[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022176307A1 - 永久磁石同期モータ、圧縮機、及び機器 - Google Patents

永久磁石同期モータ、圧縮機、及び機器 Download PDF

Info

Publication number
WO2022176307A1
WO2022176307A1 PCT/JP2021/043826 JP2021043826W WO2022176307A1 WO 2022176307 A1 WO2022176307 A1 WO 2022176307A1 JP 2021043826 W JP2021043826 W JP 2021043826W WO 2022176307 A1 WO2022176307 A1 WO 2022176307A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
small holes
permanent magnet
magnet synchronous
synchronous motor
Prior art date
Application number
PCT/JP2021/043826
Other languages
English (en)
French (fr)
Inventor
典禎 西山
行雄 尾崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180071435.3A priority Critical patent/CN116368717A/zh
Priority to JP2023500547A priority patent/JPWO2022176307A1/ja
Publication of WO2022176307A1 publication Critical patent/WO2022176307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to a permanent magnet synchronous motor, a compressor using this permanent magnet synchronous motor, and equipment using this compressor.
  • Patent Literature 1 discloses a rotating electrical machine capable of achieving both suppression of a decrease in circumferential torque to be generated by the rotating electrical machine and reduction of radial electromagnetic excitation force generated in the rotating electrical machine.
  • an axial communication hole is provided in the vicinity of the air gap in the tooth portion to suppress a decrease in circumferential torque.
  • the electromagnetic excitation force acting on the stator teeth changes depending on the rotational position of the rotor and the energized current, and it was discovered that the radial force that strengthens the electromagnetic excitation force is maximized on the anti-rotation side from the center of the teeth. However, it is important not to reduce the torque as the flux flow is adjusted.
  • the present invention provides a permanent magnet synchronous motor capable of reducing variations in radial force, realizing low noise due to low vibration, and high efficiency, and air conditioners, dehumidifiers, and heat pump hot water heaters using this permanent magnet synchronous motor. machines, refrigerators (household refrigerators, commercial refrigerators), ice machines, showcases, heat pump type washer/dryers, vending machines, etc., and equipment using these compressors. With the goal.
  • a permanent magnet synchronous motor has a rotor arranged to be rotatable about a rotation axis, a stator arranged with an air gap between the rotor and the fixed motor.
  • the element includes an annular stator yoke centered on the rotating shaft, a plurality of stator teeth extending from the stator yoke toward the rotor, and slots formed between the stator teeth. windings are arranged in the slots, and the stator teeth are provided with stator teeth bases around which the windings are wound, and fixed surfaces that face the rotor at tips of the stator teeth bases. At least two small holes are arranged side by side in the direction along the facing surface in the stator tooth tip.
  • the permanent magnet synchronous motor according to the first aspect, wherein the circumferential width center of the stator tooth base is defined as a virtual center line of the tooth base, and a plurality of small holes are formed.
  • the plurality of small holes are arranged such that the imaginary center of the group is in the anti-rotating direction of the rotor from the imaginary center line of the tooth base.
  • the present invention according to claim 4 is the permanent magnet synchronous motor according to any one of claims 1 to 3, wherein the cross-sectional shape of at least one of the small holes is quadrangular, triangular, polygonal, or elliptical. It is characterized by having a shape.
  • the small holes are arranged at different distances from the facing surface.
  • the present invention according to claim 6 is the permanent magnet synchronous motor according to any one of claims 1 to 5, wherein the respective small holes are arranged to be inclined with respect to the virtual center line of the tooth base.
  • the present invention according to claim 7 is the permanent magnet synchronous motor according to any one of claims 1 to 6, wherein the stator includes a plurality of stator cores laminated in the axial direction of the rotating shaft.
  • the small holes are formed in some of the stator cores, and the small holes are not formed in the other stator cores.
  • a compressor according to an eighth aspect of the present invention uses the permanent magnet synchronous motor of the seventh aspect, the permanent magnet synchronous motor and the compression mechanism section are connected by a shaft, and the compression mechanism section is provided with the small compressor.
  • the stator core having no holes is arranged, and the stator core having the small holes is arranged on the side away from the compression mechanism.
  • a compressor of the present invention according to claim 9 uses the permanent magnet synchronous motor according to any one of claims 1 to 7, and connects the permanent magnet synchronous motor and the compression mechanism with a shaft, The refrigerant is compressed by the compression mechanism.
  • the apparatus of the present invention is characterized in that the compressor, condenser, decompression device, and evaporator according to claim 8 or 9 are annularly connected by piping.
  • the present invention it is possible to adjust the flow of magnetic flux, maintain the same torque as when no small holes are provided, reduce fluctuations in radial force, and realize low noise due to low vibration and high efficiency. can be done.
  • FIG. 1 is a longitudinal sectional view showing the configuration of a compressor using a permanent magnet synchronous motor according to one embodiment of the present invention
  • 1 is a configuration diagram of a permanent magnet synchronous motor according to the present embodiment
  • FIG. FIG. 2 is a configuration diagram showing the main part of the stator core of the permanent magnet synchronous motor according to the present embodiment
  • Graph showing tooth direction (radial direction) force and torque according to the present embodiment Graph showing the relationship between torque and fluctuation width of tooth direction (radial direction) force with respect to small hole arrangement angle
  • FIG. 3 is a configuration diagram of a main part showing a stator core of a permanent magnet synchronous motor according to another embodiment of the present invention
  • FIG. 3 is a configuration diagram of a main part showing a stator core of a permanent magnet synchronous motor according to another embodiment of the present invention
  • FIG. 3 is a block diagram showing the essential parts of a compressor using a permanent magnet synchronous motor according to another embodiment of the present invention
  • FIG. 3 is a block diagram showing the essential parts of a compressor using a permanent magnet synchronous motor according to still another embodiment of the present invention
  • At least two small holes are arranged side by side in the direction along the facing surface at the tips of the stator teeth. According to the present embodiment, it is possible to adjust the flow of magnetic flux, maintain torque equivalent to that in the case where small holes are not provided, reduce variations in force in the tooth direction (radial direction), reduce noise due to low vibration, High efficiency can be achieved.
  • the center of the width dimension of the stator tooth base in the circumferential direction is defined as the imaginary center line of the tooth base, and a small magnet composed of a plurality of small holes is provided.
  • a plurality of small holes are arranged such that the imaginary center of the hole group is in the anti-rotational direction of the rotor from the imaginary center line of the tooth base.
  • the small hole group can be arranged at an arrangement angle at which the force in the tooth direction (radial direction) is locally increased, and it is possible to both reduce fluctuations in the tooth direction (radial direction) force and suppress torque reduction. .
  • the permanent magnet synchronous motor according to the first or second embodiment has three or more small holes. According to this embodiment, it is possible to easily adjust the flow of magnetic flux, maintain the same torque as when no small holes are provided, reduce fluctuations in force in the direction of the teeth (radial direction), and reduce noise due to low vibration. , high efficiency can be achieved.
  • the cross-sectional shape of at least one small hole is quadrangular, triangular, polygonal, or elliptical. and According to this embodiment, since the square, triangle, polygon, or ellipse has a straight portion, the minimum distance between the small holes can be stably secured, and the magnetic resistance due to processing errors can be reduced. variation can be suppressed.
  • the respective small holes are arranged at different distances from the facing surface.
  • the arrangement can be made according to the magnetic flux acting on the stator accompanying the rotation of the rotor and the force in the direction of the stator teeth (radial direction), and the flow of the magnetic flux can be adjusted. Fluctuations in teeth direction (radial direction) force can be reduced while maintaining torque equivalent to the case where is not provided.
  • the respective small holes are arranged to be inclined with respect to the virtual center line of the tooth base. It is a thing. According to this embodiment, the magnetic flux flow around the small hole can be changed.
  • the stator in the permanent magnet synchronous motor according to any one of the first to sixth embodiments, includes a plurality of stator cores laminated in the axial direction of the rotating shaft. Some stator cores are formed with small holes and other stator cores are not formed with small holes. According to the present embodiment, since the phase of the torque pulsation is shifted between the stator core without the small holes and the stator core with the small holes, the torque pulsation can be reduced by stacking these stator cores. can be reduced.
  • a compressor according to an eighth embodiment of the present invention uses the permanent magnet synchronous motor according to the seventh embodiment.
  • a stator core with no holes is arranged, and a stator core with small holes is arranged on the side away from the compression mechanism.
  • the rigidity of supporting the rotor is increased by arranging the stator core with small variation in force in the tooth direction (radial direction) on the side away from the compression mechanism.
  • a compressor according to a ninth embodiment of the present invention uses the permanent magnet synchronous motor according to any one of the first to seventh embodiments, connects the permanent magnet synchronous motor and the compression mechanism with a shaft, and compresses the motor.
  • the refrigerant is compressed by the mechanism. According to this embodiment, it is possible to realize a compressor with low noise due to low vibration and high efficiency without lowering torque.
  • a device according to the tenth embodiment of the present invention is obtained by annularly connecting the compressor, condenser, decompression device, and evaporator according to the eighth or ninth embodiment by piping. According to the present embodiment, it is possible to realize low noise due to low vibration and highly efficient equipment without lowering torque.
  • FIG. 1 is a longitudinal sectional view showing the configuration of a compressor using a permanent magnet synchronous motor according to this embodiment.
  • a compressor 10 according to this embodiment includes a compression mechanism 2 for compressing a refrigerant gas and a permanent magnet synchronous motor 3 for driving the compression mechanism 2 in a sealed container 1 .
  • the inside of the closed container 1 is divided into one container internal space and the other container internal space by the compression mechanism part 2 .
  • a permanent magnet synchronous motor 3 is arranged in the other space inside the container.
  • the other space inside the container is divided by the permanent magnet synchronous motor 3 into a space on the compression mechanism side and a space on the oil storage side.
  • a storage oil portion 4 is arranged in the storage oil side space.
  • a suction pipe 5 and a discharge pipe 6 are fixed to the sealed container 1 by welding.
  • the suction pipe 5 and the discharge pipe 6 are connected to the outside of the sealed container 1 and connected to the members constituting the refrigeration cycle.
  • the suction pipe 5 introduces the refrigerant gas from the outside of the sealed container 1, and the discharge pipe 6 discharges the refrigerant gas to the outside of the sealed container 1 from one inner space of the container.
  • the main bearing member 7a is fixed in the sealed container 1 by welding, shrink fitting, or the like, and supports a shaft 8 (rotating shaft of the rotor 3a). One side of the shaft 8 is supported by the main bearing member 7a, and the other side is supported by the bearing 7b.
  • a fixed scroll 2a is bolted to the main bearing member 7a.
  • the orbiting scroll 2b meshing with the fixed scroll 2a is sandwiched between the main bearing member 7a and the fixed scroll 2a.
  • the fixed scroll 2 a and the orbiting scroll 2 b constitute a scroll-type compression mechanism 2 .
  • a rotation restraint mechanism 9 such as an Oldham ring is provided between the orbiting scroll 2b and the main bearing member 7a.
  • the rotation restraint mechanism 9 prevents rotation of the orbiting scroll 2b and guides the orbiting scroll 2b to perform circular orbital motion.
  • the orbiting scroll 2 b is eccentrically driven by an eccentric shaft portion 8 a provided at the upper end of the shaft 8 . Due to this eccentric drive, the compression chamber formed between the fixed scroll 2a and the orbiting scroll 2b moves from the outer circumference toward the central portion of the compression mechanism section 2, and compresses by reducing the volume.
  • the permanent magnet synchronous motor 3 has a rotor 3a rotatably arranged around a rotating shaft 8, and a stator 3b arranged with an air gap between the rotor 3a.
  • Refrigerant is sucked into the compression mechanism portion 2 from the suction pipe 5 and compressed in the compression mechanism portion 2 . After that, the refrigerant is discharged from the discharge pipe 6 .
  • a compressor 10 a condenser 61, a decompression device 62, and an evaporator 63 are annularly connected by piping.
  • the condenser 61 condenses the refrigerant discharged from the discharge pipe 6, the decompression device 62 decompresses the condensed refrigerant, and the evaporator 63 evaporates the decompressed refrigerant.
  • the refrigerant evaporated by the evaporator 63 is returned to the compressor 10 through the suction pipe 5 .
  • FIG. 2A and 2B are diagrams showing the configuration of the permanent magnet synchronous motor according to the present embodiment, FIG. 2A being a cross-sectional view of the permanent magnet synchronous motor mounted in the compressor shown in FIG. 1, and FIG. 2(c) is a cross-sectional view showing a state in which the sealed container and the windings are removed from FIG. 2(a); FIG.
  • the rotor 3 a is fixed to the shaft 8 and the stator 3 b is fixed to the closed container 1 .
  • the rotation axis of the rotor 3a is the shaft 8. As shown in FIG.
  • the rotor 3a is made of a magnetic material, and is provided with a plurality of slits inside, and permanent magnets 11 are arranged in each of these slits.
  • the stator 3b is constructed by laminating a plurality of stator cores 30 in the axial direction of the rotating shaft 8 of the rotor 3a.
  • the stator core 30 includes an annular stator yoke 31 centered on the rotation axis 8 of the rotor 3a, a plurality of stator teeth 32 extending from the stator yoke 31 toward the rotor 3a, and a stator tooth 32 and a slot 40 formed between them.
  • a winding 50 is arranged in the slot 40 .
  • FIG. 3 is a schematic diagram showing the stator core of the permanent magnet synchronous motor according to this embodiment.
  • the stator teeth 32 of the stator core 30 according to this embodiment consist of a stator tooth base 32a around which the winding 50 (see FIG. 2) is wound via an insulating material (not shown), and a tip of the stator tooth base 32a. and a stator tooth tip portion 32b forming a surface 35 facing the rotor 3a (see FIG. 2).
  • the stator tooth tip portions 32b are formed to protrude to both sides of the width dimension t in the circumferential direction of the stator tooth base portions 32a.
  • At least two small holes 70a and 70b are arranged side by side in the direction along the facing surface 35 in the stator tooth tip portion 32b.
  • the small holes 70a and 70b are for increasing the magnetic resistance, and if they are non-magnetic, the effect is high, and even the gaps may be filled with resin.
  • By arranging these small holes 70a and 70b it is possible to adjust the flow of the magnetic flux, and while maintaining the same torque as when the small holes are not provided, it is possible to reduce fluctuations in force in the direction of the teeth (radial direction), thereby reducing vibration. Low noise and high efficiency can be achieved.
  • the imaginary center 70x of the small hole group 70 consisting of the plurality of small holes 70a and 70b is rotated from the tooth base imaginary center line A.
  • a plurality of small holes 70a and 70b are arranged so as to be in the opposite direction of rotation of the element 3a.
  • a plurality of small rotors are arranged so that the virtual center 70x is shifted from the tooth base virtual center line A by about 2° to 3° in the anti-rotation direction of the rotor 3a.
  • holes 70a, 70b are provided. Assuming that the diameter of the small hole 70a is 70at and the diameter of the small hole 70b is 70bt, the diameter 70at and the diameter 70bt are 1 mm or more, the diameter 70at + the diameter 70bt ⁇ the width dimension t/2, and the distance between the small hole 70a and the small hole 70b.
  • the distance between the small holes 70a and the facing surface 35 is preferably 0.5 mm or more, the distance between the small holes 70b and the facing surface 35 is preferably 0.5 mm or more, and the distance between the small holes 70b and the facing surface 35 is preferably 0.5 mm or more.
  • FIG. 4 is a graph showing tooth direction (radial direction) force and torque according to this embodiment.
  • FIG. 4(a) shows the relationship between the tooth direction (radial direction) force acting on one stator tooth tip portion 32b and the rotation angle of the rotor 3a.
  • the conventional example does not have small holes.
  • the stator tooth tip portions 32b receive a tooth direction (radial direction) force of a periodic component corresponding to the number of rotor magnetic poles.
  • This embodiment is a 6-pole motor, and the tooth direction (radial direction) force acting on one stator tooth tip portion is a tooth direction (radial direction) force having one periodic component at a rotation angle of 60°.
  • the motor is a three-phase motor, and the fluctuation phase of the force acting on the stator tooth tip portion 32b is 120° in electrical angle and 40° in rotation angle in the tooth direction (radial direction). .
  • a large fluctuation range of the force in the direction of the teeth (radial direction) causes the vibration of the stator teeth 32 to be large and the vibration of the motor to be large. Vibration of typical rotary compressors and scroll compressors is a major factor.
  • a low-vibration motor and compressor 10 can be realized by reducing the variation width of the teeth direction (radial direction) force.
  • the tooth direction (radial direction) force does not uniformly act on the stator tooth tip portions 32b, and the location where the force acts locally changes as the rotor 3a rotates.
  • FIG. 5 is a graph showing the relationship between the variation width of force in the tooth direction (radial direction) and the torque with respect to the arrangement angle of the small holes.
  • the arrangement of the two small holes 70a and 70b shown in this embodiment is changed.
  • the arrangement angle of the small holes on the imaginary center line A of the stator teeth base is 0°
  • the rotation direction side is indicated by a negative angle
  • the half-rotation direction side is indicated by a positive angle.
  • the arrangement angles of the small holes 70a and 70b are changed, the fluctuation width of the tooth direction (radial direction) force and the torque change.
  • it is effective to reduce the vibration to reduce the fluctuation width of the teeth direction (radial direction) force.
  • the two small holes 70a and 70b are arranged in the A section (approximately -5° to 9°) shown in FIG. 5, the fluctuation width of the tooth direction (radial direction) force is reduced.
  • the small holes 70a and 70b are arranged at about 3° in the anti-rotational direction, the effect of reducing the variation width of the force in the teeth direction (radial direction) is great.
  • the torque is equivalent to no -3° to 7° perforation. Therefore, by arranging the small holes 70a and 70b about 3° in the counter-rotational direction from the virtual center line A of the tooth base, both low vibration and high torque can be achieved.
  • FIG. 6 and 7 are main configuration diagrams showing stator cores of permanent magnet synchronous motors according to other embodiments, respectively. Since the configuration other than the small holes is the same as that of the above embodiment, the description is omitted.
  • Three small holes 70a, 70b, and 70c are provided in the stator tooth tip portion 32b of the stator core 30 shown in FIG. 6(a). Thus, three or more small holes 70a, 70b, and 70c may be provided.
  • FIG. 6A shows the case where two small holes 71a and 71b are provided, but three or more small holes may be provided.
  • Small holes 72a and 72b having a triangular cross-sectional shape are provided in stator tooth tip portions 32b of the stator core 30 shown in FIG.
  • FIG. 6(c) shows a case where two small holes 72a and 72b are provided, but three or more small holes may be provided.
  • Small holes 72a and 72b having a triangular cross-sectional shape are provided in stator tooth tip portions 32b of the stator core 30 shown in FIG.
  • FIG. 6A shows the case where two small holes 71a and 71b are provided, but three or more small holes may be provided.
  • Small holes 72a and 72b having a triangular cross-sectional shape are provided in stator tooth tip portions 32b of the stator core 30 shown in FIG.
  • FIG. 6(d) shows a case where two small holes 72a and 72b are provided, but three or more small holes may be provided.
  • Small holes 72a and 72b having a triangular cross-sectional shape are provided in the tip end portion 32b of the stator teeth of the stator core 30 shown in FIG. 6(e).
  • the small hole 72b has a triangular vertex on the facing surface 35 side.
  • FIG. 6(e) shows a case where two small holes 72a and 72b are provided, but three or more small holes can also be provided.
  • 6(b) shows the small holes 71a and 71b having a square cross-sectional shape
  • FIGS. 6(c) to 6(e) show the small holes 72a and 72b having a triangular cross-sectional shape.
  • the cross-sectional shape may be other polygons.
  • FIG. 7(a) shows the case where two small holes 73a and 73b are provided, but three or more small holes may be provided.
  • Small holes 73a and 73b having an elliptical cross-sectional shape are provided in the stator tooth tip portion 32b of the stator core 30 shown in FIG.
  • FIG. 7(b) shows a case where two small holes 73a and 73b are provided, but three or more small holes may be provided.
  • Small holes 73a and 73b having an elliptical cross-sectional shape are provided in the stator tooth tip portion 32b of the stator core 30 shown in FIG. It is in the inclined direction.
  • FIG. 7(c) shows a case where two small holes 73a and 73b are provided, but three or more small holes may be provided.
  • At least one small hole 71a, 71b, 72a, 72b, 73a, 73b has a rectangular, triangular, polygonal, or elliptical cross-sectional shape, as shown in FIGS. 6(a) to 7(c). square, triangular, polygonal, or elliptical with straight portions, the small holes 71a, 71b, 72a, 72b, 73a, 73b and the small holes 71a, 71b, 72a, 72b, 73a, 73b and It is possible to stably secure the minimum distance of the intervals between the , and to suppress variations in magnetic resistance due to processing errors. Further, by arranging the small holes 73a and 73b so as to be inclined with respect to the virtual center line A of the tooth base, the magnetic flux flow around the small holes 73a and 73b can be changed.
  • Two small holes 70a and 70b are arranged at different distances from the facing surface 35 in the stator tooth tip portion 32b of the stator core 30 shown in FIG. 7(d).
  • the stator tooth tip portion 32b of the stator core 30 shown in FIG. 7(e) is provided with three small holes 70a, 70b, and 70c. They are arranged at different distances from 35.
  • Two small holes 70a and 70d are provided in the stator tooth tip portion 32b of the stator core 30 shown in FIG. 7(f), and the sizes of the two small holes 70a and 70d are made different.
  • the sizes of the small holes 70a and 70d may be different.
  • 6A to 7E the sizes of the small holes 70a, 70b, 70c, 70d, 71a, 71b, 72a, 72b, 73a, and 73b may be different.
  • the compressor 10 with low noise due to low vibration and high efficiency can be realized without lowering the torque.
  • equipment using the compressor 10 according to this embodiment can realize low noise due to low vibration and high efficiency.
  • FIG. 8 is a block diagram showing the essential parts of a compressor using a permanent magnet synchronous motor according to another embodiment of the present invention.
  • FIG. 8A shows the arrangement of the compression mechanism 2 that compresses the refrigerant gas and the permanent magnet synchronous motor 3 that drives the compression mechanism 2 .
  • the compression mechanism section 2 and the permanent magnet synchronous motor 3 are connected by a shaft 8 .
  • the compression mechanism portion 2 is a rotary compression mechanism.
  • the permanent magnet synchronous motor 3 has a rotor 3a and a stator 3b.
  • the stator 3b is constructed by laminating a plurality of stator cores 30 in the axial direction of the rotating shaft 8 of the rotor 3a.
  • the stator core 30 has an annular stator yoke 31 and a plurality of stator teeth 32, as described with reference to FIG. A winding 50 is arranged in the .
  • a stator core 30a having small holes 70a, 70b and 70c and a stator core 30b having no small holes 70a, 70b and 70c are used.
  • FIG. 8(b) shows a stator core 30a with small holes 70a, 70b, 70c
  • FIG. 8(c) shows a stator core 30b without small holes 70a, 70b, 70c.
  • the stator core 30a shown in FIG. 8(b) is the stator core 30 already described with reference to FIG. 6(a).
  • the stator core 30b without the small holes 70a, 70b, and 70c is stacked on the side of the compression mechanism 2, and the small holes 70a are formed on the side away from the compression mechanism 2.
  • 70b, 70c are stacked.
  • Fluctuations in the teeth direction (radial direction) force of the stator core 30a are smaller than the teeth direction (radial direction) force of the stator core 30b. Therefore, particularly in a rotary compressor in which the rotor 3a is cantilever-supported by the compression mechanism 2, the stator core 30a with small variation in force in the teeth direction (radial direction) is arranged at a position far from the compression mechanism 2. By doing so, the deflection of the shaft 8 can be reduced. When the rotor 3a is supported by the compression mechanism 2 in a cantilevered manner, the deflection of the shaft 8 tends to cause eccentricity of the air gap. Sliding loss increases.
  • the stator core 30a By arranging the stator core 30a at a position where the air gap is narrowed as in the present embodiment, the magnetic attraction force acting thereon in the teeth direction (radial direction) can be reduced. Due to the reduced deflection, it is possible to provide a highly reliable compressor 10 with low noise due to low vibration.
  • FIG. 8A shows the compressor 10 in which the compression mechanism 2 is arranged below the permanent magnet synchronous motor 3, the compressor in which the compression mechanism 2 is arranged above the permanent magnet synchronous motor 3 is shown. , or a compressor in which the compression mechanism 2 and the permanent magnet synchronous motor 3 are arranged in the horizontal direction.
  • FIG. 8(b) shows the stator core 30 shown in FIG. 6(a), but the stator core 30 shown in FIGS. The same is true when using the stator core 30 shown in (f).
  • FIG. 9 is a graph showing tooth direction (radial direction) force and torque according to the embodiment shown in FIG. FIG. 9(a) shows the relationship between the tooth direction (radial direction) force acting on one stator tooth tip portion 32b and the rotation angle of the rotor 3a.
  • Comparative Example 1 uses only the stator core 30a
  • Comparative Example 2 uses only the stator core 30b without small holes.
  • the stator tooth tip portions 32b receive a tooth direction (radial direction) force of a periodic component corresponding to the number of rotor magnetic poles.
  • This embodiment is a 6-pole motor, and the tooth direction (radial direction) force acting on one stator tooth tip portion is a tooth direction (radial direction) force having one periodic component at a rotation angle of 60°.
  • the motor is a three-phase motor, and the fluctuation phase of the force acting on the stator tooth tip portion 32b is 120° in electrical angle and 40° in rotation angle in the tooth direction (radial direction). .
  • a large fluctuation range of the force in the direction of the teeth (radial direction) causes the vibration of the stator teeth 32 to be large and the vibration of the motor to be large. Vibration of typical rotary compressors and scroll compressors is a major factor.
  • a low-vibration motor and compressor 10 can be realized by reducing the variation width of the teeth direction (radial direction) force.
  • the tooth direction (radial direction) force does not uniformly act on the stator tooth tip portions 32b, and the location where the force acts locally changes as the rotor 3a rotates.
  • FIG. 9(a) it is possible to effectively reduce the tooth direction (radial direction) force acting locally as the rotor 3a rotates.
  • the fluctuation force ratio in the teeth direction (radial direction) is 91% in Comparative Example 1 with only the stator core 30a compared to Comparative Example 2 with only the stator core 30b, which is a conventional example. is 95%.
  • FIG. 10 is a block diagram showing the essential parts of a compressor using a permanent magnet synchronous motor according to still another embodiment of the present invention.
  • FIG. 10( a ) shows the arrangement of the compression mechanism 2 that compresses the refrigerant gas and the permanent magnet synchronous motor 3 that drives the compression mechanism 2 .
  • the compression mechanism section 2 and the permanent magnet synchronous motor 3 are connected by a shaft 8 .
  • Compression mechanism 2 is the scroll compression mechanism shown in FIG.
  • the permanent magnet synchronous motor 3 has a rotor 3a and a stator 3b.
  • the stator 3b is constructed by laminating a plurality of stator cores 30 in the axial direction of the rotating shaft 8 of the rotor 3a.
  • the stator core 30 has an annular stator yoke 31 and a plurality of stator teeth 32, as described with reference to FIG. A winding 50 is arranged in the .
  • a stator core 30a having small holes 70a, 70b and 70c and a stator core 30b having no small holes 70a, 70b and 70c are used.
  • FIG. 10(b) shows a stator core 30a with small holes 70a, 70b and 70c
  • FIG. 10(c) shows a stator core 30b without small holes 70a, 70b and 70c.
  • the stator core 30a shown in FIG. 10(b) is the stator core 30 already described with reference to FIG. 6(a).
  • stator cores 30b without small holes 70a, 70b, and 70c are stacked on the side of the compression mechanism 2 and the side away from the compression mechanism 2, and these are fixed.
  • a stator core 30a forming small holes 70a, 70b, 70c is laminated between the child cores 30b. Fluctuations in the teeth direction (radial direction) force of the stator core 30a are smaller than the teeth direction (radial direction) force of the stator core 30b. Therefore, particularly in a scroll compressor in which the rotor 3a is both supported by the compression mechanism 2 and the bearing 7b, the stator core 30a having a small force fluctuation in the tooth direction (radial direction) is placed at a position far from the compression mechanism 2.
  • the deflection of the shaft 8 can be reduced.
  • the stator core 30a is placed near the center between the shaft supports where the shaft is likely to bend. can provide a highly reliable compressor 10 with low noise due to low vibration.
  • the stator core 30b is arranged on the compression mechanism 2 side, and is far from the compression mechanism 2 side.
  • the stator core 30a may be arranged at the position.
  • FIG. 10A shows a compressor in which the compression mechanism 2 is arranged above the permanent magnet synchronous motor 3, but the compressor in which the compression mechanism 2 is arranged below the permanent magnet synchronous motor 3
  • FIG. 10(b) shows the stator core 30 shown in FIG. 6(a), but the stator core 30 shown in FIGS. The same is true when using the stator core 30 shown in (f).
  • split cores which are divided in the circumferential direction and then the stator is arranged in the circumferential direction and united after high-density winding is performed, or the high-density winding is performed in the state where a part of the stator yoke is joined.
  • the small-hole-arranged core shown in the present embodiment may be used in a motor using a stator in which the yoke portion is deformed or moved so as to be in close contact with the stator in the circumferential direction.
  • a split core stator or a stator in which a part of a stator yoke is joined has lower rigidity than a general stator integral in the circumferential direction.
  • the rigidity is low even if the width dimension of the yoke portion between the teeth becomes small.
  • the permanent magnet synchronous motor of the present invention can reduce fluctuations in radial force even with respect to the split cores, and can achieve low noise due to low vibration and high efficiency.
  • the permanent magnet synchronous motor of the present invention is suitable for scroll compressors and rotary compressors, but can also be used for reciprocating compressors and other compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本発明の永久磁石同期モータ3は、固定子3bは、回転軸8を中心とした環状の固定子ヨーク31と、固定子ヨーク31から回転子3aに向かって延出した複数の固定子ティース32と、固定子ティース32間に形成されるスロット40とを有し、スロット40には巻線50が配置され、固定子ティース32は、巻線50が巻かれる固定子ティース基部32aと、固定子ティース基部32aの先端で回転子3aとの対向面35を形成する固定子ティース先端部32bとを有し、固定子ティース先端部32bに、少なくとも2つの小孔70a、70bを対向面35に沿う方向に並べて配置したことで、ティース方向(半径方向)力の変動を小さくでき、低振動による低騒音と、高効率を実現することができる。

Description

永久磁石同期モータ、圧縮機、及び機器
 本発明は、永久磁石同期モータ、この永久磁石同期モータを用いた圧縮機、及びこの圧縮機を用いた機器に関する。
 特許文献1は、回転電機の発生すべき周方向トルクの低下抑制と、回転電機に発生する径方向の電磁加振力低減との両立を図ることができる回転電機を開示している。
 特許文献1では、ティース部のうちエアギャップ付近に軸方向連通穴を設けることで、周方向トルクの低下を抑制している。
特開2015-96022号公報
 固定子ティースに作用する電磁加振力は、回転子の回転位置や通電電流により変化し、ティース部の中心から反回転方向側で電磁加振力を強める半径方向力が最大になることを見出したが、磁束の流れの調整とともにトルクを低下させないことが重要である。
 本発明は、半径方向力の変動を小さくでき、低振動による低騒音と、高効率を実現することができる永久磁石同期モータ、この永久磁石同期モータを用いたエアーコンディショナー、除湿機、ヒートポンプ式給湯機、冷蔵庫(家庭用冷蔵庫、業務用冷蔵庫)、製氷機、ショーケース、ヒートポンプ式洗濯乾燥機、自動販売機、等に使用される圧縮機、及び、この圧縮機を用いた機器を提供することを目的とする。
 請求項1記載の本発明の永久磁石同期モータは、回転軸を中心に回転自在に配置された回転子と、前記回転子とエアギャップを介して配置された固定子とを有し、前記固定子は、前記回転軸を中心とした環状の固定子ヨークと、前記固定子ヨークから前記回転子に向かって延出した複数の固定子ティースと、前記固定子ティース間に形成されるスロットとを有し、前記スロットには巻線が配置され、前記固定子ティースは、前記巻線が巻かれる固定子ティース基部と、前記固定子ティース基部の先端で前記回転子との対向面を形成する固定子ティース先端部とを有し、前記固定子ティース先端部に、少なくとも2つの小孔を前記対向面に沿う方向に並べて配置したことを特徴とする。
 請求項2記載の本発明は、請求項1に記載の永久磁石同期モータにおいて、前記固定子ティース基部の周方向の幅寸法中心をティース基部仮想中心線とし、複数の前記小孔からなる小孔群の仮想中心を、前記ティース基部仮想中心線より前記回転子の反回転方向となるように複数の前記小孔を配置したことを特徴とする。
 請求項3記載の本発明は、請求項1又は請求項2に記載の永久磁石同期モータにおいて、前記小孔を3つ以上としたことを特徴とする。
 請求項4記載の本発明は、請求項1から請求項3のいずれか1項に記載の永久磁石同期モータにおいて、少なくとも1つの前記小孔の断面形状を、四角形、三角形、多角形、又は楕円形としたことを特徴とする。
 請求項5記載の本発明は、請求項1から請求項4のいずれか1項に記載の永久磁石同期モータにおいて、それぞれの前記小孔を、前記対向面からの距離を異ならせて配置したことを特徴とする。
 請求項6記載の本発明は、請求項1から請求項5のいずれか1項に記載の永久磁石同期モータにおいて、それぞれの前記小孔を、前記ティース基部仮想中心線に対して傾斜させて並べて配置したことを特徴とする。
 請求項7記載の本発明は、請求項1から請求項6のいずれか1項に記載の永久磁石同期モータにおいて、前記固定子は、複数枚の固定子コアを前記回転軸の軸方向に積層して構成され、一部の前記固定子コアには、前記小孔を形成し、他の前記固定子コアには、前記小孔を形成しないことを特徴とする。
 請求項8記載の本発明の圧縮機は、請求項7に記載の永久磁石同期モータを用い、前記永久磁石同期モータと圧縮機構部とをシャフトで連結し、前記圧縮機構部側に、前記小孔を形成しない前記固定子コアを配置し、前記圧縮機構部から離れた側に、前記小孔を形成する前記固定子コアを配置することを特徴とする。
 請求項9記載の本発明の圧縮機は、請求項1から請求項7のいずれか1項に記載の永久磁石同期モータを用い、前記永久磁石同期モータと圧縮機構部とをシャフトで連結し、前記圧縮機構部によって冷媒を圧縮することを特徴とする。
 請求項10記載の本発明の機器は、請求項8又は請求項9に記載の圧縮機、凝縮器、減圧装置、及び蒸発器を配管によって環状に接続したことを特徴とする。
 本発明によれば、磁束の流れを調整でき、小孔を設けない場合と同等のトルクを維持しつつ、半径方向力の変動を小さくでき、低振動による低騒音と、高効率を実現することができる。
本発明の一実施例による永久磁石同期モータを用いた圧縮機の構成を示す縦断面図 本実施例による永久磁石同期モータの構成図 本実施例による永久磁石同期モータの固定子コアを示す要部構成図 本実施例によるティース方向(半径方向)力とトルクとを示すグラフ 小孔の配置角度に対するティース方向(半径方向)力の変動幅とトルクの関係を示すグラフ 本発明の他の実施例による永久磁石同期モータの固定子コアを示す要部構成図 本発明の他の実施例による永久磁石同期モータの固定子コアを示す要部構成図 本発明の他の実施例による永久磁石同期モータを用いた圧縮機の要部を示す構成図 図8に示す実施例によるティース方向(半径方向)力とトルクとを示すグラフ 本発明の更に他の実施例による永久磁石同期モータを用いた圧縮機の要部を示す構成図
 本発明の第1の実施の形態による永久磁石同期モータは、固定子ティース先端部に、少なくとも2つの小孔を対向面に沿う方向に並べて配置したものである。本実施の形態によれば、磁束の流れを調整でき、小孔を設けない場合と同等のトルクを維持しつつ、ティース方向(半径方向)力の変動を小さくでき、低振動による低騒音と、高効率を実現することができる。
 本発明の第2の実施の形態は、第1の実施の形態による永久磁石同期モータにおいて、固定子ティース基部の周方向の幅寸法中心をティース基部仮想中心線とし、複数の小孔からなる小孔群の仮想中心を、ティース基部仮想中心線より回転子の反回転方向となるように複数の小孔を配置したものである。本実施の形態によれば、特に、ティース方向(半径方向)力が局所的に高くなる配置角度に小孔群を配置でき、ティース方向(半径方向)力の変動低減とトルク低下抑制を両立できる。
 本発明の第3の実施の形態は、第1又は第2の実施の形態による永久磁石同期モータにおいて、小孔を3つ以上としたものである。本実施の形態によれば、磁束の流れを調整しやすく、小孔を設けない場合と同等のトルクを維持しつつ、ティース方向(半径方向)力の変動を小さくでき、低振動による低騒音と、高効率を実現することができる。
 本発明の第4の実施の形態は、第1から第3のいずれかの実施の形態による永久磁石同期モータにおいて、少なくとも1つの小孔の断面形状を、四角形、三角形、多角形、又は楕円形としたものである。本実施の形態によれば、四角形、三角形、多角形、又は楕円形が直線部を備えているため、小孔と小孔との間隔の最小距離を安定して確保でき、加工誤差による磁気抵抗のばらつきを抑制することができる。
 本発明の第5の実施の形態は、第1から第4のいずれかの実施の形態による永久磁石同期モータにおいて、それぞれの小孔を、対向面からの距離を異ならせて配置したものである。本実施の形態によれば、回転子の回転に伴う固定子に作用する磁束や、固定子ティース方向(半径方向)力に応じた配置とすることができ、磁束の流れを調整でき、小孔を設けない場合と同等のトルクを維持しつつ、ティース方向(半径方向)力の変動を小さくできる。
 本発明の第6の実施の形態は、第1から第5のいずれかの実施の形態による永久磁石同期モータにおいて、それぞれの小孔を、ティース基部仮想中心線に対して傾斜させて並べて配置したものである。本実施の形態によれば、小孔の周囲での磁束流れを変えることができる。
 本発明の第7の実施の形態は、第1から第6のいずれかの実施の形態による永久磁石同期モータにおいて、固定子は、複数枚の固定子コアを回転軸の軸方向に積層して構成され、一部の固定子コアには、小孔を形成し、他の固定子コアには、小孔を形成しないものである。本実施の形態によれば、小孔を形成しない固定子コアと、小孔を形成する固定子コアとでは、トルク脈動位相がずれるため、これらの固定子コアを積層することでトルクの脈動を低減できる。
 本発明の第8の実施の形態による圧縮機は、第7の実施の形態による永久磁石同期モータを用い、永久磁石同期モータと圧縮機構部とをシャフトで連結し、圧縮機構部側に、小孔を形成しない固定子コアを配置し、圧縮機構部から離れた側に、小孔を形成する固定子コアを配置するものである。本実施の形態によれば、圧縮機構部から離れた側に、ティース方向(半径方向)力の変動が小さい固定子コアを配置することで、回転子の支持の剛性が増加する。
 本発明の第9の実施の形態による圧縮機は、第1から第7のいずれかの実施の形態による永久磁石同期モータを用い、永久磁石同期モータと圧縮機構部とをシャフトで連結し、圧縮機構部によって冷媒を圧縮するものである。本実施の形態によれば、トルクを低下させることなく、低振動による低騒音と、高効率の圧縮機を実現できる。
 本発明の第10の実施の形態による機器は、第8又は第9の実施の形態による圧縮機、凝縮器、減圧装置、及び蒸発器を配管によって環状に接続したものである。本実施の形態によれば、トルクを低下させることなく、低振動による低騒音と、高効率な機器を実現できる。
 以下、本発明の一実施例について図面を参照しながら説明する。
 図1は本実施例による永久磁石同期モータを用いた圧縮機の構成を示す縦断面図である。
 本実施例による圧縮機10は、密閉容器1内に、冷媒ガスを圧縮する圧縮機構部2と、圧縮機構部2を駆動する永久磁石同期モータ3とを備えている。
 密閉容器1内は、圧縮機構部2によって、一方の容器内空間と他方の容器内空間に分割している。そして、他方の容器内空間には、永久磁石同期モータ3を配置している。
 また、他方の容器内空間は、永久磁石同期モータ3によって、圧縮機構側空間と貯オイル側空間に分割している。そして、貯オイル側空間には、貯オイル部4を配置している。
 密閉容器1には、吸入管5と吐出管6とが溶接によって固定されている。吸入管5と吐出管6とは密閉容器1の外部に通じ、冷凍サイクルを構成する部材と接続されている。吸入管5は密閉容器1の外部から冷媒ガスを導入し、吐出管6は一方の容器内空間から密閉容器1の外部に冷媒ガスを導出する。
 主軸受部材7aは、密閉容器1内に溶接や焼き嵌めなどで固定され、シャフト8(回転子3aの回転軸)を軸支している。シャフト8は、一方を主軸受部材7aで軸支され、他方を軸受7bで軸支される。この主軸受部材7aには、固定スクロール2aがボルト止めされている。固定スクロール2aと噛み合う旋回スクロール2bは、主軸受部材7aと固定スクロール2aとで挟み込まれている。固定スクロール2a及び旋回スクロール2bは、スクロール式の圧縮機構部2を構成している。
 旋回スクロール2bと主軸受部材7aとの間には、オルダムリングなどによる自転拘束機構9を設けている。自転拘束機構9は、旋回スクロール2bの自転を防止し、旋回スクロール2bが円軌道運動するように案内する。旋回スクロール2bは、シャフト8の上端に設けている偏心軸部8aにて偏心駆動される。この偏心駆動により、固定スクロール2aと旋回スクロール2bとの間に形成している圧縮室は、圧縮機構部2の外周から中央部に向かって移動し、容積を小さくして圧縮を行う。
 永久磁石同期モータ3は、回転軸8を中心に回転自在に配置された回転子3aと、回転子3aとエアギャップを介して配置された固定子3bとを有する。
 冷媒は、吸入管5から圧縮機構部2に吸入され、圧縮機構部2で圧縮される。その後、冷媒は、吐出管6から吐出される。
 本実施例による機器は、圧縮機10、凝縮器61、減圧装置62、及び蒸発器63が配管によって環状に接続されている。凝縮器61では吐出管6から吐出される冷媒を凝縮し、減圧装置62では凝縮器61で凝縮された冷媒を減圧し、蒸発器63では減圧装置62で減圧された冷媒を蒸発させる。
 蒸発器63で蒸発された冷媒は、吸入管5から圧縮機10に戻される。
 図2は本実施例による永久磁石同期モータの構成図であり、図2(a)は図1に示す圧縮機に装着された状態での断面図、図2(b)は図2(a)からシャフト及び回転子を外した状態を示す断面図、図2(c)は図2(a)から密閉容器及び巻線を外した状態を示す断面図である。
 回転子3aはシャフト8に固定され、固定子3bは密閉容器1に固定される。本実施例による圧縮機10では、回転子3aの回転軸はシャフト8となる。
 回転子3aは磁性体で構成され、回転子3aの内部には複数のスリットが設けられ、これらのスリットにはそれぞれ永久磁石11が配置されている。
 固定子3bは、複数枚の固定子コア30が回転子3aの回転軸8の軸方向に積層されて構成される。固定子コア30は、回転子3aの回転軸8を中心とした環状の固定子ヨーク31と、固定子ヨーク31から回転子3aに向かって延出した複数の固定子ティース32と、固定子ティース32間に形成されるスロット40とを有している。スロット40には巻線50が配置される。
 図3は本実施例による永久磁石同期モータの固定子コアを示す要部構成図である。
 本実施例による固定子コア30の固定子ティース32は、絶縁材(図示せず)を介して巻線50(図2参照)が巻かれる固定子ティース基部32aと、固定子ティース基部32aの先端で回転子3a(図2参照)との対向面35を形成する固定子ティース先端部32bとを有している。
 固定子ティース先端部32bは、固定子ティース基部32aの周方向の幅寸法tよりも両側に張り出して形成される。
 固定子ティース先端部32bには、少なくとも2つの小孔70a、70bを対向面35に沿う方向に並べて配置している。ここで、小孔70a、70bは、磁気抵抗を高めるものであり、非磁性であれば効果が高く、空隙でも樹脂が埋まっていてもよい。
 これらの小孔70a、70bを配置することで、磁束の流れを調整でき、小孔を設けない場合と同等のトルクを維持しつつ、ティース方向(半径方向)力の変動を小さくでき、低振動による低騒音と、高効率を実現することができる。
 固定子ティース基部32aの周方向の幅寸法t中心をティース基部仮想中心線Aとすると、複数の小孔70a、70bからなる小孔群70の仮想中心70xを、ティース基部仮想中心線Aより回転子3aの反回転方向となるように複数の小孔70a、70bを配置する。
 このように、複数の小孔70a、70bを配置することで、特に、ティース方向(半径方向)力が局所的に高くなる配置角度に小孔群70を配置でき、ティース方向(半径方向)力の変動低減とトルク低下抑制を両立できる。
 例えば、6極9ティースの永久磁石同期モータ3では、仮想中心70xがティース基部仮想中心線Aより回転子3aの反回転方向に2°~3°程度ずれた位置となるように、複数の小孔70a、70bを配置することが好ましい。
 なお、小孔70aの直径を70at、小孔70bの直径を70btとすると、直径70atと直径70btは、1mm以上、直径70at+直径70bt≦幅寸法t/2、小孔70aと小孔70bとの間は0.5mm以上、小孔70aと対向面35との間は0.5mm以上、小孔70bと対向面35との間は0.5mm以上であることが好ましい。
 図4は本実施例によるティース方向(半径方向)力とトルクとを示すグラフである。
 図4(a)は、1つの固定子ティース先端部32bに作用するティース方向(半径方向)力と回転子3aの回転角との関係を示している。従来例は、小孔を設けていないものである。
 固定子ティース先端部32bは、回転子3aが回転することで回転子磁極数に応じた周期成分のティース方向(半径方向)力を受ける。本実施例は、6極モータであり、1つの固定子ティース先端部に作用するティース方向(半径方向)力は、回転角度60°で一周期成分を有するティース方向(半径方向)力である。
 また、本実施例では、3相モータであり、固定子ティース先端部32bに作用する力の変動は、電気角で120°、回転角で40°ティース方向(半径方向)力の変動位相がずれる。
 ティース方向(半径方向)力の変動幅が大きいことは、固定子ティース32の振動が大きくモータの振動も大きくなるので、固定子3bの外周を圧縮機10の外壁内に接触固定させている一般的なロータリ圧縮機やスクロール圧縮機の振動が大きい要因となる。
 ティース方向(半径方向)力の変動幅を低減させることで、低振動なモータおよび圧縮機10を実現できる。
 ティース方向(半径方向)力は、固定子ティース先端部32bに均一に作用せず、回転子3aの回転に伴い局所的に作用する箇所が変化する。
 本実施例によれば、図4(a)に示すように、回転子3aの回転に伴い局所的に作用するティース方向(半径方向)力を効果的に低減することができる。ティース方向(半径方向)の変動力比は従来例と比較して86%である。
 一方、図4(b)に示すように、従来例のトルクと本実施例のトルクを比較すると、本実施例のトルクの最大値、最小値は増加しているが平均トルクは従来モータと同等であることが分かる。
 図5は、小孔の配置角度に対するティース方向(半径方向)力の変動幅とトルクの関係を示すグラフである。図5では、本実施例で示した2つの小孔70a、70bの配置を変更した。固定子ティース基部仮想中心線A上を小孔の配置角度0°とし、回転方向側を負の角度、半回転方向側を正の角度で示している。
 図5に示すように、小孔70a、70bの配置角度を変えると、ティース方向(半径方向)力の変動幅とトルクは変化する。ここで、ティース方向(半径方向)力の変動幅を小さくすることは、振動低減に有効である。
 図5に示すA区間(概ね―5°~9°)に2つの小孔70a、70bを配置すると、ティース方向(半径方向)力の変動幅が低減する。特に、反回転方向3°程度に小孔70a、70bを配置するとティース方向(半径方向)力の変動幅の低減効果が大きい。
 一方、トルクは、-3°~7°小孔無と同等である。
 よって、小孔70a、70bをティース基部仮想中心線Aより反回転方向3°程に配置することで、低振動と高トルクを両立できる。
 図6及び図7は、それぞれ他の実施例による永久磁石同期モータの固定子コアを示す要部構成図である。なお、小孔以外の構成は上記実施例と同一であるので説明を省略する。
 図6(a)に示す固定子コア30の固定子ティース先端部32bには、3つの小孔70a、70b、70cを設けている。
 このように、小孔70a、70b、70cを3つ以上とすることもできる。3つ以上の小孔70a、70b、70cを設けることで、磁束の流れを調整しやすく、小孔70a、70b、70cを設けない場合と同等のトルクを維持しつつ、ティース方向(半径方向)力の変動を小さくでき、低振動による低騒音と、高効率を実現することができる。
 図6(b)に示す固定子コア30の固定子ティース先端部32bには、断面形状を四角形とした小孔71a、71bを設けている。図6(a)では、2つの小孔71a、71bを設けた場合を示しているが、3つ以上とすることもできる。
 図6(c)に示す固定子コア30の固定子ティース先端部32bには、断面形状を三角形とした小孔72a、72bを設け、三角形の直線部を対向面35側としている。図6(c)では、2つの小孔72a、72bを設けた場合を示しているが、3つ以上とすることもできる。
 図6(d)に示す固定子コア30の固定子ティース先端部32bには、断面形状を三角形とした小孔72a、72bを設け、三角形の頂点部を対向面35側としている。図6(d)では、2つの小孔72a、72bを設けた場合を示しているが、3つ以上とすることもできる。
 図6(e)に示す固定子コア30の固定子ティース先端部32bには、断面形状を三角形とした小孔72a、72bを設け、小孔72aは三角形の直線部を対向面35側とし、小孔72bは三角形の頂点部を対向面35側としている。図6(e)では、2つの小孔72a、72bを設けた場合を示しているが、3つ以上とすることもできる。
 なお、図6(b)では断面形状を四角形とした小孔71a、71bを示し、図6(c)から図6(e)では、断面形状を三角形とした小孔72a、72bを示したが、断面形状は、その他の多角形であってもよい。
 図7(a)に示す固定子コア30の固定子ティース先端部32bには、断面形状を楕円形とした小孔73a、73bを設け、楕円の長辺をティース方向(半径方向)としている。図7(a)では、2つの小孔73a、73bを設けた場合を示しているが、3つ以上とすることもできる。
 図7(b)に示す固定子コア30の固定子ティース先端部32bには、断面形状を楕円形とした小孔73a、73bを設け、楕円の長辺を回転方向としている。図7(b)では、2つの小孔73a、73bを設けた場合を示しているが、3つ以上とすることもできる。
 図7(c)に示す固定子コア30の固定子ティース先端部32bには、断面形状を楕円形とした小孔73a、73bを設け、楕円の長辺をティース基部仮想中心線Aに対して傾斜させた方向としている。図7(c)では、2つの小孔73a、73bを設けた場合を示しているが、3つ以上とすることもできる。
 図6(a)から図7(c)に示すように、少なくとも1つの小孔71a、71b、72a、72b、73a、73bの断面形状を、四角形、三角形、多角形、又は楕円形とすることができ、四角形、三角形、多角形、又は楕円形が直線部を備えているため、小孔71a、71b、72a、72b、73a、73bと小孔71a、71b、72a、72b、73a、73bとの間隔の最小距離を安定して確保でき、加工誤差による磁気抵抗のばらつきを抑制することができる。
 また、それぞれの小孔73a、73bを、ティース基部仮想中心線Aに対して傾斜させて並べて配置することで、小孔73a、73bの周囲での磁束流れを変えることができる。
 図7(d)に示す固定子コア30の固定子ティース先端部32bには、2つの小孔70a、70bを、対向面35からの距離を異ならせて配置している。
 図7(e)に示す固定子コア30の固定子ティース先端部32bには、3つの小孔70a、70b、70cを設け、2つの小孔70a、70bに対して小孔70cを、対向面35からの距離を異ならせて配置している。
 図7(d)及び図7(e)のように小孔70a、70b、70cを配置することで、回転子3aの回転に伴う固定子3bに作用する磁束や、固定子ティース32方向力に応じた配置とすることができ、磁束の流れを調整でき、小孔70a、70b、70cを設けない場合と同等のトルクを維持しつつ、ティース方向(半径方向)力の変動を小さくできる。
 図7(f)に示す固定子コア30の固定子ティース先端部32bには、2つの小孔70a、70dを設け、2つの小孔70a、70dの大きさを異ならせている。このように、小孔70a、70dの大きさを異ならせても良い。なお、図6(a)から図7(e)においても、小孔70a、70b、70c、70d、71a、71b、72a、72b、73a、73bの大きさを異ならせてもよい。
 このような本実施例による永久磁石同期モータ3を用いることで、トルクを低下させることなく、低振動による低騒音と、高効率の圧縮機10を実現できる。
 また、このような本実施例による圧縮機10を用いた機器は、低振動による低騒音と、高効率を実現できる。
 図8は本発明の他の実施例による永久磁石同期モータを用いた圧縮機の要部を示す構成図である。
 図8(a)では、冷媒ガスを圧縮する圧縮機構部2と、圧縮機構部2を駆動する永久磁石同期モータ3との配置を示している。圧縮機構部2と永久磁石同期モータ3とはシャフト8で連結している。圧縮機構部2はロータリ圧縮機構である。
 永久磁石同期モータ3は、回転子3aと固定子3bとを有している。固定子3bは、複数枚の固定子コア30が回転子3aの回転軸8の軸方向に積層されて構成される。
 固定子コア30は、図2を用いて説明したように、環状の固定子ヨーク31と、複数の固定子ティース32とを有し、固定子ティース32間にはスロット40を形成し、スロット40には巻線50が配置される。
 本実施例では、固定子コア30として、小孔70a、70b、70cを形成する固定子コア30aと、小孔70a、70b、70cを形成しない固定子コア30bとを用いている。
 図8(b)は、小孔70a、70b、70cを形成する固定子コア30aを示し、図8(c)は、小孔70a、70b、70cを形成しない固定子コア30bを示している。なお、図8(b)に示す固定子コア30aは、図6(a)で既に説明した固定子コア30である。
 そして、図8(a)に示すように、圧縮機構部2側に、小孔70a、70b、70cを形成しない固定子コア30bを積層し、圧縮機構部2から離れた側に、小孔70a、70b、70cを形成する固定子コア30aを積層する。
