[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2013003919A - 物体識別装置 - Google Patents

物体識別装置 Download PDF

Info

Publication number
JP2013003919A
JP2013003919A JP2011135586A JP2011135586A JP2013003919A JP 2013003919 A JP2013003919 A JP 2013003919A JP 2011135586 A JP2011135586 A JP 2011135586A JP 2011135586 A JP2011135586 A JP 2011135586A JP 2013003919 A JP2013003919 A JP 2013003919A
Authority
JP
Japan
Prior art keywords
class
pattern
image pattern
degree
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011135586A
Other languages
English (en)
Other versions
JP5596628B2 (ja
Inventor
Razavi Nima
ラザヴィ ニマ
Gall Juergen
ガル イェルゲン
Vainqueur Luc
ヴァングール ルック
Ryuji Funayama
竜士 船山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Technische Hochschule Zurich ETHZ
Toyota Motor Corp
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ, Toyota Motor Corp filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Priority to JP2011135586A priority Critical patent/JP5596628B2/ja
Priority to EP12800268.0A priority patent/EP2722815A4/en
Priority to CN201280029406.1A priority patent/CN103620645B/zh
Priority to US14/126,690 priority patent/US9519843B2/en
Priority to PCT/JP2012/065255 priority patent/WO2012173193A1/ja
Publication of JP2013003919A publication Critical patent/JP2013003919A/ja
Application granted granted Critical
Publication of JP5596628B2 publication Critical patent/JP5596628B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/231Hierarchical techniques, i.e. dividing or merging pattern sets so as to obtain a dendrogram
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/48Extraction of image or video features by mapping characteristic values of the pattern into a parameter space, e.g. Hough transformation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/762Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
    • G06V10/7625Hierarchical techniques, i.e. dividing or merging patterns to obtain a tree-like representation; Dendograms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/10Recognition assisted with metadata

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Analysis (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】物体を識別するための計算量を低減すると共に、識別性能を向上させることができる物体識別装置を提供する。
【解決手段】学習処理部4は、コードブックの各小領域画像パターンにつき、物体のクラス番号及び位置情報と出現確率との関係を表す関数テーブルを生成し、各クラス間における特徴量の共用度を表すシェアリングマトリクスを求め、特徴量が類似するクラス同士をまとめた樹形図を作成し、小領域画像パターン毎に樹形図の各ノードの重みを計算する。認識処理部7は、カメラ2で取得した撮像画像データをコードブックと照合し、複数の小領域画像パターンのうち最も近い小領域画像パターンを選択し、その小領域画像パターンについて重みが閾値以上となるノードの中で重みが最も小さいノードに係るクラスを抽出し、そのクラスに対して小領域画像パターンの位置情報を投票して、物体を認識する。
【選択図】図1

