[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022027895A1 - 异常坐姿识别方法、装置、电子设备、存储介质及程序 - Google Patents

异常坐姿识别方法、装置、电子设备、存储介质及程序 Download PDF

Info

Publication number
WO2022027895A1
WO2022027895A1 PCT/CN2020/136267 CN2020136267W WO2022027895A1 WO 2022027895 A1 WO2022027895 A1 WO 2022027895A1 CN 2020136267 W CN2020136267 W CN 2020136267W WO 2022027895 A1 WO2022027895 A1 WO 2022027895A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
sitting posture
feature map
current
key point
Prior art date
Application number
PCT/CN2020/136267
Other languages
English (en)
French (fr)
Inventor
王飞
钱晨
Original Assignee
上海商汤临港智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海商汤临港智能科技有限公司 filed Critical 上海商汤临港智能科技有限公司
Priority to JP2021571346A priority Critical patent/JP2022547246A/ja
Priority to KR1020217039206A priority patent/KR20220019097A/ko
Priority to US17/536,840 priority patent/US20220084316A1/en
Publication of WO2022027895A1 publication Critical patent/WO2022027895A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • G06V20/593Recognising seat occupancy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • G06V20/597Recognising the driver's state or behaviour, e.g. attention or drowsiness
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/19Recognition using electronic means
    • G06V30/191Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06V30/19173Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/04Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
    • G08B21/0438Sensor means for detecting
    • G08B21/0476Cameras to detect unsafe condition, e.g. video cameras

