[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022158383A1 - 難燃性ポリアミド樹脂組成物及びそれからなる成形品 - Google Patents

難燃性ポリアミド樹脂組成物及びそれからなる成形品 Download PDF

Info

Publication number
WO2022158383A1
WO2022158383A1 PCT/JP2022/001087 JP2022001087W WO2022158383A1 WO 2022158383 A1 WO2022158383 A1 WO 2022158383A1 JP 2022001087 W JP2022001087 W JP 2022001087W WO 2022158383 A1 WO2022158383 A1 WO 2022158383A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
polyamide resin
polyamide
parts
flame
Prior art date
Application number
PCT/JP2022/001087
Other languages
English (en)
French (fr)
Inventor
和樹 岩村
信宏 吉村
誠 玉津島
亮 梅木
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202280009842.6A priority Critical patent/CN116724079A/zh
Priority to JP2022576644A priority patent/JPWO2022158383A1/ja
Publication of WO2022158383A1 publication Critical patent/WO2022158383A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a non-halogen flame-retardant polyamide resin composition. More specifically, it relates to a halogen-free, flame-retardant polyamide resin composition having high flame retardancy, good snap-fitting properties, and excellent resistance to heat discoloration.
  • Polyamide resins are used in various fields such as electric/electronic parts and automobile parts, taking advantage of their excellent mechanical properties, electrical properties, chemical resistance, and the like.
  • melamine cyanurate is used as a flame retardant when non-reinforced and non-halogen flame retardants are required to impart flame retardancy (for example, Patent Documents 1 and 2).
  • melamine cyanurate has poor dispersibility in polyamide resins, and when the amount is increased, the mechanical properties of polyamide resins are reduced, bleeding occurs, and thermal decomposition causes melamine and cyanuric acid to decompose and sublimate easily.
  • the melamine and cyanuric acid have drawbacks, such as generation of silver on the surface of the molded product during molding and contamination of the mold surface.
  • the present invention is a flame-retardant polyamide resin that has UL94V-0 level flame retardancy over a wide range of thicknesses, less bleeding of flame retardants, excellent heat discoloration resistance, moldability, and snap-fitting of parts.
  • a composition is provided.
  • the present inventors have completed the present invention as a result of intensive research to solve the above problems.
  • the present invention has the following configurations. - Contains polyamide resin (A) and melamine cyanurate (B), and 90 to 98 parts by mass of polyamide resin (A) and melamine cyanurate ( B) contained at a rate of 2 to 10 parts by mass, phosphorus antioxidant (C) 0.01 to 1 part by mass, hindered phenol antioxidant (D) 0.01 to 1 part by mass, and carbon number 22 or less fatty acid metal salt-based lubricant (E) in a proportion of 0.1 to 1 part by mass, the polyamide resin (A) is 55 to 85 mass% of polyamide 66 resin (A1), polyamide 6 resin (A2) A flame-retardant polyamide resin composition containing 15 to 45% by mass.
  • the flame-retardant polyamide resin composition of the present invention not only has excellent heat discoloration resistance and moldability, but also does not significantly impair breaking strength and toughness, and has UL94V-0 level flame retardancy over a wide range of thickness. .
  • Polyamide resin (A) The polyamide resin (A) in the present invention is not particularly limited as long as it is a polymer having an amide bond (--NHCO--) in its main chain.
  • Polyamide resin (A) is preferably crystalline, for example, polyamide 6 (PA6), polyamide 66 (PA66), polyamide 46 (PA46), polyamide 11 (PA11), polyamide 12 (PA12), polyamide 610 (PA610 ), polyamide 612 (PA612), polymetaxylylene adipamide (PAMXD6), hexamethylenediamine-terephthalic acid polymer (PA6T), hexamethylenediamine-terephthalic acid and adipic acid polymer (PA6T/66), hexamethylenediamine - terephthalic acid and ⁇ -caprolactam copolymer (PA6T/6), trimethylhexamethylenediamine-terephthalic acid polymer (PATMD-T), meta
  • the blending amount (content) of the polyamide resin (A) is 90 to 98 parts by mass when the total of the polyamide resin (A) and melamine cyanurate (B) is 100 parts by mass.
  • the blending amount (content) of the polyamide resin (A) is preferably 92 to 96 parts by mass, more preferably 93 to 95 parts by mass.
  • the blending amount of each component becomes the content as it is.
  • the polyamide resin (A) in the present invention is preferably a mixture of polyamide 66 resin (A1) and polyamide 6 resin (A2) in terms of excellent moldability, melt fluidity and flame retardancy.
  • Examples of the polyamide 66 resin (A1) in the present invention include polyamide 66 resins obtained by polycondensation of adipic acid and hexamethylenediamine as raw materials.
  • the relative viscosity of the polyamide 66 resin (A-1) is preferably 2.2 to 3.5 as measured according to JIS K6810 at a concentration of 1% in 98% sulfuric acid at a temperature of 25°C. If the relative viscosity is less than 2.2, the mechanical properties tend to deteriorate, and if it exceeds 3.5, the melt fluidity tends to be insufficient.
  • the relative viscosity of the polyamide 66 resin (A1) is more preferably 2.3-3.0.
  • Polyamide 66 resin (A1) may be adjusted to a preferable relative viscosity range by mixing polyamide 66 resins having different relative viscosities.
  • the terminal amino group concentration of the polyamide 66 resin (A1) is not particularly limited, it is preferably 50 to 90 eq/ton, more preferably 60 to 80 eq/ton in terms of heat discoloration resistance.
  • the blending amount of the polyamide 66 resin (A1) is preferably 55 to 85 parts by mass based on 100 parts by mass of the polyamide resin (A). When the amount of the polyamide 66 resin (A1) exceeds 85 parts by mass, the hinge property (snap-fitting property) is deteriorated.
  • the blending amount of the polyamide 66 resin (A1) is more preferably 60 to 80 parts by mass from the viewpoint of the balance between the snap fit property and the moldability.
  • the polyamide 6 resin (A2) in the present invention is a polyamide 6 resin obtained by polycondensation using ⁇ -caprolactam as a raw material.
  • the relative viscosity of the polyamide 6 resin (A2) is preferably 1.5 to 4.0 as measured according to JIS K6810 at a concentration of 1% in 98% sulfuric acid at a temperature of 25°C. If the relative viscosity is less than 1.5, the mechanical properties tend to deteriorate, and if it exceeds 3.6, flame retardancy and fluidity tend to be impaired.
  • the relative viscosity of the polyamide 6 resin (A2) is more preferably 1.8-3.6.
  • the polyamide 6 resin (A-2) may be adjusted to a preferable relative viscosity range by mixing polyamide 6 resins having different relative viscosities.
  • the terminal amino group concentration of the polyamide 6 resin (A2) is not particularly limited, it is preferably 50 to 90 eq/ton, more preferably 60 to 80 eq/ton in terms of heat discoloration resistance.
  • the blending amount of the polyamide 6 resin (A2) is preferably 15 to 45 parts by mass based on 100 parts by mass of the polyamide resin (A). If the amount of the polyamide 6 resin (A2) is less than 15 parts by mass, the hinge properties (snap fit properties) tend to deteriorate, and if it exceeds 45 parts by mass, the moldability tends to deteriorate.
  • the blending amount of the polyamide 6 resin (A2) is more preferably 20 to 40 parts by mass from the viewpoint of the balance between snap-fitting properties and moldability.
  • An amorphous polyamide resin (A3) can also be blended in order to improve the appearance of the molded product.
  • Amorphous polyamide resins include 4,4'-diamino-3,3'-dimethyldicyclohexylmethane (CA), 4,4'-diaminodicyclohexylmethane (PACM), metaxylylenediamine (MXD), trimethylhexamethylene.
  • Diamines such as diamine (TMD), isophoronediamine (IA), 4,4'-diaminodicyclohexylpropane (PACP), hexamethylenediamine, and dicarboxylic acids such as terphthalic acid, isophthalic acid, adipic acid, sebacic acid and dodecanedicarboxylic acid
  • dicarboxylic acids such as terphthalic acid, isophthalic acid, adipic acid, sebacic acid and dodecanedicarboxylic acid
  • Polymers, copolymers or blends obtained by polycondensation from acids and lactams such as caprolactam and lauryllactam can be exemplified.
  • the amount of the amorphous polyamide resin (A3) to be blended is more preferably 0 to 15 parts by mass from the viewpoint of the balance between snap-fitting properties and moldability.
  • Melamine cyanurate (B) in the present invention is preferably an equimolar reaction product of cyanuric acid and melamine. Moreover, some of the amino groups or hydroxyl groups in the melamine cyanurate may be substituted with other substituents.
  • Melamine cyanurate can be obtained, for example, by mixing an aqueous solution of cyanuric acid and an aqueous solution of melamine, reacting the mixture with stirring at 90 to 100° C., and filtering the resulting precipitate. Although the obtained solid can be used as it is, it is preferable to use it after pulverizing it, if necessary.
  • the particle size is not particularly limited, the average particle size is preferably 0.5 to 20 ⁇ m, more preferably 1 to 15 ⁇ m, from the viewpoint of flame retardancy and toughness.
  • the blending amount (content) of melamine cyanurate (B) is 2 to 10 parts by mass when the total of polyamide resin (A) and melamine cyanurate (B) is 100 parts by mass. It is 2 parts by mass or more from the viewpoint of flame retardancy, and 10 parts by mass or less from the viewpoint of snap fit and bleeding. It is more preferably 3 to 9 parts by mass, still more preferably 4 to 8 parts by mass.
  • the phosphorus-based antioxidant (C) in the present invention may be either an inorganic compound or an organic compound, and is not particularly limited.
  • Preferred phosphorus compounds include inorganic phosphates such as monosodium phosphate, disodium phosphate, trisodium phosphate, sodium phosphite, calcium phosphite, magnesium phosphite, manganese phosphite, triphenylphosphite, Phyte, Trioctadecylphosphite, Tridecylphosphite, Triisodecylphosphite, Trinonylphenylphosphite, Diphenylisodecylphosphite, Diphenylalkylphosphite, Phenyldialkylphosphite, Tris(nonylphenyl)phosphite, Trilauryl Phosphite,
  • a phosphite compound is preferable as the phosphorus-based antioxidant (C).
  • the phosphite compounds compounds having a pentaerythritol diphosphite skeleton are preferred.
  • compounds having a pentaerythritol diphosphite skeleton are preferred.
  • bis(2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite (“ADEKASTAB PEP-36”, molecular weight 633)
  • bis(2,4-di-tert-butyl phenyl) pentaerythritol diphosphite (“ADEKASTAB PEP-24G”, molecular weight 604)
  • distearylpentaerythritol diphosphite (“ADEKASTAB PEP-8”, molecular weight 733)
  • bis(nonylphenyl) pentaerythritol diphosphite (“ Adekastab
  • the amount (content) of the phosphorus-based antioxidant (C) is 0.01 to 1 part by mass when the total of the polyamide resin (A) and melamine cyanurate (B) is 100 parts by mass.
  • the content of the phosphorus antioxidant (C) is preferably 0.1 to 0.5 parts by mass.
  • the hindered phenol-based antioxidant (D) in the present invention includes N,N'-hexamethylene-bis-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionamide, bis(3 , 3-bis-(4′-hydroxy-3′-tert-butylphenyl)butanoic acid) glycol ester, 2,1′-thioethylbis(3-(3,5-di-tert-butyl-4-hydroxyphenyl) Propionate, 4,4'-butylidene-bis(3-methyl-6-tert-butylphenol), triethylene glycol-3-(3-tert-butyl-4-hydroxy-5-methylphenyl) propionate "SONGNOX2450", molecular weight 633), etc., and mixtures of two or more of these can also be used.
  • the amount (content) of the hindered phenol-based antioxidant (D) is 0.01 to 1 part by mass when the total of the polyamide resin (A) and melamine cyanurate (B) is 100 parts by mass.
  • the content of the hindered phenol-based antioxidant (D) is preferably 0.1 to 0.5 parts by mass.
  • fatty acid metal salt-based lubricant having 22 or less carbon atoms examples include metal salts of fatty acids such as stearic acid, palmitic acid and behenic acid.
  • a fatty acid metal salt-based lubricant with a carbon number of 22 or less not only is the releasability improved, but the temperature at which fatty acid-derived combustion gas starts to be generated during combustion and the generation of non-combustible gas generated by the decomposition of melamine cyanurate. Since the temperatures are close to each other, ignition of combustible gas can be prevented, so flame retardancy tends to be exhibited even better.
  • a metal salt of an aliphatic carboxylic acid having 18 or less carbon atoms is more preferable, and an alkali metal or alkaline earth metal salt such as stearic acid or palmitic acid is more preferable from the viewpoint of achieving both releasability and flame retardancy.
  • Alkali metals or alkaline earth metals include, for example, lithium, sodium, magnesium, calcium salts and the like.
  • the alkali metal or alkaline earth metal salt of stearic acid has the same starting temperature for generating combustible gas derived from fatty acid by decomposition of fatty acid metal salt and non-combustible gas generated by decomposition of melamine cyanurate during combustion, so it is flame retardant by addition. It is optimal because it can improve the releasability without causing a decrease in the
  • the blending amount (content) of the fatty acid metal salt-based lubricant (E) is 0.1 to 1 part by mass when the total of the polyamide resin (A) and melamine cyanurate (B) is 100 parts by mass. If the amount exceeds 1 part by mass, the flame retardancy may deteriorate.
  • the amount of the fatty acid metal salt-based lubricant (E) to be blended is preferably 0.2 to 0.8 parts by mass.
  • the total of the components (A), (B), (C), (D), and (E) described above preferably accounts for 80% by mass or more, More preferably, it accounts for 90% by mass or more, and even more preferably 95% by mass or more.
  • Suitable molded parts obtained using the flame-retardant polyamide resin composition of the present invention specifically include connectors, coil bobbins, breakers, electromagnetic switches and holders used in fields such as electric/electronic parts and automobile parts. Molded parts such as plugs, sockets, switches, cases, covers, etc. More specifically, parts that require heat discoloration resistance and snap fit properties such as ferrite core covers, ESC locks, cable ties, and electrical wiring protection members. is.
  • the method for producing the flame-retardant polyamide resin composition of the present invention is not particularly limited, and a general single-screw extruder, twin-screw extruder, pressure kneader, or the like can be used as a kneading device.
  • a twin-screw extruder is particularly preferred.
  • the above (A), (B), (C), (D), and (E) and, depending on the application, pigments and the like are mixed and fed into a twin-screw extruder.
  • a polyamide-based resin composition having excellent toughness and flame retardancy can be produced by uniformly kneading with a twin-screw extruder.
  • the kneading temperature of the twin-screw extruder is preferably 220 to 300° C., and the kneading time is preferably about 2 to 15 minutes.
  • A2-2: Polyamide 6 (RV 3.6) ZISAMIDE TP6603 (manufactured by Shusei), melting point 225°C
  • B melamine cyanurate (B); B: MC6000 (manufactured by Nissan Chemical Co., Ltd.)
  • C ADEKA STAB PEP-36 (manufactured by ADEKA Corporation)
  • E fatty acid metal salt-based lubricant
  • E1 Magnesium stearate NP-1500S (manufactured by Tannan Chemical Industry Co., Ltd.) other release agents
  • E2 Calcium montanate CS-8-CP (manufactured by Nitto Kasei Kogyo Co., Ltd.)
  • E3 Fatty acid ester Recolb WE-40 (manufactured by Clariant Japan Co., Ltd.)
  • each raw material was weighed in the blending ratio of the polyamide resin composition shown in Table 1, mixed in a tumbler, and charged into a twin-screw extruder.
  • the set temperature of the twin-screw extruder was 250° C. to 300° C., and the kneading time was 5 to 10 minutes.
  • the obtained pellets were molded into various evaluation samples using an injection molding machine.
  • the cylinder temperature of the injection molding machine was 250°C to 280°C, and the mold temperature was 80°C.
  • Table 1 shows the evaluation results.
  • Relative viscosity of polyamide resin [RV] (98% sulfuric acid solution method) Using an Ubbelohde viscometer, measurement was performed at 25° C. with a 98 mass % sulfuric acid solution and a polyamide resin concentration of 1 g/dl.
  • Melting Point of Polyamide Resin Measurement was performed using a differential scanning calorimeter EXSTAR 6000 (Seiko Instruments Inc.) at a heating rate of 20° C./min, and the peak top temperature of the endothermic peak was determined as the melting point. 3.
  • Snap fit property (tensile strength, tensile elongation): Measured according to ISO527 to determine tensile strength (tensile strength) and tensile elongation (tensile breaking strain). 4. Flammability: Measured according to UL94, Vertical Burning Test. V-0 represents the highest flame retardancy. 5. Bleeding property: A molded product of 100 mm x 100 mm with a thickness of 2 mm was left at rest for 96 hours in a constant temperature and humidity bath set at 80 ° C. and 95% RH at least twice, and then returned to room temperature and precipitates were present on the surface. It was confirmed visually with a stereoscopic microscope. 6.
  • Thermal discoloration The color difference ( ⁇ E) between the pellets after being left in the oven for 8 hours at a temperature of 120° C. and the pellets before treatment was calculated. 7. Moldability: Using a mold equipped with a mold release force measuring device, molding was performed under the above molding temperature conditions, and the mold release force was measured from the 31st shot to the 35th shot to obtain the mold release resistance value.
  • the tensile strength is equivalent to that of general polyamide 6, 66 resin, the tensile elongation is 5% or more, there is no breakage even after the tensile yield point is exceeded, and there is no significant embrittlement. It is expected that a good snap-fit property will be obtained.
  • Examples 1 to 12 achieved UL94 V-0 evaluation, demonstrating high flame retardancy over a wide range of thicknesses. It can be seen that it has In terms of heat discoloration, Examples 1 to 12 had ⁇ E of 20 or less after 8 hours at 120° C., indicating that discoloration in a heat environment is suppressed.
  • the molded article has a resistance value of 1 MPa or less when released from the mold, and the composition has an extremely low possibility of deformation and adhesion of the molded article during release even if continuously molded.
  • Comparative Examples 1 to 7 partially satisfy the characteristics, Comparative Example 1 was evaluated as UL94 V-2 in terms of flame retardancy at thicknesses of 0.4, 0.8, 1.6, and 3.0 mm. It is not preferable because the flame retardancy is greatly lowered. Comparative Example 2 has a tensile elongation of 3%, and embrittlement cannot be suppressed, which is not preferable. In Comparative Example 3, the flame retardancy at thicknesses of 0.4, 0.8, 1.6, and 3.0 mm was rated V-2, and the tensile elongation was 3%, which was sufficient. It is difficult to say that both the flame retardancy and the snap-fit property are compatible, which is not preferable.
  • Comparative Examples 4, 5, and 7 are evaluated as UL94 V-2 in terms of flame retardancy at thicknesses of 0.8, 1.6, and 3.0 mm, and it cannot be said that flame retardancy is high in a wide range of thicknesses. I don't like it because it's too hot.
  • the mold release resistance which is an index of moldability, exceeded 1 MPa, and it cannot be said that the moldability is good (good mold release), which is also undesirable in this respect.
  • Comparative Example 6 in addition to the UL94 V-2 evaluation for flame retardancy at thicknesses of 0.8, 1.6, and 3.0 mm, the tensile elongation is 3%, which is sufficient. It is difficult to say that both flame retardancy and snap-fitting are achieved, which is undesirable.
  • the flame-retardant polyamide resin composition of the present invention has a wide range of product thicknesses and is suitable for molded products that have a hinge portion. and excellent snap-fitting properties, it can be suitably used for electric/electronic parts, automobile parts, etc. where both high flame retardancy and snap-fitting properties are desired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 UL94V-0レベルの難燃性を幅広い厚みの範囲で有しながら、難燃剤のブリードが少なく、耐熱変色性、成形性、部品のスナップフィット性などにも優れる難燃性ポリアミド樹脂組成物を提供する。 【達成手段】 ポリアミド樹脂(A)及びメラミンシアヌレート(B)を含有し、前記成分(A)及び(B)の合計100質量部に対して、ポリアミド樹脂(A)90~98質量部及びメラミンシアヌレート(B)2~10質量部の割合で含有し、前記ポリアミド樹脂(A)中の、ポリアミド66樹脂(A1)55~85質量%、ポリアミド6樹脂(A2)15~45質量%の割合であり、かつ前記成分(A)及び(B)の合計100質量部に対して、リン系酸化防止剤(C)を0.01~1質量部、ヒンダードフェノール系酸化防止剤(D)を0.01~1質量部、及び炭素数22以下の脂肪酸金属塩系潤滑剤(E)を0.1~1質量部の割合で含有することを特徴とする難燃性ポリアミド樹脂組成物。

Description

難燃性ポリアミド樹脂組成物及びそれからなる成形品
 本発明は非ハロゲン系の難燃性ポリアミド樹脂組成物に関する。詳しくは高い難燃性と良好なスナップフィット性を有し、かつ耐熱変色性に優れた非ハロゲン系の難燃性ポリアミド樹脂組成物に関するものである。
 ポリアミド樹脂は、機械的特性、電気特性、耐薬品性などに優れることを利用して、電気・電子部品、自動車部品などの各種分野で使用されている。これらの分野において、非強化系でかつ非ハロゲン系難燃剤による難燃性付与が要求される場合、難燃剤としてメラミンシアヌレートが用いられている(例えば、特許文献1、2)。
 しかしながら、メラミンシアヌレートは、ポリアミド樹脂に対する分散性が悪く、配合量が多くなるとポリアミド樹脂の機械的特性が低下する、ブリードする、熱分解によりメラミンとシアヌル酸とに分解し昇華しやすく、昇華したメラミン及びシアヌル酸の影響で成形加工時に成形品表面にシルバーの発生や、金型表面を汚染しやすい、などの欠点を有している。
 近年、電気・電子部品、自動車部品などに対する各種の要求レベルが高くなり、難燃性は様々な厚みにおいてUL94 V-0のレベルが要求されるともに、難燃剤のブリードがなく、耐熱変色性、成形性、さらには部品のスナップフィット性など、より高いレベルが望まれるようになっている。
特公昭58-25379号公報 特公昭58-35541号公報
 本発明は、UL94V-0レベルの難燃性を幅広い厚みの範囲で有しながら、難燃剤のブリードが少なく、耐熱変色性、成形性、部品のスナップフィット性などにも優れる難燃性ポリアミド樹脂組成物を提供しようとするものである。
 本発明者等は、上記課題を解決する為に鋭意研究をした結果、本発明を完成するに至った。
 すなわち本発明は、以下の構成を有するものである。
    ・ ポリアミド樹脂(A)及びメラミンシアヌレート(B)を含有し、前記成分(A)及び(B)の合計100質量部に対して、ポリアミド樹脂(A)90~98質量部及びメラミンシアヌレート(B)2~10質量部の割合で含有し、リン系酸化防止剤(C)0.01~1質量部、ヒンダードフェノール系酸化防止剤(D)0.01~1質量部、及び炭素数22以下の脂肪酸金属塩系潤滑剤(E)0.1~1質量部の割合で含有し、前記ポリアミド樹脂(A)はポリアミド66樹脂(A1)55~85質量%、ポリアミド6樹脂(A2)15~45質量%を含有する難燃性ポリアミド樹脂組成物。
[2] 前記脂肪酸金属塩系潤滑剤(E)が、ステアリン酸の金属塩である[1]に記載の難燃性ポリアミド樹脂組成物。
[3] [1]~[2]のいずれかに記載の難燃性ポリアミド樹脂組成物からなる成形品。
[4] 前記成形品が、フェライトコアカバー、エスシーロック、結束バンド、電気配線保護部材のいずれかである[3]に記載の成形品。
 本発明の難燃性ポリアミド樹脂組成物は、耐熱変色性、成形性に優れるのみならず、破断強さ、じん性を大きく損なわず、UL94V-0レベルの難燃性を幅広い厚みの範囲で有する。
 以下に本発明を具体的に説明する。
[ポリアミド樹脂(A)]
 本発明におけるポリアミド樹脂(A)としては、主鎖中にアミド結合(-NHCO-)を有する重合体であれば特に限定されない。ポリアミド樹脂(A)は、結晶性であることが好ましく、例えばポリアミド6(PA6)、ポリアミド66(PA66)、ポリアミド46(PA46)、ポリアミド11(PA11)、ポリアミド12(PA12)、ポリアミド610(PA610)、ポリアミド612(PA612)、ポリメタキシリレンアジパミド(PAMXD6)、ヘキサメチレンジアミン-テレフタル酸重合体(PA6T)、ヘキサメチレンジアミン-テレフタル酸およびアジピン酸重合体(PA6T/66)、ヘキサメチレンジアミン-テレフタル酸およびεカプロラクタム共重合体(PA6T/6)、トリメチルヘキサメチレンジアミン-テレフタル酸重合体(PATMD-T)、メタキシリレンジアミンとアジピン酸およびイソフタル酸共重合体(PAMXD6/MXDI)、トリヘキサメチレンジアミンとテレフタル酸およびε-カプロラクタム共重合体(PATMDT/6)、ジアミノジシクロヘキシレンメタンとイソフタル酸およびラウリルラクタム共重合体等の結晶性ポリアミド樹脂、もしくはこれらのブレンド物等を例示することが出来るが、これらに限定されるものではない。
 ポリアミド樹脂(A)の配合量(含有量)は、ポリアミド樹脂(A)及びメラミンシアヌレート(B)の合計100質量部としたとき、90~98質量部である。ポリアミド樹脂(A)の配合量がこの範囲にあることで、難燃剤のブリード抑制、かつ高い難燃性の保持を組成物に与えることができる。ポリアミド樹脂(A)の配合量(含有量)は、92~96質量部が好ましく、93~95質量部がより好ましい。本発明の難燃ポリアミド樹脂組成物においては、各成分の配合量がそのまま含有量となる。
 成形性、溶融流動性、難燃性に優れるなどの点で、本発明におけるポリアミド樹脂(A)は、ポリアミド66樹脂(A1)とポリアミド6樹脂(A2)との混合物が好ましい態様である。
 本発明におけるポリアミド66樹脂(A1)としては、アジピン酸とヘキサメチレンジアミンを原料とし、これらの重縮合によって得られるポリアミド66樹脂が挙げられる。ポリアミド66樹脂(A-1)の相対粘度は、JIS K6810に従って、98%硫酸中濃度1%、温度25℃で測定した値で、好ましくは2.2~3.5である。相対粘度が2.2未満であると機械的性質が低下しやすく、3.5を越えると溶融流動性が不足しやすい。ポリアミド66樹脂(A1)の相対粘度は、より好ましくは2.3~3.0である。なお、ポリアミド66樹脂(A1)は異なる相対粘度を有するポリアミド66樹脂を混合して好ましい相対粘度の範囲に調整してもよい。
 ポリアミド66樹脂(A1)の末端アミノ基濃度は、特に限定されないが、50~90eq/tonであることが好ましく、60~80eq/tonであることが、耐熱変色性の点でより好ましい。
 ポリアミド66樹脂(A1)の配合量は、ポリアミド樹脂(A)100質量部としたとき、55~85質量部であることが好ましい。ポリアミド66樹脂(A1)の配合量が85質量部を越えるとヒンジ性(スナップフィット性)が低下し、50質量部未満であると成形加工性が低下しやすい。ポリアミド66樹脂(A1)の配合量は、スナップフィット性と成形加工性のバランスの点より、60~80質量部がより好ましい。
 本発明におけるポリアミド6樹脂(A2)としては、ε-カプロラクタムを原料とし、重縮合によって得られるポリアミド6樹脂である。ポリアミド6樹脂(A2)の相対粘度は、JIS K6810に従って、98%硫酸中濃度1%、温度25℃で測定した値で、好ましくは1.5~4.0である。相対粘度が1.5未満であると機械的性質が低下しやすく、3.6を越えると難燃性や流動性を損ないやすい。ポリアミド6樹脂(A2)の相対粘度は、より好ましくは1.8~3.6である。なお、ポリアミド6樹脂(A-2)は異なる相対粘度を有するポリアミド6樹脂を混合して好ましい相対粘度の範囲に調整してもよい。
 ポリアミド6樹脂(A2)の末端アミノ基濃度は、特に限定されないが、50~90eq/tonであることが好ましく、60~80eq/tonであることが、耐熱変色性の点でより好ましい。
 ポリアミド6樹脂(A2)の配合量は、ポリアミド樹脂(A)100質量部としたとき、15~45質量部であることが好ましい。ポリアミド6樹脂(A2)の配合量が15質量部未満であるとヒンジ性(スナップフィット性)が低下しやすく、45質量部を越えると成形加工性が低下しやすい。ポリアミド6樹脂(A2)の配合量は、スナップフィット性と成形加工性のバランスの点より、20~40質量部がより好ましい。
 成形品の外観を向上させるために、非晶性ポリアミド樹脂(A3)を配合することもできる。
 非晶性ポリアミド樹脂としては、4,4'-ジアミノ-3,3'-ジメチルジシクロヘキシルメタン(CA)、4,4’-ジアミノジシクロヘキシルメタン(PACM)、メタキシリレンジアミン(MXD)、トリメチルヘキサメチレンジアミン(TMD)、イソフォロンジアミン(IA)、4,4’-ジアミノジシクロヘキシルプロパン(PACP)、ヘキサメチレンジアミン等のジアミンと、テルフタル酸、イソフタル酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等のジカルボン酸およびカプロラクタム、ラウリルラクタム等のラクタム類から重縮合して得られる重合体または共重合体もしくはブレンド物等を例示することができる。非晶性ポリアミド樹脂(A3)の配合量は、スナップフィット性と成形加工性のバランスの点より、0~15質量部がより好ましい。
[メラミンシアヌレート(B)]
 本発明におけるメラミンシアヌレート(B)としては、シアヌル酸とメラミンとの等モル反応物が好ましく挙げられる。また、メラミンシアヌレート中のアミノ基又は水酸基の一部が、他の置換基で置換されていても良い。メラミンシアヌレートは、例えば、シアヌル酸の水溶液とメラミンの水溶液とを混合し、90~100℃の撹拌下で反応させて、生成した沈殿をろ過することによって得ることができる。得られた固体はそのままでも使用できるが、必要に応じて粉砕して使用することが好ましい。粒子径として特に制限はないが、難燃性と靱性の観点から、好ましくは平均粒子径が0.5~20μmであり、より好ましくは1~15μmである。
 メラミンシアヌレート(B)の配合量(含有量)は、ポリアミド樹脂(A)及びメラミンシアヌレート(B)の合計100質量部としたとき、2~10質量部である。難燃性の観点から2質量部以上であり、スナップフィット性とブリードの観点から10質量部以下である。より好ましくは3~9質量部であり、さらに好ましくは4~8質量部である。
[リン系酸化防止剤(C)]
 本発明におけるリン系酸化防止剤(C)としては、無機化合物でも有機化合物でもよく、特に制限はない。好ましいリン系化合物としては、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カルシウム、亜リン酸マグネシウム、亜リン酸マンガン、などの無機リン酸塩、トリフェニルホスファイト、トリオクタデシルホスファイト、トリデシルホスファイト、トリイソデシルホスファイト、トリノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、ジフェニルアルキルホスファイト、フェニルジアルキルホスファイト、トリス(ノニルフェニル)ホスファイト、トリラウリルホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ジイソデシルオキシペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチル-6-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリス(tert-ブチルフェニル))ペンタエリスリトールジホスファイト、トリステアリルソルビトールトリホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、6-イソオクチルオキシ-2,4,8,10-テトラ-tert-ブチル-12H-ジベンゾ[d,g]-1,3,2-ジオキサホスホシン、6-フルオロ-2,4,8,10-テトラ-tert-ブチル-12-メチル-ジベンゾ[d,g]-1,3,2-ジオキサホスホシン、ビス(2,4-ジ-tert-ブチル-6-メチルフェニル)メチルホスファイト及びビス(2,4-ジ-tert-ブチル-6-メチルフェニル)エチルホスファイトなどが挙げられ、耐熱変色性を高めるために配合される。
 リン系酸化防止剤(C)としては、ホスファイト化合物が好ましい。ホスファイト化合物のなかでも、ペンタエリスリトールジホスファイト骨格を有する化合物が好ましい。具体的には、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト(「アデカスタブPEP-36」、分子量633)、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト(「アデカスタブPEP-24G」、分子量604)、ジステアリルペンタエリスリトールジホスファイト(「アデカスタブPEP-8」、分子量733)、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト(「アデカスタブPEP-4C」、分子量633)などのペンタエリスリトールジホスファイト骨格を有し、分子量が600~800程度のものが、難燃性を低下させることなく、離型性をより向上させることができ、かつスナップフィット性にも好適な点で特に好ましい。
 リン系酸化防止剤(C)の配合量(含有量)は、ポリアミド樹脂(A)及びメラミンシアヌレート(B)の合計100質量部としたとき、0.01~1質量部である。リン系酸化防止剤(C)の配合量がこの範囲にあることで、押出加工時の変色を抑制し、かつリン由来のラジカルによる二次的な酸化劣化を誘発することを防ぐことができる。リン系酸化防止剤(C)の配合量は、0.1~0.5質量部が好ましい。
[ヒンダードフェノール系酸化防止剤(D)]
 本発明におけるヒンダードフェノール系酸化防止剤(D)としては、N,N’-ヘキサメチレン-ビス-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオンアミド、ビス(3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)ブタン酸)グリコールエステル、2,1’-チオエチルビス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート「SONGNOX2450」、分子量633)などが挙げられ、これらの二つ以上の混合物も用いることができる。
 ヒンダードフェノール系酸化防止剤(D)の配合量(含有量)は、ポリアミド樹脂(A)及びメラミンシアヌレート(B)の合計100質量部としたとき、0.01~1質量部である。ヒンダードフェノール系酸化防止剤(D)の配合量がこの範囲にあることで、ポリアミド組成物の配位結合に応じた適切な処方量で経時的な酸化劣化を防止することができる。ヒンダードフェノール系酸化防止剤(D)の配合量は、0.1~0.5質量部が好ましい。
[炭素数22以下の脂肪酸金属塩系潤滑剤(E)]
 本発明における炭素数22以下の脂肪酸金属塩系潤滑剤(E)としては、ステアリン酸、パルミチン酸、ベヘン酸等の脂肪酸の金属塩が挙げられる。炭素数22以下の脂肪酸金属塩系潤滑剤を用いることで、離形性を向上させるだけでなく、燃焼時に脂肪酸由来の燃焼ガスの発生開始温度とメラミンシアヌレートの分解で生じる不燃ガスの発生開始温度が近いため、可燃ガスへの引火を妨げることができるため、難燃性をさらに良好に発揮できる傾向にある。
炭素数18以下の脂肪族カルボン酸の金属塩がより好ましく、ステアリン酸、パルミチン酸などのアルカリ金属またはアルカリ土類金属塩は離形性と難燃性の両立する点でより好ましい。アルカリ金属またはアルカリ土類金属としては、例えば、リチウム、ナトリウム、マグネシウム、カルシウム塩などが挙げられる。特にステアリン酸のアルカリ金属またはアルカリ土類金属塩は燃焼時に脂肪酸金属塩の分解による脂肪酸由来の可燃ガスとメラミンシアヌレートの分解で生じる不燃ガスの発生開始温度が同一のため、添加による難燃性の低下を生じさせることなく離形性を向上させることができるため最適である。
 脂肪酸金属塩系潤滑剤(E)の配合量(含有量)は、ポリアミド樹脂(A)及びメラミンシアヌレート(B)の合計100質量部としたとき、0.1~1質量部である。1質量部を超えると難燃性が低下することがある。脂肪酸金属塩系潤滑剤(E)の配合量は、0.2~0.8質量部が好ましい。
[その他の成分]
 本発明の難燃性ポリアミド樹脂組成物には、本発明の目的を損なわない範囲で、上述した(A)、(B)、(C)、(D)、(E)の他に、他の成分、例えば顔料、染料等の着色剤や、熱安定剤、耐候性改良剤、核剤、可塑剤、離型剤、帯電防止剤等の添加剤、他の樹脂ポリマー等を添加することができる。本発明の難燃性ポリアミド樹脂組成物には、上述した(A)、(B)、(C)、(D)、及び(E)成分の合計で、80質量%以上を占めることが好ましく、90質量%以上を占めることがより好ましく、95質量%以上を占めることが更に好ましい。
 本発明の難燃ポリアミド樹脂組成物を用いて得られる好適な成形部品としては、具体的には、電気・電子部品、自動車部品などの分野で用いられるコネクター、コイルボビン、ブレーカー、電磁開閉器、ホルダー、プラグ、ソケット、スイッチ、ケース、カバーなどの成形部品であり、より具体的には、フェライトコアカバー、エスシーロック、結束バンド、電気配線保護部材など、耐熱変色性、スナップフィット性が求められる部品である。
 本発明の難燃ポリアミド樹脂組成物の製造方法は、特に限定されるものではなく、混練装置として一般の単軸押出機や二軸押出機、加圧ニーダー等が使用できるが、本発明においては二軸押出機が特に好ましい。一実施様態としては、前記(A)、(B)、(C)、(D)、(E)および用途によっては顔料等を混合し、二軸押出機に投入する。二軸押出機によって均一に混練することにより強靭性と難燃性に優れたポリアミド系樹脂組成物を製造することができる。二軸押出機の混練温度は220~300℃で混練時間は2~15分程度が好ましい。
 以下に実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例により何ら制限されるものではない。
 各成分は下記のものを用いた。
ポリアミド樹脂(A);
A1-1:ポリアミド66(RV=2.8) Vydyne 21Z(Ascend社製)、融点265℃
A1-2:ポリアミド66(RV=2.4) EPR24 (上海神馬塑料科技術有限公司製)、融点265℃
A2-1:ポリアミド6(RV=2.0)  M2000(MEIDA社製)、融点225℃
A2-2:ポリアミド6(RV=3.6) ZISAMIDE TP6603(集盛社製)、融点225℃
メラミンシアヌレート(B);
B:MC6000(日産化学株式会社製)
リン系酸化防止剤(C);
C:アデカスタブPEP-36(ADEKA株式会社製)
ヒンダードフェノール系酸化防止剤(D);
D:SONGNOX2450(ソンウォンインターナショナルジャパン社製)
脂肪酸金属塩系潤滑剤(E);
E1:ステアリン酸マグネシウム N.P.-1500S(淡南化学工業株式会社製)
その他の離型剤;
E2:モンタン酸カルシウム CS-8-CP(日東化成工業株式会社製)
E3:脂肪酸エステル リコルブ WE-40(クラリアントジャパン株式会社製)
[実施例1~12、比較例1~7]
 評価サンプルの製造は、表1に示したポリアミド樹脂組成物の配合割合に各原料を計量し、タンブラーで混合した後、二軸押出機に投入した。二軸押出機の設定温度は250℃~300℃、混錬時間は5~10分とした。得られたペレットは、射出成形機で各種の評価サンプルを成形した。射出成形機のシリンダー温度は、250℃~280℃、金型温度は80℃とした。
 各種の評価方法は以下の通りである。評価結果を表1示した。
1.ポリアミド樹脂の相対粘度[RV](98%硫酸溶液法)
 ウベローデ粘度管を用い、25℃において98質量%硫酸溶液で、ポリアミド樹脂濃度1g/dlで測定した。
2.ポリアミド樹脂の融点
 示差走査熱量計 セイコーインスツルメンツ株式会社 EXSTAR 6000を用いて、昇温速度20℃/分で測定し、吸熱ピークのピークトップ温度を融点として求めた。
3.スナップフィット性(引張強度、引張伸度):ISO527に準じて測定し、引張強度(引張強さ)および引張伸度(引張破壊ひずみ)を求めた。
4.燃焼性:UL94、垂直燃焼試験に準じて測定した。V-0が、最も難燃性が高いことを表す。
5.ブリード性:厚み2mmの100mm×100mmの成形品を温度80℃、95%RHに設定した恒温恒湿槽に96時間静置を少なくとも2回以上繰り返し、その後室温に戻して表面に析出物が存在するか、実体顕微鏡にて目視で確認した。
6.熱変色性:温度120℃、オーブン内放置時間8hr後のペレットと処理前ペレットとの色差(ΔE)を算出した。
7.成形性:離型力測定装置を取り付けた金型を用いて上記成形温度条件で成形を行い、31ショット目から35ショットまでの離型力を測定して離型抵抗値を求めた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~12は、引張強度は一般的なポリアミド6、66樹脂と同等であり、引張伸度も5%以上であり、引張降伏点を超えても破断はなく、大きく脆化していないため良好なスナップフィット性が得られることが期待される。0.4、0.8、1.6、3.0mmの厚みにおける難燃性においても、実施例1~12はUL94 V-0評価を実現しており、幅広い厚みで難燃性の高さを有していることがわかる。熱変色性においても、実施例1~12は120℃、8hr後のΔEは20以下であり、熱環境下での変色が抑制されていることがわかる。成形性においても、成形品の離型時の抵抗値が1MPa以下であり、連続成形をしても離型中に成形品が変形し、癒着する可能性が極めて少ない組成物となっている。
 一方、比較例1~7は部分的には特性を満たすものの、比較例1は0.4、0.8、1.6、3.0mmの厚みにおける難燃性においてUL94 V-2評価となっており大きく難燃性が低下しており好ましくない。比較例2は引張伸度が3%となっており、脆化を抑制できておらず、好ましくない。比較例3は0.4、0.8、1.6、3.0mmの厚みにおける難燃性がV-2評価となっているのに加えて、引張伸度が3%となっており十分な難燃性とスナップフィット性を両立しているとは言い難く好ましくない。比較例4、5、7は0.8、1.6、3.0mmの厚みにおける難燃性においてUL94 V-2評価となっており、幅広い領域の厚みで難燃性が高いとは言いがたいため好ましくない。加えて比較例7は、成型性の指標となる離型抵抗値が1MPaを超えており、成形性が良好(良好な離型性)とは言えず、この点においても好ましくない。最後に比較例6は0.8、1.6、3.0mmの厚みにおける難燃性においてUL94 V-2評価となっているのに加えて、引張伸度が3%となっており十分な難燃性とスナップフィット性を両立しているとは言い難く好ましくない。
 本発明の難燃性ポリアミド樹脂組成物は、幅広い製品厚みを有し、かつヒンジ部を有するような成形品に好適で、得られた成形品は、幅広い製品厚みでの難燃性の高さを有していて、かつスナップフィット性にも優れるため、高い難燃性とスナップフィット性の両立が望まれる電気・電子部品、自動車部品などに好適に用いることができる。

Claims (4)

  1.  ポリアミド樹脂(A)及びメラミンシアヌレート(B)を含有し、前記成分(A)及び(B)の合計100質量部に対して、ポリアミド樹脂(A)90~98質量部、メラミンシアヌレート(B)2~10質量部、リン系酸化防止剤(C)0.01~1質量部、ヒンダードフェノール系酸化防止剤(D)0.01~1質量部、及び炭素数22以下の脂肪酸金属塩系潤滑剤(E)0.1~1質量部の割合で含有し、前記ポリアミド樹脂(A)はポリアミド66樹脂(A1)55~85質量%、ポリアミド6樹脂(A2)15~45質量%を含有する難燃性ポリアミド樹脂組成物。
  2.  前記脂肪酸金属塩系潤滑剤(E)が、ステアリン酸の金属塩である請求項1に記載の難燃性ポリアミド樹脂組成物。
  3.  請求項1~2のいずれかに記載の難燃性ポリアミド樹脂組成物からなる成形品。
  4.  前記成形品が、フェライトコアカバー、エスシーロック、結束バンド、電気配線保護部材のいずれかである請求項3に記載の成形品。
PCT/JP2022/001087 2021-01-22 2022-01-14 難燃性ポリアミド樹脂組成物及びそれからなる成形品 WO2022158383A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280009842.6A CN116724079A (zh) 2021-01-22 2022-01-14 阻燃性聚酰胺树脂组合物及其成形品
JP2022576644A JPWO2022158383A1 (ja) 2021-01-22 2022-01-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021008983 2021-01-22
JP2021-008983 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022158383A1 true WO2022158383A1 (ja) 2022-07-28

Family

ID=82548949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001087 WO2022158383A1 (ja) 2021-01-22 2022-01-14 難燃性ポリアミド樹脂組成物及びそれからなる成形品

Country Status (4)

Country Link
JP (1) JPWO2022158383A1 (ja)
CN (1) CN116724079A (ja)
TW (1) TW202237744A (ja)
WO (1) WO2022158383A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195043A (ja) * 1986-02-21 1987-08-27 Mitsubishi Chem Ind Ltd 難燃性ポリアミド樹脂組成物
CN108795037A (zh) * 2018-06-21 2018-11-13 广东聚石化学股份有限公司 一种用于紧固件的抗紫外无卤阻燃尼龙组合物及其制备方法
WO2021044880A1 (ja) * 2019-09-02 2021-03-11 東洋紡株式会社 難燃性ポリアミド樹脂組成物及びそれからなる成形品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195043A (ja) * 1986-02-21 1987-08-27 Mitsubishi Chem Ind Ltd 難燃性ポリアミド樹脂組成物
CN108795037A (zh) * 2018-06-21 2018-11-13 广东聚石化学股份有限公司 一种用于紧固件的抗紫外无卤阻燃尼龙组合物及其制备方法
WO2021044880A1 (ja) * 2019-09-02 2021-03-11 東洋紡株式会社 難燃性ポリアミド樹脂組成物及びそれからなる成形品

Also Published As

Publication number Publication date
CN116724079A (zh) 2023-09-08
JPWO2022158383A1 (ja) 2022-07-28
TW202237744A (zh) 2022-10-01

Similar Documents

Publication Publication Date Title
CA2539773C (en) Flame resistant aromatic polyamide resin composition and articles therefrom
JPWO2020040282A1 (ja) ポリアミド及びポリアミド組成物
EP2870196B1 (en) Halogen free flame retardant polyamide composition
JP6129464B1 (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2013064032A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
CN109312153B (zh) 热塑性树脂组合物及将其成型而成的成型体
JP7129086B2 (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
WO2015056765A1 (ja) 半芳香族ポリアミド樹脂組成物およびそれを成形してなる成形体
JP7093104B2 (ja) 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP6138321B1 (ja) 熱可塑性樹脂組成物およびそれを成形してなる成形体
WO2021044880A1 (ja) 難燃性ポリアミド樹脂組成物及びそれからなる成形品
JP2018095852A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2021167384A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
WO2022191078A1 (ja) 難燃性ポリアミド樹脂組成物及びそれからなる成形品
WO2022158383A1 (ja) 難燃性ポリアミド樹脂組成物及びそれからなる成形品
JP2003292774A (ja) 耐熱性難燃樹脂組成物
JP2012214559A (ja) 難燃性ポリアミド樹脂組成物
JP7055365B2 (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JP2002275370A (ja) 難燃性ポリアミド樹脂組成物
JP2018193437A (ja) 熱可塑性樹脂組成物およびそれを成形してなる成形体
JP2008239894A (ja) 難燃性ポリアミド樹脂組成物、およびこの難燃性樹脂組成物より製造された成形品
JPH06136263A (ja) ポリアミド樹脂組成物
JP2013056969A (ja) ポリアミド樹脂組成物およびそれを成形してなる成形体
JPH0753863A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576644

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009842.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202305157T

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 22742505

Country of ref document: EP

Kind code of ref document: A1