WO2022158491A1 - 粉末組成物 - Google Patents
粉末組成物 Download PDFInfo
- Publication number
- WO2022158491A1 WO2022158491A1 PCT/JP2022/001817 JP2022001817W WO2022158491A1 WO 2022158491 A1 WO2022158491 A1 WO 2022158491A1 JP 2022001817 W JP2022001817 W JP 2022001817W WO 2022158491 A1 WO2022158491 A1 WO 2022158491A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- zirconia
- content
- stabilized
- yttrium
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 619
- 239000000203 mixture Substances 0.000 title claims abstract description 270
- 239000006104 solid solution Substances 0.000 claims abstract description 180
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 109
- 229910052747 lanthanoid Inorganic materials 0.000 claims abstract description 108
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 108
- 150000002602 lanthanoids Chemical class 0.000 claims abstract description 105
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 85
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 34
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 claims abstract description 32
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 32
- 239000011575 calcium Substances 0.000 claims abstract description 30
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 29
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 29
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000011777 magnesium Substances 0.000 claims abstract description 29
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 28
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 643
- 239000008187 granular material Substances 0.000 claims description 244
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 82
- 229910052691 Erbium Inorganic materials 0.000 claims description 80
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 80
- 229910052771 Terbium Inorganic materials 0.000 claims description 75
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 75
- 239000002245 particle Substances 0.000 claims description 67
- 239000010936 titanium Substances 0.000 claims description 62
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 49
- 229910052719 titanium Inorganic materials 0.000 claims description 48
- 229910017052 cobalt Inorganic materials 0.000 claims description 45
- 239000010941 cobalt Substances 0.000 claims description 45
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 45
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 30
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 28
- 229910052779 Neodymium Inorganic materials 0.000 claims description 27
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 27
- -1 oxyhydroxides Chemical class 0.000 claims description 17
- 150000001805 chlorine compounds Chemical class 0.000 claims description 12
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 11
- 229910052772 Samarium Inorganic materials 0.000 claims description 11
- 229910052775 Thulium Inorganic materials 0.000 claims description 11
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 11
- 150000004679 hydroxides Chemical class 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 11
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 11
- 150000003623 transition metal compounds Chemical class 0.000 claims description 11
- 150000002823 nitrates Chemical class 0.000 claims description 7
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 7
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 238000001354 calcination Methods 0.000 abstract description 27
- 229910052751 metal Inorganic materials 0.000 description 94
- 239000002184 metal Substances 0.000 description 87
- 238000004040 coloring Methods 0.000 description 73
- 238000000034 method Methods 0.000 description 70
- 235000019646 color tone Nutrition 0.000 description 62
- 230000000087 stabilizing effect Effects 0.000 description 47
- 239000002002 slurry Substances 0.000 description 41
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 41
- 238000005259 measurement Methods 0.000 description 39
- 238000005245 sintering Methods 0.000 description 33
- 238000002156 mixing Methods 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 26
- 239000013078 crystal Substances 0.000 description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 19
- 229920005822 acrylic binder Polymers 0.000 description 19
- 238000000465 moulding Methods 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- 239000011572 manganese Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 229910001868 water Inorganic materials 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 15
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 14
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 14
- 238000009694 cold isostatic pressing Methods 0.000 description 13
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(III) oxide Inorganic materials O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 13
- 238000010304 firing Methods 0.000 description 13
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 13
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 12
- 208000037584 hereditary sensory and autonomic neuropathy Diseases 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 238000005469 granulation Methods 0.000 description 11
- 238000010298 pulverizing process Methods 0.000 description 11
- 229910010413 TiO 2 Inorganic materials 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 230000003179 granulation Effects 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 229920000178 Acrylic resin Polymers 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 7
- 229910000428 cobalt oxide Inorganic materials 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 6
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 6
- 239000010987 cubic zirconia Substances 0.000 description 6
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910003451 terbium oxide Inorganic materials 0.000 description 6
- SCRZPWWVSXWCMC-UHFFFAOYSA-N terbium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tb+3].[Tb+3] SCRZPWWVSXWCMC-UHFFFAOYSA-N 0.000 description 6
- 229910052693 Europium Inorganic materials 0.000 description 5
- 229910052688 Gadolinium Inorganic materials 0.000 description 5
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 5
- 229910052773 Promethium Inorganic materials 0.000 description 5
- 229910052769 Ytterbium Inorganic materials 0.000 description 5
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 5
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 5
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 5
- 238000007873 sieving Methods 0.000 description 5
- 238000001694 spray drying Methods 0.000 description 5
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910018871 CoO 2 Inorganic materials 0.000 description 4
- 229910018916 CoOOH Inorganic materials 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 229910003174 MnOOH Inorganic materials 0.000 description 4
- 229910010275 TiOOH Inorganic materials 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- HDGGAKOVUDZYES-UHFFFAOYSA-K erbium(iii) chloride Chemical compound Cl[Er](Cl)Cl HDGGAKOVUDZYES-UHFFFAOYSA-K 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 4
- 238000013001 point bending Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 238000003826 uniaxial pressing Methods 0.000 description 4
- DEXZEPDUSNRVTN-UHFFFAOYSA-K yttrium(3+);trihydroxide Chemical compound [OH-].[OH-].[OH-].[Y+3] DEXZEPDUSNRVTN-UHFFFAOYSA-K 0.000 description 4
- KEDNSMBVYXSBFC-UHFFFAOYSA-N 6-bromo-2-chloroquinoline-4-carbonyl chloride Chemical compound C1=C(Br)C=C2C(C(=O)Cl)=CC(Cl)=NC2=C1 KEDNSMBVYXSBFC-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 229910002637 Pr6O11 Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000000292 calcium oxide Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000007580 dry-mixing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920003196 poly(1,3-dioxolane) Polymers 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000001272 pressureless sintering Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000007569 slipcasting Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- GFISHBQNVWAVFU-UHFFFAOYSA-K terbium(iii) chloride Chemical compound Cl[Tb](Cl)Cl GFISHBQNVWAVFU-UHFFFAOYSA-K 0.000 description 3
- 229940105965 yttrium bromide Drugs 0.000 description 3
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 2
- 241000588731 Hafnia Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 102220509660 SAM and SH3 domain-containing protein 1_Q30A_mutation Human genes 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- RCWAXFGXJSYOSZ-UHFFFAOYSA-N erbium;trihydrate Chemical compound O.O.O.[Er] RCWAXFGXJSYOSZ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 2
- 229940105970 yttrium iodide Drugs 0.000 description 2
- 229910000347 yttrium sulfate Inorganic materials 0.000 description 2
- LFWQXIMAKJCMJL-UHFFFAOYSA-K yttrium(3+);triiodide Chemical compound I[Y](I)I LFWQXIMAKJCMJL-UHFFFAOYSA-K 0.000 description 2
- RTAYJOCWVUTQHB-UHFFFAOYSA-H yttrium(3+);trisulfate Chemical compound [Y+3].[Y+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RTAYJOCWVUTQHB-UHFFFAOYSA-H 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- UNMYWSMUMWPJLR-UHFFFAOYSA-L Calcium iodide Chemical compound [Ca+2].[I-].[I-] UNMYWSMUMWPJLR-UHFFFAOYSA-L 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 229910020514 Co—Y Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- XIZSDUVQFMNRPH-UHFFFAOYSA-N OOO.[Er] Chemical compound OOO.[Er] XIZSDUVQFMNRPH-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910010068 TiCl2 Inorganic materials 0.000 description 1
- 229910008558 TiSO4 Inorganic materials 0.000 description 1
- 241001296405 Tiso Species 0.000 description 1
- PZKRHHZKOQZHIO-UHFFFAOYSA-N [B].[B].[Mg] Chemical compound [B].[B].[Mg] PZKRHHZKOQZHIO-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 229910001640 calcium iodide Inorganic materials 0.000 description 1
- 229940046413 calcium iodide Drugs 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 239000005548 dental material Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(III) oxide Inorganic materials O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 description 1
- GZTUDAKVGXUNIM-UHFFFAOYSA-K erbium(3+);tribromide Chemical compound Br[Er](Br)Br GZTUDAKVGXUNIM-UHFFFAOYSA-K 0.000 description 1
- YBYGDBANBWOYIF-UHFFFAOYSA-N erbium(3+);trinitrate Chemical compound [Er+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YBYGDBANBWOYIF-UHFFFAOYSA-N 0.000 description 1
- SYDXSHCNMKOQFW-UHFFFAOYSA-H erbium(3+);trisulfate Chemical compound [Er+3].[Er+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O SYDXSHCNMKOQFW-UHFFFAOYSA-H 0.000 description 1
- RSEIMSPAXMNYFJ-UHFFFAOYSA-N europium(III) oxide Inorganic materials O=[Eu]O[Eu]=O RSEIMSPAXMNYFJ-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- YJVUGDIORBKPLC-UHFFFAOYSA-N terbium(3+);trinitrate Chemical compound [Tb+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YJVUGDIORBKPLC-UHFFFAOYSA-N 0.000 description 1
- UFPWIQQSPQSOKM-UHFFFAOYSA-H terbium(3+);trisulfate Chemical compound [Tb+3].[Tb+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O UFPWIQQSPQSOKM-UHFFFAOYSA-H 0.000 description 1
- AZNZWHYYEIQIOC-UHFFFAOYSA-K terbium(iii) bromide Chemical compound [Br-].[Br-].[Br-].[Tb+3] AZNZWHYYEIQIOC-UHFFFAOYSA-K 0.000 description 1
- OJXRJPFRTRETRN-UHFFFAOYSA-K terbium(iii) iodide Chemical compound I[Tb](I)I OJXRJPFRTRETRN-UHFFFAOYSA-K 0.000 description 1
- DIRSQPIRPNAECV-UHFFFAOYSA-N terbium;trihydrate Chemical compound O.O.O.[Tb] DIRSQPIRPNAECV-UHFFFAOYSA-N 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- ZIKATJAYWZUJPY-UHFFFAOYSA-N thulium (III) oxide Inorganic materials [O-2].[O-2].[O-2].[Tm+3].[Tm+3] ZIKATJAYWZUJPY-UHFFFAOYSA-N 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
- C04B35/4885—Composites with aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
- A61C13/082—Cosmetic aspects, e.g. inlays; Determination of the colour
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/08—Artificial teeth; Making same
- A61C13/083—Porcelain or ceramic teeth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
- A61C5/70—Tooth crowns; Making thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/818—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/822—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising rare earth metal oxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
- A61K6/824—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising transition metal oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
- C01G25/02—Oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0022—Blanks or green, unfinished dental restoration parts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
- C04B2235/3277—Co3O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/444—Halide containing anions, e.g. bromide, iodate, chlorite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/448—Sulphates or sulphites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/549—Particle size related information the particle size being expressed by crystallite size or primary particle size
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/608—Green bodies or pre-forms with well-defined density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/61—Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/725—Metal content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9661—Colour
Definitions
- the present disclosure mainly relates to a powder composition made of zirconia and its use.
- Zirconia is used in dental prostheses such as crowns and bridges due to its mechanical properties and high esthetics based on translucency.
- a dental prosthesis is produced by grinding a calcined body (also called a semi-sintered body, pre-sintered body, or blank) produced by calcining a zirconia molded body (green compact) using a CAD/CAM device. be done. Therefore, the calcined body is required to have mechanical properties suitable for cutting.
- Patent Document 1 discloses a Vickers hardness of 25 to 150 as mechanical properties suitable for cutting.
- the color tone of natural teeth differs from patient to patient and tooth type.
- Pre-colored calcined bodies are used to impart a color tone similar to that of natural teeth to dental prostheses.
- a colored calcined body is usually produced by a method of calcining a molded body of a composition in which a pigment and zirconia are uniformly mixed (a so-called powder mixing method; for example, Patent Documents 1 and 2).
- powder mixing method after adjusting the composition so as to obtain the desired color tone by changing the type and amount of the pigment, a powder composition in which the pigment and zirconia powder are uniformly mixed is obtained, which is molded and molded. Since it is calcined, a uniformly colored calcined body can be obtained.
- calcined bodies differ not only in color tone but also in processing characteristics due to differences in composition.
- the cutting of the calcined body is performed under the same conditions regardless of its composition. Therefore, in the powder mixing method, by applying different manufacturing conditions (molding conditions and calcining conditions) for each composition, variations in processing characteristics due to compositional differences have been suppressed. Due to the need to change the manufacturing conditions, the productivity of the calcined body varies greatly depending on the composition.
- a powder composition that can obtain a calcined body having similar processing characteristics without requiring the application of different molding conditions and calcination conditions for each composition, a method for producing the same, and the powder composition It is an object of the present invention to provide at least one of the obtained calcined body and manufacturing method, and uses thereof. Another object of the present invention is to provide a method for producing a calcined body that can reduce variations in productivity, a calcined body obtained by the method, and at least one of uses thereof.
- the present invention is as claimed, and the gist of the present disclosure is as follows.
- Two or more kinds of zirconia in which a lanthanoid rare earth element is solid-dissolved, and a transition metal element other than zirconium and hafnium, and the balance is stabilized only by one or more selected from the group of yttrium, calcium, and magnesium A powder composition characterized in that the zirconia in which the lanthanoid rare earth element is solid-dissolved contains different lanthanoid rare-earth elements in solid solution, and the content of the transition metal element is 1500 ppm or less. .
- any one of [1] to [3] above, wherein at least one of the zirconia in which the lanthanoid rare earth element is solid-dissolved is zirconia stabilized with one or more selected from the group of yttrium, calcium and magnesium.
- the powder composition according to . [5] The powder composition according to any one of [1] to [4] above, wherein the transition metal element is one or more selected from the group consisting of manganese, cobalt and titanium.
- the transition metal element is one or more selected from the group consisting of oxides, hydroxides, oxyhydroxides, chlorides, sulfates and nitrates.
- a powder composition that can obtain a calcined body having similar processing characteristics without requiring the application of different molding conditions and calcining conditions for each composition, a method for producing the same, and the powder composition At least one of the resulting calcined body, manufacturing method, and uses thereof can be provided. Further, preferably, it is possible to provide a method for producing a calcined body capable of reducing variations in productivity, a calcined body obtained by the method, and at least one of uses thereof.
- This embodiment contains two or more types of zirconia in which lanthanoid rare earth elements are solid-dissolved, transition metal elements other than zirconium and hafnium, and the balance is stabilized with only one or more selected from the group of yttrium, calcium, and magnesium. wherein the zirconia in which the lanthanoid rare earth element is solid-dissolved has different lanthanoid rare-earth elements in solid solution, and the content of the transition metal element is 1500 ppm or less. composition.
- the powder composition of the present embodiment is zirconia in which a lanthanoid rare earth element is solid-dissolved (hereinafter also referred to as “lanthanoid-solid-solution zirconia” or “Ln solid-solution ZrO 2 ”, and zirconia or the like in which erbium is solid-solution is referred to as “erbium Also referred to as solid solution zirconia” or “Er solid solution ZrO 2 ”, etc.).
- the lanthanoid rare earth elements are dissolved in zirconia and exist in the zirconia crystals. Therefore, the Ln solid-solution ZrO 2 crystal itself exhibits a coloration derived from the lanthanoid rare earth element.
- the lanthanoid rare earth element is dissolved in zirconia in a powder state (that is, in a state where heat treatment such as calcination, which causes thermal shrinkage after molding of zirconia, has not been performed). . Therefore, unlike the powder composition (mixed powder) in which the powder of the lanthanoid rare earth compound and the powder of zirconia are mixed, the powder composition of the present embodiment contains particles of agglomerated lanthanoid rare earth compounds having a particle diameter of 0.5 ⁇ m or more.
- the powder composition of the present embodiment contains lanthanoids that cause abnormal growth of zirconia crystal grains during sintering. Very little non-uniform distribution and segregation of rare earth elements. As a result, agglomerated particles are less likely to be formed, and a calcined body having uniform hardness can be obtained regardless of the content of the lanthanoid rare earth element.
- the powder composition of the present embodiment contains two or more types of Ln solid-solution ZrO 2 , and each Ln solid-solution ZrO 2 has a different lanthanoid rare earth element dissolved therein.
- the composition of the powder composition of the present embodiment is a sintered body and its precursor exhibiting a desired color tone suitable for dental prosthesis. It can be a composition that can obtain a calcined body.
- Ln solid-solution ZrO 2 contained in the powder composition of the present embodiment may be used, and three or more kinds or four or more kinds may be used.
- the Ln solid-solution ZrO 2 contained in the powder composition of the present embodiment only needs to contain the types necessary for reproducing the color tone of natural teeth, and can be exemplified by 5 types or less.
- the powder composition of the present embodiment is a powder composition containing two types of zirconia in which different lanthanoid rare earth elements are solid-dissolved, in other words, contains two types of zirconia in which lanthanoid rare-earth elements are solid-dissolved, and the zirconia is a powder composition in which different lanthanoid rare earth elements are solid-dissolved.
- Ln solid solution ZrO2 are respectively praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), Zirconia in which one selected from the group of holonium (Ho), erbium (Er), thulium (Tm) and ytterbium (Yb) is solid-dissolved, and praseodymium, neodymium, samarium, terbium, dysprosium, holonium, erbium and thulium zirconia in which one selected from the group is solid-dissolved, or zirconia in which one selected from the group of praseodymium, neodymium, terbium and erbium is solid-dissolved, or further one selected from the group of praseodymium, terbium and erbium
- the powder composition of the present embodiment contains two or more selected from the group consisting of praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holonium, erbium, thulium, and ytterbium, as well as praseodymium and neodymium.
- each Ln solid-solution ZrO 2 may have two or more lanthanoid rare earth elements dissolved therein.
- the content of the lanthanoid rare earth element in each Ln-solid-solution ZrO 2 is arbitrary, and may be the same as the lanthanoid rare-earth element content of each lanthanoid solid-solution powder described later.
- the powder composition of the present embodiment includes zirconia in which one or more selected from the group of praseodymium, samarium, terbium, dysprosium, holonium and thulium are solid-dissolved, further zirconia in which at least one of praseodymium and terbium is solid-dissolved, and preferably contains zirconia in which terbium is dissolved (hereinafter also referred to as “yellow lanthanide solid solution zirconia” or “yellow Ln solid solution ZrO 2 ”).
- At least one kind of Ln solid-solution ZrO 2 is yellow Ln solid-solution ZrO 2 , that is, by including yellow Ln solid-solution ZrO 2 as Ln solid-solution ZrO 2 , especially yellowish tooth color tone is fine. Easier to adjust.
- the powder composition of the present embodiment preferably contains zirconia in which one or more selected from the group of neodymium and erbium are solid-dissolved, and zirconia in which erbium is solid-dissolved (hereinafter, “red lanthanoid solid-solution zirconia” or “red Ln solid solution ZrO 2 ”) is more preferably included. At least one of the Ln solid - solution ZrO2 is red Ln solid - solution ZrO2. adjustment becomes easier.
- the powder composition of the present embodiment contains yellow Ln solid solution ZrO2 and red Ln solid solution ZrO2 , and furthermore, the Ln solid solution ZrO2 contained in the powder composition of the present embodiment contains yellow Ln solid solution ZrO2 and red Ln solid solution ZrO2 are preferred.
- the powder composition of the present embodiment is stabilized with one or more selected from the group of yttrium (Y), calcium (Ca) and magnesium (Mg) (hereinafter also referred to as “stabilizing element”), preferably yttrium. zirconia in which at least one kind of Ln solid solution ZrO 2 is stabilized with a stabilizing element (hereinafter also referred to as “stabilized Ln solid solution ZrO 2 ” ). is preferably Since the lanthanoid rare earth element has a function of stabilizing zirconia, as the amount thereof increases, not only the stabilizing function but also the coloration become stronger.
