,000以下であり、より好ましくは450,000以上1,200,000以下であり、更に好ましくは500,000以上1,150,000以下である。層(A)のMvが400,000以上であると、溶融成形の際のメルトテンションが大きくなり、成形性が良好になると共に、重合体同士の絡み合いによって高い膜強度が得られる傾向にある。Mvが1,300,000以下であると、原料の均一な溶融混練が容易となり、シート成形性、特に厚み安定性に優れる傾向にあるだけでなく、蓄電デバイス用セパレータとして使用した際に、温度上昇時に孔が閉塞され易く、良好なヒューズ機能が得られる傾向にもある。
 Mvは、ASTM-D4020に基づき、デカリン溶媒における135℃での極限粘度[η]から求めることができる。
 ポリエチレンのMvは次式により算出できる。
   [η]=6.77×10-4Mv0.67
 ポリプロピレンについては、次式によりMvを算出できる。
   [η]=1.10×10-4Mv0.80
 (平均孔径)
 層(A)は、リチウムイオン二次電池用セパレータへの適用、特にラミネート型リチウムイオン二次電池用セパレータとしての適用の観点から、イオン伝導性を有し、有機溶媒に対する耐性が高く、かつ孔径の微細なものが好ましい。そのため、層(A)の平均孔径は、好ましくは0.03μm以上0.70μm以下、より好ましくは0.04μm以上0.20μm以下、更に好ましくは0.05μm以上0.10μm以下、より更に好ましくは0.055μm以上0.09μm以下である。層(A)の平均孔径は、イオン伝導性と耐電圧性の観点から、0.03μm以上0.70μm以下であることが好ましい。
 平均孔径は、例えば、ポリオレフィン樹脂組成物の組成比、ポリオレフィン又は可塑剤の種類、押出シートの冷却速度、延伸温度、延伸倍率、熱固定温度、熱固定時の延伸倍率、及び熱固定時の緩和率等を制御すること、並びにこれらを組み合わせることにより調整することができる。平均孔径は、ハーフドライ法に準拠し、パームポロメータを用いて測定することができる。
(層(B))
 層(B)は、層(A)の少なくとも一面上に配され、かつ、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含むものである。層(B)は、蓄電デバイス用セパレータにおいて特に熱による収縮を抑制する機能を有する。
 (厚み)
 層(B)の厚みは、耐熱性を向上させる観点から、0.5μm以上であることが好ましく、より好ましくは0.6μm以上であり、更に好ましくは0.7μm以上であり、より更に好ましくは1.0μm以上である。また、蓄電デバイスの容量を向上させる観点から、層(B)の厚みは、5μm以下であることが好ましく、より好ましくは4μm以下であり、更に好ましくは3μm以下である。より詳細には、5.0μm以下であることが好ましく、より好ましくは4.0μm以下であり、更に好ましくは3.0μm以下である。
 層(B)は層(A)の片面上のみに形成されていてもよいし、層(A)の両面に形成されていてもよい。層(B)が層(A)の両面に形成されていている場合、層(B)の合計厚みとして上述した範囲に包含されていることが好ましい。
 層(B)の厚みは、後述する実施例に記載の方法により測定することができ、例えば、層(B)を形成する際に用いる塗工液の量や当該塗工液の塗布条件等により調整することができる。
 (無機フィラー)
 層(B)における無機フィラーとしては、特に限定されないが、耐熱性及び電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。そのような無機フィラーとしては、以下に限定されないが、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、及び酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、及び窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、硫酸バリウム、水酸化アルミニウム、水酸化酸化アルミニウム又はベーマイト、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、及びケイ砂等のセラミックス;並びにガラス繊維などが挙げられる。これらの中でも、アルミナ、ベーマイト、及び硫酸バリウムから成る群から選ばれる少なくとも1つが、リチウムイオン二次電池内での安定性の観点から好ましい。また、ベーマイトとしては、電気化学素子の特性に悪影響を与えるイオン性の不純物を低減できる合成ベーマイトが好ましい。無機フィラーは、1種を単独で用いてもよく、複数種を併用してもよい。
 無機フィラーの形状としては、例えば、板状、鱗片状、多面体、針状、柱状、粒状、球状、紡錘状、ブロック状等が挙げられ、上記形状を有する無機フィラーを複数種組み合わせて用いてもよい。これらの中でも、透過性と耐熱性のバランスの観点からは、ブロック状が好ましい。
 無機フィラーのアスペクト比としては、1.0以上3.0以下であることが好ましく、より好ましくは、1.1以上2.5以下である。アスペクト比が3.0以下であることで、蓄電デバイス用セパレータの水分吸着量を低減し、サイクルを重ねた時の容量劣化を抑制する観点、及び層(A)の融点を超えた温度における変形を抑制する観点から好ましい。
 無機フィラーのアスペクト比は、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。
 無機フィラーの比表面積としては、5.0m/g以上20m/g以下であることが好ましく、より好ましくは、5.5.0m/g以上18m/g以下であり、更に好ましくは、6.0m/g以上16m/g以下である。より詳細には、5.0m/g以上20.0m/g以下であることが好ましく、より好ましくは、5.5m/g以上18.0m/g以下であり、更に好ましくは、6.0m/g以上16.0m/g以下である。比表面積が20m/g以下である場合、蓄電デバイス用セパレータの水分吸着量を低減し、サイクルを重ねた時の容量劣化を抑制する観点から好ましく、比表面積が5.0m/g以上である場合、層(A)の融点を超えた温度における変形を抑制する観点から好ましい。無機フィラーの比表面積は、BET吸着法を用いて測定することができる。
 無機フィラーの体積平均粒子径D50は、例えば1.0μm以下とすることができ、0.10μm以上0.70μm以下であることが好ましい。D50が0.10μm以上である場合、蓄電デバイス用セパレータの水分吸着量を抑制し、サイクルを重ねた時の容量劣化を抑制する観点から好ましく、D50が0.70μm以下であることで、層(A)の融点を超えた温度における変形を抑制する観点から好ましい。上記観点から、D50は、0.10μm以上0.60μm以下であることがより好ましく、更に好ましくは0.10μm以上0.50μm以下であり、より更に好ましくは0.10μm以上0.49μm以下である。
 無機フィラーの体積平均粒子径D50は、後述する実施例に記載の方法により測定することができる。
 無機フィラーの体積平均粒子径D50を上記のように調整する方法としては、例えば、ボールミル・ビーズミル・ジェットミル等を用いて無機フィラーを粉砕し、所望の粒径分布を得る方法、複数の粒径分布のフィラーを調製した後にブレンドする方法等が挙げられる。
 層(B)から再分散させた無機フィラーの粒子径は、例えば1.0μm以下とすることができ、0.10μm以上0.70μm以下であることが好ましい。層(B)から再分散させた無機フィラーの粒子径が0.10μm以上である場合、蓄電デバイス用セパレータの水分吸着量を抑制し、サイクルを重ねた時の容量劣化を抑制する観点から好ましく、層(B)から再分散させた無機フィラーの粒子径が0.70μm以下であることで、層(A)の融点を超えた温度における変形を抑制する観点から好ましい。上記観点から、層(B)から再分散させた無機フィラーの粒子径は、0.10μm以上0.60μm以下であることがより好ましく、更に好ましくは0.10μm以上0.50μm以下であり、より更に好ましくは0.10μm以上0.49μm以下である。
 層(B)から再分散させた無機フィラーの粒子径は、後述する実施例に記載の方法により測定することができる。
 層(B)から再分散させた無機フィラーの粒子径を上記のように調整する方法としては、例えば、ボールミル・ビーズミル・ジェットミル等を用いて無機フィラーを粉砕し、所望の粒径分布を得る方法、複数の粒径分布のフィラーを調製した後にブレンドする方法等が挙げられる。
 層(B)中の無機フィラーの一次粒子径は、例えば1.0μm以下とすることができ、0.10μm以上0.70μm以下であることが好ましい。層(B)中の無機フィラーの一次粒子径が0.10μm以上である場合、蓄電デバイス用セパレータの水分吸着量を抑制し、サイクルを重ねた時の容量劣化を抑制する観点から好ましく、層(B)中の無機フィラーの一次粒子径が0.70μm以下であることで、層(A)の融点を超えた温度における変形を抑制する観点から好ましい。上記観点から、層(B)中の無機フィラーの一次粒子径は、0.10μm以上0.60μm以下であることがより好ましく、更に好ましくは0.10μm以上0.50μm以下であり、より更に好ましくは0.10μm以上0.49μm以下である。
 層(B)中の無機フィラーの一次粒子径は、後述する実施例に記載の方法により測定することができる。
 層(B)中の無機フィラーの一次粒子径を上記のように調整する方法としては、例えば、ボールミル・ビーズミル・ジェットミル等を用いて無機フィラーを粉砕し、所望の粒径分布を得る方法、複数の粒径分布のフィラーを調製した後にブレンドする方法等が挙げられる。
 層(B)中の無機フィラーの最大粒子径は、耐熱性の観点から、2.5μm以下であることが好ましく、より好ましくは2.0μm以下であり、さらに好ましくは1.5μm以下である。上記最大粒子径は、後述する実施例に記載の方法により測定することができる。
 層(B)における無機フィラーの含有量としては、層(B)の質量を基準として、80質量%以上99質量%以下であることが好ましく、より好ましくは85質量%以上98質量%以下であり、更に好ましくは90質量%以上98質量%以下であり、より更に好ましくは92質量%以上98質量%以下である。上記含有量が80質量%以上である場合、イオン透過性の観点、及び層(A)の融点を超えた温度における変形を抑制する観点から好ましい。また、上記含有量が99質量%以下である場合、無機フィラー同士の結着力又は無機フィラーと層(A)との界面結着力を維持する観点で好ましい。
 (非水溶性バインダ)
 層(B)における非水溶性バインダは、水中において粒子状で分散する、ガラス転移温度が10℃以下の粒子状重合体と定義される。水中において粒子状で分散することは、以下に限定されないが、例えば、後述する実施例に記載の方法に基づいて非水溶性バインダの粒子径分布が測定可能であることや、25℃において重合体乾燥物1.0gを100gの水に溶解した際に、不溶分が90質量%以上であること等から確認することができる。非水溶性バインダは、無機フィラーを電解液中で点状に結着させるものと考えられ、耐熱性と透過性を両立するものである。非水溶性バインダの具体例としては、以下に限定されないが、スチレン・ブタジエン系ラテックス、アクリロニトリル・ブタジエン系ラテックス、アクリルラテックス(メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、及びアクリロニトリル-アクリル酸エステル共重合体など)等が挙げられる。分子設計の自由度の観点から、アクリルラテックスが好ましい。アクリルラテックスを構成し得るアクリル酸エステルとしては、以下に限定されないが、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルアメタクリレート等の(メタ)アクリル酸アルキルエステルが挙げられる。これらのアクリル酸エステルは1種を単独で用いても、2種以上を併用してもよい。
 非水溶性バインダは、電解液に対する不溶分を適度な量にする観点から、架橋性単量体単位を含んでいてもよい。架橋性単量体単位を構成し得るモノマーとしては、特に限定されないが、例えば、ラジカル重合性の二重結合を2個以上有している単量体、重合中又は重合後に自己架橋構造を与える官能基を有する単量体が挙げられる。これらは1種単独で用いても、2種以上を併用してもよい。上記モノマーの具体例としては、特に限定されないが、例えば、ポリオキシエチレンジアクリレート、ポリオキシエチレンジメタクリレート、ポリオキシプロピレンジアクリレート、ポリオキシプロピレンジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート等の多官能(メタ)アクリレートが挙げられる。これらは1種単独で用いても、2種以上を併用してもよい。