 固定子コア30aのティース方向(半径方向)力の変動は固定子コア30bのティース方向(半径方向)力より小さい。従って、特に回転子3aが圧縮機構部2で片持ち支持されているロータリ圧縮機では、圧縮機構部2から遠い位置に、ティース方向(半径方向)力の変動が小さい固定子コア30aを配置することで、シャフト8のたわみを小さくできる。
 回転子3aが圧縮機構部2で片持ち支持されている場合には、シャフト8のたわみによる傾きでエアギャップの偏芯が発生しやすく、圧縮機構部2から遠い位置ほどエアギャップが狭くなるので摺動損が増加する。本実施例のように、エアギャップが狭くなる位置に固定子コア30aを配置することで、そこに働くティース方向(半径方向)の磁気吸引力を小さくできるため、摺動損低減や、シャフト8のたわみの減少により、低振動による低騒音で信頼性の高い圧縮機10を提供できる。
 なお、図8(a)では、圧縮機構部2を永久磁石同期モータ3の下方に配置した圧縮機10を示しているが、圧縮機構部2を永久磁石同期モータ3の上方に配置した圧縮機であっても、あるいは、圧縮機構部2と永久磁石同期モータ3とを横方向に配置して用いる圧縮機であっても同様である。
 また、図8(b)では、図6(a)に示す固定子コア30を示しているが、図3、図6(b)から図6(e)、及び図7(a)から図7(f)に示す固定子コア30を用いても同様である。
 図9は図8に示す実施例によるティース方向(半径方向)力とトルクとを示すグラフである。
 図9(a)は、1つの固定子ティース先端部32bに作用するティース方向(半径方向)力と回転子3aの回転角との関係を示している。比較例1は固定子コア30aだけを用いたもの、比較例2は小孔を設けていない固定子コア30bだけを用いたものである。
 固定子ティース先端部32bは、回転子3aが回転することで回転子磁極数に応じた周期成分のティース方向(半径方向)力を受ける。本実施例は、6極モータであり、1つの固定子ティース先端部に作用するティース方向(半径方向)力は、回転角度60°で一周期成分を有するティース方向(半径方向)力である。
 また、本実施例では、3相モータであり、固定子ティース先端部32bに作用する力の変動は、電気角で120°、回転角で40°ティース方向(半径方向)力の変動位相がずれる。
 ティース方向(半径方向)力の変動幅が大きいことは、固定子ティース32の振動が大きくモータの振動も大きくなるので、固定子3bの外周を圧縮機10の外壁内に接触固定させている一般的なロータリ圧縮機やスクロール圧縮機の振動が大きい要因となる。
 ティース方向(半径方向)力の変動幅を低減させることで、低振動なモータおよび圧縮機10を実現できる。
 ティース方向(半径方向)力は、固定子ティース先端部32bに均一に作用せず、回転子3aの回転に伴い局所的に作用する箇所が変化する。
 本実施例によれば、図9(a)に示すように、回転子3aの回転に伴い局所的に作用するティース方向(半径方向)力を効果的に低減することができる。ティース方向(半径方向)の変動力比は、従来例である固定子コア30bのみの比較例2と比較して固定子コア30aのみの比較例1では91%であり、両者の平均変動力比は95%である。
 一方、図9(b)に示すように、固定子コア30aのみで固定子コア30を構成した比較例1、固定子コア30bのみで固定子コア30を構成した比較例2、及び本実施例(固定子コア30aと固定子コア30b)のトルクを比較すると、本実施例のトルクの最大値、最小値は大幅に減少し、トルク脈動が半減していることが分かる。トルク脈動の低減は,ねじれ方向の振動を低減し,指令電流に対するトルクの変動が小さいので制御性の向上にも寄与する。
 図10は本発明の更に他の実施例による永久磁石同期モータを用いた圧縮機の要部を示す構成図である。
 図10(a)では、冷媒ガスを圧縮する圧縮機構部2と、圧縮機構部2を駆動する永久磁石同期モータ3との配置を示している。圧縮機構部2と永久磁石同期モータ3とはシャフト8で連結している。圧縮機構部2は図1に示すスクロール圧縮機構である。
 永久磁石同期モータ3は、回転子3aと固定子3bとを有している。固定子3bは、複数枚の固定子コア30が回転子3aの回転軸8の軸方向に積層されて構成される。
 固定子コア30は、図2を用いて説明したように、環状の固定子ヨーク31と、複数の固定子ティース32とを有し、固定子ティース32間にはスロット40を形成し、スロット40には巻線50が配置される。
 本実施例では、固定子コア30として、小孔70a、70b、70cを形成する固定子コア30aと、小孔70a、70b、70cを形成しない固定子コア30bとを用いている。
 図10(b)は、小孔70a、70b、70cを形成する固定子コア30aを示し、図10(c)は、小孔70a、70b、70cを形成しない固定子コア30bを示している。なお、図10(b)に示す固定子コア30aは、図6(a)で既に説明した固定子コア30である。
 そして、図10(a)に示すように、圧縮機構部2側と、圧縮機構部2から離れた側に、小孔70a、70b、70cを形成しない固定子コア30bを積層し、これらの固定子コア30bの間に、小孔70a、70b、70cを形成する固定子コア30aを積層する。
 固定子コア30aのティース方向(半径方向)力の変動は固定子コア30bのティース方向(半径方向)力より小さい。従って、特に回転子3aが圧縮機構部2と軸受7bで両持ち支持されているスクロール圧縮機では、圧縮機構部2から遠い位置にティース方向(半径方向)力の変動が小さい固定子コア30aを配置することで、シャフト8のたわみを小さくできる。
 回転子3aが圧縮機構部2と軸受7bとで両持ち支持されている場合には、軸のたわみが生じやすい軸支持間の中央近傍に、固定子コア30aを配置することでシャフト8のたわみの減少により、低振動による低騒音で信頼性の高い圧縮機10を提供できる。なお、圧縮機構部2側が軸受7b側より大径や軸長が長い高剛性のシャフト8を用いる場合には、圧縮機構部2側に固定子コア30bを配置し、圧縮機構部2側から遠い位置に固定子コア30aを配置してもよい。
 なお、図10(a)では、圧縮機構部2を永久磁石同期モータ3の上方に配置した圧縮機を示しているが、圧縮機構部2を永久磁石同期モータ3の下方に配置した圧縮機であっても、あるいは、圧縮機構部2と永久磁石同期モータ3とを横方向に配置して用いる圧縮機10であっても同様である。
 また、図10(b)では、図6(a)に示す固定子コア30を示しているが、図3、図6(b)から図6(e)、及び図7(a)から図7(f)に示す固定子コア30を用いても同様である。
 なお、周方向に分割され固定子に高密度巻線を施した後に周方向に配列して合体した、いわゆる分割コアや、固定子ヨークの一部が接合した状態で高密度巻線を施した後にヨーク部を変形や可動させて周方向に密着させた固定子を用いたモータに、本実施の形態で示した小孔配置コアを用いてもよい。
 分割コア固定子や固定子ヨークの一部が接合した固定子は、周方向に一体の一般的な固定子と比べて剛性が低い。また、高密度巻線のためティースとヨークの角度が直角となったT字状の固定子では、ティースとティースの中間のヨーク部の幅寸法が小さくなることでも剛性が低い。本発明の永久磁石同期モータは、分割コアに対しても半径方向力の変動を小さくでき、低振動による低騒音と、高効率を実現することができる。
 本発明の永久磁石同期モータは、スクロール圧縮機やロータリ圧縮機に適しているが、レシプロ式圧縮機やその他の圧縮機にも用いることができる。
 1 密閉容器
 2 圧縮機構部
 2a 固定スクロール
 2b 旋回スクロール
 3 永久磁石同期モータ
 3a 回転子
 3b 固定子
 4 貯オイル部
 5 吸入管
 6 吐出管
 7a 主軸受部材
 7b 軸受
 8 シャフト(回転子の回転軸)
 8a 偏心軸部
 9 自転拘束機構
 10 圧縮機
 11 永久磁石
 30、30a、30b 固定子コア
 31 固定子ヨーク
 32 固定子ティース
 32a 固定子ティース基部
 32b 固定子ティース先端部
 35 対向面
 40 スロット
 50 巻線
 61 凝縮器
 62 減圧装置
 63 蒸発器
 70 小孔群
 70a、70b、70c、70d、71a、71b、72a、72b、73a、73b 小孔
 70x 仮想中心
 t 幅寸法
 A ティース基部仮想中心線

