[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022149913A1 - 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지 - Google Patents

황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지 Download PDF

Info

Publication number
WO2022149913A1
WO2022149913A1 PCT/KR2022/000313 KR2022000313W WO2022149913A1 WO 2022149913 A1 WO2022149913 A1 WO 2022149913A1 KR 2022000313 W KR2022000313 W KR 2022000313W WO 2022149913 A1 WO2022149913 A1 WO 2022149913A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
lithium
carbon
carbon composite
carbon material
Prior art date
Application number
PCT/KR2022/000313
Other languages
English (en)
French (fr)
Inventor
김일토
이창훈
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22736890.9A priority Critical patent/EP4199148A1/en
Priority to US18/028,720 priority patent/US20230335718A1/en
Priority to CN202280006577.6A priority patent/CN116250099A/zh
Priority to JP2023523285A priority patent/JP2023546149A/ja
Publication of WO2022149913A1 publication Critical patent/WO2022149913A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-carbon composite, a method for preparing the same, and a lithium-sulfur battery comprising the same.
  • lithium secondary batteries As the scope of application of lithium secondary batteries is expanded to electric vehicles (EVs) and electric storage systems (ESSs) as well as portable electronic devices and communication devices, high capacity and high output of lithium secondary batteries used as their power sources There is an increasing demand for fire.
  • EVs electric vehicles
  • ESSs electric storage systems
  • high capacity and high output of lithium secondary batteries used as their power sources There is an increasing demand for fire.
  • lithium-sulfur batteries use a sulfur-based material containing a sulfur-sulfur bond as a positive electrode active material, and lithium metal, a carbon-based material in which lithium ions are inserted/de-inserted, or lithium It is a battery system that uses silicon or tin, which forms an alloy with the anode, as an anode active material.
  • sulfur which is the main material of the positive electrode active material, has a low weight per atom, is easy to supply due to abundant resources, is inexpensive, has no toxicity, and is an environmentally friendly material.
  • the lithium-sulfur battery has a theoretical discharge capacity of 1,675 mAh/g from the conversion reaction of lithium ions and sulfur (S 8 +16Li + +16e - ⁇ 8Li 2 S) at the positive electrode, and lithium metal ( Theoretical capacity: 3,860 mAh/g) shows a theoretical energy density of 2,600 Wh/kg.
  • This is another cell system currently being studied (Ni-MH cell: 450 Wh/kg, Li-FeS cell: 480 Wh/kg, Li-MnO 2 cell: 1,000 Wh/kg, Na-S cell: 800 Wh/kg).
  • Ni-MH cell 450 Wh/kg
  • Li-FeS cell 480 Wh/kg
  • Li-MnO 2 cell 1,000 Wh/kg
  • Na-S cell 800 Wh/kg.
  • it since it has a very high value compared to the theoretical energy density of lithium ion batteries (250 Wh/kg), high capacity, high output, and high energy density can be expressed. are receiving
  • sulfur used as a positive electrode active material has an electrical conductivity of 5 ⁇ 10 -30 S/cm and is an insulator without electrical conductivity, so there is a problem in that it is difficult to move electrons generated by an electrochemical reaction. Accordingly, it is used as a sulfur-carbon composite by being complexed with a conductive material such as carbon that can provide an electrochemical reaction site.
  • Korean Patent Laid-Open No. 2016-0046775 discloses that a positive electrode coating layer made of an amphiphilic polymer is provided on some surfaces of a positive electrode active part including a sulfur-carbon composite to inhibit dissolution of lithium polysulfide and facilitate movement of lithium ions.
  • a positive electrode coating layer made of an amphiphilic polymer is provided on some surfaces of a positive electrode active part including a sulfur-carbon composite to inhibit dissolution of lithium polysulfide and facilitate movement of lithium ions.
  • the cycle characteristics of the battery can be improved.
  • Korean Patent Laid-Open No. 2016-0037084 discloses that by coating graphene on a carbon nanotube aggregate containing sulfur, lithium polysulfide is prevented from melting, and the conductivity of the sulfur-carbon nanotube composite and the amount of sulfur loading are increased. discloses that it is possible.
  • the present inventors have conducted various studies to solve the above problem. As a result, when the porous carbon material is heat-treated under certain conditions, the electrical conductivity of the porous carbon material is improved, and excellent electrochemical reactivity when introduced into the sulfur-carbon composite. The present invention was completed by confirming what was shown.
  • an object of the present invention is to provide a sulfur-carbon composite having excellent electrochemical reactivity.
  • Another object of the present invention is to provide a method for preparing the sulfur-carbon composite.
  • Another object of the present invention is to provide a positive electrode including the sulfur-carbon composite, and a lithium-sulfur battery including the same.
  • the present invention is a porous carbon material; And a sulfur-carbon composite comprising sulfur in at least a portion of the interior and surface of the porous carbon material, wherein the porous carbon material has an electrical conductivity of 24.5 S/cm or more at a powder density of 0.58 g/cc.
  • a sulfur-carbon composite to provide.
  • the present invention comprises the steps of (a) heat-treating the porous carbon material under an inert gas atmosphere; And (b) mixing the heat-treated porous carbon material with sulfur to provide a method for producing a sulfur-carbon composite comprising the step of complexing.
  • the present invention provides a positive electrode for a lithium-sulfur battery including the sulfur-carbon composite.
  • the present invention provides a lithium-sulfur battery including the positive electrode for the lithium-sulfur battery.
  • the sulfur-carbon composite according to the present invention exhibits excellent electrochemical reactivity as it contains a porous carbon material with improved electrical conductivity through heat treatment, and improves the overvoltage of the battery when used as a cathode active material of a lithium-sulfur battery, and improves capacity, output, and lifespan characteristics.
  • FIG. 1 is a graph showing electrical conductivity measurement results of porous carbon materials of Examples 1 to 3, Example 6, and Comparative Example 1.
  • FIG. 1 is a graph showing electrical conductivity measurement results of porous carbon materials of Examples 1 to 3, Example 6, and Comparative Example 1.
  • Example 3 is a graph showing the evaluation results of the capacity characteristics of the lithium-sulfur batteries of Examples 1 to 3, Example 6, and Comparative Example 1.
  • FIG. 4 is a graph showing the evaluation results of the lifespan characteristics of the lithium-sulfur batteries of Examples 1 to 3, Example 6, and Comparative Example 1. Referring to FIG.
  • Example 5 is a graph showing the evaluation results of the output characteristics of the lithium-sulfur batteries of Example 7 and Comparative Example 2.
  • composite refers to a material in which two or more materials are combined to form different phases physically and chemically while exhibiting more effective functions.
  • pellet density refers to the weight per unit volume of the measurement target material made of pellets, and refers to the apparent density of the measurement target material.
  • electrical conductivity of powder refers to converting the sheet resistance value measured after making the powder of the material to be measured into pellets into electrical conductivity.
  • Lithium-sulfur batteries not only have high discharge capacity and theoretical energy density, but also have a large amount of sulfur used as a positive electrode active material, so they are inexpensive, so the manufacturing cost of the battery is low and environmental-friendly.
  • sulfur which is a cathode active material, is used in the form of a sulfur-carbon composite complex with carbon, a conductive material, to supplement electrical conductivity as an insulator.
  • the electrochemical reactivity of the sulfur-carbon composite is improved to realize a lithium-sulfur battery with improved capacity, output and lifespan characteristics. provide a complex.
  • the sulfur-carbon composite according to the present invention is a porous carbon material; and a sulfur-carbon composite comprising sulfur on at least a portion of the interior and surface of the porous carbon material, wherein the porous carbon material has an electrical conductivity of 24.5 S/cm or more at a powder density of 0.58 g/cc.
  • the inside of the porous carbon material includes the inside of the pores of the porous carbon material.
  • a porous carbon material having a certain range of electrical conductivity by heat treatment in an inert gas atmosphere was used as a sulfur carrier, and the sulfur-carbon composite of the present invention including the heat-treated porous carbon material as described above has improved electrical conductivity. It can show excellent electrochemical reactivity.
  • the porous carbon material of the sulfur-carbon composite according to the present invention is a porous carbon material having an electrical conductivity of 24.5 S/cm or more at a powder density of 0.58 g/cc through heat treatment in an inert gas condition.
  • the porous carbon material that has undergone a heat treatment process included in the sulfur-carbon composite of the present invention has an electrical conductivity in a specific range as described above, so that the positive active material is caused by various factors occurring during charging and discharging of the battery. can solve the problem of lowering the electrochemical reactivity of
  • the present invention improves the electrochemical reactivity of the sulfur-carbon composite by introducing a porous carbon material having a certain range of electrical conductivity by performing heat treatment under an inert gas condition as a sulfur carrier, so that the lithium-sulfur battery has excellent capacity, output and Lifespan characteristics can be improved.
  • the porous carbon material included in the sulfur-carbon composite according to the present invention can provide a skeleton in which non-conductive sulfur can be uniformly and stably immobilized and at the same time provide electrical conductivity, and a certain range of heat treatment in an inert gas condition Use those with electrical conductivity.
  • the porous carbon material of the present invention which has been subjected to heat treatment in an inert gas condition, has an electrical conductivity of 24.5 S/cm or more at a powder density of 0.58 g/cc, and preferably at a powder density of 0.58 g/cc.
  • the electrical conductivity of the powder is at least 25 S/cm, most preferably the electrical conductivity of the powder is 25.2 S at a powder density of 0.58 g/cc or more /cm or more. If the electrical conductivity of the powder in the range of the above-mentioned powder density is less than 24.5 S/cm, the effect of improving the electrochemical reactivity of the sulfur-carbon composite is insignificant.
  • the porous carbon material may have a porous structure or a high specific surface area, so long as it is commonly used in the art.
  • the porous carbon material may include graphite; graphene; carbon black such as denka black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; carbon nanotubes (CNTs) such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs); carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be at least one selected from the group consisting of graphite and activated carbon, such as natural graphite, artificial graphite, and expanded graphite, but is not limited thereto.
  • the porous carbon material may be carbon black.
  • the porous carbon material may include a plurality of non-uniform pores on the surface and inside.
  • the average diameter of the pores may be in the range of 100 nm to 50 ⁇ m, and the porosity may be in the range of 10 to 90% of the total volume of the porous carbon material.
  • the average diameter of the pores is less than the above range, the impregnation of sulfur is impossible because the pore size is only at the molecular level. may occur.
  • the porous carbon material may have an average diameter of 100 nm to 50 ⁇ m, preferably 10 to 50 ⁇ m. If the average diameter of the porous carbon material is less than the above range, there may be a problem in that sulfur is supported in the pores of the carbon material, and on the contrary, if it exceeds the above range, the conductivity of the sulfur-carbon composite may be reduced.
  • the shape of the porous carbon material is spherical, rod-shaped, needle-shaped, plate-shaped, tube-shaped or bulk-shaped, as long as it is commonly used in lithium-sulfur batteries, and may be used without limitation.
  • the sulfur-carbon composite according to the present invention includes sulfur together with the porous carbon material as described above.
  • the sulfur is located in at least one of the inside and the surface of the above-described porous carbon material, wherein less than 100%, preferably 1 to 95% of the entire inner and outer surface of the porous carbon material , more preferably in the range of 60 to 90%.
  • the sulfur is present on the inner and outer surfaces of the porous carbon material within the above range, the maximum effect may be exhibited in terms of electron transport area and wettability with the electrolyte.
  • the electron transport contact area can be increased in the charge/discharge process.
  • the sulfur is located in 100% of the entire inner and outer surface of the porous carbon material, the carbon material is completely covered with sulfur, so the wettability to the electrolyte is reduced and the contact with the conductive material included in the electrode is lowered to prevent electron transfer. They cannot participate in the electrochemical reaction.
  • the sulfur is used to have an average diameter in the range of 1 nm to 1 ⁇ m, preferably 1 nm to 100 nm, and thus may be coated on the inside and surface of the porous carbon material to a thickness of 1 to 10 nm. .
  • the porous carbon material may be included in an amount of 10 to 50% by weight, preferably 20 to 40% by weight, based on the total weight of the sulfur-carbon composite.
  • the sulfur may be included in an amount of 50 to 90% by weight, preferably 60 to 80% by weight, based on the total weight of the sulfur-carbon composite.
  • the weight ratio of the porous carbon material and sulfur in the sulfur-carbon composite of the present invention may be 1:1 to 1:9, preferably 1:1.5 to 1:4.
  • the sulfur content is less than the above range, the specific surface area increases as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, so that the content of the binder increases during slurry preparation.
  • An increase in the amount of the binder used may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby degrading the performance of the battery.
  • the sulfur which cannot be combined with the porous carbon material, aggregates with each other or re-elutes to the surface of the porous carbon material, making it difficult to receive electrons and thus not participating in the electrochemical reaction of the battery. Capacity loss may occur.
  • the sulfur-carbon composite may be complexed by simply mixing the sulfur and the carbon material, or may have a core-shell structure coated or supported shape.
  • the coating form of the core-shell structure is one in which sulfur or a carbon material is coated with another material, and for example, the surface of the carbon material may be wrapped with sulfur or vice versa.
  • the supported form may be a form in which sulfur is supported inside the carbon material.
  • the form of the sulfur-carbon composite may be used in any form as long as it satisfies the content ratio of the sulfur-based compound and the carbon material presented above, and the present invention is not limited thereto.
  • the average diameter of the sulfur-carbon composite according to the present invention is not particularly limited in the present invention and may vary, but is 0.5 to 20 ⁇ m, preferably 1 to 15 ⁇ m. When the above range is satisfied, there is an advantage that a high-loading electrode can be manufactured.
  • the sulfur-carbon composite preferably has a specific surface area of 3 to 20 m 2 /g, more preferably 5.5 to 15 m 2 /g.
  • the specific surface area of the sulfur-carbon composite is less than 3 m 2 /g, the sulfur component is not evenly impregnated on the surface of the carbon material, which is undesirable in that battery performance is deteriorated, and when it exceeds 20 m 2 / g, the electrode It is undesirable in that the amount of the binder added during manufacturing increases.
  • the sulfur-carbon composite preferably has a pore volume of 0.075 to 1 cm 3 /g, more preferably 0.080 to 1 cm 3 /g.
  • the pore volume of the sulfur-carbon composite is less than 0.075 cm3 / g, it is not preferable in that the sulfur component is not impregnated in the sulfur-carbon composite and exists separately on the surface or agglomeration occurs, and exceeding 1 cm3 / g In this case, although there is a large amount of space to be impregnated with the sulfur component, it is not preferable in that it is difficult to manufacture an electrode having a high energy density because the pores of the sulfur-composite are not utilized.
  • the present invention provides a method for producing the sulfur-carbon composite.
  • a method for producing a sulfur-carbon composite according to the present invention comprises the steps of: (a) heat-treating a porous carbon material under an inert gas atmosphere; and (b) mixing the heat-treated porous carbon material with sulfur to compound it.
  • step (a) is a step of heat-treating the porous carbon material under an inert gas atmosphere.
  • the porous carbon material used in step (a) is the same as described in the sulfur-carbon composite.
  • the inert gas may include at least one selected from the group consisting of helium gas, nitrogen gas, or argon gas. Considering the effect of improving the electrical conductivity of the porous carbon material, the inert gas is preferably nitrogen gas or argon gas, more preferably nitrogen gas.
  • step (a) may be performed according to a conventional method known in the art.
  • the heat treatment temperature in step (a) may be in the range of 500 to 850 °C.
  • the heat treatment temperature is preferably 500 to 800 °C, more preferably 650 to 800 °C.
  • the heat treatment temperature is less than 500 ° C., the effect of improving the electrical conductivity of the carbon material is insignificant, and the effect of improving the electrochemical reactivity is insignificant.
  • the heat treatment temperature exceeds 850 ° C., the graphitization of the porous carbon material may proceed, resulting in damage to the porous carbon material.
  • the heat treatment in step (a) may be performed for 1 to 5 hours after raising the temperature to 500 to 850 °C at 5 to 10 °C/min.
  • the temperature increase rate is less than 5 °C/min, other side reactions may occur, and if it exceeds 10 °C/min, the heat treatment process may proceed at an excessive temperature, which is not appropriate.
  • the reaction for improving electrical conductivity may not proceed sufficiently, and if it exceeds 5 hours, other side reactions may occur.
  • the electrical conductivity of the powder at a powder density of 0.58 g/cc is 24.5 S/cm or more, preferably, the electrical conductivity of the powder at a powder density of 0.58 g/cc is 25 S/cm More preferably, the electrical conductivity of the powder is 25.2 S/cm or more at a powder density of 0.58 g/cc or more.
  • step (b) is a step of mixing the heat-treated porous carbon material with sulfur to form a complex.
  • step (b) is the same as described for the sulfur-carbon complex.
  • the mixing is to increase the degree of mixing between the above-mentioned materials, and may be performed using a stirring device commonly used in the art. At this time, the mixing time and speed may also be selectively adjusted according to the content and conditions of the raw materials.
  • the complexation method is not particularly limited in the present invention, and a method commonly used in the art may be used.
  • a method commonly used in the art such as dry compounding or wet compounding such as spray coating, may be used.
  • the mixture of sulfur and the heat-treated porous carbon material is ball milled and pulverized and then placed in an oven at 120 to 160 ° C. for 20 minutes to 1 hour so that the molten sulfur is evenly distributed on the inner and outer surfaces of the heat-treated porous carbon material. Any method that allows it to be coated can be used.
  • the method for producing a sulfur-carbon composite according to the present invention is advantageous in that it is easy to apply commercially as well as a simple process, and it is possible to prepare a sulfur-carbon composite that exhibits excellent electrochemical reactivity without expensive raw materials or separate equipment construction. There is this.
  • the sulfur-carbon composite obtained through the above-described manufacturing method improves the electrochemical reactivity of the sulfur-carbon composite (specifically sulfur) by including a porous carbon material having a certain range of electrical conductivity as a sulfur carrier through heat treatment. Accordingly, the performance of the lithium-sulfur battery can be improved.
  • the present invention provides a positive electrode for a lithium-sulfur battery including the sulfur-carbon composite.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector.
  • the cathode active material layer may include the above-described sulfur-carbon composite of the present invention as a cathode active material.
  • the positive active material layer may further include one or more additives selected from a transition metal element, a group IIIA element, a group IVA element, a sulfur compound of these elements, and an alloy of these elements and sulfur in addition to the positive active material.
  • transition metal element examples include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au or Hg and the like are included, and the group IIIA element includes Al, Ga, In, Ti, and the like, and the group IVA element may include Ge, Sn, Pb, and the like.
  • the positive electrode active material layer may further include a positive electrode active material or, optionally, a conductive material for smoothly moving electrons in the positive electrode together with an additive, and a binder for well adhering the positive electrode active material to the current collector.
  • the conductive material electrically connects the electrolyte and the positive electrode active material to serve as a path for electrons to move from the current collector to the positive electrode active material, and may be used without limitation as long as it has conductivity.
  • carbon black such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, Summer Black, Carbon Black
  • carbon derivatives such as carbon nanotubes and fullerenes
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • a conductive polymer such as polyaniline, polythiophene, polyacetylene, or polypyrrole may be used alone or in combination.
  • the content of the conductive material may be added in an amount of 0.01 to 30% by weight based on the total weight of the mixture including the positive electrode active material.
  • the binder maintains the positive electrode active material on the positive electrode current collector and organically connects the positive electrode active materials to increase the binding force therebetween, and any binder known in the art may be used.
  • the binder may include a fluororesin-based binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); Styrene-butadiene rubber (styrene butadiene rubber, SBR), acrylonitrile-butydiene rubber, styrene-rubber-based binder including isoprene rubber; Cellulose binders including carboxyl methyl cellulose (CMC), starch, hydroxypropyl cellulose, and regenerated cellulose; polyalcohol-based binders; Polyolefin-based binders including polyethylene and polypropylene; polyimide-based binders; polyester-based binders; and a silane-based binder; one selected from the group consisting of, a mixture of two or more, or a copolymer may be used.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR Sty
  • the content of the binder may be added in an amount of 0.5 to 30% by weight based on the total weight of the mixture including the positive active material. If the content of the binder is less than 0.5% by weight, the physical properties of the positive electrode may be deteriorated, and the active material and the conductive material in the positive electrode may fall off. can do.
  • the positive electrode may be manufactured by a conventional method known in the art.
  • the binder is dissolved in a solvent for preparing a slurry, and then the conductive material is dispersed.
  • a solvent for preparing the slurry the positive electrode active material, the binder, and the conductive material can be uniformly dispersed, and it is preferable to use one that evaporates easily, and representatively, acetonitrile, methanol, ethanol, tetrahydrofuran, water, iso Propyl alcohol, etc. may be used.
  • the positive electrode active material, or optionally together with an additive is uniformly dispersed again in a solvent in which the conductive material is dispersed to prepare a slurry.
  • the amount of the solvent, the positive electrode active material, or optionally the additive included in the slurry does not have a particularly important meaning in the present application, and it is sufficient if it has an appropriate viscosity to facilitate coating of the slurry.
  • a positive electrode is prepared by applying the slurry prepared as described above to a positive electrode current collector and vacuum drying to form a positive electrode active material layer.
  • the slurry may be coated on the positive electrode current collector to an appropriate thickness according to the viscosity of the slurry and the thickness of the positive electrode active material layer to be formed.
  • the positive electrode current collector may be generally made to have a thickness of 3 to 500 ⁇ m, and is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the positive electrode current collector copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper, stainless steel, or aluminum surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy etc. may be used.
  • the positive electrode current collector may form fine irregularities on its surface to enhance bonding strength with the positive electrode active material, and various forms such as films, sheets, foils, meshes, nets, porous bodies, foams, and nonwovens may be used.
  • the application may be performed by a method commonly known in the art, for example, doctor blade coating, dip coating, gravure coating, slit die coating). , spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating, and the like.
  • the slurry may be applied on the positive electrode current collector by a pressing or lamination method.
  • a drying process for removing the solvent may be performed.
  • the drying process is performed at a temperature and time at a level sufficient to remove the solvent, and the conditions may vary depending on the type of the solvent, so the present invention is not particularly limited.
  • drying by hot air, hot air, low-humidity air, vacuum drying, (far) infrared rays and a drying method by irradiation with an electron beam, etc. are mentioned.
  • the drying rate is usually adjusted to remove the solvent as quickly as possible within a speed range such that the positive electrode active material layer is not cracked or the positive electrode active material layer is not peeled off from the positive electrode current collector due to stress concentration.
  • the density of the positive electrode active material in the positive electrode may be increased by pressing the current collector after drying.
  • Methods, such as a die press and roll press, are mentioned as a press method.
  • the present invention is a positive electrode comprising the above-described sulfur-carbon composite; cathode; And it provides a lithium-sulfur battery comprising an electrolyte interposed between the positive electrode and the negative electrode.
  • the positive electrode according to the present invention is as described above.
  • the negative electrode may be composed of a current collector and an anode active material layer formed on one or both surfaces thereof.
  • the negative electrode may be a lithium metal plate.
  • the current collector is for supporting the negative electrode active material, as described in the positive electrode current collector.
  • the negative active material is a material capable of reversibly intercalating or deintercalating lithium (Li + ), a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or a lithium alloy.
  • Li + lithium
  • Li alloy a material capable of reversibly forming a lithium-containing compound by reacting with lithium ions, lithium metal or a lithium alloy.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • the material capable of reversibly forming a lithium-containing compound by reacting with the lithium ions (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and may be an alloy of a metal selected from the group consisting of tin (Sn).
  • the negative active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • the method of manufacturing the negative electrode is not particularly limited, and a method of forming a layer or a film commonly used in the art may be used. For example, a method such as pressing, coating, or vapor deposition may be used. In addition, a case in which a metal lithium thin film is formed on a metal plate by initial charging after assembling the battery in a state in which there is no lithium thin film in the current collector is also included in the negative electrode of the present invention.
  • a separator may be additionally included between the anode and the cathode.
  • the separator separates or insulates the positive electrode and the negative electrode from each other and enables lithium ions to be transported between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material.
  • the separator may be an independent member such as a film, or may be a coating layer added to the positive electrode and/or the negative electrode.
  • the electrolyte has low resistance to ion movement and has excellent moisture content to the electrolyte.
  • the separator may be made of a porous substrate.
  • the porous substrate may be used as long as it is a porous substrate typically used in lithium-sulfur batteries, and a porous polymer film may be used alone or by laminating them, for example, A nonwoven fabric or a polyolefin-based porous membrane made of a melting point glass fiber, polyethylene terephthalate fiber, or the like may be used, but the present invention is not limited thereto.
  • the material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in lithium-sulfur batteries may be used.
  • the porous substrate may include a polyolefin such as polyethylene and polypropylene, a polyester such as polyethyleneterephthalate, a polybutyleneterephthalate, and a polyamide.
  • polyamide polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide ( polyphenylenesulfide, polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), polyparaphenylenebenzobisoxazole (poly(p-phenylene benzobisoxazole) and polyarylate (polyarylate) may include at least one material selected from the group consisting of.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the thickness range of the porous substrate is not limited to the above-mentioned range, when the thickness is too thin than the above-described lower limit, mechanical properties are deteriorated and the separator may be easily damaged during use of the battery.
  • the average diameter and pore size of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
  • the electrolyte is for causing an electrochemical oxidation or reduction reaction in the positive electrode and the negative electrode through this, and is located between the positive electrode and the negative electrode and includes a lithium salt and a non-aqueous organic solvent.
  • the lithium salt may be used without limitation as long as it can be commonly used in a lithium secondary battery.
  • lithium salt examples include LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiC 4 BO 8 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSO 3 CH 3 , LiSO 3 CF 3 , LiSCN, LiC(CF 3 SO 2 ) 3 , LiN(CF 3 SO 2 ) 2 (lithium bis(trifluoromethanesulfonyl)imide; LiTFSI), LiN(C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 (lithium bis(fluorosulfonyl)imide; LiFSI), lithium chloroborane, lithium lower aliphatic carboxylate, lithium tetraphenyl borate, and lithium imide.
  • the concentration of the lithium salt is 0.2 to 4 M, depending on several factors such as the composition of the electrolyte, the solubility of the lithium salt, the conductivity of the dissolved lithium salt, the charging and discharging conditions of the battery, the working temperature and other factors known in the field of lithium secondary batteries, Specifically, it may be 0.6 to 2 M, more specifically 0.7 to 1.7 M. If the concentration of the lithium salt is used less than 0.2 M, the electrical conductivity of the electrolyte may be lowered, so that electrolyte performance may be deteriorated.
  • non-aqueous organic solvent those commonly used in electrolytes for lithium secondary batteries may be used without limitation.
  • organic solvent ethers, esters, amides, linear carbonates, cyclic carbonates, etc. may be used alone or in mixture of two or more.
  • an ether-based compound may be typically included.
  • the ether-based compound is dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, diethylene glycol dimethyl ether , diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene At least one selected from the group consisting of glycol methylethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, polyethylene glycol methylethyl ether, 1,3-dioxolane, tetrahydrofuran, and 2-
  • Esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ - Any one selected from the group consisting of valerolactone and ⁇ -caprolactone or a mixture of two or more thereof may be used, but is not limited thereto.
  • linear carbonate compound examples include any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate, and ethylpropyl carbonate, or among them
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • ethylpropyl carbonate methylpropyl carbonate
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and any one selected from the group consisting of halides thereof, or a mixture of two or more thereof.
  • halides include, but are not limited to, fluoroethylene carbonate (FEC).
  • N-methylpyrrolidone dimethylsulfoxide, sulfolane, etc. may be used in addition to the organic solvents described above.
  • the electrolyte may further include a nitric acid-based compound commonly used in the art in addition to the composition described above.
  • a nitric acid-based compound commonly used in the art in addition to the composition described above.
  • the injection of the electrolyte may be performed at an appropriate stage during the manufacturing process of the electrochemical device according to the manufacturing process of the final product and required physical properties. That is, it may be applied before assembling the electrochemical device or in the final stage of assembling the electrochemical device.
  • the lithium-sulfur battery according to the present invention in addition to winding, which is a general process, lamination, stack, and folding processes of a separator and an electrode are possible.
  • the lithium-sulfur battery of the present invention may be classified into a cylindrical, prismatic, coin-type, pouch-type, etc. according to a shape, and may be divided into a bulk type and a thin film type according to the size. Since the structure and manufacturing method of these batteries are well known in the art, a detailed description thereof will be omitted.
  • the present invention provides a battery module including the lithium-sulfur battery as a unit battery.
  • the battery module may be used as a power source for medium or large devices requiring high temperature stability, long cycle characteristics, and high capacity characteristics.
  • Examples of the medium-to-large device include a power tool powered by an omniscient motor; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter); electric golf carts; and a power storage system, but is not limited thereto.
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (E-scooter)
  • E-scooter electric bicycles
  • electric scooters E-scooter
  • electric golf carts and a power storage system, but is not limited thereto.
  • Ketjen Black ECP600JD, Lion
  • 500 °C temperature increase rate: 5 °C/min
  • the positive electrode slurry composition thus prepared was applied to a thickness of 150 ⁇ m on an aluminum foil having a thickness of 20 ⁇ m, and then dried at 50° C. for 12 hours to prepare a positive electrode.
  • a separator was interposed therebetween, and 70 ⁇ l of electrolyte was injected to prepare a coin cell type lithium-sulfur battery.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that Ketjen Black was heat-treated for 3 hours at 800 °C (temperature increase rate: 5 °C/min) in an argon gas atmosphere when preparing the sulfur-carbon composite. did.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that Ketjen Black was heat-treated for 3 hours at 500° C. (temperature increase rate: 5° C./min) in a nitrogen gas atmosphere when preparing the sulfur-carbon composite. did.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that Ketjen Black was heat-treated for 3 hours at 600° C. (temperature increase rate: 5° C./min) in a nitrogen gas atmosphere when preparing the sulfur-carbon composite. did.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that Ketjen Black was heat-treated for 3 hours at 700° C. (temperature increase rate: 5° C./min) in a nitrogen gas atmosphere when preparing the sulfur-carbon composite. did.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that Ketjen Black was heat-treated for 3 hours at 800 °C (temperature increase rate: 5 °C/min) in a nitrogen gas atmosphere when preparing the sulfur-carbon composite. did.
  • Ketjen Black was heat-treated in a nitrogen gas atmosphere at 800 °C (temperature increase rate: 5 °C/min) for 3 hours, and the positive electrode, negative electrode, electrolyte and separator used in Example 1 were used. Thus, a pouch-type lithium-sulfur battery was prepared.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that pure Ketjen black without heat treatment was used in preparing the sulfur-carbon composite.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that Ketjen Black was heat-treated for 3 hours at 900° C. (temperature increase rate: 5° C./min) in a nitrogen gas atmosphere when preparing the sulfur-carbon composite. did.
  • Elemental analyzer was performed on the heat-treated Ketjen black prepared in Examples 1 to 3 and 6 and pure Ketjen black without heat treatment used in Comparative Example 1. After connecting oxygen gas, the furnace temperature was set to 900 °C and the oven temperature was set to 65 °C, and the contents of carbon (C), hydrogen (H), and nitrogen (N) were analyzed. After connecting helium (He) gas, the content of oxygen (O) was analyzed by setting the furnace temperature to 1060 °C and the oven temperature to 65 °C. The results are shown in Table 1.
  • Example 1 Example 2
  • Example 3 Comparative Example 1 carbon 98.3 98.3 98.2 97.7 98.4 Hydrogen ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 Oxygen ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 nitrogen ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1 ⁇ 1
  • Example 6 For the batteries prepared in Examples 1 to 3, Example 6, and Comparative Example 1, capacity and lifespan characteristics were evaluated using a charge/discharge measuring device of PNE Solution.
  • the battery according to the example has superior capacity and lifespan characteristics compared to the comparative example.
  • the batteries of Examples 1 to 3 have superior initial discharge capacity compared to the batteries of Comparative Example 1 in the high-rate (0.5 C) discharge period.
  • Example 7 For the batteries prepared in Example 7 and Comparative Example 2, the output characteristics of the batteries were evaluated through a hybrid pulse power characterization (HPPC) method. The results obtained at this time are shown in FIG. 5 .
  • HPPC hybrid pulse power characterization
  • the battery according to Example 7 exhibits a higher maximum discharge rate in the vicinity of 70% of the state of charge (SOC) than the battery according to Comparative Example 2.
  • the battery of Comparative Example 2 showed a tendency to continuously decrease the output characteristics as the SOC decreased
  • the battery of Example 7 not only had a higher maximum discharge rate than Comparative Example 2 in the entire SOC section, but also had a maximum near 70% SOC. After the discharge rate decreases, it tends to increase again up to SOC 40%.
  • the battery according to the present invention improves the output characteristics of the lithium-sulfur battery by improving the electrochemical reactivity as the sulfur-carbon composite, which is the positive electrode active material, includes the heat-treated porous carbon material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체로서, 상기 다공성 탄소재는 열처리를 통해 향상된 전기 전도도를 나타내는 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지에 관한 것이다. 본 발명에 따른 황-탄소 복합체는 전기화학적 반응성이 우수하여 이를 포함하는 리튬-황 전지의 고용량화, 고출력화, 및 장수명화를 가능하게 한다.

Description

황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
본 출원은 2021년 1월 8일자 한국 특허 출원 제10-2021-0002360호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지에 관한 것이다.
리튬 이차전지의 활용 범위가 휴대용 전자기기 및 통신기기뿐만 아니라 전기자동차(electric vehicle; EV), 전력저장장치(electric storage system; ESS)에까지 확대되면서 이들의 전원으로 사용되는 리튬 이차전지의 고용량화 및 고출력화에 대한 요구가 높아지고 있다.
여러 리튬 이차전지 중에서 리튬-황 전지는 황-황 결합(sulfur-sulfur bond)을 포함하는 황 계열 물질을 양극 활물질로 사용하며, 리튬 금속, 리튬 이온의 삽입/탈삽입이 일어나는 탄소계 물질 또는 리튬과 합금을 형성하는 실리콘이나 주석 등을 음극 활물질로 사용하는 전지 시스템이다.
리튬-황 전지에서 양극 활물질의 주재료인 황은 낮은 원자당 무게를 가지며, 자원이 풍부하여 수급이 용이하며 값이 저렴하고, 독성이 없으며, 환경친화적 물질이라는 장점이 있다.
또한, 리튬-황 전지는 양극에서 리튬 이온과 황의 변환(conversion) 반응(S8+16Li++16e- → 8Li2S)으로부터 나오는 이론 방전용량이 1,675 mAh/g에 이르고, 음극으로 리튬 금속(이론 용량: 3,860 mAh/g)을 사용하는 경우 2,600 Wh/kg의 이론 에너지 밀도를 나타낸다. 이는 현재 연구되고 있는 다른 전지 시스템 (Ni-MH 전지: 450 Wh/kg, Li-FeS 전지: 480 Wh/kg, Li-MnO2 전지: 1,000 Wh/kg, Na-S 전지: 800 Wh/kg) 및 리튬 이온 전지(250 Wh/kg)의 이론 에너지 밀도에 비하여 매우 높은 수치를 가지기 때문에 고용량, 고출력, 고에너지 밀도의 발현이 가능하여 휴대용 전자기기뿐만 아니라 전기자동차와 같은 중대형 장치의 에너지원으로 주목받고 있다.
리튬-황 전지에 있어서, 양극 활물질로 사용되는 황은 전기 전도도가 5×10-30 S/㎝로, 전기 전도성이 없는 부도체이므로 전기화학 반응으로 생성된 전자의 이동이 어려운 문제가 있다. 이에 전기화학적 반응 사이트를 제공할 수 있는 탄소와 같은 전도성 물질과 함께 복합화되어 황-탄소 복합체로 사용되고 있다.
그러나, 리튬-황 전지의 충·방전 과정에서 생성되는 리튬 폴리설파이드(lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)의 용출 문제와 더불어 양극 활물질인 황 및 이의 방전 생성물인 리튬 설파이드(lithium sulfide, Li2S)의 낮은 전기 전도성으로 인해 양극 활물질인 황-탄소 복합체의 전기화학적 반응성이 감소하는 문제가 있다.
전술한 바와 같은 문제에 의해 리튬-황 전지는 사이클이 진행됨에 따라 용량 및 출력 특성이 급격히 저하되며, 이에 따라 수명 또한 단축되므로 충분한 성능 및 구동 안정성이 확보되기 어려워 상용화되고 있지 못한 실정이다.
이에 황-탄소 복합체의 전기화학적 반응성을 개선하기 위한 다양한 기술이 제안되었다.
일례로, 대한민국 공개특허 제2016-0046775호는 황-탄소 복합체를 포함하는 양극 활성부의 일부 표면에 양친매성 고분자로 이루어진 양극 코팅층을 구비하여 리튬 폴리설파이드의 용출 억제와 함께 리튬 이온의 이동을 용이하게 하여 전지의 사이클 특성을 향상시킬 수 있음을 개시하고 있다.
또한, 대한민국 공개특허 제2016-0037084호는 황을 포함하는 탄소나노튜브 응집체에 그래핀을 코팅함으로써 리튬 폴리설파이드가 녹아나오는 것을 차단하고, 황-탄소나노튜브 복합체의 도전성 및 황의 로딩양을 증가시킬 수 있음을 개시하고 있다.
이들 특허에서 제시하는 황-탄소 복합체의 경우 코팅층의 도입을 통해 황-탄소 복합체의 전기화학적 반응성 저하 문제를 어느 정도 개선하였으나 상업적인 이용이 어려우며, 리튬-황 전지의 성능 개선 효과 또한 충분치 않다. 따라서 간단한 공정을 통해 우수한 전기화학적 반응성을 가지는 황-탄소 복합체의 개발이 더욱 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제2016-0046775호
대한민국 공개특허 제2016-0037084호
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 다공성 탄소재를 일정 조건에서 열처리하는 경우 다공성 탄소재의 전기 전도도가 개선되며, 이를 황-탄소 복합체에 도입 시 우수한 전기화학적 반응성을 나타내는 것을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 전기화학적 반응성이 우수한 황-탄소 복합체를 제공하는데 있다.
또한, 본 발명의 다른 목적은 상기 황-탄소 복합체의 제조방법을 제공하는데 있다.
또한, 본 발명의 또 다른 목적은 상기 황-탄소 복합체를 포함하는 양극, 및 이를 포함하는 리튬-황 전지를 제공하는데 있다.
상기 목적을 달성하기 위해, 본 발명은 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체로서, 상기 다공성 탄소재는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 24.5 S/㎝ 이상인 황-탄소 복합체를 제공한다.
또한, 본 발명은 (a) 다공성 탄소재를 불활성 가스 분위기 하에서 열처리하는 단계; 및 (b) 상기 열처리한 다공성 탄소재를 황과 혼합하여 복합화하는 단계를 포함하는 황-탄소 복합체의 제조방법을 제공한다.
또한, 본 발명은 상기 황-탄소 복합체를 포함하는 리튬-황 전지용 양극을 제공한다.
아울러, 본 발명은 상기 리튬-황 전지용 양극을 포함하는 리튬-황 전지를 제공한다.
본 발명에 따른 황-탄소 복합체는 열처리를 통해 전기 전도도가 향상된 다공성 탄소재를 포함함에 따라 우수한 전기화학적 반응성을 나타내며, 리튬-황 전지의 양극 활물질로 사용 시 전지의 과전압을 개선시키고 용량, 출력, 및 수명 특성을 향상시킬 수 있다.
도 1은 실시예 1 내지 3, 실시예 6, 및 비교예 1의 다공성 탄소재의 전기 전도도 측정 결과를 나타내는 그래프이다.
도 2는 실시예 3 내지 6 및 비교예 3의 다공성 탄소재의 전기 전도도 측정 결과를 나타내는 그래프이다.
도 3은 실시예 1 내지 3, 실시예 6, 및 비교예 1의 리튬-황 전지의 용량 특성 평가 결과를 나타내는 그래프이다.
도 4는 실시예 1 내지 3, 실시예 6, 및 비교예 1의 리튬-황 전지의 수명 특성 평가 결과를 나타내는 그래프이다.
도 5는 실시예 7 및 비교예 2의 리튬-황 전지의 출력 특성 평가 결과를 나타내는 그래프이다.
이하, 본 발명을 더욱 상세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다'등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 사용되고 있는 용어 “복합체(composite)”란 두 가지 이상의 재료가 조합되어 물리적·화학적으로 서로 다른 상(phase)를 형성하면서 보다 유효한 기능을 발현하는 물질을 의미한다.
본 명세서에서 사용되고 있는 용어 “폴리설파이드”는 “폴리설파이드 이온(Sx 2-, x = 8, 6, 4, 2))” 및 “리튬 폴리설파이드(Li2Sx 또는 LiSx - x = 8, 6, 4, 2)”를 모두 포함하는 개념이다.
본 명세서에서 사용되고 있는 용어 “분체 밀도”는 펠렛으로 만들어진 측정 대상 물질의 단위 용적당 무게를 의미하는 것으로서 측정 대상 물질의 겉보기 밀도를 의미한다.
본 명세서에서 사용되고 있는 용어 “분체의 전기 전도도”는 측정 대상 물질의 분체를 펠렛으로 만든 후 측정한 면저항값을 전기 전도도로 환산한 것을 의미한다.
리튬-황 전지는 높은 방전용량 및 이론 에너지 밀도를 가질 뿐만 아니라 양극 활물질로 사용되는 황은 매장량이 풍부하여 가격이 저렴하므로 전지의 제조단가가 낮고 환경친화적이라는 장점으로 인해 차세대 이차전지로 각광받고 있다.
리튬-황 전지에서 양극 활물질인 황은 부도체로 전기 전도성을 보완하기 위해 전도성 물질인 탄소와 복합화한 황-탄소 복합체 형태로 사용되고 있다.
그러나, 리튬-황 전지는 충·방전 시 생성되는 리튬 폴리설파이드의 용출로 인해 전기화학 반응에 참여하는 황의 손실이 발생하며, 황의 환원물질인 리튬 설파이드의 전기 전도성이 매우 낮음에 따라 양극 활물질인 황-탄소 복합체의 전기화학적 반응성이 저하되며, 그 결과 실제 구동에 있어서는 이론 방전용량 및 이론 에너지 밀도 전부를 구현하지 못한다. 또한, 황은 리튬 설파이드로 변하면서 약 80%의 부피 팽창이 일어나게 되는데 이로 인해 양극 내부의 공극 부피가 줄어 전해질과의 접촉이 어려워지므로 양극 활물질의 전기화학적 반응성이 더욱 감소되는 문제가 있다.
이를 위해 종래 기술에서는 황의 로딩량을 높이거나 탄소재의 종류를 달리하거나 리튬 폴리설파이드의 용출 억제를 위한 코팅층을 도입하는 등의 방법이 제안되었으나, 리튬-황 전지의 성능이 효과적으로 개선되지 못하였을 뿐만 아니라 전지의 안정성에 심각한 문제를 야기하거나 공정 측면에서 비효율적이라는 단점이 있다.
이에 본 발명에서는 황의 담지체로 일정 범위의 전기 전도도를 갖는 다공성 탄소재를 포함함으로써 황-탄소 복합체의 전기화학적 반응성을 향상시켜 용량, 출력 및 수명 특성이 향상된 리튬-황 전지를 구현할 수 있는 황-탄소 복합체를 제공한다.
구체적으로, 본 발명에 따른 황-탄소 복합체는 다공성 탄소재; 및 상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체로, 상기 다공성 탄소재는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 24.5 S/㎝ 이상인 것을 특징으로 한다. 이때 다공성 탄소재의 내부는 다공성 탄소재의 기공 내부를 포함한다.
특히, 본 발명에서는 불활성 가스 분위기에서 열처리함으로써 일정 범위의 전기 전도도를 갖는 다공성 탄소재를 황의 담지체로 사용하였으며, 이와 같이 열처리한 다공성 탄소재를 포함하는 본 발명의 황-탄소 복합체는 향상된 전기 전도도를 나타내어 우수한 전기화학적 반응성을 나타낼 수 있다.
즉, 본 발명에 따른 황-탄소 복합체의 다공성 탄소재는 불활성 가스 조건에서의 열처리를 통해 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 24.5 S/㎝ 이상인 다공성 탄소재이다.
본 발명의 황-탄소 복합체에 포함되는 열처리 과정을 거친 다공성 탄소재는 다공성 탄소재 자체가 전술한 바와 같은 특정 범위의 전기 전도도를 가짐으로써 전지의 충방전 시 발생하는 여러 요인들에 의해 야기된 양극 활물질의 전기화학적 반응성 저하 문제를 해결할 수 있다.
따라서, 본 발명은 황의 담지체로 불활성 가스 조건에서 열처리를 실시하여 일정 범위의 전기 전도도를 갖는 다공성 탄소재를 도입함으로써 황-탄소 복합체의 전기화학적 반응성이 개선되므로 리튬-황 전지의 우수한 용량, 출력 및 수명 특성을 향상시킬 수 있다.
본 발명에 따른 황-탄소 복합체에 포함되는 상기 다공성 탄소재는 부도체인 황이 균일하고 안정적으로 고정화될 수 있는 골격을 제공함과 동시에 전기 전도성을 부여할 수 있고, 불활성 가스 조건에서의 열처리를 통해 일정 범위의 전기 전도도를 갖는 것을 사용한다.
구체적으로, 불활성 가스 조건에서의 열처리를 거친 본 발명의 다공성 탄소재는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 24.5 S/㎝ 이상, 바람직하게는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 24.625 S/㎝ 이상, 더욱 바람직하게는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 25 S/㎝ 이상, 가장 바람직하게는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 25.2 S/㎝ 이상이다. 전술한 분체 밀도의 범위에서의 상기 분체의 전기 전도도가 24.5 S/㎝ 미만이면 황-탄소 복합체의 전기화학적 반응성 개선 효과가 미미하다.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소 나노튜브(SWCNT), 다중벽 탄소 나노튜브(MWCNT) 등의 탄소 나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 천연 흑연, 인조 흑연, 팽창 흑연 등의 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다. 바람직하기로 상기 다공성 탄소재는 카본 블랙일 수 있다.
상기 다공성 탄소재는 표면 및 내부에 일정하지 않은 다수의 기공을 포함할 수 있다. 이때 기공의 평균 직경은 100 ㎚ 내지 50 ㎛ 범위이며, 기공도는 다공성 탄소재 전체 체적의 10 내지 90 % 범위일 수 있다. 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하고, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소재의 기계적 강도가 약화되어 전극의 내구성 및 성능이 저하되는 문제가 발생할 수 있다.
상기 다공성 탄소재는 평균 직경이 100 ㎚ 내지 50 ㎛, 바람직하기로 10 내지 50 ㎛일 수 있다. 상기 다공성 탄소재의 평균 직경이 상기 범위 미만인 경우 황이 탄소재의 기공에 담지되는 데 문제가 있을 수 있으며, 이와 반대로 상기 범위를 초과하는 경우 황-탄소 복합체의 전도성이 저하될 수 있다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
본 발명에 따른 황-탄소 복합체는 전술한 바의 다공성 탄소재와 함께 황을 포함한다.
상기 황은 무기 황(S8), Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 바람직하기로, 상기 황은 무기 황일 수 있다.
본 발명에 따른 황-탄소 복합체에서 상기 황은 전술한 다공성 탄소재의 내부 및 표면 중 적어도 어느 한 곳에 위치하며 이때 상기 다공성 탄소재의 내부 및 외부 전체 표면의 100 % 미만, 바람직하게는 1 내지 95 %, 더욱 바람직하게는 60 내지 90 % 영역에 존재할 수 있다. 상기 황이 다공성 탄소재의 내부 및 외부 표면에 상기 범위 내로 존재할 때 전자 전달 면적 및 전해질과의 젖음성 면에서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 범위 영역에서 황이 다공성 탄소재의 내부 및 외부 표면에 얇고 고르게 함침되므로 충방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 다공성 탄소재의 내부 및 외부 전체 표면의 100 % 영역에 위치하는 경우, 상기 탄소재가 완전히 황으로 덮여 전해질에 대한 젖음성이 떨어지고 전극 내 포함되는 도전재와 접촉성이 저하되어 전자 전달을 받지 못해 전기화학 반응에 참여할 수 없게 된다.
본 발명에 있어서, 상기 황은 평균 직경이 1 ㎚ 내지 1 ㎛, 바람직하기로 1 ㎚ 내지 100 ㎚ 범위인 것을 사용하며, 이에 따라 상기 다공성 탄소재 내부 및 표면에 1 내지 10 ㎚ 두께로 코팅될 수 있다.
본 발명의 황-탄소 복합체에서 상기 다공성 탄소재는 상기 황-탄소 복합체 전체 중량을 기준으로 10 내지 50 중량%, 바람직하기로 20 내지 40 중량%로 포함될 수 있다.
본 발명의 황-탄소 복합체에서 상기 황은 상기 황-탄소 복합체 전체 중량을 기준으로 50 내지 90 중량%, 바람직하기로 60 내지 80 중량%로 포함될 수 있다.
이에 따라, 본 발명의 황-탄소 복합체에서 다공성 탄소재와 황의 중량비는 1:1 내지 1:9, 바람직하게는 1:1.5 내지 1:4일 수 있다.
상기 황의 함량이 전술한 범위 미만인 경우 황-탄소 복합체 내 다공성 탄소재의 함량이 상대적으로 많아짐에 따라 비표면적이 증가하여 슬러리 제조시에 바인더의 함량이 증가한다. 이러한 바인더의 사용량 증가는 결국 양극의 면저항을 증가시키고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지의 성능을 저하시킬 수 있다. 이와 반대로 상기 황의 함량이 전술한 범위를 초과하는 경우 다공성 탄소재와 결합하지 못한 황이 그들끼리 뭉치거나 다공성 탄소재의 표면으로 재용출됨에 따라 전자를 받기 어려워져 전기화학적 반응에 참여하지 못하게 되어 전지의 용량 손실이 발생할 수 있다.
상기 황-탄소 복합체는 상기 황과 탄소재가 단순 혼합되어 복합화되거나 코어-쉘 구조의 코팅 형태 또는 담지 형태를 가질 수 있다. 상기 코어-쉘 구조의 코팅 형태는 황 또는 탄소재 중 어느 하나가 다른 물질을 코팅한 것으로, 일례로 탄소재 표면을 황으로 감싸거나 이의 반대가 될 수 있다. 또한, 담지 형태는 탄소재의 내부에 황이 담지된 형태일 수 있다. 상기 황-탄소 복합체의 형태는 상기 제시한 황 계열 화합물과 탄소재의 함량비를 만족하는 것이면 어떠한 형태라도 사용 가능하며 본 발명에서 한정하지 않는다.
본 발명에 따른 황-탄소 복합체의 평균 직경은 본 발명에서 특별히 한정하지 않으며 다양할 수 있으나, 0.5 내지 20 ㎛, 바람직하기로 1 내지 15 ㎛이다. 상기 범위를 만족할 때 고로딩 전극을 제조할 수 있는 장점이 있다.
상기 황-탄소 복합체는 비표면적이 3 내지 20 ㎡/g인 것이 바람직하며, 5.5 내지 15 ㎡/g인 것이 더욱 바람직하게 사용될 수 있다. 상기 황-탄소 복합체의 비표면적이 3 ㎡/g 미만일 경우에는 황 성분이 탄소재 표면에 고르게 함침되지 않아 전지 성능의 저하가 일어난다는 점에서 바람직하지 않으며, 20 ㎡/g를 초과하는 경우에는 전극 제조시 바인더의 첨가량이 늘어나게 된다는 점에서 바람직하지 않다.
상기 황-탄소 복합체는 기공 부피가 0.075 내지 1 ㎤/g인 것이 바람직하며, 0.080 내지 1 ㎤/g인 것이 더욱 바람직하다. 상기 황-탄소 복합체의 기공 부피가 0.075 ㎤/g 미만일 경우에는 황-탄소 복합체에서 황 성분이 함침되지 않고 표면에 따로 존재하거나 뭉침 현상이 생긴다는 점에서 바람직하지 않으며, 1 ㎤/g를 초과하는 경우에는 황 성분이 함침될 공간이 많음에도 불구하고 황-복합체의 기공을 활용하지 않아 고에너지 밀도의 전극 제조가 힘들다는 점에서 바람직하지 않다.
또한, 본 발명은 상기 황-탄소 복합체의 제조방법을 제공한다.
본 발명에 따른 황-탄소 복합체의 제조방법은 (a) 다공성 탄소재를 불활성 가스 분위기 하에서 열처리하는 단계; 및 (b) 상기 열처리한 다공성 탄소재를 황과 혼합하여 복합화하는 단계를 포함한다.
먼저, 상기 (a) 단계는 다공성 탄소재를 불활성 가스 분위기 하에서 열처리하는 단계이다.
상기 (a) 단계에서 사용되는 다공성 탄소재는 상기 황-탄소 복합체에서 설명한 바와 같다.
상기 불활성 가스는 헬륨 가스, 질소 가스 또는 아르곤 가스로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다. 상기 다공성 탄소재의 전기 전도도 개선 효과를 고려하였을 때 상기 불활성 가스는 질소 가스 또는 아르곤 가스인 것이 바람직하며, 질소 가스인 것이 보다 바람직하다.
상기 (a) 단계의 열처리는 해당 기술분야에 알려진 통상적인 방법에 따라 수행될 수 있다.
상기 (a) 단계에서 열처리 온도는 500 내지 850 ℃ 범위일 수 있다. 본 발명의 경우 다공성 탄소재를 500 내지 850 ℃의 온도로 열처리함으로써 다공성 탄소재의 흑연화(graphitization) 반응이 일어나지 않으면서도 전기 전도도만을 향상시킬 수 있다. 즉, 열처리 후에도 열처리 전의 다공성 탄소재의 조성이나 다른 물성은 그대로 유지하면서도 향상된 전기 전도도를 나타낼 수 있다. 상기 열처리 온도는 500 내지 800 ℃인 것이 바람직하며, 650 내지 800 ℃인 것이 보다 바람직하다. 상기 열처리 온도가 500 ℃ 미만인 경우 탄소재의 전기 전도도 개선 효과가 미미하며, 전기화학적 반응성 개선 효과가 미미하다. 이와 반대로, 상기 열처리 온도가 850 ℃를 초과하는 경우 다공성 탄소재의 흑연화가 진행되어 다공성 탄소재의 손상을 초래할 수 있다.
상기 (a) 단계의 열처리는 5 내지 10 ℃/min로 500 내지 850 ℃까지 승온시킨 후, 1 내지 5 시간 동안 수행되는 것일 수 있다.
상기 승온 속도가 5 ℃/min 미만인 경우 다른 부반응이 일어날 수 있고, 10 ℃/min를 초과하는 경우 초과된 온도로 열처리 과정이 진행될 수 있어 적절하지 않다.
또한, 상기 열처리 시간이 1 시간 미만인 경우 전기 전도도 개선을 위한 반응이 충분히 진행되지 않을 수 있고, 5 시간을 초과하는 경우 다른 부반응이 일어날 수 있다.
상기 열처리를 통하여 일정 범위의 전기 전도도를 갖는 다공성 탄소재를 제조할 수 있다.
구체적으로, 상기 열처리를 통해 얻어진 다공성 탄소재는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 24.5 S/㎝ 이상, 바람직하게는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 25 S/㎝ 이상, 가장 바람직하게는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 25.2 S/㎝ 이상이다.
이어서, 상기 (b) 단계는 상기 열처리한 다공성 탄소재를 황과 혼합하여 복합화하는 단계이다.
상기 (b) 단계에서 사용되는 황은 상기 황-탄소 복합체에서 설명한 바와 같다.
상기 혼합은 전술한 재료 간의 혼합도를 높이기 위한 것으로 당업계에서 통상적으로 사용되는 교반 장치를 이용하여 수행할 수 있다. 이때 혼합 시간 및 속도 또한 원료의 함량 및 조건에 따라 선택적으로 조절될 수 있다.
상기 복합화 방법은 본 발명에서 특별히 한정하지 않으며 당업계에서 통상적으로 사용되는 방법이 사용될 수 있다. 일례로, 건식 복합화 또는 스프레이 코팅 등과 같은 습식 복합화 등 당 업계에서 통상적으로 이용되는 방법을 이용할 수 있다. 일례로, 상기 황과 열처리한 다공성 탄소재의 혼합물을 볼밀링하여 분쇄한 후 120 내지 160 ℃의 오븐에 20분 내지 1시간 동안 두어 용융된 황이 상기 열처리한 다공성 탄소재의 내부 및 외부 표면에 고루 코팅될 수 있도록 하는 방법이 사용될 수 있다.
본 발명에 따른 황-탄소 복합체의 제조방법은 공정이 간단할 뿐만 아니라 상업적으로 적용이 용이하고, 고가의 원료나 별도의 설비 구축 없이도 우수한 전기화학적 반응성을 나타내는 황-탄소 복합체를 제조할 수 있다는 장점이 있다. 또한, 전술한 제조방법을 통해 얻어진 황-탄소 복합체는 열처리를 통해 일정 범위의 전기 전도도를 갖는 다공성 탄소재를 황의 담지체로 포함함으로써 황-탄소 복합체(구체적으로는 황)의 전기화학적 반응성을 향상시킴에 따라 리튬-황 전지의 성능을 개선시킬 수 있다.
또한, 본 발명은 상기 황-탄소 복합체를 포함하는 리튬-황 전지용 양극을 제공한다.
상기 양극은 양극 집전체와 상기 양극 집전체의 적어도 일면에 도포된 양극 활물질층을 포함할 수 있다.
상기 양극 활물질층은 상술한 본 발명의 황-탄소 복합체를 양극 활물질로 포함할 수 있다.
상기 양극 활물질층은 상기 양극 활물질 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Ti 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.
상기 양극 활물질층은 양극 활물질, 또는 선택적으로 첨가제와 함께, 전자가 양극 내에서 원활하게 이동하도록 하기 위한 도전재 및 양극 활물질을 집전체에 잘 부착시키기 위한 바인더를 더 포함할 수 있다.
상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 도전성을 갖는 것이라면 제한없이 사용할 수 있다.
예를 들어 상기 도전재로는 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 카본 블랙 등의 카본 블랙; 탄소 나노튜브나 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.
상기 도전재의 함량은 상기 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 0.01 내지 30 중량%로 첨가될 수 있다.
상기 바인더는 양극 활물질을 양극 집전체에 유지시키고, 양극 활물질 사이를 유기적으로 연결시켜 이들 간의 결착력을 보다 높이는 것으로, 당해 업계에서 공지된 모든 바인더를 사용할 수 있다.
예를 들어 상기 바인더는 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로우즈(carboxyl methyl cellulose, CMC), 전분, 히드록시 프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴 리 알코올계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더;로 이루어진 군으로부터 선택된 1종, 2종 이상의 혼합물 또는 공중합체를 사용할 수 있다.
상기 바인더의 함량은 상기 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 0.5 내지 30 중량%로 첨가될 수 있다. 바인더의 함량이 0.5 중량% 미만이면, 양극의 물리적 성질이 저하되어 양극 내 활물질과 도전재가 탈락할 수 있고, 30 중량%를 초과하면 양극에서 활물질과 도전재의 비율이 상대적으로 감소되어 전지 용량이 감소할 수 있다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다.
예를 들어, 본 발명의 양극을 제조하는 방법을 구체적으로 살펴보면, 먼저, 슬러리를 제조하기 위한 용매에 상기 바인더를 용해시킨 다음, 도전재를 분산시킨다. 슬러리를 제조하기 위한 용매로는 양극 활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있으며, 쉽게 증발되는 것을 사용하는 것이 바람직하고, 대표적으로는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알콜 등을 사용할 수 있다. 다음으로 양극 활물질을, 또는 선택적으로 첨가제와 함께, 상기 도전재가 분산된 용매에 다시 균일하게 분산시켜 슬러리를 제조한다. 슬러리에 포함되는 용매, 양극 활물질, 또는 선택적으로 첨가제의 양은 본 출원에 있어서 특별히 중요한 의미를 가지지 않으며, 단지 슬러리의 코팅이 용이하도록 적절한 점도를 가지면 충분하다.
이와 같이 제조된 슬러리를 양극 집전체에 도포하고, 진공 건조하여 양극 활물질층을 형성함으로써 양극을 제조한다. 상기 슬러리는 슬러리의 점도 및 형성하고자 하는 양극 활물질층의 두께에 따라 적절한 두께로 양극 집전체 상에 코팅할 수 있다.
상기 양극 집전체로는 일반적으로 3 내지 500 ㎛의 두께로 만들 수 있고, 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특히 제한하지 않는다.
예를 들어, 상기 양극 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 또는 알루미늄 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
상기 도포는 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으며, 예컨대 닥터 블레이드 코팅(doctor blade coating), 딥 코팅(dip coating), 그라비어 코팅(gravure coating), 슬릿 다이 코팅(slit die coating), 스핀 코팅(spin coating), 콤마 코팅(comma coating), 바 코팅(bar coating), 리버스 롤 코팅(reverse roll coating), 스크린 코팅(screen coating), 캡 코팅(cap coating)방법 등을 들 수 있다. 또한, 별도의 기재(substrate) 위에 성형한 후 프레싱(pressing) 또는 라미네이션(lamination) 방법에 의해 슬러리를 양극 집전체 상에 도포할 수도 있다.
상기 도포 후, 용매 제거를 위한 건조 공정을 수행할 수 있다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에 특별히 제한되지 않는다. 일례로, 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, (원)적외선 및 전자선 등의 조사에 의한 건조법을 들 수 있다. 건조 속도는 통상 응력 집중에 의해 양극 활물질층에 균열이 생기거나 양극 활물질층이 양극 집전체로부터 박리되지 않을 정도의 속도 범위 내에서 가능한 한 빨리 용매를 제거할 수 있도록 조정한다.
추가적으로, 상기 건조 후 집전체를 프레스함으로써 양극 내 양극 활물질의 밀도를 높일 수도 있다. 프레스 방법으로는 금형 프레스 및 롤 프레스 등의 방법을 들 수 있다.
또한, 본 발명은 전술한 황-탄소 복합체를 포함하는 양극; 음극; 및 상기 양극과 음극 사이에 개재된 전해질을 포함하는 리튬-황 전지를 제공한다.
상기 양극은 본 발명에 의한 것으로 앞서 언급한 바를 따른다.
상기 음극은 집전체와 그의 일면 또는 양면에 형성된 음극 활물질층으로 구성될 수 있다. 또는 상기 음극은 리튬 금속판일 수 있다.
상기 집전체는 음극 활물질의 지지를 위한 것으로, 양극 집전체에서 설명한 바와 같다.
상기 음극 활물질은 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 음극의 제조방법은 특별히 제한되지 않으며, 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있다. 또한, 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 음극에 포함된다.
전술한 양극과 음극 사이에는 추가적으로 분리막이 포함될 수 있다.
상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 이러한 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.
상기 분리막으로는 전해질의 이온 이동에 대하여 저저항이면서 전해질에 대한 함습 능력이 우수한 것이 바람직하다.
상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 리튬-황 전지에 사용되는 다공성 기재라면 모두 사용이 가능하고, 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 리튬-황 전지에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
상기 전해질은 이를 매개로 상기 양극과 음극에서 전기화학적 산화 또는 환원 반응을 일으키기 위한 것으로, 양극과 음극 사이에 위치하며 리튬염 및 비수계 유기 용매를 포함한다.
상기 리튬염은 리튬 이차전지에 통상적으로 사용 가능한 것이라면 제한 없이 사용할 수 있다.
상기 리튬염의 구체적인 예로는 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiC4BO8, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2(lithium bis(trifluoromethanesulfonyl)imide; LiTFSI), LiN(C2F5SO2)2, LiN(SO2F)2(lithium bis(fluorosulfonyl)imide; LiFSI), 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬, 및 리튬 이미드로 이루어진 군으로부터 하나 이상일 수 있다.
상기 리튬염의 농도는 전해질의 조성, 리튬염의 용해도, 용해된 리튬염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 이차전지 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 4 M, 구체적으로 0.6 내지 2 M, 더욱 구체적으로 0.7 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전기 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 4 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소될 수 있다.
상기 비수계 유기 용매로는 리튬 이차전지용 전해질에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있다. 예를 들어, 상기 유기용매는 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그중에서 대표적으로는 에테르계 화합물을 포함할 수 있다.
일례로, 상기 에테르계 화합물은 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 메톡시에톡시에탄, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라 에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 폴리에틸렌 글리콜 디에틸 에테르, 폴리에틸렌 글리콜 메틸에틸 에테르, 1,3-디옥솔란, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란으로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오 네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
또한 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.
또한, 상술한 유기 용매 이외에 N-메틸피롤리돈, 디메틸설폭사이드, 설포란 등이 사용될 수 있다.
상기 전해질은 전술한 조성 이외에 해당 기술분야에서 통상적으로 사용되는 질산계 화합물을 추가로 포함할 수 있다. 일례로, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산마그네슘(MgNO3), 질산바륨(BaNO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2) 등을 들 수 있다.
상기 전해질의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.
본 발명에 따른 리튬-황 전지는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
본 발명의 리튬-황 전지는 형상에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
또한, 본 발명은 상기 리튬-황 전지를 단위전지로 포함하는 전지모듈을 제공한다.
상기 전지모듈은 고온 안정성, 긴 사이클 특성 및 높은 용량 특성 등이 요구되는 중대형 디바이스의 전원으로 사용될 수 있다.
상기 중대형 디바이스의 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(electric vehicle; EV), 하이브리드 전기자동차(hybrid electric vehicle; HEV), 플러그-인 하이브리드 전기자동차(plug-in hybrid electric vehicle; PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 및 비교예
[실시예 1]
(1) 황-탄소 복합체 제조
케첸 블랙(ECP600JD, Lion사) 10 g을 아르곤 가스 분위기에서 500 ℃(승온 속도: 5 ℃/min)로 3 시간 동안 열처리하였다.
상기 열처리한 케첸 블랙과 황을 25:75의 중량비로 혼합한 후, 155 ℃의 온도에서 35 분 동안 반응시켜 상기 열처리한 케첸 블랙의 내부(기공) 및 표면에 황이 담지된 황-탄소 복합체를 제조하였다.
(2) 리튬-황 전지 제조
상기에서 제조된 황-탄소 복합체 90 중량%, 도전재로 덴카 블랙 5 중량%, 및 바인더로 스티렌-부타디엔 고무/카르복시메틸셀룰로오즈(SBR:CMC=7:3, 중량비) 5 중량%를 혼합하여 양극 슬러리 조성물을 제조하였다.
이렇게 제조된 양극 슬러리 조성물을 20 ㎛ 두께의 알루미늄 호일 상에 150 ㎛ 두께로 도포한 뒤 50 ℃에서 12 시간 동안 건조하여 양극을 제조하였다.
상기 제조된 양극과 45 ㎛ 두께의 리튬 금속 음극을 대면하도록 위치시킨 후 이들 사이에 분리막을 개재한 후, 전해질 70 ㎕를 주입하여 코인셀 타입의 리튬-황 전지를 제조하였다. 이때 분리막으로는 두께 20 ㎛, 기공도 45 %의 폴리에틸렌을 사용하였으며, 전해질로는 1,3-디옥솔란과 디메틸 에테르(DOL:DME=1:1(부피비))로 이루어진 유기 용매에 0.75 M 농도의 LiFSI와 5 중량%의 질산리튬을 용해시킨 혼합액을 사용하였다.
[실시예 2]
황-탄소 복합체 제조 시, 케첸 블랙을 아르곤 가스 분위기에서 800 ℃(승온 속도: 5 ℃/min)로 3 시간 동안 열처리한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[실시예 3]
황-탄소 복합체 제조 시, 케첸 블랙을 질소 가스 분위기에서 500 ℃(승온 속도: 5 ℃/min)로 3 시간 동안 열처리한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[실시예 4]
황-탄소 복합체 제조 시, 케첸 블랙을 질소 가스 분위기에서 600 ℃(승온 속도: 5 ℃/min)로 3 시간 동안 열처리한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[실시예 5]
황-탄소 복합체 제조 시, 케첸 블랙을 질소 가스 분위기에서 700 ℃(승온 속도: 5 ℃/min)로 3 시간 동안 열처리한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[실시예 6]
황-탄소 복합체 제조 시, 케첸 블랙을 질소 가스 분위기에서 800 ℃(승온 속도: 5 ℃/min)로 3 시간 동안 열처리한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[실시예 7]
황-탄소 복합체 제조 시, 케첸 블랙을 질소 가스 분위기에서 800 ℃(승온 속도: 5 ℃/min)로 3 시간 동안 열처리한 것을 사용하고, 상기 실시예 1에서 사용한 양극, 음극, 전해질 및 분리막을 사용하여 파우치 타입의 리튬-황 전지를 제조하였다.
[비교예 1]
황-탄소 복합체 제조 시, 열처리하지 않은 순수 케첸 블랙을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
[비교예 2]
황-탄소 복합체 제조 시, 열처리하지 않은 순수 케첸 블랙을 사용하고, 상기 실시예 1에서 사용한 양극, 음극, 전해질 및 분리막을 사용하여 파우치 타입의 리튬-황 전지를 제조하였다.
[비교예 3]
황-탄소 복합체 제조 시, 케첸 블랙을 질소 가스 분위기에서 900 ℃(승온 속도: 5 ℃/min)로 3 시간 동안 열처리한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 리튬-황 전지를 제조하였다.
실험예 1. 원소 분석
실시예 1 내지 3 및 6에서 제조한 열처리한 케첸 블랙 및 비교예 1에서 사용한 열처리하지 않은 순수 케첸 블랙에 대하여 원소 분석(elemental analyzer; EA)을 수행하였다. 산소 가스를 연결한 후, 퍼니스(furnace) 온도를 900 ℃, 오븐 온도를 65 ℃로 설정하여, 탄소(C), 수소(H), 및 질소(N)의 함량을 분석하였다. 이후 헬륨(He) 가스를 연결한 후 퍼니스 온도를 1060 ℃, 오븐 온도를 65 ℃로 설정하여 산소(O)의 함량을 분석하였다. 그 결과를 표 1에 나타내었다.
분석원소
(중량%)
실시예 1 실시예 2 실시예 3 실시예 6 비교예 1
탄소 98.3 98.3 98.2 97.7 98.4
수소 <1 <1 <1 <1 <1
산소 <1 <1 <1 <1 <1
질소 <1 <1 <1 <1 <1
상기 표 1에 나타낸 바와 같이, 열처리 과정을 거친 실시예 1 내지 3 및 6의 케첸 블랙의 탄소 함량은 열처리 과정을 거치치 않은 비교예 1의 순수 케첸 블랙과 오차범위 내에서 유사한 수준임을 확인할 수 있다. 또한, 수소, 산소, 및 질소의 함량 역시 1 중량% 이내로 열처리로 인한 변화가 없음을 알 수 있다.
이러한 결과로부터 본 발명에 따른 열처리로 인한 케첸 블랙의 조성 변화는 없음을 확인할 수 있다.
실험예 2. 전기 전도도 측정
실시예 1 내지 6 및 비교예 3에서 제조한 열처리한 케첸 블랙과 비교예 1에서 사용한 열처리하지 않은 순수 케첸 블랙의 전기 전도도를 측정하였다. 구체적으로, 상기 측정 대상 물질 분체를 펠렛으로 제조한 후 측정한 면저항값을 전기 전도도로 환산하여 측정하였으며, 이 때, 측정은 Hantech사의 분체저항측정기(HPRM-FA2)를 사용하였다. 상기 측정 결과를 도 1 및 2에 나타내었다.
도 1 및 2를 참조하면, 실시예 1 내지 6에 따른 케첸 블랙의 경우 비교예 1 및 3에 비해 전기 전도도가 향상되었음을 확인할 수 있다.
구체적으로, 500 내지 850 ℃의 온도 범위에서 열처리한 실시예 1 내지 6의 케첸 블랙의 경우 비교예 1의 열처리하지 않은 순수 케첸 블랙에 비해 전기 전도도가 개선된 반면, 900 ℃의 온도에서 열처리한 비교예 3의 케첸 블랙의 경우 전기 전도도가 감소하였으며, 비교예 1의 순수 케첸 블랙보다도 낮음을 알 수 있다.
따라서, 본 발명에서 명시하는 온도 범위로 열처리를 하는 경우 다공성 탄소재의 전기 전도도가 개선됨을 확인할 수 있다.
실험예 3. 전지 성능 평가
실시예 1 내지 3, 실시예 6, 및 비교예 1에서 제조한 전지에 대해 피앤이솔루션사의 충·방전 측정장치를 사용하여 용량 및 수명 특성을 평가하였다.
구체적으로, 25 ℃에서 0.1 C의 전류밀도로 충전과 방전을 진행하면서 전지의 용량 특성을 평가하였다. 이때 얻어진 결과는 도 3에 나타내었다.
또한, 25 ℃에서 0.1 C의 전류밀도로 충전과 방전을 3 회 반복한 후, 0.2 C의 전류밀도로 충전과 방전을 3 회 진행하고, 0.3 C의 전류밀도로 충전 및 0.5 C의 전류밀도로 방전을 진행하면서 전지의 수명 특성을 평가하였다. 이때 얻어진 결과는 도 4에 나타내었다.
도 3 및 4에 나타낸 바와 같이, 실시예에 따른 전지의 경우 비교예에 비해 용량 및 수명 특성이 우수함을 확인할 수 있다.
구체적으로, 질소 가스 조건에서 열처리한 케첸 블랙을 포함하는 실시예 3 및 6의 경우 아르곤 가스 조건에서 열처리한 케첸 블랙을 포함하는 실시예 1 및 2에 비해 과전압이 많이 개선되어 방전용량이 증대됨을 알 수 있다.
또한, 실시예 1 내지 3의 전지의 경우 고율(0.5 C) 방전 구간에서 비교예 1의 전지 대비 초기 방전용량이 우수함을 알 수 있다.
이에 더해서, 질소 가스 조건에서 열처리한 케첸 블랙을 포함하는 실시예 3 및 6의 경우 실시예 1 및 2와 비교예 1 대비 용량 유지율이 우수하여 수명 특성이 개선된 것을 확인할 수 있다.
실험예 4. 전지 출력 특성 평가
실시예 7 및 비교예 2에서 제조한 전지에 대해, HPPC(Hybrid pulse power characterization) 방법을 통해 전지의 출력 특성을 평가하였다. 이때 얻어진 결과는 도 5에 나타내었다.
도 5에 나타낸 바와 같이, 실시예 7에 따른 전지의 경우 비교예 2에 따른 전지보다 SOC(state of charge) 70 % 부근에서 더 높은 최대 방전율을 나타냄을 확인할 수 있다.
또한, 비교예 2의 전지는 SOC가 낮아질수록 출력 특성이 지속적으로 감소하는 경향을 보이는 반면에 실시예 7의 전지는 SOC 전구간에서 최대 방전율이 비교예 2에 비해 높을 뿐만 아니라 SOC 70 % 부근에서 최대 방전율이 감소한 후 SOC 40 % 부근까지 다시 증가하는 경향을 보인다.
이러한 결과로부터 본 발명에 따른 전지는 양극 활물질인 황-탄소 복합체가 열처리한 다공성 탄소재를 포함함에 따라 전기화학적 반응성이 향상되어 리튬-황 전지의 출력 특성이 개선되는 것을 알 수 있다.

Claims (14)

  1. 다공성 탄소재; 및
    상기 다공성 탄소재의 내부 및 표면 중 적어도 일부에 황을 포함하는 황-탄소 복합체로서,
    상기 다공성 탄소재는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 24.5 S/㎝ 이상인 황-탄소 복합체.
  2. 제1항에 있어서,
    상기 다공성 탄소재는 0.58 g/㏄의 분체 밀도에서 분체의 전기 전도도가 25 S/㎝ 이상 인, 황-탄소 복합체.
  3. 제1항에 있어서,
    상기 다공성 탄소재는 그래파이드, 그래핀, 카본 블랙, 탄소 나노튜브, 탄소 섬유, 흑연, 및 활성탄소로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 황-탄소 복합체.
  4. 제1항에 있어서,
    상기 황은 무기 황, Li2Sn(n≥1), 디설파이드 화합물, 유기황 화합물 및 탄소-황 폴리머((C2Sx)n, x=2.5 내지 50, n≥2)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 황-탄소 복합체.
  5. 제1항에 있어서,
    상기 황-탄소 복합체에서 상기 다공성 탄소재와 황의 중량비는 1:1 내지 1:9인, 황-탄소 복합체.
  6. (a) 다공성 탄소재를 불활성 가스 분위기 하에서 열처리하는 단계; 및
    (b) 상기 열처리한 다공성 탄소재를 황과 혼합하여 복합화하는 단계를 포함하는 황-탄소 복합체의 제조방법.
  7. 제6항에 있어서,
    상기 (a) 단계의 열처리는 500 내지 850 ℃의 온도 범위에서 수행되는, 황-탄소 복합체의 제조방법.
  8. 제6항에 있어서,
    상기 (a) 단계의 열처리 시 승온 속도는 5 내지 10 ℃/min인, 황-탄소 복합체의 제조방법.
  9. 제6항에 있어서,
    상기 (a) 단계의 열처리는 1 내지 5 시간 동안 수행되는, 황-탄소 복합체의 제조방법.
  10. 제6항에 있어서,
    상기 불활성 가스는 헬륨 가스, 질소 가스, 및 아르곤 가스로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 황-탄소 복합체의 제조방법.
  11. 제6항에 있어서,
    상기 불활성 가스는 질소 가스를 포함하는, 황-탄소 복합체의 제조방법.
  12. 제1항에 따른 황-탄소 복합체를 포함하는 리튬-황 전지용 양극.
  13. 제12항에 따른 리튬-황 전지용 양극;
    음극 활물질을 포함하는 음극; 및
    전해질을 포함하는 리튬-황 전지.
  14. 제13항에 있어서,
    상기 음극 활물질은 리튬 금속 및 리튬 합금으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 리튬-황 전지.
PCT/KR2022/000313 2021-01-08 2022-01-07 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지 WO2022149913A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22736890.9A EP4199148A1 (en) 2021-01-08 2022-01-07 Sulfur-carbon composite, method for preparing same, and lithium-sulfur battery including same
US18/028,720 US20230335718A1 (en) 2021-01-08 2022-01-07 Sulfur-carbon composite, method for preparing same, and lithium-sulfur battery including same
CN202280006577.6A CN116250099A (zh) 2021-01-08 2022-01-07 硫-碳复合材料、其制备方法和包含其的锂硫电池
JP2023523285A JP2023546149A (ja) 2021-01-08 2022-01-07 硫黄‐炭素複合体、この製造方法、及びこれを含むリチウム‐硫黄電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0002360 2021-01-08
KR1020210002360A KR20220100209A (ko) 2021-01-08 2021-01-08 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지

Publications (1)

Publication Number Publication Date
WO2022149913A1 true WO2022149913A1 (ko) 2022-07-14

Family

ID=82358261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000313 WO2022149913A1 (ko) 2021-01-08 2022-01-07 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지

Country Status (6)

Country Link
US (1) US20230335718A1 (ko)
EP (1) EP4199148A1 (ko)
JP (1) JP2023546149A (ko)
KR (1) KR20220100209A (ko)
CN (1) CN116250099A (ko)
WO (1) WO2022149913A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332519A (zh) * 2022-09-09 2022-11-11 郑州大学 一种锂硫电池正极材料的制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091293A (ko) * 2013-01-11 2014-07-21 한국과학기술원 리튬 황 전지에 사용되는 자기 조립된 카본나노튜브와 유황의 혼성 복합체를 포함하는 전극 및 그 제조방법
KR20160037084A (ko) 2014-09-26 2016-04-05 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
KR20160046775A (ko) 2013-08-01 2016-04-29 주식회사 엘지화학 리튬-황 전지용 양극 및 이의 제조방법
KR20160078734A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 리튬 설퍼 전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 설퍼 전지
JP2016190767A (ja) * 2015-03-31 2016-11-10 国立研究開発法人産業技術総合研究所 カーボンナノチューブ集合体およびその製造方法
KR20200033736A (ko) * 2018-09-20 2020-03-30 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200058920A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR20210002360A (ko) 2018-05-29 2021-01-07 케이엘에이 코포레이션 다중 전자 빔들을 갖는 시스템을 위한 대전 제어 디바이스

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140091293A (ko) * 2013-01-11 2014-07-21 한국과학기술원 리튬 황 전지에 사용되는 자기 조립된 카본나노튜브와 유황의 혼성 복합체를 포함하는 전극 및 그 제조방법
KR20160046775A (ko) 2013-08-01 2016-04-29 주식회사 엘지화학 리튬-황 전지용 양극 및 이의 제조방법
KR20160037084A (ko) 2014-09-26 2016-04-05 주식회사 엘지화학 황-탄소나노튜브 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 캐소드 활물질 및 이를 포함한 리튬-황 전지
KR20160078734A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 리튬 설퍼 전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 설퍼 전지
JP2016190767A (ja) * 2015-03-31 2016-11-10 国立研究開発法人産業技術総合研究所 カーボンナノチューブ集合体およびその製造方法
KR20210002360A (ko) 2018-05-29 2021-01-07 케이엘에이 코포레이션 다중 전자 빔들을 갖는 시스템을 위한 대전 제어 디바이스
KR20200033736A (ko) * 2018-09-20 2020-03-30 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR20200058920A (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332519A (zh) * 2022-09-09 2022-11-11 郑州大学 一种锂硫电池正极材料的制备方法及应用

Also Published As

Publication number Publication date
EP4199148A1 (en) 2023-06-21
KR20220100209A (ko) 2022-07-15
JP2023546149A (ja) 2023-11-01
CN116250099A (zh) 2023-06-09
US20230335718A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2019103326A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021010625A1 (ko) 리튬-황 이차전지
WO2022035120A1 (ko) 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2022060021A1 (ko) 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지
WO2020105980A1 (ko) 리튬-황 이차전지
WO2020226310A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2021172879A1 (ko) 리튬 금속 음극의 제조방법, 이에 의해 제조된 리튬 금속 음극 및 이를 포함하는 리튬-황 전지
WO2021241959A1 (ko) 프리스탠딩 필름형 리튬 이차전지용 양극재, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022060181A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2021010626A1 (ko) 리튬-황 이차전지
WO2018236046A1 (ko) 리튬-황 전지
WO2024136282A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2022255672A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2022019698A1 (ko) 리튬-황 전지용 음극 및 이를 포함하는 리튬-황 전지
WO2019225883A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2022211282A1 (ko) 리튬 이차전지
WO2022270739A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2023008783A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2021210854A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2021177723A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2020226321A1 (ko) 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
WO2023282680A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2020242247A1 (ko) 황-탄소 복합체, 이를 포함하는 리튬-황 전지용 양극, 및 상기 양극을 포함하는 리튬-황 전지
WO2022050769A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022736890

Country of ref document: EP

Effective date: 20230317

WWE Wipo information: entry into national phase

Ref document number: 2023523285

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE