[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022013975A1 - 冷熱源ユニットおよび冷凍サイクル装置 - Google Patents

冷熱源ユニットおよび冷凍サイクル装置 Download PDF

Info

Publication number
WO2022013975A1
WO2022013975A1 PCT/JP2020/027519 JP2020027519W WO2022013975A1 WO 2022013975 A1 WO2022013975 A1 WO 2022013975A1 JP 2020027519 W JP2020027519 W JP 2020027519W WO 2022013975 A1 WO2022013975 A1 WO 2022013975A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
cooling
source unit
heat source
Prior art date
Application number
PCT/JP2020/027519
Other languages
English (en)
French (fr)
Inventor
智隆 石川
素 早坂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/027519 priority Critical patent/WO2022013975A1/ja
Priority to JP2022536042A priority patent/JP7438363B2/ja
Publication of WO2022013975A1 publication Critical patent/WO2022013975A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • This disclosure relates to a cold heat source unit and a refrigeration cycle device.
  • a refrigeration cycle device using a refrigerant for example, carbon dioxide
  • a refrigerant for example, carbon dioxide
  • the compressor discharge side pressure at the rated output is the supercritical pressure. Since the refrigerant near the critical point has a characteristic that the change in thermal characteristics is relatively large, the opening control of the expansion valve may become unstable.
  • Patent Document 1 states that the refrigerant state on the outlet side of the radiator changes along a control line set to avoid the critical point of the refrigerant on the Moriel diagram. Discloses a supercritical heat pump cycle that controls the opening degree of an expansion valve.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-28401
  • Patent Document 1 the opening degree of the expansion valve is controlled to avoid the critical point.
  • the opening control of the expansion valve itself becomes unstable, and it becomes difficult to control the opening of the expansion valve so as to avoid the critical point. ..
  • the present disclosure has been made to solve the above problems, and the purpose of the present disclosure is to introduce a cold heat source unit and a refrigerating cycle device having improved control stability.
  • the present disclosure relates to a cold heat source unit of a refrigeration cycle device configured to be connected to a load device including a first inflator and an evaporator.
  • the cold heat source unit includes a first flow path that forms a circulation flow path through which the refrigerant circulates by being connected to the load device, and a compressor, a condenser, and a refrigerant cooling device that are sequentially arranged in the first flow path.
  • a pressure sensor and a temperature sensor that detect the pressure and temperature of the refrigerant sent from the refrigerant cooling device to the first expansion device, respectively, and a control device that changes the cooling performance of the refrigerant cooling device based on the outputs of the pressure sensor and the temperature sensor. And prepare.
  • the cold heat source unit of the present disclosure it is possible to stably control the compressor discharge pressure even when it approaches the critical point due to disturbance.
  • FIG. It is an overall block diagram of the refrigeration cycle apparatus of Embodiment 1.
  • FIG. It is a figure which shows an example of a cooling range. It is a figure which showed the cooling range in a ph diagram. It is a ph diagram which shows the change of the refrigerating cycle before and after cooling. It is a flowchart for demonstrating the control of the refrigerant cooling apparatus which the control apparatus 100 executes.
  • FIG. It is an overall block diagram of the modification of the refrigerating cycle apparatus of Embodiment 2.
  • FIG. 1 is an overall configuration diagram of the refrigeration cycle apparatus of the first embodiment. Note that FIG. 1 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle device 1 includes a cold heat source unit 2, a load device 3, and pipes 84 and 88.
  • the cold heat source unit 2 has a refrigerant outlet port and a refrigerant inlet port for connecting to the load device 3. Since the cold heat source unit 2 is often arranged outdoors, it may also be referred to as an indoor unit or an outdoor unit.
  • the load device 3 has a refrigerant outlet port and a refrigerant inlet port for connecting to the cold heat source unit 2.
  • the pipe 84 connects the refrigerant outlet port of the cold heat source unit 2 and the refrigerant inlet port of the load device 3.
  • the pipe 88 connects the refrigerant outlet port of the load device 3 and the refrigerant inlet port of the cold heat source unit 2.
  • the cold heat source unit 2 of the refrigeration cycle device 1 is configured to be connected to the load device 3.
  • the cold heat source unit 2 includes a compressor 10 having a suction port G1 and a discharge port G2, a condenser 20, a fan 22, a refrigerant cooling device 30, and pipes 80 to 83, 89.
  • the refrigerant cooling device 30 includes a heat exchanger 72 and a switching unit 74 for switching the flow path of the refrigerant.
  • the heat exchanger 72 has a first passage H1 and a second passage H2, and is configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2.
  • the load device 3 includes a first expansion device 50, an evaporator 60, and pipes 85, 86, 87.
  • the evaporator 60 is configured to exchange heat between air and the refrigerant. In the refrigeration cycle device 1, the evaporator 60 evaporates the refrigerant by endothermic heat from the air in the cooling target space.
  • the first expansion device 50 is, for example, a temperature expansion valve controlled independently of the cold heat source unit 2.
  • the first expansion device 50 may be an electronic expansion valve capable of reducing the pressure of the refrigerant.
  • the compressor 10 compresses the refrigerant sucked from the pipe 89 and discharges it to the pipe 80.
  • the drive frequency of the compressor 10 can be arbitrarily changed by inverter control.
  • the compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the capacity of the refrigerating cycle device 1 can be adjusted.
  • Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
  • the condenser 20 is configured so that the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat (heat dissipation) with the outside air. By this heat exchange, the refrigerant is condensed and changed into a liquid phase.
  • the refrigerant discharged from the compressor 10 to the pipe 80 is condensed and liquefied in the condenser 20 and flows out to the pipe 81.
  • a fan 22 for sending outside air is attached to the condenser 20 in order to improve the efficiency of heat exchange.
  • the fan 22 supplies the outside air to the condenser 20 through which the refrigerant exchanges heat in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure (high pressure side pressure) on the discharge side of the compressor 10 can be adjusted.
  • the refrigerant used in the refrigerant circuit of the refrigeration cycle device 1 is CO 2 , but if a state in which it is difficult to secure the degree of supercooling occurs, another refrigerant may be used.
  • the condenser 20 works as a radiator that dissipates heat from the refrigerant to the outside air.
  • a refrigerant such as CO 2 in a supercritical state
  • the degree of supercooling the degree of supercooling.
  • the first flow path F1 from the refrigerant inlet port of the cold heat source unit 2 to the refrigerant outlet port via the compressor 10, the condenser 20, and the first passage H1 of the heat exchanger 72 is the first expansion device 50 and the evaporator. Together with the load device 3 in which the 60 is arranged, a circulation flow path through which the refrigerant circulates is formed.
  • this circulation flow path is also referred to as a "main refrigerant circuit" of the refrigeration cycle.
  • the cold heat source unit 2 further includes a second flow path F2 that branches from the branch point BP of the first flow path F1 downstream of the evaporator 60 in the direction in which the refrigerant circulates.
  • the second flow path F2 is configured such that the refrigerant that has passed through the evaporator 60 returns to the compressor 10 via the refrigerant cooling device 30.
  • the refrigerant cooling device 30 includes a switching unit 74 for switching whether or not to flow the refrigerant from the branch point BP to the second flow path F2, and the first passage H1 and the second flow path F2 which are a part of the first flow path F1. It has a second passage H2 which is a part thereof, and includes a heat exchanger 72 configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2.
  • the cold heat source unit 2 further includes pressure sensors 110 to 112, temperature sensors 120 and 121, and a control device 100 that controls the compressor 10 and the switching unit 74.
  • the pressure sensor 110 detects the pressure Ps in the suction port portion of the compressor 10 and outputs the detected value to the control device 100.
  • the pressure sensor 111 detects the discharge pressure Pd of the compressor 10 and outputs the detected value to the control device 100.
  • the pressure sensor 112 detects the refrigerant pressure P1 in the pipe 83 in front of the first expansion device 50, and outputs the detected value to the control device 100.
  • the temperature sensor 120 detects the discharge temperature TH of the compressor 10 and outputs the detected value to the control device 100.
  • the temperature sensor 121 detects the refrigerant temperature T1 of the pipe 83 in front of the first expansion device 50, and outputs the detected value to the control device 100.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including.
  • the CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 executes control of each device in the cold heat source unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • the control device 100 controls the flow of the refrigerant in the switching unit 74 according to the outputs of the pressure sensor 112 and the temperature sensor 121.
  • the switching unit 74 includes on-off valves 76 and 77. When the on-off valve 76 is closed and the on-off valve 77 is opened, the refrigerant flows from the load device 3 to the suction port G1 of the compressor 10 without flowing through the second flow path F2. On the contrary, when the on-off valve 76 is opened and the on-off valve 77 is closed, the refrigerant flows from the load device 3 to the suction port G1 of the compressor 10 via the second flow path F2.
  • the second flow path F2 is a refrigerant that flows out from the condenser 20 to the pipe 81 by flowing the low-temperature refrigerant that has passed through the first expansion device 50 and the evaporator 60 into the heat exchanger 72. Is provided to cool the water and stabilize the state of the refrigerant flowing into the first expansion device 50 through the pipes 82 to 85.
  • the refrigerant in front of the first expansion device 50 is cooled by the refrigerant cooling device 30 to change the state of the refrigerant to the critical point. Avoid from the vicinity. As a result, it is possible to suppress the density fluctuation due to the temperature change, stabilize the expansion valve flow rate, and supply a stable refrigerating capacity.
  • the main refrigerant circuit passes from the compressor 10 through the condenser 20, the refrigerant cooling device 30, the first expansion device 50, and the evaporator 60 in this order.
  • the refrigerant is configured to return to the compressor 10.
  • the refrigerant cooling device 30 uses the refrigerant itself in the refrigerating cycle after passing through the evaporator 60 as a cold heat source.
  • a pressure sensor 112 and a temperature sensor 121 are provided in front of the inlet of the first expansion device 50.
  • the control device 100 increases the cooling capacity of the refrigerant cooling device 30 to cool the refrigerant.
  • the refrigerant is not limited to CO 2, but is particularly effective if CO 2.
  • the cooling range is the pressure range / temperature range in which the density fluctuates greatly with a slight temperature change.
  • the cooling range may be, for example, a range in which the density of the refrigerant changes by 10% or more with respect to a temperature change of 0.5 K of the refrigerant when the refrigerant pressure is a supercritical pressure.
  • FIG. 2 is a diagram showing an example of a cooling range.
  • FIG. 3 is a diagram showing the cooling range in the ph diagram. 2 and 3 show an example when the refrigerant is CO 2.
  • the temperature range A1 when the pressure is 7.0 MPa is 28.5 to 29.5 ° C.
  • the temperature range A2 when the pressure is 7.2 MPa is 29.5 to 30.5 ° C.
  • the temperature range A3 when the pressure is 7.4 MPa is 31.0 to 32.0 ° C.
  • the temperature range A4 when the pressure is 7.6 MPa is 32.0 to 33.0 ° C.
  • the temperature range A5 when the pressure is 7.8 MPa is 33.0 to 34.0 ° C.
  • the temperature range A6 when the pressure is 8.0 MPa is 34.0 to 35.0 ° C.
  • the temperature range A7 when the pressure is 8.2 MPa is 35.5 to 36.5 ° C.
  • FIG. 4 is a ph diagram showing changes in the refrigeration cycle before and after cooling. Since it is difficult to see the change in the refrigeration cycle when displayed in FIG. 3, it is shown in a simplified manner as shown in FIG.
  • the state of the inlet portion of the first expansion device 50 is within the cooling range A.
  • the control device 100 cools the refrigerant by using the refrigerant cooling device 30.
  • the point indicating the state of the inlet portion of the first expansion device 50 moves to the left in FIG. 4, that is, in the direction in which the specific enthalpy becomes smaller because the refrigerant has been cooled.
  • FIG. 5 is a flowchart for explaining the control of the refrigerant cooling device executed by the control device 100. The processing of this flowchart is called and executed from the main control routine of the refrigeration cycle apparatus at regular intervals.
  • step S1 the control device 100 determines whether or not the refrigerant cooling device 30 is cooling the refrigerant.
  • the on-off valves 76 and 77 are controlled in the switching unit 74 so that the refrigerant flows through the second flow path F2. At this time, the on-off valve 76 is in the open state and the on-off valve 77 is in the closed state.
  • the on-off valves 76 and 77 are controlled in the switching unit 74 so that the refrigerant does not flow to the second flow path F2. At this time, the on-off valve 76 is in the closed state and the on-off valve 77 is in the open state.
  • step S1 when the refrigerant cooling device 30 is not cooling the refrigerant (NO in S1), in step S2, in the control device 100, the state of the refrigerant at the inlet portion of the first expansion device 50 is the cooling described with reference to FIGS. 2 and 3. Determine if it falls within the range.
  • step S3 the control device 100 sets the on-off valve 76 inside the switching unit 74 to the open state and the on-off valve 77 to the closed state to cool the refrigerant. Start.
  • the control device 100 returns the control to the main control routine without performing the control in step S3.
  • step S1 when the refrigerant cooling device 30 is cooling the refrigerant (YES in S1), in step S4, the control device 100 determines whether or not cooling is continued for 5 minutes or more from the start of cooling.
  • step S5 If cooling has been continued for 5 minutes or more from the start of cooling (YES in S4), the transition from the refrigeration cycle C1 to C2 in FIG. 4 has been completed, so that the control device 100 ends the cooling in step S5. That is, the on-off valves 76 and 77 are controlled in the switching unit 74 so that the refrigerant does not flow to the second flow path F2, the on-off valve 76 is set to the closed state, and the on-off valve 77 is set to the open state.
  • step S4 is only an example because it is affected by the circulation amount of the refrigerant and the like.
  • FIG. 6 is an overall configuration diagram of the refrigeration cycle apparatus of the second embodiment. Note that FIG. 2 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle device 1A includes a cold heat source unit 2A, a load device 3, and pipes 84 and 88. Since the load device 3 has the same configuration as that in FIG. 1, the description will not be repeated.
  • the cold heat source unit 2A includes a compressor 10A instead of the compressor 10, a refrigerant cooling device 30A instead of the refrigerant cooling device 30, and a second flow path F2.
  • the second flow path F2A is included in place of the control device 100, and the control device 100A is included in place of the control device 100. Since the configuration of the other parts of the cold heat source unit 2A is the same as that of the cold heat source unit 2, the description will not be repeated.
  • the refrigerant cooling device 30A includes an on-off valve 70, a second expansion device 71, and a heat exchanger 72.
  • the second flow path F2A branches from the branch point BPA of the first flow path F1 downstream of the refrigerant cooling device 30A in the direction in which the refrigerant circulates, and the refrigerant that has passed through the condenser 20 and the refrigerant cooling device 30A is compressed. It is configured to return to 10.
  • the second expansion device 71 is an electronic expansion valve capable of reducing the refrigerant in the high pressure portion of the main refrigerant circuit to an intermediate pressure.
  • the on-off valve 70 may be omitted and the electronic expansion valve may be closed instead of closing the on-off valve 70.
  • the compressor 10A is provided with the intermediate pressure port G3, and the refrigerant from the intermediate pressure port G3 can flow into the middle part of the compression process.
  • the second flow path F2A includes pipes 91, 92, 94 for flowing the refrigerant from the branch point BPA of the pipe 82 connected to the outlet of the first passage H1 of the circulation flow path to the inlet of the second passage H2, and the second passage. Further, a pipe 96 for flowing a refrigerant from the outlet of H2 to the intermediate pressure port G3 of the compressor 10A is provided.
  • the second flow path F2A that branches from the main refrigerant circuit and sends the refrigerant to the compressor 10A via the second passage H2 is also referred to as an “injection flow path”.
  • the on-off valve 70, the second expansion device 71, and the heat exchanger 72 are arranged in the second flow path F2A in order from the branch point BPA.
  • the first passage H1 of the heat exchanger 72 is a part of the first passage F1.
  • the second passage H2 of the heat exchanger 72 is a part of the second passage F2A.
  • the control device 100A controls the amount of refrigerant flowing through the second expansion device 71 according to the outputs of the pressure sensor 112 and the temperature sensor 121.
  • the control device 100A executes the process shown in the flowchart of FIG. 5 as in the first embodiment.
  • the control device 100A opens the on-off valve 70 when the refrigerant cooling device 30A starts cooling the refrigerant in step S3. Further, the control device 100A closes the on-off valve 70 when the cooling of the refrigerant by the refrigerant cooling device 30A is completed in step S5.
  • FIG. 7 is an overall configuration diagram of a modified example of the refrigeration cycle apparatus according to the second embodiment.
  • the refrigerating cycle apparatus 1B shown in FIG. 7 includes a refrigerating heat source unit 2B instead of the refrigerating heat source unit 2A in the configuration of the refrigerating cycle apparatus 1A shown in FIG.
  • the second flow path F2A is the second flow path F2B.
  • the pipe 96 is connected to the intermediate pressure port G3 of the compressor 10A, but in the second flow path F2B, the pipe 96 is connected to the suction port G1 of the compressor 10. Since the configuration of the other parts of the cold heat source unit 2B is the same as that of the cold heat source unit 2A, the description will not be repeated.
  • Embodiment 3 the refrigerant flowing into the first expansion device 50 is cooled by the low temperature portion of the refrigerant itself circulating in the refrigeration cycle device, but it may be cooled by another method.
  • FIG. 8 is an overall configuration diagram of the refrigeration cycle apparatus according to the third embodiment. Note that FIG. 3 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle device 1C includes a cold heat source unit 2C, a load device 3, and pipes 84 and 88. Since the load device 3 has the same configuration as that in FIG. 1, the description will not be repeated.
  • the second flow path F2 is deleted, and the refrigerant cooling device 30C is included instead of the refrigerant cooling device 30, and the control device 100 is replaced with the control device 100. Includes 100C. Since the configuration of the other parts of the cold heat source unit 2C is the same as that of the cold heat source unit 2, the description will not be repeated.
  • the refrigerant cooling device 30C includes a heat exchanger 202 that exchanges heat between the refrigerant and the heat medium, and a supply device 204 that sends the heat medium to the heat exchanger 202.
  • the supply device 204 is a fan.
  • the supply device is a pump or valve.
  • the control device 100C controls the amount of heat medium supplied to the heat exchanger 202 by the supply device 204 according to the outputs of the pressure sensor 112 and the temperature sensor 121. Thereby, the cooling performance of the refrigerant cooling device 30C can be changed.
  • the control device 100C executes the process shown in the flowchart of FIG. 5 as in the first embodiment.
  • the control device 100C operates the supply device 204 when the refrigerant cooling device 30C starts cooling the refrigerant in step S3. Further, the control device 100C stops the supply device 204 when the cooling of the refrigerant by the refrigerant cooling device 30C is completed in step S5.
  • the present disclosure relates to a cold heat source unit 2 configured to be connected to a load device 3 including a first expansion device 50 and an evaporator 60.
  • the cold heat source unit 2 includes a first flow path F1, a compressor 10, a condenser 20, a refrigerant cooling device 30, a pressure sensor 112, a temperature sensor 121, and a control device 100.
  • the first flow path F1 is connected to the load device 3 to form a circulation flow path through which the refrigerant circulates.
  • the compressor 10, the condenser 20, and the refrigerant cooling device 30 are arranged in order in the first flow path F1.
  • the pressure sensor 112 and the temperature sensor 121 detect the pressure and temperature of the refrigerant sent from the refrigerant cooling device 30 to the first expansion device 50, respectively.
  • the control device 100 changes the cooling performance of the refrigerant cooling device 30 based on the outputs of the pressure sensor 112 and the temperature sensor 121.
  • the refrigerant cooling device 30 is controlled based on the outputs of the pressure sensor 112 and the temperature sensor 121 in this way, it is possible to accurately prevent the refrigerant sent to the first expansion device 50 from being in a state near the critical point. can.
  • control device 100 controls the refrigerant cooling device 30 when the outputs of the pressure sensor 112 and the temperature sensor 121 indicate that the state of the refrigerant has entered the predetermined cooling range A. Increases the cooling performance of.
  • control device 100 cools the refrigerant by the refrigerant cooling device 30 for a certain period of time (for example, 5 minutes) in step S4 when the state of the refrigerant enters the predetermined cooling range A. do.
  • the cooling range A (A1 to A7) shown in FIGS. 2 and 3 is a temperature and pressure range in which the density of the refrigerant changes by 10% or more with respect to a temperature change of 0.5 Kelvin of the refrigerant.
  • the cooling range A (A1 to A7) may be a temperature and pressure range in which the evaporation temperature of the refrigerant in the evaporator changes by 1 Kelvin or more with respect to the temperature change of 0.5 Kelvin of the refrigerant.
  • the cold heat source unit 2 shown in FIG. 1 further includes a second flow path F2 that branches from the branch point BP of the first flow path F1 downstream of the evaporator 60 in the direction in which the refrigerant circulates.
  • the second flow path F2 is configured such that the refrigerant that has passed through the evaporator 60 returns to the compressor 10 via the refrigerant cooling device 30.
  • the refrigerant cooling device 30 includes a switching unit 74 for switching whether or not to flow the refrigerant from the branch point BP to the second flow path F2, and a heat exchanger 72.
  • the heat exchanger 72 has a first passage H1 that is a part of the first flow path F1 and a second passage H2 that is a part of the second flow path F2.
  • the heat exchanger 72 is configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2.
  • the control device 100 controls the flow of the refrigerant in the switching unit 74 according to the outputs of the pressure sensor 112 and the temperature sensor 121.
  • the cold heat source unit 2A shown in FIG. 6 and the cold heat source unit 2B shown in FIG. 7 branch from the branch point BPA of the first flow path F1 downstream of the refrigerant cooling device 30A in the direction in which the refrigerant circulates.
  • a second flow path F2A or F2B configured to return the refrigerant that has passed through the condenser 20 and the refrigerant cooling device 30A to the compressor 10 is further provided.
  • the refrigerant cooling device 30A includes a second expansion device 71 and a heat exchanger 72 arranged in the second flow path F2A or F2B in order from the branch point BPA.
  • the heat exchanger 72 has a first passage H1 that is a part of the first flow path F1 and a second passage H2 that is a part of the second flow path F2A or F2B.
  • the heat exchanger 72 is configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2.
  • the control device 100A controls the amount of refrigerant flowing through the second expansion device 71 according to the outputs of the pressure sensor 112 and the temperature sensor 121.
  • the refrigerant cooling device 30C shown in FIG. 8 includes a heat exchanger 202 for heat exchange between the refrigerant and the heat medium, and a supply device 204 for sending the heat medium to the heat exchanger 202.
  • the supply device 204 is a fan.
  • the supply device is a pump or valve.
  • the control device 100C controls the amount of heat medium supplied to the heat exchanger 202 by the supply device 204 according to the outputs of the pressure sensor 112 and the temperature sensor 121.
  • the refrigerant is carbon dioxide or a mixed refrigerant containing carbon dioxide.
  • the present disclosure relates to refrigerating cycle devices 1, 1A to 1C including any of the above-mentioned cold heat source units 2, 2A to 2C and a load device 3 in another aspect.
  • the refrigeration cycle devices 1, 1A to 1C may be used for an air conditioner or the like.
  • 1,1A, 1B, 1C refrigeration cycle device 1,2A, 2B, 2C cold heat source unit, 3 load device, 10 compressor, 20 condenser, 22 fan, 30, 30A, 30C refrigerant cooling device, 50 first expansion Equipment, 60 evaporator, 70,76,77 on-off valve, 71 second expansion device, 72,202 heat exchanger, 74 switching unit, 80,81,82,83,84,85,88,89,91,92 , 94,96 piping, 100,100A, 100C control device, 102 CPU, 104 memory, 110,111,112 pressure sensor, 120,121 temperature sensor, 204 supply device, BP, BPA branch point, F1 first flow path, F2, F2A, F2B second flow path, G1 suction port, G2 discharge port, G3 intermediate pressure port, H1 first passage, H2 second passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷熱源ユニット(2)は、第1膨張装置(50)および蒸発器(60)を含む負荷装置(3)に接続されるように構成される。冷熱源ユニット(2)は、負荷装置(3)に接続されることによって、冷媒が循環する循環流路を形成する第1流路(F1)と、第1流路(F1)に順に配置される、圧縮機(10)、凝縮器(20)および冷媒冷却装置(30)と、冷媒冷却装置(30)から第1膨張装置(50)に送られる冷媒の圧力および温度をそれぞれ検出する圧力センサ(112)および温度センサ(121)と、制御装置(100)とを備える。制御装置(100)は、圧力センサ(112)および温度センサ(121)の出力に基づいて、冷媒冷却装置(30)の冷却性能を変化させる。

Description

冷熱源ユニットおよび冷凍サイクル装置
 本開示は、冷熱源ユニットおよび冷凍サイクル装置に関する。
 従来、高圧側で超臨界状態となり得る冷媒(例えば、二酸化炭素など)を用いた冷凍サイクル装置が知られている。このような冷凍サイクル装置では、定格出力時の圧縮機吐出側圧力が超臨界圧力となる。臨界点付近の冷媒は、熱物性の変化が比較的大きい特性を有するため、膨張弁の開度制御が不安定となる可能性がある。
 特開2015-28401号公報(特許文献1)には、放熱器の出口側における冷媒状態が、モリエル線図上において冷媒の臨界点を回避するように設定された制御線に沿って変化するように、膨張弁の開度を制御する超臨界式ヒートポンプサイクルが開示されている。
特開2015-28401号公報
 特開2015-28401号公報(特許文献1)では、膨張弁の開度を制御して臨界点を回避している。しかし、外乱によって圧縮機吐出側圧力が臨界点付近になった場合などは、膨張弁の開度制御自身が不安定となるので、臨界点を回避するような膨張弁の開度制御も難しくなる。
 本開示は、上記課題を解決するためになされたものであって、その目的は制御の安定性が向上した冷熱源ユニットおよび冷凍サイクル装置を紹介することである。
 本開示は、第1膨張装置および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の冷熱源ユニットに関する。冷熱源ユニットは、負荷装置に接続されることによって、冷媒が循環する循環流路を形成する第1流路と、第1流路に順に配置される、圧縮機、凝縮器および冷媒冷却装置と、冷媒冷却装置から第1膨張装置に送られる冷媒の圧力および温度をそれぞれ検出する圧力センサおよび温度センサと、圧力センサおよび温度センサの出力に基づいて、冷媒冷却装置の冷却性能を変化させる制御装置とを備える。
 本開示の冷熱源ユニットによれば、圧縮機吐出圧力が外乱によって臨界点に近づいたときでも安定的に制御することができる。
実施の形態1の冷凍サイクル装置の全体構成図である。 冷却範囲の一例を示す図である。 冷却範囲をp-h線図中に示した図である。 冷却前と冷却後の冷凍サイクルの変化を示すp-h線図である。 制御装置100が実行する冷媒冷却装置の制御を説明するためのフローチャートである。 実施の形態2の冷凍サイクル装置の全体構成図である。 実施の形態2の冷凍サイクル装置の変形例の全体構成図である。 実施の形態3の冷凍サイクル装置の全体構成図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 実施の形態1.
 図1は、実施の形態1の冷凍サイクル装置の全体構成図である。なお、図1では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
 図1を参照して、冷凍サイクル装置1は、冷熱源ユニット2と、負荷装置3と、配管84,88とを備える。冷熱源ユニット2は、負荷装置3と接続するための冷媒出口ポートおよび冷媒入口ポートを有する。冷熱源ユニット2は、屋外に配置されることが多いので、室内ユニット、または屋外ユニットとも呼ばれる場合がある。負荷装置3は、冷熱源ユニット2と接続するための冷媒出口ポートおよび冷媒入口ポートを有する。配管84は、冷熱源ユニット2の冷媒出口ポートと負荷装置3の冷媒入口ポートとを接続する。配管88は、負荷装置3の冷媒出口ポートと冷熱源ユニット2の冷媒入口ポートとを接続する。
 冷凍サイクル装置1の冷熱源ユニット2は、負荷装置3に接続されるように構成される。冷熱源ユニット2は、吸入ポートG1および吐出ポートG2を有する圧縮機10と、凝縮器20と、ファン22と、冷媒冷却装置30と、配管80~83,89とを備える。冷媒冷却装置30は、熱交換器72と、冷媒の流路を切替える切替部74とを含む。熱交換器72は、第1通路H1および第2通路H2を有し、第1通路H1を流れる冷媒と第2通路H2を流れる冷媒との間で熱交換を行なうように構成される。
 負荷装置3は、第1膨張装置50と、蒸発器60と、配管85、86,87とを含む。蒸発器60は空気と冷媒との間で熱交換を行なうように構成される。冷凍サイクル装置1では、蒸発器60は、冷却対象空間の空気からの吸熱によって冷媒を蒸発させる。第1膨張装置50は、たとえば、冷熱源ユニット2と独立して制御される温度膨張弁である。なお、第1膨張装置50は冷媒を減圧することができる電子膨張弁であってもよい。
 圧縮機10は、配管89から吸入される冷媒を圧縮して配管80へ吐出する。圧縮機10は、インバータ制御により駆動周波数を任意に変更することができる。圧縮機10は、制御装置100からの制御信号に従って回転速度を調整するように構成される。圧縮機10の回転速度を調整することで冷媒の循環量が調整され、冷凍サイクル装置1の能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。
 凝縮器20は、圧縮機10から吐出された高温高圧のガス冷媒が外気と熱交換(放熱)を行なうように構成される。この熱交換により、冷媒は凝縮されて液相に変化する。圧縮機10から配管80に吐出された冷媒は、凝縮器20において凝縮および液化され配管81へ流出する。熱交換の効率を上げるため外気を送るファン22が凝縮器20に取り付けられている。ファン22は、凝縮器20において冷媒が熱交換を行なう外気を凝縮器20に供給する。ファン22の回転速度を調整することにより、圧縮機10の吐出側の冷媒圧力(高圧側圧力)を調整することができる。
 ここで、冷凍サイクル装置1の冷媒回路に使用する冷媒はCOとするが、過冷却度が確保しにくい状態が生じる場合は、他の冷媒を使用しても良い。
 なお、凝縮器20は、冷媒からの熱を外気に放熱する放熱器として働く。本明細書では、説明の容易のため、超臨界状態のCOのような冷媒を冷却する場合も凝縮器20と呼ぶこととする。また、本明細書では、説明の容易のため、超臨界状態の冷媒の基準温度からの低下量も過冷却度と呼ぶこととする。
 冷熱源ユニット2の冷媒入口ポートから圧縮機10、凝縮器20、熱交換器72の第1通路H1を経由して冷媒出口ポートに至る第1流路F1は、第1膨張装置50および蒸発器60が配置される負荷装置3とともに、冷媒が循環する循環流路を形成する。以下、この循環流路を冷凍サイクルの「主冷媒回路」とも言う。
 冷熱源ユニット2は、冷媒が循環する方向において、蒸発器60よりも下流の第1流路F1の分岐点BPから分岐する第2流路F2をさらに備える。第2流路F2は、蒸発器60を通過した冷媒が冷媒冷却装置30を経由して圧縮機10に戻るように構成される。冷媒冷却装置30は、分岐点BPから第2流路F2に冷媒を流すか否かを切替える切替部74と、第1流路F1の一部である第1通路H1と第2流路F2の一部である第2通路H2とを有し、第1通路H1を流れる冷媒と第2通路H2を流れる冷媒との間で熱交換を行なうように構成された熱交換器72とを備える。
 冷熱源ユニット2は、さらに、圧力センサ110~112と、温度センサ120,121と、圧縮機10および切替部74を制御する制御装置100とを備える。
 圧力センサ110は、圧縮機10の吸入ポート部分の圧力Psを検出し、その検出値を制御装置100へ出力する。圧力センサ111は、圧縮機10の吐出圧力Pdを検出し、その検出値を制御装置100へ出力する。圧力センサ112は、第1膨張装置50の手前の配管83の冷媒圧力P1を検出し、その検出値を制御装置100へ出力する。
 温度センサ120は、圧縮機10の吐出温度THを検出し、その検出値を制御装置100へ出力する。温度センサ121は、第1膨張装置50の手前の配管83の冷媒温度T1を検出し、その検出値を制御装置100へ出力する。
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、冷熱源ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 制御装置100は、圧力センサ112および温度センサ121の出力に応じて切替部74の冷媒の流れを制御する。切替部74は、開閉弁76,77を含む。開閉弁76を閉じ開閉弁77を開くと、冷媒は、第2流路F2を流れずに、負荷装置3から圧縮機10の吸入ポートG1に流れる。逆に開閉弁76を開き開閉弁77を閉じると、冷媒は、負荷装置3から第2流路F2を経由して圧縮機10の吸入ポートG1に流れる。
 本実施の形態では第2流路F2は、第1膨張装置50および蒸発器60を通過して低温になった冷媒を熱交換器72へ流入させることによって凝縮器20から配管81に流出する冷媒を冷却し、配管82~85を通過して第1膨張装置50に流入する冷媒の状態を安定させるために設けられる。
 この点についてより詳細に説明する。たとえば、COなどの高圧側で超臨界状態となり得る冷媒を使用する場合、冷媒状態が臨界点(臨界圧力、臨界温度)付近のとき、少しの温度変化に対して密度が大きく変動する。第1膨張装置50の入口側の冷媒密度が大きく変化すると、第1膨張装置50の冷媒流量が安定せず、冷凍サイクル装置の冷凍能力不足などを引き起こす。
 そこで、本実施の形態では、第1膨張装置50の入口側の冷媒状態が臨界点付近の場合、第1膨張装置50の手前の冷媒を冷媒冷却装置30によって冷却して冷媒の状態を臨界点付近から回避させる。これにより、温度変化に対する密度変動を抑制して膨張弁流量を安定化させ、安定した冷凍能力を供給することができる。
 このような冷却を実現するために、図1に示す構成では、主冷媒回路は、圧縮機10から、凝縮器20、冷媒冷却装置30、第1膨張装置50、蒸発器60を順に経由して、圧縮機10に冷媒が戻るように構成される。
 冷媒冷却装置30は、実施の形態1では、蒸発器60を通過した後の冷凍サイクルの冷媒自体を冷熱源として使用する。冷媒の状態を観測するために、第1膨張装置50の入口手前に圧力センサ112と温度センサ121が設けられている。制御装置100は、第1膨張装置50の冷媒入口側の冷媒状態(圧力、温度)が冷却範囲となったら、冷媒冷却装置30の冷却能力を増加させ冷媒冷却を行なう。なお、冷媒は、COには限定されないが、COであれば特に効果的である。
 冷却範囲は、少しの温度変化に対して密度が大きく変動する状態の圧力範囲/温度範囲である。冷却範囲は、たとえば、冷媒圧力が超臨界圧力であるとき冷媒の温度変化0.5Kに対して冷媒の密度が10%以上変化する範囲にすると良い。
 図2は、冷却範囲の一例を示す図である。図3は、冷却範囲をp-h線図中に示した図である。図2、図3では、冷媒がCOである場合の例を示す。
 図2の例では、圧力を7.0MPaから8.2MPaまで0.2MPa刻みで変化させた場合の冷却範囲に該当する温度範囲A1~A7が示されている。
 図2に示すように、圧力が7.0MPaである場合の温度範囲A1は、28.5~29.5℃である。圧力が7.2MPaである場合の温度範囲A2は、29.5~30.5℃である。圧力が7.4MPaである場合の温度範囲A3は、31.0~32.0℃である。圧力が7.6MPaである場合の温度範囲A4は、32.0~33.0℃である。圧力が7.8MPaである場合の温度範囲A5は、33.0~34.0℃である。圧力が8.0MPaである場合の温度範囲A6は、34.0~35.0℃である。圧力が8.2MPaである場合の温度範囲A7は、35.5~36.5℃である。
 このように、圧力と温度で規定される範囲A1~A7の集合で表わされる冷却範囲Aをp-h線図上に図示すると、図3のようになる。
 制御装置100は、第1膨張装置50の冷媒入口側の冷媒状態(圧力、温度)が冷却範囲となったら、冷媒冷却装置30の冷却能力を増加させ冷媒冷却を行なう。図4は、冷却前と冷却後の冷凍サイクルの変化を示すp-h線図である。なお、冷凍サイクルの変化を図3中に表示すると見にくいため、図4のように簡略化して示している。
 冷媒冷却前の冷凍サイクルC1は、第1膨張装置50の入口部分の状態が冷却範囲Aに入っている。このような状態となると、制御装置100は、冷媒冷却装置30を用いて冷媒を冷却する。冷媒冷却装置30の作動後の冷凍サイクルC2では、冷媒が冷却されたため第1膨張装置50の入口部分の状態を示す点が図4の左方向すなわち比エンタルピが小さくなる方向に移動する。
 図5は、制御装置100が実行する冷媒冷却装置の制御を説明するためのフローチャートである。このフローチャートの処理は、一定時間ごとに冷凍サイクル装置の主制御ルーチンから呼び出されて実行される。
 まず、ステップS1において制御装置100は、冷媒冷却装置30が冷媒冷却中であるか否かを判断する。冷媒冷却装置30が冷媒冷却中の場合には、切替部74において第2流路F2に冷媒が流通するように開閉弁76,77が制御される。このとき、開閉弁76は開状態、開閉弁77は閉状態である。一方、冷媒冷却装置30が冷媒冷却中でない場合には、切替部74において第2流路F2に冷媒が流通しないように開閉弁76,77が制御される。このとき、開閉弁76は閉状態、開閉弁77は開状態である。
 ステップS1において、冷媒冷却装置30が冷媒冷却中でない場合(S1でNO)、ステップS2において制御装置100は、第1膨張装置50の入口部分の冷媒の状態が図2,図3で説明した冷却範囲内に該当するか否かを判断する。
 冷媒の状態が冷却範囲内に該当する場合(S2でYES)、ステップS3において制御装置100は、切替部74の内部の開閉弁76を開状態、開閉弁77を閉状態として、冷媒の冷却を開始する。一方、冷媒の状態が冷却範囲内に該当しない場合(S2でNO)、制御装置100は、ステップS3の制御を行なわずに制御を主制御ルーチンに戻す。
 ステップS1において、冷媒冷却装置30が冷媒冷却中である場合(S1でYES)、ステップS4において制御装置100は、冷却開始から5分以上冷却を継続しているか否かを判断する。
 冷却開始から5分以上冷却を継続していた場合(S4でYES)、図4の冷凍サイクルC1からC2への移行が完了しているので、ステップS5において制御装置100は、冷却を終了させる。すなわち、切替部74において第2流路F2に冷媒が流通しないように開閉弁76,77が制御され、開閉弁76は閉状態、開閉弁77は開状態に設定される。
 なお、ステップS4における「5分」については、冷媒の循環量などにも影響を受けるので、あくまでも例示である。
 以上のように冷媒冷却装置30を制御することによって、温度変化に対する密度変動を抑制して第1膨張装置50の冷媒流量を安定化させることができ、安定した冷凍能力を供給することが可能となる。
 実施の形態2.
 図6は、実施の形態2の冷凍サイクル装置の全体構成図である。なお、図2では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
 図6を参照して、冷凍サイクル装置1Aは、冷熱源ユニット2Aと、負荷装置3と、配管84,88とを備える。負荷装置3については、図1の構成と同じであるので、説明は繰返さない。
 冷熱源ユニット2Aは、図1に示した冷熱源ユニット2の構成において、圧縮機10に代えて圧縮機10Aを含み、冷媒冷却装置30に代えて冷媒冷却装置30Aを含み、第2流路F2に代えて第2流路F2Aを含み、制御装置100に代えて制御装置100Aを含む。冷熱源ユニット2Aの他の部分の構成は、冷熱源ユニット2と同様であるので説明は繰返さない。
 冷媒冷却装置30Aは、開閉弁70と、第2膨張装置71と、熱交換器72とを含む。第2流路F2Aは、冷媒が循環する方向において、冷媒冷却装置30Aよりも下流の第1流路F1の分岐点BPAから分岐し、凝縮器20および冷媒冷却装置30Aを通過した冷媒を圧縮機10に戻すように構成される。
 第2膨張装置71は主冷媒回路の高圧部の冷媒を中間圧力まで低下させることができる電子膨張弁である。なお、第2膨張装置71が完全に閉止することが可能な電子膨張弁である場合には、開閉弁70を閉じる代わりに、開閉弁70を省略し、電子膨張弁を閉じても良い。
 実施の形態2では、圧縮機10Aに中間圧ポートG3が設けられており中間圧ポートG3からの冷媒を圧縮工程の途中部分に流入させることができる。
 第2流路F2Aは、循環流路の第1通路H1の出口に接続される配管82の分岐点BPAから、第2通路H2の入口に冷媒を流す配管91,92,94と、第2通路H2の出口から圧縮機10Aの中間圧ポートG3に冷媒を流す配管96とをさらに備える。以下において、主冷媒回路から分岐して第2通路H2を経由して圧縮機10Aに冷媒を送る第2流路F2Aを、「インジェクション流路」とも言う。
 開閉弁70、第2膨張装置71および熱交換器72は、分岐点BPAから順に第2流路F2Aに配置される。熱交換器72の第1通路H1は、第1流路F1の一部である。熱交換器72の第2通路H2は、第2流路F2Aの一部である。制御装置100Aは、圧力センサ112および温度センサ121の出力に応じて第2膨張装置71の冷媒流通量を制御する。
 制御装置100Aは、実施の形態1と同様に、図5のフローチャートで示した処理を実行する。この場合、制御装置100Aは、ステップS3において冷媒冷却装置30Aによる冷媒の冷却を開始する場合には、開閉弁70を開く。また、制御装置100Aは、ステップS5において冷媒冷却装置30Aによる冷媒の冷却を終了する場合には、開閉弁70を閉じる。
 図7は、実施の形態2の冷凍サイクル装置の変形例の全体構成図である。図7に示す冷凍サイクル装置1Bは、図6に示した冷凍サイクル装置1Aの構成において、冷熱源ユニット2Aに代えて冷熱源ユニット2Bを備える。
 冷熱源ユニット2Bは、第2流路F2Aが第2流路F2Bとなっている。第2流路F2Aでは、配管96が圧縮機10Aの中間圧ポートG3に接続されていたが、第2流路F2Bでは、配管96が圧縮機10の吸入ポートG1に接続されている。冷熱源ユニット2Bの他の部分の構成は、冷熱源ユニット2Aと同様であるので、説明は繰返さない。
 図7に示すように構成を変形しても、図1および図6の構成と同様な効果を得ることができる。
 実施の形態3.
 実施の形態1および2では、冷凍サイクル装置を循環する冷媒自体の低温部分によって、第1膨張装置50に流入する冷媒を冷却したが、他の方法で冷却しても良い。
 図8は、実施の形態3の冷凍サイクル装置の全体構成図である。なお、図3では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
 図8を参照して、冷凍サイクル装置1Cは、冷熱源ユニット2Cと、負荷装置3と、配管84,88とを備える。負荷装置3については、図1の構成と同じであるので、説明は繰返さない。
 冷熱源ユニット2Cは、図1に示した冷熱源ユニット2の構成において、第2流路F2は削除され、冷媒冷却装置30に代えて冷媒冷却装置30Cを含み、制御装置100に代えて制御装置100Cを含む。冷熱源ユニット2Cの他の部分の構成は、冷熱源ユニット2と同様であるので説明は繰返さない。
 冷媒冷却装置30Cは、冷媒と熱媒体とを熱交換させる熱交換器202と、熱交換器202に熱媒体を送る供給装置204とを備える。たとえば、熱媒体が外気である場合、供給装置204はファンである。なお、熱媒体が水またはブラインである場合、供給装置はポンプまたは弁である。制御装置100Cは、圧力センサ112および温度センサ121の出力に応じて供給装置204によって熱交換器202に供給される熱媒体の量を制御する。これにより、冷媒冷却装置30Cの冷却性能を変化させることができる。
 制御装置100Cは、実施の形態1と同様に、図5のフローチャートで示した処理を実行する。この場合、制御装置100Cは、ステップS3において冷媒冷却装置30Cによる冷媒の冷却を開始する場合には、供給装置204を作動させる。また、制御装置100Cは、ステップS5において冷媒冷却装置30Cによる冷媒の冷却を終了する場合には、供給装置204を停止する。
 実施の形態3に示す構成としても、図1および図6の構成と同様な効果を得ることができる。
 (まとめ)
 最後に、本実施の形態について再び図面を参照して総括する。
 本開示は、第1膨張装置50および蒸発器60を含む負荷装置3に接続されるように構成された冷熱源ユニット2に関する。冷熱源ユニット2は、第1流路F1と、圧縮機10と、凝縮器20と、冷媒冷却装置30と、圧力センサ112と、温度センサ121と、制御装置100とを備える。第1流路F1は、負荷装置3に接続されることによって、冷媒が循環する循環流路を形成する。圧縮機10、凝縮器20および冷媒冷却装置30は、第1流路F1に順に配置される。圧力センサ112および温度センサ121は、冷媒冷却装置30から第1膨張装置50に送られる冷媒の圧力および温度をそれぞれ検出する。制御装置100は、圧力センサ112および温度センサ121の出力に基づいて、冷媒冷却装置30の冷却性能を変化させる。
 このように圧力センサ112および温度センサ121の出力に基づいて、冷媒冷却装置30を制御するので、第1膨張装置50に送られる冷媒が臨界点付近の状態となることを正確に回避することができる。
 好ましくは、図4に示すように、制御装置100は、冷媒の状態が予め定められた冷却範囲Aに入ったことを圧力センサ112および温度センサ121の出力が示す場合には、冷媒冷却装置30の冷却性能を増加させる。
 好ましくは、図5に示すように、制御装置100は、冷媒の状態が予め定められた冷却範囲Aに入った場合に、ステップS4において一定時間(たとえば5分)冷媒冷却装置30によって冷媒を冷却する。
 より好ましくは、図2、図3に示す冷却範囲A(A1~A7)は、冷媒の温度変化0.5ケルビンに対して冷媒の密度が10%以上変化する温度および圧力範囲である。
 なお、冷却範囲A(A1~A7)は、冷媒の温度変化0.5ケルビンに対して蒸発器における冷媒の蒸発温度が1ケルビン以上変化する温度および圧力範囲であってもよい。
 好ましくは、図1に示す冷熱源ユニット2は、冷媒が循環する方向において、蒸発器60よりも下流の第1流路F1の分岐点BPから分岐する第2流路F2をさらに備える。第2流路F2は、蒸発器60を通過した冷媒が冷媒冷却装置30を経由して圧縮機10に戻るように構成される。冷媒冷却装置30は、分岐点BPから第2流路F2に冷媒を流すか否かを切替える切替部74と、熱交換器72とを備える。熱交換器72は、第1流路F1の一部である第1通路H1と第2流路F2の一部である第2通路H2とを有する。熱交換器72は、第1通路H1を流れる冷媒と第2通路H2を流れる冷媒との間で熱交換を行なうように構成される。制御装置100は、圧力センサ112および温度センサ121の出力に応じて切替部74の冷媒の流れを制御する。
 好ましくは、図6に示す冷熱源ユニット2Aおよび図7に示す冷熱源ユニット2Bは、冷媒が循環する方向において、冷媒冷却装置30Aよりも下流の第1流路F1の分岐点BPAから分岐し、凝縮器20および冷媒冷却装置30Aを通過した冷媒を圧縮機10に戻すように構成された第2流路F2AまたはF2Bをさらに備える。冷媒冷却装置30Aは、分岐点BPAから順に第2流路F2AまたはF2Bに配置される第2膨張装置71および熱交換器72を含む。熱交換器72は、第1流路F1の一部である第1通路H1と、第2流路F2AまたはF2Bの一部である第2通路H2とを有する。熱交換器72は、第1通路H1を流れる冷媒と第2通路H2を流れる冷媒との間で熱交換を行なうように構成される。制御装置100Aは、圧力センサ112および温度センサ121の出力に応じて第2膨張装置71の冷媒流通量を制御する。
 好ましくは、図8に示す冷媒冷却装置30Cは、冷媒と熱媒体とを熱交換させる熱交換器202と、熱交換器202に熱媒体を送る供給装置204とを備える。たとえば、熱媒体が外気である場合、供給装置204はファンである。なお、熱媒体が水またはブラインである場合、供給装置はポンプまたは弁である。制御装置100Cは、圧力センサ112および温度センサ121の出力に応じて供給装置204によって熱交換器202に供給される熱媒体の量を制御する。
 好ましくは、冷媒は、二酸化炭素、または二酸化炭素を含む混合冷媒である。
 本開示は、他の局面では、上記冷熱源ユニット2,2A~2Cのいずれかと、負荷装置3とを備える冷凍サイクル装置1,1A~1Cに関する。
 以上、冷凍サイクル装置1を備える冷凍機を例示して本実施の形態を説明したが、冷凍サイクル装置1、1A~1Cは、空気調和機などに利用されても良い。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A,1B,1C 冷凍サイクル装置、2,2A,2B,2C 冷熱源ユニット、3 負荷装置、10 圧縮機、20 凝縮器、22 ファン、30,30A,30C 冷媒冷却装置、50 第1膨張装置、60 蒸発器、70,76,77 開閉弁、71 第2膨張装置、72,202 熱交換器、74 切替部、80,81,82,83,84,85,88,89,91,92,94,96 配管、100,100A,100C 制御装置、102 CPU、104 メモリ、110,111,112 圧力センサ、120,121 温度センサ、204 供給装置、BP,BPA 分岐点、F1 第1流路、F2,F2A,F2B 第2流路、G1 吸入ポート、G2 吐出ポート、G3 中間圧ポート、H1 第1通路、H2 第2通路。

Claims (10)

  1.  第1膨張装置および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の冷熱源ユニットであって、
     前記負荷装置に接続されることによって、冷媒が循環する循環流路を形成する第1流路と、
     前記第1流路に順に配置される、圧縮機、凝縮器および冷媒冷却装置と、
     前記冷媒冷却装置から前記第1膨張装置に送られる冷媒の圧力および温度をそれぞれ検出する圧力センサおよび温度センサと、
     前記圧力センサおよび前記温度センサの出力に基づいて、前記冷媒冷却装置の冷却性能を変化させる制御装置とを備える、冷熱源ユニット。
  2.  前記制御装置は、冷媒の状態が予め定められた冷却範囲に入ったことを前記圧力センサおよび前記温度センサの出力が示す場合には、前記冷媒冷却装置の冷却性能を増加させる、請求項1に記載の冷熱源ユニット。
  3.  前記制御装置は、冷媒の状態が予め定められた冷却範囲に入った場合に、一定時間前記冷媒冷却装置によって冷媒を冷却する、請求項1に記載の冷熱源ユニット。
  4.  前記冷却範囲は、冷媒の温度変化0.5ケルビンに対して冷媒の密度が10%以上変化する温度および圧力範囲である、請求項2または3に記載の冷熱源ユニット。
  5.  前記冷却範囲は、冷媒の温度変化0.5ケルビンに対して前記蒸発器における冷媒の蒸発温度が1ケルビン以上変化する温度および圧力範囲である、請求項2または3に記載の冷熱源ユニット。
  6.  冷媒が循環する方向において、前記蒸発器よりも下流の前記第1流路の分岐点から分岐する第2流路をさらに備え、前記第2流路は、前記蒸発器を通過した冷媒が前記冷媒冷却装置を経由して前記圧縮機に戻るように構成され、
     前記冷媒冷却装置は、
     前記分岐点から前記第2流路に冷媒を流すか否かを切替える切替部と、
     前記第1流路の一部である第1通路と前記第2流路の一部である第2通路とを有し、前記第1通路を流れる冷媒と前記第2通路を流れる冷媒との間で熱交換を行なうように構成された熱交換器とを備え、
     前記制御装置は、前記圧力センサおよび前記温度センサの出力に応じて前記切替部の冷媒の流れを制御する、請求項1に記載の冷熱源ユニット。
  7.  冷媒が循環する方向において、前記冷媒冷却装置よりも下流の前記第1流路の分岐点から分岐し、前記凝縮器および前記冷媒冷却装置を通過した冷媒を前記圧縮機に戻すように構成された第2流路をさらに備え、
     前記冷媒冷却装置は、前記分岐点から順に前記第2流路に配置される第2膨張装置および熱交換器を含み、
     前記熱交換器は、前記第1流路の一部である第1通路と、前記第2流路の一部である第2通路とを有し、前記熱交換器は、前記第1通路を流れる冷媒と前記第2通路を流れる冷媒との間で熱交換を行なうように構成され、
     前記制御装置は、前記圧力センサおよび前記温度センサの出力に応じて前記第2膨張装置の冷媒流通量を制御する、請求項1に記載の冷熱源ユニット。
  8.  前記冷媒冷却装置は、
     前記冷媒と熱媒体とを熱交換させる熱交換器と、
     前記熱交換器に前記熱媒体を送る供給装置とを備え、
     前記制御装置は、前記圧力センサおよび前記温度センサの出力に応じて前記供給装置によって前記熱交換器に供給される熱媒体の量を制御する、請求項1に記載の冷熱源ユニット。
  9.  前記冷媒は、二酸化炭素または二酸化炭素を含む混合冷媒である、請求項1~7のいずれか1項に記載の冷熱源ユニット。
  10.  請求項1~9のいずれか1項に記載の冷熱源ユニットと、前記負荷装置とを備える冷凍サイクル装置。
PCT/JP2020/027519 2020-07-15 2020-07-15 冷熱源ユニットおよび冷凍サイクル装置 WO2022013975A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/027519 WO2022013975A1 (ja) 2020-07-15 2020-07-15 冷熱源ユニットおよび冷凍サイクル装置
JP2022536042A JP7438363B2 (ja) 2020-07-15 2020-07-15 冷熱源ユニットおよび冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027519 WO2022013975A1 (ja) 2020-07-15 2020-07-15 冷熱源ユニットおよび冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022013975A1 true WO2022013975A1 (ja) 2022-01-20

Family

ID=79555329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027519 WO2022013975A1 (ja) 2020-07-15 2020-07-15 冷熱源ユニットおよび冷凍サイクル装置

Country Status (2)

Country Link
JP (1) JP7438363B2 (ja)
WO (1) WO2022013975A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235239A (ja) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd 超臨界蒸気圧縮サイクル装置
JP2002081766A (ja) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2006153349A (ja) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
WO2009150761A1 (ja) * 2008-06-13 2009-12-17 三菱電機株式会社 冷凍サイクル装置、並びにその制御方法
JP2010091135A (ja) * 2008-10-03 2010-04-22 Tokyo Electric Power Co Inc:The 二段圧縮式給湯装置およびその起動制御方法
JP2013204967A (ja) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法
WO2014065094A1 (ja) * 2012-10-26 2014-05-01 三菱電機株式会社 冷凍サイクル装置
WO2017026011A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164250A (ja) 2012-02-13 2013-08-22 Panasonic Corp 冷凍装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235239A (ja) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd 超臨界蒸気圧縮サイクル装置
JP2002081766A (ja) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2006153349A (ja) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
WO2009150761A1 (ja) * 2008-06-13 2009-12-17 三菱電機株式会社 冷凍サイクル装置、並びにその制御方法
JP2010091135A (ja) * 2008-10-03 2010-04-22 Tokyo Electric Power Co Inc:The 二段圧縮式給湯装置およびその起動制御方法
JP2013204967A (ja) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd ヒートポンプの制御装置、ヒートポンプ、及びヒートポンプの制御方法
WO2014065094A1 (ja) * 2012-10-26 2014-05-01 三菱電機株式会社 冷凍サイクル装置
WO2017026011A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2022013975A1 (ja) 2022-01-20
JP7438363B2 (ja) 2024-02-26

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US6923016B2 (en) Refrigeration cycle apparatus
US20100175400A1 (en) Refrigeration apparatus
KR20060019582A (ko) 절약형 냉동 시스템의 초임계 압력 조절
JP2006343017A (ja) 冷凍装置
US11402134B2 (en) Outdoor unit and control method thereof
JP7150148B2 (ja) 室外ユニット、冷凍サイクル装置および冷凍機
JP2000146322A (ja) 冷凍サイクル
JP6341326B2 (ja) 冷凍装置の熱源ユニット
JP6712766B2 (ja) 二元冷凍システム
KR101450543B1 (ko) 공기조화 시스템
JP2005180815A (ja) 冷却装置
JP7391811B2 (ja) 冷凍機械
WO2022013975A1 (ja) 冷熱源ユニットおよび冷凍サイクル装置
JP2007010220A (ja) 冷凍装置及びその冷凍装置を備えた冷蔵庫
JP2004286266A (ja) 冷凍装置及びヒートポンプ式冷温水機
JP7367222B2 (ja) 冷凍サイクル装置
JP2020046157A (ja) 冷凍装置
AU2020360865B2 (en) A heat pump
JP7195449B2 (ja) 室外ユニットおよび冷凍サイクル装置
JP2009236430A (ja) 圧縮式冷凍機及びその容量制御方法
JP2010014386A (ja) 冷凍装置
JP5144959B2 (ja) 熱源機およびその制御方法
JP2000213819A (ja) 冷凍サイクル
JP7571170B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945573

Country of ref document: EP

Kind code of ref document: A1