Claims (10)

  1.  回転軸を中心に回転自在に配置された回転子と、
    前記回転子とエアギャップを介して配置された固定子と
    を有し、
    前記固定子は、
    前記回転軸を中心とした環状の固定子ヨークと、
    前記固定子ヨークから前記回転子に向かって延出した複数の固定子ティースと、
    前記固定子ティース間に形成されるスロットと
    を有し、
    前記スロットには巻線が配置され、
    前記固定子ティースは、
    前記巻線が巻かれる固定子ティース基部と、
    前記固定子ティース基部の先端で前記回転子との対向面を形成する固定子ティース先端部と
    を有し、
    前記固定子ティース先端部に、少なくとも2つの小孔を前記対向面に沿う方向に並べて配置した
    ことを特徴とする永久磁石同期モータ。
  2.  前記固定子ティース基部の周方向の幅寸法中心をティース基部仮想中心線とし、
    複数の前記小孔からなる小孔群の仮想中心を、前記ティース基部仮想中心線より前記回転子の反回転方向となるように複数の前記小孔を配置した
    ことを特徴とする請求項1に記載の永久磁石同期モータ。
  3.  前記小孔を3つ以上とした
    ことを特徴とする請求項1又は請求項2に記載の永久磁石同期モータ。
  4.  少なくとも1つの前記小孔の断面形状を、四角形、三角形、多角形、又は楕円形とした
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の永久磁石同期モータ。
  5.  それぞれの前記小孔を、前記対向面からの距離を異ならせて配置した
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の永久磁石同期モータ。
  6.  それぞれの前記小孔を、前記ティース基部仮想中心線に対して傾斜させて並べて配置した
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の永久磁石同期モータ。
  7.  前記固定子は、複数枚の固定子コアを前記回転軸の軸方向に積層して構成され、
    一部の前記固定子コアには、前記小孔を形成し、
    他の前記固定子コアには、前記小孔を形成しない
    ことを特徴とする請求項1から請求項6のいずれか1項に記載の永久磁石同期モータ。
  8.  請求項7に記載の永久磁石同期モータを用い、
    前記永久磁石同期モータと圧縮機構部とをシャフトで連結し、
    前記圧縮機構部側に、前記小孔を形成しない前記固定子コアを配置し、
    前記圧縮機構部から離れた側に、前記小孔を形成する前記固定子コアを配置する
    ことを特徴とする圧縮機。
  9.  請求項1から請求項7のいずれか1項に記載の永久磁石同期モータを用い、
    前記永久磁石同期モータと圧縮機構部とをシャフトで連結し、
    前記圧縮機構部によって冷媒を圧縮する
    ことを特徴とする圧縮機。
  10.  請求項8又は請求項9に記載の圧縮機、凝縮器、減圧装置、及び蒸発器を配管によって環状に接続した
    ことを特徴とする機器。
PCT/JP2021/043826 2021-02-17 2021-11-30 永久磁石同期モータ、圧縮機、及び機器 WO2022176307A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180071435.3A CN116368717A (zh) 2021-02-17 2021-11-30 永磁同步电机、压缩机和设备
JP2023500547A JPWO2022176307A1 (ja) 2021-02-17 2021-11-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021023261 2021-02-17
JP2021-023261 2021-02-17

Publications (1)

Publication Number Publication Date
WO2022176307A1 true WO2022176307A1 (ja) 2022-08-25

Family

ID=82931381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043826 WO2022176307A1 (ja) 2021-02-17 2021-11-30 永久磁石同期モータ、圧縮機、及び機器

Country Status (3)

Country Link
JP (1) JPWO2022176307A1 (ja)
CN (1) CN116368717A (ja)
WO (1) WO2022176307A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153471A (ja) * 2001-11-08 2003-05-23 Matsushita Electric Ind Co Ltd 電動機
JP2010114952A (ja) * 2008-11-04 2010-05-20 Mitsubishi Electric Corp 電動機及び圧縮機及び送風機及び換気扇
JP2010220324A (ja) * 2009-03-13 2010-09-30 Mitsubishi Electric Corp 電動機及び圧縮機及び空気調和機
JP2014155315A (ja) * 2013-02-08 2014-08-25 Hitachi Appliances Inc 交流整流子電動機、および、それを用いた電動送風機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153471A (ja) * 2001-11-08 2003-05-23 Matsushita Electric Ind Co Ltd 電動機
JP2010114952A (ja) * 2008-11-04 2010-05-20 Mitsubishi Electric Corp 電動機及び圧縮機及び送風機及び換気扇
JP2010220324A (ja) * 2009-03-13 2010-09-30 Mitsubishi Electric Corp 電動機及び圧縮機及び空気調和機
JP2014155315A (ja) * 2013-02-08 2014-08-25 Hitachi Appliances Inc 交流整流子電動機、および、それを用いた電動送風機

Also Published As

Publication number Publication date
JPWO2022176307A1 (ja) 2022-08-25
CN116368717A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
JP4841536B2 (ja) モータ及びそれを備えた冷媒圧縮機
TWI431901B (zh) Self-starting permanent magnet synchronous motor, and the use of its compressor and refrigeration cycle
TWI569560B (zh) A permanent magnet type rotating machine, and a compressor using the same
KR101242290B1 (ko) 압축기용 전동기 및 압축기 및 냉동 사이클 장치
JP6680779B2 (ja) 圧縮機、および冷凍サイクル装置
JP5591099B2 (ja) 圧縮機および冷凍サイクル装置
JP6742402B2 (ja) 電動機、圧縮機、及び冷凍サイクル装置
US20120082573A1 (en) Aluminum wound line-start brushless permanent magnet motor
US11863020B2 (en) Motor, compressor, and air conditioner
JP2007270696A (ja) 容積形圧縮機
TWI655828B (zh) Permanent magnet rotary electric machine and compressor using same
JP2010226830A (ja) 電動機及びそれを搭載した圧縮機
JP4285137B2 (ja) 流体機械
WO2022176308A1 (ja) 永久磁石同期モータ、圧縮機、及び機器
WO2019043850A1 (ja) ロータ、電動機、圧縮機および空気調和装置
WO2022176307A1 (ja) 永久磁石同期モータ、圧縮機、及び機器
JP6297220B2 (ja) 圧縮機用電動機、圧縮機、および冷凍サイクル装置
JP6470598B2 (ja) 永久磁石式回転電機、並びにそれを用いる圧縮機
JP6723430B2 (ja) 回転電機、圧縮機および冷凍サイクル装置
WO2024176545A1 (ja) 電動機、圧縮機、及び機器
JP5871469B2 (ja) 電動モータおよびそれを用いた電動圧縮機
WO2024176546A1 (ja) 電動機、圧縮機、及び機器
WO2022180717A1 (ja) 電動機、圧縮機および冷凍サイクル装置
WO2018225293A1 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP2024153763A (ja) 電動機、圧縮機、及び機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926735

Country of ref document: EP

Kind code of ref document: A1