Definitions

  • the present disclosure relates to the technical field of deep learning, and in particular, to a method, device, electronic device, storage medium and program for identifying abnormal sitting posture.
  • vehicle cabin intelligence includes aspects such as personalized service and safety perception.
  • safety perception since the user's sitting posture during vehicle driving is related to the user's safety, that is, an inappropriate sitting posture will increase the probability of injury to the user in the event of a vehicle collision, thereby reducing the safety of the user's ride.
  • embodiments of the present disclosure are expected to provide a method, apparatus, electronic device, storage medium, and program for identifying an abnormal sitting posture.
  • Embodiments of the present disclosure provide a method for identifying an abnormal sitting posture, including:
  • the abnormal sitting posture type includes a sitting posture type that has a safety risk.
  • the current sitting posture of at least one user included in the cabin is determined by recognizing the current scene image in the obtained vehicle cabin, and further, when the current sitting posture of the user belongs to the abnormal sitting posture type, a warning message is issued, so as to prevent Users who are in an abnormal sitting posture will be prompted to improve the safety of the user's ride.
  • the abnormal sitting posture type includes at least one of the following:
  • a first abnormal sitting posture in which the user's body is leaning forward a second abnormal sitting posture in which the user's body is leaning sideways, and a third abnormal sitting posture in which the user's body is lying down.
  • the types of abnormal sitting postures are more abundant, so that a variety of abnormal sitting postures can be covered more comprehensively, and the safety of the user's ride can be guaranteed.
  • identifying the current sitting posture of at least one user located in the vehicle cabin based on the current scene image including:
  • the current sitting posture of each user located in the vehicle cabin is determined. In this way, through the relative positional relationship between the key point information of at least one user in the current scene image and the set reference object, the current sitting posture of each user in the vehicle cabin can be accurately determined.
  • the key point information includes head key point information; based on the relative positional relationship between the key point information of each user and the set reference object, the current sitting posture of each user located in the vehicle cabin is determined ,include:
  • the head key point information of any user is lower than the set lower edge of the steering wheel, it is determined that the current sitting posture of any user is the first abnormal sitting posture in which the user leans forward. In this way, by judging that the key point information of the user's head is lower than the set lower line of the steering wheel, it is quickly determined that the current sitting posture of the user is the first abnormal sitting posture in which the user's body leans forward.
  • the key point information includes left shoulder key point information and right shoulder key point information; based on the relative positional relationship between the key point information of each user and the set reference object, determine the The current sitting posture of each user, including:
  • the angle between the connection line between the left shoulder key point and the right shoulder key point of any user and the set seat reference surface is greater than the set first angle threshold, it is determined that the current sitting posture of any user is the user's body The second abnormal sitting position of the roll. In this way, when the angle between the key point of the user's shoulder and the seat reference surface is greater than the first angle threshold, it is quickly determined that the current sitting posture of the user is the second abnormal sitting posture in which the user's body is tilted.
  • the key point information includes neck key point information and crotch key point information; based on the relative positional relationship between the key point information of each user and the set reference object, determine the The current sitting posture of each user, including:
  • the angle between the connection line between the neck key point and the crotch key point of any user and the set horizontal reference plane is smaller than the set second angle threshold, it is determined that the current sitting posture of any user is the horizontal reference plane of the user.
  • the third abnormal sitting position of lying In this way, when the angle between the key point of the user's neck, the key point of the crotch and the horizontal reference plane is smaller than the second angle threshold, it is quickly determined that the current sitting posture of the user is the third abnormal sitting posture in which the user's body is lying down.
  • identifying the current sitting posture of at least one user located in the vehicle cabin based on the current scene image including:
  • an intermediate feature map corresponding to the current scene image is generated
  • the current sitting posture of each user is determined based on the intermediate feature map and detection frame information of each user in the at least one user. In this way, it is only necessary to use the intermediate feature map corresponding to the current scene image and the detection frame information of each user to quickly determine the current sitting posture of each user, and at the same time, because there are no intermediate parameters, the determined current sitting posture of each user is accurate. Sex is high.
  • generating detection frame information for each user in the at least one user located in the vehicle cabin including:
  • the center point position information of the detection frame of each user located in the vehicle cabin is generated.
  • the detection frame information (including center point position information) corresponding to the user is determined by means of feature map processing, and then the detection frame information is compared with the intermediate feature map corresponding to the current scene image to determine the current pose information of the user.
  • the center point position information of the detection frame of each user located in the vehicle cabin is generated, including:
  • the converted target channel feature map is subjected to maximum pooling processing to obtain multiple pooling values and the position corresponding to each pooling value in the multiple pooling values. index; the position index is used to identify the position of the pooled value in the converted target channel feature map;
  • the center point position information of the detection frame of each user located in the vehicle cabin is generated. In this way, by performing the maximum pooling process on the target channel feature map, the target pooling value belonging to the user center point can be more accurately determined from multiple pooling values, and then the center point of each user's detection frame can be more accurately determined. location information.
  • determining the current sitting posture of each user based on the intermediate feature map and detection frame information of each user in the at least one user includes:
  • the user For each user, based on the center point position information indicated by the user's detection frame information, 20 extracts N feature values at the feature positions matching the center point position information from the classification feature map; The maximum eigenvalue is selected from the eigenvalues, and the sitting posture category of the channel feature map corresponding to the maximum eigenvalue in the classification feature map is determined as the current sitting posture of the user. In this way, by performing at least one second convolution process on the intermediate feature map to generate a classification feature map, and then combining the generated center point position information of each user, the current sitting posture of each user can be more accurately determined.
  • Embodiments of the present disclosure provide an abnormal sitting posture recognition device, including:
  • the acquisition module is used to acquire the current scene image in the cabin
  • an identification module configured to identify the current sitting posture of at least one user located in the vehicle cabin based on the current scene image
  • a determination module configured to issue a warning message when the current sitting posture of the user belongs to an abnormal sitting posture type; wherein the abnormal sitting posture type includes a sitting posture type with a safety risk.
  • An embodiment of the present disclosure provides an electronic device, including: a processor, a memory, and a bus, where the memory stores machine-readable instructions executable by the processor, and when the electronic device runs, the processor and the memory Communication between them is via a bus, and the machine-readable instructions are executed by the processor to execute the steps of the method for recognizing an abnormal sitting posture according to the first aspect or any one of the implementation manners.
  • An embodiment of the present disclosure provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is run by a processor, the abnormal sitting posture recognition according to the first aspect or any one of the implementation manners is performed. steps of the method.
  • An embodiment of the present disclosure provides a computer program, where the computer program includes computer-readable codes, and when the computer-readable codes run in a computer, causes the computer to execute any one of the above abnormal sitting posture recognition methods.
  • the abnormal sitting posture recognition method, device, electronic device, storage medium, and program proposed by the embodiments of the present disclosure first, a current scene image in the vehicle cabin is acquired; then based on the current scene image, at least one image located in the vehicle cabin is identified. The current sitting posture of the user; finally, when the current sitting posture of the user belongs to an abnormal sitting posture type, a warning message is issued; wherein, the abnormal sitting posture type includes a sitting posture type that has a safety risk; Image recognition, determine the current sitting posture of at least one user included in the cabin, and further issue a warning message when the current sitting posture of the user belongs to the abnormal sitting posture type, so as to prompt the user in the abnormal sitting posture and improve the user's riding security.
  • FIG. 1 shows a schematic flowchart of a method for identifying an abnormal sitting posture provided by an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of a system architecture to which the method for identifying an abnormal sitting posture according to an embodiment of the present disclosure is applied;
  • FIG. 3 shows a schematic diagram of a current scene image in an abnormal sitting posture recognition method provided by an embodiment of the present disclosure
  • FIG. 4 shows a schematic structural diagram of an abnormal sitting posture recognition device 400 provided by an embodiment of the present disclosure
  • FIG. 5 shows a schematic structural diagram of an electronic device 500 provided by an embodiment of the present disclosure.
  • cabin intelligence can include personalized services, safety perception and other aspects.
  • safety perception since the user's sitting posture during vehicle driving is related to the user's safety, that is, an inappropriate sitting posture will increase the probability of injury to the user in the event of a vehicle collision, thereby reducing the safety of the user's ride. Therefore, in order to solve the above problem, an embodiment of the present disclosure provides a method for identifying an abnormal sitting posture.
  • FIG. 1 is a schematic flowchart of a method for identifying an abnormal sitting posture provided by an embodiment of the present disclosure
  • the method includes S101 to S103, wherein:
  • S102 based on the current scene image, identify the current sitting posture of at least one user located in the vehicle cabin.
  • the abnormal sitting posture type includes a sitting posture type with a safety risk.
  • the current sitting posture of at least one user located in the vehicle cabin is determined by recognizing the current scene image obtained in the vehicle cabin, and further, when the current sitting posture of the user belongs to an abnormal sitting posture type, a warning message is issued, Thereby, the user in the abnormal sitting posture is prompted, and the safety of the user's ride is improved.
  • FIG. 2 is a schematic diagram of a system architecture to which the method for identifying an abnormal sitting posture according to an embodiment of the present disclosure can be applied; as shown in FIG.
  • the vehicle terminal 201 and the abnormal sitting posture recognition terminal 203 can establish a communication connection through the network 202, and the vehicle terminal 201 reports the current scene image in the vehicle cabin to the abnormal sitting posture recognition terminal device 203 through the network 202, and the abnormal sitting posture recognition
  • the terminal device 203 recognizes the current sitting posture of at least one user located in the vehicle cabin based on the current scene image; in the case that the current sitting posture of the user belongs to the abnormal sitting posture type, the warning information is determined, and finally, the abnormal The sitting posture recognition terminal 203 uploads the warning information to the network 202 , and sends the warning information to the vehicle terminal 201 through the network 202 .
  • the vehicle terminal 201 may include an in-vehicle image acquisition device
  • the abnormal sitting posture recognition terminal 203 may include an in-vehicle visual processing device or a remote server with visual information processing capability.
  • the network 202 can be wired or wireless.
  • the abnormal sitting posture recognition terminal is a vehicle-mounted visual processing device
  • the vehicle terminal can communicate with the vehicle-mounted visual processing device through a wired connection, such as data communication through a bus
  • the abnormal sitting posture recognition terminal is a remote server
  • the vehicle terminal can Data exchange with remote server through wireless network.
  • the vehicle terminal 201 may be an in-vehicle visual processing device with an in-vehicle image acquisition module, which is specifically implemented as an in-vehicle host with a camera.
  • the abnormal sitting posture recognition method of the embodiment of the present disclosure may be executed by the vehicle terminal 201 , and the above-mentioned system architecture may not include the network 202 and the abnormal sitting posture recognition terminal 203 .
  • a camera device may be set on the top of the cabin, and an image of the current scene in the cabin can be acquired in real time through the camera device set in the cabin.
  • the installation position of the camera device may be a position where all users in the vehicle cabin can be photographed.
  • the current scene image can be identified to determine the current sitting posture corresponding to each user in the cabin.
  • the current sitting posture may be a sitting posture category of each user.
  • identifying the current sitting posture of at least one user located in the vehicle cabin may include:
  • the current sitting posture of each user located in the vehicle cabin is determined.
  • the current scene image can be input into the key point detection neural network to determine the key point information of at least one user in the current scene image; and for each user in the vehicle cabin, the user's key point information and the set reference can be The relative positional relationship between objects is used to determine the current sitting posture of the user.
  • the key point information includes head key point information; based on the relative positional relationship between the key point information of each user and the set reference object, the current sitting posture of each user located in the vehicle cabin is determined, which can be include:
  • the head key point information of any user is lower than the set lower line of the steering wheel, it is determined that the current sitting posture of any user is the first abnormal sitting posture in which the user's body leans forward.
  • a schematic diagram of a current scene image includes a steering wheel 31, a lower line 32 of the steering wheel, and a driver 33, and the lower line 32 of the steering wheel is the edge of the steering wheel on the side close to the driver , the resulting reference line perpendicular to the direction of travel.
  • the lower edge of the steering wheel divides the current scene image into two regions, namely a first region 34 located above the lower edge of the steering wheel and a second region 35 located below the lower edge of the steering wheel.
  • An abnormal sitting posture when it is detected that the key point information of the user's head is higher than the set lower line of the steering wheel, that is, when it is detected that the key point information of the user's head is located in the first area 34, it is determined that the current sitting posture of the user does not belong to the user
  • the first abnormal sitting posture in which the body is leaning forward if the key point information of the user's head is located on the lower edge of the steering wheel, it is determined that the current sitting posture of the user does not belong to the first abnormal sitting posture in which the user's body is leaning forward.
  • the key point information includes left shoulder key point information and right shoulder key point information; based on the relative positional relationship between the key point information of each user and the set reference object, determine each user located in the cabin. current sitting position, including:
  • the angle between the connection line between the left shoulder key point and the right shoulder key point of any user and the set seat reference surface is greater than the set first angle threshold, it is determined that the current sitting posture of any user is the user's body roll The second abnormal sitting posture.
  • the first angle threshold may be set according to actual needs, for example, the first angle may be 45 degrees; and the side on which the user backs against the seat (ie, the vertical surface of the seat) may be set as the seat reference plane. Then, the connection line between the detected left shoulder key point and the right shoulder key point and the angle between the set seat reference surface and the set seat reference surface can be determined, and when the angle is greater than the set first angle threshold, the current sitting posture of the user is determined. is the second abnormal sitting posture of the user's body leaning forward; when the angle is less than or equal to the set first angle threshold, it is determined that the current sitting posture of the user does not belong to the second abnormal sitting posture of the user's body leaning forward.
  • the key point information includes neck key point information and crotch key point information; based on the relative positional relationship between the key point information of each user and the set reference object, determine each user located in the cabin. current sitting position, including:
  • the angle between the connection line between the neck key point and the crotch key point of any user and the set horizontal reference plane is smaller than the set second angle threshold, it is determined that the current sitting posture of any user is the one where the user's body is lying down.
  • the third abnormal sitting posture is the one where the user's body is lying down.
  • the set horizontal reference plane may be the seat level plane
  • the second angle threshold may be set according to actual needs.
  • the angle between the connection line between the neck key point and the crotch key point and the set horizontal reference plane can be determined, and when the angle is smaller than the set second angle threshold, it is determined that the user's current sitting posture is the one where the user's body is lying down.
  • the third abnormal sitting posture when the angle is greater than or equal to the set second angle threshold, it is determined that the current sitting posture of the user does not belong to the third abnormal sitting posture in which the user's body is lying down.
  • the current scene image may also be input into the trained neural network to determine the current sitting posture of each user included in the current scene image.
  • identifying the current sitting posture of at least one user located in the vehicle cabin may include:
  • Step 1 based on the current scene image, generate an intermediate feature map corresponding to the current scene image;
  • Step 2 based on the intermediate feature map, generate detection frame information of each user in the at least one user located in the cabin;
  • Step 3 Determine the current sitting posture of each user based on the intermediate feature map and the detection frame information of each user in the at least one user.
  • the current scene image may be input into the trained neural network, and the backbone network in the neural network performs multiple convolution processing on the current scene image to generate an intermediate feature map corresponding to the current scene image.
  • the detection frame information of each user in the at least one user located in the vehicle cabin may be generated by using the intermediate feature map and the detection frame detection branch network included in the neural network.
  • the detection frame information of each user in the at least one user located in the vehicle cabin may be generated, which may include:
  • A1 perform at least one first convolution process on the intermediate feature map to generate a channel feature map corresponding to the intermediate feature map;
  • A2 based on the target channel feature map representing the position in the channel feature map, generate the center point position information of the detection frame of each user located in the vehicle cabin.
  • At least one first convolution process may be performed on the intermediate feature map to generate a channel feature map corresponding to the intermediate feature map, and the number of channels corresponding to the channel feature map may be three channels.
  • the channel feature map includes a first channel feature map representing the position (the first channel feature map is the target channel feature map), a second channel feature map representing the length information of the detection frame, and a feature map representing the width information of the detection frame.
  • the third channel feature map is a first channel feature map representing the position (the first channel feature map is the target channel feature map), a second channel feature map representing the length information of the detection frame, and a feature map representing the width information of the detection frame.
  • the center point position information of the detection frame of each user included in the vehicle cabin can be generated based on the target channel feature map representing the location in the channel feature map, and the second channel feature map and the first channel feature map in the channel feature map can also be generated based on The three-channel feature map determines the size information (length and width) of the detection frame.
  • the detection frame information (including the center point position information) corresponding to the user is determined by means of feature map processing, and then the detection frame information is compared with the intermediate feature map corresponding to the current scene image to determine the current pose of the user. information.
  • the center point position information of the detection frame of each user located in the vehicle cabin is generated, which may include:
  • B1 use the activation function to perform eigenvalue conversion processing on each eigenvalue in the target channel feature map representing the position, and generate a converted target channel feature map;
  • the position index of ; the position index is used to identify the position of the pooled value in the transformed target channel feature map;
  • an activation function may be used to perform feature value conversion processing on the target feature map to generate a converted target channel feature map, where each feature value in the target channel feature map is a value between 0 and 1.
  • the activation function may be a sigmoid function. For the feature value of any feature point in the converted target channel feature map, if the feature value is closer to 1, the probability that the feature point corresponding to the feature value belongs to the center point of the user's detection frame is greater.
  • the maximum pooling process can be performed on the converted target channel feature map to obtain the pooling value corresponding to each feature position in the target channel feature map and each pool.
  • the location index corresponding to the pooled value; the location index can be used to identify the location of the pooled value in the transformed target channel feature map.
  • the same position index in the corresponding position index at each feature position can be merged to obtain the target channel feature map corresponding to multiple pooling values and the position index corresponding to each pooling value in the multiple pooling values .
  • the preset pooling size and pooling step size may be set according to actual needs. For example, the preset pooling size may be 3 ⁇ 3, and the preset pooling step size may be 1.
  • a pooling threshold can be set, and multiple obtained pooling values can be screened to obtain at least one target pooling value greater than the pooling threshold among the multiple pooling values, and based on the position index corresponding to the target pooling value, The center point position information of the detection frame of each user included in the vehicle cabin is generated.
  • multi-frame sample images collected by a camera device corresponding to the current scene image may be acquired, and an adaptive algorithm is used to generate a pooling threshold according to the collected multi-frame sample images.
  • a 3 ⁇ 3 maximum pooling process with a step size of 1 can be performed on the target channel feature map; during pooling, for every 3 ⁇ 3 feature points in the target channel feature map, the feature value is determined.
  • the maximum response value (that is, the pooling value) of the 3 ⁇ 3 feature points and the position index of the maximum response value on the feature map of the target channel.
  • the number of maximum response values is related to the size of the target channel feature map; for example, if the size of the target channel feature map is 80 ⁇ 60 ⁇ 3, the maximum response obtained after the maximum pooling process is performed on the target channel feature map There are 80 ⁇ 60 values in total; and for each maximum response value, there may be at least one other maximum response value with the same position index.
  • the maximum response values with the same position index are combined to obtain M maximum response values and a position index corresponding to each of the M maximum response values.
  • each of the M maximum response values is compared with the pooling threshold; when a certain maximum response value is greater than the pooling threshold, the maximum response value is determined as the target pooling value.
  • the position index corresponding to the target pooling value that is, the position information of the center point of the user's detection frame.
  • a second feature value at the feature position matching the center point position information can be selected from the second channel feature map.
  • the selected second feature value is determined as the length corresponding to the user's detection frame
  • the third feature value at the feature position matching the center point position information is selected from the third channel feature map
  • the selected third feature value is The value is determined as the width corresponding to the user's detection frame, and the size information of the user's detection frame is obtained.
  • the target pooling value belonging to the user center point can be more accurately determined from multiple pooling values, and then the detection frame of each user can be more accurately determined. center point information.
  • the current sitting posture of each user may be determined based on the intermediate feature map, the frame checking information of each user in the at least one user, and the posture classification branch network in the trained neural network.
  • the current sitting posture of each user is determined based on the intermediate feature map and the detection frame information of each user in the at least one user, including:
  • C1 perform at least one second convolution process on the intermediate feature map to generate a classification feature map of N channels corresponding to the intermediate feature map; wherein, the number of channels N of the classification feature map is consistent with the number of sitting posture categories, and the classification feature map of the N channel Each channel feature map in corresponds to a sitting posture category, and N is a positive integer greater than 1;
  • At least one second convolution process can be performed on the intermediate feature map to generate a classification feature map corresponding to the intermediate feature map.
  • the number of channels in the classification feature map is N
  • the value of N is consistent with the number of sitting posture categories
  • Each channel feature map in the classification feature map corresponds to a sitting posture category. For example, if the sitting posture category includes: normal sitting posture, body leaning forward, and body leaning backward, then the value of N is 3; if the sitting posture category includes: normal sitting posture, body leaning forward, body leaning backward, and body lying, then this The value of N is 4.
  • the sitting posture category can be set according to actual needs, and this is only an exemplary description.
  • N feature values at the feature positions matching the center point position information can be extracted from the classification feature map, and from the N feature values.
  • the maximum eigenvalue is selected, and the sitting posture category of the channel feature map corresponding to the maximum eigenvalue in the classification feature map is determined as the current sitting posture of the user.
  • the classification feature map is a 3-channel feature map
  • the sitting posture category corresponding to the first channel feature map in the classification feature map can be normal sitting posture
  • the sitting posture category corresponding to the second channel feature map can be leaning forward
  • the sitting posture category corresponding to the third channel feature map can be body roll
  • three feature values are extracted from the classification feature map, namely 0.8, 0.5, and 0.2, then the channel feature map corresponding to 0.8 in the classification feature map (classification
  • the sitting posture category (normal sitting posture) of the first channel feature map in the feature map is determined as the current sitting posture of user A.
  • the current sitting posture of each user can be more accurately determined.
  • each user's current sitting position is determined based on a trained neural network.
  • a neural network can be trained by the following steps:
  • each branch network corresponds to one type of prediction data
  • the neural network is trained based on a variety of prediction data and labeled data corresponding to the scene image samples.
  • multiple branch networks are set to process the sample feature map, and multiple prediction data corresponding to the scene image samples are generated.
  • the neural network is trained by using the generated multiple prediction data, the accuracy of the trained neural network can be improved.
  • the labeling data may include labeling key point position information, labeling detection frame information, and labeling sitting posture categories.
  • the scene image samples may be input into the neural network to be trained, and the backbone network in the neural network to be trained performs at least one convolution process on the scene image samples to generate sample feature maps corresponding to the scene image samples.
  • the sample feature maps are respectively input into multiple branch networks in the neural network to be trained to generate multiple types of prediction data corresponding to the scene image samples, wherein each branch network corresponds to one type of prediction data.
  • the predicted data may include predicted detection frame information, predicted key position point information, and predicted sitting posture category.
  • the branch network of the neural network includes a detection frame detection branch network
  • the sample feature map is input to the detection frame detection branch network in the neural network to generate at least one user included in the scene image sample.
  • the predicted detection box information is not limited to:
  • the branch network of the neural network includes a key point detection branch network, and the sample feature map is input to the key point detection branch network in the neural network to generate each of the scene image samples included. User's multiple predicted key location point information.
  • the branch network of the neural network includes the detection frame detection branch network and the posture classification branch network
  • the sample feature map is input into the key point detection branch network in the neural network
  • a classification feature map is obtained, and based on the predicted detection frame information of at least one user and the classification feature map, a predicted sitting posture category of each user included in the scene image sample is generated.
  • multiple branch networks are set to process the sample feature map to obtain multiple types of prediction data, and the neural network is trained through multiple types of prediction data, so that the accuracy of the trained neural network is high.
  • the first loss value can be generated based on the predicted detection frame information and the labeled detection frame information; based on the predicted key position point information and the labeled key The position point information is used to generate the second loss value; the third loss value is generated based on the predicted sitting posture category and the marked sitting posture category, and the neural network is trained based on the first loss value, the second loss value and the third loss value. neural network.
  • the abnormal sitting posture type refers to a sitting posture type that has a safety risk.
  • the abnormal sitting posture types may include at least one of the following: a first abnormal sitting posture in which the user leans forward, a second abnormal sitting posture in which the user leans sideways, and a third abnormal sitting posture in which the user lies laterally.
  • the abnormal sitting posture type may also include other sitting postures with safety risks, and this is only an exemplary description.
  • the user's current sitting posture is a normal sitting posture, it is determined that the user does not belong to an abnormal sitting posture; if the user's current sitting posture is leaning forward, it is determined that the user belongs to an abnormal sitting posture.
  • the types of abnormal sitting postures are more abundant, so that a variety of abnormal sitting postures can be covered more comprehensively, so as to ensure the safety of the user's ride.
  • warning information may be generated based on the abnormal sitting posture type to which the user's current sitting posture belongs, wherein the warning information may be played in the form of voice.
  • the generated warning message may be "Dangerous, leaning forward, please adjust the sitting posture".
  • each position of the cabin can also be identified.
  • the identification of each position in the cabin can be: co-pilot position, left rear position, right rear position, etc., and is determined based on the current scene image.
  • the position identifier corresponding to each user and when it is determined that the user's current sitting posture belongs to an abnormal sitting posture type, warning information may be generated based on the abnormal sitting posture type to which the user's current sitting posture belongs and the sitting posture identification. For example, if the current sitting posture of user A is leaning forward, and the position corresponding to user A is identified as the co-pilot position, the generated warning information may be "The passenger in the co-pilot position is leaning forward, please adjust the sitting posture".
  • warning information may be generated based on the abnormal sitting posture type to which the user's current sitting posture belongs, so as to warn the user and reduce the probability of danger to the user.
  • the writing order of each step does not mean a strict execution order but constitutes any limitation on the implementation process, and the specific execution order of each step should be based on its function and possible Internal logic is determined.
  • an embodiment of the present disclosure also provides an abnormal sitting posture recognition device 400.
  • FIG. 4 it is a schematic diagram of the architecture of the abnormal sitting posture recognition device provided by the embodiment of the present disclosure, including an acquisition module 401, a recognition module 402, Determining module 403, specifically:
  • an acquisition module 401 configured to acquire the current scene image in the vehicle cabin
  • An identification module 402 configured to identify the current sitting posture of at least one user located in the vehicle cabin based on the current scene image
  • the determining module 403 is configured to issue a warning message when the current sitting posture of the user belongs to an abnormal sitting posture type, wherein the abnormal sitting posture type refers to a sitting posture type that has a safety risk.
  • the abnormal sitting posture types include at least one of the following: a first abnormal sitting posture in which the user leans forward, a second abnormal sitting posture in which the user leans sideways, and a third abnormal sitting posture in which the user lies laterally.
  • the identifying module 402 when identifying the current sitting posture of at least one user located in the vehicle cabin based on the current scene image, is configured to:
  • the current sitting posture of each user located in the vehicle cabin is determined.
  • the key point information includes head key point information
  • the identification module 402 based on the relative positional relationship between the key point information of each user and the set reference object, determines When the current sitting position of each user in the cabin, it is used to:
  • the head key point information of any user is lower than the set lower edge of the steering wheel, it is determined that the current sitting posture of any user is the first abnormal sitting posture in which the user leans forward.
  • the key point information includes left shoulder key point information and right shoulder key point information; the identification module 402 is based on the relative positional relationship between the key point information of each user and the set reference object. , when determining the current sitting posture of each user located in the cabin, it is used to:
  • the angle between the connection line between the left shoulder key point and the right shoulder key point of any user and the set seat reference surface is greater than the set first angle threshold, it is determined that the current sitting posture of any user is the user's body The second abnormal sitting position of the roll.
  • the key point information includes neck key point information and crotch key point information;
  • the identification module 402 is based on the relative positional relationship between the key point information of each user and the set reference object. , when determining the current sitting posture of each user located in the cabin, it is used to:
  • the angle between the connection line between the neck key point and the crotch key point of any user and the set horizontal reference plane is smaller than the set second angle threshold, it is determined that the current sitting posture of any user is the horizontal reference plane of the user.
  • the third abnormal sitting position of lying is smaller than the set second angle threshold.
  • the identifying module 402 when identifying the current sitting posture of at least one user located in the vehicle cabin based on the current scene image, is configured to:
  • an intermediate feature map corresponding to the current scene image is generated
  • the current sitting posture of each user is determined based on the intermediate feature map and detection frame information of each user in the at least one user.
  • the identification module 402 when generating the detection frame information of each user in the at least one user located in the vehicle cabin based on the intermediate feature map, is used for:
  • the center point position information of the detection frame of each user located in the vehicle cabin is generated.
  • the identification module 402 generates the center point position information of the detection frame of each user located in the vehicle cabin based on the target channel feature map representing the location in the channel feature map. , for:
  • the converted target channel feature map is subjected to maximum pooling processing to obtain multiple pooling values and the position corresponding to each pooling value in the multiple pooling values. index; the position index is used to identify the position of the pooled value in the converted target channel feature map;
  • the center point position information of the detection frame of each user located in the vehicle cabin is generated.
  • the identifying module 402 when determining the current sitting posture of each user based on the intermediate feature map and the detection frame information of each user in the at least one user, is used to:
  • N feature values at the feature positions matching the center point position information For each user, based on the center point position information indicated by the user's detection frame information, extract N feature values at the feature positions matching the center point position information from the classification feature map; The maximum eigenvalue is selected from the values, and the sitting posture category of the channel feature map corresponding to the maximum eigenvalue in the classification feature map is determined as the current sitting posture of the user.
  • the functions or templates included in the apparatus provided by the embodiments of the present disclosure may be used to execute the methods described in the above method embodiments.
  • the functions or templates included in the apparatus provided by the embodiments of the present disclosure may be used to execute the methods described in the above method embodiments.
  • an embodiment of the present disclosure also provides an electronic device 500 .
  • a schematic structural diagram of an electronic device 500 provided by an embodiment of the present disclosure includes a processor 501 , a memory 502 , and a bus 503 .
  • the memory 502 is used to store execution instructions, including the memory 5021 and the external memory 5022; the memory 5021 here is also called the internal memory, which is used to temporarily store the operation data in the processor 501 and the data exchanged with the external memory 5022 such as the hard disk,
  • the processor 501 exchanges data with the external memory 5022 through the memory 5021.
  • the processor 501 communicates with the memory 502 through the bus 503, so that the processor 501 executes the following instructions:
  • the abnormal sitting posture type refers to a sitting posture type that has a safety risk.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the abnormal sitting posture recognition method described in the above method embodiment is executed. step.
  • the computer program product of the method for identifying an abnormal sitting posture provided by the embodiments of the present disclosure is used to store computer-readable codes.
  • the processor of the electronic device executes the code to implement any of the above
  • the embodiment provides an abnormal sitting posture identification method.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as stand-alone products, may be stored in a processor-executable non-volatile computer-readable storage medium.
  • the computer software products are stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the present disclosure provides a method, device, electronic device, storage medium and program for identifying abnormal sitting posture; wherein, a current scene image in a vehicle cabin is acquired; based on the current scene image, at least one user located in the vehicle cabin is identified If the current sitting posture of the user belongs to an abnormal sitting posture type, a warning message is issued; wherein, the abnormal sitting posture type includes a sitting posture type with a safety risk.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Data Mining & Analysis (AREA)
  • Psychiatry (AREA)
  • Emergency Management (AREA)
  • Social Psychology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Image Analysis (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)

Abstract

一种异常坐姿识别方法、装置、电子设备、存储介质及程序,该方法包括:获取车舱内的当前场景图像(S101);基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿(S102);在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型包括存在安全风险的坐姿类型(S103)。该方法通过对获取的车舱内的当前场景图像进行识别,确定车舱内包括的至少一个用户的当前坐姿,并进一步在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息,从而对处于异常坐姿的用户进行提示,提高用户乘车的安全性。

Description

异常坐姿识别方法、装置、电子设备、存储介质及程序
相关申请的交叉引用
本公开基于申请号为202010790210.0、申请日为2020年08月07日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及深度学习技术领域,具体而言,涉及一种异常坐姿识别方法、装置、电子设备、存储介质及程序。
背景技术
随着当前汽车电子行业的迅速发展,方便、舒适、安全的车舱环境已成为用户乘车的基本需求,故使得车舱智能化成为当前汽车电子行业发展的重要方向。
在相关技术中,车舱智能化包括个性化服务、安全感知等方面。在安全感知方面,由于用户在车辆行驶过程中保持的坐姿与用户的安全程度相关,即不合适的坐姿会在车辆发生碰撞事件时增加用户受伤的概率,进而降低用户乘车的安全度。
发明内容
有鉴于此,本公开实施例期望提供一种异常坐姿识别方法、装置、电子设备、存储介质及程序。
本公开实施例提供了一种异常坐姿识别方法,包括:
获取车舱内的当前场景图像;
基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿;
在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型包括存在安全风险的坐姿类型。如此,通过对获取的车舱内的当前场景图像进行识别,确定车舱内包括的至少一个用户的当前坐姿,并进一步在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息,从而对处于异常坐姿的用户进行提示,提高用户乘车的安全性。
在一些实施例中,所述异常坐姿类型包括以下至少一种:
用户身体前倾的第一异常坐姿、用户身体侧倾的第二异常坐姿和用户身体横躺的第三异常坐姿。如此,通过定义多种异常坐姿,使得异常坐姿类型较丰富,进而可以更全面的覆盖多种异常坐姿,保障用户的乘车的安全性。
在一些实施例中,基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿,包括:
基于所述当前场景图像,确定所述当前场景图像中至少一个用户的关键点信息;
基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿。如此,通过当前场景图像中至少一个用户的关键点信息和设置的参考物之间的相对位置关系,能够准确地确定出车舱内的各个用户的当前坐姿。
在一些实施例中,所述关键点信息包括头部关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿,包括:
若任一用户的所述头部关键点信息低于设置的方向盘下沿线,确定所述任一用户的当前坐姿为用户身体前倾的第一异常坐姿。如此,通过判断用户的头部关键点信息低于设置的方向盘下沿线,快速确定出用户当前坐姿为用户身体前倾的第一异常坐姿。
在一些实施例中,所述关键点信息包括左肩关键点信息和右肩关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿,包括:
若任一用户的左肩关键点与右肩关键点之间的连线、与设置的座椅参考面之间的角度大于设置的第一角度阈值,确定所述任一用户的当前坐姿为用户身体侧倾的第二异常坐姿。如此,在用户肩部关键点与座椅参考面之间的角度大于第一角度阈值时,快速地确定出用户当前坐姿为用户身体侧倾的第二异常坐姿。
在一些实施例中,所述关键点信息包括脖子关键点信息和胯部关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿,包括:
若任一用户的脖子关键点与胯部关键点之间的连线、与设置的水平参考面之间的角度小于设置的第二角度阈值,确定所述任一用户的当前坐姿为用户身体横躺的第三异常坐姿。如此,在用户脖子关键点、胯部关键点与水平参考面之间的角度小于第二角度阈值时,快速地确定出用户当前坐姿为用户身体横躺的第三异常坐姿。
在一些实施例中,基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿,包括:
基于所述当前场景图像,生成所述当前场景图像对应的中间特征图;
基于所述中间特征图,生成位于所述车舱内的至少一个用户中每个用户的检测框信息;
基于所述中间特征图和所述至少一个用户中每个用户的检测框信息,确定每个用户的当前坐姿。如此,只需通过当前场景图像对应的中间特征图,以及每个用户的检测框信息,实现了快速确定每个用户的当前坐姿,同时因无中间参数使得确定出的每个用户的当前坐姿准确性高。
在一些实施例中,基于所述中间特征图,生成位于所述车舱内的至少一个用户中每个用户的检测框信息,包括:
对所述中间特征图进行至少一次第一卷积处理,生成所述中间特征图对应的通道特征图;
基于所述通道特征图中表征位置的目标通道特征图,生成位于所述车舱内的每个用户的检测框的中心点位置信息。如此,采用特征图处理的方式确定用户对应的检测框信息(包含中心点位置信息),进而将检测框信息与当前场景图像对应的中间特征图进行比对,确定用户的当前位姿信息。
在一些实施例中,基于所述通道特征图中表征位置的目标通道特征图,生成位于所述车舱内的每个用户的检测框的中心点位置信息,包括:
利用激活函数对所述表征位置的目标通道特征图中每个特征值进行特征值转换处理,生成转换后的目标通道特征图;
按照预设的池化尺寸和池化步长,对转换后的目标通道特征图进行最大池化处理,得到多个池化值以及与多个池化值中的每个池化值对应的位置索引;所述位置索引用于标识所述池化值在所述转换后的目标通道特征图中的位置;
基于所述每个池化值以及池化阈值,从多个池化值中确定属于至少一个用户的检测框的中心点的目标池化值;
基于所述目标池化值对应的位置索引,生成位于所述车舱内的每个用户的检测框的中心点位置信息。如此,通过对目标通道特征图进行最大池化处理,能够较准确的从多个池化值中确定属于用户中心点的目标池化值,进而较精确的确定每个用户的检测框的中心点位置信息。
在一些实施例中,基于所述中间特征图和所述至少一个用户中每个用户的检测框信息,确定每个用户的当前坐姿,包括:
对所述中间特征图进行至少一次第二卷积处理,生成所述中间特征图对应的N通道的分类特征图;其中,所述分类特征图的通道数N与坐姿类别的数量一致,所述N通道的分类特征图中的每个通道特征图对应一种坐姿类别,N为大于1的正整数;
针对每个用户,基于所述用户的检测框信息指示的中心点位置信息,20从所述分类特征图中提取与所述中心点位置信息匹配的特征位置处的N个特征值;从N个特征值中选取最大特征值,将分类特征图中,与最大特征值对应的通道特征图的坐姿类别,确定为所述用户的当前坐姿。如此,通过对中间特征图进行至少一次第二卷积处理,生成分类特征图,再结合生成的每个用户的中心点位置信息,可以较准确的确定每个用户的当前坐姿。
以下装置、电子设备等的效果描述参见上述方法的说明,这里不再赘述。
本公开实施例提供了一种异常坐姿识别装置,包括:
获取模块,用于获取车舱内的当前场景图像;
识别模块,用于基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿;
确定模块,用于在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型包括存在安全风险的坐姿类型。
本公开实施例提供一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如上述第一方面或任一实施方式所述的异常坐姿识别方法的步骤。
本公开实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如上述第一方面或任一实施方式所述的异常坐姿识别方法的步骤。
本公开实施例提供了一种计算机程序,所述计算机程序包括计算机可读代码,在所述计算机可读代码在计算机中运行的情况下,使得所述计算机执行上述任意一种异常坐姿识别方法。
本公开实施例提出的异常坐姿识别方法、装置、电子设备、存储介质及程序;首先,获取车舱内的当前场景图像;再基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿;最后在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型包括存在安全风险的坐姿类型;如此,通过对获取的车舱内的当前场景图像进行识别,确定车舱内包括的至少一个用户的当前坐姿,并进一步在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息,从而对处于异常坐姿的用户进行提示,提高用户乘车的安全性。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,此处的附图被并入说明书中并构成本说明书中的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本公开实施例所提供的一种异常坐姿识别方法的流程示意图;
图2示出了应用本公开实施例的异常坐姿识别方法的一种系统架构示意图;
图3示出了本公开实施例所提供的一种异常坐姿识别方法中,当前场景图像的示意图;
图4示出了本公开实施例所提供的一种异常坐姿识别装置400的架构示意图;
图5示出了本公开实施例所提供的一种电子设备500的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
在相对技术中,车舱智能化可以包括个性化服务、安全感知等方面。在安全感知方面,由于用户在车辆行驶过程中保持的坐姿与用户的安全程度相关,即不合适的坐姿会在车辆发生碰撞事件时增加用户受伤的概率,进而降低用户乘车的安全度。故为了解决上述问题,本公开实施例提供了一种异常坐姿识别方法。
为便于对本公开实施例进行理解,首先对本公开实施例所公开的一种异常坐姿识别方法进行详细介绍。
参见图1所示,为本公开实施例所提供的一种异常坐姿识别方法的流程示意图,该方法包括S101至S103,其中:
S101,获取车舱内的当前场景图像。
S102,基于当前场景图像,识别位于车舱内的至少一个用户的当前坐姿。
S103,在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,异常坐姿类型包括存在安全风险的坐姿类型。
上述方法中,通过对获取的车舱内的当前场景图像进行识别,确定位于车舱内的至少一个用户的当前坐姿,并进一步在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息,从而对处于异常坐姿的用户进行提示,提高用户乘车的安全性。
图2为可以应用本公开实施例的异常坐姿识别方法的一种系统架构示意图;如图2所示,该系统架构中包括:车辆终端201、网络202和异常坐姿识别端203。为实现支撑一个示例性应用,车辆终端201和异常坐姿识别端203可以通过网络202建立通信连接,车辆终端201通过网络202向异常坐姿识别端设备203上报车舱内的当前场景图像,异常坐姿识别端设备203响应于接收到的当前场景图像,基于当前场景图像,识别位于车舱内的至少一个用户的当前坐姿;在用户的当前坐姿属于异常坐姿类型的情况下,确定警示信息,最后,异常坐姿识别端203将该警示信息上传至网络202,并通过网络202发送给车辆终端201。
作为示例,车辆终端201可以包括车载图像采集设备,异常坐姿识别端203可以包括具有视觉信息处理能力的车载视觉处理设备或远程服务器。网络202可以采用有线连接或无线连接方式。其中,当异常坐姿识别端为车载视觉处理设备时,车辆终端可以通过有线连接的方式与车载视觉处理设备通信连接,例如通过总线进行数据通信;当异常坐姿识别端为远程服务器时,车辆终端可以通过无线网络与远程服务器进行数据交互。
或者,在一些场景中,车辆终端201可以是带有车载图像采集模组的车载视觉处理设备,具体实现为带有摄像头的车载主机。这时,本公开实施例的异常坐姿识别方法可以由车辆终端201执行,上述系统架构可以不包含网络202和异常坐姿识别端203。
针对S101:
这里,可以在车舱的顶部设置摄像设备,通过车舱内设置的摄像设备实时获取车舱内的当前场景图像。其中,该摄像设备的安装位置可以为能够拍摄到车舱内全部用户的位置。
针对S102:
在获取到当前场景图像之后,可以对当前场景图像进行识别,确定车舱内的每个用户对应的当前坐姿。其中,该当前坐姿可以为每个用户的坐姿类别。
一种可能的实施方式中,基于当前场景图像,识别位于车舱内的至少一个用户的当前坐姿,可以包括:
基于当前场景图像,确定当前场景图像中至少一个用户的关键点信息;
基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于车舱内的各个用户的当前坐姿。
这里,可以将当前场景图像输入至关键点检测神经网络,确定当前场景图像中至少一个用户的关键点信息;并可以针对车舱内的每个用户,基于该用户的关键点信息与设置的参考物之间的相对位置关系,确定该用户的当前坐姿。
一种可能的实施方式中,关键点信息包括头部关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于车舱内的各个用户的当前坐姿,可以包括:
若任一用户的头部关键点信息低于设置的方向盘下沿线,确定任一用户的当前坐姿为用户身体前倾的第一异常坐姿。
参见图3所示的一种异常坐姿识别方法中,当前场景图像的示意图,图中包括方向盘31、方向盘下沿线32、驾驶员33,方向盘下沿线32为在靠近驾驶员一侧的方向盘的边缘,得到的与行驶方向垂直的参考线。由图3可知,方向盘下沿线将当前场景图像划分为两个区域,即位于方向盘下沿线上方的第一区域34和位于方向盘下沿线下方的第二区域35。在检测到用户的头部关键点信息低于设置的方向盘下沿线,即检测到用户的头部关键点信息位于第二区域35内时,则确定该用户的当前坐姿为用户身体前倾的第一异常坐姿;在检测到用户的头部关键点信息高于设置的方向盘下沿线,即检测到用户的头部关键点信息位于第一区域34内时,则确定该用户的当前坐姿不属于用户身体前倾的第一异常坐姿;若用户的头部关键点信息位于方向盘下沿线上,则确定该用户的当前坐姿不属于用户身体前倾的第一异常坐姿。
一种可能的实施方式中,关键点信息包括左肩关键点信息和右肩关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于车舱内的各个用户的当前坐姿,包括:
若任一用户的左肩关键点与右肩关键点之间的连线、与设置的座椅参考面之间的角度大于设置的第一角度阈值,确定任一用户的当前坐姿为用户身体侧倾的第二异常坐姿。
这里,第一角度阈值可以根据实际需要进行设置,比如第一角度可以为45度;以及可以将用户背靠座椅的一面(即座椅的竖直面)设置为座椅参考面。进而可以确定检测到的左肩关键点与右肩关键点之间的连线、与设置的座椅参考面之间的角度,在该角度大于设置的第一角度阈值时,确定该用户的当前坐姿为用户身体侧倾的第二异常坐姿;在该角度小于或等于设置的第一角度阈值时,则确定该用户的当前坐姿不属于用户身体前倾的第二异常坐姿。
一种可能的实施方式中,关键点信息包括脖子关键点信息和胯部关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于车舱内的各个用户的当前坐姿,包括:
若任一用户的脖子关键点与胯部关键点之间的连线、与设置的水平参考面之间的角度小于设置的第二角度阈值,确定任一用户的当前坐姿为用户身体横躺的第三异常坐姿。
这里,设置的水平参考面可以为座椅水平面,以及第二角度阈值可以根据实际需要进行设置。可以确定脖子关键点与胯部关键点之间的连线与设置的水平参考面之间的角度,在该角度小于设置的第二角度阈值时,确定该用户的当前坐姿为用户身体横躺的第三异常坐姿;在该角度大于或等于设置的第二角度阈值时,确定该用户的当前坐姿不属于用户身体横躺的第三异常坐姿。
在具体实施时,还可以将当前场景图像输入至训练的神经网络中,确定该当前场景图像中包括的每个用户的当前坐姿。
作为一可选实施方式,基于当前场景图像,识别位于车舱内的至少一个用户的当前坐姿,可以包括:
步骤一,基于当前场景图像,生成当前场景图像对应的中间特征图;
步骤二,基于中间特征图,生成位于车舱内的至少一个用户中每个用户的检测框信息;
步骤三,基于中间特征图和至少一个用户中每个用户的检测框信息,确定每个用户的当前坐姿。
在步骤一中,可以将当前场景图像输入至训练后的神经网络中,该神经网络中的骨干网络对当前场景图像进行多次卷积处理,生成当前场景图像对应的中间特征图。
在步骤二中,可以利用中间特征图和神经网络中包括的检测框检测分支网络,生成位于车舱内的至少一个用户中每个用户的检测框信息。
一种可选实施方式中,基于中间特征图,生成位于车舱内的至少一个用户中每个用户的检测框信息,可以包括:
A1,对中间特征图进行至少一次第一卷积处理,生成中间特征图对应的通道特征图;
A2,基于通道特征图中表征位置的目标通道特征图,生成位于车舱内的每个用户的检测框的中心点位置信息。
这里,可以先对中间特征图进行至少一个第一卷积处理,生成中间特征图对应的通道特征图,该通道特征图对应的通道数可以为三通道。其中,该通道特征图中包括表征位置的第一通道特征图(该第一通道特征图即为目标通道特征图)、表征检测框长度信息的第二通道特征图、以及表征检测框宽度信息的第三通道特征图。
进而,可以基于通道特征图中表征位置的目标通道特征图,生成车舱内包括的每个用户的检测框的中心点位置信息,以及还可以基于通道特征图中的第二通道特征图和第三通道特征图,确定检测框的尺寸信息(长度和宽度)。
上述实施方式中,采用特征图处理的方式确定用户对应的检测框信息(包含中心点位置信息),进而将检测框信息与当前场景图像对应的中间特征图进行比对,确定用户的当前位姿信息。
作为一可选实施方式,基于通道特征图中表征位置的目标通道特征图,生成位于车舱内的每个用户的检测框的中心点位置信息,可以包括:
B1,利用激活函数对表征位置的目标通道特征图中每个特征值进行特征值转换处理,生成转换后的目标通道特征图;
B2,按照预设的池化尺寸和池化步长,对转换后的目标通道特征图进行最大池化处理,得到多个池化值以及与多个池化值中的每个池化值对应的位置索引;位置索引用于标识池化值在转换后的目标通道特征图中的位置;
B3,基于每个池化值以及池化阈值,从多个池化值中确定属于至少一个用户的检测框的中心点的目标池化值;
B4,基于目标池化值对应的位置索引,生成位于车舱内的每个用户的检测框的中心点位置信息。
本公开实施例中,可以利用激活函数对目标特征图进行特征值转换处理,生成转换后的目标通道特征图,该目标通道特征图中每个特征值均为0-1之间的数值。其中,该激活函数可以为sigmoid函数。针对转换后的目标通道特征图中的任一特征点的特征值,若该特征值越趋向于1,则该特征值对应的特征点属于用户的检测框的中心点的概率也就越大。
接着,可以按照预设的池化尺寸和池化步长,对转换后的目标通道特征图进行最大池化处理,得到目标通道特征图中每个特征位置处对应的池化值和每个池化值对应的位置索引;位置索引可以用于标识池化值在转换后的目标通道特征图中的位置。然后可以将每个特征位置处对应的位置索引中,相同的位置索引进行合并处理,得到该目标通道特征图对应多个池化值和多个池化值中每个池化值对应的位置索引。其中,预设的池化尺寸和池化步长可以根据实际需要进行设置,比如,预设的池化尺寸可以为3×3,预设的池化步长可以为1。
进一步的,可以设置池化阈值,对得到的多个池化值进行筛选,得到多个池化值中大于池化阈值的至少一个目标池化值,并基于目标池化值对应的位置索引,生成车舱内包括的每个用户的检测框的中心点位置信息。示例性的,可以获取当前场景图像对应的摄像设备采集到的多帧样本图像,根据采集的多帧样本图像利用自适应算法,生成池化阈值。
示例性的,可以对目标通道特征图进行3×3,且步长为1的最大池化处理;在池化时,针对每3×3个特征点在目标通道特征图中的特征值,确定3×3个特征点的最大响应值(即池化值)及最大响应值在目标通道特征图上的位置索引。此时,最大响应值的数量与目标通道特征图的尺寸相关;例如若目标通道特征图的尺寸为80×60×3,则在对目标通道特征图进行最大池化处理后,得到的最大响应值共80×60个;且对于每个最大响应值,都可能存在至少一个其他最大响应值与其位置索引相同。
然后将位置索引相同的最大响应值合并,得到M个最大响应值,以及M个最大响应值中每个最大响应值对应的位置索引。
然后将M个最大响应值中的每个最大响应值与池化阈值进行比对;在某最大响应值大于该池化阈值时,将该最大响应值确定为目标池化值。目标池化值对应的位置索引,即用户的检测框的中心点位置信息。
这里,还可以直接对转换之前的目标通道特征图进行最大池化处理,得到每个用户的检测框的中心点位置信息。
示例性的,在得到用户的检测框的中心点位置信息之后,还可以基于该中心点位置信息,从第二通道特征图中选取与该中心点位置信息匹配的特征位置处的第二特征值,将选取的第二特征值确定为用户的检测框对应的长度,并从第三通道特征图中选取与该中心点位置信息匹配的特征位置处的第三特征值,将选取的第三特征值确定为用户的检测框对应的宽度,得到了用户的检测框的尺寸信息。
上述实施方式中,通过对目标通道特征图进行最大池化处理,能够较准确的从多个池化值中确定属于用户中心点的目标池化值,进而较精确的确定每个用户的检测框的中心点位置信息。
在步骤三中,可以基于中间特征图、至少一个用户中每个用户的检框信息、和训练后的神经网络中的姿态分类分支网络,确定每个用户的当前坐姿。
在一些实施例中,基于中间特征图和至少一个用户中每个用户的检测框信息,确定每个用户的当前坐姿,包括:
C1,对中间特征图进行至少一次第二卷积处理,生成中间特征图对应的N通道的分类特征图;其中,分类特征图的通道数N与坐姿类别的数量一致,N通道的分类特征图中的每个通道特征图对应一种坐姿类别,N为大于1的正整数;
C2,针对每个用户,基于用户的检测框信息指示的中心点位置信息,从分类特征图中提取与中心点位置信息匹配的特征位置处的N个特征值;从N个特征值中选取最大特征值,将分类特征图中,与最大特征值对应的通道特征图的坐姿类别,确定为用户的当前坐姿。
这里,可以对中间特征图进行至少一次第二卷积处理,生成中间特征图对应的分类特征图,该分类特征图的通道数为N,该N的值与坐姿类别的数量一致,且N通道的分类特征图中的每个通道特征图对应一种坐姿类别。比如,若坐姿类别包括:正常坐姿、身体前倾、身体后倾,则此时N的值为3;若坐姿类别包括:正常坐姿、身体前倾、身体后倾、和身体横卧,则此时N的值为4。其中,坐姿类别可以根据实际需要进行设置,此处仅为示例性说明。
进一步的,针对每个用户,可以基于用户的检框信息指示的中心点位置信息,从分类特征图中提取与中心点位置信息匹配的特征位置处的N个特征值,从N个特征值中选取最大特征值,将分类特征图中,与该最大特征值对应的通道特征图的坐姿类别,确定为该用户的当前坐姿。
比如,针对用户A,分类特征图为3通道的特征图,分类特征图中的第一通道特征图对应的坐姿类别可以为正常坐姿、第二通道特征图对应的坐姿类别可以为身体前倾、第三通道特征图对应的坐姿类别可以为身体侧倾,从分类特征图中提取得到3个特征值,即0.8、0.5、0.2,则将分类特征图中,与0.8对应的通道特征图(分类特征图中的第一通道特征图)的坐姿类别(正常坐姿)确定为用户A的当前坐姿。
这里,通过对中间特征图进行至少一次第二卷积处理,生成分类特征图,再结合生成的每个用户的中心点位置信息,可以较准确的确定每个用户的当前坐姿。
在一些实施例中,每个用户的当前坐姿为基于训练的神经网络确定的。可以通过下述步骤对神经网络进行训练:
D1,获取场景图像样本,其中,场景图像样本对应有标注数据;
D2,基于神经网络中的骨干网络、和场景图像样本,生成场景图像样本对应的样本特征图;
D3,基于神经网络中的多个分支网络、和样本特征图,生成场景图像样本对应的多种预测数据;其中,每个分支网络对应一种预测数据;
D4,基于多种预测数据、以及场景图像样本对应的标注数据,对神经网络进行训练。
上述方式中,通过设置多个分支网络对样本特征图进行处理,生成场景图像样本对应的多种预测数据,通过生成的多种预测数据对神经网络进行训练时,可以提高训练的神经网络的精准度。
这里,标注数据可以包括标注关键点位置信息、标注检测框信息、标注坐姿类别。
可以将场景图像样本输入至待训练的神经网络中,待训练的神经网络中的骨干网络对场景图像样本进行至少一次卷积处理,生成场景图像样本对应的样本特征图。
然后分别将样本特征图输入至待训练的神经网络中的多个分支网络中,生成场景图像样本对应的多种预测数据,其中,每个分支网络对应一种预测数据。
其中,预测数据可以包括预测检测框信息、预测关键位置点信息、预测坐姿类别。
在预测数据包括预测检测框信息时,则神经网络的分支网络中包括检测框检测分支网络,将样本特征图输入至神经网络中的检测框检测分支网络,生成场景图像样本中包括的至少一个用户的预测检测框信息。
在预测数据包括预测关键位置点信息时,则神经网络的分支网络中包括关键点检测分支网络,将样本特征图输入至神经网络中的关键点检测分支网络,生成场景图像样本中包括的每个用户的多个预测关键位置点信息。
在预测数据包括预测检测框信息和预测坐姿类别时,则神经网络的分支网络中包括检测框检测分支网络、和姿态分类分支网络,将样本特征图输入至神经网络中的关键点检测分支网络,得到分类特征图,并基于至少一个用户的预测检测框信息和该分类特征图,生成场景图像样本中包括的每个用户的预测坐姿类别。
上述实施方式下,通过设置多个分支网络对样本特征图进行处理,得到多种预测数据,通过多种预测数据对神经网络进行训练,使得训练后的神经网路的精准度较高。
在多种预测数据包括预测检测框信息、预测关键位置点信息、和预测坐姿类别时,可以基于预测检测框信息和标注检测框信息,生成第一损失值;基于预测关键位置点信息和标注关键位置点信息,生成第二损失值;基于预测坐姿类别和标注坐姿类别,生成第三损失值,基于第一损失值、第二损失值和第三损失值,对神经网络进行训练,得到训练后的神经网络。
针对S103:
在得到当前场景图像中的每个用户的当前坐姿之后,可以根据每个用户的当前坐姿,确定该用户的当前坐姿是否属于异常坐姿,异常坐姿类型是指存在安全风险的坐姿类型。在确定该用户的当前坐姿属于异常坐姿时,发出警示信息。
一种可选实施方式中,异常坐姿类型可以包括以下至少一种:用户身体前倾的第一异常坐姿、用户身体侧倾的第二异常坐姿和用户身体横躺的第三异常坐姿。其中,异常坐姿类型还可以包括其他存在安全风险的坐姿,此处仅为示例性说明。
示例性的,若用户的当前坐姿为正常坐姿,则确定该用户不属于异常坐姿;若用户的当前坐姿为身体前倾,则确定该用户属于异常坐姿。
在上述实施方式下,通过定义多种异常坐姿,使得异常坐姿类型较丰富,进而可以更全面的覆盖多种异常坐姿,保障用户的乘车的安全性。
这里,在确定了用户的当前坐姿属于异常坐姿类型时,可以基于用户当前坐姿所属的异常坐姿类型,生成警示信息,其中,该警示信息可以以语音的形式播放。比如用户A当前坐姿为身体前倾时,生成的警示信息可以为“危险,身体前倾,请调整坐姿”。
在具体实施时,还可以为车舱的每个位置进行标识,比如,车舱内的每个位置的标识可以为:副驾驶位置、左后位置、右后位置等,并基于当前场景图像确定每个用户对应的位置标识,并在确定用户当前坐姿属于异常坐姿类型的情况下,可以基于用户当前坐姿所属的异常坐姿类型、和坐姿标识,生成警示信息。比如,在用户A当前坐姿为身体前倾,该用户A对应的位置标识为副驾驶位置,则生成的警示信息可以为“副驾驶位置上的乘客身体前倾,请调整坐姿”。
这里,在确定了用户当前坐姿属于异常坐姿类型时,可以基于用户当前坐姿所属的异常坐姿类型,生成警示信息,以便对用户进行警示,降低用户发生危险的概率。
本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的撰写顺序并不意味着严格的执行顺序而对实施过程构成任何限定,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
基于相同的构思,本公开实施例还提供了一种异常坐姿识别装置400,参见图4所示,为本公开实施例提供的异常坐姿识别装置的架构示意图,包括获取模块401、识别模块402、确定模块403,具体的:
获取模块401,用于获取车舱内的当前场景图像;
识别模块402,用于基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿;
确定模块403,用于在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型是指存在安全风险的坐姿类型。
一种可能的实施方式中,所述异常坐姿类型包括以下至少一种:用户身体前倾的第一异常坐姿、用户身体侧倾的第二异常坐姿和用户身体横躺的第三异常坐姿。
一种可能的实施方式中,所述识别模块402,在基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿时,用于:
基于所述当前场景图像,确定所述当前场景图像中至少一个用户的关键点信息;
基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿。
一种可能的实施方式中,所述关键点信息包括头部关键点信息;所述识别模块402,在基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿时,用于:
若任一用户的所述头部关键点信息低于设置的方向盘下沿线,确定所述任一用户的当前坐姿为用户身体前倾的第一异常坐姿。
一种可能的实施方式中,所述关键点信息包括左肩关键点信息和右肩关键点信息;所述识别模块402,在基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿时,用于:
若任一用户的左肩关键点与右肩关键点之间的连线、与设置的座椅参考面之间的角度大于设置的第一角度阈值,确定所述任一用户的当前坐姿为用户身体侧倾的第二异常坐姿。
一种可能的实施方式中,所述关键点信息包括脖子关键点信息和胯部关键点信息;所述识别模块402,在基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿时,用于:
若任一用户的脖子关键点与胯部关键点之间的连线、与设置的水平参考面之间的角度小于设置的第二角度阈值,确定所述任一用户的当前坐姿为用户身体横躺的第三异常坐姿。
一种可能的实施方式中,所述识别模块402,在基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿时,用于:
基于所述当前场景图像,生成所述当前场景图像对应的中间特征图;
基于所述中间特征图,生成位于所述车舱内的至少一个用户中每个用户的检测框信息;
基于所述中间特征图和所述至少一个用户中每个用户的检测框信息,确定每个用户的当前坐姿。
一种可能的实施方式中,所述识别模块402,在基于所述中间特征图,生成位于所述车舱内的至少一个用户中每个用户的检测框信息时,用于:
对所述中间特征图进行至少一次第一卷积处理,生成所述中间特征图对应的通道特征图;
基于所述通道特征图中表征位置的目标通道特征图,生成位于所述车舱内的每个用户的检测框的中心点位置信息。
一种可能的实施方式中,所述识别模块402,在基于所述通道特征图中表征位置的目标通道特征图,生成位于所述车舱内的每个用户的检测框的中心点位置信息时,用于:
利用激活函数对所述表征位置的目标通道特征图中每个特征值进行特征值转换处理,生成转换后的目标通道特征图;
按照预设的池化尺寸和池化步长,对转换后的目标通道特征图进行最大池化处理,得到多个池化值以及与多个池化值中的每个池化值对应的位置索引;所述位置索引用于标识所述池化值在所述转换后的目标通道特征图中的位置;
基于所述每个池化值以及池化阈值,从多个池化值中确定属于至少一个用户的检测框的中心点的目标池化值;
基于所述目标池化值对应的位置索引,生成位于所述车舱内的每个用户的检测框的中心点位置信息。
一种可能的实施方式中,所述识别模块402,在基于所述中间特征图和所述至少一个用户中每个用户的检测框信息,确定每个用户的当前坐姿时,用于:
对所述中间特征图进行至少一次第二卷积处理,生成所述中间特征图对应的N通道的分类特征图;其中,所述分类特征图的通道数N与坐姿类别的数量一致,所述N通道的分类特征图中的每个通道特征图对应一种坐姿类别,N为大于1的正整数;
针对每个用户,基于所述用户的检测框信息指示的中心点位置信息,从所述分类特征图中提取与所述中心点位置信息匹配的特征位置处的N个特征值;从N个特征值中选取最大特征值,将分类特征图中,与最大特征值对应的通道特征图的坐姿类别,确定为所述用户的当前坐姿。
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模板可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。
基于同一技术构思,本公开实施例还提供了一种电子设备500。参照图5所示,为本公开实施例提供的电子设备500的结构示意图,包括处理器501、存储器502、和总线503。其中,存储器502用于存储执行指令,包括内存5021和外部存储器5022;这里的内存5021也称内存储器,用于暂时存放处理器501中的运算数据,以及与硬盘等外部存储器5022交换的数据,处理器501通过内存5021与外部存储器5022进行数据交换,当电子设备500运行时,处理器501与存储器502之间通过总线503通信,使得处理器501在执行以下指令:
获取车舱内的当前场景图像;
基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿;
在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型是指存在安全风险的坐姿类型。
此外,本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法实施例中所述的异常坐姿识别方法的步骤。
本公开实施例所提供的异常坐姿识别方法的计算机程序产品,用于存储计算机可读代码,计算机可读代码在电子设备中运行的情况下,电子设备的处理器执行用于实现如上述任一实施例提供的异常坐姿识别方法。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统和装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或 讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
工业实用性
本公开提供了一种异常坐姿识别方法、装置、电子设备、存储介质及程序;其中,获取车舱内的当前场景图像;基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿;在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型包括存在安全风险的坐姿类型。