Description

本発明は、撮像画像に基づいて複数種類の物体を識別する物体識別装置に関するものである。
自動車用の安全システムを実現するためには、交通環境を認識する技術が不可欠である。交通環境には、自動車、二輪車、歩行者の他、様々な物体が登場するため、これらの複数の物体を認識するアルゴリズムの開発が必要である。また、自動車についても、認識技術の問題として捉えると、普通乗用車からバスやトラック等の大型車、特殊車両等、複数のカテゴリーに分ける必要がある。また、見る方向や、歩行者等の姿勢の変化を考えると、これらは全て異なるカテゴリーとして画像認識の問題を考えなければならない。
一般に複数種類の物体認識(マルチクラス認識)を行う場合には、2クラス認識用識別器を組み合わせて実現することが多い。例えば、普通乗用車の正面、右前斜め、右横、右後斜め、後面、左後斜め、左横、左前斜めの8つのパターンを用意する。また、それをトラック、バス、特殊車両、二輪車毎にも用意する。さらに、歩行者については、向きの他に、姿勢変化を例えば8パターン程度用意しなければならない。このため、全ての物体認識に必要な2クラス認識用識別器の数は膨大となる。
ところで、物体の認識にかかる時間は、少なくとも認識すべき数に比例して大きくなる。このため、自動車用の認識技術のように、即時応答が要求される場合には不利である。また、処理にかかる時間だけでなく、多くの2クラス認識用識別器を用意しなければならないため、開発に時間がかかったり、ECUに記憶させるプログラム容量や辞書の容量が多くなる可能性がある。
また、非特許文献1には、2クラス認識用識別器を用いることなく、撮像画像に基づいて車両や歩行者のような物体のクラスを識別する技術が提案されている。
’’’Class-Specific Hough Forests for Object Detection’’,JuergenGall,Victor Lempitsky,IEEE Conference onComputer Vision and Pattern Recongnition(CVPR)
しかしながら、上記従来技術においては、物体の一部を表す画像パターンの数や物体のクラスの数が多くなると、物体を識別するための計算量が増大すると共に、識別性能が低下するという問題がある。
本発明の目的は、物体を識別するための計算量を低減すると共に、識別性能を向上させることができる物体識別装置を提供することである。
本発明は、撮像画像に基づいて物体を識別する物体識別装置において、物体の一部を表す複数の画像パターンについて、物体のクラス及び位置情報と出現確率との関係を表す関数テーブルを取得する関数テーブル取得手段と、関数テーブル取得手段により取得された関数テーブルを用いて、物体のクラスに対する各画像パターンの現れ度合を算出するパターン現れ度合算出手段と、撮像画像を複数の画像パターンと照合して、撮像画像に対応する画像パターンを選択するパターン選択手段と、パターン選択手段により選択された画像パターンの現れ度合が所定値以上となるようなクラスを抽出するクラス抽出手段と、クラス抽出手段により抽出されたクラスに対して、パターン選択手段により選択された画像パターンの位置情報を投票する投票手段と、投票手段による投票結果に基づいて物体を認識する認識手段とを備えることを特徴とするものである。
このように本発明の物体識別装置においては、物体の一部を表す複数の画像パターンについて、物体のクラス及び位置情報と出現確率との関係を表す関数テーブルを取得し、その関数テーブルを用いて、物体のクラスに対する各画像パターンの現れ度合を算出する。そして、撮像画像を複数の画像パターンと照合して、撮像画像に対応する画像パターンを選択し、その画像パターンの現れ度合が所定値以上となるようなクラスを抽出する。そして、抽出されたクラスに対してのみ、選択された画像パターンの位置情報を投票し、その投票結果に基づいて物体を認識する。このように撮像画像に対応する画像パターンが現れる可能性が高いクラスのみを取り出して、画像パターンの位置情報を投票することにより、物体を識別するための計算量を低減すると共に、識別性能を向上させることができる。
好ましくは、パターン現れ度合算出手段は、関数テーブル取得手段により取得された関数テーブルに基づいて、クラス同士における画像パターンを含む特徴量の共用度を求め、特徴量の共用度に基づいて、クラスに対する各画像パターンの現れ度合を算出する。この場合には、特徴量の共用度によって、異なるクラス同士及び同じクラス同士で画像パターンを含む特徴量がどれだけ共用されているかが分かる。従って、そのような特徴量の共用度を用いることで、物体のクラスに対する各画像パターンの現れ度合を確実に算出することができる。
