[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021261392A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2021261392A1
WO2021261392A1 PCT/JP2021/023186 JP2021023186W WO2021261392A1 WO 2021261392 A1 WO2021261392 A1 WO 2021261392A1 JP 2021023186 W JP2021023186 W JP 2021023186W WO 2021261392 A1 WO2021261392 A1 WO 2021261392A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
resin composition
resin
atom
Prior art date
Application number
PCT/JP2021/023186
Other languages
English (en)
French (fr)
Inventor
三豪 末松
慎也 池田
宣之 加藤
光輝 近藤
克吏 西森
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020227034938A priority Critical patent/KR20230029590A/ko
Priority to JP2022531934A priority patent/JPWO2021261392A1/ja
Priority to US18/011,331 priority patent/US20230235117A1/en
Priority to EP21830270.1A priority patent/EP4174126A4/en
Priority to CN202180044489.0A priority patent/CN115702214B/zh
Publication of WO2021261392A1 publication Critical patent/WO2021261392A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/109Esters; Ether-esters of carbonic acid, e.g. R-O-C(=O)-O-R
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/594Stability against light, i.e. electromagnetic radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/596Stability against oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/598Chemical stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/60Glass transition temperature

Definitions

  • the present invention relates to a resin composition. More specifically, the present invention relates to a resin composition comprising a thermoplastic resin and a specific compounding agent.
  • Optical glass or optical resin is used as the material of the optical lens used in the optical system of various cameras such as cameras, film-integrated cameras, and video cameras.
  • Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, etc., but has problems that the material cost is high, the molding processability is poor, and the productivity is low.
  • an optical lens made of an optical resin has an advantage that it can be mass-produced by injection molding, and polycarbonate, polyester carbonate, polyester resin and the like are used as high refractive index materials for camera lenses.
  • Patent Documents 1 to 5 When an optical resin is used as an optical lens, heat resistance, transparency, low water absorption, chemical resistance, low birefringence, moisture heat resistance, etc. are required in addition to optical characteristics such as refractive index and Abbe number. Particularly in recent years, optical lenses having a high refractive index and high heat resistance have been demanded, and various resins have been developed (Patent Documents 1 to 5).
  • thermoplastic resin composition having high flowability, good moldability, and excellent optical properties without impairing the properties required for the optical resin composition.
  • the present invention provides a thermoplastic resin composition having excellent optical properties, which has high flowability and good moldability without impairing the properties of the optical resin composition.
  • thermoplastic resin composition can be obtained, and have completed the present invention.
  • the present invention includes the following aspects. ⁇ 1> Thermoplastic resin and A compounding agent having a naphthalene structure and / or a fluorene structure, A resin composition containing A resin composition comprising one or more of the compounding agents having a naphthalene structure and / or a fluorene structure selected from compounds containing a structural unit represented by any of the following general formulas (1) to (3).
  • R a and R b are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 20 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • a and b each independently represent an integer of 0 to 10.
  • R c and R d are independent halogen atoms, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, and a cyclo having 5 to 20 carbon atoms.
  • R h represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 6 to 20 carbon atoms containing one or more heterocyclic atoms selected from O, N and S.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • c and d each independently represent an integer of 0 to 10.
  • Re and R f are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 20 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • e and f each independently represent an integer of 0 to 10.
  • the compounding agent having a naphthalene structure and / or a fluorene structure is a diol monomer having a structural unit represented by any of the general formulas (1) to (3), and any one of the general formulas (1) to (3).
  • the resin composition according to ⁇ 1> which is one or more selected from the group consisting of polycarbonate oligomers containing a structural unit represented by (1) as a diol structure.
  • a polycarbonate oligomer containing a structural unit represented by any of the general formulas (1) to (3) as a diol structure is represented by any of the following formulas, and is represented by any of the following formulas, Ra , R b , R c , R.
  • ⁇ 4> The resin composition according to any one of ⁇ 1> to ⁇ 3>, wherein the 5% heat mass reduction start temperature (5% heat mass reduction temperature) of the compounding agent is 260 ° C. or higher.
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the compounding agent has a mass average molecular weight of less than 10,000.
  • thermoplastic resin the mass ratio of the thermoplastic resin to the compounding agent
  • compounding agent 99: 1 to 70:30.
  • Mw polystyrene-equivalent molecular weight of the thermoplastic resin
  • Mw polystyrene-equivalent molecular weight
  • thermoplastic resin is selected from the group consisting of a polycarbonate resin, a polyester resin, and a polyester carbonate resin.
  • thermoplastic resin contains a structural unit derived from a compound represented by the following general formula (a).
  • R c and R d are independent halogen atoms, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, and a cyclo having 5 to 20 carbon atoms.
  • R h represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 6 to 20 carbon atoms containing one or more heterocyclic atoms selected from O, N and S.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • c and d each independently represent an integer of 0 to 10.
  • the present invention can provide a thermoplastic resin composition having high flowability, good moldability, and excellent optical characteristics without impairing the characteristics of the optical resin composition.
  • the resin composition of the present invention comprises a thermoplastic resin and a specific compounding agent having a naphthalene structure and / or a fluorene structure.
  • a specific compounding agent having a naphthalene structure and / or a fluorene structure By blending a specific compounding agent having a naphthalene structure and / or a fluorene structure with the thermoplastic resin, the thermoplastic resin has high flowability and good moldability without impairing the characteristics of the optical resin composition, and has excellent optical properties.
  • a resin composition can be obtained.
  • Blending agent In the resin composition of the present invention, the compounding agent having a naphthalene structure and / or a fluorene structure is selected from a compound containing a structural unit represented by any of the following general formulas (1) to (3). Includes one or more. As the compound containing a structural unit represented by any of the following general formulas (1) to (3), one type may be used alone, or two or more types may be used in combination. (In equation (1), R a and R b are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 20 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • a and b each independently represent an integer of 0 to 10.
  • R c and R d are independent halogen atoms, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, and a cyclo having 5 to 20 carbon atoms.
  • R h represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 6 to 20 carbon atoms containing one or more heterocyclic atoms selected from O, N and S.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • c and d each independently represent an integer of 0 to 10.
  • Re and R f are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 20 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • e and f each independently represent an integer of 0 to 10.
  • the compounding agent having a naphthalene structure and / or a fluorene structure may be a compound containing a structural unit represented by the following general formula (1).
  • R a and R b are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 20 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • a and b each independently represent an integer of 0 to 10.
  • R a and R b are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 10 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • the alkyl group may be more preferably an alkyl group having 1 to 6 carbon atoms, and even more preferably methyl.
  • the aryl group is more preferably an aryl group having 6 to 16 carbon atoms, still more preferably 6 to 14 carbon atoms, still more preferably 6 to 12 carbon atoms, still more preferably 6 to 10 carbon atoms. May be.
  • the alkenyl group may be more preferably an alkenyl group having 2 to 10 carbon atoms.
  • the alkoxy group may be more preferably an alkoxy group having 1 to 3 carbon atoms.
  • the aralkyl group may be more preferably an aralkyl group having 7 to 10 carbon atoms.
  • X may be more preferably an alkylene group having 1 to 4 carbon atoms, further preferably an alkylene group having 1 to 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • a and b are independently, more preferably an integer of 0 to 5, still more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, and even more preferably 1. May be.
  • the compounding agent having a naphthalene structure and / or a fluorene structure may be a compound containing a structural unit represented by the following general formula (2).
  • R c and R d are independent halogen atoms, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, and a cyclo having 5 to 20 carbon atoms.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • c and d each independently represent an integer of 0 to 10.
  • R c and R d are each independently one or more heterocyclic atoms selected from an aryl group having 6 to 20 carbon atoms, O, N and S.
  • R h is aryl or O having 6 to 20 carbon atoms, N
  • the aryl group more preferably has 6 to 18 carbon atoms, more preferably 6 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and more preferably 6 to 6 carbon atoms. It is 12, more preferably 6 to 10 carbon atoms.
  • the heteroaryl group is more preferably 6 to 18 carbon atoms, more preferably 8 to 16 carbon atoms, and further preferably 10 to 14 carbon atoms.
  • the aryloxy group is more preferably 6 to 18 carbon atoms, more preferably 6 to 16 carbon atoms, and further preferably 6 to 14 carbon atoms.
  • X may be more preferably an alkylene group having 1 to 4 carbon atoms, still more preferably an alkylene group having 1 to 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • c and d are independently, more preferably an integer of 0 to 5, still more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, and even more preferably 1. May be.
  • R c and R d may be independently selected from the group consisting of a phenyl group, a naphthyl group or the following.
  • X represents an alkylene group having 1 to 4 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • c and d each independently represent an integer of 0 to 5, more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, and even more preferably 1.
  • the compounding agent having a naphthalene structure and / or a fluorene structure may be a compound containing a structural unit represented by the following general formula (3).
  • Re and R f are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 20 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • e and f each independently represent an integer of 0 to 10.
  • Re and R f are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 10 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • the alkyl group may be more preferably an alkyl group having 1 to 6 carbon atoms, and even more preferably methyl.
  • the aryl group is more preferably an aryl group having 6 to 16 carbon atoms, still more preferably 6 to 14 carbon atoms, still more preferably 6 to 12 carbon atoms, still more preferably 6 to 10 carbon atoms. May be.
  • the alkenyl group may be more preferably an alkenyl group having 2 to 10 carbon atoms.
  • the alkoxy group may be more preferably an alkoxy group having 1 to 3 carbon atoms.
  • the aralkyl group may be more preferably an aralkyl group having 7 to 10 carbon atoms.
  • X may be more preferably an alkylene group having 1 to 4 carbon atoms, further preferably an alkylene group having 1 to 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • e and f are independently, more preferably an integer of 0 to 5, still more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, and even more preferably 1. May be.
  • the compounding agent having a naphthalene structure and / or a fluorene structure is a diol monomer having a structural unit represented by any of the general formulas (1) to (3), and a diol monomer. It may be one or more selected from the group consisting of polycarbonate oligomers containing a structural unit represented by any of the general formulas (1) to (3) as a diol structure.
  • the compound containing the structural unit represented by any of the general formulas (1) to (3) one kind may be used alone, or two or more kinds may be used in combination.
  • the compounding agent having a naphthalene structure and / or a fluorene structure may be a diol monomer having a structural unit represented by any of the general formulas (1) to (3).
  • One type of diol monomer may be used alone, or two or more types may be used in combination.
  • the compounding agent having a naphthalene structure and / or a fluorene structure is a polycarbonate oligomer containing a structural unit represented by any of the general formulas (1) to (3) as a diol structure. Often, the polycarbonate oligomer may be used alone or in combination of two or more.
  • the polycarbonate oligomer containing the structural unit represented by any of the general formulas (1) to (3) as a diol structure may be represented by any of the following formulas.
  • Ra , R b , R c , R d , R e , R f , a, b, c, d, e, and f are described in ⁇ 1>, respectively. It's a street.
  • the polycarbonate oligomer may have 1 to 6 repeating units, preferably 1 to 3, and even more preferably 3.
  • Polycarbonate oligomer is obtained by a transesterification method. For example, a diol and an excess amount of bisaryl carbonate are mixed and reacted at a high temperature under reduced pressure in the presence of a transesterification catalyst.
  • the polycarbonate oligomer is a mixture in which the number of repeating units is not uniform and the number of repeating units is different, which is an aggregate of molecular chains and may contain unreacted bisaryl carbonate and diol.
  • the above-mentioned compounding agent may have a 5% heat mass reduction start temperature (5% heat mass reduction temperature) of 260 ° C. or higher, preferably 280 ° C. or higher, more preferably 300 ° C. or higher. It may be above ° C.
  • the 5% thermogravimetric reduction start temperature refers to the temperature at which the weight of the substance is reduced by 5% when measured by a differential thermogravimetric simultaneous measuring device (TG / TDA). ..
  • TG / TDA differential thermogravimetric simultaneous measuring device
  • Mass Average Molecular Weight when the above-mentioned compounding agent is an oligomer, its mass average molecular weight may be less than 10,000, preferably 5000 or less, and more preferably. It may be 3000 or less. In the present invention, if the mass average molecular weight of the compounding agent is in the above range, a highly fluid resin can be obtained.
  • the mass average molecular weight of the compounding agent can be measured by a conventional method, for example, it is measured by a gel permeation chromatography (GPC) method and calculated in terms of standard polystyrene, or when the compounding agent is an oligomer, 1 H- It can be obtained by calculating the number of repeating units from the integral ratio of protons and carbon derived from the main skeleton and the integral ratio of protons and carbon derived from the terminal phenyl group by NMR or 13 C-NMR.
  • GPC gel permeation chromatography
  • the above mass ratio may be preferably 99: 1 to 70:30, more preferably 98: 2 to 70:30, and may be, for example, 99: 1, 98: 2, 97: 3, 96 :. It may be 4, 95: 5, 94: 6, 93: 7, 92: 8, 91: 9, 90:10, 85:15, 80:20, 75:25, 70:30, and the like.
  • the mass ratio of the thermoplastic resin and the compounding agent is within the above range, it is possible to provide a resin composition having high flowability and good moldability.
  • thermoplastic resin examples include, but are not limited to, polycarbonate resin, polyester resin, polyester carbonate resin, and the like.
  • the thermoplastic resin can be selected from the group consisting of polycarbonate resins, polyester resins, and polyester carbonate resins.
  • the thermoplastic resin may be a polycarbonate resin.
  • the thermoplastic resin may be a polyester resin.
  • the thermoplastic resin may be a polyester carbonate resin.
  • thermoplastic resin of the present invention has a high refractive index, and it is abbreviated as "nd" at 25 ° C. with a measured wavelength of 589 nm. Is 1.650 to 1.720, more preferably 1.660 to 1.710, and even more preferably 1.670 to 1.700.
  • thermoplastic resin of the present invention is characterized by having high heat resistance, and the glass transition temperature (hereinafter, may be abbreviated as "Tg") is 120 to 1.
  • the temperature is preferably 160 ° C, more preferably 130 to 155 ° C.
  • the polystyrene-equivalent molecular weight (Mw) of the thermoplastic resin may be 10,000 to 100,000, preferably 15,000 to 70,000, and more preferably 20,000 to 50,000.
  • the thermoplastic resin may contain one or more structural units derived from the compounds represented by the following general formulas (a) to (e).
  • the thermoplastic resin may contain one kind of the structural units derived from the compounds represented by the following general formulas (a) to (e) alone, or may contain two or more kinds.
  • R c and R d are independent halogen atoms, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, and a cyclo having 5 to 20 carbon atoms.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • c and d each independently represent an integer of 0 to 10.
  • R c and R d are each independently one or more heterocyclic atoms selected from an aryl group having 6 to 20 carbon atoms, O, N and S.
  • R h is aryl or O having 6 to 20 carbon atoms, N
  • the aryl group more preferably has 6 to 18 carbon atoms, more preferably 6 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and more preferably 6 to 6 carbon atoms. It is 12, more preferably 6 to 10 carbon atoms.
  • the heteroaryl group is more preferably 6 to 18 carbon atoms, more preferably 8 to 16 carbon atoms, and further preferably 10 to 14 carbon atoms.
  • the aryloxy group is more preferably 6 to 18 carbon atoms, more preferably 6 to 16 carbon atoms, and further preferably 6 to 14 carbon atoms.
  • X may be more preferably an alkylene group having 1 to 4 carbon atoms, still more preferably an alkylene group having 1 to 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • c and d are independently, more preferably an integer of 0 to 5, still more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, and even more preferably 1. May be.
  • R c and R d may be independently selected from the group consisting of a phenyl group, a naphthyl group or the following.
  • X represents an alkylene group having 1 to 4 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • c and d each independently represent an integer of 0 to 5, more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, and even more preferably 1.
  • thermoplastic resin of the present invention contains a structural unit derived from the compound represented by the general formula (a)
  • the thermoplastic resin is a polycarbonate resin, a polyester carbonate resin, or a polyester resin.
  • R a and R b are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 20 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • a and b each independently represent an integer of 0 to 10.
  • R a and R b are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 10 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • the alkyl group may be more preferably an alkyl group having 1 to 6 carbon atoms, and even more preferably methyl.
  • the aryl group is more preferably an aryl group having 6 to 16 carbon atoms, still more preferably 6 to 14 carbon atoms, still more preferably 6 to 12 carbon atoms, still more preferably 6 to 10 carbon atoms. May be.
  • the alkenyl group may be more preferably an alkenyl group having 2 to 10 carbon atoms.
  • the alkoxy group may be more preferably an alkoxy group having 1 to 3 carbon atoms.
  • the aralkyl group may be more preferably an aralkyl group having 7 to 10 carbon atoms.
  • X may be more preferably an alkylene group having 1 to 4 carbon atoms, further preferably an alkylene group having 1 to 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • a and b are independently, more preferably an integer of 0 to 5, still more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, and even more preferably 1. May be.
  • thermoplastic resin of the present invention contains a structural unit derived from the compound represented by the general formula (b), the thermoplastic resin is a polycarbonate resin, a polyester carbonate resin, or a polyester resin.
  • Re and R f are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 6 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • X represents a saturated carbon group having 1 to 5 carbon atoms.
  • e and f each independently represent an integer of 0 to 10.
  • Re and R f are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group having 1 to 10 carbon atoms, or heterocyclic atom selected from O, N and S, respectively.
  • the alkyl group may be more preferably an alkyl group having 1 to 6 carbon atoms, and even more preferably methyl.
  • the aryl group is more preferably an aryl group having 6 to 16 carbon atoms, still more preferably 6 to 14 carbon atoms, still more preferably 6 to 12 carbon atoms, still more preferably 6 to 10 carbon atoms. May be.
  • the alkenyl group may be more preferably an alkenyl group having 2 to 10 carbon atoms.
  • the alkoxy group may be more preferably an alkoxy group having 1 to 3 carbon atoms.
  • the aralkyl group may be more preferably an aralkyl group having 7 to 10 carbon atoms.
  • X may be more preferably an alkylene group having 1 to 4 carbon atoms, further preferably an alkylene group having 1 to 3 carbon atoms, and even more preferably an alkylene group having 2 carbon atoms.
  • e and f are independently, more preferably an integer of 0 to 5, still more preferably an integer of 1 to 5, even more preferably an integer of 1 to 3, and even more preferably 1. May be.
  • thermoplastic resin of the present invention contains a structural unit derived from the compound represented by the general formula (c)
  • the thermoplastic resin is a polycarbonate resin, a polyester carbonate resin, or a polyester resin.
  • R represents a hydrogen atom, a methyl group, and an ethyl group.
  • R represents a hydrogen atom.
  • thermoplastic resin of the present invention contains a structural unit derived from the compound represented by the general formula (d), the thermoplastic resin is a polycarbonate resin, a polyester carbonate resin, or a polyester resin.
  • R 5 and R 6 are independently halogen atoms, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, and a cyclo having 5 to 20 carbon atoms.
  • p and q each independently represent an integer of 0 to 10.
  • R 5 and R 6 each independently have a heteroaryl group having 6 to 20 carbon atoms or a carbon number of carbon atoms including one or more heterocyclic atoms selected from an aryl group having 6 to 20 carbon atoms, O, N and S. 6 to 20 aryloxy groups, as well as —C ⁇ C—R h , where R h comprises an aryl group having 6 to 20 carbon atoms or one or more heterocyclic atoms selected from O, N and S. Represents a heteroaryl group having 6 to 20 carbon atoms.
  • the aryl group more preferably has 6 to 18 carbon atoms, more preferably 6 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and more preferably 6 to 6 carbon atoms. It is 12, more preferably 6 to 10 carbon atoms.
  • the heteroaryl group is more preferably 6 to 18 carbon atoms, more preferably 8 to 16 carbon atoms, and further preferably 10 to 14 carbon atoms.
  • the aryloxy group is more preferably 6 to 18 carbon atoms, more preferably 6 to 16 carbon atoms, and further preferably 6 to 14 carbon atoms.
  • p and q may be independently, more preferably an integer of 0 to 5, and even more preferably an integer of 0 to 1.
  • R 5 and R 6 may be independently selected from the group consisting of a phenyl group, a naphthyl group or the following.
  • the structural unit represented by the formula (e) is even more preferably derived from 2,2'-bis (hydroxycarbonylmethoxy) -1,1'-binaphthyl and a compound represented by the following structural formula.
  • those derived from 2,2'-bis (hydroxycarbonylmethoxy) -1,1'-binaphthyl are particularly preferable.
  • thermoplastic resin of the present invention contains the structural unit represented by the general formula (e)
  • the thermoplastic resin is a polyester resin or a polyester carbonate resin.
  • the polycarbonate resin used in the resin composition of the present invention may contain at least one of the structural units derived from the compounds represented by the above general formulas (a) to (d) as a diol component.
  • the polycarbonate resin may contain one kind of the structural units derived from the compounds represented by the above general formulas (a) to (d) alone, or may contain two or more kinds.
  • the polycarbonate resin used in the resin composition of the present invention may contain other diol components as its constituent unit.
  • the structural units derived from the compounds represented by the general formulas (a) to (d) are as described above.
  • the diol component may be derived from the compound represented by the above general formula (a). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (b). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (c). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (d).
  • the polycarbonate resin can be produced by a conventional method.
  • the diol is usually reacted with phosgene in the presence of an acid binder and a solvent.
  • an acid binder for example, pyridine, hydroxide of an alkali metal such as sodium hydroxide and potassium hydroxide, and the like are used, and as the solvent, for example, methylene chloride, chloroform and the like are used.
  • a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt such as benzyltriethylammonium chloride.
  • a monofunctional group compound such as phenol, pt-butylphenol, p-cumylphenol, and alkyl-substituted phenol
  • an antioxidant such as sodium sulfite or hydrosulfite, or a branching agent such as fluoroglucin or isatin bisphenol may be added in a small amount.
  • the reaction temperature is usually in the range of 0 to 150 ° C, preferably 5 to 40 ° C.
  • the reaction time depends on the reaction temperature, but is usually 0.5 minutes to 10 hours, preferably 1 minute to 2 hours. Further, it is desirable to keep the pH of the reaction system at 10 or higher during the reaction.
  • diol and bisaryl carbonate are mixed and reacted at high temperature under reduced pressure.
  • bisaryl carbonate include bisallyl carbonates such as diphenyl carbonate, di-p-tolyl carbonate, phenyl-p-tolyl carbonate, di-p-chlorophenyl carbonate and dinaphthyl carbonate. These compounds may be used alone or in combination of two or more.
  • the reaction is usually carried out at a temperature in the range of 150 to 350 ° C., preferably 200 to 300 ° C., and the depressurization degree is such that the final decompression degree is preferably 1 mmHg or less, and the bisaryl carbonate produced by the transesterification reaction.
  • the reaction time depends on the reaction temperature, the degree of decompression, etc., but is usually about 1 to 24 hours.
  • the reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen or argon.
  • the content of the dicarboxylic acid chloride, phosgene, or biaryl carbonate component is preferably less than 42 mL, more preferably less than 30 mL, and even more preferably less than 20 mL with respect to 100 mL of the dicarboxylic acid component.
  • the polyester resin used in the resin composition of the present invention may contain a structural unit represented by the above general formula (e) as a carboxylic acid diester component.
  • the structural unit represented by the general formula (e) is as described above.
  • the polyester resin used in the resin composition of the present invention may use any diol component as its constituent unit.
  • the diol component may be, for example, bisphenols, binaphthols, etc., but is not limited thereto.
  • the polyester resin used in the resin composition of the present invention contains at least one of the structural units derived from the compounds represented by the above general formulas (a) to (d) as a diol component. It may be a thing.
  • the polyester resin may contain one kind of the structural units derived from the compounds represented by the above general formulas (a) to (d) alone, or may contain two or more kinds.
  • the polyester resin used in the resin composition of the present invention may further contain other diol components as its constituent unit.
  • the structural units derived from the compounds represented by the general formulas (a) to (d) are as described above.
  • the diol component may be derived from the compound represented by the above general formula (a). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (b). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (c). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (d).
  • the polyester resin used in the resin composition of the present invention has, as other polymerization components, other dicarboxylic acid components other than the structural unit represented by the above general formula (e), and / or the above general formulas (a) to ( It may contain a diol component other than the structural unit derived from the compound represented by d).
  • other dicarboxylic acid components that can be used for the polyester resin include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid.
  • Other aliphatic dicarboxylic acid components, monocyclic aromatic dicarboxylic acid components such as phthalic acid, isophthalic acid, terephthalic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid.
  • Polycyclic aromatic dicarboxylic acid component such as 1,8-naphthalenedicarboxylic acid, anthracendicarboxylic acid, phenanthrangecarboxylic acid, biphenyldicarboxylic acid component such as 2,2'-biphenyldicarboxylic acid, 1,4-cyclodicarboxylic acid, Examples thereof include alicyclic dicarboxylic acid components such as 2,6-decalindicarboxylic acid. These may be used alone or in combination of two or more types. Further, as these derivatives, acid chlorides and esters may be used. Among these, a monocyclic aromatic dicarboxylic acid component, a polycyclic aromatic dicarboxylic acid component, and a biphenyl dicarboxylic acid component are preferable because they tend to have higher heat resistance and refractive index.
  • other diol components that can be used for the polyester resin include aliphatic diol components such as ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, and nonanediol.
  • ethylene glycol and 2,2'-bis (2-hydroxyethoxy) -1,1'-binaphthyl are preferable because it is easy to suppress a decrease in heat resistance and refractive index while improving moldability.
  • the polyester resin can be produced by a conventional method.
  • the polyester resin used in the resin composition of the present invention may be obtained by subjecting a dicarboxylic acid and a diol compound to an esterification reaction or a transesterification reaction, and the obtained reaction product to undergo a polycondensation reaction to obtain a high molecular weight substance having a desired molecular weight. good.
  • the diol component with the dicarboxylic acid component or its diester in the presence of an inert gas and react under reduced pressure at usually 120 to 350 ° C., preferably 150 to 300 ° C. ..
  • the degree of decompression is changed stepwise, and finally water or alcohols produced at 0.13 kPa or less are distilled off from the system, and the reaction time is usually about 1 to 10 hours.
  • a catalyst known per se can be adopted, and for example, an antimony compound, a titanium compound, a germanium compound, a tin compound or an aluminum compound is preferable.
  • examples of such compounds include antimony, titanium, germanium, tin, aluminum oxides, acetates, carboxylates, hydrides, alcoholates, halides, carbonates, sulfates and the like.
  • these compounds can be used in combination of two or more.
  • tin, titanium, and germanium compounds are preferable from the viewpoint of melt stability and hue of the thermoplastic resin.
  • ester exchange catalyst a catalyst known per se can be adopted, and for example, a compound containing manganese, magnesium, titanium, zinc, aluminum, calcium, cobalt, sodium, lithium, or a lead element can be used. Specific examples thereof include oxides, acetates, carboxylates, hydrides, alcoholates, halides, carbonates and sulfates containing these elements. Among these, compounds such as manganese, magnesium, zinc, titanium, cobalt oxides, acetates, and alcoholates are preferable from the viewpoint of melt stability of the thermoplastic resin, hue, and a small amount of polymer insoluble foreign matter. Further, manganese, magnesium and titanium compounds are preferable. These compounds can be used in combination of two or more.
  • the polyester resin of the present invention is a dicarboxylic acid component other than the structural unit represented by the above formula (e) and / or a compound represented by the above general formulas (a) to (d).
  • a diol component other than the structural unit derived from the above may be contained as a copolymerization component.
  • the polyester carbonate resin used in the resin composition of the present invention is represented by one or more of the structural units derived from the compounds represented by the above general formulas (a) to (d) and / or the above general formula (e). It may include a structural unit to be formed.
  • the polyester carbonate resin may contain one kind of the structural units derived from the compounds represented by the above general formulas (a) to (d) alone, or may contain two or more kinds.
  • the polyester carbonate resin may contain a structural unit represented by the above general formula (e) as a dicarboxylic acid component.
  • the structural units derived from the compounds represented by the general formulas (a) to (d) and the structural units represented by the general formula (e) are as described above.
  • the diol component may be derived from the compound represented by the above general formula (a). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (b). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (c). In one embodiment of the present invention, the diol component may be derived from the compound represented by the above general formula (d).
  • the polyester carbonate resin used in the resin composition of the present invention has, as its constituent unit, a diol component other than the constituent units derived from the compounds represented by the general formulas (a) to (d) and the general formula (e). ) May contain a dicarboxylic acid component other than the structural unit represented by).
  • the polyester carbonate resin can be produced by a conventional method.
  • the polyester carbonate resin used in the resin composition of the present invention is a phosgen method in which a dicarboxylic acid and a diol compound are subjected to an esterification reaction or a transesterification reaction and then reacted with a dicarboxylic acid chloride or phosgen, or a diol, a dicarboxylic acid and a biaryl carbonate. It can be produced by combining the transesterification method of reacting with each other.
  • the esterification reaction and transesterification reaction, as well as the phosgene method and transesterification method are as described above.
  • thermoplastic resin of the present invention may contain, if necessary, a heat stabilizer, an antioxidant, a mold release agent, a plasticizer, a filler, an ultraviolet absorber, a rust preventive, a dispersant, a defoaming agent, a leveling agent, etc. Can be used as a thermoplastic resin composition by appropriately adding the above additives.
  • the release agent it is preferable that 90% by weight or more thereof is composed of an ester of alcohol and a fatty acid.
  • the ester of the alcohol and the fatty acid include an ester of a monohydric alcohol and a fatty acid and / or a partial ester of a polyhydric alcohol and a fatty acid or a total ester.
  • the ester of the monohydric alcohol and the fatty acid is preferably an ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • the partial ester or total ester of the polyhydric alcohol and the fatty acid is preferably a partial ester or the total ester of the polyhydric alcohol having 1 to 25 carbon atoms and the saturated fatty acid having 10 to 30 carbon atoms.
  • Specific examples of the ester of the monohydric alcohol and the saturated fatty acid include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like, and stearyl stearate is preferable.
  • esters of polyhydric alcohol and saturated fatty acid stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbitate, behenic acid monoglyceride, pentaerythritol monostearate, pentaerythritol tetra All esters or portions of dipentaerythritol such as stearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenylbiphenate, sorbitan monostearate, 2-ethylhexyl stearate, dipentaerythritol hexastearate.
  • esters examples include ester.
  • stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and a mixture of stearic acid triglyceride and stearyl stearate are preferably used.
  • the amount of the ester in the release agent is preferably 90% by weight or more, more preferably 95% by weight or more when the release agent is 100% by weight.
  • the mold release agent to be blended in the thermoplastic resin composition is preferably in the range of 0.005 to 2.0 parts by weight, more preferably in the range of 0.01 to 0.6 parts by weight with respect to 100 parts by weight of the thermoplastic resin. It is preferably in the range of 0.02 to 0.5 parts by weight, more preferably.
  • heat stabilizer examples include phosphorus-based heat stabilizers, sulfur-based heat stabilizers, and hindered phenol-based heat stabilizers.
  • tetrakis (2,4-di-tert-butylphenyl) -4,4'-biphenylenediphosphonite is preferably used.
  • the content of the phosphorus-based heat stabilizer in the thermoplastic resin is preferably 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • Octadecil-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate is particularly preferably used as a hindered phenolic heat stabilizer.
  • the content of the hindered phenolic heat stabilizer in the thermoplastic resin is preferably 0.001 to 0.3 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
  • the UV absorber is at least one UV absorber selected from the group consisting of benzotriazole-based UV absorbers, benzophenone-based UV absorbers, triazine-based UV absorbers, cyclic iminoester-based UV absorbers, and cyanoacrylate-based UV absorbers. Is preferable.
  • benzotriazole-based UV absorber more preferably, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazol, 2,2'-methylenebis [4- (1,1,3,3-tetramethyl) Butyl) -6- (2H-benzotriazole-2-yl) phenol].
  • benzophenone-based ultraviolet absorber examples include 2-hydroxy-4-n-dodecyloxybenzophenone and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.
  • triazine-based UV absorbers examples include 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexyl) oxy] -phenol and 2- (4,6-bis (4,6-bis). 2.4-Dimethylphenyl) -1,3,5-triazine-2-yl) -5-[(octyl) oxy] -phenol and the like can be mentioned.
  • the cyclic iminoester-based ultraviolet absorber 2,2'-p-phenylenebis (3,1-benzoxazine-4-one) is particularly suitable.
  • the blending amount of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin, and within the range of the blending amount, it can be used as a thermoplastic resin molded product depending on the application. It is possible to impart sufficient weather resistance.
  • the method for producing the resin composition is not particularly limited, and the resin composition can be produced by a known method.
  • the method for producing a resin composition comprises a step of mixing the thermoplastic resin and the compounding agent. It may further include the step of mixing at least one of the solvent and the additive.
  • a resin composition can be produced by sequentially or simultaneously adding and mixing a compounding agent and an additive to a thermoplastic resin. The step of mixing can be carried out by a conventional method.
  • a method of kneading with an extruder or a method of dissolving a resin and a compounding agent in a solvent for example, methylene chloride, THF, etc.
  • a solvent for example, methylene chloride, THF, etc.
  • the resin composition of the present invention has a low Tg and a high flow rate. Therefore, the resin composition of the present invention can be injection molded.
  • the physical characteristics of the resin composition will be described in detail in Examples.
  • the resin composition of the present invention can be suitably used for an optical member.
  • an optical member containing the resin composition of the present invention is provided.
  • the optical member includes an optical disk, a transparent conductive substrate, an optical card, a sheet, a film, an optical fiber, a lens, a prism, an optical film, a substrate, an optical filter, a hard coat film, and the like. Not limited to these. Since the resin composition of the present invention can be molded by a casting method with high flow rate, it is particularly suitable for manufacturing a thin optical member.
  • the optical member manufactured by using the resin composition of the present invention may be an optical lens.
  • the optical member produced by using the resin composition of the present invention may be an optical film.
  • the optical member containing the resin composition of the present invention is manufactured by injection molding, it is preferable to mold it under the conditions of a cylinder temperature of 260 to 350 ° C. and a mold temperature of 90 to 170 ° C. More preferably, molding is performed under the conditions of a cylinder temperature of 270 to 320 ° C. and a mold temperature of 100 to 160 ° C.
  • the cylinder temperature is higher than 350 ° C.
  • the resin composition is decomposed and colored
  • the melt viscosity is high and molding tends to be difficult.
  • the mold temperature is higher than 170 ° C., it tends to be difficult to remove the molded piece made of the resin composition from the mold.
  • the resin hardens too quickly in the mold at the time of molding, making it difficult to control the shape of the molded piece, or sufficiently transferring the mold attached to the mold. Is easy to become difficult.
  • the resin composition can be suitably used for an optical lens. Since the optical lens manufactured by using the resin composition of the present invention has a high refractive index and excellent heat resistance, an expensive high refractive index glass lens such as a telescope, binoculars, and a television projector has been conventionally used. It can be used in the field and is extremely useful.
  • the optical lens of the present invention preferably uses the shape of an aspherical lens as needed. Since it is possible to eliminate spherical aberration with a single lens for aspherical lenses, it is not necessary to remove spherical aberration by combining multiple spherical lenses, resulting in weight reduction and reduction of molding costs. It will be possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • the optical lens of the present invention has high molding fluidity, it is particularly useful as a material for an optical lens having a thin wall, a small size, and a complicated shape.
  • the thickness of the central portion is preferably 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, and further preferably 0.1 to 2.0 mm.
  • the diameter is preferably 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, and even more preferably 3.0 to 10.0 mm.
  • the shape is a meniscus lens having one side convex and one side concave.
  • the optical lens of the present invention is molded by any method such as mold forming, cutting, polishing, laser processing, electric discharge machining, and etching. Among these, mold molding is more preferable from the viewpoint of manufacturing cost.
  • the resin composition can be suitably used for an optical film.
  • the optical film produced by using the polycarbonate resin of the present invention is excellent in transparency and heat resistance, and is therefore suitably used for a film for a liquid crystal substrate, an optical memory card, and the like.
  • the molding environment In order to avoid foreign matter from entering the optical film as much as possible, the molding environment must naturally be a low dust environment, preferably class 6 or less, and more preferably class 5 or less.
  • Glass transition temperature (Tg) The glass transition temperature (Tg) was measured by a differential thermal scanning calorimeter (DSC). The specific conditions are as follows. Equipment: Hitachi High-Tech Science Co., Ltd. DSC7000X Sample amount: 5 mg Atmosphere: Under nitrogen gas atmosphere Heating conditions: 10 ° C / min
  • Melt volume flow rate (cm 3 / 10min ): melt indexer T-111 (manufactured by Toyo Seiki Seisakusho) 260 ° C. using, under a load of 2.16 kg, measured by ISO1133 method.
  • Refractive index (nd) A 0.1 mm thick film made of the polycarbonate resin produced in the example was measured by the method of JIS-K-7142 using an Abbe refractometer.
  • Mass average molecular weight (Mw) The mass average molecular weight of the resin and the resin composition was measured by a gel permeation chromatography (GPC) method and calculated in terms of standard polystyrene.
  • GPC gel permeation chromatography
  • -GPC device HLC-8420GPC manufactured by Tosoh Corporation -Column: Tosoh Co., Ltd., TSKgel SuperHM-M x 3 Tosoh Co., Ltd., TSKgel guardgroup SuperH-H x 1 Tosoh Co., Ltd., TSKgel SuperH-RC x 1-Detector: RI detector -Standard polystyrene: Standard polystyrene kit PStQuick C manufactured by Tosoh Corporation -Sample solution: 0.2 mass% tetrahydrofuran solution-Eluent: Tetrahydrofuran-Eluent flow velocity: 0.6 mL / min -Column temperature: 40 ° C
  • Moldability (fluidity): After vacuum-drying the resin composition at 120 ° C. for 4 hours, the diameter is 50 mm at a cylinder temperature of 270 ° C. and a mold temperature of Tg-10 ° C. by an injection molding machine (FANUC ROBOSHOT ⁇ -S30iA). A disk-shaped plate having a thickness of 1.0 mm was injection-molded, and the formability (fluidity) was visually evaluated. Molding flow trace (visual) A: No flow trace Molding flow trace (visual) B: Almost no flow trace Molding flow trace (visual) C: Some flow trace is present Molding flow trace (visual) D: Flow trace is present
  • Thermal weight reduction start temperature (° C.) : Measured by a differential thermal weight simultaneous measuring device (TG / DTA) (TGDTA7300, manufactured by Hitachi High-Tech Science). The measurement sample was 2 mg, and the sample was weighed and prepared in a platinum pan (Pt open type sample container ⁇ 5.2 H2.5 mm). The measurement was performed under a nitrogen atmosphere (nitrogen flow rate: 250 ml / min). In the reference cell, 0.00519 g of ⁇ -alumina was used as a reference substance. The sample temperature was adjusted to 30 ° C., the temperature was raised to 550 ° C. at 10 ° C./min, and the measurement was performed.
  • TG / DTA differential thermal weight simultaneous measuring device
  • Resin 1 EP8000 As a raw material, 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene (BPPEF) 13.000 kg (22.007 mol), 2,2'-bis (2-) having the following structure hydroxyethoxy) -1,1'-binaphthalene (BNE) 8.000kg (21.365 moles), DPC 9.650kg (45.048 moles), and sodium bicarbonate 2.21 ⁇ 10 -2 g (2.63 ( X10-4 mol) was placed in a 50 liter reactor equipped with a stirrer and a distiller, and after nitrogen substitution, the mixture was heated to 205 ° C. for 1 hour under a nitrogen atmosphere of 760 Torr and stirred.
  • BPPEF 9,9-bis (4- (2-hydroxyethoxy) -3-phenylphenyl) fluorene
  • BNE 2,2'-bis (2-) having the following structure hydroxyethoxy) -1,1'-binaphthalene
  • the degree of decompression was adjusted to 150 Torr over 15 minutes, and the mixture was kept at 205 ° C. and 150 Torr for 20 minutes to carry out a transesterification reaction. Further, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr, and the temperature was maintained at 240 ° C., 150 Torr for 10 minutes. Then, it was adjusted to 120 Torr over 10 minutes and kept at 240 ° C. and 120 Torr for 70 minutes. Then, it was adjusted to 100 Torr over 10 minutes and kept at 240 ° C. and 100 Torr for 10 minutes.
  • the polymerization reaction was further reduced to 1 Torr or less over 40 minutes, and the polymerization reaction was carried out under stirring under the conditions of 240 and 1 Torr for 10 minutes. After completion of the reaction, nitrogen was blown into the reactor and pressurized, and the produced polycarbonate resin was extracted while pelletizing to obtain a resin 1.
  • the degree of reduced pressure was adjusted to 150 Torr over 15 minutes, and the mixture was kept at 205 ° C. and 150 Torr for 20 minutes to carry out a transesterification reaction. Further, the temperature was raised to 240 ° C. at a rate of 37.5 ° C./hr, and the temperature was maintained at 240 ° C., 150 Torr for 10 minutes. Then, it was adjusted to 120 Torr over 10 minutes and kept at 240 ° C. and 120 Torr for 70 minutes. Then, it was adjusted to 100 Torr over 10 minutes and kept at 240 ° C. and 100 Torr for 10 minutes. Further, the reaction was completed with 1 Torr or less over 40 minutes.
  • the obtained polycarbonate oligomer had an average number of repeating units of 3 from the NMR measurement and a mass average molecular weight of 1400 from the GPC measurement.
  • Examples 1 to 7, Comparative Examples 1 to 3 Resin, compounding agent, and pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (ADEKA AO-60: antioxidant) in the mass ratio shown in the table. 1000ppm, stearate monoglyceride (RIKEN Vitamin Co., Ltd.
  • the glass transition temperature (Tg), melt volume flow rate (MVR), refractive index (nd), and Abbe number ( ⁇ ) are measured or calculated, and the formability (fluidity) is visually checked. These results are shown in Table 1.
  • the resin composition of the present invention is a thermoplastic resin composition having excellent optical properties, having high flowability and good moldability without impairing the properties of the optical resin composition.
  • optical members such as optical lenses and optical films can be precisely molded from this resin or composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高流動で成形性が良い、光学特性に優れた樹脂組成物が提供される。より詳細には、熱可塑性樹脂と、ナフタレン構造及び/又はフルオレン構造を有する特定の配合剤と、を含む樹脂組成物が提供される。

Description

樹脂組成物
 本発明は、樹脂組成物に関する。より詳細には、本発明は、熱可塑性樹脂と特定の配合剤とを含む樹脂組成物に関する。
 カメラ、フィルム一体型カメラ、ビデオカメラ等の各種カメラの光学系に使用される光学レンズの材料として、光学ガラスあるいは光学用樹脂が使用されている。光学ガラスは、耐熱性、透明性、寸法安定性、耐薬品性等に優れるが、材料コストが高く、成形加工性が悪く、生産性が低いという問題点を有している。
 一方、光学用樹脂からなる光学レンズは、射出成形により大量生産が可能であるという利点を有しており、カメラレンズ用高屈折率材料としてポリカーボネート、ポリエステルカーボネート、ポリエステル樹脂等が使用されている。
 光学用樹脂を光学レンズとして用いる場合、屈折率やアッベ数などの光学特性に加えて、耐熱性、透明性、低吸水性、耐薬品性、低複屈折、耐湿熱性等が求められる。特に近年、高屈折率及び高耐熱性を有する光学レンズが求められており、様々な樹脂の開発が行われている(特許文献1~5)。
 しかし、依然として、光学用樹脂組成物に必要な特性を損なうことなく、高流動で成形性が良い、光学特性に優れた熱可塑性樹脂組成物が求められている。
特開2018-2893号公報 特開2018-2894号公報 特開2018-2895号公報 特開2018-59074号公報 WO 2017/078073
 本発明は、光学用樹脂組成物の特性を損なうことなく高流動で成形性が良い、光学特性に優れた熱可塑性樹脂組成物を提供する。
 本発明者らは、従来の課題を解決すべく鋭意検討を重ねた結果、熱可塑性樹脂に、特定の配合剤を添加することにより、低Tg化され高流動で成形形成が良い、光学特性に優れた熱可塑性樹脂組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を含む。
 <1>
 熱可塑性樹脂と、
 ナフタレン構造及び/又はフルオレン構造を有する配合剤と、
を含む樹脂組成物であって、
 前記ナフタレン構造及び/又はフルオレン構造を有する配合剤が、下記一般式(1)~(3)のいずれかで表される構成単位を含む化合物から選択される1種以上を含む、樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
 
 (式(1)中、
 R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 a及びbは、それぞれ独立して0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000007
 
 (式(2)中、
 Rc及びRdは、それぞれ独立して、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは、炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 c及びdは、それぞれ独立して0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000008
 
 (式(3)中、
 Re及びRfは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 e及びfは、それぞれ独立して0~10の整数を表す。)
 <2>
 前記ナフタレン構造及び/又はフルオレン構造を有する配合剤が、一般式(1)~(3)のいずれかで表される構成単位を有するジオールモノマー、及び一般式(1)~(3)のいずれかで表される構成単位をジオール構造として含むポリカーボネートオリゴマーからなる群より選択される1種以上である、<1>に記載の樹脂組成物。
 <3>
 前記一般式(1)~(3)のいずれかで表される構成単位をジオール構造として含むポリカーボネートオリゴマーが、下記式のいずれかで表され、式中、R、R、R、R、R、R、a、b、c、d、e、およびfはそれぞれ、<1>に記載の通りである、<2>に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
 
 <4>
 前記配合剤の5%熱質量減少開始温度(5%熱質量減少温度)が、260℃以上である、<1>~<3>のいずれかに記載の樹脂組成物。
 <5>
 前記配合剤の質量平均分子量が、10000未満である、<1>~<4>のいずれかに記載の樹脂組成物。
 <6>
 前記熱可塑性樹脂と前記配合剤との質量比が、熱可塑性樹脂:配合剤=99:1~70:30である、<1>~<5>のいずれかに記載の樹脂組成物。
 <7>
 前記熱可塑性樹脂のポリスチレン換算分子量(Mw)が、10000~100000である、<1>~<6>のいずれかに記載の樹脂組成物。
 <8>
 前記熱可塑性樹脂が、ポリカーボネート樹脂、ポリエステル樹脂、及びポリエステルカーボネート樹脂からなる群より選択される、<1>~<7>のいずれかに記載の樹脂組成物。
 <9>
 前記熱可塑性樹脂が、下記一般式(a)で表される化合物に由来する構成単位を含む、<1>~<8>のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
 
 (式(a)中、
 Rc及びRdは、それぞれ独立して、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは、炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 c及びdは、それぞれ独立して0~10の整数を表す。)
 <10>
 <1>~<9>のいずれかに記載の樹脂組成物を含む、光学部材。
 <11>
 <1>~<9>のいずれかに記載の樹脂組成物を含む、光学レンズ。
 <12>
 <1>~<9>のいずれかに記載の樹脂組成物を含む、光学フィルム。
 本発明は、光学用樹脂組成物の特性を損なうことなく高流動で成形性が良い、光学特性に優れた熱可塑性樹脂組成物を提供することができる。
 1.樹脂組成物
 本発明の樹脂組成物は、熱可塑性樹脂と、ナフタレン構造及び/又はフルオレン構造を有する特定の配合剤と、を含む。熱可塑性樹脂に、ナフタレン構造及び/又はフルオレン構造を有する特定の配合剤を配合することにより、光学用樹脂組成物の特性を損なうことなく高流動で成形性が良い、光学特性に優れた熱可塑性樹脂組成物を得ることができる。
 1-1.配合剤
 本発明の樹脂組成物において、前記ナフタレン構造及び/又はフルオレン構造を有する配合剤は、下記一般式(1)~(3)のいずれかで表される構成単位を含む化合物から選択される1種以上を含む。下記一般式(1)~(3)のいずれかで表される構成単位を含む化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000011
 
 (式(1)中、
 R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 a及びbは、それぞれ独立して0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000012
 
 (式(2)中、
 Rc及びRdは、それぞれ独立して、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは、炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 c及びdは、それぞれ独立して0~10の整数を表す。)
Figure JPOXMLDOC01-appb-C000013
 
 (式(3)中、
 Re及びRfは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 e及びfは、それぞれ独立して0~10の整数を表す。)
 配合剤の構成単位
 <式(1)で表される構成単位>
 本発明の一実施形態において、前記ナフタレン構造及び/又はフルオレン構造を有する配合剤は、下記一般式(1)で表される構成単位を含む化合物であってよい。
Figure JPOXMLDOC01-appb-C000014
 
 (式(1)中、
 R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 a及びbは、それぞれ独立して0~10の整数を表す。)
 本発明の好ましい実施形態において、式(1)中、
 R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~10のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~18のアリール基、炭素数2~15のアルケニル基、炭素数1~5のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。
 式(1)中、アルキル基は、より好ましくは炭素数1~6のアルキル基、更に好ましくはメチルであってよい。
 式(1)中、アリール基は、より好ましくは炭素数6~16、更に好ましくは炭素数6~14、更により好ましくは炭素数6~12、更にまた好ましくは炭素数6~10のアリール基であってよい。
 式(1)中、アルケニル基は、より好ましくは炭素数2~10のアルケニル基であってよい。
 式(1)中、アルコキシ基は、より好ましくは炭素数1~3のアルコキシ基であってよい。
 式(1)中、アラルキル基は、より好ましくは炭素数7~10のアラルキル基であってよい。
 式(1)中、Xは、より好ましくは炭素数1~4のアルキレン基、更に好ましくは炭素数1~3のアルキレン基、更により好ましくは炭素数2のアルキレン基であってよい。
 式(1)中、a及びbは、それぞれ独立して、より好ましくは0~5の整数、更に好ましくは1~5の整数、更により好ましくは1~3の整数、更にまたより好ましくは1であってよい。
 <式(2)で表される構成単位>
 本発明の一実施形態において、前記ナフタレン構造及び/又はフルオレン構造を有する配合剤は、下記一般式(2)で表される構成単位を含む化合物であってよい。
Figure JPOXMLDOC01-appb-C000015
 
 (式(2)中、
 Rc及びRdは、それぞれ独立して、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは、炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 c及びdは、それぞれ独立して0~10の整数を表す。)
 本発明の好ましい実施形態において、式(2)中、RおよびRは、各々独立に、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表す。
 式(2)中、アリール基は、より好ましくは炭素数6~18であり、より好ましくは炭素数6~16であり、より好ましくは炭素数6~14であり、より好ましくは炭素数6~12であり、さらに好ましくは炭素数6~10である。
 式(2)中、ヘテロアリール基は、より好ましくは炭素数6~18であり、より好ましくは炭素数8~16であり、さらに好ましくは炭素数10~14である。
 式(2)中、アリールオキシ基は、より好ましくは炭素数6~18であり、より好ましくは炭素数6~16であり、さらに好ましくは炭素数6~14である。
 式(2)中、Xは、より好ましくは炭素数1~4のアルキレン基、更に好ましくは炭素数1~3のアルキレン基、更により好ましくは炭素数2のアルキレン基であってよい。
 式(2)中、c及びdは、それぞれ独立して、より好ましくは0~5の整数、更に好ましくは1~5の整数、更により好ましくは1~3の整数、更にまたより好ましくは1であってよい。
 本発明の好ましい実施形態において、式(2)中、
 Rc及びRdは、それぞれ独立して、フェニル基、ナフチル基または下記からなる群より選択されてもよく、
Figure JPOXMLDOC01-appb-C000016
 
 Xは、炭素数1~4のアルキレン基を表し、更に好ましくは炭素数1~3のアルキレン基、更により好ましくは炭素数2のアルキレン基であってよく、
 c及びdは、それぞれ独立して0~5の整数を表し、更に好ましくは1~5の整数、更により好ましくは1~3の整数、更にまたより好ましくは1であってよい。
 <式(3)で表される構成単位>
 本発明の一実施形態において、前記ナフタレン構造及び/又はフルオレン構造を有する配合剤は、下記一般式(3)で表される構成単位を含む化合物であってよい。
Figure JPOXMLDOC01-appb-C000017
 
 (式(3)中、
 Re及びRfは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 e及びfは、それぞれ独立して0~10の整数を表す。)
 本発明の好ましい実施形態において、式(3)中、
 R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~10のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~18のアリール基、炭素数2~15のアルケニル基、炭素数1~5のアルコキシ基、もしくは炭素数7~17のアラルキル基を表す。
 式(3)中、アルキル基は、より好ましくは炭素数1~6のアルキル基、更に好ましくはメチルであってよい。
 式(3)中、アリール基は、より好ましくは炭素数6~16、更に好ましくは炭素数6~14、更により好ましくは炭素数6~12、更にまた好ましくは炭素数6~10のアリール基であってよい。
 式(3)中、アルケニル基は、より好ましくは炭素数2~10のアルケニル基であってよい。
 式(3)中、アルコキシ基は、より好ましくは炭素数1~3のアルコキシ基であってよい。
 式(3)中、アラルキル基は、より好ましくは炭素数7~10のアラルキル基であってよい。
 式(3)中、Xは、より好ましくは炭素数1~4のアルキレン基、更に好ましくは炭素数1~3のアルキレン基、更により好ましくは炭素数2のアルキレン基であってよい。
 式(3)中、e及びfは、それぞれ独立して、より好ましくは0~5の整数、更に好ましくは1~5の整数、更により好ましくは1~3の整数、更にまたより好ましくは1であってよい。
 配合剤の態様
 本発明の一実施形態において、前記ナフタレン構造及び/又はフルオレン構造を有する配合剤は、一般式(1)~(3)のいずれかで表される構成単位を有するジオールモノマー、及び一般式(1)~(3)のいずれかで表される構成単位をジオール構造として含むポリカーボネートオリゴマーからなる群より選択される1種以上であってよい。一般式(1)~(3)のいずれかで表される構成単位を含む化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 <ジオールモノマー>
 本発明の一実施形態において、前記ナフタレン構造及び/又はフルオレン構造を有する配合剤は、一般式(1)~(3)のいずれかで表される構成単位を有するジオールモノマーであってよく、前記ジオールモノマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 <ポリカーボネートオリゴマー>
 本発明の一実施形態において、前記ナフタレン構造及び/又はフルオレン構造を有する配合剤は、一般式(1)~(3)のいずれかで表される構成単位をジオール構造として含むポリカーボネートオリゴマーであってよく、前記ポリカーボネートオリゴマーは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本発明の好ましい実施形態において、一般式(1)~(3)のいずれかで表される構成単位をジオール構造として含むポリカーボネートオリゴマーは、下記式のいずれかで表されるものであってよい。一般式(1)~(3)中、R、R、R、R、R、R、a、b、c、d、e、およびfはそれぞれ、<1>に記載の通りである。
Figure JPOXMLDOC01-appb-C000018
 
 本発明の一実施形態において、前記ポリカーボネートオリゴマーは、繰り返し単位数が1~6であってよく、好ましくは1~3であってよく、更に好ましくは3であってよい。
 ポリカーボネートオリゴマー配合剤の製造方法
 ポリカーボネートオリゴマーは、エステル交換法により得られ、例えばジオールと過剰量のビスアリールカーボネートとを混合し、エステル交換触媒存在下、減圧下で高温において反応させて得られる。ジオールとビスアリールカーボネートとのモル比は、ジオール:ビスアリールカーボネート=1:1.3~10が好ましく、1:1.5~5がより好ましい。ポリカーボネートオリゴマーは、繰り返し単位数が一律ではなく、繰り返し単位数が異なる分子鎖の集合体となっており、未反応のビスアリールカーボネートやジオールも含み得る混合体である。
 配合剤の物性
 (1)5%熱質量減少開始温度(5%熱質量減少温度)
 本発明の一実施形態において、上記の配合剤は、その5%熱質量減少開始温度(5%熱質量減少温度)が、260℃以上であってよく、好ましくは280℃以上、より好ましくは300℃以上であってよい。5%熱質量減少開始温度(5%熱質量減少温度)とは、示差熱熱重量同時測定装置(TG/TDA)で測定した場合に、その物質の重量が5%減少した時の温度を指す。本発明において、配合剤の5%熱質量減少開始温度(5%熱質量減少温度)が上記の範囲であれば、十分な耐熱性を有する。
 (2)質量平均分子量
 本発明の一実施形態において、上記の配合剤は、オリゴマーである場合、その質量平均分子量が、10000未満であってよく、好ましくは5000以下であってよく、より好ましくは3000以下であってよい。本発明において、配合剤の質量平均分子量が上記の範囲であれば、高流動の樹脂を得ることができる。配合剤の質量平均分子量は、常法により測定することができ、例えば、ゲル浸透クロマトグラフィー(GPC)法によって測定し標準ポリスチレン換算で算出するか、あるいは、配合剤がオリゴマーの場合、1H-NMRや13C-NMRにて主骨格に由来するプロトンやカーボンの積分比と末端フェニル基由来のプロトンやカーボンの積分比から繰り返し単位数を算出することにより得ることができる。
 (3)熱可塑性樹脂と配合剤との質量比
 本発明の一実施形態において、上記の配合剤は、熱可塑性樹脂と配合剤との質量比が、ポリカーボネート熱可塑性樹脂:配合剤=99.9:0.1~70:30となるように配合することができる。上記の質量比は、好ましくは99:1~70:30であってよく、より好ましくは98:2~70:30であってよく、例えば99:1、98:2、97:3、96:4、95:5、94:6、93:7、92:8、91:9、90:10、85:15、80:20、75:25、70:30などであってよい。本発明において、熱可塑性樹脂と配合剤との質量比が上記の範囲にあれば、高流動で成形性が良い樹脂組成物を提供することができる。
 1-2.熱可塑性樹脂
 本発明の樹脂組成物に用いられ得る熱可塑性樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、ポリエステルカーボネート樹脂、などが挙げられるが、これらに限定されない。本発明の一実施形態において、熱可塑性樹脂は、ポリカーボネート樹脂、ポリエステル樹脂、及びポリエステルカーボネート樹脂からなる群より選択され得る。本発明の好ましい実施形態において、熱可塑性樹脂は、ポリカーボネート樹脂であってよい。本発明の別の好ましい実施形態において、熱可塑性樹脂は、ポリエステル樹脂であってよい。本発明の更に別の好ましい実施形態において、熱可塑性樹脂は、ポリエステルカーボネート樹脂であってよい。
 熱可塑性樹脂の物性
 (1)屈折率
 本発明の熱可塑性樹脂は、高屈折率であることが特徴の一つであり、25℃で測定波長589nmの屈折率(以下、「nd」と略すことがある)は、1.650~1.720であることが好ましく、1.660~1.710であるとさらに好ましく、1.670~1.700であるとよりさらに好ましい。
 (2)ガラス転移温度
 また、本発明の熱可塑性樹脂は、高耐熱性であることが特徴の一つであり、ガラス転移温度(以下、「Tg」と略することがある)は、120~160℃であることが好ましく、130~155℃であることがより好ましい。
 (3)ポリスチレン換算分子量(Mw)
 本発明の一実施形態において、熱可塑性樹脂は、そのポリスチレン換算分子量(Mw)は、10000~100000であってよく、好ましくは15000~70000、より好ましくは20000~50000であってよい。
 熱可塑性樹脂の構成
 本発明の一実施形態において、熱可塑性樹脂は、下記一般式(a)~(e)で表される化合物に由来する構成単位の1種以上を含むものであってよい。本発明において、熱可塑性樹脂は、下記一般式(a)~(e)で表される化合物に由来する構成単位のうち1種を単独で含んでもよいし、2種以上を含んでもよい。
 <一般式(a)で表される化合物に由来する構成単位>
Figure JPOXMLDOC01-appb-C000019
 
 (式(a)中、
 Rc及びRdは、それぞれ独立して、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは、炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 c及びdは、それぞれ独立して0~10の整数を表す。)
 本発明の好ましい実施形態において、式(a)中、RおよびRは、各々独立に、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表す。
 式(a)中、アリール基は、より好ましくは炭素数6~18であり、より好ましくは炭素数6~16であり、より好ましくは炭素数6~14であり、より好ましくは炭素数6~12であり、さらに好ましくは炭素数6~10である。
 式(a)中、ヘテロアリール基は、より好ましくは炭素数6~18であり、より好ましくは炭素数8~16であり、さらに好ましくは炭素数10~14である。
 式(a)中、アリールオキシ基は、より好ましくは炭素数6~18であり、より好ましくは炭素数6~16であり、さらに好ましくは炭素数6~14である。
 式(a)中、Xは、より好ましくは炭素数1~4のアルキレン基、更に好ましくは炭素数1~3のアルキレン基、更により好ましくは炭素数2のアルキレン基であってよい。
 式(a)中、c及びdは、それぞれ独立して、より好ましくは0~5の整数、更に好ましくは1~5の整数、更により好ましくは1~3の整数、更にまたより好ましくは1であってよい。
 本発明の好ましい実施形態において、式(a)中、
 Rc及びRdは、それぞれ独立して、フェニル基、ナフチル基または下記からなる群より選択されてもよく、
Figure JPOXMLDOC01-appb-C000020
 
 Xは、炭素数1~4のアルキレン基を表し、更に好ましくは炭素数1~3のアルキレン基、更により好ましくは炭素数2のアルキレン基であってよく、
 c及びdは、それぞれ独立して0~5の整数を表し、更に好ましくは1~5の整数、更により好ましくは1~3の整数、更にまたより好ましくは1であってよい。
 本発明の熱可塑性樹脂において一般式(a)で表される化合物に由来する構成単位が含まれる場合、熱可塑性樹脂は、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、又はポリエステル樹脂である。
 <一般式(b)で表される化合物に由来する構成単位>
Figure JPOXMLDOC01-appb-C000021
 
 (式(b)中、
 R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 a及びbは、それぞれ独立して0~10の整数を表す。)
 本発明の好ましい実施形態において、式(b)中、
 R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~10のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~18のアリール基、炭素数2~15のアルケニル基、炭素数1~5のアルコキシ基、もしくは炭素数7~17のアラルキル基を表し、
 式(b)中、アルキル基は、より好ましくは炭素数1~6のアルキル基、更に好ましくはメチルであってよい。
 式(b)中、アリール基は、より好ましくは炭素数6~16、更に好ましくは炭素数6~14、更により好ましくは炭素数6~12、更にまた好ましくは炭素数6~10のアリール基であってよい。
 式(b)中、アルケニル基は、より好ましくは炭素数2~10のアルケニル基であってよい。
 式(b)中、アルコキシ基は、より好ましくは炭素数1~3のアルコキシ基であってよい。
 式(b)中、アラルキル基は、より好ましくは炭素数7~10のアラルキル基であってよい。
 式(b)中、Xは、より好ましくは炭素数1~4のアルキレン基、更に好ましくは炭素数1~3のアルキレン基、更により好ましくは炭素数2のアルキレン基であってよい。
 式(b)中、a及びbは、それぞれ独立して、より好ましくは0~5の整数、更に好ましくは1~5の整数、更により好ましくは1~3の整数、更にまたより好ましくは1であってよい。
 本発明の熱可塑性樹脂において一般式(b)で表される化合物に由来する構成単位が含まれる場合、熱可塑性樹脂は、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、又はポリエステル樹脂である。
 <一般式(c)で表される化合物に由来する構成単位>
Figure JPOXMLDOC01-appb-C000022
 
 (式(c)中、
 Re及びRfは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表し、
 Xは、炭素数1~5の飽和炭素基を表し、
 e及びfは、それぞれ独立して0~10の整数を表す。)
 本発明の好ましい実施形態において、式(c)中、
 R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~10のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~18のアリール基、炭素数2~15のアルケニル基、炭素数1~5のアルコキシ基、もしくは炭素数7~17のアラルキル基を表し、
 式(c)中、アルキル基は、より好ましくは炭素数1~6のアルキル基、更に好ましくはメチルであってよい。
 式(c)中、アリール基は、より好ましくは炭素数6~16、更に好ましくは炭素数6~14、更により好ましくは炭素数6~12、更にまた好ましくは炭素数6~10のアリール基であってよい。
 式(c)中、アルケニル基は、より好ましくは炭素数2~10のアルケニル基であってよい。
 式(c)中、アルコキシ基は、より好ましくは炭素数1~3のアルコキシ基であってよい。
 式(c)中、アラルキル基は、より好ましくは炭素数7~10のアラルキル基であってよい。
 式(c)中、Xは、より好ましくは炭素数1~4のアルキレン基、更に好ましくは炭素数1~3のアルキレン基、更により好ましくは炭素数2のアルキレン基であってよい。
 式(c)中、e及びfは、それぞれ独立して、より好ましくは0~5の整数、更に好ましくは1~5の整数、更により好ましくは1~3の整数、更にまたより好ましくは1であってよい。
 本発明の熱可塑性樹脂において一般式(c)で表される化合物に由来する構成単位が含まれる場合、熱可塑性樹脂は、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、又はポリエステル樹脂である。
 <一般式(d)で表される化合物に由来する構成単位>
Figure JPOXMLDOC01-appb-C000023
 
 (式(d)中、Rは、水素原子、メチル基、エチル基を表す。)
 本発明の好ましい実施形態において、式(d)中、Rは、水素原子を表す。
 本発明の熱可塑性樹脂において一般式(d)で表される化合物に由来する構成単位が含まれる場合、熱可塑性樹脂は、ポリカーボネート樹脂、ポリエステルカーボネート樹脂、又はポリエステル樹脂である。
 <一般式(e)で表される構成単位>
Figure JPOXMLDOC01-appb-C000024
 
 (式(e)中、
 R及びRは、それぞれ独立して、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
 Rは、炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表し、
 p及びqは、それぞれ独立して0~10の整数を表す。)
 本発明の好ましい実施形態において、式(e)中、
 RおよびRは、各々独立に、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、Rは炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表す。
 式(e)中、アリール基は、より好ましくは炭素数6~18であり、より好ましくは炭素数6~16であり、より好ましくは炭素数6~14であり、より好ましくは炭素数6~12であり、さらに好ましくは炭素数6~10である。
 式(e)中、ヘテロアリール基は、より好ましくは炭素数6~18であり、より好ましくは炭素数8~16であり、さらに好ましくは炭素数10~14である。
 式(e)中、アリールオキシ基は、より好ましくは炭素数6~18であり、より好ましくは炭素数6~16であり、さらに好ましくは炭素数6~14である。
 式(e)中、p及びqは、それぞれ独立して、より好ましくは0~5の整数、更に好ましくは0~1の整数であってよい。
 本発明のより好ましい実施形態において、式(e)中、
 R及びRは、それぞれ独立して、フェニル基、ナフチル基または下記からなる群より選択されてもよい。
Figure JPOXMLDOC01-appb-C000025
 
 式(e)で表される構成単位は、更により好ましくは、2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチル、及び下記構造式で表される化合物に由来するものが好ましく、2,2’-ビス(ヒドロキシカルボニルメトキシ)-1,1’-ビナフチルに由来するものが特に好ましい。
Figure JPOXMLDOC01-appb-C000026
 
 本発明の熱可塑性樹脂において一般式(e)で表される構成単位が含まれる場合、熱可塑性樹脂は、ポリエステル樹脂又はポリエステルカーボネート樹脂である。
 <ポリカーボネート樹脂>
 本発明の樹脂組成物に用いられるポリカーボネート樹脂は、上記一般式(a)~(d)で表される化合物に由来する構成単位の1種以上をジオール成分として含むものであってよい。本発明において、ポリカーボネート樹脂は、上記一般式(a)~(d)で表される化合物に由来する構成単位のうち1種を単独で含んでもよいし、2種以上を含んでもよい。本発明の樹脂組成物に用いられるポリカーボネート樹脂は、その構成単位としてその他のジオール成分を含み得る。一般式(a)~(d)で表される化合物に由来する構成単位については上述した通りである。
 本発明の一実施形態において、ジオール成分は、上記一般式(a)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(b)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(c)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(d)で表される化合物に由来するものであってよい。
 <ポリカーボネート樹脂の製造方法>
 ポリカーボネート樹脂は、常法により製造することができる。
 ホスゲン法においては、通常酸結合剤及び溶媒の存在下において、ジオールとホスゲンとを反応させる。酸結合剤としては、例えばピリジンや、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物などが用いられ、また溶媒としては、例えば塩化メチレン、クロロホルムなどが用いられる。さらに、縮重合反応を促進するために、トリエチルアミンのような第三級アミン又はベンジルトリエチルアンモニウムクロライド等の第四級アンモニウム塩などの触媒を用いることが好ましい。さらに、また重合度調節には、フェノール、p-t-ブチルフェノール、p-クミルフェノール、アルキル置換フェノール等の一官能基化合物を分子量調節剤として加えることが好ましい。また、所望に応じ亜硫酸ナトリウム、ハイドロサルファイトなどの酸化防止剤や、フロログルシン、イサチンビスフェノールなど分岐化剤を小量添加してもよい。反応温度は通常0~150℃、好ましくは5~40℃の範囲とするのが適当である。反応時間は反応温度によって左右されるが、通常0.5分間~10時間、好ましくは1分間~2時間である。また、反応中は、反応系のpHを10以上に保持することが望ましい。
 一方、エステル交換法においては、ジオールとビスアリールカーボネートとを混合し、減圧下で高温において反応させる。ビスアリールカーボネートの例としては、ジフェニルカーボネート、ジ-p-トリルカーボネート、フェニル-p-トリルカーボネート、ジ-p-クロロフェニルカーボネート、ジナフチルカーボネートなどのビスアリルカーボネートが挙げられる。これらの化合物は、1種を単独で使用することも可能であり、2種以上併用して使用することも可能である。反応は通常150~350℃、好ましくは200~300℃の範囲の温度において行われ、また減圧度は最終減圧度が好ましくは1mmHg以下になるようにして、エステル交換反応により生成した該ビスアリールカーボネートに由来するフェノール類を系外へ留去させる。反応時間は反応温度や減圧度などによって左右されるが、通常1~24時間程度である。反応は窒素やアルゴンなどの不活性ガス雰囲気下で行うことが好ましい。
 該ジカルボン酸クロライドやホスゲン、又はビアリールカーボネート成分の含有量は、ジカルボン酸成分100mоl%に対し、好ましくは42mоl%未満、より好ましくは30mоl%未満、さらに好ましくは20mоl%未満である。
 <ポリエステル樹脂>
 本発明の樹脂組成物に用いられるポリエステル樹脂は、上記一般式(e)で表される構成単位をカルボン酸ジエステル成分として含むものであってよい。一般式(e)で表される構成単位については上述した通りである。本発明の樹脂組成物に用いられるポリエステル樹脂は、その構成単位として、任意のジオール成分を用いることができる。
 本発明の樹脂組成物に用いられるポリエステル樹脂において、ジオール成分は、例えば、ビスフェノール類、ビナフトール類、などであってよいが、これらに限定されない。本発明の一実施形態において、本発明の樹脂組成物に用いられるポリエステル樹脂は、上記一般式(a)~(d)で表される化合物に由来する構成単位の1種以上をジオール成分として含むものであってよい。本発明において、ポリエステル樹脂は、上記一般式(a)~(d)で表される化合物に由来する構成単位のうち1種を単独で含んでもよいし、2種以上を含んでもよい。本発明の樹脂組成物に用いられるポリエステル樹脂は、その構成単位としてその他のジオール成分を更に含み得る。一般式(a)~(d)で表される化合物に由来する構成単位については上述した通りである。
 本発明の一実施形態において、ジオール成分は、上記一般式(a)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(b)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(c)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(d)で表される化合物に由来するものであってよい。
 本発明の樹脂組成物に用いられるポリエステル樹脂は、その他の重合成分として、上記一般式(e)で表される構成単位以外の他のジカルボン酸成分、及び/又は上記一般式(a)~(d)で表される化合物に由来する構成単位以外の他のジオール成分を含み得る。
 本発明の一実施形態において、ポリエステル樹脂に用いられ得る他のジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸成分、フタル酸、イソフタル酸、テレフタル酸等の単環式芳香族ジカルボン酸成分、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸等の多環式芳香族ジカルボン酸成分、2,2’-ビフェニルジカルボン酸等のビフェニルジカルボン酸成分、1,4-シクロジカルボン酸、2,6-デカリンジカルボン酸等の脂環族ジカルボン酸成分が挙げられる。これらは単独又は二種類以上組み合わせて用いてもよい。また、これらの誘導体としては酸クロライドやエステル類を用いてもよい。これらの中でも耐熱性と屈折率をより高くしやすいことから単環式芳香族ジカルボン酸成分、多環式芳香族ジカルボン酸成分、ビフェニルジカルボン酸成分が好ましい。
 本発明の一実施形態において、ポリエステル樹脂に用いられ得る他のジオール成分としては、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール等の脂肪族ジオール成分、トリシクロ[5.2.1.02,6 ]デカンジメタノール、シクロヘキサン-1,4-ジメタノール、デカリン-2,6-ジメタノール、ノルボルナンジメタノール、ペンタシクロペンタデカンジメタノール、シクロペンタン-1,3-ジメタノール、スピログリコール、イソソルビド等の脂環式ジオール成分、ヒドロキノン、レゾルシノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-(2-ヒドロキシエトキシ)フェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、ビフェノール、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチル、1,1’-ビ-2-ナフトール、ジヒドロキシナフタレン、ビス(2-ヒドロキシエトキシ)ナフタレン、10,10-ビス(4-ヒドロキシフェニル)アントロン等の芳香族ジオール成分等が挙げられる。これらは単独又は二種類以上組み合わせて用いてもよい。これらの中でも成形性を高めつつ、耐熱性や屈折率の低下を抑えやすいことからエチレングリコールや2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフチルが好ましい。
 <ポリエステル樹脂の製造方法>
 ポリエステル樹脂は、常法により製造することができる。
 本発明の樹脂組成物に用いられるポリエステル樹脂は、ジカルボン酸及びジオール化合物をエステル化反応もしくはエステル交換反応させ、得られた反応生成物を重縮合反応させ、所望の分子量の高分子量体とすればよい。
 具体的には、例えば不活性ガスの存在下で、ジオール成分と、ジカルボン酸成分又はそのジエステルを混合し、減圧下、通常、120~350℃、好ましくは150~300℃で反応させることが好ましい。減圧度は段階的に変化させ、最終的には0.13kPa以下にして生成した水又は、アルコール類を系外に留去させ、反応時間は通常1~10時間程度である。
 重合触媒としては、それ自体既知のものを採用でき、例えば、アンチモン化合物、チタン化合物、ゲルマニウム化合物、スズ化合物又はアルミニウム化合物が好ましい。このような化合物としては、例えばアンチモン、チタン、ゲルマニウム、スズ、アルミニウムの酸化物、酢酸塩、カルボン酸塩、水素化物、アルコラート、ハロゲン化物、炭酸塩、硫酸塩等を挙げることができる。また、これらの化合物は二種以上組み合わせて使用できる。この中でも、熱可塑性樹脂の溶融安定性、色相の観点からスズ、チタン、ゲルマニウム化合物が好ましい。
 エステル交換触媒としては、それ自体既知のものを採用でき、例えば、マンガン、マグネシウム、チタン、亜鉛、アルミニウム、カルシウム、コバルト、ナトリウム、リチウム、又は鉛元素を含む化合物などを用いることができる。具体的にはこれらの元素を含む酸化物、酢酸塩、カルボン酸塩、水素化物、アルコラート、ハロゲン化物、炭酸塩、硫酸塩等を挙げることができる。この中でも、熱可塑性樹脂の溶融安定性、色相、ポリマー不溶異物の少なさの観点からマンガン、マグネシウム、亜鉛、チタン、コバルトの酸化物、酢酸塩、アルコラート等の化合物が好ましい。さらにマンガン、マグネシウム、チタン化合物が好ましい。これらの化合物は二種以上組み合わせて使用できる。
 なお、本発明のポリエステル樹脂は、前述の通り、前記式(e)で表される構成単位以外の他のジカルボン酸成分、及び/又は上記一般式(a)~(d)で表される化合物に由来する構成単位以外の他のジオール成分を共重合成分として含有させてもよい。
 <ポリエステルカーボネート樹脂>
 本発明の樹脂組成物に用いられるポリエステルカーボネート樹脂は、上記一般式(a)~(d)で表される化合物に由来する構成単位の1種以上、及び/又は上記一般式(e)で表される構成単位を含むものであってよい。本発明において、ポリエステルカーボネート樹脂は、上記一般式(a)~(d)で表される化合物に由来する構成単位のうち1種を単独で含んでもよいし、2種以上を含んでもよい。本発明において、ポリエステルカーボネート樹脂は、ジカルボン酸成分として、上記一般式(e)で表される構成単位を含むものであってよい。一般式(a)~(d)で表される化合物に由来する構成単位、および一般式(e)で表される構成単位については上述した通りである。
 本発明の一実施形態において、ジオール成分は、上記一般式(a)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(b)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(c)で表される化合物に由来するものであってよい。本発明の一実施形態において、ジオール成分は、上記一般式(d)で表される化合物に由来するものであってよい。本発明の樹脂組成物に用いられるポリエステルカーボネート樹脂は、その構成単位として、一般式(a)~(d)で表される化合物に由来する構成単位以外の他のジオール成分や、一般式(e)で表される構成単位以外のジカルボン酸成分を含み得る。
 <ポリエステルカーボネート樹脂の製造方法>
 ポリエステルカーボネート樹脂は、常法により製造することができる。
 本発明の樹脂組成物に用いられるポリエステルカーボネート樹脂は、ジカルボン酸及びジオール化合物をエステル化反応もしくはエステル交換反応に加えて、ジカルボン酸クロライドやホスゲンを反応させるホスゲン法、又はジオール、ジカルボン酸及びビアリールカーボネートを反応させるエステル交換法を組み合わせることにより、製造することができる。エステル化反応及びエステル交換反応、並びにホスゲン法及びエステル交換法については上記に説明した通りである。
 <添加剤>
 本発明の熱可塑性樹脂には、必要に応じて、熱安定剤、酸化防止剤、離型剤、可塑剤、充填剤、紫外線吸収剤、防錆剤、分散剤、消泡剤、レベリング剤などの添加剤を適宜添加して熱可塑性樹脂組成物として用いることができる。
 離型剤としては、その90重量%以上がアルコールと脂肪酸のエステルからなるものが好ましい。アルコールと脂肪酸のエステルとしては、具体的には一価アルコールと脂肪酸のエステル及び/又は多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。前記一価アルコールと脂肪酸のエステルとは、炭素原子数1~20の一価アルコールと炭素原子数10~30の飽和脂肪酸とのエステルが好ましい。また、多価アルコールと脂肪酸との部分エステルあるいは全エステルとは、炭素原子数1~25の多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステル又は全エステルが好ましい。具体的に一価アルコールと飽和脂肪酸とのエステルとしては、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート等があげられ、ステアリルステアレートが好ましい。
 具体的に多価アルコールと飽和脂肪酸との部分エステル又は全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステル又は部分エステル等が挙げられる。これらのエステルのなかでも、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ステアリン酸トリグリセリドとステアリルステアレートの混合物が好ましく用いられる。
 離型剤中の前記エステルの量は、離型剤を100重量%とした時、90重量%以上が好ましく、95重量%以上がより好ましい。
 熱可塑性樹脂組成物に配合させる離型剤としては、熱可塑性樹脂100重量部に対して0.005~2.0重量部の範囲が好ましく、0.01~0.6重量部の範囲がより好ましく、0.02~0.5重量部の範囲がさらに好ましい。
 熱安定剤としては、リン系熱安定剤、硫黄系熱安定剤及びヒンダードフェノール系熱安定剤が挙げられる。
 リン系熱安定剤において、好ましくはテトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイトが使用される。
 熱可塑性樹脂のリン系熱安定剤の含有量としては、熱可塑性樹脂100重量部に対して0.001~0.2重量部が好ましい。
 ヒンダードフェノール系熱安定剤において、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートが特に好ましく用いられる。
 熱可塑性樹脂中のヒンダードフェノール系熱安定剤の含有量としては、熱可塑性樹脂100重量部に対して0.001~0.3重量部が好ましい。
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤及びシアノアクリレート系からなる群より選ばれた少なくとも1種の紫外線吸収剤が好ましい。
 ベンゾトリアゾール系紫外線吸収剤において、より好ましくは、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]である。ベンゾフェノン系紫外線吸収剤としては、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンが挙げられる。トリアジン系紫外線吸収剤としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、2-(4,6-ビス(2.4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-[(オクチル)オキシ]-フェノール等が挙げられる。環状イミノエステル系紫外線吸収剤としては、特に2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)が好適である。
 紫外線吸収剤の配合量は、熱可塑性樹脂100重量部に対して好ましくは0.01~3.0重量部であり、かかる配合量の範囲であれば、用途に応じ、熱可塑性樹脂成形品に十分な耐候性を付与することが可能である。
 <樹脂組成物の製造方法>
 樹脂組成物の製造方法は特に制限されず、既知の方法により製造することができる。一実施形態において、樹脂組成物の製造方法は、熱可塑性樹脂と配合剤とを混合する工程を含む。溶媒及び添加剤の少なくとも1つを混合する工程をさらに含んでいてもよい。例えば、熱可塑性樹脂に対して、配合剤及び添加剤を順次又は同時に添加して混合することにより、樹脂組成物を製造することができる。混合する工程は、常法により実施することができ、例えば、押出機により混練する方法や、樹脂及び配合剤をそれぞれ溶媒(例えばメチレンクロライドやTHF等)に溶解して溶液とした後に溶液同士を混合する方法等がある。
 <樹脂組成物の物性>
 本発明の樹脂組成物は、低Tg化され高流動である。よって、本発明の樹脂組成物は、射出成形が可能である。樹脂組成物の物性については、実施例において詳細に説明する。
 2.成形品
 本発明の樹脂組成物は、光学部材に好適に用いることができる。本発明の一実施形態において、本発明の樹脂組成物を含む光学部材が提供される。本発明の一実施形態において、光学部材には、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、レンズ、プリズム、光学膜、基盤、光学フィルター、ハードコート膜等が含まれるが、これらに限定されない。本発明の樹脂組成物は、高流動でキャスト法による成形が可能であるため、特に薄型の光学部材の製造に好適である。本発明の好ましい実施形態において、本発明の樹脂組成物を用いて製造される光学部材は、光学レンズであってよい。本発明の別の好ましい実施形態において、本発明の樹脂組成物を用いて製造される光学部材は、光学フィルムであってよい。
 本発明の樹脂組成物を含む光学部材を射出成形で製造する場合、シリンダー温度260~350℃、金型温度90~170℃の条件にて成形することが好ましい。さらに好ましくは、シリンダー温度270~320℃、金型温度100~160℃の条件にて成形することが好ましい。シリンダー温度が350℃より高い場合では、樹脂組成物が分解着色し、260℃より低い場合では、溶融粘度が高く成形が困難になりやすい。また金型温度が170℃より高い場合では、樹脂組成物からなる成形片が金型から取り出すことが困難になりやすい。他方、金型温度が、90℃未満では、成形時の金型内で樹脂が早く固まり過ぎて成形片の形状が制御しにくくなったり、金型に付された賦型を十分に転写することが困難になったりしやすい。
 <光学レンズ>
 本発明の一実施形態において、樹脂組成物は、光学レンズに好適に用いることができる。本発明の樹脂組成物を用いて製造される光学レンズは、高屈折率であり、耐熱性に優れるため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。
 本発明の光学レンズは、必要に応じて非球面レンズの形を用いることが好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要が無く、軽量化及び成形コストの低減化が可能になる。したがって、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
 また、本発明の光学レンズは、成形流動性が高いため、薄肉小型で複雑な形状である光学レンズの材料として特に有用である。具体的なレンズサイズとして、中心部の厚みが0.05~3.0mmであることが好ましく、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mmである。また、直径が1.0mm~20.0mmであることが好ましく、より好ましくは1.0~10.0mm、さらに好ましくは、3.0~10.0mmである。また、その形状として片面が凸、片面が凹であるメニスカスレンズであることが好ましい。
 本発明の光学レンズは、金型成形、切削、研磨、レーザー加工、放電加工、エッチングなど任意の方法により成形される。この中でも、製造コストの面から金型成形がより好ましい。
 <光学フィルム>
 本発明の一実施形態において、樹脂組成物は、光学フィルムに好適に用いることができる。本発明のポリカーボネート樹脂を用いて製造される光学フィルムは、透明性及び耐熱性に優れるため、液晶基板用フィルム、光メモリーカード等に好適に使用される。
 光学フィルムへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス6以下であることが好ましく、より好ましくはクラス5以下である。
 以下に本発明の実施例を比較例と共に示し、発明の内容を詳細に示すが、本発明はこれら実施例に限定されるものではない。
 1)ガラス転移温度(Tg):示差熱走査熱量計(DSC)によりガラス転移温度(Tg)を測定した。特定条件は以下の通りである。
     装置:株式会社日立ハイテクサイエンスDSC7000X
     サンプル量:5mg
     雰囲気:窒素ガス雰囲気下
     昇温条件:10℃/分
 2)メルトボリュームフローレイト(MVR)(cm /10min):メルトインデクサT-111(東洋精機製作所製)を用いて260℃、荷重2.16kgの条件で、ISO1133の方法で測定した。
 3)屈折率(nd):実施例で製造したポリカーボネート樹脂からなる厚さ0.1mmフィルムについて、アッベ屈折計を用い、JIS-K-7142の方法で測定した。
 4)アッベ数(ν):実施例で製造したポリカーボネート樹脂からなる厚さ0.1mmフィルムについて、アッベ屈折計を用い、23℃下での波長486nm、589nm及び656nmの屈折率を測定し、さらに下記式を用いてアッベ数を算出した。
     ν=(nd-1)/(nF-nC)
     nd:波長589nmでの屈折率
     nC:波長656nmでの屈折率
     nF:波長486nmでの屈折率
 5)質量平均分子量(Mw)
 樹脂及び樹脂組成物の質量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法によって測定し、標準ポリスチレン換算で算出した。使用装置、カラム、及び測定条件は以下の通りである。
 ・GPC装置:東ソー(株)製、HLC-8420GPC
 ・カラム:東ソー(株)製、TSKgel SuperHM-M ×3本
東ソー(株)製、TSKgel guardcolumn SuperH-H ×1本
      東ソー(株)製、TSKgel SuperH-RC ×1本
 ・検出器:RI検出器
 ・標準ポリスチレン:東ソー(株)製、標準ポリスチレンキット PStQuick C
 ・試料溶液:0.2質量%テトラヒドロフラン溶液
 ・溶離液:テトラヒドロフラン
・溶離液流速:0.6mL/min
 ・カラム温度:40℃
 6)成形性(流動度):樹脂組成物を120℃で4時間真空乾燥した後、射出成形機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃にて直径50mm、厚さ1.0mmの円盤状プレートを射出成形し、成形性(流動度)評価を目視にて行った。
   成形流動痕(目視) A:流動痕跡無し
   成形流動痕(目視) B:流動痕跡ほとんど無し
   成形流動痕(目視) C:流動痕跡若干あり
   成形流動痕(目視) D:流動痕跡有り
 7)熱重量減少開始温度(℃):示差熱熱重量同時測定装置(TG/DTA)(日立ハイテクサイエンス製、TGDTA7300)により測定した。
 測定サンプルは2mgとし、白金パン(Ptオープン型試料容器 φ5.2 H2.5mm)に製秤して調製した。測定は、窒素雰囲気下(窒素流量:250ml/min)で行った。参照セルには基準物質としてα-アルミナ0.00519gを用いた。サンプル温度を30℃に調整し、10℃/minで550℃まで昇温して測定し、5質量%の重量減少温度を「熱重量減少開始温度」とした。
 (樹脂の製造例1)
 樹脂1:EP8000
 原料として、下記構造を有する9、9-ビス(4-(2-ヒドロキシエトキシ)-3-フェニルフェニル)フルオレン(BPPEF) 13.000kg(22.007モル)、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE) 8.000kg(21.365モル)、DPC 9.650kg(45.048モル)、及び炭酸水素ナトリウム 2.21×10-2g(2.63×10-4モル)を攪拌機及び留出装置付きの50リットル反応器に入れ、窒素置換を行った後、窒素雰囲気760Torrの下、1時間かけて205℃に加熱し攪拌した。
Figure JPOXMLDOC01-appb-C000027
 
 原料の完全溶解後、15分かけて減圧度を150Torrに調整し、205℃、150Torrの条件で20分保持し、エステル交換反応を行った。さらに37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分保持した。その後、10分かけて120Torrに調整し、240℃、120Torrで70分保持した。その後、10分かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに40分かけて1Torr以下とし、240、1Torrの条件下で10分間攪拌下重合反応を行った。反応終了後、反応器内に窒素を吹き込み加圧し、生成したポリカーボネート樹脂をペレタイズしながら抜き出し、樹脂1を得た。
 (樹脂の製造例2)
 樹脂2:EP10000
 製造例1において、原料を2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE) 14.978kg(40.000モル)、9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレン(BNEF) 24.239kg(45.000モル)、DPBHBNA 7.899kg(15.000モル)、DPC 22.236kg(103.800モル)、炭酸水素ナトリウム 5.09×10-2g(6.06×10-4モル)に変更する以外は製造例1と同様の操作を行い、ポリカーボネート樹脂(樹脂2)を得た。
Figure JPOXMLDOC01-appb-C000028
 
 (樹脂の製造例3)
 樹脂3:EP6000
 製造例1において、原料を9,9-ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン(BPEF) 19.260kg(43.921モル)、ジフェニルカーボネート(DPC) 9.780kg(45.655モル)、及び炭酸水素ナトリウム 2.21×10-2g(2.63×10-4モル)に変更する以外は製造例1と同様の操作を行い、ポリカーボネート樹脂(樹脂3)を得た。
Figure JPOXMLDOC01-appb-C000029
 
 (樹脂の製造例4)
 樹脂4:EP3500
 下記構造式(a)で表されるデカヒドロ-1,4:5,8-ジメタノナフタレン-2,6(7)-ジメタノール(D-NDM) 23.50kg(105.70モル)、DPC 22.98kg(107.27モル)、及び炭酸水素ナトリウム 130.00mg(1.5×10-3モル)を、撹拌機及び留出装置付きの50L反応器に入れ、窒素雰囲気760Torrの下、60分かけて205℃に加熱し、撹拌を行った。続いて、30分かけて200Torrまで減圧し、205℃、200Torrの条件下で30分間保持した。その後、20分かけて215℃、180Torrとなるように、そこから40分かけて230℃、150Torrとなるように、更にそこから60分かけて240℃、1Torr以下となるように、昇温と減圧を行い、最終的に240℃、1Torr以下の条件下で20分間保持した。反応液が適度な溶融粘度となったことを確認後、撹拌を止め、反応器内に窒素を吹き込んで加圧し、ポリカーボネート樹脂(樹脂4)を得た。
Figure JPOXMLDOC01-appb-C000030
 
 (配合剤の製造例1)
 オリゴマー配合剤:BNE-3PC
 原料として、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(BNE) 84.38g(0.2253モル)、DPC 65.12g(0.3042モル)、及び炭酸水素ナトリウム 2.21×10-4g(2.63×10-6モル)を攪拌機及び留出装置付きの500ミリリットル反応器に入れ、窒素置換を行った後、窒素雰囲気760Torrの下、1時間かけて205℃に加熱し攪拌した。原料の完全溶解後、15分かけて減圧度を150Torrに調整し、205℃、150Torrの条件で20分保持し、エステル交換反応を行った。さらに37.5℃/hrの速度で240℃まで昇温し、240℃、150Torrで10分保持した。その後、10分かけて120Torrに調整し、240℃、120Torrで70分保持した。その後、10分かけて100Torrに調整し、240℃、100Torrで10分間保持した。さらに40分かけて1Torr以下とし反応を終了した。反応器内に窒素を吹き込み加圧し、生成したポリカーボネートオリゴマーを反応器から取り出した。得られたポリカーボネートオリゴマーは、NMRの測定から繰り返し単位数が平均3であり、GPC測定から質量平均分子量が1400であった。
 (実施例1~7、比較例1~3)
 表に示す質量比で樹脂と、配合剤と、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート](ADEKA社製AO-60:酸化防止剤)1000ppmと、ステアリン酸モノグリセリド(理研ビタミン株式会社性S-100A:離型剤)1500ppmと、3,9-ビス(2,6-di-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン(ADEKA社製PEP-36:酸化防止剤)300ppmとを、タンブラーを用いて乾式混合し、二軸押出機((株)アイペック製、IPT型35mm同方向二軸押出機、L/D=38)を用いて、シリンダー温度250℃、ベント圧力25Torr、吐出量20kg/時にて溶融混錬し、ストランドとして押し出し、ペレット状のポリカーボネート樹脂組成物を得た。
 得られた樹脂組成物について、ガラス転移温度(Tg)、メルトボリュームフローレイト(MVR)、屈折率(nd)、及びアッベ数(ν)を測定乃至算出し、成形性(流動度)を目視にて観察し、これらの結果を表1に示した。
Figure JPOXMLDOC01-appb-T000031
 
 表1に示されるように、本発明の樹脂組成物は、光学用樹脂組成物の特性を損なうことなく高流動で成形性が良い、光学特性に優れた熱可塑性樹脂組成物である。本発明によれば、この樹脂か組成物から光学レンズ及び光学フィルムなどの光学部材を精密成形することができる。
 

Claims (12)

  1.  熱可塑性樹脂と、
     ナフタレン構造及び/又はフルオレン構造を有する配合剤と、
    を含む樹脂組成物であって、
     前記ナフタレン構造及び/又はフルオレン構造を有する配合剤が、下記一般式(1)~(3)のいずれかで表される構成単位を含む化合物から選択される1種以上を含む、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
              
     (式(1)中、
     R及びRは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
     Xは、炭素数1~5の飽和炭素基を表し、
     a及びbは、それぞれ独立して0~10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
     
     (式(2)中、
     Rc及びRdは、それぞれ独立して、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
     Rは、炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表し、
    水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、もしくは炭素数7~17のアラルキル基を表し、
     Xは、炭素数1~5の飽和炭素基を表し、
     c及びdは、それぞれ独立して0~10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
     
     (式(3)中、
     Re及びRfは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~20のアルキル基、又は、O、N及びSから選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~20のアルケニル基、炭素数1~20のアルコキシ基、もしくは炭素数7~20のアラルキル基を表し、
     Xは、炭素数1~5の飽和炭素基を表し、
     e及びfは、それぞれ独立して0~5の整数を表す。)
  2.  前記ナフタレン構造及び/又はフルオレン構造を有する配合剤が、一般式(1)~(3)のいずれかで表される構成単位を有するジオールモノマー、及び一般式(1)~(3)のいずれかで表される構成単位をジオール構造として含むポリカーボネートオリゴマーからなる群より選択される1種以上であり、式中、R、R、R、R、R、R、a、b、c、d、e、およびfはそれぞれ、請求項1に記載の通りである、請求項1に記載の樹脂組成物。
  3.  前記一般式(1)~(3)のいずれかで表される構成単位をジオール構造として含むポリカーボネートオリゴマーが、下記式のいずれかで表され、式中、R、R、R、R、R、R、a、b、c、d、e、およびfはそれぞれ、請求項1に記載の通りである、請求項2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
     
  4.  前記配合剤の5%熱質量減少開始温度(5%熱質量減少温度)が、260℃以上である、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記配合剤の質量平均分子量が、10000未満である、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記熱可塑性樹脂と前記配合剤との質量比が、熱可塑性樹脂:配合剤=99:1~70:30である、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記熱可塑性樹脂のポリスチレン換算分子量(Mw)が、10000~100000である、請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記熱可塑性樹脂が、ポリカーボネート樹脂、ポリエステル樹脂、及びポリエステルカーボネート樹脂からなる群より選択される、請求項1~7のいずれか一項に記載の樹脂組成物。
  9.  前記熱可塑性樹脂が、下記一般式(a)で表される化合物に由来する構成単位を含む、請求項1~8のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
     
     (式(a)中、
     Rc及びRdは、それぞれ独立して、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基、O、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基又は炭素数6~20のアリールオキシ基、ならびに-C≡C-Rから選択され、
     Rは、炭素数6~20のアリール基またはO、NおよびSから選択される1つ以上のヘテロ環原子を含む炭素数6~20のヘテロアリール基を表し、
     Xは、炭素数1~5の飽和炭素基を表し、
     c及びdは、それぞれ独立して0~10の整数を表す。)
  10.  請求項1~9のいずれか一項に記載の樹脂組成物を含む、光学部材。
  11.  請求項1~9のいずれか一項に記載の樹脂組成物を含む、光学レンズ。
  12.  請求項1~9のいずれか一項に記載の樹脂組成物を含む、光学フィルム。
     
PCT/JP2021/023186 2020-06-26 2021-06-18 樹脂組成物 WO2021261392A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227034938A KR20230029590A (ko) 2020-06-26 2021-06-18 수지 조성물
JP2022531934A JPWO2021261392A1 (ja) 2020-06-26 2021-06-18
US18/011,331 US20230235117A1 (en) 2020-06-26 2021-06-18 Resin composition
EP21830270.1A EP4174126A4 (en) 2020-06-26 2021-06-18 RESIN COMPOSITION
CN202180044489.0A CN115702214B (zh) 2020-06-26 2021-06-18 树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020110361 2020-06-26
JP2020-110361 2020-06-26

Publications (1)

Publication Number Publication Date
WO2021261392A1 true WO2021261392A1 (ja) 2021-12-30

Family

ID=79281277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023186 WO2021261392A1 (ja) 2020-06-26 2021-06-18 樹脂組成物

Country Status (7)

Country Link
US (1) US20230235117A1 (ja)
EP (1) EP4174126A4 (ja)
JP (1) JPWO2021261392A1 (ja)
KR (1) KR20230029590A (ja)
CN (1) CN115702214B (ja)
TW (1) TW202214548A (ja)
WO (1) WO2021261392A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117222708A (zh) * 2021-04-26 2023-12-12 三菱瓦斯化学株式会社 热塑性树脂组合物和在其中添加的配合剂

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078073A1 (ja) 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 ポリカーボネート樹脂
JP2018002893A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002895A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002894A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018059074A (ja) 2016-10-06 2018-04-12 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
JP2018087284A (ja) * 2016-11-29 2018-06-07 大阪ガスケミカル株式会社 光学物品用活性エネルギー線硬化性組成物及びそれを用いた光学物品
WO2019043060A1 (en) * 2017-08-30 2019-03-07 Reuter Chemische Apparatebau Kg BINAPHTYLE COMPOUNDS
WO2019044875A1 (ja) * 2017-08-30 2019-03-07 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法、及び、光学レンズ
WO2019146507A1 (ja) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物、その製造方法及び光学レンズ
WO2020137926A1 (ja) * 2018-12-27 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、成形体、光学レンズ、及び光学レンズユニット
WO2021014962A1 (ja) * 2019-07-19 2021-01-28 帝人株式会社 熱可塑性樹脂及びそれを含む光学部材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168108A1 (ja) * 2013-04-10 2014-10-16 大阪ガスケミカル株式会社 フルオレン化合物を含む樹脂組成物および成形体並びに波長分散調整剤および樹脂の波長分散調整方法
TWI774646B (zh) * 2015-11-04 2022-08-21 日商三菱瓦斯化學股份有限公司 熱塑性樹脂組成物及其成形體
US11261294B2 (en) * 2017-08-30 2022-03-01 Teijin Limited Thermoplastic resin and optical member
CN112823178A (zh) * 2018-10-16 2021-05-18 三菱瓦斯化学株式会社 聚酯碳酸酯树脂和光学透镜

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078073A1 (ja) 2015-11-04 2017-05-11 三菱瓦斯化学株式会社 ポリカーボネート樹脂
JP2018002893A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002895A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018002894A (ja) 2016-07-04 2018-01-11 帝人株式会社 熱可塑性樹脂
JP2018059074A (ja) 2016-10-06 2018-04-12 大阪ガスケミカル株式会社 フルオレン骨格を有するポリエステル樹脂
JP2018087284A (ja) * 2016-11-29 2018-06-07 大阪ガスケミカル株式会社 光学物品用活性エネルギー線硬化性組成物及びそれを用いた光学物品
WO2019043060A1 (en) * 2017-08-30 2019-03-07 Reuter Chemische Apparatebau Kg BINAPHTYLE COMPOUNDS
WO2019044875A1 (ja) * 2017-08-30 2019-03-07 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法、及び、光学レンズ
WO2019146507A1 (ja) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物、その製造方法及び光学レンズ
WO2020137926A1 (ja) * 2018-12-27 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、成形体、光学レンズ、及び光学レンズユニット
WO2021014962A1 (ja) * 2019-07-19 2021-01-28 帝人株式会社 熱可塑性樹脂及びそれを含む光学部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174126A4

Also Published As

Publication number Publication date
EP4174126A4 (en) 2023-11-15
US20230235117A1 (en) 2023-07-27
JPWO2021261392A1 (ja) 2021-12-30
KR20230029590A (ko) 2023-03-03
CN115702214B (zh) 2024-02-20
TW202214548A (zh) 2022-04-16
CN115702214A (zh) 2023-02-14
EP4174126A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
US11370882B2 (en) Resin produced by polycondensation, and resin composition
KR102362026B1 (ko) 열가소성 수지 및 광학 부재
JP6739255B2 (ja) 熱可塑性樹脂
JP6689147B2 (ja) 熱可塑性樹脂
JP6689146B2 (ja) 熱可塑性樹脂
JP6916026B2 (ja) 熱可塑性樹脂
JP6336261B2 (ja) 熱可塑性樹脂およびそれらからなる光学部材
JP7221706B2 (ja) 熱可塑性樹脂および光学部材
JPWO2019146507A1 (ja) ポリカーボネート樹脂組成物、その製造方法及び光学レンズ
WO2023074439A1 (ja) 熱可塑性樹脂および光学部材
JP5973587B2 (ja) フルオレン骨格を有する熱可塑性樹脂組成物及び光学部材
JP6097627B2 (ja) ポリカーボネート
WO2021261392A1 (ja) 樹脂組成物
JP2020122032A (ja) 熱可塑性樹脂および光学部材
JP2024079821A (ja) 熱可塑性樹脂及びその製造方法並びに該熱可塑性樹脂を含む光学レンズ
WO2022091780A1 (ja) 熱可塑性樹脂及びそれを含む光学部材
WO2022004239A1 (ja) 熱可塑性樹脂及びそれを含む光学部材
JP2022032702A (ja) 樹脂組成物並びにそれを含む光学レンズ及び光学フィルム
JP2022011687A (ja) 熱可塑性樹脂および光学部材
JP7566048B2 (ja) 熱可塑性樹脂およびそれからなる光学部材
JP6130255B2 (ja) ポリエステルカーボネート共重合体
WO2022230471A1 (ja) 熱可塑性樹脂組成物及びそれに添加される配合剤
JP2023067738A (ja) 熱可塑性樹脂および光学部材
JP2024055310A (ja) 熱可塑性樹脂組成物及びそれを含む光学部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531934

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021830270

Country of ref document: EP

Effective date: 20230126

NENP Non-entry into the national phase

Ref country code: DE