 非水溶性バインダが電解液で膨潤しても水素結合により無機フィラー、水溶性バインダ、及びポリアクリル酸系分散剤並びに層(A)との結着力を担保する観点から、さらに、バインダ成分の電解液膨潤度を抑制することで電解液中でのバインダ強度を高める観点から、カルボキシル基、カルボニル基、ヒドロキシル基と水素結合する官能基を有するアクリルラテックス、及び/又は重合中又は重合後に自己架橋構造を与える官能基を有するアクリルラテックスであることが好ましい。かかるアクリルラテックスとしては、前述したアクリル酸エステルに由来する単位に加え、アクリル酸等に由来する単位、アクリルアミド等に由来する単位及び/又はグリシジル(メタ)アクリレート、アリルグリシジルエーテル、メチルグリシジルアクリレート等に由来する単位を有する共重合体等が挙げられる。
 上記のような共重合体の重合方法は特に限定されないが、乳化重合が好ましい。乳化重合の方法としては、特に限定されず、既知の方法を用いることができる。単量体、及びその他の成分の添加方法については、特に限定されず、一括添加方法、分割添加方法、及び連続添加方法の何れも採用することができ、重合方法は、一段重合、二段重合、又は三段階以上の多段階重合のいずれも採用することができる。
 非水溶性バインダは、1種を単独で用いてもよく、複数種を併用してもよい。
 非水溶性バインダの体積平均粒子径としては、結着力と透過性の観点から、10~500nmであることが好ましい。上記体積平均粒子径が10nm以上である場合、層(A)の孔の過度な閉塞を防止して透過性が向上する傾向にあり、上記体積平均粒子径が500nm以下である場合、結着力の低下を防止し、耐熱性が向上する傾向にある。同様の観点から、上記粒子径は20~350nmであることがより好ましく、更に好ましくは30~200nmである。
 上記体積平均粒子径は後述する実施例に記載の方法により測定することができ、例えば、非水溶性バインダを製造する際の重合時間、重合温度、原料組成比、原料投入順序、pH、撹拌速度により調整することができる。
 非水溶性バインダのガラス転移温度(Tg)は、結着性の観点から、-40℃以上10℃以下であることが好ましい。上記ガラス転移温度が-40℃以上であると、非水溶性バインダの凝集力が上がり、耐熱性が向上する傾向にあり、上記ガラス転移温度が10℃以下であると、非水溶性バインダの粘着性が確保され、結着性が向上する傾向にある。同様の観点から、上記ガラス転移温度は-40℃以上0℃以下であることがより好ましく、更に好ましくは-40℃以上-5℃以下である。
 ガラス転移温度は、後述する実施例に記載の方法によって測定することができる。
 ガラス転移温度は、例えば、非水溶性バインダを製造する際の重合時間、重合温度、原料組成比により調整することができる。
 非水溶性バインダの含有量としては、結着力と透過性の観点から、層(B)における無機フィラーの含有量を100質量%として、1~12質量%であることが好ましく、より好ましくは1~10質量%であり、さらに好ましくは2~8質量%であり、よりさらに好ましくは3~6質量%以下である。
 (水溶性バインダ)
 層(B)における水溶性バインダは、25℃において、重合体1.0gを100gの水に溶解した際に、不溶分が1.0質量%未満となる、重量平均分子量が20,000以上の重合体と定義され、電解液中で無機フィラーを被膜状に結着させ、耐熱性に寄与する機能を有する。
 第1のセパレータの層(B)における水溶性バインダの具体例としては、以下に限定されないが、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、セルロースエーテル、ポリアクリルアミド、ポリ(メタ)アクリル酸、ポリビニルアセトアミド、ポリエチレンイミン、ポリエチレンオキシド、ポリスチレンスルホン酸、キサンタンガム、グァーガム等が挙げられる。これらの中でも、剛直な分子構造により電解液中での強度を発現させる観点から、セルロースエーテルが好ましく、カルボキシメチルセルロースナトリウムがとりわけ好ましい。
 第2のセパレータの層(B)における水溶性バインダは、セルロースエーテルを含む。第2のセパレータの層(B)における水溶性バインダは、セルロースエーテルの他に、PVA、PVP、ポリアクリルアミド、ポリ(メタ)アクリル酸、ポリビニルアセトアミド、ポリエチレンイミン、ポリエチレンオキシド、ポリスチレンスルホン酸、キサンタンガム、グァーガム等を含んでいてもよい。
 第1のセパレータ及び第2のセパレータの双方において、水溶性バインダは、1種を単独で用いてもよく、複数種を併用してもよい。また、水溶性バインダは、上記から選択される少なくとも1種と他の共重合成分との共重合体であってもよい。
 重量平均分子量は後述する実施例に記載の方法により測定することができ、例えば、水溶性バインダを製造する際の重合時間、重合温度、原料組成比、原料投入順序、撹拌速度等により調整することができる。
 層(B)に水溶性バインダが含まれていることは、例えばセパレータを水に浸漬させ、水溶成分を水層に溶解させ、得られた水層成分をろ過し、ゲルパーミエーションクロマトグラフィー等で分子量を測定し、水層成分の乾固物を赤外分光装置や核磁気共鳴装置、エネルギー分散型X線分光装置等で解析することで検出できる。
 セルロースエーテルのエーテル化度は、好ましくは0.5以上、より好ましくは0.6以上であり、好ましくは1.5以下、より好ましくは1.0以下である。エーテル化度とは、セルロース中の無水グルコース単位1個当たりの水酸基のカルボキシメチル基等への置換体への置換度のことをいう。エーテル化度は、理論的には0~3の値を取りうる。エーテル化度が上記範囲にある場合は、セルロースエーテルの水への溶解性と結着強度に優れる傾向にある。エーテル化度は、例えばセルロースエーテルの灰分を中和滴定するによって測定することができる。
 水溶性バインダの重量平均分子量は、好ましくは20,000以上、より好ましくは50,000以上であり、好ましくは600,000以下、より好ましくは400,000以下である。水溶性バインダの重量平均分子量を前記範囲の下限値以上にすることにより、水溶性バインダの強度を高めることができるため、結着強度を高め、耐熱性を向上させることができる。また、上限値以下にすることにより、粘度の上昇を抑制できるので、塗工性を高めることができる。
 水溶性バインダの含有量としては、透過性、耐熱性及び塗工性の観点から、層(B)における無機フィラーの含有量を100質量%として、0.05~2.4質量%であることが好ましく、より好ましくは0.1~2.4質量%であり、さらに好ましくは0.1~2.0質量%であり、よりさらに好ましくは0.15~2.0質量%であり、一層好ましくは0.2~1.0質量%であり、より一層好ましくは0.3~0.8質量%である。
 (ポリアクリル酸系分散剤)
 層(B)におけるポリアクリル酸系分散剤は、25℃において、重合体1.0gを100gの水に溶解した際に、不溶分が1.0重量%未満となる、重量平均分子量が500以上10,000以下のアクリル酸骨格を持つ重合体と定義され、無機フィラー表面に吸着し、分散性と電解液中での結着性に寄与する。
 第1のセパレータの層(B)におけるポリアクリル酸系分散剤の具体例としては、以下に限定されないが、アクリル酸、アクリル酸ナトリウム、アクリル酸リチウム及びアクリル酸アンモニウムをモノマーとして用いて得られる、単独重合体及び共重合体等が挙げられる。これらの中でも、分散性及び電解液への低膨潤性の観点から、ポリアクリル酸の一価の金属イオンの中和塩、及び、アクリル酸の一価の金属イオンの中和塩とアクリル酸との共重合体、からなる群より選ばれる1種以上を含むことが好ましく、そのようなポリアクリル酸系分散剤の具体例としては、以下に限定されないが、ポリアクリル酸ナトリウム及びポリアクリル酸リチウム等が挙げられる。
 第2のセパレータの層(B)におけるポリアクリル酸系分散剤は、ポリアクリル酸の一価の金属イオンの中和塩、及び、アクリル酸の一価の金属イオンの中和塩とアクリル酸との共重合体、からなる群より選ばれる1種以上を含む。第2のセパレータの層(B)におけるポリアクリル酸系分散剤は、ポリアクリル酸の一価の金属イオンの中和塩及びアクリル酸の一価の金属イオンの中和塩とアクリル酸との共重合体を除く、アクリル酸、アクリル酸ナトリウム、アクリル酸リチウム及びアクリル酸アンモニウムをモノマーとして用いて得られる、単独重合体及び共重合体等を含んでいてもよい。
 第1のセパレータ及び第2のセパレータの双方において、ポリアクリル酸系分散剤は、1種を単独で用いてもよく、複数種を併用してもよい。
 層(B)にポリアクリル酸系分散剤が含まれていることは、例えばセパレータを水に浸漬させ、水溶成分を水層に溶解させ、得られた水層成分をろ過し、ゲルパーミエーションクロマトグラフィー等で分子量を測定し、水層成分の乾固物を赤外分光装置や核磁気共鳴装置、エネルギー分散型X線分光装置等で解析することで検出できる。
 ポリアクリル酸系分散剤の重量平均分子量は、好ましくは500以上、より好ましくは1,000以上であり、好ましくは10,000以下、より好ましくは8,000以下である。水溶性バインダの重量平均分子量を前記範囲の下限値以上にすることにより、ポリアクリル酸系分散剤が無機フィラーに吸着した際の立体安定性を高めることができるため、結着強度や耐熱性が向上する傾向にある。また、上限値以下にすることにより、粘度の上昇を抑制できるので、塗工性が高まる傾向にある。
 重量平均分子量は後述する実施例に記載の方法により測定することができ、例えば、ポリアクリル酸系分散剤を製造する際の重合時間、重合温度、原料組成比、原料投入順序、撹拌速度等により調整することができる。
 ポリアクリル酸系分散剤の含有量としては、透過性と分散性を向上させる観点から、層(B)における無機フィラーの含有量を100質量%として、0.1~2.4質量%であることが好ましく、より好ましくは0.1~2.0質量%であり、よりさらに好ましくは0.2~1.0質量%であり、よりさらに好ましくは0.3~0.8質量%である。
(蓄電デバイス用セパレータの物性)
 (熱収縮率S1)
 第1のセパレータのプロピレンカーボネート中における140℃下での熱収縮率S1は、5%以下である。熱収縮率S1が5%以下であることにより、ニッケル含有量の多い正極材料と組み合わせた場合にあっても、電池内でのセパレータの加熱による変形を抑制し、正負極間の短絡を防止することができる。かかる観点から、熱収縮率S1は5.0%以下であることが好ましく、より好ましくは4.5%以下であり、さらに好ましくは4.0%以下であり、よりさらに好ましくは3.5%以下であり、一層好ましくは3.0%以下であり、より一層好ましくは2.5%以下であり、さらに一層好ましくは2.0%以下であり、よりなお一層好ましくは1.5%以下であり、さらになお一層好ましくは1.0%以下であることが好ましく、特に好ましくは0.5%以下である。
 第2のセパレータにおいては、熱収縮率S1を限定する趣旨ではないが、上記と同様の観点から上述した範囲にあることが好ましい。すなわち、第2のセパレータのプロピレンカーボネート中における140℃下での熱収縮率S1は、5%以下であることが好ましく、より好ましくは5.0%以下であり、さらに好ましくは4.0%以下であり、よりさらに好ましくは3.5%以下であり、一層好ましくは3.0%以下であり、より一層好ましくは2.5%以下であり、さらに一層好ましくは2.0%以下であり、よりなお一層好ましくは1.5%以下であり、さらになお一層好ましくは1.0%以下であることが好ましく、特に好ましくは0.5%以下である。
 熱収縮率S1は、後述する実施例に記載の方法により測定することができる。
 熱収縮率S1は、例えば、層(A)の表面に後述した好ましい条件でコロナ放電処理等の表面処理を実施すること、層(B)として非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを併用すること等により、上述した範囲となる傾向にある。また、前述した因子に加え、無機フィラーの体積平均粒子径D50を前述した好ましい範囲に調整することで、値として更に小さくなる傾向にある。
 (熱収縮率S2)
 本実施形態の蓄電デバイス用セパレータの空気中における150℃下での熱収縮率S2は、5%以下であることが好ましい。熱収縮率S2が5%以下であることにより、安全性がより向上する傾向にある。かかる観点から、熱収縮率S2は5.0%以下であることが好ましく、さらに好ましくは4.0%以下であり、よりさらに好ましくは3.5%以下であり、一層好ましくは3.0%以下であり、より一層好ましくは2.5%以下であり、さらに一層好ましくは2.0%以下であり、よりなお一層好ましくは1.5%以下であり、さらになお一層好ましくは1.0%以下であることが好ましく、特に好ましくは0.5%以下である。
 熱収縮率S2は、後述する実施例に記載の方法により測定することができる。
 熱収縮率S2は、例えば、層(B)として非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを併用すること等により、上述した範囲となる傾向にある。また、前述した因子に加え、無機フィラーの体積平均粒子径D50を前述した好ましい範囲に調整することで、値として更に小さくなる傾向にある。