このとき、パターン現れ度合算出手段は、特徴量の共用度に基づいて、類似性を有するクラス同士をまとめた樹形図を作成し、樹形図の各ノードの重みをクラスに対する画像パターンの現れ度合として算出する。この場合には、樹形図の各ノードの重みによって、画像パターンがどのクラスの群に現れやすいかを簡単に把握することができる。
本発明によれば、物体を識別するための計算量を低減することができる。また、物体の識別性能を向上させることができる。
本発明に係わる物体識別装置の一実施形態を示す概略構成図である。 図1に示した学習処理部により実行される学習処理手順の詳細を示すフローチャートである。 物体のクラス番号の一例を示す表である。 複数の小領域画像パターンからなるコードブックの一例を示す図である。 小領域画像パターンについての関数テーブルの一例を示すグラフである。 共用度シェアリングマトリクスの一例を示す図である。 類似度樹形図の一例を示すグラフである。 図1に示した認識処理部により実行される認識処理手順の詳細を示すフローチャートである。 小領域画像パターンの位置情報の投票例を示すグラフである。
以下、本発明に係わる物体識別装置の好適な実施形態について、図面を参照して詳細に説明する。
図1は、本発明に係わる物体識別装置の一実施形態を示す概略構成図である。同図において、本実施形態の物体識別装置1は、例えば車両に搭載され、車両周辺に存在する物体(他車両、自転車、歩行者等)を識別する装置である。
物体識別装置1は、車両前方を撮像するカメラ2と、ECU(Electronic Control Unit)3とを備えている。ECU3は、CPU、ROMやRAM等のメモリ、入出力回路等により構成されている。
ECU3は、学習処理部4と、メモリ5と、画像処理部6と、認識処理部7とを有している。学習処理部4は、複数の学習用データを用いて、物体を識別するための学習処理を行う。メモリ5には、学習処理部4の学習処理により得られる各種データが記憶される。画像処理部6は、カメラ2により取得された撮像画像に対して特徴抽出等の画像処理を行う。認識処理部7は、画像処理部6からの画像データを入力し、メモリ5に記憶された各種データを用いて画像データ上に存在する物体を認識する。
図2は、学習処理部4により実行される学習処理手順の詳細を示すフローチャートである。図2において、まず複数の学習用データを与えて、物体の認識に使うコードブックを取得する(手順S101)。
学習用データとしては、歩行者や車両等の物体の画像と、その物体の種類を表すクラス番号とが与えられる。クラス番号は、例えば図3に示すように、1番から順番に乗用車、トラック、バス、自転車、バイク、歩行者(大人)、歩行者(子供)となっている。コードブックは、例えば図4に示すように、物体の一部を表す複数の小領域画像パターンからなる集合である。
続いて、コードブックに含まれる各小領域画像パターンについて、物体のクラス番号c及び位置情報lと出現確率Z(l,c)との関係を表す関数テーブルを生成する(手順S102)。この関数テーブルは、例えば図5に示すように、ある小領域画像パターンkが与えられたときに、どの位置にどのクラスの物体が現れやすいか(どれくらいの確率で現れるか)を表現する2次元のテーブルである。この関数テーブルは、コードブックの小領域画像パターン毎に1つずつ生成される。なお、位置情報lは、物体の中心となる位置であり、簡易的に1次元で表されている。
図5に示す関数テーブルでは、物体のクラス番号c及び位置情報lで形成される各格子に出現確率Zが格納される。例えば、ある小領域画像パターンkは、クラス2で位置3に現れる確率が0.35、クラス2で位置4に現れる確率が0.20、クラス2で位置5に現れる確率が0.07ということである。
続いて、手順S102で得られた関数テーブルから、共用度シェアリングマトリクスを求める(手順S103)。共用度シェアリングマトリクスは、例えば図6に示すように、異なるクラス同士及び同じクラス同士で、特徴量(小領域画像パターンや位置情報)がどれだけ共用されているかを示す表である。例えばS(2,5)は、トラックとバスとで同じ特徴量をどれだけ共用しているかを表し、S(6,6)は、複数の歩行者(大人)同士で同じ特徴量をどれだけ共用しているかを表している。このとき、共用される特徴量が多いほど、表に入る数値が大きくなる。なお、コードブック全体に対して1つの共用度シェアリングマトリクスが得られる。
ここで、Z={z c,l}、K={a,Z}とすると、特徴量の共用度として小領域画像パターンの共用度のみを考慮する場合の共用度シェアリングマトリクスは、下記式で表される。なお、cはクラスiを表し、cはクラスjを表している。
Figure 2013003919
また、特徴量の共用度として小領域画像パターン及び位置情報の共用度の両方を考慮する場合の共用度シェアリングマトリクスは、下記式で表される。
Figure 2013003919

ただし、ζは規格化因子であり、θ(l,l)は閾値関数である。
例えば乗用車とバスとでは、似たような小領域画像パターンが似たような位置に現れる傾向が高いので、特徴量の共有の程度は大きい。一方、乗用車と歩行者とでは、似たような小領域画像パターンはあまり現れないので、特徴量の共有の程度は小さい。
続いて、手順S103で得られた共用度シェアリングマトリクスから、類似度樹形図を求める(手順S104)。類似度樹形図は、例えば図7に示すように、各クラスに含まれる特徴量の共用度に基づいて、似ているクラス同士をまとめた(クラスタリングした)ものである。このとき、1つの共用度シェアリングマトリクスにつき、1つの類似度樹形図が得られる。つまり、1つのコードブックにつき、1つの類似度樹形図が得られる。なお、類似度樹形図では、末端の部分で接続されているものほど、類似性が高い。
例えば、普通乗用車(クラス1)とトラック(クラス2)とは似ている。普通乗用車及びトラックを合わせた群とバス(クラス3)とは、ある程度似ている。また、大人歩行者(クラス6)と子供歩行者(クラス7)とは似ている。自転車(クラス4)とバイク(クラス5)とは、ある程度似ている。大人歩行者及び子供歩行者を合わせた群と、自転車及びバイクを合わせた群とは、少しだけ似ている。
続いて、コードブックの各小領域画像パターン毎に、手順S104で得られた類似度樹形図の各ノード(枝の連結部)の重み(ウェイト)を計算する(手順S105)。各ノードの重みは、類似度樹形図全体の中で、どの小領域画像パターンがどのクラスによく現れるか(現れ度合)を表したものである。小領域画像パターンが現れる確率が高くなるほど、重みが大きくなる。小領域画像パターンをk、ノードをtとすると、重みω は下記式で表される。
Figure 2013003919
このとき、1つの小領域画像パターンについて、各ノードの重みの合計が1となるように正規化される。例えば、図7に示す類似度樹形図において、ノードN〜N13の重みをω 〜ω13 とすると、ω 〜ω13 の合計は1となる。
続いて、手順S101で得られたコードブックデータと、手順S105で得られた小領域画像パターン毎の各ノードの重みデータとをメモリ5に記憶する(手順S106)。
図8は、認識処理部7により実行される認識処理手順の詳細を示すフローチャートである。図8において、まず車両前方の画像データを画像処理部6から取得する(手順S111)。
続いて、手順S111で取得された画像データを走査し、その画像データをメモリ5に記憶されたコードブックと照合し、コードブックに含まれる複数の小領域画像パターンのうち画像データに最も近い小領域画像パターンを選択する(手順S112)。
続いて、手順S112で選択された小領域画像パターンの各ノードの重みをメモリ5から読み出し、重みが閾値以上となるノードの中で重みが最も小さいノードに係るクラスを抽出する(手順S113)。
例えば図7に示す類似度樹形図において、ノードN〜Nの重みω 〜ω をそれぞれ0/35、2/35、1/35、4/35、5/35、11/35、12/35とすると、ノードN〜N13の重みω 〜ω13 は、それぞれ2/35、23/35、3/35、9/35、32/35、35/35となる。ここで、閾値を22/35とすると、重みが閾値以上となるノードのうち重みが最も小さいノードは、重みが23/35であるNとなる。このノードNに係るクラス番号は、6番の歩行者(大人)と7番の歩行者(子供)となる。
続いて、手順S113で抽出されたクラスに対して、手順S112で選択された小領域画像パターンの位置情報を投票(voting)する(手順S114)。ここで、小領域画像パターンの位置情報は、小領域画像パターンに対応する物体の中心位置である。具体的には、図9に示すように、xyzの3次元座標空間上に小領域画像パターンに対応する物体の中心位置をクラス番号と共に投票する。このとき、小領域画像パターンに対応する物体の中心位置をxy座標で表し、クラス番号をz座標で表す。
続いて、手順S111で取得された画像データ上の全ての画像領域について投票を行ったかどうかを判断する(手順S115)。画像データ上の全ての画像領域について投票を行っていないときは、手順S112に戻る。
画像データ上の全ての画像領域について投票を行ったときは、手順S114で実行された投票結果から、画像データ上に存在する全ての物体を認識する(手順S116)。具体的には、例えば図9に示すように、複数の小領域画像パターンに対応する物体の中心位置がほぼ一致している集合体P,Qが存在している場合には、その集合体P,Qに対応するクラスの物体であると認識される。このとき、集合体P,Qのそれぞれの中心座標(x,y)が集合体P,Qに対応する物体(クラス)の画像上での中心位置に相当する。
以上において、学習処理部4の上記手順S101,S102は、物体の一部を表す複数の画像パターンについて、物体のクラス及び位置情報と出現確率との関係を表す関数テーブルを取得する関数テーブル取得手段を構成する。同手順S103〜S105は、関数テーブル取得手段により取得された関数テーブルを用いて、物体のクラスに対する各画像パターンの現れ度合を算出するパターン現れ度合算出手段を構成する。認識処理部7の上記手順S111,S112は、撮像画像を複数の画像パターンと照合して、撮像画像に対応する画像パターンを選択するパターン選択手段を構成する。同手順S113は、パターン選択手段により選択された画像パターンの現れ度合が所定値以上となるようなクラスを抽出するクラス抽出手段を構成する。同手順S114は、クラス抽出手段により抽出されたクラスに対して、パターン選択手段により選択された画像パターンの位置情報を投票する投票手段を構成する。同手順S116は、投票手段による投票結果に基づいて物体を認識する認識手段を構成する。
以上のように本実施形態にあっては、コードブックに含まれる各小領域画像パターンについて、物体のクラス番号及び位置情報と出現確率との関係を表す関数テーブルを生成し、その関数テーブルから、各クラス間における特徴量の共用度を表す共用度シェアリングマトリクスを求め、その共用度シェアリングマトリクスから、特徴量が類似するクラス同士をまとめた類似度樹形図を作成し、小領域画像パターン毎に類似度樹形図の各ノードの重みを計算する。そして、カメラ2により取得された撮像画像データをコードブックと照合し、コードブックに含まれる複数の小領域画像パターンのうち最も近い小領域画像パターンを選択し、その小領域画像パターンについて重みが閾値以上となるノードの中で重みが最も小さいノードに係るクラスを抽出し、そのクラスに対して小領域画像パターンの位置情報を投票することにより、撮像画像データ上に存在する物体を認識する。
このように全てのクラスに対して小領域画像パターンの位置情報を投票するのではなく、小領域画像パターンが現れる可能性が高いクラスのみを取り出して、小領域画像パターンの位置情報を投票するので、物体を認識する際の計算量を少なくすることができる。また、認識すべき物体の種類が多くあっても、認識性能を低下させずに、複数種類の物体を認識することができる。
なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態の物体識別装置1は車載用であるが、画像認識によって物体を識別するものであれば、車載用以外のものにも適用可能である。
また、上記実施形態では、学習処理部4をECU3の機能の一部としたが、学習処理部4の機能をECU3の外部に備える、例えば事前にPCで学習させておくようにしても良い。
1…物体識別装置、2…カメラ、3…ECU、4…学習処理部(関数テーブル取得手段、パターン現れ度合算出手段)、5…メモリ、6…画像処理部、7…認識処理部(パターン選択手段、クラス抽出手段、投票手段、認識手段)。