- the Ln solid solution ZrO2 is zirconia stabilized with a stabilizing element and a lanthanoid rare earth element, it can be stabilized without changing the color of the Ln solid solution ZrO2 by adjusting the content of the stabilizing element. Only the action can be adjusted.
- the Ln solid solution ZrO 2 may be zirconia stabilized only with a lanthanoid rare earth element.
- the stabilizing element in this embodiment does not contain the lanthanoid rare earth element.
- the content of the stabilizing element contained in the stabilized Ln solid solution ZrO 2 may be an amount that partially stabilizes zirconia.
- the content of yttrium in Ln solid-solution ZrO 2 stabilized with yttrium is 1.5 mol% or more, 2 mol% or more, 3 mol% or more, 3.3 mol% or more, 3.5 mol % or more, or 3.6 mol % or more, and 6.5 mol % or less, 6 mol % or less, 5.5 mol % or less, 5.2 mol % or less, or 4.5 mol % or less.
- the content of the stabilizing element in the stabilized Ln solid solution ZrO 2 is the total [mol] of the zirconia (ZrO 2 ) of the Ln solid solution ZrO 2 , the lanthanoid rare earth element converted to oxide, and the stabilizing element converted to oxide. to the stabilizing element in terms of oxide [mol%].
- each stabilizing element may be converted to an oxide by converting yttrium to Y 2 O 3 , calcium to CaO, and magnesium to MgO.
- the powder composition of the present embodiment preferably contains at least yellow - stabilized Ln solid-solution ZrO2 and red - stabilized Ln solid-solution ZrO2. Furthermore, the stabilized Ln solid-solution ZrO 2 contained in the powder composition of the present embodiment is zirconia in which at least one of praseodymium and terbium is dissolved and zirconia in which at least one of neodymium and erbium is dissolved.
- Tb solid solution ZrO 2 and Er solid solution ZrO 2 Zirconia stabilized with an element and zirconia in which at least one of neodymium and/or erbium is dissolved; or zirconia in which terbium is dissolved and stabilized with yttrium and terbium, and only erbium is dissolved zirconia (that is, Y-stabilized Tb dissolved ZrO 2 and Er dissolved ZrO 2 ).
- the Ln-soluted ZrO 2 is preferably a powder, and the powder composition of the present embodiment preferably contains the stabilized Ln-soluted ZrO 2 as a powder.
- the powder composition of the present embodiment contains transition metal elements other than zirconium and hafnium (hereinafter also referred to as "coloring metal elements").
- transition metal elements do not include lanthanoid rare earth elements. This facilitates fine adjustment of the color tone, which is difficult to develop with the lanthanoid rare earth element.
- the coloring metal element is an element that facilitates obtaining a grayish tooth color tone, is a transition metal element other than iron (Fe), and is manganese (Mn), cobalt (Co) and titanium.
- Ti 1 or more selected from the group (Ti), or 2 or more selected from the group of manganese, cobalt and titanium, or at least one of manganese and cobalt and titanium , or more preferably cobalt and titanium, and preferably contains at least titanium.
- the form of the coloring metal element contained in the powder composition of the present embodiment is arbitrary, as long as it is a compound containing the coloring metal element.
- the coloring metal element is one or more selected from the group of oxides, hydroxides, oxyhydroxides, chlorides, sulfates and nitrates, and further selected from the group of oxides, hydroxides and oxyhydroxides It can be exemplified that it is contained as one or more kinds of oxides, or even oxides.
- Manganese is one or more selected from the group consisting of MnO, MnO 2 , Mn 3 O 4 , Mn(OH) 2 , MnOOH, MnCl 2 , MnSO 4 , Mn(NO 3 ) 2 and Mn(COOH) 2 , and MnO , one or more selected from the group of MnO 2 , Mn 3 O 4 , Mn(OH) 2 and MnOOH, and one or more selected from the group of MnO, MnO 2 and Mn 3 O 4 . be done.
- Cobalt is one or more selected from the group consisting of CoO, CoO2 , Co3O4, Co ( OH) 2 , CoOOH, CoCl2 , CoSO4 , Co( NO3 ) 2 and CoCOOH , and CoO2 , Co3O 4 , Co(OH) 2 and CoOOH, or at least one of CoO 2 and Co 3 O 4 , or Co 3 O 4 .
- Titanium is one or more selected from the group of TiO2 , Ti(OH) 2 , TiOOH, TiCl2, TiSO4 , Ti( NO3 ) 2 and TiCOOH, further from the group of TiO2 , Ti(OH) 2 and TiOOH
- the powder composition of the present embodiment may contain two or more compounds of the coloring metal elements described above.
- the balance is zirconia stabilized with only one or more selected from the group of yttrium, calcium and magnesium (hereinafter also referred to as “stabilized zirconia” or “stabilized ZrO 2 ”, yttrium Zirconia and the like stabilized with only zirconia are also referred to as “yttrium-stabilized zirconia” or “Y-stabilized ZrO 2 ”, respectively.).
- Stabilized zirconia is particularly zirconia that contains a stabilizing element and does not contain an element that colors zirconia, such as a lanthanoid rare earth element, as a solid solution. More preferably, the stabilized ZrO2 is zirconia stabilized only with yttrium.
- the "remainder" in the powder composition of this embodiment means the main components (matrix, mother phase) of the powder composition. Therefore, the powder composition of the present embodiment contains two or more types of zirconia in which lanthanoid rare earth elements are solid-dissolved, and transition metal elements other than zirconium and hafnium, and one or more selected from the group of yttrium, calcium, and magnesium. may be considered as a powder composition based on zirconia stabilized with chisel.
- the content of the stabilizing element contained in the stabilized zirconia may be an amount that partially stabilizes the crystal phase of zirconia.
- the stabilizing element is yttrium
- the molar ratio of yttrium converted to Y 2 O 3 to the sum of zirconia (ZrO 2 ) and yttrium converted to Y 2 O 3 of the yttrium-stabilized zirconia i.e., ⁇ Y 2 O 3 [ mol]/(ZrO 2 +Y 2 O 3 )[mol] ⁇ 100
- ⁇ Y 2 O 3 [ mol]/(ZrO 2 +Y 2 O 3 )[mol] ⁇ 100 is 2.7 mol% or more, 3 mol% or more, 3.3 mol% or more, 3.5 mol% or more, or 3.6 mol% or more, and , 6.5 mol % or less, 6 mol % or less, 5.5 mol % or less, 5.2 mol % or less, or 4.5
- the powder composition of the present embodiment has a coloring metal element content of 1500 ppm or less (0.15 mass % or less), preferably 1200 ppm or less, 1000 ppm or less, 800 ppm or less, 750 ppm or less, or 700 ppm or less. Since the powder composition of the present embodiment contains a coloring metal element, the content of the coloring metal element is more than 0 ppm, preferably 5 ppm or more, 10 ppm or more, or 40 ppm or more.
- the coloring metal element exceeds this range, when the powder composition of the present embodiment is used as a calcined body, the coloring metal element does not uniformly dissolve or disperse in zirconia, and the coloring metal element in the calcined body concentration gradient, precipitation of particles, etc. occur, and the calcined body becomes non-uniform.
- a non-uniform calcined body is likely to cause defects such as chipping and chipping during processing, and the variation in processing characteristics for each composition becomes large.
- the content of the coloring metal element is such that when the powder composition of the present embodiment is made into a calcined body, it uniformly dissolves or disperses in zirconia and has a color tone that can be applied as a dental prosthetic material. , is fine.
- the powder composition of the present embodiment preferably does not contain iron (that is, the iron content is 0 ppm), but even if it contains iron to the extent that it does not affect the processing characteristics good.
- the iron content include 0 ppm or more, 0 ppm or more, or 1 ppm or more, and 500 ppm or less, 100 ppm or less, 50 ppm or less, 10 ppm or less, or 5 ppm or less.
- the content of iron is the mass ratio of iron in terms of Fe 2 O 3 to the mass of the powder composition in terms of oxide.
- the powder composition of this embodiment may contain alumina.
- the alumina content of the powder composition of the present embodiment is 0% by mass or more, more than 0% by mass, 0.005% by mass or more, 0.01% by mass or more, or 0.03% by mass or more. 2% by mass or less, 0.1% by mass or less, or 0.06% by mass or less. Further, the powder composition of the present embodiment may not contain alumina (that is, the alumina content may be 0% by mass).
- the alumina content in the present embodiment is the mass ratio (% by mass) of alumina (Al 2 O 3 ) to the mass of the powder composition in terms of oxide.
- the powder composition of the present embodiment may contain two or more kinds of Ln solid-solution ZrO 2 , a coloring metal element, and optionally alumina, and the balance may be composed of stabilized ZrO 2 (that is, Ln Hafnia ( HfO 2 ).
- Ln Hafnia HfO 2
- the content of hafnia varies greatly depending on the starting material and production method used in the production of zirconia, but for example, it is 2.0% by mass or less.
- hafnia may be regarded as zirconia in calculation of values using the amount of zirconia (ZrO 2 ), such as calculation of composition and density.
- the content of the coloring metal element is within the range described above, the Ln solid-solution ZrO 2 , the coloring metal element, and the stabilized ZrO 2 contained in the powder composition of the present embodiment can be adjusted according to the color tone of the intended dental prosthesis. The type and content may be adjusted accordingly.
- Ln solid solution ZrO 2 has a lanthanoid rare earth element content of 0.01 mol% or more, 0.02 mol% or more, or 0.03 mol% or more in the powder composition of the present embodiment.
- it is mentioned that it is contained so as to be 0.6 mol % or less or 0.5 mol % or less.
- the content of the lanthanoid rare earth element in the powder composition of the present embodiment is the total [mol] of zirconia (ZrO 2 ), the lanthanoid rare earth element converted to oxide, and the stabilizing element converted to oxide, lanthanoid converted to oxide It is the ratio of rare earth elements [mol].
- each lanthanoid rare earth element is Pr6O11 for praseodymium, Nd2O3 for neodymium, Pm2O3 for promethium , Sm2O3 for samarium , Eu2O3 for europium , and Gd for gadolinium. 2O3 , Tb4O7 for terbium , Dy2O3 for dysprosium , Ho2O3 for holmium, Er2O3 for erbium , Tm2O3 for thulium , and Yb2O3 for ytterbium. .
- the ratio [mol/mol] of the total [mol] of neodymium and erbium to the total [mol] of praseodymium, samarium, terbium, dysprosium, holonium and thulium as the ratio of lanthanoid rare earth elements is preferably 3 or more and 60 or less, more preferably 5 or more and 48 or less.
- the visible color tone of the sintered body changes depending on the translucency, but for example, when it is a yellowish tooth color tone (for example, a color tone corresponding to B1 to B4 in the Vita Classical Shade Guide, hereinafter the same) has a lanthanide ratio of 10 or more and 30 or less, and a red tooth color tone (for example, a color tone corresponding to A1 to A4 in the Vita Classical Shade Guide; hereinafter the same) has a lanthanoid ratio of 15.
- the ratio is 3 or more and 35 or less, further 5 or more and 30 or less, and the color tone of dark brown teeth (for example, the color tone corresponding to D2 to D4 in the Vita Classical Shade Guide. Same below. ), the lanthanide ratio is 1 or more and 30 or less.
- the powder composition of the present embodiment exhibits different color tones depending on the lanthanoid rare earth elements contained therein. Therefore, even if the lanthanoid ratio is the same, the resulting sintered body exhibits different color tones depending on the combination of the lanthanoid rare earth elements. .
- the content of the stabilizing element in the powder composition of the present embodiment may be any content depending on the content ratio of lanthanoid solid-solution zirconia and stabilized zirconia.
- the yttrium content of the powder composition of the present embodiment is 2.7 mol % or more, 3 mol % or more, 3.3 mol % or more, 3.5 mol % or more, or 3.6 mol % or more. 5 mol % or less, 6 mol % or less, 5.5 mol % or less, 5.2 mol % or less, or 4.5 mol % or less.
- the content of Ln solid-solution ZrO 2 in the powder composition of the present embodiment varies depending on the amount of the lanthanoid rare earth element solid-soluted in each Ln solid-solution ZrO 2 , and the content of the above-described lanthanoid rare earth element is Just do it.
- the content of Ln solid solution ZrO 2 can be exemplified to be 5% by mass or more and 50% by mass or less, and further, when it is a yellowish tooth color tone, 5% by mass Above, 50% by mass or less or 30% by mass or less, 5% by mass or more and 46% by mass or less for reddish tooth color tone, 5% by mass or more and 95% by mass or less for grayish tooth color tone or 50% by mass or less, and 15% by mass or more and 30% by mass or less for a dark brown tooth color tone.
- the content [% by mass] of each Ln solid solution ZrO 2 in the powder composition of the present embodiment is obtained from the mass ratio of each Ln solid solution ZrO 2 [g] to the powder composition [g].
- the content of Ln solid - solution ZrO 2 contained in the powder composition of the present embodiment may be any content according to the desired color tone.
- the yellowish color tone can be strengthened, and by increasing the content of the Er solid solution ZrO 2 , the reddish color tone can be strengthened.
- the content of the coloring metal element in the red tooth tone is 50 ppm or more or 70 ppm or more and 750 ppm or less, 500 ppm or less, or 200 ppm or less, and the content of the coloring metal element in the yellow tooth tone
- the content is 50 ppm or more or 70 ppm or more and 300 ppm or less or 200 ppm or less
- the content of coloring metal elements in gray tooth tone is 100 ppm or more or 200 ppm or more and 1100 ppm or less , 950 ppm or less, 800 ppm or less, 500 ppm or less, or 300 ppm or less
- the content of coloring metal elements in the dark brown tooth color tone is 150 ppm or more or 200 ppm or more, and 250 ppm or less.
- the content of the coloring metal element is the total mass ratio of the coloring metal element converted to oxide with respect to the mass of the powder composition converted to oxide, and the oxide conversion of manganese, cobalt and titanium is respectively , MnO 2 , Co 3 O 4 and TiO 2 .
- the ratio of each coloring metal element is arbitrary.
- the ratio [mol/mol] of cobalt (Co) to titanium (Ti) is 0.01 or more and 1.0 or less, further 0.1 or more and 0.3 or less. There is one thing.
- the powder composition of the present embodiment contains Y-stabilized Pr solid solution ZrO 2 , Tb solid solution ZrO 2 , Er solid solution ZrO 2 , cobalt oxide, manganese oxide, titanium oxide and alumina, and the balance is Y-stabilized ZrO 2 .
- the composition of the powder composition is ( Pr6O11 + Tb4O7 + Er2O3 + Co3O4 + TiO2 + MnO2 + Al2O3 + Y2O3 + ZrO2 ) can be regarded as
- the Y 2 O 3 in the composition is the sum of Y 2 O 3 contained in the Y-stabilized Pr solid solution ZrO 2 and the balance, that is, the Y 2 O 3 contained in the Y-stabilized ZrO 2 .
- the ZrO 2 in the composition is the ZrO 2 contained in the Y-stabilized Pr solid solution ZrO 2 , the ZrO 2 contained in the Tb solid solution ZrO 2 , the ZrO 2 contained in the Er solid solution ZrO 2 , and the balance, that is, , the sum of ZrO 2 contained in the main component (Y-stabilized ZrO 2 ) of the powder composition.
- the content [mol%] of the lanthanoid rare earth elements is ⁇ (Pr 6 O 11 +Tb 4 O 7 +Er 2 O 3 ) [mol]/(Pr 6 O 11 +Tb 4 O 7 +Er 2 O 3 + Y 2 O 3 + ZrO 2 ) [mol] ⁇ 100
- the content [mol%] of the stabilizing element is ⁇ Y 2 O 3 [mol]/(Pr 6 O 11 +Tb 4 O 7 +Er 2 O 3 + Y 2 O 3 + ZrO 2 ) [mol] ⁇ 100
- the content [ppm] of the coloring metal element is ⁇ (TiO 2 +Co 3 O 4 +MnO 2 ) [g]/(Pr 6 O 11 +Tb 4 O 7 +Er 2 O 3 +Co 3 O 4 +TiO 2 +MnO 2 +Al 2 O 3 +Y 2 O 3 +ZrO 2 )[g] ⁇ 10 6
- the alumina content [mass %] is ⁇ Al 2 O
- the lanthanide ratio [mol/mol] is obtained from ⁇ (Er 2 O 3 ) [mol]/(Pr 6 O 11 +Tb 4 O 7 ) [mol] ⁇ .
- the content [% by mass] of each Ln solid solution ZrO 2 in the powder composition is obtained from the mass ratio of each Ln solid solution ZrO 2 [g] to the powder composition [g].
- the powder composition of the present embodiment may contain a transition metal element, a lanthanoid rare earth element, and a stabilizing element that are not dissolved in zirconia as long as the effect is not impaired. preferably not, at least in its powder X-ray diffraction (hereinafter also referred to as "XRD") pattern, it is more preferable that it does not have an XRD peak corresponding to a transition metal compound, a lanthanoid rare earth compound, or a compound of a stabilizing element preferable.
- XRD powder X-ray diffraction
- a general X-ray diffractometer for example, Ultima IV, manufactured by RIGAKU.
- the crystal phase of the powder composition of the present embodiment preferably consists of a zirconia crystal phase, and may consist of only a zirconia crystal phase. Furthermore, the crystal phase of the powder of the present embodiment preferably contains at least one of tetragonal zirconia and cubic zirconia, and furthermore, at least one of tetragonal zirconia and cubic zirconia and monoclinic and zirconia.
- the proportion of monoclinic zirconia in the crystal phase of the powder composition of the present embodiment (hereinafter also referred to as "monoclinic crystal ratio") is 0% or more, 0% or more, 3% or more, or 5% or more.
- Crystal phases other than monoclinic zirconia in the powder composition of the present embodiment may be regarded as tetragonal zirconia and cubic zirconia.
- the crystal phase can be confirmed by XRD measurement under the above conditions.
- the XRD peak corresponding to each crystal face of zirconia includes the following XRD peak having a peak top at 2 ⁇ .
- the monoclinic crystal ratio is a value obtained by the following formula from the XRD pattern of the powder composition.
- f M [1 ⁇ [It(111)+Ic(111)] /[Im(111)+Im(11-1) +It(111)+Ic(111)] ⁇ ] ⁇ 100
- f M is the monoclinic fraction [%]
- It (111) is the area intensity of the XRD peak corresponding to the tetragonal zirconia (111) plane
- Ic (111) is the cubic zirconia (111) plane.
- Im (111) corresponds to the monoclinic zirconia (111) plane
- Im (11-1) corresponds to the monoclinic zirconia (11-1) plane.
- the area intensity of each crystal plane can be obtained by profile fitting the XRD pattern after smoothing and background removal using a split pseudo-Voigt function.
- XRD pattern analysis such as smoothing processing, background processing, and calculation of area intensity is performed using an analysis program attached to the X-ray diffractometer (for example, integrated powder X-ray analysis software PDXL Ver.2.2, manufactured by RIGAKU) etc. can be used.
- the powder composition of the present embodiment has a crystallite size of 300 nm or more, 350 nm or more, or 370 nm or more, and 450 nm or less, or 400 nm or less.
- the crystallite size of the powder composition may be the crystallite size of zirconia obtained from the main XRD peak.
- the crystallite size of the powder composition is a value calculated from the following formula.
- D ⁇ / ⁇ cos ⁇
- D is the crystallite diameter ( ⁇ )
- ⁇ is the main The half width (°) of the XRD peak
- ⁇ is the Bragg angle of the main XRD peak.
- the half-value width of the main XRD peak is the value of the half-value width of the main XRD peak obtained by profile fitting the XRD pattern after smoothing processing and background removal processing using a split pseudo-Voigt function.
- XRD pattern analysis such as smoothing processing, background processing, and profile fitting is performed using an analysis program attached to the X-ray diffractometer (for example, integrated powder X-ray analysis software PDXL Ver.2.2, manufactured by RIGAKU). You can use it.
- an analysis program attached to the X-ray diffractometer for example, integrated powder X-ray analysis software PDXL Ver.2.2, manufactured by RIGAKU. You can use it.
- the powder composition of the present embodiment has a BET specific surface area of 5 m 2 /g or more and 15 m 2 /g or less, 7 m 2 /g or more, 9 m 2 /g or more, 9.5 m 2 /g or more, or It is preferably 10 m 2 /g or more, and preferably 13 m 2 /g or less, 12 m 2 /g or less, or 11 m 2 /g or less.
- the BET specific surface area is a BET specific surface area measured according to JIS Z 8830, and may be measured by the BET one-point method according to the carrier gas method using nitrogen as the adsorption gas.
- the following conditions can be exemplified as specific measurement conditions for the BET specific surface area.
- Adsorption medium N2 Adsorption temperature: -196°C
- Pretreatment conditions treatment at 250° C. for 30 minutes in air BET specific surface area can be measured using a general device (eg, Flowsorb III2305, manufactured by Shimadzu Corporation).
- the powder composition of the present embodiment preferably has an average particle size of 0.2 ⁇ m or more, 0.3 ⁇ m or more, or 0.4 ⁇ m or more, and preferably 0.7 ⁇ m or less and 0.6 ⁇ m or 0.5 ⁇ m or less. .
- the average particle size is D 50 (median size) in the volume particle size distribution of the powder composition measured by a wet method, and can be measured using a common device.
- a measurement sample a slurry obtained by dispersing a powder composition from which slow aggregation has been removed by a dispersion treatment such as ultrasonic treatment in pure water may be used.
- Preferred methods and conditions for measuring the average particle size are as follows. Measuring device: MT3300EXII Calculation mode: HRA Particle refractive index: 2.17 Solvent refractive index: 1.333 Particle shape: Non-spherical Measurement sample: Powder composition slurry (solvent: pure water)
- the powder composition of the present embodiment may contain a binding agent (binder) as necessary.
- a binding agent binder
- the binder is one or more selected from the group of polyvinyl alcohol, polyvinyl butyrate, wax and acrylic resin, preferably one or more of polyvinyl alcohol and acrylic resin, more preferably acrylic resin.
- the acrylic resin is a polymer containing at least one of acrylic acid ester and methacrylic acid ester. Specific examples of acrylic resins include one or more selected from the group consisting of polyacrylic acid, polymethacrylic acid, acrylic acid copolymers and methacrylic acid copolymers, and derivatives thereof.
- the powder composition of the present embodiment preferably contains granular particles and is preferably granular powder.
- the term “granule particles” refers to particles in which secondary particles of powder are slowly aggregated by physical force, and is preferably 25 ⁇ m or more, more preferably 25 ⁇ m or more and 180 ⁇ m or less, still more preferably 25 ⁇ m or more and 125 ⁇ m. It has the following particle sizes:
- the granule particles may contain a binder such as an acrylic resin, if necessary.
- a “granular powder” is a powder mainly composed of granular particles, preferably a powder composed of granular particles. Operability (handleability) is improved because the powder composition of the present embodiment contains granular particles or is a granular powder.
- the powder composition of the present embodiment is a transition metal element (coloring metal element) other than zirconium and hafnium, and zirconia stabilized with only one or more selected from the group of yttrium, calcium and magnesium (stabilized zirconia) and preferably contains granules composed of
- a transition metal element coloring metal element
- the powder composition of the present embodiment contains two or more types of granular particles composed of Ln solid solution ZrO 2 and transition metal elements other than zirconium and hafnium, and the balance is composed of stabilized ZrO 2 .
- Granular particles that is, two or more kinds of granular particles composed of zirconia in which lanthanoid rare earth elements are solid-dissolved, and transition metal elements other than zirconium and hafnium, and are selected from the group of yttrium, calcium, and magnesium.
- alumina may be in any form, such as being contained in at least one kind of granular particles, being contained in all granular particles, or constituting granular particles only with alumina.
- the powder composition of the present embodiment has an average particle size of 20 ⁇ m or more, 30 ⁇ m or more, or 40 ⁇ m or more, and can be exemplified by 100 ⁇ m or less, 80 ⁇ m or less, 60 ⁇ m or less, or 50 ⁇ m or less.
- the average granule size is obtained by a mechanical sieving method using a general low-tap sieve shaker (eg, sieve shaker S-1, manufactured by Teraoka Co., Ltd.), and the granule size and its mass ratio. This can be determined as the 50 mass % granule size in the plotted cumulative granule size curve.
- sieves having mesh sizes of 125 ⁇ m, 106 ⁇ m, 90 ⁇ m, 75 ⁇ m, 63 ⁇ m, 45 ⁇ m, 38 ⁇ m and 25 ⁇ m in accordance with JIS Z 8801 may be used.
- the conditions for the mechanical sieving method include the following conditions.
- Shaking number 300 rpm Shaking width: 25mm Standard number of hammer strokes: 150 rpm Shaking time: 30 minutes Prior to measurement, it is preferable to loosen the granule sample lightly until it can pass through a sieve with an opening of 125 ⁇ m or less.
- the granule size of the powder composition remaining on each meshed sieve after shaking is regarded as the granule size equivalent to the minimum opening size through which the granule particles have passed (e.g., The granule diameter of granule particles that passed through a sieve with an opening of 90 ⁇ m and remained on a sieve with an opening of 75 ⁇ m is assumed to be 90 ⁇ m), and is obtained by plotting the granule diameter and its mass ratio.
- the powder composition of the present embodiment can be produced by, for example, uniaxial pressure molding, CIP treatment, or equivalent molding methods, a calcining method at 950 ° C. or higher and lower than 1200 ° C. in the air, or a 950 ° C. or higher and 1100 ° C.
- a calcined body suitable as a precursor of a dental prosthesis can be obtained by an industrial production method such as a calcining method at a temperature of 0.5 to 10 hours at a temperature of 0° C. or less and 10 hours or less.
- any method for producing the powder composition of the present embodiment can be used as long as the powder composition that satisfies the above-described configuration can be obtained.
- two or more types of zirconia powder in which a lanthanoid rare earth element is solid-dissolved, a powder of a transition metal compound other than zirconium and hafnium, and one or more selected from the group of yttrium, calcium, and magnesium are stabilized.
- a step of mixing the zirconia powder so that the content of the transition metal element is 1500 ppm or less (hereinafter also referred to as a “mixing step”), and the zirconia powder in which the lanthanoid rare earth element is dissolved is and a method for producing a powder composition, characterized in that different lanthanoid rare earth elements are in solid solution.
- zirconia powder in which the lanthanoid rare earth element is solid-dissolved (hereinafter also referred to as “lanthanoid solid-solution powder” or “Ln solid-solution powder”, and when the lanthanoid is erbium or the like, “erbium solid-solution powder” or “Er solid-solution powder” is used.
- lanthanoid solid-solution powder or “Ln solid-solution powder”
- erbium solid-solution powder” or “Er solid-solution powder” is used.
- melted powder etc.
- powder of transition metal compounds other than zirconium and hafnium hereinafter also referred to as "colored metal powder”
- a powder of zirconia stabilized with chisel (hereinafter also referred to as "stabilized powder”) is provided, respectively.
- the Ln solid-solution powder, the colored metal powder, and the stabilized powder all preferably have physical properties similar to those of the powder composition of the present embodiment. It is more preferable that the Ln solid-solution powder and the stabilized powder, which account for a large proportion of the powder composition in the form, have similar physical properties. On the other hand, it is preferable that the colored metal powder also has the same physical properties as these, but since the proportion of the powder composition of the present embodiment is small and the effect is small, the physical properties are different from those of other raw material powders. may be
- the following physical properties can be exemplified as preferable physical properties of the Ln solid-solution powder and the stabilized powder.
- BET specific surface area 5 m 2 /g or more, 9 m 2 /g or more, 9.5 m 2 /g or more, or 10 m 2 /g or more, and 15 m 2 /g or less, 13 m 2 /g or less, 12 m 2 /g or less, or 11 m 2 /g or less
- Average particle size 0.2 ⁇ m or more, 0.3 ⁇ m or more, or 0.4 ⁇ m or more, and 0.7 ⁇ m or less, 0.6 ⁇ m or less, or 0.5 ⁇ m or less
- the difference between the maximum and minimum BET specific surface areas of the Ln solid-solution powder and the stabilized powder (hereinafter also referred to as "BET difference") to be subjected to the mixing step is 0 m 2 /g or more, 0 m 2 /g or more, or 0 .1 m 2 /g or more and 3.5 m 2 /g or less, 2.0 m 2 /g or less, 0.7 m 2 /g or less, 0.5 m 2 /g or less, or 0.3 m 2 /g or less Things are mentioned.
- the difference between the maximum value and the minimum value of the average particle size of the raw material powder (hereinafter also referred to as "particle size difference”) is 0 ⁇ m or more, 0 ⁇ m or more, or 0.05 ⁇ m or more and 0.5 ⁇ m or less, 0.5 ⁇ m or less. 3 ⁇ m or less or 0.1 ⁇ m or less.
- particle size difference the difference between the maximum value and the minimum value of the average particle size of the raw material powder.
- the Ln solid-solution powder may be a zirconia powder in which lanthanoid rare earth elements exhibiting a desired color are solid-dissolved, and may be praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holonium, Zirconia powder in which one or more selected from the group of erbium, thulium and ytterbium are solid-dissolved can be exemplified.
- zirconia powder in which one or more selected from the group of praseodymium, neodymium, terbium and erbium are solid-dissolved, and at least one of terbium and erbium are solid-dissolved.
- Zirconia powder (hereinafter, zirconia powder in which erbium is solid-dissolved is also referred to as "erbium solid-solution powder" or "Er solid-solution powder”) is preferable.
- Ln solid-solution powders There are two or more kinds of Ln solid-solution powders, and it is sufficient that different lanthanoid rare earth elements are solid-solved, respectively, three or more, four or more, and five or less.
- At least one of the Ln solid solution powders may be stabilized with one or more (stabilizing elements) selected from the group of yttrium, calcium and magnesium, preferably yttrium.
- the Ln solid-solution powder contained in the powder composition of the present embodiment is a zirconia powder in which at least one of praseodymium and terbium is dissolved and stabilized with a stabilizing element and at least one of praseodymium and terbium. and zirconia powder in which at least one of neodymium and erbium is solid-dissolved, and zirconia in which terbium is solid-dissolved and stabilized with yttrium and terbium (Y-stabilized Tb solid-solution ZrO 2 ) and powder of zirconia in which only erbium is dissolved (ZrO 2 in solid solution with Er).
- the content of the lanthanoid rare earth element in each Ln solid solution powder is arbitrary, and the lanthanoid rare earth element in terms of oxide [ mol] ratio.
- the terbium content ( ⁇ Tb 4 O 7 [mol]/(Tb 4 O 7 +ZrO 2 ) [mol] ⁇ ⁇ 100) [mol%] in the Tb solid solution powder is 0.0005 mol% or more, 0 0.005 mol % or more, or 0.03 mol % or more, and 0.10 mol % or less, 0.06 mol % or less, or 0.05 mol % or less.
- the terbium content ( ⁇ Tb 4 O 7 [mol]/(Tb 4 O 7 +ZrO 2 +Y 2 O 3 ) [mol] ⁇ 100) [mol%] in the Y-stabilized Tb solid solution powder is 0.0005 mol% or more, 0.002 mol% or more, 0.005 mol% or more, or 0.03 mol% or more, and 0.10 mol% or less, 0.06 mol% or less, or 0.05 mol% or less. be done.
- the erbium content ( ⁇ Er 2 O 3 [mol]/(Er 2 O 3 +ZrO 2 ) [mol] ⁇ ⁇ 100) [mol%] in the Er solid solution powder is 1.5 mol% or more, 2 0 mol % or more, or 3.3 mol % or more, and 6 mol % or less, 5.0 mol % or less, or 4.5 mol % or less.
- the content of praseodymium in the Pr solid solution powder ( ⁇ Pr 6 O 11 [mol]/(Pr 6 O 11 +ZrO 2 ) [mol] ⁇ 100) [mol %] is 0.05 mol % or more and 0.07 mol % or more, or 0.1 mol % or more, and 1.0 mol % or less, 0.6 mol % or less, 0.5 mol % or less, or 0.4 mol % or less.
- the praseodymium content ( ⁇ Pr 6 O 11 [mol]/(Pr 6 O 11 +ZrO 2 +Y 2 O 3 ) [mol] ⁇ 100) [mol%] in the Y-stabilized Pr solid solution powder is Examples include 0.05 mol % or more, 0.07 mol % or more, or 0.1 mol % or more, and 1.2 mol % or less, 1.0 mol % or less, or 0.8 mol % or less.
- Neodymium content ( ⁇ Nd 2 O 3 [mol]/(Nd 2 O 3 +ZrO 2 ) [mol] ⁇ 100) [mol %] in the Nd solid solution powder is 0.05 mol % or more and 0.07 mol % or more, or 0.1 mol % or more, and 2.0 mol % or less, 1.8 mol % or less, or 1.6 mol % or less.
- the content of neodymium in the Y-stabilized Nd solid solution powder ( ⁇ Nd 2 O 3 [mol]/(Nd 2 O 3 +ZrO 2 +Y 2 O 3 ) [mol] ⁇ ⁇ 100) [mol%] is Examples include 0.05 mol % or more, 0.07 mol % or more, or 0.1 mol % or more, and 2.0 mol % or less, 1.8 mol % or less, or 1.6 mol % or less.
- the Ln solid solution powder contains a stabilizing element
- its content is arbitrary.
- the stabilizing element is yttrium
- the yttrium content is Y 2 O with respect to the total [mol] of zirconia (ZrO 2 ) in the Ln solid solution powder, the lanthanoid rare earth element converted to oxide, and yttrium converted to Y 2 O 3
- the ratio of yttrium [mol] converted to 3 is 1.5 mol% or more, 2 mol% or more, 3 mol% or more, 3.3 mol% or more, 3.5 mol% or more, or 7 mol% or more, and 6.5 mol% or less , 6 mol % or less, 5.5 mol % or less, or 5.2 mol % or less.
- the stabilized powder is zirconia powder stabilized with only one or more selected from the group of yttrium, calcium and magnesium.
- the stabilizing powder is preferably a zirconia powder that contains an element that has a function of stabilizing zirconia and that does not contain a lanthanoid rare earth element that has a function of coloring zirconia. More preferably, the stabilizing powder is a powder of zirconia stabilized only with yttrium.
- the content of the stabilizing element contained in the stabilizing powder may be an amount that partially stabilizes zirconia.
- the stabilizing element is yttrium
- the molar ratio of yttrium converted to Y 2 O 3 to the total of yttrium converted to zirconia (ZrO 2 ) and Y 2 O 3 in the stabilizing powder (that is, ⁇ Y 2 O 3 [mol ]/(ZrO 2 +Y 2 O 3 ) [mol] ⁇ ⁇ 100 [mol%]) is 2.7 mol% or more, 3 mol% or more, 3.3 mol% or more, 3.5 mol% or more, or 7 mol% or more, Further, it is 6.5 mol % or less, 6 mol % or less, 5.5 mol % or less, 5.2 mol % or less, or 4.5 mol % or less.
- the Ln solid solution powder and the stabilized powder can be produced by any method.
- a mixture of at least one of a stabilizing element source and a lanthanide source and a zirconia sol is heat-treated at 950° C. or higher and 1250° C. or lower, and then pulverized.
- a manufacturing method comprising the step of:
- the stabilizing element source is a compound containing a stabilizing element, and is one or more selected from the group consisting of stabilizing element oxides, hydroxides, oxyhydroxides, halides, sulfates and nitrates.
- Specific stabilizing element sources include, for example, one or more selected from the group consisting of yttrium oxide, yttrium hydroxide, yttrium chloride, yttrium bromide, yttrium boride, yttrium iodide, yttrium sulfate and yttrium nitrate, calcium oxide, water One or more selected from the group consisting of calcium oxide, calcium chloride, calcium bromide, calcium boride, calcium iodide, calcium sulfate and calcium nitrate, and magnesium oxide, magnesium hydroxide, magnesium chloride, magnesium bromide and magnesium boride , magnesium iodide, magnesium sulfate and magnesium nitrate.
- Preferred stabilizing element sources include one or more selected from the group consisting of yttrium oxide, yttrium hydroxide, yttrium oxyhydroxide, yttrium chloride, yttrium bromide, yttrium boride, yttrium iodide, yttrium sulfate, and yttrium nitrate; One or more selected from the group of yttrium, yttrium hydroxide, yttrium chloride and yttrium bromide, one or more selected from the group of yttrium oxide, yttrium hydroxide and yttrium chloride, and at least one of yttrium oxide and yttrium chloride Either or even yttrium chloride.
- the lanthanoid source is a compound containing a lanthanoid rare earth element, and one or more selected from the group consisting of lanthanoid rare earth element oxides, hydroxides, oxyhydroxides, halides, sulfates and nitrates, and further lanthanoid rare earth elements. and one or more selected from the group of oxides, hydroxides and chlorides of lanthanoid rare earth elements, at least one of oxides and chlorides of lanthanoid rare earth elements, and chlorides.
- a lanthanide source for example, oxides, hydroxides, oxyhydroxides containing one or more selected from the group of praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holonium, erbium, thulium and ytterbium , halides, sulfates and nitrates.
- a lanthanide source containing erbium hereinafter, a lanthanide source containing erbium etc.
- erbium source etc.
- erbium oxide erbium hydroxide, erbium oxyhydroxide, erbium chloride, erbium bromide, erbium boride, iodine
- erbium oxide, erbium hydroxide and erbium chloride, or erbium oxide and erbium chloride, or erbium chloride is mentioned.
- Terbium sources include one or more selected from the group consisting of terbium oxide, terbium hydroxide, terbium chloride, terbium bromide, terbium boride, terbium iodide, terbium sulfate and terbium nitrate.
- the lanthanoid sources containing other lanthanoid rare earth elements include similar compounds, and at least one of oxides and chlorides, and chlorides are preferred.
- the zirconia sol is preferably a zirconia sol obtained by either a hydrothermal synthesis method or a hydrolysis method, and more preferably a zirconia sol obtained by a hydrolysis method. Also, the zirconia sol may be in a hydrated state.
- the lanthanide source and, if necessary, the stabilizing element source, and the zirconia sol should be mixed.
- the stabilizing element source and the zirconia sol should be mixed. This gives a mixture.
- the mixing method may be any known method in which the stabilizing element source and the lanthanide source are uniformly mixed with zirconia.
- a mixing method at least one of wet mixing and dry mixing, and wet mixing may be used.
- the solvent for wet mixing may be at least one of water and alcohol, more preferably a solvent containing at least ethanol, and more preferably ethanol.
- the resulting mixture is heat-treated at 950°C or higher or 1000°C or higher and 1250°C or lower or 1200°C or lower.
- the heat treatment temperature increases, the BET specific surface area tends to decrease. Therefore, in order to obtain the desired BET specific surface area, depending on the amount of treatment, the heat treatment method and heat treatment furnace to be used, the temperature within the above temperature range
- the heat treatment temperature, furthermore, the heat treatment time and temperature rise/fall rate may be appropriately set.
- the Ln solid-solution powder and stabilized powder are each obtained by pulverizing the mixture after heat treatment.
- the pulverization method may be any known method that gives the resulting powder a desired particle size.
- a pulverization method at least one of wet pulverization and dry pulverization, and wet pulverization may be used.
- the solvent for wet pulverization may be at least one of water and alcohol, preferably alcohol.
- the pulverization time varies depending on the pulverization method, the amount of powder to be pulverized, and the like. As the amount of powder to be pulverized increases and the pulverization time becomes longer, the particle size of the resulting powder composition tends to decrease until equilibrium is reached. Just adjust.
- the BET specific surface area and the particle size of the powder can be adjusted.
- the colored metal powder is a powder of a transition metal compound other than zirconium and hafnium (powder of a compound of a colored metal element), and may be contained in the powder composition of the present embodiment as it is.
- the colored metal powder is a powder of at least one of oxides, hydroxides, oxyhydroxides, chlorides, sulfates and nitrates of colored metal elements, and further oxides, hydroxides and oxyhydroxides. It is preferably a powder of at least one of the substances.
- MnO, MnO 2 , Mn 3 O 4 , Mn(OH) 2 , MnOOH, MnCl 2 , MnSO 4 , Mn(NO 3 ) 2 and Mn(COOH) 2 are examples of colored metal powders in which the coloring metal element is manganese.
- the colored metal powder whose colored metal element is titanium
- one or more powders selected from the group consisting of TiO 2 , Ti(OH) 2 , TiOOH, TiCl 2 , TiSO 4 , Ti(NO 3 ) 2 and TiCOOH, and TiO 2 one or more powders selected from the group of Ti(OH) 2 and TiOOH, or even powders of TiO 2 .
- the colored metal powder may be in an amount such that the content of the colored metal element in the powder composition obtained by the mixing step is 1500 ppm or less, and any amount such that the content of the colored metal element is 1500 ppm or less, for example, more than 0 ppm , 5 ppm or more, 10 ppm or more, or 40 ppm or more, and 1500 ppm or less, 1200 ppm or less, 1000 ppm or less, 800 ppm or less, 750 ppm or less, or 700 ppm or less.
- an alumina source may be provided as necessary.
- the alumina source may be at least one of alumina and its precursor, and examples thereof include at least one of alumina and aluminum hydroxide, and further alumina.
- the content of the alumina source may be an amount equivalent to the alumina content of the target powder composition.
- the alumina source may be contained in at least one of the Ln solid solution powder and the stabilized powder.
- each raw material powder may contain iron as an unavoidable impurity.
- the mixing method in the mixing step is to mix the raw material powder and, if necessary, the alumina source so that the content of the transition metal element is 1500 ppm or less.
- a desired powder composition can be obtained by appropriately selecting the type and amount of each raw material powder to be mixed. For example, in order to obtain a sintered body having a low chroma tone (for example, a tone corresponding to A1-A2, B1-B2, C1-C2 or D2 in the Vita Classical Shade Guide), the proportion of the stabilizing powder is and mixing at elevated temperatures.
- zirconia powder in which at least one of neodymium and erbium are dissolved preferably zirconia powder in which erbium is dissolved
- zirconia powder in which erbium is dissolved is used as a lanthanoid solid solution powder.
- zirconia powder in which erbium is dissolved is used as a lanthanoid solid solution powder.
- a powder in which praseodymium and terbium are solid-dissolved as a lanthanoid solid-solution powder and increase its proportion. and mixing with a high proportion of the colored metal powder in order to obtain a sintered body having a grayish tooth color tone.
- the mixing method is arbitrary, and may be at least one of dry mixing and wet mixing. When emphasizing mixing efficiency, dry mixing is preferred, and when emphasizing high uniformity, wet mixing is preferred. I can give an example.
- the method for producing the powder composition of the present embodiment may include at least one of a step of granulating the raw material powder prior to the mixing step and a step of granulating the powder composition after the mixing step. It is preferable to include a step of granulating each raw material powder prior to the step (hereinafter, the former is also referred to as a “pre-granulation step” and the latter as a “post-granulation step”, and these are collectively referred to as a “granulation step”. Say.).
- granule powder containing each raw material powder may be subjected to the mixing step.
- the granule powder to be subjected to the mixing step for example, granule powder of zirconia in which a lanthanoid rare earth element is dissolved (Ln solid solution ZrO 2 ), a lanthanoid rare earth element is dissolved in a solid solution, and the lanthanoid rare earth element is stabilized with a stabilizing element and a lanthanoid rare earth element.
- Granular powder of zirconia (stabilized Ln solid solution ZrO 2 ), granular powder of transition metal compounds other than zirconium and hafnium, zirconia stabilized with only one or more selected from the group of yttrium, calcium and magnesium (stabilized ZrO 2 ) granule powder, zirconia granule powder containing a transition metal compound other than zirconium and hafnium, the balance being stabilized with only one or more selected from the group of yttrium, calcium and magnesium (i.e., zirconium and hafnium) granule powder composed mainly of zirconia powder stabilized with only one or more selected from the group of yttrium, calcium and magnesium containing transition metal compounds), and transition metal compounds other than zirconium and hafnium one or more selected from the group of Ln solid solution ZrO 2 granule powders, including
- at least the compound of the coloring metal element is included, and the balance is the zirconium and ha
- the average granule size of each granule powder obtained in the pre-granulation step is preferably the same as the average granule size of the powder composition of the present embodiment.
- the average granule diameter of each granule powder is about the same, but the difference between the maximum and minimum values of the average granule diameter of each granule powder may be 0 ⁇ m or more, 0 ⁇ m or more, or 1 ⁇ m or more. , 10 ⁇ m or less, 8 ⁇ m or less, or 5 ⁇ m or less.
- the powder composition obtained by the mixing step should be granulated.
- the granulation method in the granulation process may be any method in which the secondary particles of the powder (raw material powder or powder composition) are slowly agglomerated to form granular particles.
- the granulation method includes one or more selected from the group consisting of a spray drying method, a stirring granulation method and an extrusion granulation method, and a spray drying method.
- a spray drying method a powder to be granulated is dispersed in a solvent to form droplets, which are then spray-dried to obtain granular powder.
- the solvent may be at least one of water and alcohol.
- binders such as an acrylic resin, with a slurry as needed, you may spray-dry and granulate.
- transition metal elements other than zirconium and hafnium are included, and the balance is zirconia stabilized with only one or more selected from the group of yttrium, calcium and magnesium (i.e., transition metal elements other than zirconium and hafnium,
- the main component is zirconia stabilized with only one or more selected from the group of yttrium, calcium and magnesium
- the stabilized powder, the colored metal powder and the solvent are mixed to form a slurry. can be spray-dried.
- the concentration of the powder in the slurry may be appropriately adjusted to adjust the granule diameter obtained by spray drying.
- a calcined body can be produced from the powder composition of the present embodiment by a method for manufacturing a calcined body, which includes the step of calcining a molded body composed of the powder composition of the present embodiment.
- the molded body subjected to the step of calcining the molded body composed of the powder composition of the present embodiment is a green compact, and further the powder composition of the present embodiment. It is a green compact in a state of being physically agglomerated and maintaining a certain shape.
- the molded body may have any shape suitable for the application.
- the shape of the molded body can be exemplified by one or more selected from the group of cubes, rectangular parallelepipeds, polyhedrons, columnar, columnar, disk-shaped, spherical and substantially spherical.
- a shape similar to the shape of the calcined body, such as a disc shape used for CAD/CAM processing, can be mentioned.
- the molded article has a measured density of 2.75 g/cm 3 or more or 3.10 g/cm 3 or more and 3.50 g/cm 3 or less or 3.40 g/cm 3 or less. Such measured densities correspond to relative densities of 45% to 58%.
- the measured density is the density [g/cm 3 ] determined from the mass obtained by mass measurement with respect to the volume determined from the dimension obtained by dimensional measurement.
- any molding method may be used as long as the powder composition of the present embodiment can be made into a green compact.
- the molding method include one or more selected from the group of uniaxial pressing, cold isostatic pressing (hereinafter also referred to as “CIP”), slip casting, sheet molding, slip casting and injection molding. Since it is simple, the molding method is preferably slip casting, injection molding, at least one of uniaxial pressing and CIP, further at least one of uniaxial pressing and CIP, and further CIP after uniaxial pressing. .
- Uniaxial press pressure is 15 MPa or more and 150 MPa or less
- CIP pressure is 90 MPa or more and 400 MPa or less. The higher the molding pressure, the higher the density of the resulting molded product.
- a calcined body is obtained by calcining the compact in the calcining process.
- calcined compacts are composed of fused particles.
- the fused particles have a structure in the initial stage of sintering, and the calcined body has a structure in which the particles are necked while part of the shape of the powder particles of the powder composition of the present embodiment is maintained. have As a result, the calcined body is brought into a state having mechanical properties suitable for machining.
- the calcination in the calcination step may be a heat treatment at a temperature lower than the sintering temperature of zirconia.
- calcined compacts exhibiting similar working characteristics can be obtained. Therefore, compacts having different compositions can be heat-treated simultaneously to produce a calcined body, thereby further improving the production efficiency of the calcined body.
- the calcined body is preferably obtained by normal pressure firing.
- calcining conditions the following conditions may be mentioned, and the conditions may be appropriately set according to the amount of compacts to be calcined and the characteristics of the calcining furnace to be used.
- Calcination atmosphere oxidizing atmosphere, preferably air atmosphere calcination temperature: 900°C or higher, 950°C or higher, or 1000°C or higher, and Less than 1200°C, 1150°C or less, or 1100°C or less calcination time: 0.5 hours or more, 1 hour or more, or 2 hours or more, and 9 hours or less, 6 hours or less, or 4 hours or less
- normal pressure sintering is a method of heating an object to be treated without applying an external force during heat treatment. It is a method of heating at a temperature below the sintering temperature without applying a strong force.
- a calcined body (hereinafter also referred to as “calcined body of the present embodiment”) composed of the fused particles and having a transition metal element content other than zirconium and hafnium of 1500 ppm or less is obtained.
- the calcined body of the present embodiment preferably has a state in which the coloring metal element is uniformly dispersed or dissolved in zirconia. Also, the coloring metal element may be partially dissolved in zirconia.
- An example of the state in which the coloring metal element is uniformly dispersed in zirconia is that the compound containing the coloring metal element having a particle diameter of 0.5 ⁇ m or more does not contain aggregated particles.
- the calcined body of the present embodiment preferably has a Vickers hardness of 30 HV or more or 35 HV or more, and preferably 70 HV or less, 60 HV or less, or 50 HV or less.
- calcined bodies obtained under similar production conditions have similar Vickers hardness.
- the difference in Vickers hardness is preferably 12 HV or less, 7 HV or less, or 5 HV or less.
- the calcined bodies tend to exhibit similar processing characteristics under the same processing conditions.
- the calcined body of the present embodiment preferably has a small difference in Vickers hardness due to the difference in composition (hereinafter also referred to as “hardness difference”). As mentioned above, it can be exemplified that it is over 0 HV, 1 HV or more, or 2 HV or more.
- Molding method Uniaxial pressure and CIP treatment Uniaxial pressure: 49 ⁇ 3 MPa CIP pressure: 196 ⁇ 5MPa (Temporary firing conditions) Temporary firing method: Normal pressure firing Atmosphere: Air atmosphere Firing time: 1000°C x 2 hours Temperature increase rate: 50 ⁇ 5°C/hour Temperature decrease rate: 300 ⁇ 10°C/hour
- a calcined body obtained by molding and calcining a powder composition having a composition capable of obtaining a sintered body having a color tone corresponding to A1 in Vita Classical Shade under the above conditions. (hereinafter also referred to as "A1 calcined body”) and a powder composition having a composition that allows a sintered body having a color tone different from this to be molded and calcined under the above conditions.
- A1 calcined body a powder composition having a composition that allows a sintered body having a color tone different from this to be molded and calcined under the above conditions.
- the yttrium content is 2.8 mol % or more and 6.0 mol % or less, further 4.0 mol % or more and 4.5 mol % or less, or further 4.2 mol %.
- the yttrium content is 4.244 mol%
- the erbium content is 0.053 mol%
- the terbium content is 0.002 mol%
- the cobalt content is A powder composition containing 15 ppm of titanium and 75 ppm of titanium and the balance being Y-stabilized ZrO 2 was filled into a mold, uniaxially pressed at a pressure of 49 MPa, and then CIP-treated at a pressure of 196 MPa to obtain a compact.
- a calcined body obtained by heat-treating the molded body in an air atmosphere at a calcining temperature of 1000° C. for a calcining time of 2 hours can be exemplified.
- the hardness difference (A1) is preferably small, and more preferably 11 HV or less, 9 HV or less, 7 HV or less, or 5 HV or less.
- the calcined bodies tend to exhibit similar processing characteristics under the same processing conditions.
- the calcined body of the present embodiment can be exemplified by having a hardness difference (A1) of 0 HV or more, more than 0 HV, 1 HV or more, or 2 HV or more.
- the hardness difference (A1) is the Vickers hardness of each calcined body of A2, A3, A3.5, A4, B1, B2, B3, B4, C1, C2, C3, C4, D2, D3, or D4,
- the absolute value of the difference from the Vickers hardness of the A1 calcined body can be mentioned.
- the "Vickers hardness" can be measured using a general Vickers tester (for example, Q30A, manufactured by Qness) equipped with a regular square pyramid indenter made of diamond.
- the indenter is statically pushed into the surface of the measurement sample, and the diagonal length of the indentation mark formed on the surface of the measurement sample is visually measured.
- the Vickers hardness can be obtained from the following formula.
- Hv F/ ⁇ d2/2sin( ⁇ / 2 ) ⁇
- Hv is the Vickers hardness (HV)
- F is the measured load (1 kgf)
- d is the diagonal length of the indentation mark (mm)
- ⁇ is the facing angle of the indenter (136°).
- the conditions for measuring Vickers hardness include the following conditions.
- Measurement sample Disk shape with a thickness of 3.0 ⁇ 0.5 mm
- Measurement load 1 kgf
- the surface of the sample to be measured is polished with #800 water-resistant abrasive paper to remove irregularities exceeding 0.1 mm.
- the calcined body of the present embodiment has a measured density of 2.75 g/cm 3 or more, or 3.10 g/cm 3 or more, and 3.50 g/cm 3 or less, or 3.40 g/cm 3 or less. is mentioned. Such measured densities correspond to relative densities of 45% to 58%. Since the calcined body is in a state where densification due to thermal shrinkage has hardly progressed, the value may be equivalent to the actually measured density of the molded body.
- a sintered body can be produced using at least one of the powder composition of the present embodiment and the calcined body of the present embodiment.
- a sintered body is obtained by a sintered body manufacturing method including a step of sintering at least one of the powder composition of the present embodiment and the calcined body of the present embodiment.
- a sintered body is produced directly from the powder composition of the present embodiment, it may be molded and then sintered.
- a known sintering method for example, one or more selected from the group of normal pressure sintering, pressure sintering and vacuum sintering, can be applied as the sintering method.
- the sintering method is preferably a method suitable for manufacturing a dental prosthetic material, and specifically includes a sintering method that does not have pressure sintering or vacuum sintering, and at least pressureless sintering. sintering methods, or even pressureless sintering only. From at least one of the powder composition of the present embodiment and the calcined body of the present embodiment (hereinafter also referred to as "the powder composition of the present embodiment, etc.”), the sintering method is only pressureless sintering.
- normal pressure sintered body is a method of sintering by heating the object to be sintered without applying an external force during sintering.
- sintering conditions for normal pressure sintering include the following conditions, but the conditions may be adjusted according to the amount of compacts and calcined bodies to be sintered and the characteristics of the sintering furnace.
- Sintering temperature 1200°C or higher, 1300°C or higher, 1400°C or higher, 1430°C or higher, 1450°C or higher, or 1500°C or higher, and 1650° C. or less, 1580° C. or less, or 1560° C.
- Heating rate 50° C./hour or more, 100° C./hour or more, 150° C./hour or more, and 500°C/min or less or 300°C/min or less
- Sintering time 0.1 hour or more, 0.5 hour or more, or 1 hour or more, and 5 hours or less, 3 hours or less, or 2 hours or less
- Sintering atmosphere At least one of an oxygen atmosphere and an air atmosphere, preferably an air atmosphere
- the molded body (or the calcined body) may be placed in a preheated firing furnace and sintered.
- the atmospheric atmosphere is an atmosphere mainly composed of nitrogen and oxygen with an oxygen concentration of about 18 to 23% by volume.
- zirconia crystal grains in which the lanthanoid rare earth element is solid-dissolved, and transition metal elements other than zirconium and hafnium are solidified.
- a sintered body (hereinafter also referred to as "sintered body of the present embodiment") containing two or more kinds of zirconia and having a content of the transition metal element of 1500 ppm or less is obtained.
- the sintered body of the present embodiment preferably has the same color tone as the dental color tone sample, and Vita Classical Shade A1, A2, A3, A3.5, A4, B1, B2, B3, B4, C1, C2 , C3, C4, D2, D3 or D4.
- Typical color tones in this embodiment include the color tones of the L * a * b * color system in Table 1.
- Table 2 shows preferred color tones of the L * a * b * color system.
- the color tones visually recognized differ depending on the translucency of the sintered bodies, even sintered bodies belonging to the same color tone classification may have different color tone values.
- the color tone of the sintered body is measured using a general spectrophotometer (eg, CM-700d, manufactured by Konica Minolta), using a D65 light source as the light source, and using a white calibration plate as the background. is the value measured in SCI mode.
- a disk-shaped sintered body having a thickness of 1 ⁇ 0.02 mm and a surface roughness of Ra ⁇ 0.02 ⁇ m on both sides may be used as the measurement sample.
- the sintered body of the present embodiment preferably has translucency suitable for use as a dental prosthetic material, and the translucency may vary depending on the color tone.
- the total light transmittance for the D65 light source is 15% or more, 20% or more, 25% or more, or 30% or more. 47% or less, 45% or less, 42% or less, or 39% or less.
- the total light transmittance is measured using a general haze meter (for example, NDH4000, manufactured by Nippon Denshoku Co., Ltd.), and is a value measured according to JIS K 7361-1.
- a general haze meter for example, NDH4000, manufactured by Nippon Denshoku Co., Ltd.
- the sintered body preferably has strength suitable for use as a dental prosthetic material.
- strength is preferably 800 MPa or more or 850 MPa or more as three-point bending strength, and preferably 1200 MPa or less, 1000 MPa or less, or 900 MPa or less.
- the three-point bending strength is a value measured by a method according to JIS R 1601.
- a columnar shape with a width of 4 mm, a thickness of 3 mm, and a length of 45 mm is used as the measurement sample, the distance between fulcrums is set to 30 mm, and a load is applied in the horizontal direction of the measurement sample.
- the sintered body of the present embodiment can be applied to known uses of zirconia sintered bodies, and in particular can be used as a dental material and further as a dental prosthesis.
- dental prostheses include crowns, bridges, inlays, onlays, and veneers.
- Crystal phase and monoclinic fraction The crystalline phase of the powder composition was identified by XRD measurement under the following conditions using an X-ray diffractometer (device name: Ultima IV, manufactured by RIGAKU).
- the monoclinic crystal ratio was obtained by the following formula from the XRD pattern after the above treatment.
- f M [1 ⁇ [It(111)+Ic(111)] /[Im(111)+Im(11-1) +It(111)+Ic(111)]” ⁇ 100 (Crystallite diameter)
- the density of the compact and the calcined body was obtained from the mass measured by mass measurement and the volume obtained by dimensional measurement.
- For dimensional measurement use a disk-shaped sample, use vernier calipers to obtain the diameter of the upper end, the diameter of the lower end, and the thickness at 4 points each, and calculate the volume from the average value of the thickness and the average value of the diameter of the upper and lower ends. asked for
- the density of the sintered body was measured according to JIS R 1634.
- the average granule size is obtained by mechanical sieving under the following conditions using a low-tap sieve shaker (device name: sieve shaker S-1, manufactured by Teraoka), and the granule size and its mass ratio. and the granule diameter at 50% by mass in the cumulative granule diameter curve plotted.
- Shaking number 300 rpm
- Shaking width 25mm
- Standard number of hammer strokes 150 rpm
- Shaking time 30 minutes
- sieves having mesh sizes of 125 ⁇ m, 106 ⁇ m, 90 ⁇ m, 75 ⁇ m, 63 ⁇ m, 45 ⁇ m, 38 ⁇ m and 25 ⁇ m were stacked in order according to JIS Z 8801.
- the cumulative granule size curve after shaking, the granule size of the powder composition remaining on each meshed sieve is regarded as a granule size equivalent to the opening size of the sieve with a mesh size one above the sieve, and the granules It was created by plotting the diameter and its mass ratio.
- the Vickers hardness is measured using a Vickers tester (equipment name: Q30A, manufactured by Qness), and under the following conditions, the indenter is statically pushed into the surface of the measurement sample, and the diagonal length of the indentation mark formed on the surface of the measurement sample. is measured visually. Using the obtained diagonal length, the Vickers hardness was obtained from the above formula.
- Measurement sample Disk shape with a thickness of 3.0 ⁇ 0.5 mm Measurement load: 1 kgf Prior to the measurement, a calcined body whose surface to be measured was polished by 0.1 mm with #800 waterproof abrasive paper was used as the measurement sample.
- the hardness difference (A2/C4) is obtained by molding and calcining a powder composition having a composition that can obtain a sintered body having color tones corresponding to A2 and C4 in Vita Classical Shade under the following conditions. The Vickers hardness of the obtained calcined body was measured, and the difference was taken as the absolute value.
- Molding conditions Uniaxial pressure and CIP treatment Uniaxial pressure: 49 ⁇ 3 MPa CIP pressure: 196 ⁇ 5MPa
- Temporary firing method Normal pressure firing Atmosphere: Air atmosphere Firing time: 1000°C x 2 hours Temperature increase rate: 50 ⁇ 5°C/hour Temperature decrease rate: 300 ⁇ 10°C/hour
- the hardness difference (A1) is obtained by measuring the Vickers hardness of A2, A3, A3.5, A4, B1, B2, B3, B4, C1, C2, C3, C4, D2, D3 or D4 calcined bodies, The absolute value of the difference from the Vickers hardness of the sintered body.
- the calcined body of Example 3 was used as the A1 calcined body.
- Total light transmittance The total light transmittance was measured according to JIS K 7361-1 using a haze meter (device name: NDH4000, manufactured by Nippon Denshoku Co., Ltd.) as a measuring device. A D65 light source was used as the light source.
- Three-point bending strength was measured by a method according to JIS R 1601.
- the measurement sample had a columnar shape with a width of 4 mm, a thickness of 3 mm and a length of 45 mm.
- the measurement was performed with a distance between fulcrums of 30 mm and a load applied in the horizontal direction of the measurement sample.
- Color tone Color tone was measured in SCI mode using a spectrophotometer (device name: CM-700d, manufactured by Konica Minolta) using a D65 light source. The measurement was a so-called white background measurement using a white calibration plate as a background. A disk-shaped sintered body having a thickness of 1 mm and having both surfaces polished to a surface roughness Ra ⁇ 0.02 ⁇ m was used as a measurement sample.
- Example 1 (yttrium-stabilized zirconia powder) After adding yttrium chloride to the zirconia sol obtained by hydrolyzing the zirconium oxychloride aqueous solution so that the yttrium concentration becomes 4.3 mol % in terms of Y 2 O 3 , it is dried in the air at 180 ° C. °C for 2 hours. After firing, it was dried at 110° C. in the atmosphere. 199.9 g of the fired product after drying, 0.1 g of ⁇ -alumina powder and pure water were mixed in a ball mill to obtain slurry containing yttrium-stabilized zirconia powder.
- the BET specific surface area was 10.1 m 2 /g and the average particle diameter was 0.45 ⁇ m. there were.
- An acrylic binder was added to and mixed with the obtained slurry so that the mass ratio of the binder to the mass of the powder in the slurry was 3% by mass.
- the slurry is spray-dried in air at 180° C. to produce a granular powder containing 3% by mass of an acrylic binder, 0.05% by mass of alumina, and the balance being 4.3 mol% of yttrium-stabilized zirconia. (hereinafter also referred to as “Y(4.3) stabilized ZrO 2 granule powder”) was obtained.
- the granule powder had an average granule diameter of 44 ⁇ m.
- (yttrium-stabilized terbium solid-solution zirconia powder) Yttrium chloride so that the yttrium concentration is 4.3 mol% in terms of Y 2 O 3
- terbium oxide (III, IV) so that the terbium concentration is 0.04 mol% in terms of Tb 4 O 7
- a slurry containing yttrium-stabilized terbium solid-solution zirconia powder was obtained in the same manner as the yttrium-stabilized zirconia powder, except that it was added to the zirconia sol.
- the resulting yttrium-stabilized terbium solid-solution zirconia powder had a BET specific surface area of 10.2 m 2 /g and an average particle size of 0.44 ⁇ m.
- Y(4.3)-stabilized Tb-dissolved ZrO 2 granular powder was obtained.
- the granule powder had an average granule diameter of 43 ⁇ m.
- Erbium solid solution zirconia powder Erbium solid solution zirconia powder
- Erbium - dissolved zirconia powder was prepared in the same manner as the yttrium - stabilized zirconia powder, except that instead of yttrium chloride, erbium oxide was added to the zirconia sol so that the erbium concentration was 4.4 mol% in terms of Er2O3.
- a slurry containing The resulting erbium-dissolved zirconia powder had a BET specific surface area of 9.8 m 2 /g and an average particle size of 0.45 ⁇ m.
- slurry 199.9 g of the erbium-dissolved zirconia powder, 0.1 g of ⁇ -alumina powder and pure water were mixed in a ball mill to form a slurry.
- An acrylic binder was added to and mixed with the obtained slurry so that the mass ratio of the binder to the mass of the powder in the slurry was 3% by mass.
- the slurry is spray-dried at 180° C. in the atmosphere to obtain granular powder ( Hereinafter, it is also referred to as “Er(4.4) solid-solution ZrO 2 granule powder”).
- the granule powder had an average granule diameter of 42 ⁇ m.
- Cobalt oxide powder Co 3 O 4
- titanium oxide powder TiO 2
- the yttrium-stabilized zirconia powder obtained in this example was separated, and mixed with ⁇ -alumina powder, cobalt oxide powder, titanium oxide powder and pure water in a ball mill to obtain a slurry.
- An acrylic binder was added to and mixed with the obtained slurry so that the mass ratio of the binder to the mass of the powder in the slurry was 3% by mass.
- the slurry is spray-dried in the air at 180° C.
- the granule powder had an average granule diameter of 45 ⁇ m.
- Yttrium content 4.154mol% Erbium content: 0.146mol% Terbium content: 0.003mol% Cobalt content: 24ppm Titanium content: 120ppm Alumina content: 0.05% by mass Zirconia content: balance It was 44 ⁇ m. It should be noted that the BET difference was 0.2 for the Y(4.3) stabilized ZrO2 granules, the Er ( 4.4 ) solid solution ZrO2 granules and the Y ( 4.3) stabilized Tb solid solution ZrO2 granules. 4 m 2 /g and a particle size difference of 0.01 ⁇ m.
- the calcined body of this example was sintered under the following conditions to obtain a sintered body of this example.
- Sintering method Normal pressure sintering Sintering temperature: 1500°C Sintering time: 2 hours Heating rate: 600°C/hour Sintering atmosphere: Air atmosphere
- Example 2 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 22.5:46.0:6.5:25.0.
- a powder composition of this example having a coloring metal element content of 900 ppm was obtained.
- Yttrium content 4.037mol% Erbium content: 0.273mol% Terbium content: 0.019mol%
- Cobalt content 150ppm Titanium content: 750ppm
- Example 3 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a weight ratio of 91.7:4.5:1.3:2.5.
- a powder composition of this example having a coloring metal element content of 90 ppm was obtained.
- Yttrium content 4.244mol% Erbium content: 0.053mol% Terbium content: 0.002mol%
- Example 4 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a weight ratio of 77.0:15.0:3.0:5.0.
- a powder composition of this example having a coloring metal element content of 180 ppm was obtained.
- Yttrium content 4.176mol% Erbium content: 0.125mol% Terbium content: 0.006mol%
- Cobalt content 30ppm Titanium content: 150ppm
- Example 5 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 64.9:22.5:5.1:7.5.
- a powder composition of this example having a coloring metal element content of 270 ppm was obtained.
- Yttrium content 4.089mol% Erbium content: 0.215mol% Terbium content: 0.009mol%
- Cobalt content 45ppm Titanium content: 225ppm
- Example 6 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 35.6:35.0:9.4:20.0.
- a powder composition of this example having a coloring metal element content of 720 ppm was obtained.
- Yttrium content 3.917mol% Erbium content: 0.395mol% Terbium content: 0.014mol%
- Cobalt content 120ppm Titanium content: 600ppm
- Example 7 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 90.6:6.0:0.9:2.5.
- a powder composition of this example having a coloring metal element content of 90 ppm was obtained.
- Yttrium content 4.262mol% Erbium content: 0.035mol% Terbium content: 0.002mol%
- Cobalt content 15ppm Titanium content: 75ppm
- Example 8 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solute ZrO 2 granule powder, Er(4.4) solute ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 86.5:8.50:1.7:3.3.
- a powder composition of this example having a coloring metal element content of 118 ppm was obtained.
- Yttrium content 4.227mol% Erbium content: 0.071mol% Terbium content: 0.003mol%
- Example 9 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 79.4:11.5:2.8:6.3: A powder composition of this example having a coloring metal element content of 226 ppm was obtained.
- Yttrium content 4.182mol% Erbium content: 0.118mol% Terbium content: 0.005mol%
- Cobalt content 38ppm Titanium content: 188ppm
- Example 10 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 64.5:25.0:3.0:7.5.
- a powder composition of this example having a coloring metal element content of 270 ppm was obtained.
- Yttrium content 4.177mol% Erbium content: 0.125mol% Terbium content: 0.010mol% Cobalt content: 45ppm Titanium content: 225ppm Alumina content: 0.05% by mass Zirconia content: balance It was 44 ⁇ m.
- Example 11 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 86.2:5.0:1.3:7.5.
- a powder composition of this example having a coloring metal element content of 270 ppm was obtained.
- Yttrium content 4.245mol% Erbium content: 0.053mol% Terbium content: 0.002mol%
- Cobalt content 45ppm Titanium content: 225ppm
- Example 12 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 except that the stabilized ZrO2 granule powder was mixed in a weight ratio of 75.6:11.0:2.1:11.3.
- a powder composition of this example having a coloring metal element content of 406 ppm was obtained.
- Yttrium content 4.211mol% Erbium content: 0.089mol% Terbium content: 0.004mol%
- Example 13 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 61.2:20.0:1.3:17.5.
- a powder composition of this example having a coloring metal element content of 630 ppm was obtained.
- Yttrium content 4.248mol% Erbium content: 0.053mol% Terbium content: 0.008mol%
- Cobalt content 105ppm Titanium content: 525ppm
- Example 14 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 69.5:15.0:3.0:12.5.
- a powder composition of this example having a coloring metal element content of 450 ppm was obtained.
- Yttrium content 4.177mol% Erbium content: 0.125mol% Terbium content: 0.006mol%
- Cobalt content 75ppm Titanium content: 375ppm
- Example 15 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solute ZrO 2 granule powder, Er(4.4) solute ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 63.6:22.5:5.1:8.8: A powder composition of this example having a coloring metal element content of 316 ppm was obtained.
- Yttrium content 4.089mol% Erbium content: 0.215mol% Terbium content: 0.009mol%
- Example 16 Y(4.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a weight ratio of 71.5:17.5:1.7:9.3.
- a powder composition of this example having a coloring metal element content of 334 ppm was obtained.
- Yttrium content 4.229mol% Erbium content: 0.071mol% Terbium content: 0.007mol%
- Example 17 (yttrium-stabilized zirconia powder) The same yttrium-stabilized zirconia powder of Example 1 except that yttrium chloride was added to the zirconia sol so that the yttrium concentration was 2.9 mol% in terms of Y 2 O 3 and that the zirconia sol was fired at 1100 ° C. for 2 hours.
- the BET specific surface area was 13.0 m 2 /g and the average particle size was 0.45 ⁇ m.
- the granule powder had an average granule diameter of 44 ⁇ m.
- Yttrium content 3.025mol% Erbium content: 0.083mol% Terbium content: 0.003mol%
- Example 18 Y(2.9) stabilized ZrO 2 granule powder 1, Y(4.3) stabilized Tb solute ZrO 2 granule powder, Er(4.4) solute ZrO 2 granule powder and Co-Ti-Y(4) .3) Stabilized ZrO2 granule powder was mixed in a mass ratio of 61.2:20.0:1.3:17.5 in the same manner as in Example 1 with the following composition: and the content of the coloring metal element was 630 ppm.
- Yttrium content 3.410mol% Erbium content: 0.053mol% Terbium content: 0.008mol%
- Cobalt content 105ppm Titanium content: 525ppm
- Example 19 Y(2.9) stabilized ZrO 2 granule powder 1, Y(4.3) stabilized Tb solute ZrO 2 granule powder, Er(4.4) solute ZrO 2 granule powder and Co-Ti-Y(4) .3) Stabilized ZrO2 granule powder was mixed in a mass ratio of 24.0:45.0:4.3:26.7 in the same manner as in Example 1 with the following composition: and the content of the coloring metal element was 960 ppm.
- Yttrium content 3.844mol% Erbium content: 0.178mol% Terbium content: 0.018mol%
- Cobalt content 160ppm Titanium content: 800ppm
- Example 20 (yttrium-stabilized zirconia powder) The same yttrium-stabilized zirconia powder of Example 1 except that yttrium chloride was added to the zirconia sol so that the yttrium concentration was 2.9 mol% in terms of Y 2 O 3 and that the zirconia sol was fired at 1175 ° C. for 2 hours.
- the BET specific surface area was 10.1 m 2 /g and the average particle size was 0.45 ⁇ m.
- the granule powder had an average granule diameter of 44 ⁇ m.
- Yttrium content 3.025mol% Erbium content: 0.083mol% Terbium content: 0.003mol%
- Example 21 Y(2.9) stabilized ZrO 2 granule powder 2, Y(4.3) stabilized Tb solute ZrO 2 granule powder, Er(4.4) solute ZrO 2 granule powder and Co-Ti-Y(4 .3) Stabilized ZrO2 granule powder was mixed in a mass ratio of 61.2:20.0:1.3:17.5 in the same manner as in Example 1 with the following composition: and the content of the coloring metal element was 630 ppm.
- Yttrium content 3.410mol% Erbium content: 0.053mol% Terbium content: 0.008mol%
- Cobalt content 105ppm Titanium content: 525ppm
- Example 22 Y(2.9) stabilized ZrO 2 granule powder 2, Y(4.3) stabilized Tb solute ZrO 2 granule powder, Er(4.4) solute ZrO 2 granule powder and Co-Ti-Y(4 .3) Stabilized ZrO2 granule powder was mixed in a mass ratio of 24.0:45.0:4.3:26.7 in the same manner as in Example 1 with the following composition: and the content of the coloring metal element was 960 ppm.
- Yttrium content 3.844mol% Erbium content: 0.178mol% Terbium content: 0.018mol%
- Cobalt content 160ppm Titanium content: 800ppm
- Example 23 (yttrium-stabilized zirconia powder) The same yttrium-stabilized zirconia powder of Example 1 except that yttrium chloride was added to the zirconia sol so that the yttrium concentration was 5.3 mol% in terms of Y 2 O 3 and the zirconia sol was fired at 1175 ° C. for 2 hours. The process yielded a powder of zirconia stabilized with 5.3 mol % yttrium. As a result of evaluating the yttrium-stabilized zirconia powder in the same manner as in Example 1, the BET specific surface area was 10.0 m 2 /g and the average particle size was 0.45 ⁇ m.
- the resulting yttrium-stabilized zirconia powder contains 3% by mass of an acrylic binder, 0.05% by mass of alumina, and the balance is 5.3 mol% of yttrium-stabilized zirconia granular powder (hereinafter referred to as "Y (5.3) Stabilized ZrO 2 granule powder” was obtained.
- the granule powder had an average granule diameter of 44 ⁇ m.
- Yttrium content 4.945mol% Erbium content: 0.130mol% Terbium content: 0.007mol%
- Cobalt content 33ppm Titanium content: 165ppm
- Example 24 Y(5.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 61.1:20.3:0.6:18.0: A powder composition of this example having a coloring metal element content of 648 ppm was obtained.
- Yttrium content 4.905mol% Erbium content: 0.026mol% Terbium content: 0.008mol%
- Cobalt content 108ppm Titanium content: 540ppm
- Example 25 Y(5.3) stabilized ZrO 2 granule powder, Y(4.3) stabilized Tb solid solution ZrO 2 granule powder, Er(4.4) solid solution ZrO 2 granule powder and Co-Ti-Y(4. 3)
- the following composition was prepared in the same manner as in Example 1 , except that the stabilized ZrO2 granule powder was mixed in a mass ratio of 35.4:36.4:2.2:26.0.
- a powder composition of this example having a coloring metal element content of 936 ppm was obtained.
- Yttrium content 4.577mol% Erbium content: 0.093mol% Terbium content: 0.015mol%
- Example 26 (Titanium oxide-containing yttrium-stabilized neodymium solid-solution zirconia powder) Yttrium chloride was added to the zirconia sol so that the yttrium concentration was 1.6 mol% in terms of Y 2 O 3 , and neodymium oxide was added so that the neodymium concentration was 1.5 mol% in terms of Nd 2 O 3 ; A zirconia powder stabilized with 1.6 mol % of yttrium and containing 1.5 mol % of neodymium as a solid solution was obtained in the same manner as in Example 1, except that the powder was sintered at 1120° C. for 2 hours.
- the BET specific surface area was 10.1 m 2 /g and the average particle size was 0.45 ⁇ m.
- the obtained powder, alumina powder, titanium oxide powder and pure water were mixed in a ball mill, 3% by mass of an acrylic binder and 0% alumina were added.
- Ti-Y (1.6) Stabilized Nd solid-solution ZrO 2 granule powder was obtained.
- the granule powder had an average granule diameter of 44 ⁇ m.
- the obtained powder composition has a BET specific surface area of 10.1 m2/g, an average particle size of 0.45 ⁇ m, a crystallite size of 370 ⁇ , a monoclinic ratio of 7%, and an average particle size of 44 ⁇ m. Met.
- Example 27 Y(4.3) stabilized ZrO2 granule powder, Y(4.3) stabilized Tb - solubilized ZrO2 granule powder, Er( 4.4 ) solute ZrO2 granule powder and Ti — Y(1.6)
- the following composition was prepared in the same manner as in Example 1 except that the stabilized Nd solid solution ZrO 2 granule powder was mixed so that the mass ratio was 39.5: 38.4: 3.2: 18.9 and the content of the coloring metal element was 189 ppm.
- Yttrium content 3.667mol% Erbium content: 0.135mol% Terbium content: 0.016mol%
- Neodymium content 0.288mol% Titanium content: 189ppm
- Alumina content 0.05% by mass Zirconia content: balance It was 44 ⁇ m.
- Example 28 Y(4.3) stabilized ZrO2 granule powder, Y(4.3) stabilized Tb - solubilized ZrO2 granule powder, Er( 4.4 ) solute ZrO2 granule powder and Ti — Y(1.6)
- the following composition was prepared in the same manner as in Example 1 except that the stabilized Nd solid solution ZrO 2 granule powder was mixed in a mass ratio of 6.4: 58.3: 3.0: 32.3 and the content of the coloring metal element was 323 ppm.
- Yttrium content 3.320mol% Erbium content: 0.126mol% Terbium content: 0.024mol%
- Example 29 (yttrium-stabilized praseodymium solid-solution zirconia powder) Yttrium chloride was added to the zirconia sol so that the yttrium concentration was 1.6 mol% in terms of Y2O3 , and praseodymium oxide was added to the zirconia sol so that the praseodymium concentration was 0.76 mol% in terms of Pr6O11 ; In the same manner as the yttrium-stabilized zirconia powder of Example 1, except that it was calcined at 1120 ° C. for 2 hours.
- Y(1.6)-stabilized Pr solid-solution ZrO 2 granular powder As a result of evaluating the powder in the same manner as in Example 1, the BET specific surface area was 10.0 m 2 /g and the average particle size was 0.45 ⁇ m. The obtained powder, the granule powder, had an average granule diameter of 43 ⁇ m.
- Yttrium content 4.225mol% Erbium content: 0.042mol% Praseodymium content: 0.012mol% Cobalt content: 92ppm Titanium content: 458ppm Alumina content: 0.05% by mass Zirconia content: balance It was 44 ⁇ m.
- Example 30 Y(4.3) stabilized ZrO2 granule powder, Er( 4.4 ) solid solution ZrO2 granule powder, Co - Ti - Y(4.3) stabilized ZrO2 granule powder and Y(1.6) stabilized
- the following composition was prepared in the same manner as in Example 1, except that Pr solid-solution ZrO 2 granule powder was mixed in a mass ratio of 81.8:0.9:15.3:2.0.
- a powder composition of this example having a coloring metal element content of 550 ppm was obtained.
- Yttrium content 4.210mol% Erbium content: 0.036mol% Praseodymium content: 0.020mol% Cobalt content: 92ppm Titanium content: 458ppm Alumina content: 0.05% by mass Zirconia content: balance It was 44 ⁇ m.
- Example 31 Y(4.3) stabilized ZrO2 granule powder, Er( 4.4 ) solid solution ZrO2 granule powder, Co - Ti - Y(4.3) stabilized ZrO2 granule powder and Y(1.6) stabilized
- the following composition was prepared in the same manner as in Example 1, except that Pr solid-solution ZrO 2 granule powder was mixed in a mass ratio of 56.3: 1.2: 39.5: 3.0.
- a powder composition of this example having a coloring metal element content of 1079 ppm was obtained.
- Yttrium content 4.173mol% Erbium content: 0.050mol%
- Praseodymium content 0.030mol%
- Cobalt content 229ppm
- Titanium content 850ppm
- Alumina content 0.05% by mass Zirconia content: balance It was 44 ⁇ m.
- Comparative example 1 (yttrium-stabilized zirconia powder) In the same manner as the yttrium-stabilized zirconia powder of Example 1, a granular powder (Y(4.3) stabilized ZrO 2 granule powder) was obtained.
- Cobalt oxide powder (Co 3 O 4 ) was used as the colored metal powder.
- a part of the yttrium-stabilized zirconia powder obtained in this comparative example was taken out, and this was mixed with ⁇ -alumina powder, cobalt oxide and pure water in a ball mill to obtain a slurry.
- An acrylic binder was added to and mixed with the obtained slurry so that the mass ratio of the binder to the mass of the powder in the slurry was 3% by mass.
- the slurry was spray dried in air at 180° C. to contain 3% by weight acrylic binder, 0.05% by weight alumina and 0.06% by weight cobalt oxide, the balance being 4.3 mol% yttrium stabilized.
- a granule powder composed of zirconia (hereinafter also referred to as “Co—Y(4.3) stabilized ZrO 2 granule powder”) was obtained.
- the average granule diameter of the obtained granule powder was 44 ⁇ m.
- Iron oxide (Fe 2 O 3 ) powder was used as the colored metal powder.
- a portion of the yttrium-stabilized zirconia powder obtained in this comparative example was taken out, and this was mixed with ⁇ -alumina powder, iron oxide and pure water in a ball mill to obtain a slurry.
- An acrylic binder was added to and mixed with the obtained slurry so that the mass ratio of the binder to the mass of the powder in the slurry was 3% by mass.
- the slurry is spray dried in air at 180° C. to contain 3% by weight acrylic binder, 0.05% by weight alumina and 0.2% by weight iron oxide, the balance being 4.3 mol% yttrium stabilized.
- a granule powder composed of zirconia (hereinafter also referred to as “Fe—Y(4.3) stabilized ZrO 2 granule powder”) was obtained.
- the obtained granule powder had an average granule diameter of 46 ⁇ m.
- Yttrium content 4.166mol% Erbium content: 0.126mol% Iron content: 700ppm Cobalt content: 0 ppm Alumina content: 0.05% by mass Zirconia content: balance was 45 ⁇ m.
- Example 2 (Molded body, calcined body and sintered body) A molded body (green compact), a calcined body and a sintered body were obtained in the same manner as in Example 1 except that the obtained powder composition was used.
- Comparative example 2 Y(4.3) stabilized ZrO2 granule powder, Er( 4.4 ) solid solution ZrO2 granule powder, Co — Y(4.3) stabilized ZrO2 granule powder and Fe — Y(4.3) stabilized ZrO 2 granule powder was dry-processed so that the mass ratio was 19.7 (19.65): 1.1 (1.08): 15.3 (15.27): 64.0 (64.00).
- a powder composition of this comparative example having the following composition and a coloring metal element content of 1372 ppm was obtained in the same manner as in Comparative Example 1 except for mixing.
- Yttrium content 4.257mol% Erbium content: 0.042mol% Iron content: 1280ppm Cobalt content: 92ppm Alumina content: 0.05% by mass Zirconia content: balance was 45 ⁇ m.
- Comparative example 3 (Terbium oxide granule powder) A portion of the yttrium-stabilized zirconia powder obtained in Comparative Example 1 was taken out, and mixed with ⁇ -alumina powder, terbium oxide powder and pure water in a ball mill to obtain a slurry. An acrylic binder was added to and mixed with the obtained slurry so that the mass ratio of the binder to the mass of the powder in the slurry was 3% by mass. The slurry was spray-dried in air at 180° C. and contained 3% by mass of an acrylic binder, 0.05% by mass of alumina, and 0.04% by mass (0.24% by mass) of terbium oxide, with the balance being 4.
- a granule powder composed of zirconia stabilized with 3 mol % of yttrium (hereinafter also referred to as “Tb—Y(4.3) stabilized ZrO 2 granule powder”) was obtained.
- the granule powder had an average granule diameter of 45 ⁇ m and contained terbium as an oxide, and terbium was not dissolved in zirconia.
- Cobalt oxide powder Co 3 O 4
- titanium oxide powder TiO 2
- a portion of the yttrium-stabilized zirconia powder obtained in Comparative Example 1 was taken out, and mixed with ⁇ -alumina powder, cobalt oxide powder, titanium oxide powder and pure water in a ball mill to obtain a slurry.
- An acrylic binder was added to and mixed with the obtained slurry so that the mass ratio of the binder to the mass of the powder in the slurry was 3% by mass.
- the slurry is spray-dried in the atmosphere at 180° C.
- the granule powder had an average granule diameter of 45 ⁇ m.
- Yttrium content 4.154mol% Erbium content: 0.146mol% Terbium content: 0.003 mol% (0.02 mass%)
- Cobalt content 24ppm Titanium content: 120ppm
- Comparative example 4 Y(4.3) stabilized ZrO2 granule powder, Er( 4.4 ) solid solution ZrO2 granule powder, Tb - Y(4.3) stabilized ZrO2 granule powder and Co - Ti-Y(4.3) )
- the following composition was prepared in the same manner as in Comparative Example 1 , except that the stabilized ZrO2 granule powder was dry mixed in a mass ratio of 61.2:1.3:20.0:17.5.
- a powder composition of this comparative example having a coloring metal element content of 630 ppm was obtained.
- Yttrium content 4.248mol% Erbium content: 0.053mol% Terbium content: 0.008 mol% (0.05% by mass)
- Cobalt content 105ppm Titanium content: 525ppm
- Comparative example 5 Y(4.3) stabilized ZrO2 granule powder, Er( 4.4 ) solid solution ZrO2 granule powder, Tb - Y(4.3) stabilized ZrO2 granule powder and Co - Ti-Y(4.3) )
- the following composition was prepared in the same manner as in Comparative Example 1 , except that the stabilized ZrO2 granule powder was dry mixed in a mass ratio of 22.5:6.5:46.0:25.0.
- a powder composition of this comparative example having a coloring metal element content of 900 ppm was obtained.
- Yttrium content 4.039mol% Erbium content: 0.273mol% Terbium content: 0.019 mol% (0.11 mass%)
- Cobalt content 150ppm Titanium content: 750ppm
- the examples and comparative examples are calcined bodies obtained under the same conditions except for the powder compositions used. All had Vickers hardness suitable for CAD/CAM processing. However, while Examples 1 (color tone: A2) and 2 (color tone: C4) have a hardness difference (A2/C4) of 5, the hardness of Comparative Examples 1 (color tone: A2) and 2 (color tone: C4) The difference (A2/C4) is 14, and it can be confirmed that the comparative example greatly differs in processing characteristics due to the difference in color tone.
- the hardness difference (A1) is 5 or less, and it can be confirmed that they have similar processing characteristics regardless of the color tone difference.
- the difference in hardness (A1) is 9 or less, and it can be confirmed that they have similar processing properties regardless of the difference in color tone.
- Comparative Examples 1 and 2 have hardness differences (A1) of 12 and 26, respectively, and it can be confirmed that processing characteristics differ depending on color tone differences.
- Comparative Examples 3 to 5 have a large difference in hardness (A1), and it can be confirmed that the processing characteristics differ depending on the difference in color tone.
- Example 1 and Comparative Example 1 have a color tone corresponding to A2
- both Example 2 and Comparative Example 2 have a color tone corresponding to C4.
- all of them have a bending strength of 1000 MPa or more, and it can be confirmed that they have mechanical strength suitable as a dental prosthetic material.
- Examples 3 to 16 each have a color tone of A1, A3, A3.5, A4, B1, B2, B3, B4, C1, C2, C3, D2, D3 or D4 of Vita Classical shade. can be confirmed.
- Examples 17 to 31 can each be seen to have shades of A2, B3, C3 or C4 of the Vita Classical shade.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Engineering & Computer Science (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Dentistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Dental Preparations (AREA)
- Dental Prosthetics (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
[1] ランタノイド希土類元素が固溶したジルコニアを2種以上、並びに、ジルコニウム及びハフニウム以外の遷移金属元素、を含み、残部がイットリウム、カルシウム及びマグネシウムの群から選ばれる1以上のみで安定化されたジルコニアであって、前記ランタノイド希土類元素が固溶したジルコニアは、それぞれ異なるランタノイド希土類元素が固溶しており、なおかつ、前記遷移金属元素の含有量が1500ppm以下であることを特徴とする粉末組成物。
[2] 前記ランタノイド希土類元素が固溶したジルコニアの少なくとも1種がプラセオジム、サマリウム、テルビウム、ジスプロジウム、ホロニウム及びツリウムの群から選ばれる1以上が固溶したジルコニアである、上記[1]に記載の粉末組成物。
[3] 前記ランタノイド希土類元素が固溶したジルコニアの少なくとも1種がネオジム及びエルビウムの群から選ばれる1以上が固溶したジルコニアである、上記[1]又は[2]に記載の粉末組成物。
[4] 前記ランタノイド希土類元素が固溶したジルコニアの少なくとも1種がイットリウム、カルシウム及びマグネシウムの群から選ばれる1以上で安定化されたジルコニアである、上記[1]乃至[3]のいずれかひとつに記載の粉末組成物。
[5] 前記遷移金属元素が、マンガン、コバルト及びチタンの群から選ばれる1以上である、上記[1]乃至[4]のいずれかひとつに記載の粉末組成物。
[6] 前記遷移金属元素が、酸化物、水酸化物、オキシ水酸化物、塩化物、硫酸塩及び硝酸塩の群から選ばれる1種以上として含まれる上記[1]乃至[5]のいずれかひとつに記載の粉末組成物。
[7] 前記残部がイットリウムのみで安定化されたジルコニアである、上記[1]乃至[6]のいずれかひとつに記載の粉末組成物。
[8] 鉄の含有量が100ppm以下である、上記[1]乃至[7]のいずれかひとつに記載の粉末組成物。
[9] アルミナを含む、上記[1]乃至[8]のいずれかひとつに記載の粉末組成物。
[10] 前記ジルコニウム及びハフニウム以外の遷移金属元素と、前記イットリウム、カルシウム及びマグネシウムの群から選ばれる1以上のみで安定化されたジルコニアと、で構成される顆粒粒子を含む、上記[1]乃至[9]のいずれかひとつに記載の粉末組成物。
[11] BET比表面積が5m2/g以上15m2/g以下である、上記[1]乃至[10]のいずれかひとつに記載の粉末組成物。
[12] 上記[1]乃至[11]のいずれかひとつに記載の粉末組成物を使用することを特徴とする仮焼体の製造方法。
[13] 上記[1]乃至[12]のいずれかひとつに記載の粉末組成物を使用することを特徴とする焼結体の製造方法。
[14] ジルコニウム及びハフニウム以外の遷移金属化合物、2種以上のランタノイド希土類元素が固溶したジルコニア、並びに、イットリウム、カルシウム及びマグネシウムの群から選ばれる1以上のみで安定化されたジルコニア、の融着粒子から構成され、ジルコニウム及びハフニウム以外の遷移金属元素の含有量が1500ppm以下である仮焼体。
[15] 上記[14]に記載の仮焼体を使用することを特徴とする焼結体の製造方法。
測定モード : 連続スキャン
スキャンスピード : 4°/分
測定範囲 : 2θ=26°~33°
加速電圧・電流 : 40mA・40kV
発散縦制限スリット: 10mm
発散/入射スリット: 1°
受光スリット : open
検出器 : 半導体検出器(D/teX Ultra)
フィルター : Niフィルター
ゴニオメータ半径 : 185mm
XRD測定は、一般的なX線回折装置(例えば、Ultima IV、RIGAKU社製)を使用して行うことができる。
単斜晶ジルコニア(11-1)面に相当するXRDピーク: 2θ=28±0.5°
正方晶ジルコニア(111)面に相当するXRDピーク : 2θ=30±0.5°
立方晶ジルコニア(111)面に相当するXRDピーク : 2θ=30±0.5°
単斜晶率は、粉末組成物のXRDパターンから、以下の式により求められる値である。
/[Im(111)+Im(11-1)
+It(111)+Ic(111)]}]×100
上式において、fMは単斜晶率[%]、It(111)は正方晶ジルコニア(111)面に相当するXRDピークの面積強度、Ic(111)は立方晶ジルコニア(111)面に相当するXRDピークの面積強度、Im(111)は単斜晶ジルコニア(111)面に相当するXRDピークの面積強度、及び、Im(11-1)は単斜晶ジルコニア(11-1)面に相当するXRDピークの面積強度である。正方晶ジルコニア(111)面に相当するXRDピーク、及び、立方晶ジルコニア(111)面に相当するXRDピークは、重複したひとつのピーク(以下、「メインXRDピーク」ともいう。)として測定される。そのため、上式におけるIt(111)+Ic(111)は、2θ=30±0.5°にピークトップを有する1つのXRDピークの面積強度に相当する。
上式において、Dは結晶子径(Å)、κはシェラー定数(κ=1)、λは測定X線の波長(CuKα線を線源とした場合、λ=0.15418nm)、βはメインXRDピークの半値幅(°)、及びθはメインXRDピークのブラッグ角である。メインXRDピークの半値幅は、平滑化処理及びバックグラウンド除去処理後のXRDパターンを、分割擬Voigt関数によるプロファイルフィッティングすることで得られるメインXRDピークの半値幅の値である。平滑化処理やバックグラウンド処理、及び、プロファイルフィッティングなどのXRDパターンの解析は、X線回折装置付属の解析プログラム(例えば、統合粉末X線解析ソフトウェアPDXL Ver.2.2、RIGAKU社製)などを使用して行えばよい。
吸着温度 :-196℃
前処理条件 :大気中、250℃で30分間の処理
BET比表面積は、一般的な装置(例えば、フローソーブIII2305、島津製作所社製)を使用して測定することができる。
測定装置 :MT3300EXII
計算モード :HRA
粒子屈折率 :2.17
溶媒屈折率 :1.333
粒子形状 :非球形
測定試料 :粉末組成物のスラリー(溶媒:純水)
振とう幅 :25mm
標準ハンマー打数 :150rpm
振とう時間 :30分
測定に先立ち、顆粒試料が目開き125μm以下の篩を通過する程度にまで、これを軽くほぐすことが好ましい。
BET比表面積 : 5m2/g以上、9m2/g以上、9.5m2/g以上又は10m2/g以上、かつ、
15m2/g以下、13m2/g以下、12m2/g以下又は11m2/g以下、
平均粒子径 : 0.2μm以上、0.3μm以上又は0.4μm以上、かつ、
0.7μm以下、0.6μm以下又は0.5μm以下
仮焼雰囲気 :酸化雰囲気、好ましくは大気雰囲気
仮焼温度 :900℃以上、950℃以上又は1000℃以上、かつ、
1200℃未満、1150℃以下又は1100℃以下
仮焼時間 :0.5時間以上、1時間以上又は2時間以上、かつ、
9時間以下、6時間以下又は4時間以下
(成形条件) 成形方法 :一軸加圧及びCIP処理
一軸加圧圧力 :49±3MPa
CIP圧力 :196±5MPa
(仮焼条件) 仮焼方法 :常圧焼成
雰囲気 :大気雰囲気
焼成時間 :1000℃×2時間
昇温速度 :50±5℃/時間
降温速度 :300±10℃/時間
上の式において、Hvはビッカース硬度(HV)、Fは測定荷重(1kgf)、dは押込み痕の対角長さ(mm)、及び、αは圧子の対面角(136°)である。
測定荷重 : 1kgf
測定に先立ち、測定試料は#800の耐水研磨紙で測定面を研磨し0.1mmを超える凹凸を除去し、前処理とすればよい。
焼結温度 :1200℃以上、1300℃以上、1400℃以上、1430℃以上、1450℃以上又は1500℃以上、かつ、
1650℃以下、1580℃以下又は1560℃以下
昇温速度 :50℃/時間以上、100℃/時間以上、150℃/時間以上、かつ、
500℃/分以下又は300℃/分以下
焼結時間 :0.1時間以上、0.5時間以上又は1時間以上、かつ、
5時間以下、3時間以下又は2時間以下
焼結雰囲気:酸素雰囲気及び大気雰囲気の少なくともいずれか、好ましくは大気雰囲気
粉末組成物の結晶相、X線回折装置(装置名:Ultima IV、RIGAKU社製)を使用し、以下の条件によるXRD測定により同定した。
測定モード : 連続スキャン
スキャンスピード : 4°/分
測定範囲 : 2θ=26°~33°
加速電圧・電流 : 40mA・40kV
発散縦制限スリット: 10mm
発散/入射スリット: 1°
受光スリット : open
検出器 : 半導体検出器(D/teX Ultra)
フィルター : Niフィルター
ゴニオメータ半径 : 185mm
結晶層の同定は、X線回折装置付属の解析プログラム(プログラム名:統合粉末X線解析ソフトウェアPDXL Ver.2.2、RIGAKU社製)を使用し、平滑化処理及びバックグラウンド除去処理し、処理後のXRDパターンを、分割擬Voigt関数によりプロファイルフィッティングすることで行った。
/[Im(111)+Im(11-1)
+It(111)+Ic(111)]」×100
(結晶子径)
粉末組成物の結晶子径は、(結晶相及び単斜晶率)と同様な方法及び処理で得られたXRDパターンにおけるメインXRDピークを使用し、以下の式から求めた。
D=κλ/βcosθ
成形体及び仮焼体の密度は、質量測定により測定した質量、及び、寸法測定により求めた体積から求めた。寸法測定は、円板形状の試料を使用し、ノギスを使用して上端の直径、下端の直径、及び、厚みを各4点ずつ求め、厚みの平均値及び上下端の直径の平均値から体積を求めた。
平均顆粒径は、ロータップ式篩振とう機(装置名:フルイ振とう機S-1、テラオカ社製)を使用し、以下の条件による機械篩分け法により得られる、顆粒径と、その質量割合と、をプロットした累積顆粒径曲線における50質量%となる顆粒径とした。
振とう幅 :25mm
標準ハンマー打数 :150rpm
振とう時間 :30分
機械篩分け法では、それぞれ、JIS Z 8801に準拠し、目開き125μm、106μm、90μm、75μm、63μm、45μm、38μm及び25μmの篩を順に積層させたものを使用した。該累積顆粒径曲線は、振とう後、各目開きの篩に残った粉末組成物の顆粒径を該篩の一つ上の目開きの篩の開口径と同等の顆粒径とみなし、当該顆粒径と、その質量割合とをプロットして作成した。
ビッカース硬度は、ビッカース試験機(装置名:Q30A、Qness社製)を使用し、以下の条件で、圧子を静的に測定試料表面に押し込み、測定試料表面に形成した押込み痕の対角長さを目視にて測定する。得られた対角長さを使用して、上述のビッカース硬度の式からを求めた。
測定荷重 : 1kgf
測定に先立ち、測定試料は#800の耐水研磨紙で測定面を0.1mm研磨した仮焼体を使用した。
硬度差(A2/C4)は、それぞれ、ビタ・クラシカルシェードにおけるA2及びC4に相当する色調を有する焼結体が得られ得る組成を有する粉末組成物を、以下の条件で成形及び仮焼して得られた仮焼体についてビッカース硬度を測定し、その差の絶対値とした。
(成形条件) 成形方法 :一軸加圧及びCIP処理
一軸加圧圧力 :49±3MPa
CIP圧力 :196±5MPa
(仮焼条件) 仮焼方法 :常圧焼成
雰囲気 :大気雰囲気
焼成時間 :1000℃×2時間
昇温速度 :50±5℃/時間
降温速度 :300±10℃/時間
硬度差(A1)は、A2、A3、A3.5、A4、B1、B2、B3、B4、C1、C2、C3、C4、D2、D3又はD4仮焼体についてビッカース硬度を測定し、A1仮焼体のビッカース硬度との差の絶対値とした。A1仮焼体として、実施例3の仮焼体を使用した。
全光線透過率は、測定装置としてヘーズメータ(装置名:NDH4000、日本電色社製)を使用してJIS K 7361-1に準拠した方法によって測定した。光源には、D65光源を使用した。
JIS R 1601に準じた方法によって、三点曲げ強度を測定した。測定試料は、幅4mm、厚み3mm及び長さ45mmの柱形状とした。測定は、支点間距離30mmとし、測定試料の水平方向に荷重を印加して行った。
色調は分光測色計(装置名:CM-700d、コニカミノルタ製)を使用し、D65光源を使用して、SCIモードにて測定した。測定は、背景として白色校正板を使用した、いわゆる白バック測定とした。測定試料は、表面粗さRa≦0.02μmとなるように両面研磨した、厚み1mmの円板状の焼結体を使用した。
(イットリウム安定化ジルコニア粉末)
オキシ塩化ジルコニウム水溶液を加水分解して得られたジルコニアゾルに、イットリウム濃度がY2O3換算で4.3mol%となるように塩化イットリウムを添加した後、大気中、180℃で乾燥し、1160℃で2時間焼成した。焼成後、大気中、110℃で乾燥した。乾燥後の焼成物199.9g、α-アルミナ粉末0.1g及び純水をボールミルで混合し、イットリウム安定化ジルコニア粉末を含むスラリーとした。当該スラリーを分取し、これを大気中、110℃で乾燥して得られたイットリウム安定化ジルコニア粉末を評価した結果、BET比表面積が10.1m2/g及び平均粒子径が0.45μmであった。得られたスラリーに対し、スラリー中の粉末の質量に対するバインダーの質量割合が3質量%となるように、アクリル酸系バインダーをスラリーに添加して混合した。当該スラリーを、大気中、180℃で噴霧乾燥し、アクリル酸系バインダーを3質量%及びアルミナを0.05質量%含み、残部が4.3mol%のイットリウムで安定化されたジルコニアからなる顆粒粉末(以下、「Y(4.3)安定化ZrO2顆粒粉末」ともいう。)を得た。当該顆粒粉末は、平均顆粒径が44μmであった。
イットリウム濃度がY2O3換算で4.3mol%となるように塩化イットリウム、及び、テルビウム濃度がTb4O7換算で0.04mol%となるように酸化テルビウム(III、IV)を、それぞれ、ジルコニアゾルに添加したこと以外はイットリウム安定化ジルコニア粉末と同様な方法で、イットリウムで安定化されたテルビウム固溶ジルコニア粉末を含むスラリー得た。得られたイットリウムで安定化されたテルビウム固溶ジルコニア粉末はBET比表面積が10.2m2/g及び平均粒子径が0.44μmであった。
塩化イットリウムの代わりに、エルビウム濃度がEr2O3換算で4.4mol%となるように酸化エルビウムをジルコニアゾルに添加したこと以外はイットリウム安定化ジルコニア粉末と同様な方法で、エルビウム固溶ジルコニア粉末を含むスラリーを得た。得られたエルビウム固溶ジルコニア粉末はBET比表面積が9.8m2/g及び平均粒子径が0.45μmであった。
着色金属粉末として、酸化コバルト粉末(Co3O4)及び酸化チタン粉末(TiO2)を使用した。本実施例で得られたイットリウム安定化ジルコニア粉末を分取し、これと、α-アルミナ粉末、酸化コバルト粉末、酸化チタン粉末及び純水をボールミルで混合してスラリーとした。得られたスラリーに対し、スラリー中の粉末の質量に対するバインダーの質量割合が3質量%となるように、アクリル酸系バインダーをスラリーに添加して混合した。当該スラリーを大気中、180℃で噴霧乾燥し、アクリル酸系バインダーを3質量%、アルミナを0.05質量%、四酸化三コバルトを0.06質量%及び酸化チタンを0.3質量%含み、残部が4.3mol%のイットリウムで安定化されたジルコニアからなる顆粒粉末(以下、「Co-Ti-Y(4.3)安定化ZrO2顆粒粉末」ともいう。)を得た。当該顆粒粉末は、平均顆粒径が45μmであった。
本実施例で得られた、Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末が、質量比で85.6(85.55):6.5(6.45):3.5(3.50):4.5(4.50)となるように200mLのポリプロピレン製容器に充填し、これを撹拌することで乾式混合し、以下の組成からなり、着色金属元素の含有量が144ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.146mol%
テルビウム含有量 : 0.003mol%
コバルト含有量 : 24ppm
チタン含有量 : 120ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が380nm、単斜晶率が6%及び平均顆粒径が44μmであった。なお、Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びY(4.3)安定化Tb固溶ZrO2顆粒粉末において、BET差が0.4m2/g及び粒子径差が0.01μmであった。
得られた粉末組成物5.5gを、直径25mmの金型に充填し、圧力49MPaの一軸加圧成形をした後、圧力196MPaでCIP処理し、成形体(圧粉体)を得た。
仮焼温度 :1000℃
仮焼時間 :2時間
昇温速度 :50℃/時
仮焼雰囲気:大気雰囲気
降温速度 :300℃/時
焼結方法 :常圧焼結
焼結温度 :1500℃
焼結時間 :2時間
昇温速度 :600℃/時
焼結雰囲気:大気雰囲気
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で22.5:46.0:6.5:25.0となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が900ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.273mol%
テルビウム含有量 : 0.019mol%
コバルト含有量 : 150ppm
チタン含有量 : 750ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.2m2/g、平均粒子径が0.45μm、結晶子径が380nm、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で91.7:4.5:1.3:2.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が90ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.053mol%
テルビウム含有量 : 0.002mol%
コバルト含有量 : 15ppm
チタン含有量 : 75ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で77.0:15.0:3.0:5.0となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が180ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.125mol%
テルビウム含有量 : 0.006mol%
コバルト含有量 : 30ppm
チタン含有量 : 150ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μ
m、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で64.9:22.5:5.1:7.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が270ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.215mol%
テルビウム含有量 : 0.009mol%
コバルト含有量 : 45ppm
チタン含有量 : 225ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で35.6:35.0:9.4:20.0となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が720ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.395mol%
テルビウム含有量 : 0.014mol%
コバルト含有量 : 120ppm
チタン含有量 : 600ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が375Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で90.6:6.0:0.9:2.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が90ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.035mol%
テルビウム含有量 : 0.002mol%
コバルト含有量 : 15ppm
チタン含有量 : 75ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で86.5:8.50:1.7:3.3となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が118ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.071mol%
テルビウム含有量 : 0.003mol%
コバルト含有量 : 20ppm
チタン含有量 : 98ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で79.4:11.5:2.8:6.3となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が226ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.118mol%
テルビウム含有量 : 0.005mol%
コバルト含有量 : 38ppm
チタン含有量 : 188ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で64.5:25.0:3.0:7.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が270ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.125mol%
テルビウム含有量 : 0.010mol%
コバルト含有量 : 45ppm
チタン含有量 : 225ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で86.2:5.0:1.3:7.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が270ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.053mol%
テルビウム含有量 : 0.002mol%
コバルト含有量 : 45ppm
チタン含有量 : 225ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で75.6:11.0:2.1:11.3となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が406ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.089mol%
テルビウム含有量 : 0.004mol%
コバルト含有量 : 68ppm
チタン含有量 : 338ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で61.2:20.0:1.3:17.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が630ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.053mol%
テルビウム含有量 : 0.008mol%
コバルト含有量 : 105ppm
チタン含有量 : 525ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で69.5:15.0:3.0:12.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が450ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.125mol%
テルビウム含有量 : 0.006mol%
コバルト含有量 : 75ppm
チタン含有量 : 375ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で63.6:22.5:5.1:8.8となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が316ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.215mol%
テルビウム含有量 : 0.009mol%
コバルト含有量 : 53ppm
チタン含有量 : 263ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で71.5:17.5:1.7:9.3となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が334ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.071mol%
テルビウム含有量 : 0.007mol%
コバルト含有量 : 56ppm
チタン含有量 : 278ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
(イットリウム安定化ジルコニア粉末)
イットリウム濃度がY2O3換算で2.9mol%となるように塩化イットリウムをジルコニアゾルに添加したこと及び1100℃で2時間焼成したこと以外は、実施例1のイットリウム安定化ジルコニア粉末と同様な方法で、アクリル酸系バインダーを3質量%及びアルミナを0.05質量%含み、残部が2.9mol%のイットリウムで安定化されたジルコニアからなる顆粒粉末(以下、「Y(2.9)安定化ZrO2顆粒粉末1」ともいう。)を得た。実施例1と同様な方法で、当該イットリウム安定化ジルコニア粉末を評価した結果、BET比表面積が13.0m2/g及び平均粒子径が0.45μmであった。当該顆粒粉末は、平均顆粒径が44μmであった。
Y(2.9)安定化ZrO2顆粒粉末1、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末が、質量比で87.3:7.5:2.0:3.2となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が118ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.083mol%
テルビウム含有量 : 0.003mol%
コバルト含有量 : 20ppm
チタン含有量 : 98ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が12.6m2/g、平均粒子径が0.45μm、結晶子径が360Å、単斜晶率が31%及び平均顆粒径が44μmであった。
Y(2.9)安定化ZrO2顆粒粉末1、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で61.2:20.0:1.3:17.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が630ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.053mol%
テルビウム含有量 : 0.008mol%
コバルト含有量 : 105ppm
チタン含有量 : 525ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が11.8m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が24%及び平均顆粒径が44μmであった。
Y(2.9)安定化ZrO2顆粒粉末1、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で24.0:45.0:4.3:26.7となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が960ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.178mol%
テルビウム含有量 : 0.018mol%
コバルト含有量 : 160ppm
チタン含有量 : 800ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.6m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が13%及び平均顆粒径が44μmであった。
(イットリウム安定化ジルコニア粉末)
イットリウム濃度がY2O3換算で2.9mol%となるように塩化イットリウムをジルコニアゾルに添加したこと及び1175℃で2時間焼成したこと以外は、実施例1のイットリウム安定化ジルコニア粉末と同様な方法で、アクリル酸系バインダーを3質量%及びアルミナを0.05質量%含み、残部が2.9mol%のイットリウムで安定化されたジルコニアからなる顆粒粉末(以下、「Y(2.9)安定化ZrO2顆粒粉末2」ともいう。)を得た。実施例1と同様な方法で、当該イットリウム安定化ジルコニア粉末を評価した結果、BET比表面積が10.1m2/g及び平均粒子径が0.45μmであった。当該顆粒粉末は、平均顆粒径が44μmであった。
Y(2.9)安定化ZrO2顆粒粉末2、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で87.3:7.5:2.0:3.2となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が118ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.083mol%
テルビウム含有量 : 0.003mol%
コバルト含有量 : 20ppm
チタン含有量 : 98ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が30%及び平均顆粒径が44μmであった。
Y(2.9)安定化ZrO2顆粒粉末2、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で61.2:20.0:1.3:17.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が630ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.053mol%
テルビウム含有量 : 0.008mol%
コバルト含有量 : 105ppm
チタン含有量 : 525ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が20%及び平均顆粒径が44μmであった。
Y(2.9)安定化ZrO2顆粒粉末2、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で24.0:45.0:4.3:26.7となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が960ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.178mol%
テルビウム含有量 : 0.018mol%
コバルト含有量 : 160ppm
チタン含有量 : 800ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が13%及び平均顆粒径が44μmであった。
(イットリウム安定化ジルコニア粉末)
イットリウム濃度がY2O3換算で5.3mol%となるように塩化イットリウムをジルコニアゾルに添加したこと及び1175℃で2時間焼成したこと以外は、実施例1のイットリウム安定化ジルコニア粉末と同様な方法で、5.3mol%のイットリウムで安定化されたジルコニアの粉末を得た。実施例1と同様な方法で、当該イットリウム安定化ジルコニア粉末を評価した結果、BET比表面積が10.0m2/g及び平均粒子径が0.45μmであった。得られたイットリウム安定化ジルコニア粉末、アクリル酸系バインダーを3質量%及びアルミナを0.05質量%含み、残部が5.3mol%のイットリウムで安定化されたジルコニアからなる顆粒粉末(以下、「Y(5.3)安定化ZrO2顆粒粉末」ともいう。)を得た。当該顆粒粉末は、平均顆粒径が44μmであった。
Y(5.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で74.9:16.5:3.1:5.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が198ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.130mol%
テルビウム含有量 : 0.007mol%
コバルト含有量 : 33ppm
チタン含有量 : 165ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が390Å、単斜晶率が2%及び平均顆粒径が44μmであった。
Y(5.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で61.1:20.3:0.6:18.0となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が648ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.026mol%
テルビウム含有量 : 0.008mol%
コバルト含有量 : 108ppm
チタン含有量 : 540ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が380Å、単斜晶率が3%及び平均顆粒径が44μmであった。
Y(5.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で35.4:36.4:2.2:26.0となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が936ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.093mol%
テルビウム含有量 : 0.015mol%
コバルト含有量 : 156ppm
チタン含有量 : 780ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が380Å、単斜晶率が5%及び平均顆粒径が44μmであった。
(酸化チタン含有イットリウム安定化ネオジム固溶ジルコニア粉末)
イットリウム濃度がY2O3換算で1.6mol%となるように塩化イットリウム、ネオジム濃度がNd2O3換算で1.5mol%となるように酸化ネオジムを、それぞれ、ジルコニアゾルに添加したこと及び1120℃で2時間焼成したこと以外は、実施例1と同様な方法で、1.6mol%のイットリウムで安定化され1.5mol%のネオジムが固溶したジルコニアの粉末を得た。実施例1と同様な方法で、当該粉末を評価した結果、BET比表面積が10.1m2/g及び平均粒子径が0.45μmであった。得られた粉末、アルミナ粉末、酸化チタン粉末及び純水をボールミルで混合したこと以外は、実施例1のイットリウム安定化ジルコニア粉末と同様な方法で、アクリル酸系バインダーを3質量%、アルミナを0.05質量%及び酸化チタンを0.1質量%含み、残部が1.6mol%のイットリウムで安定化され、1.5mol%のネオジムが固溶したジルコニアからなる顆粒粉末(以下、「Ti-Y(1.6)安定化Nd固溶ZrO2顆粒粉末」ともいう。)を得た。当該顆粒粉末は、平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びTi-Y(1.6)安定化Nd固溶ZrO2顆粒粉末を、質量比で87.9:7.5:3.1:1.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が15ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.132mol%
テルビウム含有量 : 0.003mol%
ネオジム含有量 : 0.023mol%
チタン含有量 : 15ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びTi-Y(1.6)安定化Nd固溶ZrO2顆粒粉末を、質量比で39.5:38.4:3.2:18.9となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が189ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.135mol%
テルビウム含有量 : 0.016mol%
ネオジム含有量 : 0.288mol%
チタン含有量 : 189ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が10%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Y(4.3)安定化Tb固溶ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末及びTi-Y(1.6)安定化Nd固溶ZrO2顆粒粉末を、質量比で6.4:58.3:3.0:32.3となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が323ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.126mol%
テルビウム含有量 : 0.024mol%
ネオジム含有量 : 0.492mol%
チタン含有量 : 323ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が12%及び平均顆粒径が44μmであった。
(イットリウム安定化プラセオジム固溶ジルコニア粉末)
イットリウム濃度がY2O3換算で1.6mol%となるように塩化イットリウム、プラセオジム濃度がPr6O11換算で0.76mol%となるように酸化プラセオジムを、それぞれ、ジルコニアゾルに添加したこと及び1120℃で2時間焼成したこと以外は、実施例1のイットリウム安定化ジルコニア粉末と同様な方法で、アクリル酸系バインダーを3質量%及びアルミナを0.05質量%含み、残部が1.6mol%のイットリウムで安定化され、0.76mol%のプラセオジムが固溶したジルコニアからなる顆粒粉末(以下、「Y(1.6)安定化Pr固溶ZrO2顆粒粉末」ともいう。)を得た。実施例1と同様な方法で、当該粉末を評価した結果、BET比表面積が10.0m2/g及び平均粒子径が0.45μmであった。得られた粉末、当該顆粒粉末は、平均顆粒径が43μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末、Co-Ti-Y(4.3)安定化ZrO2顆粒粉末及びY(1.6)安定化Pr固溶ZrO2顆粒粉末を、質量比で82.5:1.0:15.3:1.2となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が550ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.042mol%
プラセオジム含有量 : 0.012mol%
コバルト含有量 : 92ppm
チタン含有量 : 458ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が8%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末、Co-Ti-Y(4.3)安定化ZrO2顆粒粉末及びY(1.6)安定化Pr固溶ZrO2顆粒粉末を、質量比で81.8:0.9:15.3:2.0となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が550ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.036mol%
プラセオジム含有量 : 0.020mol%
コバルト含有量 : 92ppm
チタン含有量 : 458ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が9%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末、Co-Ti-Y(4.3)安定化ZrO2顆粒粉末及びY(1.6)安定化Pr固溶ZrO2顆粒粉末を、質量比で56.3:1.2:39.5:3.0となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が1079ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.050mol%
プラセオジム含有量 : 0.030mol%
コバルト含有量 : 229ppm
チタン含有量 : 850ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が10%及び平均顆粒径が44μmであった。
実施例2乃至31で得られた粉末組成物を使用したこと以外は実施例1と同様な方法で、成形体(圧粉体)、仮焼体及び焼結体を得た。
(イットリウム安定化ジルコニア粉末)
実施例1のイットリウム安定化ジルコニア粉末と同様な方法で、アルミナを0.05質量%含み、残部が4.3mol%のイットリウムで安定化されたジルコニアからなる顆粒粉末(Y(4.3)安定化ZrO2顆粒粉末)を得た。
実施例1のエルビウム固溶ジルコニア粉末と同様な方法で、アルミナを0.05質量%含み、残部が4.4mol%のエルビウムが固溶したジルコニアからなる顆粒粉末(Er(4.4)固溶ZrO2顆粒粉末)を得た。
着色金属粉末として酸化コバルト粉末(Co3O4)を使用した。本比較例で得られたイットリウム安定化ジルコニア粉末の一部を取り出し、これと、α-アルミナ粉末、酸化コバルト及び純水をボールミルで混合してスラリーとした。得られたスラリーに対し、スラリー中の粉末の質量に対するバインダーの質量割合が3質量%となるように、アクリル酸系バインダーをスラリーに添加して混合した。当該スラリーを大気中、180℃で噴霧乾燥して、アクリル酸系バインダーを3質量%、アルミナを0.05質量%及び酸化コバルトを0.06質量%含み、残部が4.3mol%イットリウム安定化ジルコニアからなる顆粒粉末(以下、「Co-Y(4.3)安定化ZrO2顆粒粉末」ともいう。)を得た。得られた顆粒粉末の平均顆粒径は44μmであった。
着色金属粉末として酸化鉄(Fe2O3)粉末を使用した。本比較例で得られたイットリウム安定化ジルコニア粉末の一部を取り出し、これと、α-アルミナ粉末、酸化鉄及び純水をボールミルで混合してスラリーとした。得られたスラリーに対し、スラリー中の粉末の質量に対するバインダーの質量割合が3質量%となるように、アクリル酸系バインダーをスラリーに添加して混合した。当該スラリーを大気中、180℃で噴霧乾燥して、アクリル酸系バインダーを3質量%、アルミナを0.05質量%及び酸化鉄を0.2質量%含み、残部が4.3mol%イットリウム安定化ジルコニアからなる顆粒粉末(以下、「Fe-Y(4.3)安定化ZrO2顆粒粉末」ともいう。)を得た。得られた顆粒粉末の平均顆粒径は46μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末、Co-Y(4.3)安定化ZrO2顆粒粉末及びFe-Y(4.3)安定化ZrO2顆粒粉末が、質量比で85.6(85.55):6.5(6.45):3.5(3.50):4.5(3.50)となるように200mLのポリプロピレン製容器に充填し、これを撹拌することで乾式混合し、以下の組成からなり、着色金属元素の含有量が700ppmである本実施例の粉末組成物を得た。
エルビウム含有量 : 0.126mol%
鉄含有量 : 700ppm
コバルト含有量 : 0ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370nm、単斜晶率が7%及び、平均顆粒径が45μmであった。
得られた粉末組成物を使用したこと以外は実施例1と同様な方法で、成形体(圧粉体)、仮焼体及び焼結体を得た。
Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末、Co-Y(4.3)安定化ZrO2顆粒粉末及びFe-Y(4.3)安定化ZrO2顆粒粉末を、質量比で19.7(19.65):1.1(1.08):15.3(15.27):64.0(64.00)となるように乾式混合したこと以外は比較例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が1372ppmである本比較例の粉末組成物を得た。
エルビウム含有量 : 0.042mol%
鉄含有量 : 1280ppm
コバルト含有量 : 92ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370nm、単斜晶率が7%及び、平均顆粒径が45μmであった。
(酸化テルビウム顆粒粉末)
比較例1で得られたイットリウム安定化ジルコニア粉末の一部を取り出し、これと、α-アルミナ粉末、酸化テルビウム粉末及び純水をボールミルで混合してスラリーとした。得られたスラリーに対し、スラリー中の粉末の質量に対するバインダーの質量割合が3質量%となるように、アクリル酸系バインダーをスラリーに添加して混合した。当該スラリーを大気中、180℃で噴霧乾燥し、アクリル酸系バインダーを3質量%、アルミナを0.05質量%及び酸化テルビウムを0.04mol%(0.24質量%)含み、残部が4.3mol%のイットリウムで安定化されたジルコニアからなる顆粒粉末(以下、「Tb-Y(4.3)安定化ZrO2顆粒粉末」ともいう。)を得た。当該顆粒粉末は、平均顆粒径が45μmであり、また、テルビウムを酸化物として含む粉末であり、テルビウムはジルコニアに固溶していなかった。
着色金属粉末として、酸化コバルト粉末(Co3O4)及び酸化チタン粉末(TiO2)を使用した。比較例1で得られたイットリウム安定化ジルコニア粉末の一部を取り出し、これと、α-アルミナ粉末、酸化コバルト粉末、酸化チタン粉末及び純水をボールミルで混合してスラリーとした。得られたスラリーに対し、スラリー中の粉末の質量に対するバインダーの質量割合が3質量%となるように、アクリル酸系バインダーをスラリーに添加して混合した。当該スラリーを大気中、180℃で噴霧乾燥し、アクリル酸系バインダーを3質量%、アルミナを0.05質量%、四酸化三コバルトを0.06質量%及び酸化チタンを0.30質量%含み、残部が4.3mol%のイットリウムで安定化されたジルコニアからなる顆粒粉末(以下、「Co-Ti-Y(4.3)安定化ZrO2顆粒粉末」ともいう。)を得た。当該顆粒粉末は、平均顆粒径が45μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末、Tb-Y(4.3)安定化ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で85.6:3.5:6.4:4.5となるように混合したこと以外は実施例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が144ppmである本比較例の粉末組成物を得た。
エルビウム含有量 : 0.146mol%
テルビウム含有量 : 0.003mol%(0.02質量%)
コバルト含有量 : 24ppm
チタン含有量 : 120ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370Å、単斜晶率が7%及び平均顆粒径が44μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末、Tb-Y(4.3)安定化ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で61.2:1.3:20.0:17.5となるように乾式混合したこと以外は比較例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が630ppmである本比較例の粉末組成物を得た。
エルビウム含有量 : 0.053mol%
テルビウム含有量 : 0.008mol%(0.05質量%)
コバルト含有量 : 105ppm
チタン含有量 : 525ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370nm、単斜晶率が7%及び、平均顆粒径が45μmであった。
Y(4.3)安定化ZrO2顆粒粉末、Er(4.4)固溶ZrO2顆粒粉末、Tb-Y(4.3)安定化ZrO2顆粒粉末及びCo-Ti-Y(4.3)安定化ZrO2顆粒粉末を、質量比で22.5:6.5:46.0:25.0となるように乾式混合したこと以外は比較例1と同様な方法で、以下の組成を有し、着色金属元素の含有量が900ppmである本比較例の粉末組成物を得た。
エルビウム含有量 : 0.273mol%
テルビウム含有量 : 0.019mol%(0.11質量%)
コバルト含有量 : 150ppm
チタン含有量 : 750ppm
アルミナ含有量 : 0.05質量%
ジルコニア含有量 : 残部
得られた粉末組成物は、BET比表面積が10.1m2/g、平均粒子径が0.45μm、結晶子径が370nm、単斜晶率が7%及び、平均顆粒径が45μmであった。
比較例2乃至5で得られた粉末組成物を使用したこと以外は実施例1と同様な方法で、成形体(圧粉体)、仮焼体及び焼結体を得た。
Claims (15)
- ランタノイド希土類元素が固溶したジルコニアを2種以上、並びに、ジルコニウム及びハフニウム以外の遷移金属元素、を含み、残部がイットリウム、カルシウム及びマグネシウムの群から選ばれる1以上のみで安定化されたジルコニアであって、前記ランタノイド希土類元素が固溶したジルコニアは、それぞれ異なるランタノイド希土類元素が固溶しており、なおかつ、前記遷移金属元素の含有量が1500ppm以下であることを特徴とする粉末組成物。
- 前記ランタノイド希土類元素が固溶したジルコニアの少なくとも1種がプラセオジム、サマリウム、テルビウム、ジスプロジウム、ホロニウム及びツリウムの群から選ばれる1以上が固溶したジルコニアである、請求項1に記載の粉末組成物。
- 前記ランタノイド希土類元素が固溶したジルコニアの少なくとも1種がネオジム及びエルビウムの群から選ばれる1以上が固溶したジルコニアである、請求項1又は2に記載の粉末組成物。
- 前記ランタノイド希土類元素が固溶したジルコニアの少なくとも1種がイットリウム、カルシウム及びマグネシウムの群から選ばれる1以上で安定化されたジルコニアである、請求項1乃至3のいずれか一項に記載の粉末組成物。
- 前記遷移金属元素が、マンガン、コバルト及びチタンの群から選ばれる1以上である、請求項1乃至4のいずれか一項に記載の粉末組成物。
- 前記遷移金属元素が、酸化物、水酸化物、オキシ水酸化物、塩化物、硫酸塩及び硝酸塩の群から選ばれる1種以上として含まれる請求項1乃至5のいずれか一項に記載の粉末組成物。
- 前記残部がイットリウムのみで安定化されたジルコニアである、請求項1乃至6のいずれか一項に記載の粉末組成物。
- 鉄の含有量が100ppm以下である、請求項1乃至7のいずれか一項に記載の粉末組成物。
- アルミナを含む、請求項1乃至8のいずれか一項に記載の粉末組成物。
- 前記ジルコニウム及びハフニウム以外の遷移金属元素と、前記イットリウム、カルシウム及びマグネシウムの群から選ばれる1以上のみで安定化されたジルコニアと、で構成される顆粒粒子を含む、請求項1乃至9のいずれか一項に記載の粉末組成物。
- BET比表面積が5m2/g以上15m2/g以下である、請求項1乃至10のいずれか一項に記載の粉末組成物。
- 請求項1乃至11のいずれか一項に記載の粉末組成物を使用することを特徴とする仮焼体の製造方法。
- 請求項1乃至12のいずれか一項に記載の粉末組成物を使用することを特徴とする焼結
体の製造方法。 - ジルコニウム及びハフニウム以外の遷移金属化合物、2種以上のランタノイド希土類元素が固溶したジルコニア、並びに、イットリウム、カルシウム及びマグネシウムの群から選ばれる1以上のみで安定化されたジルコニア、の融着粒子から構成され、ジルコニウム及びハフニウム以外の遷移金属元素の含有量が1500ppm以下である仮焼体。
- 請求項14に記載の仮焼体を使用することを特徴とする焼結体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237027864A KR20230132546A (ko) | 2021-01-22 | 2022-01-19 | 분말 조성물 |
US18/272,756 US20240101483A1 (en) | 2021-01-22 | 2022-01-19 | Powder composition |
CN202280018834.8A CN116964004A (zh) | 2021-01-22 | 2022-01-19 | 粉末组合物 |
EP22742613.7A EP4282826A1 (en) | 2021-01-22 | 2022-01-19 | Powder composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-009019 | 2021-01-22 | ||
JP2021009019 | 2021-01-22 | ||
JP2021-183423 | 2021-11-10 | ||
JP2021183423 | 2021-11-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022158491A1 true WO2022158491A1 (ja) | 2022-07-28 |
Family
ID=82549442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/001817 WO2022158491A1 (ja) | 2021-01-22 | 2022-01-19 | 粉末組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240101483A1 (ja) |
EP (1) | EP4282826A1 (ja) |
JP (1) | JP2022113137A (ja) |
KR (1) | KR20230132546A (ja) |
WO (1) | WO2022158491A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7444327B1 (ja) | 2022-09-20 | 2024-03-06 | 東ソー株式会社 | ジルコニア組成物及びその製造方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9962247B2 (en) | 2014-06-23 | 2018-05-08 | Tosoh Corporation | Colored translucent zirconia sintered body and powder, and application thereof |
US20180235847A1 (en) * | 2017-02-22 | 2018-08-23 | James R. Glidewell Dental Ceramics, Inc. | High Strength and Translucency Dental Ceramic Materials, Devices and Methods |
WO2018155459A1 (ja) * | 2017-02-21 | 2018-08-30 | 株式会社 松風 | 歯科切削加工用ジルコニア被切削体及びその製造方法並びに歯科切削加工用ジルコニア被切削体用透明性向上液及びその使用方法 |
JP2020132518A (ja) * | 2019-02-15 | 2020-08-31 | 東ソー株式会社 | ピンク系ジルコニア焼結体及びその製造方法 |
JP2020147495A (ja) * | 2019-03-07 | 2020-09-17 | 東ソー株式会社 | ジルコニア仮焼体 |
WO2020218541A1 (ja) * | 2019-04-25 | 2020-10-29 | クラレノリタケデンタル株式会社 | 歯科用に好適なジルコニア仮焼体及びその製造方法 |
JP2021009019A (ja) | 2020-10-19 | 2021-01-28 | パナソニックIpマネジメント株式会社 | 冷蔵庫 |
JP2021183423A (ja) | 2021-04-30 | 2021-12-02 | Konica Minolta Inc | 画像形成システムおよび画像形成方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140022643A (ko) | 2012-08-14 | 2014-02-25 | 현대중공업 주식회사 | 볼 고정식 케이블 타이 |
US9407154B2 (en) | 2013-06-14 | 2016-08-02 | Advanced Charging Technologies, LLC | Electrical circuit for delivering power to consumer electronic devices |
-
2022
- 2022-01-19 WO PCT/JP2022/001817 patent/WO2022158491A1/ja active Application Filing
- 2022-01-19 EP EP22742613.7A patent/EP4282826A1/en active Pending
- 2022-01-19 US US18/272,756 patent/US20240101483A1/en active Pending
- 2022-01-19 KR KR1020237027864A patent/KR20230132546A/ko active Search and Examination
- 2022-01-19 JP JP2022006574A patent/JP2022113137A/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9962247B2 (en) | 2014-06-23 | 2018-05-08 | Tosoh Corporation | Colored translucent zirconia sintered body and powder, and application thereof |
WO2018155459A1 (ja) * | 2017-02-21 | 2018-08-30 | 株式会社 松風 | 歯科切削加工用ジルコニア被切削体及びその製造方法並びに歯科切削加工用ジルコニア被切削体用透明性向上液及びその使用方法 |
US20180235847A1 (en) * | 2017-02-22 | 2018-08-23 | James R. Glidewell Dental Ceramics, Inc. | High Strength and Translucency Dental Ceramic Materials, Devices and Methods |
JP2020132518A (ja) * | 2019-02-15 | 2020-08-31 | 東ソー株式会社 | ピンク系ジルコニア焼結体及びその製造方法 |
JP2020147495A (ja) * | 2019-03-07 | 2020-09-17 | 東ソー株式会社 | ジルコニア仮焼体 |
WO2020218541A1 (ja) * | 2019-04-25 | 2020-10-29 | クラレノリタケデンタル株式会社 | 歯科用に好適なジルコニア仮焼体及びその製造方法 |
JP2021009019A (ja) | 2020-10-19 | 2021-01-28 | パナソニックIpマネジメント株式会社 | 冷蔵庫 |
JP2021183423A (ja) | 2021-04-30 | 2021-12-02 | Konica Minolta Inc | 画像形成システムおよび画像形成方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7444327B1 (ja) | 2022-09-20 | 2024-03-06 | 東ソー株式会社 | ジルコニア組成物及びその製造方法 |
WO2024063028A1 (ja) * | 2022-09-20 | 2024-03-28 | 東ソー株式会社 | ジルコニア組成物及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022113137A (ja) | 2022-08-03 |
US20240101483A1 (en) | 2024-03-28 |
EP4282826A1 (en) | 2023-11-29 |
KR20230132546A (ko) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111511702B (zh) | 适合于牙科用途的氧化锆预煅烧体 | |
US9403721B2 (en) | Composite ceramic material comprising zirconia | |
EP1452506A2 (en) | A zirconia sintered body and a method for producing the same | |
KR20160100914A (ko) | 투광성 지르코니아 소결체 및 지르코니아 분말, 그리고 그의 용도 | |
KR20170021240A (ko) | 착색 투광성 지르코니아 소결체와 분말 및 그 용도 | |
CN103732559A (zh) | 着色透光性氧化锆烧结体及其用途 | |
CN113194905A (zh) | 适合于齿科用途的氧化锆预烧体 | |
CN112585103B (zh) | 氧化锆烧结体及其制造方法 | |
CN115802980A (zh) | 适用于牙科的氧化锆预烧体 | |
WO2022158491A1 (ja) | 粉末組成物 | |
WO2023145766A1 (ja) | 粉末及びその製造方法 | |
JP6665542B2 (ja) | ジルコニア粉末及びその製造方法 | |
JP2016500362A (ja) | セラミック材料 | |
JP7444327B1 (ja) | ジルコニア組成物及びその製造方法 | |
CN116964004A (zh) | 粉末组合物 | |
TW202239735A (zh) | 釔鋁石榴石粉末及其合成方法 | |
WO2023042893A1 (ja) | 粉末組成物、仮焼体、焼結体及びその製造方法 | |
JP7585695B2 (ja) | ジルコニア焼結体及びその製造方法 | |
WO2024127666A1 (ja) | 歯科用アルミナ被加工体 | |
WO2024117194A1 (ja) | 粉末 | |
US20240217881A1 (en) | Manufacturing method of sintered body | |
WO2023095839A1 (ja) | 粉末及びその製造方法 | |
KR20210042019A (ko) | 지르코니아 소결체 및 이의 제조 방법 | |
JP2024161088A (ja) | 焼結体及びその製造方法、歯科補綴材、並びに前歯用義歯 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22742613 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12023551944 Country of ref document: PH Ref document number: 18272756 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317049353 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20237027864 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237027864 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022742613 Country of ref document: EP Effective date: 20230822 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11202305413U Country of ref document: SG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280018834.8 Country of ref document: CN |