Claims (14)

  1. 一种异常坐姿识别方法,包括:
    获取车舱内的当前场景图像;
    基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿;
    在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型包括存在安全风险的坐姿类型。
  2. 根据权利要求1所述的方法,所述异常坐姿类型包括以下至少一种:
    用户身体前倾的第一异常坐姿、用户身体侧倾的第二异常坐姿和用户身体横躺的第三异常坐姿。
  3. 根据权利要求2所述的方法,基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿:
    基于所述当前场景图像,确定所述当前场景图像中至少一个用户的关键点信息;
    基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿。
  4. 根据权利要求3所述的方法,所述关键点信息包括头部关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿,包括:
    若任一用户的所述头部关键点信息低于设置的方向盘下沿线,确定所述任一用户的当前坐姿为用户身体前倾的第一异常坐姿。
  5. 根据权利要求3所述的方法,所述关键点信息包括左肩关键点信息和右肩关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿,包括:
    若任一用户的左肩关键点与右肩关键点之间的连线、与设置的座椅参考面之间的角度大于设置的第一角度阈值,确定所述任一用户的当前坐姿为用户身体侧倾的第二异常坐姿。
  6. 根据权利要求3所述的方法,所述关键点信息包括脖子关键点信息和胯部关键点信息;基于各个用户的关键点信息与设置的参考物之间的相对位置关系,确定位于所述车舱内的各个用户的当前坐姿,包括:
    若任一用户的脖子关键点与胯部关键点之间的连线、与设置的水平参考面之间的角度小于设置的第二角度阈值,确定所述任一用户的当前坐姿为用户身体横躺的第三异常坐姿。
  7. 根据权利要求1所述的方法,基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿,包括:
    基于所述当前场景图像,生成所述当前场景图像对应的中间特征图;
    基于所述中间特征图,生成位于所述车舱内的至少一个用户中每个用户的检测框信息:
    基于所述中间特征图和所述至少一个用户中每个用户的检测框信息,确定每个用户的当前坐姿。
  8. 根据权利要求7所述的方法,基于所述中间特征图,生成位于所述车舱内的至少一个用户中每个用户的检测框信息,包括:
    对所述中间特征图进行至少一次第一卷积处理,生成所述中间特征图对应的通道特征图;
    基于所述通道特征图中表征位置的目标通道特征图,生成位于所述车舱内的每个用户的检测框的中心点位置信息。
  9. 根据权利要求8所述的方法,基于所述通道特征图中表征位置的目标通道特征图,生成位于所述车舱内的每个用户的检测框的中心点位置信息,包括:
    利用激活函数对所述表征位置的目标通道特征图中每个特征值进行特征值转换处理,生成转换后的目标通道特征图;
    按照预设的池化尺寸和池化步长,对转换后的目标通道特征图进行最大池化处理,得到多个池化值以及与多个池化值中的每个池化值对应的位置索引;所述位置索引用于标识所述池化值在所述转换后的目标通道特征图中的位置;
    基于所述每个池化值以及池化阈值,从多个池化值中确定属于至少一个用户的检测框的中心点的目标池化值;
    基于所述目标池化值对应的位置索引,生成位于所述车舱内的每个用户的检测框的中心点位置信息。
  10. 根据权利要求7所述的方法,基于所述中间特征图和所述至少一个用户中每个用户的检测框信息,确定每个用户的当前坐姿,包括:
    对所述中间特征图进行至少一次第二卷积处理,生成所述中间特征图对应的N通道的分类特征图;其中,所述分类特征图的通道数N与坐姿类别的数量一致,所述N通道的分类特征图中的每个通道特征图对应一种坐姿类别,N为大于1的正整数;
    针对每个用户,基于所述用户的检测框信息指示的中心点位置信息,从所述分类特征图中提取与所述中心点位置信息匹配的特征位置处的N个特征值;从N个特征值中选取最大特征值,将分类特征图中,与最大特征值对应的通道特征图的坐姿类别,确定为所述用户的当前坐姿。
  11. 一种异常坐姿识别装置,包括:
    获取模块,用于获取车舱内的当前场景图像;
    识别模块,用于基于所述当前场景图像,识别位于所述车舱内的至少一个用户的当前坐姿;
    确定模块,用于在用户的当前坐姿属于异常坐姿类型的情况下,发出警示信息;其中,所述异常坐姿类型是指存在安全风险的坐姿类型。
  12. 一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过总线通信,所述机器可读指令被所述处理器执行时执行如权利要求1至10任一所述的异常坐姿识别方法的步骤。
  13. 一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如权利要求1至10任一所述的异常坐姿识别方法的步骤。
  14. 一种计算机程序,所述计算机程序包括计算机可读代码,在所述计算机可读代码在电子设备中运行的情况下,所述电子设备的处理器执行用于实现如权利要求1至10任一项所述的异常坐姿识别方法。
PCT/CN2020/136267 2020-08-07 2020-12-14 异常坐姿识别方法、装置、电子设备、存储介质及程序 WO2022027895A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021571346A JP2022547246A (ja) 2020-08-07 2020-12-14 非正規着座姿勢の認識方法、装置、電子機器、記憶媒体及びプログラム
KR1020217039206A KR20220019097A (ko) 2020-08-07 2020-12-14 이상 착석 자세 식별 방법, 장치, 전자 기기, 저장 매체 및 프로그램
US17/536,840 US20220084316A1 (en) 2020-08-07 2021-11-29 Method and electronic device for recognizing abnormal sitting posture, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010790210.0 2020-08-07
CN202010790210.0A CN111931640B (zh) 2020-08-07 2020-08-07 异常坐姿识别方法、装置、电子设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/536,840 Continuation US20220084316A1 (en) 2020-08-07 2021-11-29 Method and electronic device for recognizing abnormal sitting posture, and storage medium

Publications (1)

Publication Number Publication Date
WO2022027895A1 true WO2022027895A1 (zh) 2022-02-10

Family

ID=73307054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136267 WO2022027895A1 (zh) 2020-08-07 2020-12-14 异常坐姿识别方法、装置、电子设备、存储介质及程序

Country Status (5)

Country Link
US (1) US20220084316A1 (zh)
JP (1) JP2022547246A (zh)
KR (1) KR20220019097A (zh)
CN (1) CN111931640B (zh)
WO (1) WO2022027895A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114550099A (zh) * 2022-03-01 2022-05-27 常莫凡 基于数字孪生的综合健康管理系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111931640B (zh) * 2020-08-07 2022-06-10 上海商汤临港智能科技有限公司 异常坐姿识别方法、装置、电子设备及存储介质
CN112613440A (zh) * 2020-12-29 2021-04-06 北京市商汤科技开发有限公司 一种姿态检测的方法、装置、电子设备及存储介质
CN112733740B (zh) * 2021-01-14 2024-05-28 深圳数联天下智能科技有限公司 一种注意力信息的生成方法、装置、终端设备及存储介质
CN112712053B (zh) * 2021-01-14 2024-05-28 深圳数联天下智能科技有限公司 一种坐姿信息的生成方法、装置、终端设备及存储介质
US11851080B2 (en) * 2021-02-03 2023-12-26 Magna Mirrors Of America, Inc. Vehicular driver monitoring system with posture detection and alert
US20220319045A1 (en) * 2021-04-01 2022-10-06 MohammadSado Lulu System For Posture Detection Using The Camera Of A Hand-Held Device
KR102513042B1 (ko) * 2022-11-30 2023-03-23 주식회사 알에스팀 버스 안전사고 예방을 위한 이동 감지 시스템
CN115877899B (zh) * 2023-02-08 2023-05-09 北京康桥诚品科技有限公司 一种漂浮舱内的液体控制方法、装置、漂浮舱和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108985259A (zh) * 2018-08-03 2018-12-11 百度在线网络技术(北京)有限公司 人体动作识别方法和装置
CN109389068A (zh) * 2018-09-28 2019-02-26 百度在线网络技术(北京)有限公司 用于识别驾驶行为的方法和装置
CN110348335A (zh) * 2019-06-25 2019-10-18 平安科技(深圳)有限公司 行为识别的方法、装置、终端设备及存储介质
CN110517261A (zh) * 2019-08-30 2019-11-29 上海眼控科技股份有限公司 安全带状态检测方法、装置、计算机设备和存储介质
WO2020063753A1 (zh) * 2018-09-27 2020-04-02 北京市商汤科技开发有限公司 动作识别、驾驶动作分析方法和装置、电子设备
CN111301280A (zh) * 2018-12-11 2020-06-19 北京嘀嘀无限科技发展有限公司 一种危险状态识别方法及装置
CN111931640A (zh) * 2020-08-07 2020-11-13 上海商汤临港智能科技有限公司 异常坐姿识别方法、装置、电子设备及存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102567743A (zh) * 2011-12-20 2012-07-11 东南大学 基于视频图像的驾驶员姿态自动识别方法
JP6372388B2 (ja) * 2014-06-23 2018-08-15 株式会社デンソー ドライバの運転不能状態検出装置
JP6507015B2 (ja) * 2015-04-08 2019-04-24 日野自動車株式会社 運転者状態判定装置
US10318831B2 (en) * 2016-07-21 2019-06-11 Gestigon Gmbh Method and system for monitoring the status of the driver of a vehicle
JP2019034576A (ja) * 2017-08-10 2019-03-07 オムロン株式会社 運転者状態把握装置、運転者状態把握システム、及び運転者状態把握方法
CN107730846A (zh) * 2017-10-25 2018-02-23 深圳纳富特科技有限公司 坐姿矫正的提醒方法、装置及计算机可读存储介质
JP7051526B2 (ja) * 2018-03-26 2022-04-11 本田技研工業株式会社 車両用制御装置
JP7102850B2 (ja) * 2018-03-28 2022-07-20 マツダ株式会社 ドライバ状態判定装置
CN109409331A (zh) * 2018-11-27 2019-03-01 惠州华阳通用电子有限公司 一种基于雷达的防疲劳驾驶方法
JP7259324B2 (ja) * 2018-12-27 2023-04-18 株式会社アイシン 室内監視装置
CN111414780B (zh) * 2019-01-04 2023-08-01 卓望数码技术(深圳)有限公司 一种坐姿实时智能判别方法、系统、设备及存储介质
CN109910904B (zh) * 2019-03-22 2021-03-09 深圳市澳颂泰科技有限公司 一种驾驶行为与车辆驾驶姿态识别系统
CN111439170B (zh) * 2020-03-30 2021-09-17 上海商汤临港智能科技有限公司 儿童状态检测方法及装置、电子设备、存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108985259A (zh) * 2018-08-03 2018-12-11 百度在线网络技术(北京)有限公司 人体动作识别方法和装置
WO2020063753A1 (zh) * 2018-09-27 2020-04-02 北京市商汤科技开发有限公司 动作识别、驾驶动作分析方法和装置、电子设备
CN109389068A (zh) * 2018-09-28 2019-02-26 百度在线网络技术(北京)有限公司 用于识别驾驶行为的方法和装置
CN111301280A (zh) * 2018-12-11 2020-06-19 北京嘀嘀无限科技发展有限公司 一种危险状态识别方法及装置
CN110348335A (zh) * 2019-06-25 2019-10-18 平安科技(深圳)有限公司 行为识别的方法、装置、终端设备及存储介质
CN110517261A (zh) * 2019-08-30 2019-11-29 上海眼控科技股份有限公司 安全带状态检测方法、装置、计算机设备和存储介质
CN111931640A (zh) * 2020-08-07 2020-11-13 上海商汤临港智能科技有限公司 异常坐姿识别方法、装置、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU MIN , PAN, LIAN, ZENG XIN-HUA, ZHU ZE-DE: "Sitting Behavior Recognition Based on MTCNN", COMPUTER ENGINEERING AND DESIGN, vol. 40, no. 11, 30 November 2019 (2019-11-30), XP055894789 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114550099A (zh) * 2022-03-01 2022-05-27 常莫凡 基于数字孪生的综合健康管理系统

Also Published As

Publication number Publication date
KR20220019097A (ko) 2022-02-15
CN111931640B (zh) 2022-06-10
US20220084316A1 (en) 2022-03-17
JP2022547246A (ja) 2022-11-11
CN111931640A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2022027895A1 (zh) 异常坐姿识别方法、装置、电子设备、存储介质及程序
US11535280B2 (en) Method and device for determining an estimate of the capability of a vehicle driver to take over control of a vehicle
US20240029557A1 (en) Helmet wearing determination method, helmet wearing determination system, helmet wearing determination apparatus, and program
US11776083B2 (en) Passenger-related item loss mitigation
WO2020078461A1 (zh) 车辆座椅智能调节方法和装置、车辆、电子设备、介质
JP2020123352A (ja) 人の状態認識を基盤として身体部位の長さ及び顔情報を使用して乗客の身長及び体重を予測する方法及び装置
CN111439170B (zh) 儿童状态检测方法及装置、电子设备、存储介质
CN110826370B (zh) 车内人员的身份识别方法、装置、车辆及存储介质
WO2013179588A1 (ja) 人検出装置
WO2022027893A1 (zh) 安全带佩戴检测方法、装置、电子设备、存储介质及程序
WO2022027894A1 (zh) 驾驶员行为检测方法、装置、电子设备、存储介质和程序
JP2013003919A (ja) 物体識別装置
US11417108B2 (en) Two-wheel vehicle riding person number determination method, two-wheel vehicle riding person number determination system, two-wheel vehicle riding person number determination apparatus, and program
CN115331205A (zh) 一种云边协同的驾驶员疲劳检测系统
KR20190134909A (ko) 주행상황 판단 정보 기반 운전자 상태 인식 장치 및 방법
KR101350882B1 (ko) 영상 분석 서버
CN109165607B (zh) 一种基于深度学习的驾驶员手持电话检测方法
KR20150067679A (ko) 차량용 제스처 인식 시스템 및 그 방법
JP2021034739A (ja) 事象発生推定のための学習データ生成方法・プログラム、学習モデル及び事象発生推定装置
CN112541425A (zh) 情绪检测方法、装置、介质及电子设备
US11138755B2 (en) Analysis apparatus, analysis method, and non transitory storage medium
WO2021262166A1 (en) Operator evaluation and vehicle control based on eyewear data
US20230326069A1 (en) Method and apparatus for determining a gaze direction of a user
Sonom-Ochir et al. Dashboard-camera-based Safe Driving Support System
Imteaj et al. Enhancing Road Safety Through Cost-Effective, Real-Time Monitoring of Driver Awareness with Resource-Constrained IoT Devices

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021571346

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20948150

Country of ref document: EP

Kind code of ref document: A1