JP2013003919A - 物体識別装置 - Google Patents
物体識別装置 Download PDFInfo
- Publication number
- JP2013003919A JP2013003919A JP2011135586A JP2011135586A JP2013003919A JP 2013003919 A JP2013003919 A JP 2013003919A JP 2011135586 A JP2011135586 A JP 2011135586A JP 2011135586 A JP2011135586 A JP 2011135586A JP 2013003919 A JP2013003919 A JP 2013003919A
- Authority
- JP
- Japan
- Prior art keywords
- class
- pattern
- image pattern
- degree
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010586 diagram Methods 0.000 claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 7
- 230000006870 function Effects 0.000 abstract description 25
- 239000011159 matrix material Substances 0.000 abstract description 11
- 239000000284 extract Substances 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 16
- 238000010606 normalization Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/231—Hierarchical techniques, i.e. dividing or merging pattern sets so as to obtain a dendrogram
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/48—Extraction of image or video features by mapping characteristic values of the pattern into a parameter space, e.g. Hough transformation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
- G06V10/7625—Hierarchical techniques, i.e. dividing or merging patterns to obtain a tree-like representation; Dendograms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/10—Recognition assisted with metadata
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
- Traffic Control Systems (AREA)
Abstract
【解決手段】学習処理部4は、コードブックの各小領域画像パターンにつき、物体のクラス番号及び位置情報と出現確率との関係を表す関数テーブルを生成し、各クラス間における特徴量の共用度を表すシェアリングマトリクスを求め、特徴量が類似するクラス同士をまとめた樹形図を作成し、小領域画像パターン毎に樹形図の各ノードの重みを計算する。認識処理部7は、カメラ2で取得した撮像画像データをコードブックと照合し、複数の小領域画像パターンのうち最も近い小領域画像パターンを選択し、その小領域画像パターンについて重みが閾値以上となるノードの中で重みが最も小さいノードに係るクラスを抽出し、そのクラスに対して小領域画像パターンの位置情報を投票して、物体を認識する。
【選択図】図1
Description
ただし、ζは規格化因子であり、θ(lg,lh)は閾値関数である。
Claims (3)
- 撮像画像に基づいて物体を識別する物体識別装置において、
前記物体の一部を表す複数の画像パターンについて、前記物体のクラス及び位置情報と出現確率との関係を表す関数テーブルを取得する関数テーブル取得手段と、
前記関数テーブル取得手段により取得された前記関数テーブルを用いて、前記物体のクラスに対する前記各画像パターンの現れ度合を算出するパターン現れ度合算出手段と、
前記撮像画像を前記複数の画像パターンと照合して、前記撮像画像に対応する前記画像パターンを選択するパターン選択手段と、
前記パターン選択手段により選択された前記画像パターンの現れ度合が所定値以上となるような前記クラスを抽出するクラス抽出手段と、
前記クラス抽出手段により抽出された前記クラスに対して、前記パターン選択手段により選択された前記画像パターンの位置情報を投票する投票手段と、
前記投票手段による投票結果に基づいて前記物体を認識する認識手段とを備えることを特徴とする物体識別装置。 - 前記パターン現れ度合算出手段は、前記関数テーブル取得手段により取得された前記関数テーブルに基づいて、前記クラス同士における前記画像パターンを含む特徴量の共用度を求め、前記特徴量の共用度に基づいて、前記クラスに対する前記各画像パターンの現れ度合を算出することを特徴とする請求項1記載の物体識別装置。
- 前記パターン現れ度合算出手段は、前記特徴量の共用度に基づいて、類似性を有するクラス同士をまとめた樹形図を作成し、前記樹形図の各ノードの重みを前記クラスに対する前記画像パターンの現れ度合として算出することを特徴とする請求項2記載の物体識別装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011135586A JP5596628B2 (ja) | 2011-06-17 | 2011-06-17 | 物体識別装置 |
EP12800268.0A EP2722815A4 (en) | 2011-06-17 | 2012-06-14 | OBJECT RECOGNITION DEVICE |
CN201280029406.1A CN103620645B (zh) | 2011-06-17 | 2012-06-14 | 物体识别装置 |
US14/126,690 US9519843B2 (en) | 2011-06-17 | 2012-06-14 | Object recognition device |
PCT/JP2012/065255 WO2012173193A1 (ja) | 2011-06-17 | 2012-06-14 | 物体識別装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011135586A JP5596628B2 (ja) | 2011-06-17 | 2011-06-17 | 物体識別装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013003919A true JP2013003919A (ja) | 2013-01-07 |
JP5596628B2 JP5596628B2 (ja) | 2014-09-24 |
Family
ID=47357174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011135586A Active JP5596628B2 (ja) | 2011-06-17 | 2011-06-17 | 物体識別装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9519843B2 (ja) |
EP (1) | EP2722815A4 (ja) |
JP (1) | JP5596628B2 (ja) |
CN (1) | CN103620645B (ja) |
WO (1) | WO2012173193A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6151141B2 (ja) * | 2013-09-18 | 2017-06-21 | 株式会社東芝 | 仕分装置および仕分方法 |
US10049273B2 (en) * | 2015-02-24 | 2018-08-14 | Kabushiki Kaisha Toshiba | Image recognition apparatus, image recognition system, and image recognition method |
JP6443393B2 (ja) * | 2016-06-01 | 2018-12-26 | トヨタ自動車株式会社 | 行動認識装置,学習装置,並びに方法およびプログラム |
CN108288208B (zh) * | 2017-08-11 | 2020-08-28 | 腾讯科技(深圳)有限公司 | 基于图像内容的展示对象确定方法、装置、介质及设备 |
JP7207862B2 (ja) * | 2018-04-26 | 2023-01-18 | 株式会社日立製作所 | 物体認識装置および方法 |
AU2018429247B2 (en) * | 2018-06-29 | 2022-07-07 | Fujitsu Limited | Specifying method, determination method, specifying program, determination program, and information processing apparatus |
KR102587090B1 (ko) * | 2018-11-20 | 2023-10-11 | 현대자동차주식회사 | 차량의 객체 인식 장치, 시스템 및 방법 |
CN110519608A (zh) * | 2019-07-13 | 2019-11-29 | 西安电子科技大学 | 针对插入图像后图像集的编码结构调整方法 |
CN113887581A (zh) * | 2021-09-15 | 2022-01-04 | 广州小鹏自动驾驶科技有限公司 | 图像识别模型的训练方法、装置、电子设备及存储介质 |
CN113837144B (zh) * | 2021-10-25 | 2022-09-13 | 广州微林软件有限公司 | 一种冰箱的智能化图像数据采集处理方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070041638A1 (en) * | 2005-04-28 | 2007-02-22 | Xiuwen Liu | Systems and methods for real-time object recognition |
US20080260254A1 (en) * | 2005-12-22 | 2008-10-23 | Koninklijke Philips Electronics, N.V. | Automatic 3-D Object Detection |
US7941442B2 (en) * | 2007-04-18 | 2011-05-10 | Microsoft Corporation | Object similarity search in high-dimensional vector spaces |
JP2009301382A (ja) * | 2008-06-16 | 2009-12-24 | Toshiba Corp | 認識装置及びその方法 |
US8577130B2 (en) * | 2009-03-16 | 2013-11-05 | Siemens Medical Solutions Usa, Inc. | Hierarchical deformable model for image segmentation |
US9355337B2 (en) * | 2009-08-25 | 2016-05-31 | Xerox Corporation | Consistent hierarchical labeling of image and image regions |
JP5521881B2 (ja) * | 2010-08-12 | 2014-06-18 | 富士ゼロックス株式会社 | 画像識別情報付与プログラム及び画像識別情報付与装置 |
JP2012243180A (ja) * | 2011-05-23 | 2012-12-10 | Sony Corp | 学習装置および方法、並びにプログラム |
-
2011
- 2011-06-17 JP JP2011135586A patent/JP5596628B2/ja active Active
-
2012
- 2012-06-14 WO PCT/JP2012/065255 patent/WO2012173193A1/ja active Application Filing
- 2012-06-14 EP EP12800268.0A patent/EP2722815A4/en not_active Ceased
- 2012-06-14 US US14/126,690 patent/US9519843B2/en active Active
- 2012-06-14 CN CN201280029406.1A patent/CN103620645B/zh active Active
Non-Patent Citations (1)
Title |
---|
JPN7013004599; Gall,J. Lempitsky,V.: '"Class-Specific Hough Forests for Object Detection"' Computer Vision and Pattern Recognition,2009. CVPR 2009. , 20090620, pp.1022-1029, IEEE * |
Also Published As
Publication number | Publication date |
---|---|
US20140133745A1 (en) | 2014-05-15 |
CN103620645B (zh) | 2016-09-14 |
US9519843B2 (en) | 2016-12-13 |
EP2722815A1 (en) | 2014-04-23 |
EP2722815A4 (en) | 2015-04-01 |
WO2012173193A1 (ja) | 2012-12-20 |
JP5596628B2 (ja) | 2014-09-24 |
CN103620645A (zh) | 2014-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5596628B2 (ja) | 物体識別装置 | |
CN106599773B (zh) | 用于智能驾驶的深度学习图像识别方法、系统及终端设备 | |
JP6443393B2 (ja) | 行動認識装置,学習装置,並びに方法およびプログラム | |
JP2019040465A (ja) | 行動認識装置,学習装置,並びに方法およびプログラム | |
CN107886043B (zh) | 视觉感知的汽车前视车辆和行人防碰撞预警系统及方法 | |
WO2022027895A1 (zh) | 异常坐姿识别方法、装置、电子设备、存储介质及程序 | |
Kuang et al. | Feature selection based on tensor decomposition and object proposal for night-time multiclass vehicle detection | |
JP2008538041A5 (ja) | ||
US9870513B2 (en) | Method and device for detecting objects from depth-resolved image data | |
US10885382B2 (en) | Method and device for classifying an object for a vehicle | |
JP7311310B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP5906071B2 (ja) | 情報処理方法、情報処理装置、および記憶媒体 | |
WO2022027893A1 (zh) | 安全带佩戴检测方法、装置、电子设备、存储介质及程序 | |
Laopracha et al. | A novel feature selection in vehicle detection through the selection of dominant patterns of histograms of oriented gradients (DPHOG) | |
US20230316783A1 (en) | Computer-implemented method for analysing the interior of a vehicle | |
JP7486079B2 (ja) | 情報処理方法、及び、情報処理システム | |
WO2023138538A1 (zh) | 车载视频稳像方法、装置、车辆及存储介质 | |
JP7034746B2 (ja) | 特徴表現装置、それを含む認識システム、及び特徴表現プログラム | |
JP5407723B2 (ja) | 認識装置、認識方法及びプログラム | |
CN111652210A (zh) | 一种车牌字符智能识别系统 | |
Devarakota et al. | Occupant classification using range images | |
EP1655688A2 (en) | Object classification method utilizing wavelet signatures of a monocular video image | |
Ballesteros et al. | Optimized HOG for on-road video based vehicle verification | |
Vaddi et al. | Computer vision based vehicle recognition on indian roads | |
EP4002270A1 (en) | Image recognition evaluation program, image recognition evaluation method, evaluation device, and evaluation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140722 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140807 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5596628 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |