[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022180974A1 - Reciprocating compressor - Google Patents

Reciprocating compressor Download PDF

Info

Publication number
WO2022180974A1
WO2022180974A1 PCT/JP2021/044090 JP2021044090W WO2022180974A1 WO 2022180974 A1 WO2022180974 A1 WO 2022180974A1 JP 2021044090 W JP2021044090 W JP 2021044090W WO 2022180974 A1 WO2022180974 A1 WO 2022180974A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
piston
sliding surface
reciprocating compressor
inner peripheral
Prior art date
Application number
PCT/JP2021/044090
Other languages
French (fr)
Japanese (ja)
Inventor
修平 永田
伸之 成澤
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2022180974A1 publication Critical patent/WO2022180974A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00

Definitions

  • the present invention relates to a reciprocating compressor in which a piston reciprocates within a cylinder.
  • a piston In a reciprocating compressor, a piston is connected to a crankshaft via a connecting rod, and the crankshaft converts the rotational force of a rotary drive source such as an electric motor into reciprocating motion of the piston to compress gas.
  • a rotary drive source such as an electric motor
  • a piston In some reciprocating compressors, a piston is connected to the tip (small end) of a connecting rod via a bearing, and the piston swings with respect to the connecting rod and reciprocates without tilting with respect to the cylinder.
  • a piston there is a type in which a piston is fixed to the tip of a connecting rod, and the piston swings and reciprocates with respect to the cylinder. That is, there is a reciprocating compressor provided with an oscillating piston that oscillates integrally with a connecting rod. Compared to the former, the latter can improve durability by reducing the number of moving parts, reduce weight and noise, and reduce costs by reducing the number of parts.
  • Patent Document 1 describes an example of a reciprocating compressor equipped with an oscillating piston.
  • a spherical piston that reciprocates while sliding in a cylinder swings in a suction stroke, and the piston spherical surface at a portion that comes into sliding contact with the inner peripheral surface of the cylinder is recessed to form a piston rod.
  • a suction port is formed for drawing fluid into the compression chamber from the (connecting rod) side.
  • the reciprocating compressor described in Patent Document 1 has a structure in which the rotation axis of the crankshaft and the central axis of the cylinder intersect.
  • this structure when the swing angle of the piston (piston rod) is large, the force acting between the piston and the cylinder in the compression stroke (hereinafter referred to as side force) is correspondingly large. This increases the friction between the cylinder and the piston, leading to energy loss. Therefore, there is a demand to suppress the side force during the compression stroke. Therefore, it is possible to reduce the side force during the compression stroke by adopting an offset structure in which the rotation axis of the crankshaft is not intersected with the central axis of the cylinder, but shifted.
  • a spherical piston has a larger dead volume of a compression chamber than a cylindrical piston that is pivotably connected to a connecting rod via a bearing. Since the size of the dead volume causes deterioration in the discharge performance of the compressor (decrease in discharge flow rate and volumetric efficiency), there is a demand to reduce the dead volume.
  • the piston's rocking motion is asymmetrical, so in order for the piston ring to exhibit its sealing performance, it is necessary to mount the piston ring so that it is inclined with respect to the top surface of the piston.
  • the piston ring is attached to the piston in this way, the area of the outer peripheral surface of the piston located on the top side of the piston ring increases, resulting in an increase in the dead volume of the compression chamber.
  • the present invention has been made to solve the above problems, and its object is to reduce the side force acting between the piston and the cylinder during the compression stroke, and to reduce the dead volume.
  • the present application includes a plurality of means for solving the above problems, one example of which is a cylinder having a central axis, a crankshaft having a rotation axis offset with respect to the central axis of the cylinder, and A piston, which forms a compression chamber together with a cylinder and reciprocates in the cylinder, is rotatably connected to the crankshaft at one side and fixed to the piston at the other side.
  • the piston has a top surface that constitutes a part of the wall surface of the compression chamber;
  • a first sliding surface that slides on the inner peripheral surface of the cylinder within a range determined according to the above, and a first shape that connects the top surface and the sliding surface and avoids contact with the inner peripheral surface of the cylinder.
  • At least a portion of the first non-sliding surface is closer to the cylinder than the first imaginary extended curved surface that virtually extends the sliding surface toward the top surface. is located near the inner peripheral surface of the
  • the crankshaft by offsetting the crankshaft with respect to the cylinder, it is possible to reduce the swing angle of the piston during the compression stroke, and at least a portion of the first non-sliding surface of the piston is formed on the outer peripheral side (diameter direction outer side) of the first imaginary extended curved surface, the gap between the first non-sliding surface of the piston and the inner peripheral surface of the cylinder is reduced. Therefore, it is possible to reduce the dead volume while reducing the side force acting between the piston and the cylinder during the compression stroke.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a reciprocating compressor of the present invention
  • FIG. FIG. 4 is a characteristic diagram showing the characteristics of the offset structure in the first embodiment of the reciprocating compressor of the present invention
  • FIG. 4 is a characteristic diagram showing seal characteristics of piston rings in the first embodiment of the reciprocating compressor of the present invention
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the piston which mounted
  • 1 is a perspective view showing a single piston in a first embodiment of a reciprocating compressor of the present invention
  • FIG. 6 is a diagram showing a piston with a piston ring and its peripheral structure in a second embodiment of the reciprocating compressor of the present invention
  • FIG. 7 is a diagram showing a piston with a piston ring and its peripheral structure in a reciprocating compressor according to a third embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional view showing a fourth embodiment of the reciprocating compressor of the present invention
  • FIG. 10 is a diagram showing a piston fitted with a piston ring and its peripheral structure in a fourth embodiment of the reciprocating compressor of the present invention
  • FIG. 11 is a perspective view showing a single piston in a reciprocating compressor according to a fourth embodiment of the present invention
  • It is an explanatory view showing dead volume in a 4th embodiment of a reciprocating compressor of the present invention.
  • FIG. 1 is a schematic sectional view showing a first embodiment of a reciprocating compressor of the present invention.
  • a reciprocating compressor 1 compresses gas such as air using a crank mechanism and discharges the compressed gas into a tank (not shown) or the like.
  • the reciprocating compressor 1 includes a crankshaft 2 that rotates by being driven by a rotary drive source (not shown) such as an electric motor, a crankcase 3 that rotatably accommodates the crankshaft 2, a crank It comprises a cylinder 4 attached to the case 3 , a piston 5 reciprocating within the cylinder 4 , and a connecting rod 6 connecting the piston 5 and the crankshaft 2 .
  • the crankshaft 2 rotates about the rotation axis Rs.
  • the crankshaft 2 includes a crank journal 21 that is rotatably supported by bearings (not shown) arranged in the crankcase 3 and rotates around a rotation axis Rs, and a crank that is eccentric to the rotation axis Rs. It has a pin 22, a crank arm 23 connecting the crank journal 21 and the crank pin 22, and a balance weight 24 for adjusting the balance during rotation.
  • the crankpin 22 is rotatably connected to one end (a large end 62 described later) of the connecting rod 6 via the bearing 7 .
  • the bearing 7 for example, it is possible to use a rolling bearing, a sliding bearing, or the like.
  • the bearing 7 can also be configured integrally with either the connecting rod 6 or the crankshaft 2 .
  • the crankcase 3 is provided with a breathing hole 3a that communicates the inside and outside of the case 3 with each other.
  • the cylinder 4 has a central axis Cc, and is mounted so that an opening on one side (lower side in FIG. 1) communicates with the inside of the crankcase 3 .
  • a cylinder head 8 is attached via a valve plate 9 to the end of the cylinder 4 on the other side (upper side in FIG. 1).
  • the cylinder head 8 has an intake chamber 8a for taking in gas from the outside and an exhaust chamber 8b for discharging compressed gas to the outside.
  • the valve plate 9 closes the opening on the other side of the cylinder 4, and has an intake hole 9a that communicates the inside of the cylinder 4 (compression chamber 14, which will be described later) with the intake chamber 8a of the cylinder head 8, and the opening of the cylinder 4. It has a discharge hole 9b that communicates the inside with the exhaust chamber 8b of the cylinder head 8 .
  • a reed valve type intake valve 10 and a discharge valve 11 are attached to the valve plate 9 .
  • the intake valve 10 allows the gas in the intake chamber 8a of the cylinder head 8 to flow into the cylinder 4 through the intake hole 9a, while allowing the gas in the cylinder 4 to flow into the intake chamber 8a through the intake hole 9a.
  • the discharge valve 11 allows the gas in the cylinder 4 to flow into the exhaust chamber 8b of the cylinder head 8 through the discharge hole 9b, while allowing the gas in the exhaust chamber 8b to flow into the cylinder 4 through the discharge hole 9b. to prevent
  • the piston 5 is fixed to the other end (the small end 63 described later) of the connecting rod 6 without a bearing, and is integrated with the connecting rod 6 . That is, the piston 5 is a rocking piston (locking piston) that reciprocates while rocking in the cylinder 4 integrally with the connecting rod 6 when the crankshaft 2 rotates. As a method for fixing the piston 5 and the connecting rod 6, fastening with bolts, welding, press-fitting, or the like is possible.
  • the piston 5 is made of a material different from that of the connecting rod 6, for example, in order to ensure both the sliding characteristics of the piston 5 and the mechanical strength of the connecting rod 6 in an environment where lubricating oil is not used. .
  • the compression chamber 14 repeats expansion and contraction.
  • the suction valve 10 and the discharge valve 11 are opened and closed according to the expansion and contraction of the compression chamber 14 .
  • a piston ring 12 is attached to the piston 5 to improve the airtightness of the compression chamber 14 .
  • the piston ring 12 is formed so as to smoothly slide in the cylinder 4 when attached to the piston 5 and to keep the compression chamber 14 airtight during the compression stroke.
  • the piston ring 12 is a substantially C-shaped member having a substantially cylindrical outer peripheral surface, and has an abutment (not shown).
  • the outer diameter of the piston ring 12 is set to be slightly larger than the inner diameter of the cylinder 4 in the natural state. Therefore, when the piston ring 12 attached to the piston 5 is inserted into the cylinder 4, the reaction force due to the deformation of the piston ring 12 causes the outer peripheral surface of the piston ring 12 to be in close contact with the inner peripheral surface 4a of the cylinder 4. By doing so, the airtightness of the compression chamber 14 is maintained.
  • the connecting rod 6 includes a straight rod portion 61 , a cylindrical large end portion 62 provided at one end of the straight rod portion 61 , and a hemispherical small end portion provided at the other end of the straight rod portion 61 . and end 63 .
  • the straight rod portion 61 is tapered from the large end portion 62 side toward the small end portion 63 side.
  • the large end portion 62 is a portion that is connected to the crank pin 22 of the crankshaft 2 via the bearing 7 and is rotatable about the center axis Cb of the bearing 7 as a rotation axis.
  • the small end 63 has a spherical surface connected to the straight rod 61 and a circular flat surface connected to the piston 5 .
  • a straight line connecting the rotation axis of the cylindrical big end 62 (center axis Cb of the bearing 7) and the center of the hemispherical small end 63 is the center line Cr of the connecting rod 6, and the straight rod 61 is connected It extends along the center line Cr of the rod 6.
  • the rotational axis Rs of the crankshaft 2 (crank journal 21) is offset (separated) from the central axis Cc of the cylinder 4 without intersecting it. It has an offset structure.
  • this offset structure in order to reduce the force (hereinafter referred to as side force) acting between the piston 5 and the cylinder 4 during the compression stroke, the rotation axis Rs of the crankshaft 2 is shifted with respect to the central axis Cc of the cylinder 4 during the compression stroke. is offset in the pressing direction of the piston 5 against the inner peripheral surface 4a of the cylinder 4. As shown in FIG. For example, as shown in FIG.
  • FIG. 2 is a characteristic diagram showing the relationship between the crank angle and the swing angle of the piston and connecting rod.
  • FIG. 3 is a diagram showing the relationship between the inclination angle of the piston ring with respect to the cylinder and the amount of gas leakage.
  • the horizontal axis .theta. indicates the crank angle
  • the vertical axis .beta. indicates the swing angle of the piston and connecting rod.
  • the horizontal axis indicates the inclination angle of the piston ring with respect to the cylinder
  • the vertical axis indicates the leakage amount (mass flow rate) of the gas leaking from the gap between the piston ring and the cylinder.
  • the crank angle ⁇ which is the rotation angle of the crankshaft 2
  • the counterclockwise direction is the positive direction.
  • the angle between the central axis Cc of the cylinder 4 and the central axis Cr of the connecting rod 6 (also coinciding with the central axis 5b of the piston 5 described later) on the acute side is defined as a swing angle ⁇ .
  • the swing angle ⁇ has a positive value when the central axis Cb of the bearing 7 is positioned on the left side of the central axis Cc of the cylinder 4, and is a positive value when the central axis Cb of the bearing 7 is positioned on the right side of the central axis Cc of the cylinder 4. Negative value.
  • a configuration different from the offset structure is considered. That is, when the rotation axis Rs of the crankshaft 2 intersects the central axis Cc of the cylinder 4 (that is, when the offset amount ⁇ is 0), the oscillating motion of the piston 5 and the connecting rod 6 does not cross the central axis Cc of the cylinder 4. symmetrical to In this case, the maximum value of the swing angle ⁇ during the compression stroke (while the piston 5 moves from the bottom dead center to the top dead center) and the swing angle ⁇ during the suction stroke (while the piston 5 moves from the top dead center to the bottom dead center) becomes equal to the maximum value of the dynamic angle ⁇ .
  • the oscillating motion of the piston 5 and the connecting rod 6 is asymmetric with respect to the central axis Cc of the cylinder 4. That is, as shown in FIG. 2, the change of the swing angle ⁇ with respect to the crank angle ⁇ is vertically asymmetric with respect to the horizontal axis.
  • the absolute value ⁇ 1 of the maximum swing angle in the compression stroke is smaller than the absolute value ⁇ 2 of the maximum swing angle in the intake stroke.
  • the absolute value ⁇ 1 of the maximum swing angle in the compression stroke is smaller than the absolute value of the maximum swing angle in the compression stroke in the case of the comparative example in which the offset amount ⁇ is zero.
  • the absolute value of the maximum swing angle in the compression stroke can be kept small, and accordingly, the distance between the piston 5 and the cylinder 4 in the compression stroke can be reduced. It is possible to reduce the force (side force) acting on the
  • the piston ring 12 is attached to the rocking piston 5 (locking piston). change by In the offset structure of the present embodiment, since the swing angle ⁇ during the compression stroke is small, the inclination angle of the piston ring 12 is also small. Therefore, the amount of gas leaked from the compression chamber 14 during the compression stroke is smaller than in the comparative example in which the offset amount ⁇ is zero.
  • FIG. 4 is a diagram showing a piston fitted with a piston ring and its peripheral structure in the first embodiment of the reciprocating compressor of the present invention.
  • FIG. 5 is a perspective view showing a single piston in the first embodiment of the reciprocating compressor of the present invention.
  • the piston 5 is formed in a substantially disk shape and has an outer peripheral surface that can smoothly reciprocate while rocking within the cylinder 4 (see FIG. 1). .
  • the piston 5 has a top surface 51 forming part of the wall surface of the compression chamber 14 (see FIG. 1), a sliding surface 52 and non-sliding surfaces 53 and 54 as outer peripheral surfaces.
  • the sliding surface 52 is a curved surface that slides against the inner peripheral surface 4a of the cylinder 4 during rocking and reciprocating motion.
  • the non-sliding surfaces 53 and 54 are curved surfaces that are continuous with the sliding surface 52 and are formed in a shape that avoids contact with the inner peripheral surface 4 a of the cylinder 4 .
  • the shape of the piston 5 has geometric constraints from the viewpoint of mechanism motion. Since the reciprocating compressor 1 of this embodiment has an offset structure in which the crankshaft 2 is offset with respect to the cylinder 4, the oscillating motion of the piston 5 and the connecting rod 6 is asymmetrical. Therefore, in response to its asymmetrical rocking motion, the piston 5 is moved relative to the plane containing the central axis 5b of the piston 5 and the rotation axis of the large end 62 of the connecting rod 6 (that is, the central axis Cb of the bearing 7). are formed asymmetrically (left-right asymmetrical with respect to the central axis 5b in FIG. 4).
  • the central axis 5b of the piston 5 is a straight line passing through the later-described central point 5a of the sliding surface 52 and the rotation axis of the large end 62 of the connecting rod 6 (the central axis Cb of the bearing 7). It also coincides with the center line Cr of the rod 6 .
  • the top surface 51 is, for example, planar. However, as shown in FIG. 4, the top surface 51 is not parallel to the orthogonal surface 5c of the piston 5 but is formed as an inclined surface that is inclined in accordance with the asymmetric rocking motion of the piston 5 with respect to the central axis Cc of the cylinder 4. It is Here, the perpendicular plane 5c of the piston 5 is a plane perpendicular to the central axis 5b of the piston 5 and including the center point 5a of the sliding surface 52, which will be described later.
  • the top surface 51 is formed so as to be substantially parallel to the valve plate 9 when the piston 5 is positioned at the top dead center (see FIG. 6, which will be described later).
  • the top surface 51 is formed as an inclined surface that approaches the perpendicular surface 5c of the piston 5 in the same direction as the offset direction of the crankshaft 2 with respect to the cylinder 4 (leftward in FIG. 4).
  • the top surface 51 is provided with a groove for avoiding contact with the intake valve 10 (see FIG. 1) and a projection that can be inserted into the discharge hole 9b (see FIG. 1) at a position facing the discharge hole 9b. is also possible.
  • the sliding surface 52 is formed in a spherical shape with a smaller diameter than the cylindrical diameter of the cylinder 4 so that the piston 5 can smoothly oscillate and reciprocate within the cylinder 4 .
  • the center point 5 a of the spherical sliding surface 52 is located on the extension line of the center line Cr of the connecting rod 6 .
  • the sliding surface 52 is a curved surface formed over the range of the sliding angle ⁇ determined according to the range of the swinging angle ⁇ in the swinging motion of the connecting rod 6 . For example, as shown in FIG.
  • the maximum swing angle (absolute value) in the stroke (compression stroke) toward top dead center is ⁇ 1
  • the maximum swing angle (absolute value) in the stroke (intake stroke) toward bottom dead center When the absolute value) is ⁇ 2, the sliding surface 52 shown in FIG. ) with respect to the orthogonal plane 5c of the piston 5, the range of the sliding angle ⁇ on the top surface 51 side is ⁇ 1 and the range of the sliding angle ⁇ on the connecting rod 6 side is ⁇ 2.
  • the sliding surface 52 on the side opposite to the offset direction with respect to the central axis 5b of the piston 5 the right side in FIG.
  • the range of ⁇ becomes ⁇ 2
  • the range of the sliding angle ⁇ on the side of the connecting rod 6 becomes ⁇ 1.
  • the non-sliding surface is a curved surface formed outside the range of the sliding angle ⁇ determined according to the range of the swinging angle ⁇ in the swinging motion of the connecting rod 6, and the top surface 51 and the sliding surface 52 are formed. It has a connecting first non-sliding surface 53 and a second non-sliding surface 54 extending from the sliding surface 52 toward the connecting rod 6 side.
  • the first non-sliding surface 53 is a curved surface located on the outer peripheral side (outside in the radial direction) of a spherical first virtual extended curved surface 52V1 that virtually extends the sliding surface 52 toward the top surface 51 side. formed. That is, when the piston 5 is arranged in the cylinder 4, the first non-sliding surface 53 is closer to the inner peripheral surface 4a of the cylinder 4 than the first imaginary extended curved surface 52V1 of the sliding surface 52. formed to be located.
  • the first non-sliding surface 53 needs to be out of contact with the inner peripheral surface 4a of the cylinder 4 even when the swinging motion of the connecting rod 6 (piston 5) reaches the maximum swinging angle. be. That is, when the piston 5 is at the maximum swing angle, the first non-sliding surface 53 is required to be a curved surface located radially inward of the curved surface coinciding with the inner peripheral surface 4a of the cylinder 4 .
  • the maximum swing angle in the compression stroke is ⁇ 1 and the maximum swing angle in the suction stroke is ⁇ 2.
  • the portion on the same side as the offset direction of the crankshaft 2 is the offset-side non-sliding surface 531, and the opposite side to the offset direction 4) is called an anti-offset side non-sliding surface 532.
  • the first plane 5e that forms an angle ⁇ 1 that is the same as the maximum swing angle in the compression stroke with respect to the orthogonal surface 5c of the piston 5 is This is the case where the first cylindrical surface 531c is perpendicular to each other.
  • the non-offset side non-sliding surface 532 in order for the non-offset side non-sliding surface 532 to be a curved surface that coincides with the inner peripheral surface 4a of the cylinder 4, a second plane that forms an angle ⁇ 2 that is the same as the maximum swing angle in the intake stroke with respect to the perpendicular surface 5c of the piston 5 is required.
  • the edge line 533 is indicated by a two-dot chain line for convenience of explanation, but the edge line 533 is not illustrated in other drawings.
  • the ridge line 533 is positioned substantially at the center in the left-right direction, but it can be set at any position. That is, at which position in the circumferential direction the offset-side non-sliding surface 531 and the counter-offset-side non-sliding surface 532 are connected can be changed as necessary.
  • the first non-sliding surface 53 is a first cylindrical surface 531c orthogonal to the first plane 5e forming the same angle as the maximum swing angle ⁇ 1 of the compression stroke with respect to the orthogonal surface 5c of the piston 5.
  • a second cylindrical surface 532c orthogonal to the second plane 5f forming the same angle as the maximum swing angle ⁇ 2 of the intake stroke with respect to the orthogonal surface 5c of the piston 5 (inward in the radial direction).
  • the first non-sliding surface 53 of the present embodiment is formed so as to be located on the outer peripheral side (diameter direction outside) of the first imaginary extended curved surface 52V1 of the sliding surface 52 .
  • the second non-sliding surface 54 is formed, for example, into a curved surface that coincides with a spherical second virtual extended curved surface 52V2 that virtually extends the sliding surface 52 toward the connecting rod 6 side. That is, the second non-sliding surface 54 is a spherical curved surface formed by extending the sliding surface 52 toward the connecting rod 6, and is configured as an outer peripheral surface that does not come into contact with the inner peripheral surface of the cylinder 4. there is
  • annular groove 55 for mounting the piston ring 12 is provided on the outer peripheral surface of the piston 5, as shown in FIG.
  • the annular groove 55 is provided, for example, within the region of the sliding surface 52 (the range of the sliding angle ⁇ shown in FIG. 4).
  • the annular groove 55 (piston ring 12) is formed with respect to the top surface 51 so as to approach the top surface 51 of the piston 5 as it goes in the same direction as the offset direction of the crankshaft 2 (leftward in FIG. 4), for example. is sloping. That is, the annular groove 55 is formed such that the portion on the same side as the offset direction is positioned closer to the top surface 51 than the portion on the opposite side to the offset direction. Part or all of the annular groove 55 (piston ring 12) can be provided outside the range of the sliding angle ⁇ .
  • FIG. 6 is an explanatory diagram showing the state when the piston is positioned at the top dead center in the first embodiment of the reciprocating compressor of the present invention.
  • the compression chamber 14 contracts, the gas in the compression chamber 14 is compressed, the discharge valve 11 opens, and the gas flows through the exhaust chamber 8b in the cylinder head 8. It is discharged to the outside.
  • a piston ring 12 is attached to the piston 5 .
  • the swing angle ⁇ of the piston 5 during the compression stroke by the offset structure, the inclination angle of the piston ring 12 with respect to the cylinder 4 is reduced. Therefore, as shown in FIG. 3, the high airtightness of the compression chamber 14 can be ensured by the sealing performance of the piston ring 12 .
  • top clearance ⁇ A gap (hereinafter referred to as top clearance ⁇ ) is provided. From the viewpoint of compressor performance, it is ideal that the volume of the compression chamber 14 becomes zero when the piston 5 is at the top dead center. However, in reality, there is a volume due to the top clearance ⁇ and other gaps.
  • the volume of the compression chamber 14 when the piston 5 is at the top dead center is called dead volume.
  • the size of the dead volume is one of the factors of deterioration of compressor discharge performance (decrease in discharge flow rate and volumetric efficiency). In order to realize a highly efficient compressor, it is desirable to reduce the dead volume.
  • the gap between the outer peripheral surface of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is one of the causes of the dead volume.
  • the piston ring 12 seals the gap between the piston 5 and the cylinder 4, the outer peripheral surface of the piston 5 and the inner peripheral surface 4a of the cylinder 4, which are located on the top surface 51 side of the piston ring 12, are separated from each other.
  • the gap G between is one of the factors of the dead volume. Therefore, in order to reduce the dead volume, among the outer peripheral surfaces of the piston 5 shown in FIG. It is necessary to reduce the gap G (see FIG. 6) between a portion (the right portion in FIG. 5 and the first non-sliding surface 53) and the inner peripheral surface 4a of the cylinder 4.
  • the region (area ) can be reduced. This can be realized by setting the position of the annular groove 55 closer to the top surface 51 side. As the annular groove approaches the top surface 51, the thickness (thickness) of the disk-shaped portion sandwiched between the annular groove and the top surface 51 is correspondingly reduced. The thickness of the disk-shaped portion cannot be less than a predetermined value from the viewpoint of ensuring the strength necessary to hold the piston ring 12 in the annular groove.
  • the top surface 51 is inclined toward the annular groove 55 as it goes in the same direction as the offset direction of the crankshaft 2 (leftward in FIGS. 4 and 5).
  • the thickness of the disk-shaped portion is the thinnest on the same side as the offset direction (left side in FIGS. 4 and 5).
  • the minimum possible value is determined from the viewpoint of material strength.
  • the thickness of the disk-shaped portion on the side opposite to the offset direction is thicker than the portion on the same side as the offset direction.
  • the inclination of the top surface 51 with respect to the annular groove 55 puts the portion of the disk-shaped portion on the side opposite to the offset direction in an unfavorable situation.
  • the thickness of a portion of the disk-shaped portion sandwiched between the annular groove and the top surface 51 is offset. Thick due to structure.
  • the first non-sliding surface 53 located closer to the top surface 51 than the annular groove 55 (piston ring 12) is the first non-sliding surface 53 of the spherical sliding surface 52.
  • the gap G between the first non-sliding surface 53 of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is reduced. can do. That is, the dead volume can be reduced without bringing the annular groove 55 (piston ring 12 ) closer to the top surface 51 .
  • the gap between the first non-sliding surface 53 of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is one of the leakage paths of the compressed gas from the inside of the compression chamber 14 to the outside (inside the crankcase 3). be. Therefore, by forming the first non-sliding surface 53 so as to be located on the outer peripheral side of the spherical first imaginary extended curved surface 52V1, the first non-sliding surface 53 and the inner peripheral surface of the cylinder 4 Since the gap G with 4a becomes smaller, the amount of compressed air leakage in the compression stroke can also be reduced.
  • the angle formed by the offset-side non-sliding surface 531 of the first non-sliding surfaces 53 with respect to the perpendicular plane 5c of the piston 5 is the compression stroke. is formed on a curved surface (but not in contact with the inner peripheral surface 4a of the cylinder 4) that substantially coincides with the first cylindrical surface 531c orthogonal to the first plane 5e that is the maximum swing angle ⁇ 1 of the non-offset side non-sliding
  • the angle formed by the moving surface 532 with respect to the orthogonal surface 5c of the piston 5 is a curved surface that substantially coincides with the second cylindrical surface 532c that is perpendicular to the second plane 5f, which is the maximum swing angle ⁇ 2 of the intake stroke (however, the inner surface of the cylinder 4 is curved).
  • the first non-sliding surface 53 of the piston 5 can be brought closest to the inner peripheral surface 4 a of the cylinder 4 without contacting the inner peripheral surface 4 a of the cylinder 4 . That is, by forming the offset-side non-sliding surface 531 into a curved surface that approximately matches the first cylindrical surface 531c and forming the anti-offset-side non-sliding surface 532 into a curved surface that approximately matches the second cylindrical surface 532c, Dead volume can be minimized.
  • the reciprocating compressor 1 includes the cylinder 4 having the central axis Cc and the crankshaft 2 having the rotation axis Rs offset from the central axis Cc of the cylinder 4. , a piston 5 which forms a compression chamber 14 together with the cylinder 4 and reciprocates in the cylinder 4 , and one side of which is rotatably connected to the crankshaft 2 and the other side of which is fixed to the piston 5 so that the crankshaft 2 rotates. and a connecting rod 6 which, when actuated, makes an oscillating motion with respect to the cylinder 4 .
  • the piston 5 has a top surface 51 forming part of the wall surface of the compression chamber 14 and an inner peripheral surface 4a of the cylinder 4 within a range determined according to the swing angle ⁇ of the connecting rod 6 with respect to the central axis Cc of the cylinder 4. and a first non-sliding surface 53 that connects the top surface 51 and the sliding surface 52 and avoids contact with the inner peripheral surface 4a of the cylinder 4. there is At least part of the first non-sliding surface 53 is closer to the inner peripheral surface 4a of the cylinder 4 than the first imaginary extended curved surface 52V1 that virtually extends the sliding surface 52 toward the top surface 51 side. It is located.
  • the entire first non-sliding surface 53 is positioned closer to the inner peripheral surface 4a of the cylinder 4 than the first imaginary extended curved surface 52V1. According to this configuration, the gap G between the first non-sliding surface 53 of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is reduced over the entire circumference, so the dead volume of the compression chamber 14 is further reduced. In addition, leakage of the compressed gas from the compression chamber 14 can be further suppressed.
  • the piston 5 is asymmetrical with respect to a plane including the center line Cr connecting the large end 62 side (one side) and the small end 63 side (the other side) of the piston 6 .
  • a piston having a shape corresponding to the asymmetrical rocking motion of the piston 5 and the connecting rod 6 with respect to the cylinder 4 due to the offset structure can be configured.
  • the piston ring 12 is attached to the outer peripheral surface of the piston 5 , and the piston ring 12 is arranged in the offset direction of the rotation axis Rs of the crankshaft 2 with respect to the central axis Cc of the cylinder 4 . is inclined with respect to the top surface 51 so as to approach the top surface 51 of the piston 5 as it goes in the same direction as . According to this configuration, the airtightness of the compression chamber 14 by the piston ring 12 can be ensured in the offset structure.
  • FIG. 7 is a diagram showing a piston fitted with a piston ring and its peripheral structure in a second embodiment of the reciprocating compressor of the present invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 6 are the same parts, so detailed description thereof will be omitted.
  • the second embodiment of the reciprocating compressor of the present invention shown in FIG. 7 differs from the first embodiment in that the shape of the second non-sliding surface 54A of the outer peripheral surface of the piston 5A is different. That is.
  • the second non-sliding surface 54 of the piston 5 according to the first embodiment is a second virtual extended curved surface obtained by virtually extending the spherical sliding surface 52 toward the connecting rod 6 side. 52V2 (see FIG. 4).
  • the second non-sliding surface 54A of the piston 5A according to the present embodiment is formed as a curved surface located on the outer peripheral side (diameter direction outside) of the second imaginary extended curved surface 52V2.
  • the entire second non-sliding surface 54A is closer to the inner peripheral surface of the cylinder 4 than the second virtual extended curved surface 52V2 of the spherical sliding surface 52. It is formed so as to be located near 4a. As a result, the area in which the gap between the second non-sliding surface 54A of the piston 5A and the inner peripheral surface 4a of the cylinder 4 becomes smaller increases than in the first embodiment.
  • the swing angle of the piston 5A during the compression stroke is It is possible to reduce ⁇ , and by forming at least a part of the first non-sliding surface 53 of the piston 5A on the outer peripheral side (diameter direction outside) of the first virtual extended curved surface 52V1, The gap G between the first non-sliding surface 53 of the piston 5A and the inner peripheral surface 4a of the cylinder 4 becomes smaller. Therefore, the side force acting between the piston 5A and the cylinder 4 during the compression stroke can be reduced, and the dead volume of the compression chamber 14 can be reduced. Leakage of compressed gas can be suppressed.
  • the piston 5A in the reciprocating compressor according to the present embodiment extends from the sliding surface 52 to the opposite side of the top surface 51, and has a shape that avoids contact with the inner peripheral surface 4a of the cylinder 4. and a non-sliding surface 54A. At least part of the second non-sliding surface 54A is closer to the inner peripheral surface 4a of the cylinder 4 than the second virtual extended curved surface 52V2, which virtually extends the sliding surface 52 to the opposite side of the top surface 51.
  • the second non-sliding surface 54A is formed on the outer peripheral side (diameter direction outside) of the second imaginary extended curved surface 52V2, thereby providing the second non-sliding surface of the piston 5A. Since the gap between the moving surface 54A and the inner peripheral surface 4a of the cylinder 4 is reduced, gas leakage from the compression chamber 14 during the compression stroke can be further suppressed.
  • the entire second non-sliding surface 54A of the piston 5A is positioned closer to the inner peripheral surface 4a of the cylinder 4 than the second imaginary extended curved surface 52V2. . According to this configuration, since the gap between the second non-sliding surface 54A of the piston 5A and the inner peripheral surface 4a of the cylinder 4 becomes small over the entire circumference, leakage of compressed gas from the compression chamber 14 can be prevented. can be further suppressed.
  • FIG. 8 is a diagram showing a piston fitted with a piston ring and its peripheral structure in a third embodiment of the reciprocating compressor of the present invention.
  • parts having the same reference numerals as those shown in FIGS. 1 to 7 are the same parts, and detailed description thereof will be omitted.
  • the third embodiment of the reciprocating compressor of the present invention shown in FIG. 8 differs from the first embodiment in that the shape of the first non-sliding surface 53B of the outer peripheral surface of the piston 5B is different. is.
  • the first non-sliding surface 53 of the piston 5 according to the first embodiment is located on the outer peripheral side (radial direction outer side) of the first imaginary extended curved surface 52V1 of the sliding surface 52 whose entirety (entire circumference) is spherical. ) (see FIG. 4).
  • the first non-sliding surface 53B of the piston 5B according to the second embodiment is formed so that only a part thereof is located on the outer peripheral side of the first imaginary extended curved surface 52V1. .
  • the counter-offset side located on the opposite side (right side in FIG. 8) to the offset direction of the crankshaft 2 (left direction in FIG. 8) Only the non-sliding surface 532 is formed so as to be located on the outer peripheral side of the first imaginary extended curved surface 52V1 of the sliding surface 52 .
  • an offset-side non-sliding surface 531B located on the same side as the offset direction (left side in FIG.
  • the volume of the gap G between the non-offset side non-sliding surface 532 of the first non-sliding surface 53B and the inner peripheral surface 4a of the cylinder 4 is offset. It is larger than the volume of the gap G between the side non-sliding surface 531B and the inner peripheral surface 4a of the cylinder 4.
  • the non-offset side non-sliding surface 532 causes an increase in dead volume more than the offset side non-sliding surface 531B. Therefore, in the present embodiment, the gap G between the non-offset side non-sliding surface 532 and the inner peripheral surface 4a of the cylinder 4 is made small.
  • the swing angle of the piston 5B during the compression stroke is It is possible to reduce ⁇ , and by forming at least a part of the first non-sliding surface 53B of the piston 5B on the outer peripheral side (diameter direction outside) of the first virtual extended curved surface 52V1, The gap G between the first non-sliding surface 53B of the piston 5B and the inner peripheral surface 4a of the cylinder 4 is reduced. Therefore, the side force acting between the piston 5B and the cylinder 4 during the compression stroke can be reduced, and the dead volume of the compression chamber 14 can be reduced. Leakage of compressed gas can be suppressed.
  • the first non-sliding surface 53B of the piston 5B is located on the side opposite to the offset direction of the rotation axis Rs of the crankshaft 2 with respect to the central axis Cc of the cylinder 4. Only the non-offset side non-sliding surface 532 (portion) located at is located closer to the inner peripheral surface 4a of the cylinder 4 than the first imaginary extended curved surface 52V1. According to this configuration, it is possible to reduce the amount of material used for manufacturing the piston 5B while reducing the dead volume of the compression chamber 14 and suppressing gas leakage from the compression chamber 14 .
  • FIG. 9 is a schematic sectional view showing a fourth embodiment of the reciprocating compressor of the present invention.
  • FIG. 10 is a diagram showing a piston fitted with a piston ring and its peripheral structure in a fourth embodiment of the reciprocating compressor of the present invention.
  • FIG. 11 is a perspective view showing a single piston in the fourth embodiment of the reciprocating compressor of the present invention.
  • FIG. 12 is an explanatory diagram showing dead volume in the fourth embodiment of the reciprocating compressor of the present invention.
  • the parts having the same reference numerals as those shown in FIGS. 1 to 8 are the same parts, and detailed description thereof will be omitted.
  • the fourth embodiment of the reciprocating compressor of the present invention shown in FIG. 9 differs from the first embodiment in that the piston 5C does not have a piston ring.
  • the piston 5C of the present embodiment has an annular groove 55 (see FIG. 5) formed on the outer peripheral surface unlike the piston 5 of the first embodiment. It is a configuration that is not As shown in FIG. 11, a valley line 56 (broken line in FIG. 11) as a boundary between the sliding surface 52 and the first non-sliding surface 53 appears on the outer peripheral surface of the piston 5C over the entire circumference. ing.
  • the valley line 56 (broken line in FIG. 5) as the boundary between the sliding surface 52 and the first non-sliding surface 53 is partially only appear.
  • Other configurations and structures of the piston 5C of the present embodiment are the same as those of the first embodiment.
  • one cause of dead volume is the gap between the outer peripheral surface of the piston 5C and the inner peripheral surface 4a of the cylinder 4 shown in FIG.
  • the gap between the piston 5C and the cylinder 4 is sealed by line contact between the sliding surface 52 of the piston 5C and the inner peripheral surface 4a of the cylinder 4.
  • the top surface 51 is closer to the top surface 51 than the portion (annular portion) where the spherical sliding surface 52 of the piston 5C and the cylindrical inner peripheral surface 4a of the cylinder 4 contact.
  • a gap G between the outer peripheral surface (a part of the sliding surface 52 and the first non-sliding surface 53) of the piston 5C located at , and the inner peripheral surface 4a of the cylinder 4 is one factor of the dead volume.
  • a gap between the outer peripheral surface of the piston 5C and the inner peripheral surface 4a of the cylinder 4 is one of the leakage paths of the compressed gas from the inside of the compression chamber 14 to the outside (inside the crankcase 3).
  • the swing angle of the piston 5C during the compression stroke is It is possible to reduce ⁇ , and by forming at least a part of the first non-sliding surface 53 of the piston 5C on the outer peripheral side (diameter direction outside) of the first virtual extended curved surface 52V1, The gap G between the first non-sliding surface 53 of the piston 5C and the inner peripheral surface 4a of the cylinder 4 becomes smaller. Therefore, the side force acting between the piston 5C and the cylinder 4 during the compression stroke can be reduced, and the dead volume of the compression chamber 14 can be reduced. Leakage of compressed gas can be suppressed.
  • the reciprocating compressor according to the present embodiment has a configuration in which the piston ring 12 is not attached to the outer peripheral surface of the piston 5C. According to this configuration, it is possible to simplify the configuration of the reciprocating compressor while reducing the dead volume of the compression chamber 14 and suppressing gas leakage from the compression chamber 14 .
  • the present invention is not limited to the first to fourth embodiments described above, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the sliding surfaces 52 of the pistons 5, 5A, 5B, and 5C are spherical.
  • the curved surface that can be geometrically defined other than a spherical shape, for example, a curved surface approximating a spherical surface. can also be adopted.
  • the pistons 5, 5A, 5B, 5C have shown the configuration examples in which the second non-sliding surfaces 54, 54A are provided.
  • the piston it is also possible for the piston to have no outer peripheral surface (second non-sliding surface) on the connecting rod 6 side of the sliding surface 52 . That is, it is possible to configure the outer peripheral surface of the piston only with the sliding surface 52 and the first non-sliding surfaces 53, 53B.
  • the anti-offset side non-sliding surface 532 (the right side portion in FIG. 8) is formed into the first imaginary extended curved surface 52V1.
  • the offset-side non-sliding surface 531B (the left-hand portion in FIG. 8) is formed into a curved surface that coincides with the first imaginary extended curved surface 52V1.
  • the first non-sliding surfaces of the piston only the offset-side non-sliding surface is formed on the outer peripheral side of the first imaginary extended curved surface 52V1, while the anti-offset-side non-sliding surface is formed on the first imaginary curved surface 52V1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

A reciprocating compressor comprising: a crankshaft having a rotation axis offset with respect to the central axis of a cylinder; a piston that defines a compression chamber together with the cylinder and reciprocates in the cylinder; and a connecting rod that has one side pivotably coupled to the crankshaft and the other side fixed to the piston and is caused to swing by the rotational motion of the crankshaft. The piston has: a top surface that constitutes a wall surface of the compression chamber; a sliding surface that slides on the inner peripheral surface of the cylinder within a range defined according to the range of the swing angle of the connecting rod; and a first non-sliding surface having such a shape as to join the top surface and the sliding surface to each other and avoid contact with the inner peripheral surface of the cylinder. At least a part of the first non-sliding surface is positioned closer to the inner peripheral surface of the cylinder than the first virtual extended curved plane obtained by virtually extending the sliding surface toward the top surface side.

Description

往復動圧縮機reciprocating compressor
 本発明は、ピストンがシリンダ内で往復動する往復動圧縮機に関する。 The present invention relates to a reciprocating compressor in which a piston reciprocates within a cylinder.
 往復動圧縮機は、ピストンが連接棒を介してクランクシャフトに連結されており、電動機などの回転駆動源の回転力をクランクシャフトによってピストンの往復動に変換することで気体などを圧縮するものである。往復動圧縮機のなかには、ピストンがベアリングを介して連接棒の先端部(小端部)に連結され、ピストンが連接棒に対して揺動しつつシリンダに対しては傾斜せずに往復動するものがある。それに対して、ピストンが連接棒の先端部に固定され、ピストンがシリンダに対して揺動しつつ往復動するものがある。すなわち、連接棒と一体的に揺動する揺動型のピストンを備えた往復動圧縮機がある。後者の方が前者よりも、可動部の削減による耐久性の向上、軽量化や低騒音化、部品点数削減によるコストダウンが可能となる。 In a reciprocating compressor, a piston is connected to a crankshaft via a connecting rod, and the crankshaft converts the rotational force of a rotary drive source such as an electric motor into reciprocating motion of the piston to compress gas. be. In some reciprocating compressors, a piston is connected to the tip (small end) of a connecting rod via a bearing, and the piston swings with respect to the connecting rod and reciprocates without tilting with respect to the cylinder. there is something On the other hand, there is a type in which a piston is fixed to the tip of a connecting rod, and the piston swings and reciprocates with respect to the cylinder. That is, there is a reciprocating compressor provided with an oscillating piston that oscillates integrally with a connecting rod. Compared to the former, the latter can improve durability by reducing the number of moving parts, reduce weight and noise, and reduce costs by reducing the number of parts.
 揺動型のピストンを備えた往復動圧縮機の一例として、特許文献1に記載のものがある。特許文献1に記載の往復動圧縮機では、シリンダ内を摺動しつつ往復する球体状のピストンが吸入行程において揺動してシリンダ内周面と摺接する部位のピストン球面を窪ませてピストンロッド(連接棒)側から圧縮室内に流体を吸い込むための吸入口が形成されている。 Patent Document 1 describes an example of a reciprocating compressor equipped with an oscillating piston. In the reciprocating compressor described in Patent Document 1, a spherical piston that reciprocates while sliding in a cylinder swings in a suction stroke, and the piston spherical surface at a portion that comes into sliding contact with the inner peripheral surface of the cylinder is recessed to form a piston rod. A suction port is formed for drawing fluid into the compression chamber from the (connecting rod) side.
特開昭62-253971号公報JP-A-62-253971
 特許文献1に記載の往復動圧縮機においては、クランクシャフトの回転軸線とシリンダの中心軸とを交差させた構造となっている。この構造では、ピストン(ピストンロッド)の揺動角度が大きいと、その分、圧縮行程におけるピストンとシリンダ間に作用する力(以下、サイドフォースと称す)が大きくなる。これにより、シリンダとピストン間の摩擦が大きくなり、エネルギ損失に繋がる。そのため、圧縮行程時のサイドフォースを抑制したいという要望がある。そこで、クランクシャフトの回転軸線をシリンダの中心軸に対して交差させずにずらした位置に配置するオフセット構造を採用することで、圧縮行程時のサイドフォースを低減することが可能である。 The reciprocating compressor described in Patent Document 1 has a structure in which the rotation axis of the crankshaft and the central axis of the cylinder intersect. In this structure, when the swing angle of the piston (piston rod) is large, the force acting between the piston and the cylinder in the compression stroke (hereinafter referred to as side force) is correspondingly large. This increases the friction between the cylinder and the piston, leading to energy loss. Therefore, there is a demand to suppress the side force during the compression stroke. Therefore, it is possible to reduce the side force during the compression stroke by adopting an offset structure in which the rotation axis of the crankshaft is not intersected with the central axis of the cylinder, but shifted.
 また、特許文献1に記載の往復動圧縮機においては、ピストンロッドと一体に揺動するピストンを球体状にすることで、シリンダに対するピストンの揺動角度が大きい場合でもシリンダの内周面に対して滑らかに摺動するので、ピストンの損傷リスクを低減することが可能である。しかし、球体状のピストンは、連接棒に対してベアリングを介して揺動可能に連結された円筒型のピストンと比べると、圧縮室の死容積が大きくなってしまう。死容積の大きさは圧縮機の吐き出し性能の低下(吐出流量の低下や体積効率の低下)の要因となるので、死容積を低減したいという要望がある。 Further, in the reciprocating compressor described in Patent Document 1, by making the piston that swings integrally with the piston rod spherical, even if the swing angle of the piston with respect to the cylinder is large, Since it slides smoothly, it is possible to reduce the risk of damage to the piston. However, a spherical piston has a larger dead volume of a compression chamber than a cylindrical piston that is pivotably connected to a connecting rod via a bearing. Since the size of the dead volume causes deterioration in the discharge performance of the compressor (decrease in discharge flow rate and volumetric efficiency), there is a demand to reduce the dead volume.
 また、特許文献1に記載の往復動圧縮機においては、ピストンが球体状であるので、圧縮室の気密性をピストンとシリンダとの線接触によって保つ必要がある。この構成は、前述した円筒型のピストンとシリンダとの面接触によるシールの場合よりも、圧縮室の気密性が低くなる虞がある。そこで、ピストンリングをピストンに装着させる手法が考えられる。ただし、ピストンリングはピストンの揺動運動に伴ってシリンダに対して揺動するので、ピストンの揺動角度が大きいと、ピストンリングのシール性能が十分に発揮されないことがある。しかし、圧縮行程時のサイドフォースを低減するオフセット構造を採用している往復動圧縮機では、圧縮行程におけるピストンリングの揺動を抑制することが可能なので、圧縮行程におけるピストンリングのシール性能を維持することができる。 Also, in the reciprocating compressor described in Patent Document 1, since the piston is spherical, it is necessary to maintain the airtightness of the compression chamber by line contact between the piston and the cylinder. With this configuration, there is a risk that the airtightness of the compression chamber will be lower than in the case of sealing by surface contact between the cylindrical piston and cylinder described above. Therefore, a method of attaching a piston ring to a piston can be considered. However, since the piston ring oscillates with respect to the cylinder with the oscillating motion of the piston, if the oscillating angle of the piston is large, the sealing performance of the piston ring may not be sufficiently exhibited. However, in a reciprocating compressor that uses an offset structure that reduces side force during the compression stroke, it is possible to suppress the oscillation of the piston ring during the compression stroke, thereby maintaining the sealing performance of the piston ring during the compression stroke. can do.
 ただし、オフセット構造の場合、ピストンの揺動運動が非対称となるので、ピストンリングのシール性能を発揮させるためには、ピストンリングをピストンの頂面に対して傾斜するように装着させる必要がある。このようにピストンリングをピストンに装着すると、ピストンリングよりも頂面側に存在するピストン外周面の面積が増えるので、圧縮室の死容積が増加する結果となる。 However, in the case of the offset structure, the piston's rocking motion is asymmetrical, so in order for the piston ring to exhibit its sealing performance, it is necessary to mount the piston ring so that it is inclined with respect to the top surface of the piston. When the piston ring is attached to the piston in this way, the area of the outer peripheral surface of the piston located on the top side of the piston ring increases, resulting in an increase in the dead volume of the compression chamber.
 本発明は、上記の問題点を解消するためになされたものであり、その目的は、圧縮行程時のピストンとシリンダ間に作用するサイドフォースの低減を図った上で、死容積を低減することができる往復動圧縮機を提供するものである。 SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its object is to reduce the side force acting between the piston and the cylinder during the compression stroke, and to reduce the dead volume. To provide a reciprocating compressor capable of
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、中心軸線を有するシリンダと、前記シリンダの前記中心軸線に対してオフセットされた回転軸線を有するクランクシャフトと、前記シリンダと共に圧縮室を形成し、前記シリンダ内を往復動するピストンと、一方側が前記クランクシャフトに対して回動可能に連結されると共に他方側が前記ピストンに固定され、前記クランクシャフトの回転運動により前記シリンダに対して揺動運動をする連接棒とを備え、前記ピストンは、前記圧縮室の壁面の一部を構成する頂面と、前記シリンダの前記中心軸線に対する前記連接棒の揺動角度の範囲に応じて定まる範囲で前記シリンダの内周面に摺動する摺動面と、前記頂面と前記摺動面とを繋ぎ、前記シリンダの内周面との接触を回避する形状の第1の非摺動面とを有し、前記第1の非摺動面は、その少なくとも一部が前記摺動面を仮想的に前記頂面側に延長させた第1の仮想延長曲面よりも前記シリンダの内周面の近くに位置するものである。 The present application includes a plurality of means for solving the above problems, one example of which is a cylinder having a central axis, a crankshaft having a rotation axis offset with respect to the central axis of the cylinder, and A piston, which forms a compression chamber together with a cylinder and reciprocates in the cylinder, is rotatably connected to the crankshaft at one side and fixed to the piston at the other side. a connecting rod that swings with respect to a cylinder; the piston has a top surface that constitutes a part of the wall surface of the compression chamber; A first sliding surface that slides on the inner peripheral surface of the cylinder within a range determined according to the above, and a first shape that connects the top surface and the sliding surface and avoids contact with the inner peripheral surface of the cylinder. At least a portion of the first non-sliding surface is closer to the cylinder than the first imaginary extended curved surface that virtually extends the sliding surface toward the top surface. is located near the inner peripheral surface of the
 本発明によれば、クランクシャフトをシリンダに対してオフセットさせることで、ピストンの圧縮行程における揺動角度を小さくすることが可能であり、且つ、ピストンの第1の非摺動面の少なくとも一部を第1の仮想延長曲面よりも外周側(径方向外側)に形成することで、ピストンの第1の非摺動面とシリンダの内周面との間の隙間が小さくなる。したがって、圧縮行程時のピストンとシリンダ間に作用するサイドフォースの低減を図った上で、死容積を低減することができる。
  上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, by offsetting the crankshaft with respect to the cylinder, it is possible to reduce the swing angle of the piston during the compression stroke, and at least a portion of the first non-sliding surface of the piston is formed on the outer peripheral side (diameter direction outer side) of the first imaginary extended curved surface, the gap between the first non-sliding surface of the piston and the inner peripheral surface of the cylinder is reduced. Therefore, it is possible to reduce the dead volume while reducing the side force acting between the piston and the cylinder during the compression stroke.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の往復動圧縮機の第1の実施の形態を示す概略断面図である。1 is a schematic cross-sectional view showing a first embodiment of a reciprocating compressor of the present invention; FIG. 本発明の往復動圧縮機の第1の実施の形態におけるオフセット構造の特性を示す特性図である。FIG. 4 is a characteristic diagram showing the characteristics of the offset structure in the first embodiment of the reciprocating compressor of the present invention; 本発明の往復動圧縮機の第1の実施の形態におけるピストンリングのシール特性を示す特性図である。FIG. 4 is a characteristic diagram showing seal characteristics of piston rings in the first embodiment of the reciprocating compressor of the present invention; 本発明の往復動圧縮機の第1の実施の形態におけるピストンリングを装着したピストン及びその周辺構造を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the piston which mounted|wore the piston ring in 1st Embodiment of the reciprocating compressor of this invention, and its peripheral structure. 本発明の往復動圧縮機の第1の実施の形態におけるピストン単体を示す斜視図である。1 is a perspective view showing a single piston in a first embodiment of a reciprocating compressor of the present invention; FIG. 本発明の往復動圧縮機の第1の実施の形態における死容積を示す説明図である。It is an explanatory view showing dead volume in a 1st embodiment of a reciprocating compressor of the present invention. 本発明の往復動圧縮機の第2の実施の形態におけるピストンリングを装着したピストン及びその周辺構造を示す図である。FIG. 6 is a diagram showing a piston with a piston ring and its peripheral structure in a second embodiment of the reciprocating compressor of the present invention; 本発明の往復動圧縮機の第3の実施の形態におけるピストンリングを装着したピストン及びその周辺構造を示す図である。FIG. 7 is a diagram showing a piston with a piston ring and its peripheral structure in a reciprocating compressor according to a third embodiment of the present invention; 本発明の往復動圧縮機の第4の実施の形態を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing a fourth embodiment of the reciprocating compressor of the present invention; 本発明の往復動圧縮機の第4の実施の形態におけるピストンリングを装着したピストン及びその周辺構造を示す図である。FIG. 10 is a diagram showing a piston fitted with a piston ring and its peripheral structure in a fourth embodiment of the reciprocating compressor of the present invention; 本発明の往復動圧縮機の第4の実施の形態におけるピストン単体を示す斜視図である。FIG. 11 is a perspective view showing a single piston in a reciprocating compressor according to a fourth embodiment of the present invention; 本発明の往復動圧縮機の第4の実施の形態における死容積を示す説明図である。It is an explanatory view showing dead volume in a 4th embodiment of a reciprocating compressor of the present invention.
 以下、本発明の往復動圧縮機の実施の形態について図面を用いて説明する。
  [第1の実施の形態]
  本発明の往復動圧縮機の第1の実施の形態の構成について図1を用いて説明する。図1は本発明の往復動圧縮機の第1の実施の形態を示す概略断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a reciprocating compressor of the present invention will be described below with reference to the drawings.
[First embodiment]
A configuration of a reciprocating compressor according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic sectional view showing a first embodiment of a reciprocating compressor of the present invention.
 図1において、往復動圧縮機1は、クランク機構を用いて空気などの気体を圧縮し、圧縮した気体をタンク(図示せず)などに吐出するものである。具体的には、往復動圧縮機1は、電動機などの回転駆動源(図示せず)により駆動されて回転運動するクランクシャフト2と、クランクシャフト2を回転可能に収容するクランクケース3と、クランクケース3に取り付けられたシリンダ4と、シリンダ4内を往復動するピストン5と、ピストン5とクランクシャフト2とを連結する連接棒6とを備えている。 In FIG. 1, a reciprocating compressor 1 compresses gas such as air using a crank mechanism and discharges the compressed gas into a tank (not shown) or the like. Specifically, the reciprocating compressor 1 includes a crankshaft 2 that rotates by being driven by a rotary drive source (not shown) such as an electric motor, a crankcase 3 that rotatably accommodates the crankshaft 2, a crank It comprises a cylinder 4 attached to the case 3 , a piston 5 reciprocating within the cylinder 4 , and a connecting rod 6 connecting the piston 5 and the crankshaft 2 .
 クランクシャフト2は、回転軸線Rsを中心に回転運動をするものである。クランクシャフト2は、クランクケース3に配置された軸受(図示せず)に回転可能に支持されて回転軸線Rsを中心に回転するクランクジャーナル21と、回転軸線Rsに対して偏心した位置にあるクランクピン22と、クランクジャーナル21とクランクピン22とを接続するクランクアーム23と、回転時のバランスを調整するためのバランスウェイト24とを有している。クランクピン22は、軸受7を介して連接棒6の一方側端部(後述の大端部62)に回転可能に連結されている。軸受7として、例えば、転がり軸受や滑り軸受などを用いることが可能である。なお、軸受7は、連接棒6又はクランクシャフト2のいずれか一方と一体に構成することも可能である。クランクケース3には、当該ケース3の内外を連通させる呼吸孔3aが設けられている。 The crankshaft 2 rotates about the rotation axis Rs. The crankshaft 2 includes a crank journal 21 that is rotatably supported by bearings (not shown) arranged in the crankcase 3 and rotates around a rotation axis Rs, and a crank that is eccentric to the rotation axis Rs. It has a pin 22, a crank arm 23 connecting the crank journal 21 and the crank pin 22, and a balance weight 24 for adjusting the balance during rotation. The crankpin 22 is rotatably connected to one end (a large end 62 described later) of the connecting rod 6 via the bearing 7 . As the bearing 7, for example, it is possible to use a rolling bearing, a sliding bearing, or the like. Note that the bearing 7 can also be configured integrally with either the connecting rod 6 or the crankshaft 2 . The crankcase 3 is provided with a breathing hole 3a that communicates the inside and outside of the case 3 with each other.
 シリンダ4は、中心軸線Ccを有しており、一方側(図1中、下側)の開口部がクランクケース3内に連通するように取り付けられている。また、シリンダ4の他方側(図1中、上側)の端部には、シリンダヘッド8がバルブプレート9を介して取り付けられている。シリンダヘッド8は、外部から気体を取り込むための吸気室8a及び圧縮した気体を外部へ吐き出すための排気室8bを有している。バルブプレート9は、シリンダ4の他方側の開口部を閉塞するものであり、シリンダ4の内部(後述の圧縮室14)とシリンダヘッド8の吸気室8aとを連通させる吸入孔9a及びシリンダ4の内部とシリンダヘッド8の排気室8bとを連通させる吐出孔9bを有している。 The cylinder 4 has a central axis Cc, and is mounted so that an opening on one side (lower side in FIG. 1) communicates with the inside of the crankcase 3 . A cylinder head 8 is attached via a valve plate 9 to the end of the cylinder 4 on the other side (upper side in FIG. 1). The cylinder head 8 has an intake chamber 8a for taking in gas from the outside and an exhaust chamber 8b for discharging compressed gas to the outside. The valve plate 9 closes the opening on the other side of the cylinder 4, and has an intake hole 9a that communicates the inside of the cylinder 4 (compression chamber 14, which will be described later) with the intake chamber 8a of the cylinder head 8, and the opening of the cylinder 4. It has a discharge hole 9b that communicates the inside with the exhaust chamber 8b of the cylinder head 8 .
 バルブプレート9には、リード弁タイプの吸入弁10及び吐出弁11が取り付けられている。吸入弁10は、シリンダヘッド8の吸気室8a内の気体が吸入孔9aを通じてシリンダ4内へ流入することを許容する一方、シリンダ4内の気体が吸入孔9aを通じて吸気室8a内へ流入することを阻止するものである。吐出弁11は、シリンダ4内の気体が吐出孔9bを通じてシリンダヘッド8の排気室8b内へ流入することを許容する一方、排気室8b内の気体が吐出孔9bを通じてシリンダ4内へ流入することを阻止するものである。 A reed valve type intake valve 10 and a discharge valve 11 are attached to the valve plate 9 . The intake valve 10 allows the gas in the intake chamber 8a of the cylinder head 8 to flow into the cylinder 4 through the intake hole 9a, while allowing the gas in the cylinder 4 to flow into the intake chamber 8a through the intake hole 9a. to prevent The discharge valve 11 allows the gas in the cylinder 4 to flow into the exhaust chamber 8b of the cylinder head 8 through the discharge hole 9b, while allowing the gas in the exhaust chamber 8b to flow into the cylinder 4 through the discharge hole 9b. to prevent
 ピストン5は、連接棒6の他方側端部(後述の小端部63)に軸受を介さずに固定されており、連接棒6と一体化されている。すなわち、ピストン5は、クランクシャフト2が回転すると、連接棒6と一体となってシリンダ4内を揺動しながら往復動する揺動型のピストン(ロッキングピストン)である。ピストン5と連接棒6の固定方法は、ボルトによる締結や溶接、圧入等が可能である。ピストン5は、潤滑油を用いない環境下におけるピストン5の摺動特性と連接棒6の機械的強度の確保との両立を図るために、例えば、連接棒6とは異なる材料で形成されている。ピストン5は、シリンダ4及びバルブプレート9と共に、気体を圧縮するための圧縮室14を形成する。ピストン5がシリンダ4内を往復動することで、圧縮室14が膨張及び収縮を繰り返す。圧縮室14の膨張及び収縮に合わせて吸入弁10及び吐出弁11が開閉される。ピストン5に対して潤滑油を供給しない構成とすることで、圧縮室14内の気体に潤滑油が混入することがないという利点がある。圧縮室14に多量の潤滑油が流入すると、吸気量の低下による圧縮機効率の低下や液圧縮による弁体などの破損といった信頼性の低下が懸念される。ピストン5の構造の詳細は後述する。 The piston 5 is fixed to the other end (the small end 63 described later) of the connecting rod 6 without a bearing, and is integrated with the connecting rod 6 . That is, the piston 5 is a rocking piston (locking piston) that reciprocates while rocking in the cylinder 4 integrally with the connecting rod 6 when the crankshaft 2 rotates. As a method for fixing the piston 5 and the connecting rod 6, fastening with bolts, welding, press-fitting, or the like is possible. The piston 5 is made of a material different from that of the connecting rod 6, for example, in order to ensure both the sliding characteristics of the piston 5 and the mechanical strength of the connecting rod 6 in an environment where lubricating oil is not used. . The piston 5 together with the cylinder 4 and the valve plate 9 form a compression chamber 14 for compressing gas. As the piston 5 reciprocates within the cylinder 4, the compression chamber 14 repeats expansion and contraction. The suction valve 10 and the discharge valve 11 are opened and closed according to the expansion and contraction of the compression chamber 14 . By adopting a configuration in which lubricating oil is not supplied to the piston 5, there is an advantage that lubricating oil does not mix with the gas in the compression chamber 14. FIG. If a large amount of lubricating oil flows into the compression chamber 14, there is a concern that reliability will be lowered, such as a decrease in compressor efficiency due to a decrease in the amount of intake air and damage to the valve body due to liquid compression. Details of the structure of the piston 5 will be described later.
 ピストン5には、圧縮室14の気密性を向上させるためのピストンリング12が装着されている。ピストンリング12は、ピストン5に装着された状態において、シリンダ4内を滑らかに摺動しつつ、圧縮行程のときに圧縮室14の気密性が保たれるように形成されている。具体的には、ピストンリング12は、外周面が略円筒面で略C字形状の部材であり、合口(図示せず)を有している。ピストンリング12の外径は、自然状態において、シリンダ4の内径よりも若干大きくなるように設定されている。このため、ピストン5に装着されたピストンリング12がシリンダ4内に挿入されている状態では、ピストンリング12の変形による反力によってピストンリング12の外周面がシリンダ4の内周面4aに略密着することにより、圧縮室14の気密性が保たれる。 A piston ring 12 is attached to the piston 5 to improve the airtightness of the compression chamber 14 . The piston ring 12 is formed so as to smoothly slide in the cylinder 4 when attached to the piston 5 and to keep the compression chamber 14 airtight during the compression stroke. Specifically, the piston ring 12 is a substantially C-shaped member having a substantially cylindrical outer peripheral surface, and has an abutment (not shown). The outer diameter of the piston ring 12 is set to be slightly larger than the inner diameter of the cylinder 4 in the natural state. Therefore, when the piston ring 12 attached to the piston 5 is inserted into the cylinder 4, the reaction force due to the deformation of the piston ring 12 causes the outer peripheral surface of the piston ring 12 to be in close contact with the inner peripheral surface 4a of the cylinder 4. By doing so, the airtightness of the compression chamber 14 is maintained.
 連接棒6は、直棒部61と、直棒部61の一方側端部に設けられた円筒状の大端部62と、直棒部61の他方側端部に設けられた半球状の小端部63とを有している。直棒部61は、大端部62側から小端部63側に向かって先細り形状となっている。大端部62は、軸受7を介してクランクシャフト2のクランクピン22と連結される部分であり、軸受7の中心軸線Cbを回動軸線として回動可能となっている。小端部63は、球面側が直棒部61に接続されていると共に、円形状の平面部がピストン5に接続されている。円筒状の大端部62の回動軸線(軸受7の中心軸線Cb)と半球状の小端部63の中心とを結ぶ直線が連接棒6の中心線Crであり、直棒部61は連接棒6の中心線Crに沿って延在している。 The connecting rod 6 includes a straight rod portion 61 , a cylindrical large end portion 62 provided at one end of the straight rod portion 61 , and a hemispherical small end portion provided at the other end of the straight rod portion 61 . and end 63 . The straight rod portion 61 is tapered from the large end portion 62 side toward the small end portion 63 side. The large end portion 62 is a portion that is connected to the crank pin 22 of the crankshaft 2 via the bearing 7 and is rotatable about the center axis Cb of the bearing 7 as a rotation axis. The small end 63 has a spherical surface connected to the straight rod 61 and a circular flat surface connected to the piston 5 . A straight line connecting the rotation axis of the cylindrical big end 62 (center axis Cb of the bearing 7) and the center of the hemispherical small end 63 is the center line Cr of the connecting rod 6, and the straight rod 61 is connected It extends along the center line Cr of the rod 6.
 本実施の形態に係る往復動圧縮機1は、クランクシャフト2(クランクジャーナル21)の回転軸線Rsがシリンダ4の中心軸線Ccに対して交差せずにオフセットされている(離れた位置にある)オフセット構造を有している。本オフセット構造では、圧縮行程におけるピストン5とシリンダ4間に作用する力(以下、サイドフォースという)を低減するため、クランクシャフト2の回転軸線Rsがシリンダ4の中心軸線Ccに対して圧縮行程時のピストン5のシリンダ4の内周面4aへの押付方向にオフセットされるように構成されている。例えば図1に示すように、シリンダ4がクランクシャフト2の上方に位置してクランクシャフト2が反時計周りに回転する場合には、クランクシャフト2の回転軸線Rsがシリンダ4の中心軸線Ccに対して左側にオフセット量δの分だけ離れた位置に配置される。逆に、クランクシャフト2が時計周りに回転する場合には、クランクシャフト2の回転軸線Rsがシリンダ4の中心軸線Ccに対して右側にオフセット量δの分だけ離れた位置に配置される。 In the reciprocating compressor 1 according to the present embodiment, the rotational axis Rs of the crankshaft 2 (crank journal 21) is offset (separated) from the central axis Cc of the cylinder 4 without intersecting it. It has an offset structure. In this offset structure, in order to reduce the force (hereinafter referred to as side force) acting between the piston 5 and the cylinder 4 during the compression stroke, the rotation axis Rs of the crankshaft 2 is shifted with respect to the central axis Cc of the cylinder 4 during the compression stroke. is offset in the pressing direction of the piston 5 against the inner peripheral surface 4a of the cylinder 4. As shown in FIG. For example, as shown in FIG. 1, when the cylinder 4 is positioned above the crankshaft 2 and the crankshaft 2 rotates counterclockwise, the rotation axis Rs of the crankshaft 2 is positioned relative to the central axis Cc of the cylinder 4. , and is arranged at a position separated by an offset amount δ to the left. Conversely, when the crankshaft 2 rotates clockwise, the rotation axis Rs of the crankshaft 2 is positioned rightwardly away from the center axis Cc of the cylinder 4 by the offset amount δ.
 次に、本実施の形態に係る往復動圧縮機のオフセット構造の特性について図1~図3を用いて説明する。図2はクランク角度に対するピストン及び連接棒の揺動角度の関係を示す特性図である。図3はピストンリングのシリンダに対する傾斜角度と気体の漏洩量の関係を示す図である。図2中、横軸θはクランク角度を示し、縦軸βはピストン及び連接棒の揺動角度を示している。図3中、横軸はピストンリングのシリンダに対する傾斜角度を示し、縦軸はピストンリングとシリンダの隙間から漏洩する気体の漏洩量(質量流量)を示している。 Next, the characteristics of the offset structure of the reciprocating compressor according to this embodiment will be described with reference to FIGS. 1 to 3. FIG. FIG. 2 is a characteristic diagram showing the relationship between the crank angle and the swing angle of the piston and connecting rod. FIG. 3 is a diagram showing the relationship between the inclination angle of the piston ring with respect to the cylinder and the amount of gas leakage. In FIG. 2, the horizontal axis .theta. indicates the crank angle, and the vertical axis .beta. indicates the swing angle of the piston and connecting rod. In FIG. 3, the horizontal axis indicates the inclination angle of the piston ring with respect to the cylinder, and the vertical axis indicates the leakage amount (mass flow rate) of the gas leaking from the gap between the piston ring and the cylinder.
 図1において、クランクシャフト2の回転角度であるクランク角度θは、クランクピン22が最下点に位置しているときの角度を0°とし、反時計回りの向きを正方向とする。シリンダ4の中心軸線Ccに対する連接棒6の中心線Cr(後述のピストン5の中心軸線5bとも一致)の鋭角側のなす角度を揺動角度βと規定する。揺動角度βは、軸受7の中心軸線Cbがシリンダ4の中心軸線Ccの左側に位置するときに正値とし、軸受7の中心軸線Cbがシリンダ4の中心軸線Ccの右側に位置するときに負値とする。 In FIG. 1, the crank angle θ, which is the rotation angle of the crankshaft 2, is 0° when the crankpin 22 is at its lowest point, and the counterclockwise direction is the positive direction. The angle between the central axis Cc of the cylinder 4 and the central axis Cr of the connecting rod 6 (also coinciding with the central axis 5b of the piston 5 described later) on the acute side is defined as a swing angle β. The swing angle β has a positive value when the central axis Cb of the bearing 7 is positioned on the left side of the central axis Cc of the cylinder 4, and is a positive value when the central axis Cb of the bearing 7 is positioned on the right side of the central axis Cc of the cylinder 4. Negative value.
 本実施の形態のオフセット構造に対する比較例として、オフセット構造とは異なる構成を考える。すなわち、クランクシャフト2の回転軸線Rsがシリンダ4の中心軸線Ccと交差する場合(すなわち、オフセット量δが0の場合)、ピストン5及び連接棒6の揺動運動がシリンダ4の中心軸線Ccに対して対称となる。この場合、圧縮行程(ピストン5が下死点から上死点に移動する間)における揺動角度βの最大値と吸入行程(ピストン5が上死点から下死点に移動する間)における揺動角度βの最大値とが等しくなる。 As a comparative example for the offset structure of the present embodiment, a configuration different from the offset structure is considered. That is, when the rotation axis Rs of the crankshaft 2 intersects the central axis Cc of the cylinder 4 (that is, when the offset amount δ is 0), the oscillating motion of the piston 5 and the connecting rod 6 does not cross the central axis Cc of the cylinder 4. symmetrical to In this case, the maximum value of the swing angle β during the compression stroke (while the piston 5 moves from the bottom dead center to the top dead center) and the swing angle β during the suction stroke (while the piston 5 moves from the top dead center to the bottom dead center) becomes equal to the maximum value of the dynamic angle β.
 それに対して、本実施の形態のオフセット構造の場合には、ピストン5及び連接棒6の揺動運動がシリンダ4の中心軸線Ccに対して非対称となる。すなわち、図2に示すように、揺動角度βのクランク角度θに対する変化は横軸に対して上下非対称となる。具体的には、圧縮行程における最大揺動角度の絶対値β1が吸入行程における最大揺動角度の絶対値β2よりも小さくなる。また、圧縮行程での最大揺動角度の絶対値β1は、オフセット量δが0である比較例の場合における圧縮行程での最大揺動角度の絶対値よりも小さくなる。このように、オフセット構造では、オフセット量δが0である比較例と比べると、圧縮行程における最大揺動角度の絶対値を小さく抑えることができ、その分、圧縮行程におけるピストン5とシリンダ4間に作用する力(サイドフォース)を低減することができる。 On the other hand, in the case of the offset structure of the present embodiment, the oscillating motion of the piston 5 and the connecting rod 6 is asymmetric with respect to the central axis Cc of the cylinder 4. That is, as shown in FIG. 2, the change of the swing angle β with respect to the crank angle θ is vertically asymmetric with respect to the horizontal axis. Specifically, the absolute value β1 of the maximum swing angle in the compression stroke is smaller than the absolute value β2 of the maximum swing angle in the intake stroke. Also, the absolute value β1 of the maximum swing angle in the compression stroke is smaller than the absolute value of the maximum swing angle in the compression stroke in the case of the comparative example in which the offset amount δ is zero. Thus, in the offset structure, compared to the comparative example in which the offset amount δ is 0, the absolute value of the maximum swing angle in the compression stroke can be kept small, and accordingly, the distance between the piston 5 and the cylinder 4 in the compression stroke can be reduced. It is possible to reduce the force (side force) acting on the
 また、圧縮行程時の揺動角度βの最大値を小さく抑えることで、ピストンリング12による圧縮行程時の圧縮室14の気密性を確実に維持することができる。これは、次の理由による。ピストンリング12による圧縮室14のシール特性は、例えば、図3に示すものとなる。すなわち、ピストンリング12の外周面(略円筒面)のシリンダ4の内周面4a(略円筒面)に対する傾斜角度が0°からある程度の小さい範囲内では、圧縮室14から外部(クランクケース3内)への気体の漏洩量を極めて少なく抑えることができる。これは、当該傾斜角度が小さい場合、ピストンリング12がシリンダ4に対して略面接触の状態となり、ピストンリング12によってシリンダ4との隙間が適切にシールされるからである。一方、ピストンリング12の傾斜角度が大きくなると、ピストンリング12がシリンダ4の内周面4aに対して片当たり接触の状態となり、ピストンリング12とシリンダ4との接触状態が面接触状態から線接触または点接触の状態となる。その結果、ピストンリング12の傾斜角度が大きくなるほど、ピストンリング12のシール特性が悪化し、圧縮室14からの気体の漏洩量が増加する。本実施の形態においては、ピストンリング12が揺動型のピストン5(ロッキングピストン)に装着されているので、ピストンリング12の傾斜角度はピストン5及び連接棒6の揺動角度βの変化に応じて変化する。本実施の形態のオフセット構造では、圧縮行程時の揺動角度βが小さくなるので、ピストンリング12の傾斜角度も同様に小さくなる。そのため、圧縮行程時の圧縮室14からの気体の漏洩量は、オフセット量δが0である比較例と比べると、少なくなる。 Also, by keeping the maximum value of the swing angle β during the compression stroke small, it is possible to reliably maintain the airtightness of the compression chamber 14 during the compression stroke by the piston ring 12 . This is for the following reasons. Sealing characteristics of the compression chamber 14 by the piston ring 12 are as shown in FIG. 3, for example. That is, when the inclination angle of the outer peripheral surface (substantially cylindrical surface) of the piston ring 12 with respect to the inner peripheral surface 4a (substantially cylindrical surface) of the cylinder 4 is within a small range from 0°, the ) can be suppressed to an extremely small amount. This is because when the inclination angle is small, the piston ring 12 is in substantially surface contact with the cylinder 4 , and the piston ring 12 appropriately seals the gap with the cylinder 4 . On the other hand, when the inclination angle of the piston ring 12 increases, the piston ring 12 comes into a state of one-sided contact with the inner peripheral surface 4a of the cylinder 4, and the contact state between the piston ring 12 and the cylinder 4 changes from surface contact to line contact. Or it will be in a state of point contact. As a result, the greater the inclination angle of the piston ring 12, the worse the sealing characteristics of the piston ring 12, and the more the amount of gas leaking from the compression chamber 14 increases. In this embodiment, the piston ring 12 is attached to the rocking piston 5 (locking piston). change by In the offset structure of the present embodiment, since the swing angle β during the compression stroke is small, the inclination angle of the piston ring 12 is also small. Therefore, the amount of gas leaked from the compression chamber 14 during the compression stroke is smaller than in the comparative example in which the offset amount δ is zero.
 次に、本発明の往復動圧縮機の第1の実施の形態の一部を構成するピストンの構造について図1、図2、図4、図5を用いて説明する。図4は本発明の往復動圧縮機の第1の実施の形態におけるピストンリングを装着したピストン及びその周辺構造を示す図である。図5は本発明の往復動圧縮機の第1の実施の形態におけるピストン単体を示す斜視図である。 Next, the structure of the piston, which constitutes part of the first embodiment of the reciprocating compressor of the present invention, will be described with reference to FIGS. 1, 2, 4 and 5. FIG. FIG. 4 is a diagram showing a piston fitted with a piston ring and its peripheral structure in the first embodiment of the reciprocating compressor of the present invention. FIG. 5 is a perspective view showing a single piston in the first embodiment of the reciprocating compressor of the present invention.
 図4及び図5において、ピストン5は、略円板状に形成されており、シリンダ4(図1参照)内を揺動しつつ滑らかに往復動することが可能な外周面を有している。ピストン5は、圧縮室14(図1参照)の壁面の一部を構成する頂面51と、外周面としての摺動面52及び非摺動面53、54とを有している。摺動面52は、揺動かつ往復動の際にシリンダ4の内周面4aに対して摺動する曲面である。非摺動面53、54は、摺動面52に連続する曲面であって、シリンダ4の内周面4aとの接触を回避する形状に形成されている。 4 and 5, the piston 5 is formed in a substantially disk shape and has an outer peripheral surface that can smoothly reciprocate while rocking within the cylinder 4 (see FIG. 1). . The piston 5 has a top surface 51 forming part of the wall surface of the compression chamber 14 (see FIG. 1), a sliding surface 52 and non-sliding surfaces 53 and 54 as outer peripheral surfaces. The sliding surface 52 is a curved surface that slides against the inner peripheral surface 4a of the cylinder 4 during rocking and reciprocating motion. The non-sliding surfaces 53 and 54 are curved surfaces that are continuous with the sliding surface 52 and are formed in a shape that avoids contact with the inner peripheral surface 4 a of the cylinder 4 .
 ピストン5の形状は、機構運動の観点から幾何学的な制約が存在する。本実施の形態の往復動圧縮機1はクランクシャフト2がシリンダ4に対してオフセットされたオフセット構造を備えているので、ピストン5及び連接棒6の揺動運動はシリンダ4の中心軸線Ccに対して非対称となる。そこで、ピストン5は、その非対称な揺動運動に応じて、ピストン5の中心軸線5b及び連接棒6の大端部62の回動軸線(すなわち、軸受7の中心軸線Cb)を含む平面に対して非対称(図4中、中心軸線5bに対して左右非対称)に形成される。ここで、ピストン5の中心軸線5bとは、摺動面52の後述の中心点5a及び連接棒6の大端部62の回動軸線(軸受7の中心軸線Cb)を通る直線であり、連接棒6の中心線Crとも一致する。 The shape of the piston 5 has geometric constraints from the viewpoint of mechanism motion. Since the reciprocating compressor 1 of this embodiment has an offset structure in which the crankshaft 2 is offset with respect to the cylinder 4, the oscillating motion of the piston 5 and the connecting rod 6 is asymmetrical. Therefore, in response to its asymmetrical rocking motion, the piston 5 is moved relative to the plane containing the central axis 5b of the piston 5 and the rotation axis of the large end 62 of the connecting rod 6 (that is, the central axis Cb of the bearing 7). are formed asymmetrically (left-right asymmetrical with respect to the central axis 5b in FIG. 4). Here, the central axis 5b of the piston 5 is a straight line passing through the later-described central point 5a of the sliding surface 52 and the rotation axis of the large end 62 of the connecting rod 6 (the central axis Cb of the bearing 7). It also coincides with the center line Cr of the rod 6 .
 頂面51は、例えば、平面状に形成されている。ただし、頂面51は、図4に示すように、シリンダ4の中心軸線Ccに対するピストン5の非対称な揺動運動に応じてピストン5の直交面5cに対して平行でなく傾斜した傾斜面に形成されている。ここで、ピストン5の直交面5cとはピストン5の中心軸線5bに直交し、且つ、摺動面52の後述の中心点5aを含む面である。頂面51は、ピストン5が上死点に位置するときにバルブプレート9と略平行となるように形成される(後述の図6参照)。具体的には、頂面51は、クランクシャフト2のシリンダ4に対するオフセット方向(図4中、左方向)と同じ方向に向かうにつれてピストン5の直交面5cに接近する傾斜面として形成されている。なお、頂面51は、吸入弁10(図1参照)との接触を回避するための溝部や吐出孔9b(図1参照)に相対する位置に吐出孔9bに挿入可能な凸部を設ける構成も可能である。 The top surface 51 is, for example, planar. However, as shown in FIG. 4, the top surface 51 is not parallel to the orthogonal surface 5c of the piston 5 but is formed as an inclined surface that is inclined in accordance with the asymmetric rocking motion of the piston 5 with respect to the central axis Cc of the cylinder 4. It is Here, the perpendicular plane 5c of the piston 5 is a plane perpendicular to the central axis 5b of the piston 5 and including the center point 5a of the sliding surface 52, which will be described later. The top surface 51 is formed so as to be substantially parallel to the valve plate 9 when the piston 5 is positioned at the top dead center (see FIG. 6, which will be described later). Specifically, the top surface 51 is formed as an inclined surface that approaches the perpendicular surface 5c of the piston 5 in the same direction as the offset direction of the crankshaft 2 with respect to the cylinder 4 (leftward in FIG. 4). The top surface 51 is provided with a groove for avoiding contact with the intake valve 10 (see FIG. 1) and a projection that can be inserted into the discharge hole 9b (see FIG. 1) at a position facing the discharge hole 9b. is also possible.
 摺動面52は、ピストン5がシリンダ4内を滑らかに揺動且つ往復動をすることを可能とするために、シリンダ4の円筒直径よりも小さな直径を有する球面形状に形成されている。球面状の摺動面52の中心点5aは、連接棒6の中心線Crの延長線上に位置している。摺動面52は、連接棒6の揺動運動における揺動角度βの範囲に応じて定まる摺動角度φの範囲に亘って形成される曲面である。例えば、図2に示すように、上死点へ向かう行程(圧縮行程)の最大揺動角度(絶対値)がβ1であると共に、下死点へ向かう行程(吸入行程)の最大揺動角度(絶対値)がβ2である場合には、図4に示す摺動面52のうち、ピストン5の中心軸線5bに対してオフセット方向(図4中、左方向)と同じ側(図4中、左側)の摺動面52は、ピストン5の直交面5cに対して、頂面51側の摺動角度φの範囲がβ1となると共に連接棒6側の摺動角度φの範囲がβ2となる。逆に、ピストン5の中心軸線5bに対してオフセット方向とは反対側(図4中、右側)の摺動面52は、ピストン5の直交面5cに対して、頂面51側の摺動角度φの範囲がβ2となると共に連接棒6側の摺動角度φの範囲がβ1となる。 The sliding surface 52 is formed in a spherical shape with a smaller diameter than the cylindrical diameter of the cylinder 4 so that the piston 5 can smoothly oscillate and reciprocate within the cylinder 4 . The center point 5 a of the spherical sliding surface 52 is located on the extension line of the center line Cr of the connecting rod 6 . The sliding surface 52 is a curved surface formed over the range of the sliding angle φ determined according to the range of the swinging angle β in the swinging motion of the connecting rod 6 . For example, as shown in FIG. 2, the maximum swing angle (absolute value) in the stroke (compression stroke) toward top dead center is β1, and the maximum swing angle (absolute value) in the stroke (intake stroke) toward bottom dead center ( When the absolute value) is β2, the sliding surface 52 shown in FIG. ) with respect to the orthogonal plane 5c of the piston 5, the range of the sliding angle φ on the top surface 51 side is β1 and the range of the sliding angle φ on the connecting rod 6 side is β2. Conversely, the sliding surface 52 on the side opposite to the offset direction with respect to the central axis 5b of the piston 5 (the right side in FIG. The range of φ becomes β2 and the range of the sliding angle φ on the side of the connecting rod 6 becomes β1.
 非摺動面は、連接棒6の揺動運動における揺動角度βの範囲に応じて定まる摺動角度φの範囲の外側に形成される曲面であり、頂面51と摺動面52とを繋ぐ第1の非摺動面53と、摺動面52から連接棒6側へ延在する第2の非摺動面54と有している。第1の非摺動面53は、摺動面52を仮想的に頂面51側に延長させた球面状の第1の仮想延長曲面52V1よりも外周側(径方向外側)に位置する曲面として形成されている。すなわち、第1の非摺動面53は、ピストン5がシリンダ4内に配置されている場合において、摺動面52の第1の仮想延長曲面52V1よりもシリンダ4の内周面4aの近くに位置するように形成されている。 The non-sliding surface is a curved surface formed outside the range of the sliding angle φ determined according to the range of the swinging angle β in the swinging motion of the connecting rod 6, and the top surface 51 and the sliding surface 52 are formed. It has a connecting first non-sliding surface 53 and a second non-sliding surface 54 extending from the sliding surface 52 toward the connecting rod 6 side. The first non-sliding surface 53 is a curved surface located on the outer peripheral side (outside in the radial direction) of a spherical first virtual extended curved surface 52V1 that virtually extends the sliding surface 52 toward the top surface 51 side. formed. That is, when the piston 5 is arranged in the cylinder 4, the first non-sliding surface 53 is closer to the inner peripheral surface 4a of the cylinder 4 than the first imaginary extended curved surface 52V1 of the sliding surface 52. formed to be located.
 ただし、第1の非摺動面53は、連接棒6(ピストン5)の揺動運動が最大揺動角度となったときでも、シリンダ4の内周面4aに対して非接触である必要がある。すなわち、ピストン5が最大揺動角度のときに、第1の非摺動面53がシリンダ4の内周面4aと一致する曲面よりも径方向内側に位置する曲面であることが要求される。 However, the first non-sliding surface 53 needs to be out of contact with the inner peripheral surface 4a of the cylinder 4 even when the swinging motion of the connecting rod 6 (piston 5) reaches the maximum swinging angle. be. That is, when the piston 5 is at the maximum swing angle, the first non-sliding surface 53 is required to be a curved surface located radially inward of the curved surface coinciding with the inner peripheral surface 4a of the cylinder 4 .
 例えば、図2に示すように、連接棒6(ピストン5)の揺動運動において、圧縮行程の最大揺動角度がβ1であると共に、吸入行程の最大揺動角度がβ2である場合を想定する。説明の便宜上、第1の非摺動面53のうち、クランクシャフト2のオフセット方向と同じ側(図4中、左側)の部分をオフセット側非摺動面531、当該オフセット方向とは反対側(図4中、右側)の部分を反オフセット側非摺動面532と称す。オフセット側非摺動面531がシリンダ4の内周面4aに一致する曲面となるには、ピストン5の直交面5cに対して圧縮行程の最大揺動角度と同じ角度β1をなす第1平面5eに対して直交する第1円筒面531cとなる場合である。一方、反オフセット側非摺動面532がシリンダ4の内周面4aに一致する曲面となるには、ピストン5の直交面5cに対して吸入行程の最大揺動角度と同じ角度β2をなす第2平面5fに対して直交する第2円筒面532cとなる場合である。この場合、オフセット側非摺動面531の形状と反オフセット側非摺動面532の形状が異なるので、通常、オフセット側非摺動面531と反オフセット側非摺動面532との接続部分には稜線533が形成される。ただし、この稜線533には丸みがつけられており、オフセット側非摺動面531と反オフセット側非摺動面532が滑らかに接続されている。つまり、稜線533が丸み付けにより消滅する。そのため、図4では、説明の便宜上、稜線533を二点鎖線で示しているが、それ以外の図では稜線533は図示されない。なお、図4中、稜線533が左右方向の略中央に位置しているが、任意の位置に設定可能である。すなわち、オフセット側非摺動面531と反オフセット側非摺動面532とを周方向のどの位置で接続するかは必要に応じて変更可能である。 For example, as shown in FIG. 2, in the swing motion of the connecting rod 6 (piston 5), it is assumed that the maximum swing angle in the compression stroke is β1 and the maximum swing angle in the suction stroke is β2. . For convenience of explanation, of the first non-sliding surface 53, the portion on the same side as the offset direction of the crankshaft 2 (left side in FIG. 4) is the offset-side non-sliding surface 531, and the opposite side to the offset direction 4) is called an anti-offset side non-sliding surface 532. As shown in FIG. In order for the offset side non-sliding surface 531 to be a curved surface that matches the inner peripheral surface 4a of the cylinder 4, the first plane 5e that forms an angle β1 that is the same as the maximum swing angle in the compression stroke with respect to the orthogonal surface 5c of the piston 5 is This is the case where the first cylindrical surface 531c is perpendicular to each other. On the other hand, in order for the non-offset side non-sliding surface 532 to be a curved surface that coincides with the inner peripheral surface 4a of the cylinder 4, a second plane that forms an angle β2 that is the same as the maximum swing angle in the intake stroke with respect to the perpendicular surface 5c of the piston 5 is required. This is the case of the second cylindrical surface 532c orthogonal to 5f. In this case, since the shape of the offset-side non-sliding surface 531 and the shape of the anti-offset-side non-sliding surface 532 are different, normally the connecting portion between the offset-side non-sliding surface 531 and the anti-offset-side non-sliding surface 532 , a ridge line 533 is formed. However, the ridge line 533 is rounded, and the offset-side non-sliding surface 531 and the counter-offset-side non-sliding surface 532 are smoothly connected. That is, the edge line 533 disappears due to rounding. Therefore, in FIG. 4, the edge line 533 is indicated by a two-dot chain line for convenience of explanation, but the edge line 533 is not illustrated in other drawings. In FIG. 4, the ridge line 533 is positioned substantially at the center in the left-right direction, but it can be set at any position. That is, at which position in the circumferential direction the offset-side non-sliding surface 531 and the counter-offset-side non-sliding surface 532 are connected can be changed as necessary.
 このように、第1の非摺動面53は、ピストン5の直交面5cに対して圧縮行程の最大揺動角度β1と同じ角度をなす第1平面5eに対して直交する第1円筒面531c、及び、ピストン5の直交面5cに対して吸入行程の最大揺動角度β2と同じ角度をなす第2平面5fに対して直交する第2円筒面532cよりも内周側(径方向内側)に位置することで、ピストン5の揺動運動の際にシリンダ4の内周面4aとの接触を回避することが可能である。加えて、本実施の形態の第1の非摺動面53は、摺動面52の第1の仮想延長曲面52V1よりも外周側(径方向外側)に位置するように形成されている。 Thus, the first non-sliding surface 53 is a first cylindrical surface 531c orthogonal to the first plane 5e forming the same angle as the maximum swing angle β1 of the compression stroke with respect to the orthogonal surface 5c of the piston 5. , and a second cylindrical surface 532c orthogonal to the second plane 5f forming the same angle as the maximum swing angle β2 of the intake stroke with respect to the orthogonal surface 5c of the piston 5 (inward in the radial direction). By positioning, it is possible to avoid contact with the inner peripheral surface 4a of the cylinder 4 when the piston 5 swings. In addition, the first non-sliding surface 53 of the present embodiment is formed so as to be located on the outer peripheral side (diameter direction outside) of the first imaginary extended curved surface 52V1 of the sliding surface 52 .
 一方、第2の非摺動面54は、例えば、摺動面52を仮想的に連接棒6側に延長させた球面状の第2の仮想延長曲面52V2と一致する曲面に形成されている。すなわち、第2の非摺動面54は、摺動面52を連接棒6側に延在させた球面状の曲面であって、シリンダ4の内周面とは接触しない外周面として構成されている。 On the other hand, the second non-sliding surface 54 is formed, for example, into a curved surface that coincides with a spherical second virtual extended curved surface 52V2 that virtually extends the sliding surface 52 toward the connecting rod 6 side. That is, the second non-sliding surface 54 is a spherical curved surface formed by extending the sliding surface 52 toward the connecting rod 6, and is configured as an outer peripheral surface that does not come into contact with the inner peripheral surface of the cylinder 4. there is
 ピストン5の外周面には、図5に示すように、ピストンリング12を装着するための環状溝55が設けられている。環状溝55は、例えば、摺動面52の領域(図4に示す摺動角度φの範囲)内に設けられている。また、環状溝55(ピストンリング12)は、例えば、クランクシャフト2のオフセット方向(図4中、左方向)と同じ方向に向かうにつれてピストン5の頂面51に接近するように頂面51に対して傾斜している。すなわち、環状溝55は、当該オフセット方向と同じ側の部分が当該オフセット方向とは反対側の部分よりも頂面51の近くに位置するように形成されている。なお、環状溝55(ピストンリング12)は、一部又は全てが摺動角度φの範囲外に設けることも可能である。 An annular groove 55 for mounting the piston ring 12 is provided on the outer peripheral surface of the piston 5, as shown in FIG. The annular groove 55 is provided, for example, within the region of the sliding surface 52 (the range of the sliding angle φ shown in FIG. 4). In addition, the annular groove 55 (piston ring 12) is formed with respect to the top surface 51 so as to approach the top surface 51 of the piston 5 as it goes in the same direction as the offset direction of the crankshaft 2 (leftward in FIG. 4), for example. is sloping. That is, the annular groove 55 is formed such that the portion on the same side as the offset direction is positioned closer to the top surface 51 than the portion on the opposite side to the offset direction. Part or all of the annular groove 55 (piston ring 12) can be provided outside the range of the sliding angle φ.
 次に、本発明の第1の実施の形態に係る往復動圧縮機の動作及び効果について図1~図6を用いて説明する。図6は本発明の往復動圧縮機の第1の実施の形態におけるピストンが上死点に位置したときの状態を示す説明図である。 Next, the operation and effects of the reciprocating compressor according to the first embodiment of the present invention will be explained using FIGS. 1 to 6. FIG. FIG. 6 is an explanatory diagram showing the state when the piston is positioned at the top dead center in the first embodiment of the reciprocating compressor of the present invention.
 図1に示す往復動圧縮機1は、電動機などの回転駆動源(図示せず)によりクランクシャフト2が回転されると(図1中、反時計回りの回転運動)、連接棒6の揺動運動によってピストン5がシリンダ4内で径方向の移動が拘束状態で揺動しつつ往復動をする。ピストン5が上死点から下死点へ向かう吸入行程では、圧縮室14が膨張し、吸入弁10が開いてシリンダヘッド8内の吸気室8aから圧縮室14内に気体が吸い込まれると共に、クランクケース3内からピストン5(ピストンリング12)とシリンダ4との間の隙間を通じて圧縮室14内に気体が吸い込まれる。一方、ピストン5が下死点から上死点へ向かう圧縮行程では、圧縮室14が収縮し、圧縮室14内の気体が圧縮され、吐出弁11が開いてシリンダヘッド8内の排気室8bを通じて外部へ吐出される。 In the reciprocating compressor 1 shown in FIG. 1, when the crankshaft 2 is rotated by a rotary drive source (not shown) such as an electric motor (counterclockwise rotation in FIG. 1), the connecting rod 6 swings. Due to the movement, the piston 5 reciprocates in the cylinder 4 while being oscillated with its movement in the radial direction restricted. In the intake stroke in which the piston 5 moves from the top dead center to the bottom dead center, the compression chamber 14 expands, the intake valve 10 opens, gas is sucked into the compression chamber 14 from the intake chamber 8a in the cylinder head 8, and the crank Gas is sucked into the compression chamber 14 from inside the case 3 through the gap between the piston 5 (piston ring 12 ) and the cylinder 4 . On the other hand, in the compression stroke in which the piston 5 moves from the bottom dead center to the top dead center, the compression chamber 14 contracts, the gas in the compression chamber 14 is compressed, the discharge valve 11 opens, and the gas flows through the exhaust chamber 8b in the cylinder head 8. It is discharged to the outside.
 実施の形態に係る往復動圧縮機1においては、クランクシャフト2の回転軸線Rsをシリンダ4の中心軸線Ccに対してオフセットさせたオフセット構造とすることで、図2に示すように、圧縮行程におけるピストン5及び連接棒6の揺動角度βの最大値を小さくしている。これにより、圧縮行程時のピストン5とシリンダ4間に作用する力(サイドフォース)を低減することができる。 In the reciprocating compressor 1 according to the embodiment, as shown in FIG. The maximum value of the swing angle β of the piston 5 and the connecting rod 6 is made small. As a result, the force (side force) acting between the piston 5 and the cylinder 4 during the compression stroke can be reduced.
 加えて、実施の形態に係る往復動圧縮機1においては、ピストン5にピストンリング12が装着されている。圧縮行程時のピストン5の揺動角度βをオフセット構造によって小さくすることで、シリンダ4に対するピストンリング12の傾斜角度が小さくなる。したがって、図3に示すように、ピストンリング12のシール性能により圧縮室14の高い気密性を確保することができる。 In addition, in the reciprocating compressor 1 according to the embodiment, a piston ring 12 is attached to the piston 5 . By reducing the swing angle β of the piston 5 during the compression stroke by the offset structure, the inclination angle of the piston ring 12 with respect to the cylinder 4 is reduced. Therefore, as shown in FIG. 3, the high airtightness of the compression chamber 14 can be ensured by the sealing performance of the piston ring 12 .
 ところで、ピストン5が上死点に位置するとき、図6に示すように、ピストン5の頂面51とバルブプレート9との間には、ピストン5とバルブプレート9との衝突を回避するための隙間(以下、トップクリアランスεと称す)が設けられている。圧縮機性能の観点からは、ピストン5が上死点のときに圧縮室14の容積が0となることが理想的である。しかしながら、実際には、トップクリアランスεやその他の隙間に起因する容積が存在する。ピストン5が上死点のときの圧縮室14の容積を死容積と呼ぶ。死容積の大きさは、圧縮機の吐き出し性能の低下(吐出流量の低下や体積効率の低下)の要因の1つである。高効率な圧縮機を実現するためには、死容積を小さくすることが望ましい。 By the way, when the piston 5 is positioned at the top dead center, as shown in FIG. A gap (hereinafter referred to as top clearance ε) is provided. From the viewpoint of compressor performance, it is ideal that the volume of the compression chamber 14 becomes zero when the piston 5 is at the top dead center. However, in reality, there is a volume due to the top clearance ε and other gaps. The volume of the compression chamber 14 when the piston 5 is at the top dead center is called dead volume. The size of the dead volume is one of the factors of deterioration of compressor discharge performance (decrease in discharge flow rate and volumetric efficiency). In order to realize a highly efficient compressor, it is desirable to reduce the dead volume.