 (厚み)
 本実施形態の蓄電デバイス用セパレータの厚みTは、耐熱性、透過性及び電池容量の観点から、3μm以上16μm以下であることが好ましい。より詳細には3.0μm以上16.0μm以下であることが好ましい。厚みTが3μm以上である場合、耐熱性が向上する傾向にあり、厚みTが16μm以下である場合、透過性及び電池容量が向上する傾向にある。同様の観点から、厚みTは3μm以上15μm以下であることがより好ましく、更に好ましくは3μm以上14μm以下である。より詳細には3.0μm以上15.0μm以下であることがより好ましく、更に好ましくは3.0μm以上14.0μm以下である。
 また、強度及び安全性の観点から、層(B)の厚みTと厚みTとの比が、T/Tとして、0.1~0.3であることが好ましい。より詳細には0.10~0.30であることが好ましい。T/Tが0.3以下である場合、強度が向上する傾向にあり、T/Tが0.1以上である場合、安全性が向上する傾向にある。同様の観点から、T/Tは、0.14~0.27であることがより好ましく、更に好ましくは0.18~0.25である。
 厚みT及びT/Tは、後述する実施例に記載の方法により測定することができる。
 (突刺強度)
 本実施形態の蓄電デバイス用セパレータの突刺強度は、衝撃試験においてセパレータの破断を抑制する観点から、100gf以上であることが好ましく、より好ましくは200gf以上であり、更に好ましくは250gf以上であり、より更に好ましくは300gf以上であり、一層好ましくは350gf以上であり、より一層好ましくは400gf以上であり、特に好ましくは450gf以上である。また、層(A)の製膜時の安定性の観点から、上記突刺強度は、1000gf以下であることが好ましく、より好ましくは900gf以下である。
 上記突刺強度は、後述する実施例に記載の方法により測定することができる。
 上記突刺強度は、例えば、層(A)のポリオレフィン樹脂組成物の分子量、ポリオレフィン樹脂組成物と可塑剤の混合比率、延伸温度、延伸倍率により調整することができる。
 (目付換算突刺強度)
 本実施形態の蓄電デバイス用セパレータの目付換算突刺強度、20gf/(g/m)以上であることが好ましい。蓄電デバイス用セパレータが20gf/(g/m)以上の目付換算突刺強度を有する場合、蓄電デバイスの衝撃試験において層(A)が破断し難くなる傾向にある。層(A)の強度を維持しながら蓄電デバイスの安全性、例えば耐衝撃性を向上させるという観点から、目付換算突刺強度は、より好ましくは25gf/(g/m)以上であり、更に好ましくは35gf/(g/m)以上であり、より更に好ましくは40gf/(g/m)以上であり、一層好ましくは45gf/(g/m)以上であり、より一層好ましくは50gf/(g/m)以上である。目付換算突刺強度は、限定されるものではないが、例えば、150gf/(g/m)以下であってもよく、130gf/(g/m)以下であってもよく、100gf/(g/m)以下であってもよい。
 上記目付換算突刺強度は、後述する実施例に記載の方法により突刺強度及び目付を測定し、算出することができる。
 上記目付換算突刺強度は、例えば、層(A)のポリオレフィン樹脂組成物の分子量、ポリオレフィン樹脂組成物と可塑剤の混合比率、延伸温度、延伸倍率、層(B)の目付によって調整することができる。
 (透気度)
 本実施形態の蓄電デバイス用セパレータの透気度は、安全性を確保しつつ電池の抵抗を下げる観点から、30~500秒/100ccであることが好ましい。上記透気度が30秒/100cc以上である場合、大電流が流れることを効果的に防止でき、上記透気度が500秒/100cc以下である場合、電池の抵抗が低下する傾向にある。同様の観点から、上記透気度は、50~500秒/100ccであることがより好ましく、更に好ましくは50~400秒/100ccであり、よりさらに好ましくは50~300秒/100ccである。
 上記透気度は、後述する実施例に記載の方法により測定することができる。
 上記透気度は、例えば、層(A)の透気度や、層(B)の厚み、無機フィラーの体積平均粒子径、非水溶性バインダ、水溶性バインダ、ポリアクリル酸系分散剤の含有量等により調整することができる。
 (界面剥離強度H)
 第2のセパレータのプロピレンカーボネート中における前記層(A)と前記層(B)との間の界面剥離強度Hは、耐熱性の観点から、3N/m以上である。同様の観点から、第2のセパレータの界面剥離強度Hは4N/m以上であることが好ましく、より好ましくは5N/m以上であり、よりさらに好ましくは8N/m以上であり、一層好ましくは10N/m以上であり、より一層好ましくは12N/m以上である。また、第2のセパレータの界面剥離強度Hは、透過性の観点から40N/m以下であることが好ましい。同様の観点から、界面剥離強度Hは35N/m以下であることがより好ましく、更に好ましくは25N/m以下である。
 第2のセパレータが、電解液中での熱収縮を抑制し、ニッケル含有量の多い正極材料と組み合わせた場合にあっても安全性を確保できる理由としては、以下に限定する趣旨ではないが、次のように推測される。すなわち、第2のセパレータは、界面剥離強度Hが3N/m以上であることから、蓄電デバイス用のセパレータとして適用したとき、電解液中においても、層(B)が層(A)に強く結着するものと評価され、それによって所定のポリアクリル酸系分散剤および水溶性バインダを含む層(B)が有する熱収縮抑制能力をより効果的に発現させることができ、したがってハイニッケル正極でも安全性を確保できるものと考えられる。
 第1のセパレータにおいては、界面剥離強度Hを限定する趣旨ではないが、上記と同様の観点から上述した範囲にあることが好ましい。すなわち、第1のセパレータのプロピレンカーボネート中における前記層(A)と前記層(B)との間の界面剥離強度Hは、耐熱性の観点から、3N/m以上であることが好ましい。同様の観点から、第1のセパレータの界面剥離強度Hは4N/m以上であることがより好ましく、更に好ましくは5N/m以上であり、よりさらに好ましくは8N/m以上であり、一層好ましくは10N/m以上であり、より一層好ましくは12N/m以上である。また、第1のセパレータの界面剥離強度Hは、透過性の観点から40N/m以下であることが好ましい。同様の観点から、第1のセパレータの界面剥離強度Hは35N/m以下であることがより好ましく、更に好ましくは25N/m以下である。
 上記界面剥離強度Hは、後述する実施例に記載の方法により測定することができる。
 上記界面剥離強度Hは、例えば、層(A)の表面に後述した好ましい条件でコロナ放電処理等の表面処理を実施すること、層(B)として非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを併用すること等により、上述した範囲となる傾向にある。また、前述した因子に加え、無機フィラーの体積平均粒子径、非水溶性バインダ、水溶性バインダ、ポリアクリル酸系分散剤の含有量等により調整することができる。
[蓄電デバイス用セパレータの製造方法]
 本実施形態の蓄電デバイス用セパレータの製造方法は特に限定されず、層(A)を作製する工程と、当該層(A)の少なくとも一面上に層(B)を形成する工程を含むことができる。
 層(A)の作製する工程においては、種々公知の方法が採用でき、例えば、
(1)ポリオレフィン樹脂組成物と孔形成材とを溶融混練してシート状に成形後、必要に応じて延伸した後、孔形成材を抽出することにより多孔化させる方法、
(2)ポリオレフィン樹脂組成物を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることにより多孔化させる方法、
(3)ポリオレフィン樹脂組成物と無機充填材とを溶融混練してシート上に成形した後、延伸によってポリオレフィンと無機充填材との界面を剥離させることにより多孔化させる方法、
(4)ポリオレフィン樹脂組成物を溶解後、ポリオレフィンに対する貧溶媒に浸漬させてポリオレフィンを凝固させると同時に溶剤を除去することにより多孔化させる方法、
等が挙げられる。
 以下、層(A)を製造する方法の一例として、ポリオレフィン樹脂組成物と孔形成材とを溶融混練してシート状に成形後、孔形成材を抽出する方法について説明する。
 まず、ポリオレフィン樹脂組成物と上記の孔形成材を溶融混練する。溶融混練方法としては、例えば、ポリオレフィン樹脂及び必要によりその他の添加剤を押出機、フィーダー、ラボプラストミル、混練ロール、バンバリーミキサー等の樹脂混練装置に投入することで、樹脂成分を加熱溶融させながら任意の比率で孔形成材を導入して混練する方法が挙げられる。
 孔形成材としては、可塑剤、無機材又はそれらの組み合わせを挙げることができる。
 可塑剤としては、特に限定されないが、例えば、ポリオレフィンの融点以上において均一溶液を形成しうる不揮発性溶媒、例えば、流動パラフィン、パラフィンワックス等の炭化水素類;フタル酸ジオクチル、フタル酸ジブチル等のエステル類;オレイルアルコール、ステアリルアルコール等の高級アルコール等が挙げられる。可塑剤の中でも、流動パラフィンは、ポリオレフィン樹脂がポリエチレン及び/又はポリプロピレンの場合には、これらとの相溶性が高く、溶融混練物を延伸しても樹脂と可塑剤の界面剥離が起こり難く、均一な延伸が実施し易くなる傾向にあるため好ましい。
 無機材としては、特に限定されず、例えば、アルミナ、シリカ(珪素酸化物)、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて用いられる。これらの無機材の中でも、電気化学的安定性の観点から、シリカ、アルミナ、チタニアが好ましく、抽出が容易である点から、シリカが特に好ましい。
 次に、溶融混練物をシート状に成形する。シート状成形体を製造する方法としては、特に限定されないが、例えば、溶融混練物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂成分の結晶化温度より充分に低い温度まで冷却して固化する方法が挙げられる。冷却固化に用いられる熱伝導体としては、特に限定されないが、例えば、金属、水、空気、又は可塑剤等が挙げられる。これらの中でも、熱伝導の効率が高いため、金属製のロールを用いることが好ましい。また、押出した混練物を金属製のロールに接触させる際に、ロール間で挟み込むことは、熱伝導の効率がさらに高まると共に、シートが配向して膜強度が増し、シートの表面平滑性も向上する傾向にあるためより好ましい。溶融混練物をTダイからシート状に押出す際のダイリップ間隔は200μm以上3,000μm以下であることが好ましく、500μm以上2,500μm以下であることがより好ましい。ダイリップ間隔が200μm以上であると、メヤニ等が低減され、スジ、欠点等の膜品位への影響が少なく、その後の延伸工程において膜破断等のリスクを低減できる傾向にある。一方、ダイリップ間隔が3,000μm以下であると、冷却速度が速く冷却ムラを防げると共に、シートの厚み安定性を維持できる傾向にある。
 また、シート状成形体を圧延してもよい。圧延は、例えば、ダブルベルトプレス機等を使用したプレス法にて実施することができる。圧延を施すことにより、特に表層部分の配向が増加する傾向にある。圧延面倍率は1倍を超えて3倍以下であることが好ましく、1倍を超えて2倍以下であることがより好ましい。圧延倍率が1倍を超えると、面配向が増加し最終的に得られる層(A)の膜強度が増加する傾向にある。一方、圧延倍率が3倍以下であると、表層部分と中心内部の配向差が小さく、膜の厚さ方向に均一な多孔構造を形成できる傾向にある。
 次いで、シート状成形体から孔形成材を除去して層(A)とする。孔形成材を除去する方法としては、例えば、抽出溶剤にシート状成形体を浸漬して孔形成材を抽出し、充分に乾燥させる方法が挙げられる。孔形成材を抽出する方法はバッチ式、連続式のいずれであってもよい。層(A)の収縮を抑えるために、浸漬、乾燥の一連の工程中にシート状成形体の端部を拘束することが好ましい。また、層(A)中の孔形成材残存量は層(A)全体の質量に対して1質量%未満にすることが好ましい。
 孔形成材を抽出する際に用いられる抽出溶剤としては、ポリオレフィン樹脂に対して貧溶媒で、かつ孔形成材に対して良溶媒であり、沸点がポリオレフィン樹脂の融点より低いものを用いることが好ましい。このような抽出溶剤としては、特に限定されないが、例えば、n-ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化炭化水素類;ハイドロフルオロエーテル、ハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤;エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類が挙げられる。なお、これらの抽出溶剤は、蒸留等の操作により回収して再利用してよい。また、孔形成材として無機材を用いる場合には、水酸化ナトリウム、水酸化カリウム等の水溶液を抽出溶剤として用いることができる。
 また、上記シート状成形体または層(A)を延伸することが好ましい。延伸は前記シート状成形体から孔形成材を抽出する前に行ってもよい。また、前記シート状成形体から孔形成材を抽出した層(A)に対して行ってもよい。さらに、前記シート状成形体から孔形成材を抽出する前と後に行ってもよい。
 延伸処理としては、一軸延伸又は二軸延伸のいずれも好適に用いることができるが、得られる層(A)の強度等を向上させる観点から二軸延伸が好ましい。シート状成形体を二軸方向に高倍率延伸すると、分子が面方向に配向し、最終的に得られる層(A)が裂け難くなり、高い突刺強度を有するものとなる。
 延伸方法としては、例えば、同時二軸延伸、逐次二軸延伸、多段延伸、多数回延伸等の方法を挙げることができる。突刺強度の向上、延伸の均一性、シャットダウン性の観点からは同時二軸延伸が好ましい。また面配向の制御容易性の観点からは遂次二軸延伸が好ましい。
 ここで、同時二軸延伸とは、MD(層(A)を連続成形する際の機械方向)の延伸とTD(層(A)のMDを90°の角度で横切る方向)の延伸が同時に施される延伸方法をいい、各方向の延伸倍率は異なってもよい。逐次二軸延伸とは、MD及びTDの延伸が独立して施される延伸方法をいい、MD又はTDに延伸がなされているときは、他方向は非拘束状態又は定長に固定されている状態とする。
 延伸倍率は、面倍率で20倍以上100倍以下の範囲であることが好ましく、25倍以上70倍以下の範囲であることがより好ましい。各軸方向の延伸倍率は、MDに4倍以上10倍以下、TDに4倍以上10倍以下の範囲であることが好ましく、MDに5倍以上8倍以下、TDに5倍以上8倍以下の範囲であることがより好ましい。総面積倍率が20倍以上であると、得られる層(A)に十分な強度を付与できる傾向にあり、一方、総面積倍率が100倍以下であると、延伸工程における膜破断を防ぎ、高い生産性が得られる傾向にある。
 層(A)には、収縮を抑制する観点から熱固定を目的として熱処理を施すことが好ましい。熱処理の方法としては、物性の調整を目的として、所定の温度雰囲気及び所定の延伸率で行う延伸操作、及び/又は、延伸応力低減を目的として、所定の温度雰囲気及び所定の緩和率で行う緩和操作が挙げられる。延伸操作を行った後に緩和操作を行っても構わない。これらの熱処理は、テンター又はロール延伸機を用いて行うことができる。
 延伸操作は、膜のMD及び/又はTDに1.1倍以上、より好ましくは1.2倍以上の延伸を施すことが、さらなる高強度かつ高気孔率な層(A)が得られる観点から好ましい。
 緩和操作は、膜のMD及び/又はTDへの縮小操作のことである。緩和率とは、緩和操作後の膜の寸法を緩和操作前の膜の寸法で除した値のことである。なお、MD、TD双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。緩和率は、1.0以下であることが好ましく、0.97以下であることがより好ましく、0.95以下であることがさらに好ましい。緩和率は膜品位の観点から0.5以上であることが好ましい。緩和操作は、MD、TD両方向で行ってもよいが、MD或いはTD片方だけ行ってもよい。
 この可塑剤抽出後の延伸及び緩和操作は、プロセスコントロールの観点及び400℃はんだ試験における穴面積の制御の観点から、好ましくはTDに行う。延伸及び緩和操作における温度は、ポリオレフィン樹脂の融点(以下、「Tm」ともいう。)より低いことが好ましく、Tmより1℃から25℃低い範囲がより好ましい。延伸及び緩和操作における温度が上記範囲であると、熱収縮率低減と気孔率とのバランスの観点から好ましい。
 次いで、層(A)の少なくとも一面上に層(B)を形成する。層(B)を形成する工程においては、例えば、当該層(B)を形成するための塗工液を層(A)に塗工する。本実施形態においては、熱収縮率S1を所望とする範囲に調整する観点から、層(B)を形成する工程を実施する前に、層(A)における層(B)側の表面をコロナ放電処理等によって親水化することが好ましい。かかる親水化処理としては、処理の均一性の観点から、コロナ放電処理又はプラズマ処理が好ましく、コロナ放電処理がより好ましい。コロナ放電処理を実施する場合、層(A)における層(B)側の表面をATR-IRで測定した際の1734cm-1/2918cm-1の吸収ピーク比が、0.025~0.125となるような処理条件であることが好ましい。かかる処理条件としては特に限定されないが、コロナ処理強度、放電電極と層(A)までの距離等によって調整することができる。例えば、コロナ処理強度を1W/(m/min)~50W/(m/min)とすることが好ましい。コロナ処理強度が1W/(m/min)以上の場合、層(A)への放電が安定的に行われる傾向にある。コロナ処理強度が50W/(m/min)以下の場合、層(A)への放電ダメージが少なく、セパレータの耐電圧性が優れる傾向にある。同様の観点から、上記吸収ピーク比は、より好ましくは3W/(m/min)~45W/(m/min)であり、更に好ましくは5W/(m/min)~35W/(m/min)であり、より更に好ましくは7W/(m/min)~30W/(m/min)であり、一層好ましくは9W/(m/min)~25W/(m/min)であり、より一層好ましくは11W/(m/min)以上20W/(m/min)未満であり、特に好ましくは13W/(m/min)~15W/(m/min)である。
 上記の親水化は、プラズマ処理によって実施することもできる。その場合、プラズマ処理の実施条件としては、層(A)における層(B)側の表面をATR-IRで測定した際の1734cm-1/2918cm-1の吸収ピーク比が、0.025~0.125となるような処理条件であることが好ましい。かかる処理条件としては特に限定されないが、例えば、プラズマ処理時の印加電圧を大きくすることで、上記吸収ピーク比の値は大きくなる傾向にあることを踏まえ、適宜条件を調整することができる。
 層(B)を形成するための塗工液としては、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含むものを使用することができる。これらの成分を併用することで、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含む層(B)が形成され、結果として蓄電デバイス用セパレータのプロピレンカーボネート中における140℃下での熱収縮率S1が5%以下となる。塗工液を層(A)に塗工した後、乾燥することで、塗工液の溶媒を除去し、層(B)を形成し、本実施形態の蓄電デバイス用セパレータを得ることができる。
 塗工液は、無機フィラー、非水溶性バインダ、水溶性バインダ、ポリアクリル酸系分散剤を均一に分散、溶解させる観点から水を含むことが好ましい。溶解性、分散性を損なわない範囲で、水以外に、メタノール、エタノール、イソプロピルアルコール等の溶媒が含まれていてもよい。
 塗工液には、分散安定化又は塗工性の向上、さらに層(B)の表面部の接触角の調整、耐熱性向上を目的としたバインダの架橋のために、界面活性剤等の増粘剤;湿潤剤;消泡剤;酸、アルカリを含むPH調整剤、架橋剤等の各種添加剤を加えてもよい。これら添加剤の総添加量は、無機フィラー100質量部に対して、その有効成分(添加剤が溶媒に溶解している場合は溶解している添加剤成分の質量)は20質量部以下が好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下であり、よりさらに好ましくは3質量部以下であり、一層好ましくは1質量部以下であり、より一層好ましくは0.5質量部以下である。
 添加剤については、アニオン性界面活性剤として、例えば、高級脂肪酸塩、アルキルスルホン酸塩、アルファオレフィンスルホン酸塩、アルカンスルホン酸塩、アルキルベンゼンスルホン酸塩、スルホコハク酸エステル塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、アルキルリン酸エステル塩、アルキルエーテルリン酸エステル塩、アルキルエーテルカルボン酸塩、アルファスルホ脂肪酸メチルエステル塩、メチルタウリン酸塩等が挙げられる。ノニオン界面活性剤としては、例えば、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキレンアルキルエーテル、ポリオキシエチレンーポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、脂肪酸アルカノールアミド、アルキルグルコシド等が挙げられる。両性界面活性剤としては、例えば、アルキルベタイン、脂肪酸アミドプロピルベタイン、アルキルアミンオキシド等が挙げられる。カチオン性界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アルキルピリジニウム塩等が挙げられる。その他、フッ素系界面活性剤やセルロース誘導体、ポリカルボン酸塩、ポリスチレンスルホン酸塩などの高分子界面活性剤等が挙げられる。架橋剤としては、例えば、エポキシ系架橋剤、オキサゾリン系架橋剤、金属キレート系架橋剤が挙げられる。金属キレート系架橋剤としては、特に限定されないが、炭酸ジルコニウムアンモニウム等が挙げられる。
 無機フィラーとポリアクリル酸系分散剤とを、塗布液の媒体に分散又は溶解させる方法については、塗工工程に必要な塗布液の分散特性を実現できる方法であれば特に限定はない。例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌等が挙げられる。
 塗工液を層(A)に塗工する方法については、必要とする層厚又は塗工面積を実現できる方法であれば特に限定はなく、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗工法等が挙げられる。
 塗工後に塗工膜から溶媒を除去する方法については、層(A)に悪影響を及ぼさない方法であれば特に限定はない。例えば、層(A)を固定しながら、層(A)を構成する材料の融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法等が挙げられる。またデバイス特性に著しく影響を及ぼさない範囲においては溶媒を一部残存させてもよい。
[任意の層]
 上記で説明した蓄電デバイス用セパレータは、層(A)及び層(B)のいずれかの表面上に、さらに任意の層を設けてもよい。すなわち、層(A)の片面に層(B)が配される場合にあっては、さらに、層(B)の面上に任意の層を設けた態様、層(A)の面上に任意の層を設けた態様、並びに層(A)及び層(B)の両方の面上に任意の層を設けた態様のいずれもが本実施形態に包含される。また、層(A)の両面に層(B)が配される場合にあっては、さらに、一方の層(B)の面上に任意の層を設けた態様、及び両方の層(B)の面上に任意の層を設けた態様のいずれもが本実施形態に包含される。
 任意の層としては、例えば、接着層として機能し得る熱可塑性ポリマー含有層が挙げられる。熱可塑性ポリマー含有層の存在形態(パターン)は、例えば、多層多孔膜の全面にわたって熱可塑性ポリマーが相互に分散して存在する状態でもよく、海島状に存在する状態でもよい。熱可塑性ポリマーが海縞状に存在する場合、その配置パターンとしては、例えば、ドット状、ストライプ状、格子状、縞状、亀甲状、ランダム状等、及びこれらの組み合わせが挙げられる。この他、任意の層としては、本実施形態における層(B)に該当しない多孔層も挙げられる。
 これら任意の層の、種類、総数、存在形態(パターン)、及び厚さは、特に限定されず、本実施形態の作用効果を阻害しない範囲内とすることを考慮して適宜調整することができる。
[蓄電デバイス]
 本実施形態の蓄電デバイスは、本実施形態の蓄電デバイス用セパレータを含む。本実施形態の蓄電デバイスの構成の典型例としては、以下に限定されないが、正極と、蓄電デバイス用セパレータと、負極と、所望により電解液とを備えるものが挙げられる。
 蓄電デバイスとしては、具体的には、リチウム電池、リチウム二次電池、リチウムイオン二次電池、ナトリウム二次電池、ナトリウムイオン二次電池、マグネシウム二次電池、マグネシウムイオン二次電池、カルシウム二次電池、カルシウムイオン二次電池、アルミニウム二次電池、アルミニウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池、電気二重層キャパシタ、リチウムイオンキャパシタ、レドックスフロー電池、リチウム硫黄電池、リチウム空気電池、亜鉛空気電池などが挙げられる。これらの中でも、実用性の観点から、リチウム電池、リチウム二次電池、リチウムイオン二次電池、ニッケル水素電池、又はリチウムイオンキャパシタが好ましく、リチウムイオン二次電池がより好ましい。
 正極、負極、電解液及びその他の蓄電デバイス部材については、蓄電デバイスの種類に応じて種々公知のものを適宜使用することができる。
 本実施形態の蓄電デバイス用セパレータは、ニッケル含有量の多い正極材料と組み合わせた場合にあっても安全性を確保できるため、かかる蓄電デバイス用セパレータを含む本実施形態の蓄電デバイスは、ニッケル含有量の多い正極材料を正極に適用することが好ましい。すなわち、本実施形態の蓄電デバイス用セパレータは、LiとCoとNiとを含む正極と、前記正極に対向する負極と、前記正極と前記負極との間に配される、請求項1~13のいずれか1項に記載の蓄電デバイス用セパレータと、を備える蓄電デバイスであって、前記正極中のLi以外の金属中の前記Co及びNiの含有比率が、それぞれ、20mоl%以下及び60mоl%以上であることが好ましい。
 本実施形態においては、電池安定性及びコストの観点から、Coの含有比率が0.1~20mol%であることが好ましい。Coの含有比率が20mоl%以下である場合、製造コストを低減できる傾向にある。Coの含有比率が0.1mоl%以上である場合、電池安定性が向上する傾向にある。同様の観点から、Coの含有比率が1~15mol%であることがより好ましく、更に好ましくは3~10mol%である。
 また、本実施形態においては、電池安定性及び電池容量の観点から、Niの含有比率が60~99mol%であることが好ましい。Niの含有比率が60mоl%以上である場合、電池容量が向上する傾向にある。Niの含有比率が99mоl%以下である場合、電池安定性が向上する傾向にある。同様の観点から、Niの含有比率が70~97mol%であることがより好ましく、更に好ましくは80~95mol%である。
 以下、本発明を実施例及び比較例を用いてさらに具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。
 各種物性は、以下の測定方法及び評価方法により測定及び評価した。特に断りのない限り、評価は温度23℃、湿度40%の環境下で行った。
[厚み(μm)]
 東洋精機(株)社製の微小測厚器「KBM(登録商標)」を用いて、室温23±2℃で各層の厚みを測定した。
[気孔率(%)]
 層(A)から10cm×10cm角の試料を切り取り、その体積(cm)と質量(g)を求め、それらと密度(g/cm)より、次式を用いて気孔率を計算した。
  気孔率(%)=(体積-質量/密度)/体積×100
[透気度(100cc/sec)]
 JIS P-8117に準拠して測定を行った。すなわち、東洋精器(株)製のガーレー式透気度計「G-B2(登録商標)」を用いて温度23℃、湿度40%の雰囲気下で層(A)又はセパレータの透気抵抗度を測定し透気度とした。
[目付(g/m)]
 10cm×10cm角の試料を層(A)又はセパレータから切り取り、株式会社島津製作所製の電子天秤AEL-200(商品名)を用いて質量を測定した。得られた質量を100倍にすることで1m当たりの試料の目付(g/m)を算出した。
[突刺強度(gf)]
 カトーテック製のハンディー圧縮試験器KES-G5(登録商標)を用いて、開口部の直径11.3mmの試料ホルダーで層(A)又はセパレータを固定した。次に固定された層(A)の表面又はセパレータ(層(A)側)の表面の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、温度23℃、湿度40%の雰囲気下にて突刺試験を行うことにより、最大突刺荷重としての突刺強度(gf)を得た。
 また、前述のとおりに測定された目付の値に基づいて、目付換算突刺強度(gf/(g/m))を算出した。
[吸収ピーク比]
 コロナ処理を行った後の層(A)の表面に対し、アジレント・テクノロジー(株)社製670-IRを用い、プリズムにゲルマニウムを使用し、入射角45度にて一回反射ATR法を用い、積算回数256回、分解能4cm-1でIRスペクトルを採取した。得られたチャートに対し、解析ソフトAgilent Resolution Proを用い、1600cm-1、1900cm-1、2700cm-1、3000cm-1を補正点とし、直線タイプでベースライン補正を行った。得られたスペクトルからピークを検出し、表面処理によって形成されるカルボニル基由来の1734cm-1の吸収ピーク強度と、層(A)に含まれるポリエチレン由来の2918cm-1の吸収ピーク強度の比を吸収ピーク比とした。
[無機フィラーの体積平均粒子径]
 塗工液をレーザー式粒度分布測定に供した。すなわち、マイクロトラック・ベル(株)製の測定装置(商品名「マイクロトラックMT3300EX」)を用いて、無機フィラーの体積平均粒子径分布を測定した。必要に応じて、ベースラインとして水又は非水溶性バインダの粒子径分布を用いて、無機フィラーの粒子径分布を調整した。累積頻度が50%となる粒径(D50粒子径)を無機フィラーの体積平均粒子径とした。
[層(B)から再分散させた無機フィラーの粒子径]
 セパレータの層(B)中の無機フィラーを再分散させ、レーザー式粒度分布測定に供した。具体的には分散剤としてポリカルボン酸アンモニウム(SAN NOPCO社製「SNディスパーサント5468」)を固形分換算で1wt%となるように調整した水溶液10mL中に100cmのサイズに切り出したセパレータを24時間浸漬させたのち、スパチュラ等で層(B)を擦り取り、サンプルとした。マイクロトラック・ベル(株)製の測定装置(商品名「マイクロトラックMT3300EX」)を用いて、無機フィラーの粒子径分布を測定した。粒子径測定の前には、装置に備え付けられた超音波照射機で70秒間超音波照射を行い、無機フィラーを再分散させた。このとき得られた粒子径分布のピークトップの値を層(B)から再分散させた無機フィラーの粒子径として採用した。再分散させた粒子の凝集等によりピークが二山以上となった場合は、粒子径が最も小さいピークの値を採用した。
[層(B)中の無機フィラーの一次粒子径]
 セパレータを凍結割断し、Cペースト及びOsコーティングにより、導通処理を行い、その後、表面走査型電子顕微鏡(日立ハイテクノロジー製HITACHI S-4800)を用いて、撮影倍率1~3万倍(10個以上の粒子数が観測されるように粒子径に応じて任意に設定)、加速電圧1.0kVの設定で層(B)の断面SEM像の電子画像を3視野撮影した。「一次粒子径」は個々の粒子が単独でマトリックス中に分散している状態での粒子径、または凝集していても、その中で構成されている最小の粒子径と定義した。観察した視野に存在する各無機フィラーに外接する円の直径をランダムに10点計測し、その平均値を採用した。
[層(B)中の無機フィラーの最大粒子径]
 セパレータを凍結割断し、Cペースト及びOsコーティングにより、導通処理を行い、その後、表面走査型電子顕微鏡(日立ハイテクノロジー製HITACHI S-4800)を用いて、撮影倍率1~3万倍(10個以上の粒子数が観測されるように粒子径に応じて任意に設定)、加速電圧1.0kVの設定で層(B)の断面SEM像の電子画像を3視野撮影した。観察した視野に存在する各無機フィラーに外接する円の直径を計測し、その最大値を無機フィラーの最大粒子径とした。
[非水溶性バインダの体積平均粒子径]
 非水溶性バインダを含む水分散体を光散乱法による粒径測定に供した。すなわち、LEED&NORTHRUP社製の測定装置(商品名「MICROTRAC UPA150」)を用い、非水溶性バインダの体積平均粒子径分布を測定した。累積頻度が50%となる粒径(D50粒子径)を非水溶性バインダの体積平均粒子径とした。
[非水溶性バインダのガラス転移温度]
 非水溶性バインダを含む水分散体を、アルミ皿に適量とり、130℃の熱風乾燥機で30分間乾燥した。乾燥後の乾燥皮膜約10mgを測定用アルミ容器に詰め、DSC測定装置(島津製作所社製、型番:DSC6220)にて窒素雰囲気下におけるDSC曲線及びDDSC曲線を得た。なお、測定条件は下記のとおりとした。
(1段目昇温プログラム)
 70℃で開始し、毎分15℃の速度で昇温した。110℃に到達後、その温度で5分間維持した。
(2段目降温プログラム)
 110℃から毎分30℃の速度で降温した。-50℃に到達後、その温度で4分間維持した。
(3段目昇温プログラム)
 -50℃から毎分15℃の速度で130℃まで昇温した。この3段目の昇温時にDSC及びDDSCのデータを取得した。
 得られたDSC曲線におけるベースラインを高温側に延長した直線と、変曲点における接線との交点をガラス転移温度(Tg)とした。
[水溶性バインダ及びポリアクリル酸系分散剤の重量平均分子量]
 水溶性バインダ又はポリアクリル酸系分散剤を130℃で5時間乾燥させ、試料とした。試料0.1gを100mLの溶離液に溶解させた後、メンブランフィルターを用いて濾過し測定試料とした。各測定試料についてゲルパーミエーションクロマトグラフィー(日立ハイテクサイエンス社製、「Chromaster」)にて重量平均分子量(Mw)を測定した。
  カラム:GF-710HQ, 310HQ
  溶離液(水溶性バインダ):50mM NaCl水溶液
  溶離液(ポリアクリル酸系分散剤):50mM リン酸塩緩衝液(pH7.0)/アセトニトリル=90/10
  検量線:EasiVial PEG/PEO(ポリエチレングリコール/オキシド)
[界面剥離強度H]
 層(B)が上になるようにセパレータをステンレス板にエチレン-酢酸ビニル共重合樹脂(EVA樹脂)で固定した。試料が浸る程度にセパレータ上にプロピレンカーボネートを滴下し、24時間静置した。その後表面に付着した余分な液を除去し、測定サンプルとした。ダイプラ・ウィンテス社製NN-04型のSAICAS(Surface And Interfacial Cutting Analysis System)を用い、温度23℃、湿度40%の環境下にて測定に供した。具体的には、幅1mmのダイヤモンド切削刃を垂直方向に0.1μm/s,水平方向に2μm/sの速度に制御させながら層(B)を切削し、垂直方向の変位量が層(B)の厚みに達するまで事前に切削を行った。
 切削刃が層(A)と層(B)の界面に到達したのち、水平方向に2μm/sの速度で10秒間塗工層を剥離させながら、剥離時に計測される、切削刃単位幅あたりの水平力の平均値をプロピレンカーボネート中における層(A)と層(B)との間の界面剥離強度Hの値として採用した。
[熱収縮率S1(%)]
 セパレータをMD方向に50mm、TD方向に50mmに切り取り、テフロンシート(厚み100μm、60mm四方)で挟んだ。この積層体をアルミニウム製ラミネートフィルムで構成される包装体(厚み35μm、100mm四方)に収納し、プロピレンカーボネートを0.5mL注入し、セパレータをプロピレンカーボネートで浸し、残りの一片を封口し、サンプルとした。サンプルを24時間静置保管したのち、140℃のオーブン中に1時間静置した。サンプルをオーブンから取り出し冷却した後、セパレータの各方向の長さ(mm)を測定し、以下の式にて熱収縮率を算出した。測定はMD方向、TD方向で行い、数値の大きい方を採用した。
  熱収縮率S1(%)={(50-加熱後の長さ)/50}×100
[熱収縮率S2(%)]
 セパレータをMD方向に100mm、TD方向に100mmに切り取り、150℃のオーブン中に1時間静置した。このとき、温風が直接サンプルに当たらないよう、サンプルを2枚の紙に挟んだ。サンプルをオーブンから取り出し冷却した後、セパレータの各方向の長さ(mm)を測定し、以下の式にて熱収縮率を算出した。測定はMD方向、TD方向で行い、数値の大きい方を採用した。
  熱収縮率S2(%)={(100-加熱後の長さ)/100}×100
[安全性評価1(オーブン加熱試験)]
(1)正極の作製
 正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物(LiNi0.8Mn0.1Co0.1)粉末85質量部と、導電助剤としてのアセチレンブラック6質量部と、バインダとしてのポリフッ化ビニリデン(PVdF)9質量部とを、N-メチル-2-ピロリドン(NMP)を溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。この正極合剤含有ペーストを、アルミニウム箔からなる厚さ20μmの集電体の両面に均一に塗布し、乾燥させた後、ロールプレス機で圧縮成形を行って、全厚が130μmになるように正極合剤層の厚みを調整した。短辺90mm、長辺150mmの長方形状シートに、短辺上部に長さ20mmの活物質未塗工のアルミニウム箔をリードタブとした正極(正極シート)を作製した。
(2)負極の作製
 負極活物質としての黒鉛91質量部と、バインダとしてのPVdF9質量部とを、NMPを溶剤として均一になるように混合して、負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ15μmの集電体の両面に均一に塗布し、乾燥させた後、ロールプレス機で圧縮成形を行って、全厚が130μmになるように負極合剤層の厚みを調整した。短辺90mm、長辺150mmの長方形状シートに、短辺上部に長さ20mmの活物質未塗工の銅箔をリードタブとした負極(負極シート)を作製した。
(3)非水電解液の調製
 非水電解液としてエチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=1:1:1(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/リットルとなるように溶解させて調製した。
(4)セル作製
 上記の正極シート73枚、負極シート74枚を交互に重ね、それぞれをセパレータにて隔離することで電極板積層体を作製した。セパレータは155mm幅の帯状のセパレータで、これを交互に九十九折に折りたたむことで電極板積層体を作製した。この電極板積層体を平板状にプレス後、アルミニウム製ラミネートフィルムに収納し、3辺をヒートシールした。なお正極リードタブ、負極リードタブをラミネートフィルム1辺から導出させた。さらに、乾燥後、この容器内に上記の非水電解液を注入し、残りの1辺を封口した。このようにして作製されるリチウムイオン二次電池は、容量が40Ahとなるように設計された。
(5)加熱試験
 上記のとおり作製したリチウムイオン二次電池を、25℃の環境下、放電電流0.5Cで電池電圧4.2Vまで充電した。充電した電池をオーブンに投入し、室温から150℃まで5℃/分で昇温し、150℃で所定の時間放置し、発火状況を確認した。なお、下記基準に基づいて試験結果を評価した。
  S:放置時間90分以上でも発火しなかった。
  A:放置時間70分以上90分未満で発火した。
  B:放置時間50分以上70分未満で発火した。
  C:放置時間30分以上50分未満で発火した。
  D:昇温中に又は放置時間30分未満で発火した。
[安全性評価2(衝突試験)]
 上記の安全性評価1で作製したリチウムイオン二次電池を、25℃の環境下、0.5Cの定電流で充電し、4.2Vまで充電した。
 次に、25℃の環境下、充電後のリチウムイオン二次電池を平坦な面に横向きに置き、電池の中央部を横切るように、直径15.8mmのステンレスの丸棒を配置した。丸棒は、その長軸がセパレータの長手方向と平行となるように配置した。電池の中央部に配置した丸棒から電池の縦軸方向に対して、直角に衝撃が加わるように、18.2kgの錘を61cmの高さから落下させた。衝突後、電池の表面温度を測定した。5セルずつ試験を行い、下記基準に基づいて評価した。なお、電池の表面温度は、電池の外装体の底側から1cmの位置を熱電対(K型シールタイプ)で測定した温度とした。
  A:全てのセルにおいて、表面温度が30℃以下。
  B:表面温度が30℃超過100℃以下のセルがあるが、全てのセルにおいて表面温度が100℃以下。
  C:発火はしないが、1個以上のセルで表面温度が100℃を超過。
  D:1個以上のセルで発火。
[レート特性]
 上記の安全性評価1で作製したリチウムイオン二次電池を、25℃において、放電電流0.5Cで電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計約6時間、電池作製後の最初の充電を行い、その後電流で電池電圧3.0Vまで放電した。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値60mAで電池電圧3.0Vまで放電して、その時の放電容量を1C放電容量(mAh)とした。
 次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値60mA(約10C)で電池電圧3.0Vまで放電して、その時の放電容量を10C放電容量(mAh)とした。
 1C放電容量に対する10C放電容量の割合を算出し、この値をレート特性とした。
  10Cでのレート特性(%)=(10C放電容量/1C放電容量)×100
 10Cでのレート特性を以下の基準で評価した。
  A:22%以上の10Cでのレート特性
  B:22%未満の10Cでのレート特性
[サイクル特性]
 上記レート試験を行った電池を、温度25℃の条件下で、放電電流1Cで放電終止電圧3Vまで放電を行った後、充電電流1Cで充電終止電圧4.2Vまで充電を行った。これを1サイクルとして充放電を繰り返した。そして、初期容量(第1回目のサイクルにおける容量)に対する300サイクル後の容量保持率を用いて、以下の基準でサイクル特性を評価した。
 サイクル特性の評価基準
  A:85%以上の容量維持率
  B:85%未満の容量維持率
[実施例1]
(層(A)の作製)
 粘度平均分子量800,000のポリエチレン100質量部に対して、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量部添加し、タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等の混合物を得た。得られた混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-5/s)を押出機シリンダーにプランジャーポンプにより注入した。
 溶融混練し、押し出される全混合物中に占める流動パラフィン量比が72質量%(樹脂組成物濃度が28質量%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃であり、スクリュー回転数100rpm、吐出量230kg/hで行った。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1450μmのゲルシートを得た。
 次に、ゲルシートを同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率6.4倍、設定温度127℃とした。次に、塩化メチレン槽に導き、塩化メチレン中に充分に浸漬して流動パラフィンを抽出除去し、その後、塩化メチレンを乾燥除去し、多孔化体を得た。
 次に、多孔化体をTDテンターに導き、熱固定を行った。熱固定温度は126℃で、TD最大倍率を1.5倍、緩和率は0.86とし、厚さ9.0μmの層(A)を得た。
(層(B)の形成)
 層(A)の表面上に層(B)を形成するための塗工液としては、表1に記載の材料の混合液を使用した。すなわち、無機フィラーとしての水酸化酸化アルミニウム(ベーマイト、ブロック状;D50=0.40μm)100質量部と、水100質量部と、分散剤1(ポリアクリル酸ナトリウム;重量平均分子量6,000;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)0.5質量部を混合し、ビーズミル処理を行った。ビーズミル処理は、条件として、ビーズ径0.1mm、ミル内の回転数2000rpmで行った。処理後の混合液に、非水溶性バインダとしてのアクリルラテックス1(ブチルアクリレートに由来する単位80質量%、メチルメタクリレートに由来する単位16質量%、アクリル酸に由来する単位3質量%及びアクリルアミドに由来する単位1質量%を有する共重合体;D50=150nm,Tg=-28℃)4質量部と、水溶性バインダ1(カルボキシメチルセルロースナトリウム;重量平均分子量360,000;エーテル化度=0.9;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)0.5質量部と、添加剤1(ポリオキシエチレンアルキレンアルキルエーテル(花王社製エマルゲンLS-110))0.1質量部を混合し、塗工液を調製した。
 層(A)の一面に、処理強度15W/(m/min)でコロナ放電処理を実施した。かかる処理後の表面にグラビアコーターを用いて塗工液を塗工した。その後、層(A)上の塗布液を60℃にて乾燥して、水を除去し、層(A)の一面に、厚み3.0μmの層(B)を形成して、セパレータを得た。
 得られたセパレータの物性と、当該セパレータを備える電池の評価結果を表1に示す。
[実施例2~68及び比較例1~14]
 層(A)及び層(B)として表1~12に記載のものを使用したことを除き、実施例1と同様にして当該蓄電デバイス用セパレータを作製し、その評価を行った。
 なお、層(A)の目付についてはキャストするゲルシートの厚みを制御することにより、気孔率及び透気度については二軸延伸温度と熱固定温度制御することにより、突刺強度及び目付換算突刺強度については、二軸延伸温度と二軸延伸倍率を制御することにより、それぞれ、各表に記載の数値となるように調整した。
 また、実施例2,18,28,53(及び後述する実施例70)のみ、層(A)の両面に厚み1.5μmの層(B)を形成した(層(B)の合計厚み3.0μm)。
[実施例69]
 実施例33の層(A)が露出している面に、処理強度10W/(m/min)でコロナ放電処理を実施した。かかる処理後の表面にドット径200μm、深さ5μmにドット型刻印されたグラビアロールを用いて下記アクリルラテックス5の水分散体(固形分30質量%)をパターン塗布し、60℃にて乾燥して塗工液の水を除去した。コロナ放電処理を除いた同様の工程を層(B)面に対しても行い熱可塑性ポリマー含有層が両面に付与されたセパレータを得た。セパレータ上に形成されたドットの径は250μm、ドット同士の間隔は300μmであった。
  アクリルラテックス5:ブチルアクリレートに由来する単位15質量%、メチルメタクリレートに由来する単位82質量%及びアクリル酸に由来する単位3質量%を有する共重合体;D50=500nm;Tg=68℃
[実施例70]
 実施例53の層(A)が露出している面と層(B)が露出している面の両方にドット径200μm、深さ5μmにドット型刻印されたグラビアロールを用いてアクリルラテックス5の水分散体(固形分30質量%)をパターン塗布し、60℃にて乾燥して塗工液の水を除去し、熱可塑性ポリマー含有層が両面に付与されたセパレータを得た。セパレータ上に形成されたドットの径は250μm、ドット同士の間隔は300μmであった。
 実施例27、47のセパレータについて、層(B)中の無機フィラーの最大粒子径を断面観察から計測したところ、最大粒子径はそれぞれ0.85μm、1.92μmであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 各表におけるアクリルラテックス2~4、分散剤2~6、水溶性ポリマー2~3、及び添加剤2~3としては、次の材料を使用した。
  アクリルラテックス2:ブチルアクリレートに由来する単位70質量%、メチルメタクリレートに由来する単位16質量%、アクリル酸に由来する単位3質量%、アクリルアミドに由来する単位1質量%及びグリシジルメタクリレートに由来する単位10質量%を有する共重合体;D50=150nm;Tg=-23℃
  アクリルラテックス3:ブチルアクリレートに由来する単位80質量%、メチルメタクリレートに由来する単位17質量%及びアクリル酸に由来する単位3質量%を有する共重合体;D50=150nm;Tg=-29℃
  アクリルラテックス4:ブチルアクリレートに由来する単位80質量%、メチルメタクリレートに由来する単位17質量%及びアクリル酸に由来する単位3質量%を有する共重合体;D50=350nm;Tg=-29℃
  分散剤2:ポリアクリル酸リチウム(重量平均分子量6,000;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)
  分散剤3:アクリル酸ナトリウムに由来する単位50質量%とアクリロニトリルに由来する単位50質量%とを有する共重合体(重量平均分子量6,000;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)
  分散剤4:アクリル酸ナトリウムに由来する単位89質量%と3-アリロキシ-2-ヒドロキシプロパンスルホン酸ナトリウムに由来する単位11質量%の共重合体(重量平均分子量6000;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)
  分散剤5:ポリアクリル酸アンモニウム(重量平均分子量6,000;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)
  分散剤6:ポリアクリル酸(重量平均分子量6,000;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)
  水溶性ポリマー2:ポリビニルアルコール(重量平均分子量150,000;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)
  水溶性ポリマー3:ポリビニルピロリドン(重量平均分子量360,000;1.0gを100gの水に溶解した際の不溶分1.0質量%未満)
  添加剤2:ポリオキシエチレンアルキレンアルキルエーテル(花王社製エマルゲンLS-110;無機フィラー量に対して0.10質量%)及び炭酸ジルコニウムアンモニウム(金属キレート系架橋剤;無機フィラー量に対して1.0質量%)
  添加剤3:ポリオキシエチレンアルキレンアルキルエーテル(花王社製エマルゲンLS-110;無機フィラー量に対して0.50質量%)
 本出願は、2021年3月5日出願の日本特許出願(特願2021-035688号)に基づくものであり、それらの内容はここに参照として取り込まれる。

Claims (15)

  1.  ポリオレフィンを含む層(A)と、
     前記層(A)の少なくとも一面上に配され、かつ、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含む層(B)と、
     を備える蓄電デバイス用セパレータであって、
     前記蓄電デバイス用セパレータのプロピレンカーボネート中における140℃下での熱収縮率S1が、5%以下である、蓄電デバイス用セパレータ。
  2.  ポリオレフィンを含む層(A)と、
     前記層(A)の少なくとも一面上に配され、かつ、無機フィラーと非水溶性バインダと水溶性バインダとポリアクリル酸系分散剤とを含む層(B)と、
     を備える蓄電デバイス用セパレータであって、
     前記ポリアクリル酸系分散剤が、ポリアクリル酸の一価の金属イオンの中和塩、及び、アクリル酸の一価の金属イオンの中和塩とアクリル酸との共重合体、からなる群より選ばれる1種以上を含み、
     前記水溶性バインダが、セルロースエーテルを含み、
     プロピレンカーボネート中における前記層(A)と前記層(B)との間の界面剥離強度Hが3N/m以上である、蓄電デバイス用セパレータ。
  3.  前記層(A)の目付換算突刺強度が、40gf/(g/m)以上である、請求項1又は2に記載の蓄電デバイス用セパレータ。
  4.  前記蓄電デバイス用セパレータの空気中における150℃下での熱収縮率S2が、5%以下である、請求項1~3のいずれか1項に記載の蓄電デバイス用セパレータ。
  5.  前記熱収縮率S1が、2.5%以下である、請求項1、3、4のいずれか1項に記載の蓄電デバイス用セパレータ。
  6.  前記蓄電デバイス用セパレータの厚みTが3μm以上16μm以下である、請求項1~5のいずれか1項に記載の蓄電デバイス用セパレータ。
  7.  層(B)の厚みTと前記厚みTとの比が、T/Tとして、0.1~0.3である、請求項1~6のいずれか1項に記載の蓄電デバイス用セパレータ。
  8.  蓄電デバイス用セパレータの突刺強度が、200gf以上である、請求項1~7のいずれか1項に記載の蓄電デバイス用セパレータ。
  9.  層(A)における層(B)側の表面をATR-IRで測定した際の1734cm-1/2918cm-1の吸収ピーク比が、0.025~0.125である、請求項1~8のいずれか1項に記載の蓄電デバイス用セパレータ。
  10.  前記ポリアクリル酸系分散剤が、ポリアクリル酸の一価の金属イオンの中和塩、及び、アクリル酸の一価の金属イオンの中和塩とアクリル酸との共重合体、からなる群より選ばれる1種以上を含む、請求項1、3~9のいずれか1項に記載の蓄電デバイス用セパレータ。
  11.  前記水溶性バインダが、セルロースエーテルを含む、請求項1、3~10のいずれか1項に記載の蓄電デバイス用セパレータ。
  12.  前記無機フィラーのD50粒子径が、0.1μm以上0.7μm以下である、請求項1~11のいずれか1項に記載の蓄電デバイス用セパレータ。
  13.  前記蓄電デバイス用セパレータの透気度が、50~500秒/100ccである、請求項1~12のいずれか1項に記載の蓄電デバイス用セパレータ。
  14.  前記層(A)の透気度が、30~450秒/100ccである、請求項1~13のいずれか1項に記載の蓄電デバイス用セパレータ。
  15.  LiとCoとNiとを含む正極と、
     前記正極に対向する負極と、
     前記正極と前記負極との間に配される、請求項1~14のいずれか1項に記載の蓄電デバイス用セパレータと、
     を備える蓄電デバイスであって、
     前記正極中のLi以外の金属中の前記Co及びNiの含有比率が、それぞれ、20mоl%以下及び60mоl%以上である、蓄電デバイス。
PCT/JP2022/008796 2021-03-05 2022-03-02 蓄電デバイス用セパレータ及び蓄電デバイス WO2022186257A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022574091A JP7305895B2 (ja) 2021-03-05 2022-03-02 蓄電デバイス用セパレータ及び蓄電デバイス
EP22763311.2A EP4156340A1 (en) 2021-03-05 2022-03-02 Separator for power storage devices, and power storage device
KR1020227039204A KR20220167311A (ko) 2021-03-05 2022-03-02 축전 디바이스용 세퍼레이터 및 축전 디바이스
CN202280004721.2A CN115668629A (zh) 2021-03-05 2022-03-02 蓄电设备用分隔件和蓄电设备
US17/928,780 US20240234959A1 (en) 2021-03-05 2022-03-02 Separator for electricity storage device and electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-035688 2021-03-05
JP2021035688 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022186257A1 true WO2022186257A1 (ja) 2022-09-09

Family

ID=83154609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008796 WO2022186257A1 (ja) 2021-03-05 2022-03-02 蓄電デバイス用セパレータ及び蓄電デバイス

Country Status (7)

Country Link
US (1) US20240234959A1 (ja)
EP (1) EP4156340A1 (ja)
JP (1) JP7305895B2 (ja)
KR (1) KR20220167311A (ja)
CN (1) CN115668629A (ja)
TW (1) TWI821928B (ja)
WO (1) WO2022186257A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117664862B (zh) * 2024-01-31 2024-06-18 宁德时代新能源科技股份有限公司 极耳检测系统和极耳检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027024A (ja) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp 多層多孔膜
JP2019140114A (ja) 2013-03-21 2019-08-22 日本ゼオン株式会社 リチウムイオン二次電池多孔膜用スラリー及びその製造方法、リチウムイオン二次電池用セパレータ並びにリチウムイオン二次電池
WO2021020061A1 (ja) * 2019-07-31 2021-02-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
JP2021035688A (ja) 2019-08-30 2021-03-04 ダイハツ工業株式会社 金属板の増肉加工方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170283565A1 (en) * 2014-09-26 2017-10-05 Asahi Kasei Kabushiki Kaisha Thin-film sheet including cellulose fine-fiber layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027024A (ja) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp 多層多孔膜
JP2019140114A (ja) 2013-03-21 2019-08-22 日本ゼオン株式会社 リチウムイオン二次電池多孔膜用スラリー及びその製造方法、リチウムイオン二次電池用セパレータ並びにリチウムイオン二次電池
WO2021020061A1 (ja) * 2019-07-31 2021-02-04 日本ゼオン株式会社 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池
JP2021035688A (ja) 2019-08-30 2021-03-04 ダイハツ工業株式会社 金属板の増肉加工方法

Also Published As

Publication number Publication date
JP7305895B2 (ja) 2023-07-10
JPWO2022186257A1 (ja) 2022-09-09
TWI821928B (zh) 2023-11-11
US20240234959A1 (en) 2024-07-11
EP4156340A1 (en) 2023-03-29
CN115668629A (zh) 2023-01-31
TW202245325A (zh) 2022-11-16
KR20220167311A (ko) 2022-12-20

Similar Documents

Publication Publication Date Title
JP6105816B2 (ja) 蓄電デバイス用セパレータ
US10153473B2 (en) Separator for electricity storage device, laminate and porous film
JP4789274B2 (ja) 多層多孔膜
CN108352487B (zh) 蓄电设备用分隔件以及使用其的电极体及蓄电设备
JP6425484B2 (ja) 電池用セパレータ
JP7058803B2 (ja) 多層多孔膜
JP6412760B2 (ja) 蓄電デバイス用セパレータ
JP2016107642A (ja) 多層多孔膜及び蓄電デバイス用セパレータ
JP6378998B2 (ja) 蓄電デバイス用セパレータの製造方法
JP6438725B2 (ja) 蓄電デバイス用セパレータ、及び電気化学素子
KR102208408B1 (ko) 축전 디바이스용 세퍼레이터, 및 이를 사용한 적층체, 권회체 및 이차 전지
JP7305895B2 (ja) 蓄電デバイス用セパレータ及び蓄電デバイス
JP2016071963A (ja) 蓄電デバイス用セパレータ
EP3340343B1 (en) Separator for power storage device, and laminated body, roll and secondary battery using it
JP7153156B1 (ja) 蓄電デバイス用セパレータ
JP7344644B2 (ja) ポリオレフィン微多孔膜を備える多層多孔膜
WO2024010091A1 (ja) 蓄電デバイス用セパレータ
JP2024072806A (ja) 蓄電デバイス用セパレータ、その製造方法及び蓄電デバイス
JP2024039479A (ja) 多層多孔膜
JP2024039503A (ja) 多層多孔膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574091

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227039204

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217069100

Country of ref document: IN

Ref document number: 17928780

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022763311

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE