[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021208619A1 - 基于明胶-锰离子共添加剂的电解液及其应用 - Google Patents

基于明胶-锰离子共添加剂的电解液及其应用 Download PDF

Info

Publication number
WO2021208619A1
WO2021208619A1 PCT/CN2021/078715 CN2021078715W WO2021208619A1 WO 2021208619 A1 WO2021208619 A1 WO 2021208619A1 CN 2021078715 W CN2021078715 W CN 2021078715W WO 2021208619 A1 WO2021208619 A1 WO 2021208619A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
zinc
gelatin
present disclosure
battery
Prior art date
Application number
PCT/CN2021/078715
Other languages
English (en)
French (fr)
Inventor
刘昱
陈璞
Original Assignee
瑞海泊有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞海泊有限公司 filed Critical 瑞海泊有限公司
Publication of WO2021208619A1 publication Critical patent/WO2021208619A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of zinc ion batteries, in particular, the present disclosure relates to electrolytes based on gelatin-manganese ion co-additives and their applications in water-based zinc ion batteries
  • Zinc-ion battery is a new type of secondary water battery developed in recent years. It has the advantages of high energy density, high power density, high efficiency and safety in the discharge process, non-toxic and cheap battery materials, and simple preparation process. It is used in large-scale energy storage and other fields. It has good application value and development prospects.
  • the traditional zinc sulfate electrolyte used in zinc-ion batteries has problems such as slow zinc ion deposition/precipitation kinetics and low coulombic efficiency, which are manifested in low charge and discharge capacity and difficulty in rapid charging in the same battery system.
  • the existing electrolyte for zinc-ion batteries still needs to be improved.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • one purpose of the present disclosure is to propose an electrolyte based on gelatin-manganese ion co-additive and its application.
  • the electrolyte is low in cost, simple in process, safe and environmentally friendly, easy to be prepared on a large scale, and can effectively inhibit the growth of zinc dendrites and slow down the corrosion of the zinc negative electrode.
  • the present disclosure proposes an electrolyte for zinc ion batteries.
  • the electrolyte includes gelatin, Zn 2+ , Mn 2+ and water.
  • electrolyte for the zinc ion battery may also have the following additional technical features:
  • the concentration of gelatin in the electrolyte is 0.2 to 1 wt%.
  • the concentration of Zn 2+ in the electrolyte is 1.5-2.5 mol/L.
  • the concentration of Mn 2+ in the electrolyte is 0.1-2 mol/L.
  • the Zn 2+ is provided in the form of ZnSO 4.
  • the Mn 2+ is provided in the form of MnSO 4.
  • the present disclosure proposes a method for preparing the electrolyte for the zinc ion battery of the above-mentioned embodiment.
  • the method includes: mixing and heat-treating gelatin, a zinc ion solution, and a manganese ion solution to obtain the electrolyte. Therefore, the method is simple in process, safe and environmentally friendly, and easy to scale production.
  • the method for preparing an electrolyte for a zinc ion battery according to the foregoing embodiment of the present disclosure may also have the following additional technical features:
  • the heat treatment is performed at 0 ⁇ 90° C. for 1 ⁇ 24 hours to complete.
  • the present disclosure proposes a zinc ion battery.
  • the zinc ion battery includes: the electrolyte of the above-mentioned embodiment. Therefore, the zinc-ion battery has all the features and advantages described above for the electrolyte used in the zinc-ion battery, and will not be repeated here. In general, the zinc ion battery has excellent cycle performance.
  • Figure 1 is a schematic diagram of the growth process of zinc dendrites in different electrolytes
  • Figure 2 is a photo of 2M ZnSO 4 +0.2M MnSO 4 mixed electrolyte containing different concentrations of gelatin;
  • Figure 3 is an electron micrograph of the morphology of zinc dendrites in different electrolytes
  • Figure 4 shows the XRD results of different zinc anodes
  • FIG. 5 is the cycle performance test results of the batteries prepared in Example 1, Comparative Examples 1 and 2.
  • the present disclosure proposes an electrolyte for zinc ion batteries.
  • the electrolyte includes gelatin, Zn 2+ , Mn 2+ and water.
  • the concentration of gelatin in the electrolyte of the present disclosure, may be 0.2 to 1% by weight, such as 0.2% by weight, 0.3% by weight, 0.5% by weight, 0.7% by weight, 0.9% by weight, 1% by weight, etc. .
  • the inventor found in the research that if the concentration of gelatin in the electrolyte is too low, it may not be able to effectively inhibit the formation of zinc dendrites and the corrosion of zinc metal. If the concentration of gelatin in the electrolyte is too high, manganese ions and zinc ions may precipitate out.
  • the concentration of Zn 2+ may be 1.5 to 2.5 mol/L, for example, 1.5 mol/L, 1.75 mol/L, 2.0 mol/L, 2.25 mol/L , 2.5mol/L, etc.
  • the inventor found in research that if the Zn 2+ concentration in the electrolyte is too low, it may promote the dissolution of the zinc anode. If the concentration of Zn 2+ in the electrolyte is too high, the gelatin and manganese salt may not be fully dissolved.
  • the concentration of Mn 2+ may be 0.1 to 2 mol/L, such as 0.1 mol/L, 0.15 mol/L, 0.2 mol/L, 0.25 mol/L, 0.3mol/L, 0.5mol/L, 1mol/L, 1.5mol/L, 2mol/L, etc.
  • concentration of Mn 2+ in the electrolyte is too low, the cycle performance of the battery may not be effectively improved. If the concentration of Mn 2+ in the electrolyte is too high, precipitation may occur.
  • Zn 2+ and Mn 2+ are not particularly limited, and traditional inorganic manganese salts, organic manganese salts, inorganic zinc salts, and organic zinc salts can be used according to actual needs.
  • Zn 2+ is provided in the form of ZnSO 4 and Mn 2+ is provided in the form of MnSO 4.
  • the growth mechanism of dendrites with different electrolyte additives Referring to Fig. 1, in the ZnSO 4 electrolyte without any additives, the zinc dendrites mainly grow along the 30-70° direction and expose the (112) crystal plane.
  • manganese salt is added as an additive, zinc dendrites change the original deposition direction and crystal plane. It mainly grows along the direction of 0-30° and is dominated by (002) and (103) crystal planes.
  • manganese salt and gelatin are added as additives at the same time, the deposited zinc has lower crystallinity and no obvious dendritic characteristics.
  • the present disclosure proposes a method for preparing the electrolyte for the zinc ion battery of the above-mentioned embodiment.
  • the method includes: mixing and heat-treating gelatin, a zinc ion solution, and a manganese ion solution to obtain the electrolyte. Therefore, the method is simple in process, safe and environmentally friendly, and easy to scale production.
  • gelatin in the above preparation method, gelatin can be added to a mixed solution of zinc ions and manganese ions according to a predetermined concentration, and then subjected to heat treatment; or the gelatin can be dissolved in water and subjected to heat treatment, and then the resulting liquid can be mixed with The mixed solution of zinc ions and manganese ions can be mixed; gelatin can also be dissolved in water and heat-treated, then the insoluble matter in the liquid is removed, and then the solid zinc salt and manganese salt are dissolved in the obtained liquid according to a predetermined ratio.
  • the above-mentioned heat treatment may be performed at 0 ⁇ 90° C. for 1 ⁇ 24 hours to complete.
  • the treatment temperature may be 0°C, 20°C, 40°C, 60°C, 80°C, 90°C, etc.
  • the treatment time may be 1h, 2h, 5h, 10h, 12h, 16h, 18h, 20h, 24h, etc.
  • the above-mentioned heat treatment can be completed at 20 to 60°C for 1 to 5 hours.
  • the present disclosure proposes a zinc ion battery.
  • the zinc ion battery includes: the electrolyte of the above-mentioned embodiment. Therefore, the zinc-ion battery has all the features and advantages described above for the electrolyte used in the zinc-ion battery, which will not be repeated here. In general, the zinc ion battery has excellent cycle performance.
  • Positive electrode aniline/MnO 2 or ZnMn 2 O 4 ; negative electrode: zinc foil or zinc powder prepared by drawing slurry using a copper mesh current collector; diaphragm: preferably AGM diaphragm (adsorption glass fiber felt diaphragm).
  • the positive electrode aniline/MnO 2 composite and the negative electrode Zn foil are combined to assemble the battery.
  • Positive electrode aniline/MnO 2 or ZnMn 2 O 4 ; negative electrode: zinc foil or zinc powder prepared by drawing slurry using a copper mesh current collector; diaphragm: preferably AGM diaphragm (adsorption glass fiber felt diaphragm).
  • the positive electrode aniline/MnO 2 composite and the negative electrode Zn foil are combined to assemble the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本公开提供了基于明胶-锰离子共添加剂的电解液及其应用。该电解液包括:明胶、Zn2+、Mn2+和水。该电解液成本低廉、工艺简单、安全环保、易于规模化制备,可有效抑制锌枝晶的生长,减缓锌负极的腐蚀。

Description

[根据细则26改正03.03.2021] 基于明胶-锰离子共添加剂的电解液及其应用
优先权信息
本公开请求于2020年04月14日向中国国家知识产权局提交的、专利申请号为202010288915.2、申请名称为“基于明胶-锰离子共添加剂的电解液及其应用”的中国专利申请的优先权,并且其全部内容通过引用结合在本公开中。
技术领域
本公开涉及锌离子电池领域,具体而言,本公开涉及基于明胶-锰离子共添加剂的电解液及其在水系锌离子电池中的应用
背景技术
锌离子电池是近年来发展起来的一种新型二次水系电池,其具有高能量密度、高功率密度、放电过程高效安全、电池材料无毒廉价、制备工艺简单等优点,在大型储能等领域具有很好应用价值和发展前景。
然而,锌离子电池所采用的传统硫酸锌电解液存在锌离子沉积/析出动力学缓慢、库伦效率低等问题,表现为在同一电池体系中,充放电容量低、难以快速充电等。现有的用于锌离子电池的电解液仍有待改进。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出基于明胶-锰离子共添加剂的电解液及其应用。该电解液成本低廉、工艺简单、安全环保、易于规模化制备,可有效抑制锌枝晶的生长,减缓锌负极的腐蚀。
在本公开的一个方面,本公开提出了一种用于锌离子电池的电解液。根据本公开的实施例,该电解液包括:明胶、Zn 2+、Mn 2+和水。
发明人在对水系锌离子电池电解液的研究中发现,Mn 2+作为电解液添加剂可以明显降低锌枝晶的生长角度,明胶作为电解液添加剂可以显著抑制锌负极的腐蚀。同时,明胶和Mn 2+在电解液中显示出协同作用,并且有效抑制锌枝晶各晶面的生长。由此,通过采用本公开提供的电解液,可以显著提高提高锌离子电池的循环性能,克服锌离子电池中锌枝晶生长的一大难题。
另外,根据本公开上述实施例的用于锌离子电池的电解液还可以具有如下附加的技术特征:
在本公开的一些实施例中,所述电解液中,明胶的浓度为0.2~1wt%。
在本公开的一些实施例中,所述电解液中,Zn 2+的浓度为1.5~2.5mol/L。
在本公开的一些实施例中,所述电解液中,Mn 2+的浓度为0.1~2mol/L。
在本公开的一些实施例中,所述Zn 2+以ZnSO 4的形式提供。
在本公开的一些实施例中,所述Mn 2+以MnSO 4的形式提供。
在本公开的另一方面,本公开提出了一种制备上述实施例的用于锌离子电池的电解液的方法。根据本公开的实施例,该方法包括:将明胶、锌离子溶液和锰离子溶液进行混合和热处理,得到所述电解液。由此,该方法工艺简单、安全环保、易于规模化生产。
另外,根据本公开上述实施例的制备用于锌离子电池的电解液的方法还可以具有如下附加的技术特征:
在本公开的一些实施例中,所述热处理在0~90℃下进行1~24h完成。
在本公开的再一方面,本公开提出了一种锌离子电池。根据本公开的实施例,该锌离子电池包括:上述实施例的电解液。由此,该锌离子电池具有前文针对用于锌离子电池的电解液所描述的全部特征和优点,在此不再一一赘述。总得来说,该锌离子电池具有优秀的循环性能。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是锌枝晶在不同电解液中的生长过程示意图;
图2是含有不同浓度明胶的2M ZnSO 4+0.2M MnSO 4混合电解液的照片;
图3是锌枝晶在不同电解液中形貌的电镜照片;
图4是不同锌负极的XRD结果;
图5是实施例1、对比例1和2中制备的电池的循环性能测试结果。
具体实施方式
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本公开的一个方面,本公开提出了一种用于锌离子电池的电解液。根据本公开的实施例,该电解液包括:明胶、Zn 2+、Mn 2+和水。
发明人在对水系锌离子电池电解液的研究中发现,Mn 2+作为电解液添加剂可以明显降低锌枝晶的生长角度,明胶作为电解液添加剂可以显著抑制锌负极的腐蚀。同时,明胶和Mn 2+在电解液中显示出协同作用,并且有效抑制锌枝晶各晶面的生长。由此,通过采用本公开提供的电解液,可以显著提高提高锌离子电池的循环性能,克服锌离子电池中锌枝晶生长的一大难题。
下面进一步对根据本公开实施例的用于锌离子电池的电解液进行详细描述。
根据本公开的一些实施例,在本公开的电解液中,明胶的浓度可以为0.2~1wt%,例如0.2wt%、0.3wt%、0.5wt%、0.7wt%、0.9wt%、1wt%等。发明人在研究中发现,如果电解液中的明胶浓度过低,可能会无法有效抑制锌枝晶生成和锌金属腐蚀。如果电解液中的明胶浓度过高,可能会使锰离子和锌离子沉淀析出。
根据本公开的一些实施例,在本公开的电解液中,Zn 2+的浓度可以为1.5~2.5mol/L,例如1.5mol/L、1.75mol/L、2.0mol/L、2.25mol/L、2.5mol/L等。发明人在研究中发现,如果电解液中的Zn 2+浓度过低,可能会促进锌负极的溶解。如果电解液中的Zn 2+浓度过高,可能会使明胶和锰盐无法充分溶解。
根据本公开的一些实施例,在本公开的电解液中,Mn 2+的浓度可以为0.1~2mol/L,例如0.1mol/L、0.15mol/L、0.2mol/L、0.25mol/L、0.3mol/L、0.5mol/L、1mol/L、1.5mol/L、2mol/L等。发明人在研究中发现,如果电解液中的Mn 2+浓度过低,可能会无法有效提升电池的循环性能。如果电解液中的Mn 2+浓度过高,可能会沉淀析出。
在本公开的电解液中,Zn 2+和Mn 2+的具体提供形式并不受特别限制,可以根据实际需要,采用传统的无机锰盐、有机锰盐、无机锌盐、有机锌盐。根据本公开的一些实施例,Zn 2+以ZnSO 4的形式提供,Mn 2+以MnSO 4的形式提供。由此,电解液的成本更为低廉,且适用范围广泛。
另外,发明人以2mol/L ZnSO 4电解液、2mol/L ZnSO 4+0.2mol/L MnSO 4电解液、2mol/L  ZnSO 4+0.2mol/L MnSO 4+明胶电解液为例,研究了锌枝晶在含有不同电解液添加剂情况下的生长机理。参考图1,在不含任何添加剂的ZnSO 4电解液中,锌枝晶主要沿着30~70°方向生长并且暴露出(112)晶面。当加入锰盐为添加剂时,锌枝晶改变了原有的沉积方向和晶面。主要沿着0~30°方向生长并以(002)和(103)晶面为主。当同时加入锰盐和明胶为添加剂时,沉积得到的锌具有较低的结晶度并且无明显的枝晶特征。
在本公开的另一方面,本公开提出了一种制备上述实施例的用于锌离子电池的电解液的方法。根据本公开的实施例,该方法包括:将明胶、锌离子溶液和锰离子溶液进行混合和热处理,得到所述电解液。由此,该方法工艺简单、安全环保、易于规模化生产。
具体的,在上述制备方法中,可以将明胶按照预定浓度加入至锌离子和锰离子的混合溶液中,然后进行热处理;也可以先将明胶溶于水中,并进行热处理后,再将所得液体与锌离子和锰离子的混合溶液混合;还可以先将明胶溶于水中,并进行热处理后,然后除去液体中的不溶物,再将锌盐和锰盐固体按照预定比例溶解到所得液体中。
根据本公开的实施例,上述热处理可以在0~90℃下进行1~24h完成。具体的,处理温度可以为0℃、20℃、40℃、60℃、80℃、90℃等,处理时间可以为1h、2h、5h、10h、12h、16h、18h、20h、24h等。优选地,上述热处理可以在20~60℃下进行1~5h完成。
在本公开的再一方面,本公开提出了一种锌离子电池。根据本公开的实施例,该锌离子电池包括:上述实施例的电解液。由此,该锌离子电池具有前文针对用于锌离子电池的电解液所描述的全部特征和优点,在此不再一一赘述。总得来说,该锌离子电池具有优秀的循环性能。
下面参考具体实施例,对本公开进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本公开。
实施例1
(1)将0.2~1%明胶溶于2M ZnSO 4+0.2M MnSO 4混合电解液中,45℃加热并搅拌2h,冷却后备用;采用不同明胶用量(0、0.2%、0.5%、1%)制备得到的电解液照片如图2。
(2)电池组装:
正极:苯胺/MnO 2或ZnMn 2O 4;负极:锌箔或采用铜网集流体拉浆制得的锌粉;隔膜:优选AGM隔膜(吸附式玻璃纤维毡型隔膜)。
将AGM隔膜在含有明胶-锰离子共添加剂的电解质中充分浸泡后,配合正极苯胺/MnO 2复合物,负极Zn箔,组装电池。
(3)电池测试:锌离子电池在500mA/g电流密度下循环1000次后的容量保留率为80%,锌枝晶形貌如图3a所示。
实施例2
(1)将0.5%明胶溶于去离子水中,55℃加热并搅拌4h,冷却后备用;
(2)将步骤(1)所得液体与2M ZnSO 4+0.2M MnSO 4混合电解液充分混合均匀;
(3)电池组装:
正极:苯胺/MnO 2或ZnMn 2O 4;负极:锌箔或采用铜网集流体拉浆制得的锌粉;隔膜:优选AGM隔膜(吸附式玻璃纤维毡型隔膜)。
将AGM隔膜在含有明胶-锰离子共添加剂的电解质中充分浸泡后,配合正极苯胺/MnO 2复合物,负极Zn箔,组装电池。
(4)电池测试:锌离子电池在500mA/g电流密度下循环1000次后的容量保留率为72%。
实施例3
(1)将1%明胶溶于去离子水中,65℃加热并搅拌6h,冷却后备用;
(2)将步骤(1)所得液体经离心或抽滤纯化,去除不溶物,得到透明均一的液体;
(3)将2M ZnSO 4+0.2M MnSO 4固体溶于步骤(2)所得液体中;
(4)电池组装:
正极:苯胺/MnO 2或ZnMn 2O 4;负极:锌箔或采用铜网集流体拉浆制得的锌粉;隔膜:优选AGM隔膜(吸附式玻璃纤维毡型隔膜)。
将AGM隔膜在含有明胶-锰离子共添加剂的电解质中充分浸泡后,配合正极苯胺/MnO 2复合物,负极Zn箔,组装电池。
(5)电池测试:锌离子电池在500mA/g电流密度下循环1000次后的容量保留率为78%。
对比例1
(1)将2M ZnSO 4溶于去离子水中,45℃加热并搅拌2h,冷却后备用;
(2)电池组装:
正极:苯胺/MnO 2或ZnMn 2O 4;负极:锌箔或采用铜网集流体拉浆制得的锌粉;隔膜:优选AGM隔膜(吸附式玻璃纤维毡型隔膜)。
将AGM隔膜在含有明胶-锰离子共添加剂的电解质中充分浸泡后,配合正极苯胺/MnO 2复合物,负极Zn箔,组装电池。
(3)电池测试:锌离子电池在500mA/g电流密度下循环1000次后的容量保留率为4%,锌枝晶形貌如图3b所示。
对比例2
(1)将锰盐溶于2M ZnSO 4电解液中,55℃加热并搅拌4h,冷却后备用;
(2)电池组装:
正极:苯胺/MnO 2或ZnMn 2O 4;负极:锌箔或采用铜网集流体拉浆制得的锌粉;隔膜:优选AGM隔膜(吸附式玻璃纤维毡型隔膜)。
将AGM隔膜在含有明胶-锰离子共添加剂的电解质中充分浸泡后,配合正极苯胺/MnO 2复合物,负极Zn箔,组装电池。
(3)电池测试:锌离子电池在500mA/g电流密度下循环1000次后的容量保留率为33%,锌枝晶形貌如图3c所示。
对比例3
(1)将0.2%明胶溶于2M ZnSO 4电解液中,45℃加热并搅拌2h,冷却后备用;
(2)电池组装:
正极:苯胺/MnO 2或ZnMn 2O 4;负极:锌箔或采用铜网集流体拉浆制得的锌粉;隔膜:优选AGM隔膜(吸附式玻璃纤维毡型隔膜)。
将AGM隔膜在含有明胶-锰离子共添加剂的电解质中充分浸泡后,配合正极苯胺/MnO 2复合物,负极Zn箔,组装电池。
(3)电池测试:锌离子电池在500mA/g电流密度下循环1000次后的容量保留率为28%。
以上实施例和对比例中,不同锌负极的XRD结果如图4所示;电池循环性能如图5所示。图4中,Normalized Intensity表示标准化强度,2Theta表示2θ角,Gelatin表示明胶。测试结果表面,电解液中明胶与锰离子可以产生协同作用,从而明显改善锌离子电池的循环性能。

Claims (9)

  1. 一种用于锌离子电池的电解液,其特征在于,包括:明胶、Zn 2+、Mn 2+和水。
  2. 根据权利要求1所述的电解液,其特征在于,所述电解液中,明胶的浓度为0.2~1wt%。
  3. 根据权利要求1~2任一项所述的电解液,其特征在于,所述电解液中,Zn 2+的浓度为1.5~2.5mol/L。
  4. 根据权利要求1~3任一项所述的电解液,其特征在于,所述电解液中,Mn 2+的浓度为0.1~2mol/L。
  5. 根据权利要求1~4任一项所述的电解液,其特征在于,所述Zn 2+以ZnSO 4的形式提供。
  6. 根据权利要求1~5任一项所述的电解液,其特征在于,所述Mn 2+以MnSO 4的形式提供。
  7. 一种制备权利要求1~6任一项所述的电解液的方法,其特征在于,包括:
    将明胶、锌离子溶液和锰离子溶液进行混合和热处理,得到所述电解液。
  8. 根据权利要求7所述的方法,其特征在于,所述热处理在0~90℃下进行1~24h完成。
  9. 一种锌离子电池,其特征在于,包括:权利要求1~6任一项所述的电解液。
PCT/CN2021/078715 2020-04-14 2021-03-02 基于明胶-锰离子共添加剂的电解液及其应用 WO2021208619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010288915.2A CN111509305A (zh) 2020-04-14 2020-04-14 基于明胶-锰离子共添加剂的电解液及其应用
CN202010288915.2 2020-04-14

Publications (1)

Publication Number Publication Date
WO2021208619A1 true WO2021208619A1 (zh) 2021-10-21

Family

ID=71877475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078715 WO2021208619A1 (zh) 2020-04-14 2021-03-02 基于明胶-锰离子共添加剂的电解液及其应用

Country Status (2)

Country Link
CN (1) CN111509305A (zh)
WO (1) WO2021208619A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509305A (zh) * 2020-04-14 2020-08-07 瑞海泊有限公司 基于明胶-锰离子共添加剂的电解液及其应用
CN112820951B (zh) * 2021-01-06 2022-12-20 郑州大学 一种含木质素和明胶复配型添加剂的电解液及使用该电解液的水系锌离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807910A (zh) * 2018-06-13 2018-11-13 深圳市寒暑科技新能源有限公司 一种水系锌离子电池
US20190140317A1 (en) * 2017-11-07 2019-05-09 City University Of Hong Kong Gel polymer electrolytes comprising electrolyte additive
CN109980302A (zh) * 2019-04-29 2019-07-05 中南大学 一种水系锌离子电池胶体电解质及其制备方法和应用
CN110190344A (zh) * 2019-06-13 2019-08-30 深圳市寒暑科技新能源有限公司 一种柔性水系锌离子电池
CN111509305A (zh) * 2020-04-14 2020-08-07 瑞海泊有限公司 基于明胶-锰离子共添加剂的电解液及其应用
CN112820951A (zh) * 2021-01-06 2021-05-18 郑州大学 一种含木质素和明胶复配型添加剂的电解液及使用该电解液的水系锌离子电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446840B2 (en) * 2017-11-07 2019-10-15 City University Of Hong Kong Rechargeable zinc-ion batteries having flexible shape memory

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190140317A1 (en) * 2017-11-07 2019-05-09 City University Of Hong Kong Gel polymer electrolytes comprising electrolyte additive
CN108807910A (zh) * 2018-06-13 2018-11-13 深圳市寒暑科技新能源有限公司 一种水系锌离子电池
CN109980302A (zh) * 2019-04-29 2019-07-05 中南大学 一种水系锌离子电池胶体电解质及其制备方法和应用
CN110190344A (zh) * 2019-06-13 2019-08-30 深圳市寒暑科技新能源有限公司 一种柔性水系锌离子电池
CN111509305A (zh) * 2020-04-14 2020-08-07 瑞海泊有限公司 基于明胶-锰离子共添加剂的电解液及其应用
CN112820951A (zh) * 2021-01-06 2021-05-18 郑州大学 一种含木质素和明胶复配型添加剂的电解液及使用该电解液的水系锌离子电池

Also Published As

Publication number Publication date
CN111509305A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN108258239B (zh) 一种钠离子电池正极材料及其制备方法和用途
CN110474044B (zh) 一种高性能水系锌离子电池正极材料及其制备方法与应用
WO2021168600A1 (zh) 一种低水分含量的普鲁士蓝钠离子电池正极材料及其制备方法和钠离子电池
CN103825016A (zh) 一种富锂高镍正极材料及其制备方法
CN110429268A (zh) 一种改性硼掺杂富锂锰基正极材料及其制备方法与应用
CN113839032A (zh) 一种低成本普鲁士白材料、及其制备方法和应用
WO2023001213A1 (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
WO2021208619A1 (zh) 基于明胶-锰离子共添加剂的电解液及其应用
CN112467234A (zh) 一种锌二次电池用电解液及其制备方法和用途
WO2024066193A1 (zh) 高导电性普鲁士蓝类正极材料的制备方法及其应用
CN113830792A (zh) 一种无水普鲁士白材料、制备方法和应用
CN112635698B (zh) 一种锌二次电池的负极极片及其制备方法和用途
CN116598606A (zh) 一类芳香族小分子电解液添加剂的应用
CN114318368B (zh) 一种锰酸锂电池专用电解二氧化锰及其制备方法和应用
CN112694131B (zh) 一种锰酸锌负极材料、采用共沉淀法制备其的方法及用途
CN114455647A (zh) 一种表面限域处理全浓度梯度四元高镍ncma正极材料的制备方法
CN113772718A (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
CN112194199A (zh) 一种长循环三元正极材料的制备方法
CN104064816B (zh) 一种铅酸蓄电池抑制析氢的电解液添加剂及其制备方法
CN115536066B (zh) 一种铵根离子部分预先移除的钒酸铵纳米材料的制备方法和应用
WO2023155542A1 (zh) 多孔结构磷化镍@碳负极材料的制备方法及其应用
CN114824243B (zh) 可快充的Co掺杂铌氧化物负极材料的制备方法及其深海储能电池
CN112436135B (zh) 一种正极材料及其制备方法和用途
CN110137477B (zh) 一种锌镍电池负极材料及其制备方法
CN114361439A (zh) 一种新型水系锌离子电池电极材料的制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 06.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21789271

Country of ref document: EP

Kind code of ref document: A1