Claims (3)

  1. 撮像画像に基づいて物体を識別する物体識別装置において、
    前記物体の一部を表す複数の画像パターンについて、前記物体のクラス及び位置情報と出現確率との関係を表す関数テーブルを取得する関数テーブル取得手段と、
    前記関数テーブル取得手段により取得された前記関数テーブルを用いて、前記物体のクラスに対する前記各画像パターンの現れ度合を算出するパターン現れ度合算出手段と、
    前記撮像画像を前記複数の画像パターンと照合して、前記撮像画像に対応する前記画像パターンを選択するパターン選択手段と、
    前記パターン選択手段により選択された前記画像パターンの現れ度合が所定値以上となるような前記クラスを抽出するクラス抽出手段と、
    前記クラス抽出手段により抽出された前記クラスに対して、前記パターン選択手段により選択された前記画像パターンの位置情報を投票する投票手段と、
    前記投票手段による投票結果に基づいて前記物体を認識する認識手段とを備えることを特徴とする物体識別装置。
  2. 前記パターン現れ度合算出手段は、前記関数テーブル取得手段により取得された前記関数テーブルに基づいて、前記クラス同士における前記画像パターンを含む特徴量の共用度を求め、前記特徴量の共用度に基づいて、前記クラスに対する前記各画像パターンの現れ度合を算出することを特徴とする請求項1記載の物体識別装置。
  3. 前記パターン現れ度合算出手段は、前記特徴量の共用度に基づいて、類似性を有するクラス同士をまとめた樹形図を作成し、前記樹形図の各ノードの重みを前記クラスに対する前記画像パターンの現れ度合として算出することを特徴とする請求項2記載の物体識別装置。
JP2011135586A 2011-06-17 2011-06-17 物体識別装置 Active JP5596628B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011135586A JP5596628B2 (ja) 2011-06-17 2011-06-17 物体識別装置
EP12800268.0A EP2722815A4 (en) 2011-06-17 2012-06-14 OBJECT RECOGNITION DEVICE
CN201280029406.1A CN103620645B (zh) 2011-06-17 2012-06-14 物体识别装置
US14/126,690 US9519843B2 (en) 2011-06-17 2012-06-14 Object recognition device
PCT/JP2012/065255 WO2012173193A1 (ja) 2011-06-17 2012-06-14 物体識別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135586A JP5596628B2 (ja) 2011-06-17 2011-06-17 物体識別装置

Publications (2)

Publication Number Publication Date
JP2013003919A true JP2013003919A (ja) 2013-01-07
JP5596628B2 JP5596628B2 (ja) 2014-09-24

Family

ID=47357174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135586A Active JP5596628B2 (ja) 2011-06-17 2011-06-17 物体識別装置

Country Status (5)

Country Link
US (1) US9519843B2 (ja)
EP (1) EP2722815A4 (ja)
JP (1) JP5596628B2 (ja)
CN (1) CN103620645B (ja)
WO (1) WO2012173193A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151141B2 (ja) * 2013-09-18 2017-06-21 株式会社東芝 仕分装置および仕分方法
US10049273B2 (en) * 2015-02-24 2018-08-14 Kabushiki Kaisha Toshiba Image recognition apparatus, image recognition system, and image recognition method
JP6443393B2 (ja) * 2016-06-01 2018-12-26 トヨタ自動車株式会社 行動認識装置,学習装置,並びに方法およびプログラム
CN108288208B (zh) * 2017-08-11 2020-08-28 腾讯科技(深圳)有限公司 基于图像内容的展示对象确定方法、装置、介质及设备
JP7207862B2 (ja) * 2018-04-26 2023-01-18 株式会社日立製作所 物体認識装置および方法
AU2018429247B2 (en) * 2018-06-29 2022-07-07 Fujitsu Limited Specifying method, determination method, specifying program, determination program, and information processing apparatus
KR102587090B1 (ko) * 2018-11-20 2023-10-11 현대자동차주식회사 차량의 객체 인식 장치, 시스템 및 방법
CN110519608A (zh) * 2019-07-13 2019-11-29 西安电子科技大学 针对插入图像后图像集的编码结构调整方法
CN113887581A (zh) * 2021-09-15 2022-01-04 广州小鹏自动驾驶科技有限公司 图像识别模型的训练方法、装置、电子设备及存储介质
CN113837144B (zh) * 2021-10-25 2022-09-13 广州微林软件有限公司 一种冰箱的智能化图像数据采集处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070041638A1 (en) * 2005-04-28 2007-02-22 Xiuwen Liu Systems and methods for real-time object recognition
US20080260254A1 (en) * 2005-12-22 2008-10-23 Koninklijke Philips Electronics, N.V. Automatic 3-D Object Detection
US7941442B2 (en) * 2007-04-18 2011-05-10 Microsoft Corporation Object similarity search in high-dimensional vector spaces
JP2009301382A (ja) * 2008-06-16 2009-12-24 Toshiba Corp 認識装置及びその方法
US8577130B2 (en) * 2009-03-16 2013-11-05 Siemens Medical Solutions Usa, Inc. Hierarchical deformable model for image segmentation
US9355337B2 (en) * 2009-08-25 2016-05-31 Xerox Corporation Consistent hierarchical labeling of image and image regions
JP5521881B2 (ja) * 2010-08-12 2014-06-18 富士ゼロックス株式会社 画像識別情報付与プログラム及び画像識別情報付与装置
JP2012243180A (ja) * 2011-05-23 2012-12-10 Sony Corp 学習装置および方法、並びにプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013004599; Gall,J. Lempitsky,V.: '"Class-Specific Hough Forests for Object Detection"' Computer Vision and Pattern Recognition,2009. CVPR 2009. , 20090620, pp.1022-1029, IEEE *

Also Published As

Publication number Publication date
US20140133745A1 (en) 2014-05-15
CN103620645B (zh) 2016-09-14
US9519843B2 (en) 2016-12-13
EP2722815A1 (en) 2014-04-23
EP2722815A4 (en) 2015-04-01
WO2012173193A1 (ja) 2012-12-20
JP5596628B2 (ja) 2014-09-24
CN103620645A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5596628B2 (ja) 物体識別装置
CN106599773B (zh) 用于智能驾驶的深度学习图像识别方法、系统及终端设备
JP6443393B2 (ja) 行動認識装置,学習装置,並びに方法およびプログラム
JP2019040465A (ja) 行動認識装置,学習装置,並びに方法およびプログラム
CN107886043B (zh) 视觉感知的汽车前视车辆和行人防碰撞预警系统及方法
WO2022027895A1 (zh) 异常坐姿识别方法、装置、电子设备、存储介质及程序
Kuang et al. Feature selection based on tensor decomposition and object proposal for night-time multiclass vehicle detection
JP2008538041A5 (ja)
US9870513B2 (en) Method and device for detecting objects from depth-resolved image data
US10885382B2 (en) Method and device for classifying an object for a vehicle
JP7311310B2 (ja) 情報処理装置、情報処理方法及びプログラム
JP5906071B2 (ja) 情報処理方法、情報処理装置、および記憶媒体
WO2022027893A1 (zh) 安全带佩戴检测方法、装置、电子设备、存储介质及程序
Laopracha et al. A novel feature selection in vehicle detection through the selection of dominant patterns of histograms of oriented gradients (DPHOG)
US20230316783A1 (en) Computer-implemented method for analysing the interior of a vehicle
JP7486079B2 (ja) 情報処理方法、及び、情報処理システム
WO2023138538A1 (zh) 车载视频稳像方法、装置、车辆及存储介质
JP7034746B2 (ja) 特徴表現装置、それを含む認識システム、及び特徴表現プログラム
JP5407723B2 (ja) 認識装置、認識方法及びプログラム
CN111652210A (zh) 一种车牌字符智能识别系统
Devarakota et al. Occupant classification using range images
EP1655688A2 (en) Object classification method utilizing wavelet signatures of a monocular video image
Ballesteros et al. Optimized HOG for on-road video based vehicle verification
Vaddi et al. Computer vision based vehicle recognition on indian roads
EP4002270A1 (en) Image recognition evaluation program, image recognition evaluation method, evaluation device, and evaluation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R151 Written notification of patent or utility model registration

Ref document number: 5596628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250