 死容積の発生の一因として、トップクリアランスεの他にピストン5の外周面とシリンダ4の内周面4aとの間の隙間が挙げられる。本実施の形態においては、ピストン5とシリンダ4の隙間のシールがピストンリング12によってなされているので、ピストンリング12より頂面51側に位置するピストン5の外周面とシリンダ4の内周面4aとの隙間Gが死容積の要因の1つとなる。したがって、死容積を小さくするためには、図5に示すピストン5の外周面のうち、ピストンリング12が装着される環状溝55よりも頂面51側に位置する外周面(摺動面52の一部(図5中、右側部分)及び第1の非摺動面53)とシリンダ4の内周面4aとの隙間G(図6参照)を小さくする必要がある。 In addition to the top clearance ε, the gap between the outer peripheral surface of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is one of the causes of the dead volume. In the present embodiment, since the piston ring 12 seals the gap between the piston 5 and the cylinder 4, the outer peripheral surface of the piston 5 and the inner peripheral surface 4a of the cylinder 4, which are located on the top surface 51 side of the piston ring 12, are separated from each other. The gap G between is one of the factors of the dead volume. Therefore, in order to reduce the dead volume, among the outer peripheral surfaces of the piston 5 shown in FIG. It is necessary to reduce the gap G (see FIG. 6) between a portion (the right portion in FIG. 5 and the first non-sliding surface 53) and the inner peripheral surface 4a of the cylinder 4.
 死容積を低減する方策の1つとして、ピストン5の環状溝55よりも頂面51側に位置する外周面(摺動面52の一部及び第1の非摺動面53)の領域(面積)を小さくすることが考えられる。これは、環状溝55の位置を頂面51側に接近させる構成とすることで実現可能である。環状溝を頂面51に接近させると、その分、環状溝と頂面51とに挟まれた円盤状の部分の厚み(肉厚)が薄くなる。当該円盤状部分の肉厚は、環状溝内にピストンリング12を保持するのに必要な強度確保の観点から、所定値以下にすることはできない。 As one of the measures to reduce the dead volume, the region (area ) can be reduced. This can be realized by setting the position of the annular groove 55 closer to the top surface 51 side. As the annular groove approaches the top surface 51, the thickness (thickness) of the disk-shaped portion sandwiched between the annular groove and the top surface 51 is correspondingly reduced. The thickness of the disk-shaped portion cannot be less than a predetermined value from the viewpoint of ensuring the strength necessary to hold the piston ring 12 in the annular groove.
 本実施の形態においては、頂面51が環状溝55に対してクランクシャフト2のオフセット方向(図4及び図5中、左方向)と同じ方向に向かうにつれて接近するように傾斜しているので、当該円盤状部分の厚みは当該オフセット方向と同じ側(図4及び図5中、左側)の部分が最薄部となる。当該最薄部の厚みは、材料強度の観点から取り得る最小値が決定される。一方、当該円盤状部分うち、当該オフセット方向とは反対側(図4及び図5中、右側)の部分の厚みは、当該オフセット方向と同じ側の部分よりも厚くなる。死容積の観点からは、環状溝55に対する頂面51の傾斜によって、当該円盤状部分うち当該オフセット方向とは反対側の部分が好ましくない状況となっている。換言すると、ピストン5の上死点において頂面51とバルブプレート9の対向面を平行にする構成では、環状溝と頂面51とに挟まれた円盤状部分のうちの一部分の肉厚がオフセット構造に起因して厚くなる。 In this embodiment, the top surface 51 is inclined toward the annular groove 55 as it goes in the same direction as the offset direction of the crankshaft 2 (leftward in FIGS. 4 and 5). The thickness of the disk-shaped portion is the thinnest on the same side as the offset direction (left side in FIGS. 4 and 5). For the thickness of the thinnest portion, the minimum possible value is determined from the viewpoint of material strength. On the other hand, the thickness of the disk-shaped portion on the side opposite to the offset direction (the right side in FIGS. 4 and 5) is thicker than the portion on the same side as the offset direction. From the standpoint of dead volume, the inclination of the top surface 51 with respect to the annular groove 55 puts the portion of the disk-shaped portion on the side opposite to the offset direction in an unfavorable situation. In other words, in the configuration in which the top surface 51 and the facing surface of the valve plate 9 are parallel at the top dead center of the piston 5, the thickness of a portion of the disk-shaped portion sandwiched between the annular groove and the top surface 51 is offset. Thick due to structure.
 本実施の形態においては、図6に示すように、環状溝55(ピストンリング12)よりも頂面51側に位置する第1の非摺動面53を球面状の摺動面52の第1の仮想延長曲面52V1よりも外周側(径方向外側)に位置するように形成しているので、ピストン5の第1の非摺動面53とシリンダ4の内周面4aとの隙間Gを小さくすることができる。すなわち、環状溝55(ピストンリング12)を頂面51に接近させることなく、死容積を小さくすることができる。 In the present embodiment, as shown in FIG. 6, the first non-sliding surface 53 located closer to the top surface 51 than the annular groove 55 (piston ring 12) is the first non-sliding surface 53 of the spherical sliding surface 52. , the gap G between the first non-sliding surface 53 of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is reduced. can do. That is, the dead volume can be reduced without bringing the annular groove 55 (piston ring 12 ) closer to the top surface 51 .
 また、ピストン5の第1の非摺動面53とシリンダ4の内周面4aとの隙間は、圧縮室14内から外部(クランクケース3の内部)への圧縮気体の漏れ経路の1つである。したがって、第1の非摺動面53を球面状の第1の仮想延長曲面52V1よりも外周側に位置するように形成することで、第1の非摺動面53とシリンダ4の内周面4aとの隙間Gが小さくなるので、圧縮行程における圧縮空気の漏洩量を低減することもできる。 The gap between the first non-sliding surface 53 of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is one of the leakage paths of the compressed gas from the inside of the compression chamber 14 to the outside (inside the crankcase 3). be. Therefore, by forming the first non-sliding surface 53 so as to be located on the outer peripheral side of the spherical first imaginary extended curved surface 52V1, the first non-sliding surface 53 and the inner peripheral surface of the cylinder 4 Since the gap G with 4a becomes smaller, the amount of compressed air leakage in the compression stroke can also be reduced.
 また、本実施の形態においては、図4に示すように、第1の非摺動面53のうちのオフセット側非摺動面531を、ピストン5の直交面5cに対してなす角度が圧縮行程の最大揺動角度β1である第1平面5eに直交する第1円筒面531cに略一致する曲面(ただし、シリンダ4の内周面4aとは非接触)に形成すると共に、反オフセット側非摺動面532をピストン5の直交面5cに対してなす角度が吸入行程の最大揺動角度β2である第2平面5fに直交する第2円筒面532cに略一致する曲面(ただし、シリンダ4の内周面4aとは非接触)に形成することが可能である。この構成によれば、ピストン5の第1の非摺動面53をシリンダ4の内周面4aに接触させずに最もシリンダ4の内周面4aに近接させることができる。すなわち、オフセット側非摺動面531を第1円筒面531cに略一致する曲面に形成すると共に、反オフセット側非摺動面532を第2円筒面532cに略一致する曲面に形成することで、死容積を最も小さくすることができる。 Further, in the present embodiment, as shown in FIG. 4, the angle formed by the offset-side non-sliding surface 531 of the first non-sliding surfaces 53 with respect to the perpendicular plane 5c of the piston 5 is the compression stroke. is formed on a curved surface (but not in contact with the inner peripheral surface 4a of the cylinder 4) that substantially coincides with the first cylindrical surface 531c orthogonal to the first plane 5e that is the maximum swing angle β1 of the non-offset side non-sliding The angle formed by the moving surface 532 with respect to the orthogonal surface 5c of the piston 5 is a curved surface that substantially coincides with the second cylindrical surface 532c that is perpendicular to the second plane 5f, which is the maximum swing angle β2 of the intake stroke (however, the inner surface of the cylinder 4 is curved). (non-contact with the peripheral surface 4a). According to this configuration, the first non-sliding surface 53 of the piston 5 can be brought closest to the inner peripheral surface 4 a of the cylinder 4 without contacting the inner peripheral surface 4 a of the cylinder 4 . That is, by forming the offset-side non-sliding surface 531 into a curved surface that approximately matches the first cylindrical surface 531c and forming the anti-offset-side non-sliding surface 532 into a curved surface that approximately matches the second cylindrical surface 532c, Dead volume can be minimized.
 上述したように、第1の実施の形態に係る往復動圧縮機1は、中心軸線Ccを有するシリンダ4と、シリンダ4の中心軸線Ccに対してオフセットされた回転軸線Rsを有するクランクシャフト2と、シリンダ4と共に圧縮室14を形成しシリンダ4内を往復動するピストン5と、一方側がクランクシャフト2に対して回動可能に連結されると共に他方側がピストン5に固定され、クランクシャフト2の回転運動によりシリンダ4に対して揺動運動をする連接棒6とを備えている。ピストン5は、圧縮室14の壁面の一部を構成する頂面51と、シリンダ4の中心軸線Ccに対する連接棒6の揺動角度βの範囲に応じて定まる範囲でシリンダ4の内周面4aに摺動する摺動面52と、頂面51と摺動面52とを繋ぎ、シリンダ4の内周面4aとの接触を回避する形状の第1の非摺動面53とを有している。第1の非摺動面53は、その少なくとも一部が摺動面52を仮想的に頂面51側に延長させた第1の仮想延長曲面52V1よりもシリンダ4の内周面4aの近くに位置するものである。 As described above, the reciprocating compressor 1 according to the first embodiment includes the cylinder 4 having the central axis Cc and the crankshaft 2 having the rotation axis Rs offset from the central axis Cc of the cylinder 4. , a piston 5 which forms a compression chamber 14 together with the cylinder 4 and reciprocates in the cylinder 4 , and one side of which is rotatably connected to the crankshaft 2 and the other side of which is fixed to the piston 5 so that the crankshaft 2 rotates. and a connecting rod 6 which, when actuated, makes an oscillating motion with respect to the cylinder 4 . The piston 5 has a top surface 51 forming part of the wall surface of the compression chamber 14 and an inner peripheral surface 4a of the cylinder 4 within a range determined according to the swing angle β of the connecting rod 6 with respect to the central axis Cc of the cylinder 4. and a first non-sliding surface 53 that connects the top surface 51 and the sliding surface 52 and avoids contact with the inner peripheral surface 4a of the cylinder 4. there is At least part of the first non-sliding surface 53 is closer to the inner peripheral surface 4a of the cylinder 4 than the first imaginary extended curved surface 52V1 that virtually extends the sliding surface 52 toward the top surface 51 side. It is located.
 この構成によれば、クランクシャフト2をシリンダ4に対してオフセットさせることで、ピストン5の圧縮行程における揺動角度βを小さくすることが可能であり、且つ、ピストン5の第1の非摺動面53の少なくとも一部を第1の仮想延長曲面52V1よりも外周側(径方向外側)に形成することで、ピストン5の第1の非摺動面53とシリンダ4の内周面4aとの間の隙間Gが小さくなる。したがって、圧縮行程時のピストン5とシリンダ4間に作用するサイドフォースの低減を図った上で、圧縮室14の死容積を低減することができる。加えて、ピストン5の第1の非摺動面53とシリンダ4の内周面4aとの間の隙間Gが小さくなることで、当該隙間Gを介した圧縮室14からの圧縮気体の漏洩を抑制することができる。 According to this configuration, by offsetting the crankshaft 2 with respect to the cylinder 4, it is possible to reduce the swing angle β in the compression stroke of the piston 5, and the first non-sliding By forming at least part of the surface 53 on the outer peripheral side (diameter direction outer side) of the first imaginary extended curved surface 52V1, the first non-sliding surface 53 of the piston 5 and the inner peripheral surface 4a of the cylinder 4 The gap G between them becomes smaller. Therefore, the dead volume of the compression chamber 14 can be reduced while reducing the side force acting between the piston 5 and the cylinder 4 during the compression stroke. In addition, since the gap G between the first non-sliding surface 53 of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is reduced, leakage of compressed gas from the compression chamber 14 through the gap G is prevented. can be suppressed.
 また、本実施の形態に係る往復動圧縮機1においては、第1の非摺動面53の全体が第1の仮想延長曲面52V1よりもシリンダ4の内周面4aの近くに位置する。この構成によれば、ピストン5の第1の非摺動面53とシリンダ4の内周面4aとの間の隙間Gが全周に亘って小さくなるので、圧縮室14の死容積を更に低減することができると共に、圧縮室14からの圧縮気体の漏洩を更に抑制することができる。 Further, in the reciprocating compressor 1 according to the present embodiment, the entire first non-sliding surface 53 is positioned closer to the inner peripheral surface 4a of the cylinder 4 than the first imaginary extended curved surface 52V1. According to this configuration, the gap G between the first non-sliding surface 53 of the piston 5 and the inner peripheral surface 4a of the cylinder 4 is reduced over the entire circumference, so the dead volume of the compression chamber 14 is further reduced. In addition, leakage of the compressed gas from the compression chamber 14 can be further suppressed.
 また、本実施の形態に係る往復動圧縮機1においては、連接棒6の大端部62側(一方側)の回動軸線(軸受7の中心軸線Cb)及びピストンの中心軸線5b(連接棒6における大端部62側(一方側)と小端部63側(他方側)とを結ぶ中心線Cr)を含む平面に対して、ピストン5が非対称なものである。この構成によれば、オフセット構造に起因するピストン5及び連接棒6のシリンダ4に対する非対称の揺動運動に応じた形状のピストンを構成することができる。 In the reciprocating compressor 1 according to the present embodiment, the rotation axis (the central axis Cb of the bearing 7) of the large end 62 side (one side) of the connecting rod 6 and the central axis 5b of the piston (the connecting rod The piston 5 is asymmetrical with respect to a plane including the center line Cr connecting the large end 62 side (one side) and the small end 63 side (the other side) of the piston 6 . According to this configuration, a piston having a shape corresponding to the asymmetrical rocking motion of the piston 5 and the connecting rod 6 with respect to the cylinder 4 due to the offset structure can be configured.
 また、本実施の形態に係る往復動圧縮機1においては、ピストン5の外周面にピストンリング12が装着され、ピストンリング12はシリンダ4の中心軸線Ccに対するクランクシャフト2の回転軸線Rsのオフセット方向と同じ方向に向かうにつれてピストン5の頂面51に接近するように頂面51に対して傾斜している。この構成によれば、ピストンリング12による圧縮室14の気密性をオフセット構造において確保することができる。 Further, in the reciprocating compressor 1 according to the present embodiment, the piston ring 12 is attached to the outer peripheral surface of the piston 5 , and the piston ring 12 is arranged in the offset direction of the rotation axis Rs of the crankshaft 2 with respect to the central axis Cc of the cylinder 4 . is inclined with respect to the top surface 51 so as to approach the top surface 51 of the piston 5 as it goes in the same direction as . According to this configuration, the airtightness of the compression chamber 14 by the piston ring 12 can be ensured in the offset structure.
 [第2の実施の形態]
  次に、本発明の往復動圧縮機の第2の実施の形態について図7を用いて説明する。図7は本発明の往復動圧縮機の第2の実施の形態におけるピストンリングを装着したピストン及びその周辺構造を示す図である。なお、図7において、図1~図6に示す符号と同符合のものは、同様な部分であるので、詳細な説明は省略する。
[Second embodiment]
Next, a second embodiment of the reciprocating compressor of the present invention will be described with reference to FIG. FIG. 7 is a diagram showing a piston fitted with a piston ring and its peripheral structure in a second embodiment of the reciprocating compressor of the present invention. In FIG. 7, parts having the same reference numerals as those shown in FIGS. 1 to 6 are the same parts, so detailed description thereof will be omitted.
 図7に示す本発明の往復動圧縮機の第2の実施の形態が第1の実施の形態と相違する点は、ピストン5Aの外周面のうち第2の非摺動面54Aの形状が異なることである。具体的には、第1の実施の形態に係るピストン5の第2の非摺動面54は、球状の摺動面52を仮想的に連接棒6側に延長させた第2の仮想延長曲面52V2と一致する曲面に形成されている(図4参照)。それに対して、本実施の形態に係るピストン5Aの第2の非摺動面54Aは、当該第2の仮想延長曲面52V2よりも外周側(径方向外側)に位置する曲面に形成されている。すなわち、第2の非摺動面54Aの全体は、ピストン5Aがシリンダ4内に配置されている場合において、球状の摺動面52の第2の仮想延長曲面52V2よりもシリンダ4の内周面4aの近くに位置するように形成されている。これにより、ピストン5Aの第2の非摺動面54Aとシリンダ4の内周面4aとの間の隙間が小さくなる領域が第1の実施の形態の場合よりも増加する。 The second embodiment of the reciprocating compressor of the present invention shown in FIG. 7 differs from the first embodiment in that the shape of the second non-sliding surface 54A of the outer peripheral surface of the piston 5A is different. That is. Specifically, the second non-sliding surface 54 of the piston 5 according to the first embodiment is a second virtual extended curved surface obtained by virtually extending the spherical sliding surface 52 toward the connecting rod 6 side. 52V2 (see FIG. 4). On the other hand, the second non-sliding surface 54A of the piston 5A according to the present embodiment is formed as a curved surface located on the outer peripheral side (diameter direction outside) of the second imaginary extended curved surface 52V2. That is, when the piston 5A is arranged in the cylinder 4, the entire second non-sliding surface 54A is closer to the inner peripheral surface of the cylinder 4 than the second virtual extended curved surface 52V2 of the spherical sliding surface 52. It is formed so as to be located near 4a. As a result, the area in which the gap between the second non-sliding surface 54A of the piston 5A and the inner peripheral surface 4a of the cylinder 4 becomes smaller increases than in the first embodiment.
 上述した第2の実施の形態に係る往復動圧縮機においては、第1の実施の形態と同様に、クランクシャフト2をシリンダ4に対してオフセットさせることで、ピストン5Aの圧縮行程における揺動角度βを小さくすることが可能であり、且つ、ピストン5Aの第1の非摺動面53の少なくとも一部を第1の仮想延長曲面52V1よりも外周側(径方向外側)に形成することで、ピストン5Aの第1の非摺動面53とシリンダ4の内周面4aとの間の隙間Gが小さくなる。したがって、圧縮行程時のピストン5Aとシリンダ4間に作用するサイドフォースの低減を図った上で、圧縮室14の死容積を低減することができると共に、当該隙間Gを介した圧縮室14からの圧縮気体の漏洩を抑制することができる。 In the reciprocating compressor according to the second embodiment described above, similarly to the first embodiment, by offsetting the crankshaft 2 with respect to the cylinder 4, the swing angle of the piston 5A during the compression stroke is It is possible to reduce β, and by forming at least a part of the first non-sliding surface 53 of the piston 5A on the outer peripheral side (diameter direction outside) of the first virtual extended curved surface 52V1, The gap G between the first non-sliding surface 53 of the piston 5A and the inner peripheral surface 4a of the cylinder 4 becomes smaller. Therefore, the side force acting between the piston 5A and the cylinder 4 during the compression stroke can be reduced, and the dead volume of the compression chamber 14 can be reduced. Leakage of compressed gas can be suppressed.
 また、本実施の形態に係る往復動圧縮機におけるピストン5Aは、摺動面52から頂面51の反対側に延在し、シリンダ4の内周面4aとの接触を回避する形状の第2の非摺動面54Aを更に有する。第2の非摺動面54Aの少なくとも一部は、摺動面52を仮想的に頂面51の反対側に延長させた第2の仮想延長曲面52V2よりもシリンダ4の内周面4aの近くに位置する。 Further, the piston 5A in the reciprocating compressor according to the present embodiment extends from the sliding surface 52 to the opposite side of the top surface 51, and has a shape that avoids contact with the inner peripheral surface 4a of the cylinder 4. and a non-sliding surface 54A. At least part of the second non-sliding surface 54A is closer to the inner peripheral surface 4a of the cylinder 4 than the second virtual extended curved surface 52V2, which virtually extends the sliding surface 52 to the opposite side of the top surface 51. Located in
 この構成によれば、第2の非摺動面54Aの少なくとも一部が第2の仮想延長曲面52V2よりも外周側(径方向外側)に形成されることで、ピストン5Aの第2の非摺動面54Aとシリンダ4の内周面4aとの間の隙間が小さくなるので、圧縮行程時の圧縮室14からの気体漏洩を更に抑制することができる。 According to this configuration, at least a part of the second non-sliding surface 54A is formed on the outer peripheral side (diameter direction outside) of the second imaginary extended curved surface 52V2, thereby providing the second non-sliding surface of the piston 5A. Since the gap between the moving surface 54A and the inner peripheral surface 4a of the cylinder 4 is reduced, gas leakage from the compression chamber 14 during the compression stroke can be further suppressed.
 また、本実施の形態に係る往復動圧縮機においては、ピストン5Aの第2の非摺動面54Aの全体が第2の仮想延長曲面52V2よりもシリンダ4の内周面4aの近くに位置する。この構成によれば、ピストン5Aの第2の非摺動面54Aとシリンダ4の内周面4aとの間の隙間が全周に亘って小さくなるので、圧縮室14からの圧縮気体の漏洩をより更に抑制することができる。 Further, in the reciprocating compressor according to the present embodiment, the entire second non-sliding surface 54A of the piston 5A is positioned closer to the inner peripheral surface 4a of the cylinder 4 than the second imaginary extended curved surface 52V2. . According to this configuration, since the gap between the second non-sliding surface 54A of the piston 5A and the inner peripheral surface 4a of the cylinder 4 becomes small over the entire circumference, leakage of compressed gas from the compression chamber 14 can be prevented. can be further suppressed.
 [第3の実施の形態]
  次に、本発明の往復動圧縮機の第3の実施の形態について図8を用いて説明する。図8は本発明の往復動圧縮機の第3の実施の形態におけるピストンリングを装着したピストン及びその周辺構造を示す図である。なお、図8において、図1~図7に示す符号と同符合のものは、同様な部分であるので、その詳細な説明は省略する。
[Third Embodiment]
Next, a third embodiment of the reciprocating compressor of the present invention will be described with reference to FIG. FIG. 8 is a diagram showing a piston fitted with a piston ring and its peripheral structure in a third embodiment of the reciprocating compressor of the present invention. In FIG. 8, parts having the same reference numerals as those shown in FIGS. 1 to 7 are the same parts, and detailed description thereof will be omitted.
 図8に示す本発明の往復動圧縮機の第3の実施の形態が第1の実施の形態と異なる点は、ピストン5Bの外周面のうち第1の非摺動面53Bの形状が異なることである。第1の実施の形態に係るピストン5の第1の非摺動面53は、その全体(全周)が球状の摺動面52の第1の仮想延長曲面52V1よりも外周側(径方向外側)に位置するように形成されている(図4参照)。それに対して、第2の実施の形態に係るピストン5Bの第1の非摺動面53Bは、その一部のみが第1の仮想延長曲面52V1よりも外周側に位置するように形成されている。 The third embodiment of the reciprocating compressor of the present invention shown in FIG. 8 differs from the first embodiment in that the shape of the first non-sliding surface 53B of the outer peripheral surface of the piston 5B is different. is. The first non-sliding surface 53 of the piston 5 according to the first embodiment is located on the outer peripheral side (radial direction outer side) of the first imaginary extended curved surface 52V1 of the sliding surface 52 whose entirety (entire circumference) is spherical. ) (see FIG. 4). On the other hand, the first non-sliding surface 53B of the piston 5B according to the second embodiment is formed so that only a part thereof is located on the outer peripheral side of the first imaginary extended curved surface 52V1. .
 具体的には、ピストン5Bの第1の非摺動面53Bのうち、クランクシャフト2のオフセット方向(図8中、左方向)とは反対側(図8中、右側)に位置する反オフセット側非摺動面532のみが摺動面52の第1の仮想延長曲面52V1よりも外周側に位置するように形成されている。一方、第1の非摺動面53Bのうち、当該オフセット方向と同じ側(図8中、左側)に位置するオフセット側非摺動面531Bは、摺動面52の第1の仮想延長曲面52V1と一致する曲面に形成されている。第1の非摺動面53Bのうち、反オフセット側非摺動面532とシリンダ4の内周面4aとの隙間Gの容積は、ピストンリング12に対する頂面51の傾斜に起因して、オフセット側非摺動面531Bとシリンダ4の内周面4aとの隙間Gの容積よりも大きい。つまり、反オフセット側非摺動面532側の方がオフセット側非摺動面531Bよりも、死容積の増加の要因になる。そこで、本実施の形態においては、反オフセット側非摺動面532とシリンダ4の内周面4aとの隙間Gを小さくする構成としている。 Specifically, of the first non-sliding surface 53B of the piston 5B, the counter-offset side located on the opposite side (right side in FIG. 8) to the offset direction of the crankshaft 2 (left direction in FIG. 8) Only the non-sliding surface 532 is formed so as to be located on the outer peripheral side of the first imaginary extended curved surface 52V1 of the sliding surface 52 . On the other hand, among the first non-sliding surfaces 53B, an offset-side non-sliding surface 531B located on the same side as the offset direction (left side in FIG. It is formed into a curved surface that coincides with the Due to the inclination of the top surface 51 with respect to the piston ring 12, the volume of the gap G between the non-offset side non-sliding surface 532 of the first non-sliding surface 53B and the inner peripheral surface 4a of the cylinder 4 is offset. It is larger than the volume of the gap G between the side non-sliding surface 531B and the inner peripheral surface 4a of the cylinder 4. In other words, the non-offset side non-sliding surface 532 causes an increase in dead volume more than the offset side non-sliding surface 531B. Therefore, in the present embodiment, the gap G between the non-offset side non-sliding surface 532 and the inner peripheral surface 4a of the cylinder 4 is made small.
 上述した第3の実施の形態に係る往復動圧縮機においては、第1の実施の形態と同様に、クランクシャフト2をシリンダ4に対してオフセットさせることで、ピストン5Bの圧縮行程における揺動角度βを小さくすることが可能であり、且つ、ピストン5Bの第1の非摺動面53Bの少なくとも一部を第1の仮想延長曲面52V1よりも外周側(径方向外側)に形成することで、ピストン5Bの第1の非摺動面53Bとシリンダ4の内周面4aとの間の隙間Gが小さくなる。したがって、圧縮行程時のピストン5Bとシリンダ4間に作用するサイドフォースの低減を図った上で、圧縮室14の死容積を低減することができると共に、当該隙間Gを介した圧縮室14からの圧縮気体の漏洩を抑制することができる。 In the reciprocating compressor according to the third embodiment described above, similarly to the first embodiment, by offsetting the crankshaft 2 with respect to the cylinder 4, the swing angle of the piston 5B during the compression stroke is It is possible to reduce β, and by forming at least a part of the first non-sliding surface 53B of the piston 5B on the outer peripheral side (diameter direction outside) of the first virtual extended curved surface 52V1, The gap G between the first non-sliding surface 53B of the piston 5B and the inner peripheral surface 4a of the cylinder 4 is reduced. Therefore, the side force acting between the piston 5B and the cylinder 4 during the compression stroke can be reduced, and the dead volume of the compression chamber 14 can be reduced. Leakage of compressed gas can be suppressed.
 また、本実施の形態に係る往復動圧縮機においては、ピストン5Bの第1の非摺動面53Bのうち、シリンダ4の中心軸線Ccに対するクランクシャフト2の回転軸線Rsのオフセット方向とは反対側に位置する反オフセット側非摺動面532(部分)のみが第1の仮想延長曲面52V1よりもシリンダ4の内周面4aの近くに位置する。この構成によれば、圧縮室14の死容積の低減及び圧縮室14からの気体漏洩の抑制を図りつつ、ピストン5Bの製造のための材料使用量を削減することができる。 Further, in the reciprocating compressor according to the present embodiment, the first non-sliding surface 53B of the piston 5B is located on the side opposite to the offset direction of the rotation axis Rs of the crankshaft 2 with respect to the central axis Cc of the cylinder 4. Only the non-offset side non-sliding surface 532 (portion) located at is located closer to the inner peripheral surface 4a of the cylinder 4 than the first imaginary extended curved surface 52V1. According to this configuration, it is possible to reduce the amount of material used for manufacturing the piston 5B while reducing the dead volume of the compression chamber 14 and suppressing gas leakage from the compression chamber 14 .
 [第4の実施の形態]
  次に、本発明の往復動圧縮機の第4の実施の形態について図9~図12を用いて説明する。図9は本発明の往復動圧縮機の第4の実施の形態を示す概略断面図である。図10は本発明の往復動圧縮機の第4の実施の形態におけるピストンリングを装着したピストン及びその周辺構造を示す図である。図11は本発明の往復動圧縮機の第4の実施の形態におけるピストン単体を示す斜視図である。図12は本発明の往復動圧縮機の第4の実施の形態における死容積を示す説明図である。なお、図9~図12において、図1~図8に示す符号と同符合のものは、同様な部分であるので、その詳細な説明は省略する。
[Fourth Embodiment]
Next, a fourth embodiment of the reciprocating compressor of the present invention will be described with reference to FIGS. 9 to 12. FIG. FIG. 9 is a schematic sectional view showing a fourth embodiment of the reciprocating compressor of the present invention. FIG. 10 is a diagram showing a piston fitted with a piston ring and its peripheral structure in a fourth embodiment of the reciprocating compressor of the present invention. FIG. 11 is a perspective view showing a single piston in the fourth embodiment of the reciprocating compressor of the present invention. FIG. 12 is an explanatory diagram showing dead volume in the fourth embodiment of the reciprocating compressor of the present invention. 9 to 12, the parts having the same reference numerals as those shown in FIGS. 1 to 8 are the same parts, and detailed description thereof will be omitted.
 図9に示す本発明の往復動圧縮機の第4の実施の形態が第1の実施の形態と異なる点は、ピストン5Cがピストンリングを装着していないことである。具体的には、本実施の形態のピストン5Cは、図10及び図11に示すように、第1の実施の形態のピストン5とは異なり、外周面に環状溝55(図5参照)が形成されていない構成である。ピストン5Cの外周面には、図11に示すように、摺動面52と第1の非摺動面53との境界としての谷線56(図11中、破線)が全周に亘って現れている。一方、第1の実施の形態のピストン5では、環状溝55の形成により、摺動面52と第1の非摺動面53の境界としての谷線56(図5中、破線)は一部のみ現れている。本実施の形態のピストン5Cのそれ以外の構成及び構造は、第1の実施の形態と同様なものである。 The fourth embodiment of the reciprocating compressor of the present invention shown in FIG. 9 differs from the first embodiment in that the piston 5C does not have a piston ring. Specifically, as shown in FIGS. 10 and 11, the piston 5C of the present embodiment has an annular groove 55 (see FIG. 5) formed on the outer peripheral surface unlike the piston 5 of the first embodiment. It is a configuration that is not As shown in FIG. 11, a valley line 56 (broken line in FIG. 11) as a boundary between the sliding surface 52 and the first non-sliding surface 53 appears on the outer peripheral surface of the piston 5C over the entire circumference. ing. On the other hand, in the piston 5 of the first embodiment, due to the formation of the annular groove 55, the valley line 56 (broken line in FIG. 5) as the boundary between the sliding surface 52 and the first non-sliding surface 53 is partially only appear. Other configurations and structures of the piston 5C of the present embodiment are the same as those of the first embodiment.
 前述したように、死容積の発生の一因として、図12に示すピストン5Cの外周面とシリンダ4の内周面4aとの隙間が挙げられる。本実施の形態においては、ピストン5Cとシリンダ4の隙間のシールがピストン5Cの摺動面52とシリンダ4の内周面4aとの線接触によってなされる。したがって、ピストン5Cが上死点に位置するときに、ピストン5Cの球状の摺動面52とシリンダ4の円筒状の内周面4aとが接触する部分(円環部分)よりも頂面51側に位置するピストン5Cの外周面(摺動面52の一部及び第1の非摺動面53)とシリンダ4の内周面4aとの隙間Gが死容積の要因の1つとなる。また、ピストン5Cの外周面とシリンダ4の内周面4aとの隙間は、圧縮室14内から外部(クランクケース3の内部)への圧縮気体の漏れ経路の1つである。 As described above, one cause of dead volume is the gap between the outer peripheral surface of the piston 5C and the inner peripheral surface 4a of the cylinder 4 shown in FIG. In this embodiment, the gap between the piston 5C and the cylinder 4 is sealed by line contact between the sliding surface 52 of the piston 5C and the inner peripheral surface 4a of the cylinder 4. As shown in FIG. Therefore, when the piston 5C is positioned at the top dead center, the top surface 51 is closer to the top surface 51 than the portion (annular portion) where the spherical sliding surface 52 of the piston 5C and the cylindrical inner peripheral surface 4a of the cylinder 4 contact. A gap G between the outer peripheral surface (a part of the sliding surface 52 and the first non-sliding surface 53) of the piston 5C located at , and the inner peripheral surface 4a of the cylinder 4 is one factor of the dead volume. A gap between the outer peripheral surface of the piston 5C and the inner peripheral surface 4a of the cylinder 4 is one of the leakage paths of the compressed gas from the inside of the compression chamber 14 to the outside (inside the crankcase 3).
 上述した第4の実施の形態に係る往復動圧縮機においては、第1の実施の形態と同様に、クランクシャフト2をシリンダ4に対してオフセットさせることで、ピストン5Cの圧縮行程における揺動角度βを小さくすることが可能であり、且つ、ピストン5Cの第1の非摺動面53の少なくとも一部を第1の仮想延長曲面52V1よりも外周側(径方向外側)に形成することで、ピストン5Cの第1の非摺動面53とシリンダ4の内周面4aとの間の隙間Gが小さくなる。したがって、圧縮行程時のピストン5Cとシリンダ4間に作用するサイドフォースの低減を図った上で、圧縮室14の死容積を低減することができると共に、当該隙間Gを介した圧縮室14からの圧縮気体の漏洩を抑制することができる。 In the reciprocating compressor according to the fourth embodiment described above, similarly to the first embodiment, by offsetting the crankshaft 2 with respect to the cylinder 4, the swing angle of the piston 5C during the compression stroke is It is possible to reduce β, and by forming at least a part of the first non-sliding surface 53 of the piston 5C on the outer peripheral side (diameter direction outside) of the first virtual extended curved surface 52V1, The gap G between the first non-sliding surface 53 of the piston 5C and the inner peripheral surface 4a of the cylinder 4 becomes smaller. Therefore, the side force acting between the piston 5C and the cylinder 4 during the compression stroke can be reduced, and the dead volume of the compression chamber 14 can be reduced. Leakage of compressed gas can be suppressed.
 また、本実施の形態に係る往復動圧縮機は、ピストン5Cの外周面にピストンリング12を装着しない構成である。この構成によれば、圧縮室14の死容積の低減及び圧縮室14からの気体漏洩の抑制を図りつつ、往復動圧縮機の構成を簡素化することができる。 Further, the reciprocating compressor according to the present embodiment has a configuration in which the piston ring 12 is not attached to the outer peripheral surface of the piston 5C. According to this configuration, it is possible to simplify the configuration of the reciprocating compressor while reducing the dead volume of the compression chamber 14 and suppressing gas leakage from the compression chamber 14 .
 [その他]
  なお、本発明は上述した第1~第4の実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。
[others]
The present invention is not limited to the first to fourth embodiments described above, and includes various modifications. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. For example, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 例えば、上述した第1~第4の実施の形態においては、ピストン5、5A、5B、5Cの摺動面52を球面形状とした例を示した。しかし、ピストンの摺動面は、シリンダ4内を滑らかに揺動且つ往復動をすることが可能であるならば、球面形状以外の幾何学的に定義可能な曲面、例えば、球面に近似した曲面も採用可能である。 For example, in the above-described first to fourth embodiments, the sliding surfaces 52 of the pistons 5, 5A, 5B, and 5C are spherical. However, if the sliding surface of the piston can smoothly oscillate and reciprocate within the cylinder 4, the curved surface that can be geometrically defined other than a spherical shape, for example, a curved surface approximating a spherical surface. can also be adopted.
 また、第1~第4の実施の形態においては、ピストン5、5A、5B、5Cが第2の非摺動面54、54Aを有する構成の例を示した。しかし、ピストンは摺動面52よりも連接棒6側に外周面(第2の非摺動面)が存在しない構成も可能である。すなわち、ピストンの外周面を摺動面52及び第1の非摺動面53、53Bのみで構成することも可能である。 In addition, in the first to fourth embodiments, the pistons 5, 5A, 5B, 5C have shown the configuration examples in which the second non-sliding surfaces 54, 54A are provided. However, it is also possible for the piston to have no outer peripheral surface (second non-sliding surface) on the connecting rod 6 side of the sliding surface 52 . That is, it is possible to configure the outer peripheral surface of the piston only with the sliding surface 52 and the first non-sliding surfaces 53, 53B.
 また、第2の実施の形態においては、ピストン5Aの第2の非摺動面54Aの全体を第2の仮想延長曲面52V2よりも外周側(径方向外側)に形成した構成の例を示した。しかし、第2の非摺動面の一部のみを第2の仮想延長曲面52V2よりも外周側に形成する構成も可能である。 Further, in the second embodiment, an example of a configuration in which the entire second non-sliding surface 54A of the piston 5A is formed on the outer peripheral side (radial direction outer side) of the second imaginary extended curved surface 52V2 is shown. . However, a configuration is also possible in which only a part of the second non-sliding surface is formed on the outer peripheral side of the second imaginary extended curved surface 52V2.
 また、第3の実施の形態においては、ピストン5Bの第1の非摺動面53Bのうち、反オフセット側非摺動面532(図8中、右側部分)のみを第1の仮想延長曲面52V1よりも外周側に形成する一方、オフセット側非摺動面531B(図8中、左側部分)を第1の仮想延長曲面52V1と一致する曲面に形成した構成の例を示した。しかし、ピストンの第1の非摺動面のうち、オフセット側非摺動面のみを第1の仮想延長曲面52V1よりも外周側に形成する一方、反オフセット側非摺動面を第1の仮想延長曲面52V1と一致する曲面に形成する構成も可能である。なお、この場合においても、オフセット側非摺動面と反オフセット側非摺動面との接続部である稜線の位置を任意に設定可能である。 Further, in the third embodiment, of the first non-sliding surface 53B of the piston 5B, only the anti-offset side non-sliding surface 532 (the right side portion in FIG. 8) is formed into the first imaginary extended curved surface 52V1. 8, and the offset-side non-sliding surface 531B (the left-hand portion in FIG. 8) is formed into a curved surface that coincides with the first imaginary extended curved surface 52V1. However, of the first non-sliding surfaces of the piston, only the offset-side non-sliding surface is formed on the outer peripheral side of the first imaginary extended curved surface 52V1, while the anti-offset-side non-sliding surface is formed on the first imaginary curved surface 52V1. It is also possible to form a curved surface that coincides with the extended curved surface 52V1. Also in this case, it is possible to arbitrarily set the position of the ridgeline, which is the connecting portion between the offset-side non-sliding surface and the anti-offset-side non-sliding surface.
 1…往復動圧縮機、 2…クランクシャフト、 4…シリンダ、 4a…内周面、 5、5A、5B、5C…ピストン、 6…連接棒、 12…ピストンリング、 14…圧縮室、 51…頂面、 52…摺動面、 52V1…第1の仮想延長曲面、 52V2…第2の仮想延長曲面、 53、53B…第1の非摺動面、 532…反オフセット側非摺動面(オフセット方向とは反対側に位置する部分)、 54、54A…第2の非摺動面、 Cc…中心軸線、 Rs…回転軸線、 β…揺動角度、 Cb…回動軸線、 Cr…中心線 1... reciprocating compressor, 2... crankshaft, 4... cylinder, 4a... inner peripheral surface, 5, 5A, 5B, 5C... piston, 6... connecting rod, 12... piston ring, 14... compression chamber, 51... top Surface 52 Sliding surface 52V1 First imaginary extended curved surface 52V2 Second imaginary extended curved surface 53, 53B First non-sliding surface 532 Anti-offset side non-sliding surface (offset direction 54, 54A... second non-sliding surface, Cc... center axis, Rs... rotation axis, β... rocking angle, Cb... rotation axis, Cr... center line

Claims (7)

  1.  中心軸線を有するシリンダと、
     前記シリンダの前記中心軸線に対してオフセットされた回転軸線を有するクランクシャフトと、
     前記シリンダと共に圧縮室を形成し、前記シリンダ内を往復動するピストンと、
     一方側が前記クランクシャフトに対して回動可能に連結されると共に他方側が前記ピストンに固定され、前記クランクシャフトの回転運動により前記シリンダに対して揺動運動をする連接棒とを備え、
     前記ピストンは、
     前記圧縮室の壁面の一部を構成する頂面と、
     前記シリンダの前記中心軸線に対する前記連接棒の揺動角度の範囲に応じて定まる範囲で前記シリンダの内周面に摺動する摺動面と、
     前記頂面と前記摺動面とを繋ぎ、前記シリンダの内周面との接触を回避する形状の第1の非摺動面とを有し、
     前記第1の非摺動面は、その少なくとも一部が前記摺動面を仮想的に前記頂面側に延長させた第1の仮想延長曲面よりも前記シリンダの内周面の近くに位置するものである往復動圧縮機。
    a cylinder having a central axis;
    a crankshaft having an axis of rotation offset with respect to the central axis of the cylinder;
    a piston that forms a compression chamber together with the cylinder and reciprocates within the cylinder;
    a connecting rod whose one side is rotatably connected to the crankshaft and whose other side is fixed to the piston and which swings with respect to the cylinder by the rotational movement of the crankshaft;
    The piston is
    a top surface forming part of the wall surface of the compression chamber;
    a sliding surface that slides on the inner peripheral surface of the cylinder within a range determined according to the swing angle range of the connecting rod with respect to the central axis of the cylinder;
    a first non-sliding surface that connects the top surface and the sliding surface and has a shape that avoids contact with the inner peripheral surface of the cylinder;
    At least part of the first non-sliding surface is positioned closer to the inner peripheral surface of the cylinder than a first imaginary extended curved surface obtained by virtually extending the sliding surface toward the top surface. A reciprocating compressor that is.
  2.  請求項1に記載の往復動圧縮機において、
     前記第1の非摺動面は、その全体が前記第1の仮想延長曲面よりも前記シリンダの内周面の近くに位置するものである往復動圧縮機。
    A reciprocating compressor according to claim 1,
    A reciprocating compressor according to claim 1, wherein the first non-sliding surface is entirely located closer to the inner peripheral surface of the cylinder than the first imaginary extended curved surface.
  3.  請求項1に記載の往復動圧縮機において、
     前記第1の非摺動面のうち、前記シリンダの前記中心軸線に対する前記クランクシャフトの前記回転軸線のオフセット方向とは反対側に位置する部分のみが前記第1の仮想延長曲面よりも前記シリンダの内周面の近くに位置する往復動圧縮機。
    A reciprocating compressor according to claim 1,
    Of the first non-sliding surface, only the portion located on the side opposite to the offset direction of the rotation axis of the crankshaft with respect to the central axis of the cylinder is located on the cylinder relative to the first imaginary extended curved surface. A reciprocating compressor located near the inner peripheral surface.
  4.  請求項1に記載の往復動圧縮機において、
     前記ピストンは、前記摺動面から前記頂面の反対側に延在し、前記シリンダの内周面との接触を回避する形状の第2の非摺動面を更に有し、
     前記第2の非摺動面は、その少なくとも一部が前記摺動面を仮想的に前記頂面の反対側に延長させた第2の仮想延長曲面よりも前記シリンダの内周面の近くに位置するものである往復動圧縮機。
    A reciprocating compressor according to claim 1,
    The piston further has a second non-sliding surface extending from the sliding surface to the opposite side of the top surface and shaped to avoid contact with the inner peripheral surface of the cylinder,
    At least part of the second non-sliding surface is closer to the inner peripheral surface of the cylinder than a second imaginary extended curved surface that virtually extends the sliding surface to the opposite side of the top surface. A reciprocating compressor that is located.
  5.  請求項4に記載の往復動圧縮機において、
     前記第2の非摺動面は、その全体が前記第2の仮想延長曲面よりも前記シリンダの内周面の近くに位置するものである往復動圧縮機。
    A reciprocating compressor according to claim 4,
    A reciprocating compressor, wherein the second non-sliding surface is positioned closer to the inner peripheral surface of the cylinder than the second imaginary extended curved surface.
  6.  請求項1に記載の往復動圧縮機において、
     前記ピストンは、前記連接棒の前記一方側の回動軸線及び前記連接棒における前記一方側と前記他方側とを結ぶ中心線を含む平面に対して、非対称なものである往復動圧縮機。
    A reciprocating compressor according to claim 1,
    A reciprocating compressor, wherein the piston is asymmetrical with respect to a plane including a rotation axis of the one side of the connecting rod and a center line connecting the one side and the other side of the connecting rod.
  7.  請求項1に記載の往復動圧縮機において、
     前記ピストンの外周面にピストンリングが装着され、
     前記ピストンリングは、前記シリンダの前記中心軸線に対する前記クランクシャフトの前記回転軸線のオフセット方向と同じ方向に向かうにつれて前記ピストンの前記頂面に接近するように、前記頂面に対して傾斜している往復動圧縮機。
    A reciprocating compressor according to claim 1,
    A piston ring is attached to the outer peripheral surface of the piston,
    The piston ring is inclined with respect to the top surface so as to approach the top surface of the piston in the same direction as the offset direction of the rotation axis of the crankshaft with respect to the central axis of the cylinder. reciprocating compressor.
PCT/JP2021/044090 2021-02-25 2021-12-01 Reciprocating compressor WO2022180974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021028607A JP2022129786A (en) 2021-02-25 2021-02-25 Reciprocation compressor
JP2021-028607 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022180974A1 true WO2022180974A1 (en) 2022-09-01

Family

ID=83047971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044090 WO2022180974A1 (en) 2021-02-25 2021-12-01 Reciprocating compressor

Country Status (2)

Country Link
JP (1) JP2022129786A (en)
WO (1) WO2022180974A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325245A (en) * 1998-05-18 1999-11-26 Aisin Seiki Co Ltd Swing piston
JP2004316578A (en) * 2003-04-18 2004-11-11 Matsushita Electric Ind Co Ltd Air pump
JP2007187116A (en) * 2006-01-16 2007-07-26 Hitachi Appliances Inc Scotch yoke type reciprocating compressor and freezer/refrigerator using the same
US20110005489A1 (en) * 2009-06-06 2011-01-13 Ronald Lewis Advanced angled-cylinder piston device
JP2014126001A (en) * 2012-12-27 2014-07-07 Life Industry Kk Compressor device
JP3206366U (en) * 2016-04-06 2016-09-15 東莞瑞柯電子科技股▲ふん▼有限公司Dongguan Richtek Electronics Co.,Ltd. Naturally aspirated piston and cylinder
JP2016537559A (en) * 2013-08-30 2016-12-01 ドングァン リヒテック エレクトロニクス カンパニー リミテッド Fluid cylinder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11325245A (en) * 1998-05-18 1999-11-26 Aisin Seiki Co Ltd Swing piston
JP2004316578A (en) * 2003-04-18 2004-11-11 Matsushita Electric Ind Co Ltd Air pump
JP2007187116A (en) * 2006-01-16 2007-07-26 Hitachi Appliances Inc Scotch yoke type reciprocating compressor and freezer/refrigerator using the same
US20110005489A1 (en) * 2009-06-06 2011-01-13 Ronald Lewis Advanced angled-cylinder piston device
JP2014126001A (en) * 2012-12-27 2014-07-07 Life Industry Kk Compressor device
JP2016537559A (en) * 2013-08-30 2016-12-01 ドングァン リヒテック エレクトロニクス カンパニー リミテッド Fluid cylinder
JP3206366U (en) * 2016-04-06 2016-09-15 東莞瑞柯電子科技股▲ふん▼有限公司Dongguan Richtek Electronics Co.,Ltd. Naturally aspirated piston and cylinder

Also Published As

Publication number Publication date
JP2022129786A (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP5380353B2 (en) Reciprocating compressor
JP4385565B2 (en) Rotary compressor
JP2009522497A (en) Hybrid perturbation pump
JP2011220287A5 (en)
WO2014207791A1 (en) Fluid machine
WO2022180974A1 (en) Reciprocating compressor
JPS63205473A (en) Swash plate type variable displacement compressor
JPH01138380A (en) Compressor
WO2022158111A1 (en) Compressor
JPH10159723A (en) Swash plate compressor
US20030025276A1 (en) Shaft sealing devices, compressors comprising the shaft sealing devices, and methods for sealing a rotational shaft
JP7542345B2 (en) Reciprocating mechanisms and devices equipped with reciprocating mechanisms
WO2021065037A1 (en) Compressor
JP7576937B2 (en) Compressor
JP5358253B2 (en) Reciprocating compressor
JP2001041161A (en) Non-lubricant compressor
JPH08121330A (en) Reciprocating type compressor
JP2005105975A (en) Valve structure of compressor
WO2018087955A1 (en) Rotary compressor
CN113260788B (en) Compressor
WO2023176040A1 (en) Compressor
JP2008513649A (en) Orbital valve for reciprocating pump
JP2023169602A (en) reciprocating compressor
JPH01138381A (en) Pulsation reducing mechanism for compressor
JP2002364539A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928067

Country of ref document: EP

Kind code of ref document: A1