[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021241536A1 - 構造物の検査方法及び検査システム - Google Patents

構造物の検査方法及び検査システム Download PDF

Info

Publication number
WO2021241536A1
WO2021241536A1 PCT/JP2021/019703 JP2021019703W WO2021241536A1 WO 2021241536 A1 WO2021241536 A1 WO 2021241536A1 JP 2021019703 W JP2021019703 W JP 2021019703W WO 2021241536 A1 WO2021241536 A1 WO 2021241536A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
image
internal state
detected
inspecting
Prior art date
Application number
PCT/JP2021/019703
Other languages
English (en)
French (fr)
Inventor
直史 笠松
那緒子 吉田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022526555A priority Critical patent/JPWO2021241536A1/ja
Publication of WO2021241536A1 publication Critical patent/WO2021241536A1/ja
Priority to US18/050,911 priority patent/US20230111766A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8845Multiple wavelengths of illumination or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Definitions

  • the present invention relates to a structure inspection method and inspection system.
  • Infrared photography is known as a non-destructive inspection method for structures (for example, Patent Documents 1, 2, etc.).
  • an infrared camera is used to capture a thermal image of the surface of a structure, and the presence of an internal abnormality is estimated based on the obtained thermal image.
  • the structure Under the influence of outside air and sunlight, the structure repeatedly absorbs heat from the outside to the inside and dissipates heat from the inside to the outside.
  • the abnormal part with the cavity functions as a heat insulating layer. As a result, a temperature difference occurs between the abnormal part and the healthy part without abnormality.
  • the abnormal part and the healthy part are displayed in different colors on the thermal image. Therefore, by observing the thermal image, it is possible to determine the presence or absence of an abnormality that has occurred inside the structure. In addition, since the abnormal part usually occurs locally, the position where the abnormal part occurs can be determined by observing the thermal image.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a structure inspection method and system capable of easily detecting an abnormal portion and inspecting the internal state of the abnormal portion in detail. do.
  • the region where the floating is estimated is detected as the first region based on the thermal image, and the structure of any one of (1) to (7) is detected. How to inspect things.
  • the structure is a structure made of reinforced concrete
  • the region where the floating is estimated is detected as the first region based on the thermal image
  • the leaked region is the second region based on the visible light image.
  • the step of measuring the internal state of the inspection target area, the floating is detected in the inspection target area by the measurement, and the detected floating depth is within a predetermined range.
  • a method of inspecting a structure including a step of inspecting the integrity of the reinforcing bar in the area to be inspected.
  • An infrared camera that captures a thermal image of the structure and an image pickup device that captures an image that visualizes the internal state of the structure are provided, and there is an abnormality inside the structure from the thermal image captured by the infrared camera.
  • a structure inspection system that, when an estimated area is detected, captures an image that visualizes the internal state of the area with an image pickup device and measures the internal state of the area.
  • an abnormal part can be easily detected and the internal state of the abnormal part can be inspected in detail.
  • Schematic configuration diagram of the inspection system used for inspection of structures Block diagram showing an example of the hardware configuration of the inspection device body Block diagram of the functions of the inspection device body
  • a flowchart showing the inspection procedure of the first embodiment A flowchart showing the inspection procedure of the second embodiment.
  • a flowchart showing the inspection procedure of the third embodiment A flowchart showing the inspection procedure of the fourth embodiment.
  • Floating concrete means that the area near the surface of concrete is floating. Floating concrete means that the concrete near the surface is losing its integrity with the concrete inside due to continuous cracking inside the concrete.
  • FIG. 1 is a schematic configuration diagram of an inspection system used for inspecting a structure.
  • the inspection system 1 of the present embodiment includes an infrared camera 10, a visible light camera 20, a millimeter wave camera 30, and an inspection device main body 40.
  • the infrared camera 10 captures a thermal image of the surface of the structure O to be inspected.
  • the thermal image represents the temperature distribution (heat distribution) on the surface of the subject.
  • the infrared camera 10 is communicably connected to the inspection device main body 40.
  • the form of communication is not particularly limited.
  • the image data of the thermal image captured by the infrared camera 10 is output to the inspection device main body 40.
  • the visible light camera 20 captures a visible light image of the surface of the structure O to be inspected.
  • the visible light image is an image obtained by imaging a subject with sensitivity in the wavelength band of visible light (generally 380 nm to 780 nm).
  • the visible light camera 10 is a general digital camera (portable terminal, etc.) equipped with a CMOS image sensor (complementary metal-oxide semiconductor device image sensor), a CCD image sensor (charge-coupled device image sensor), or the like. Can be used).
  • CMOS image sensor complementary metal-oxide semiconductor device image sensor
  • CCD image sensor charge-coupled device image sensor
  • a digital camera capable of color photography is used. Therefore, a color image is taken as a visible light image.
  • the color image is an image (so-called RGB image) having each intensity value (brightness value) of R (red; red), G (green; green), and B (blue; blue) in pixel units.
  • the visible light camera 20 is communicably connected to the inspection device main body 40. The form of communication is not particularly limited.
  • the image data of the visible light image captured by the visible light camera 20 is output to the inspection device main body 40.
  • the infrared camera 10 and the visible light camera 20 have almost the same angle of view, and image the same range from almost the same position. For example, they are installed side by side on the same tripod via a bracket, and the subject is imaged from almost the same position.
  • the millimeter wave camera 30 captures a millimeter wave image that visualizes the internal state of the structure O to be inspected.
  • the millimeter wave camera 30 is one of the means for measuring the internal state of the structure.
  • the millimeter wave camera 30 is an example of an image pickup device that captures an image that visualizes the internal state of a structure.
  • the millimeter-wave camera 30 of the present embodiment is composed of a so-called active millimeter-wave camera. An active millimeter-wave camera irradiates a subject with millimeter waves, receives the reflected waves, and generates a millimeter-wave image that visualizes the internal state of the subject.
  • the millimeter wave is an electromagnetic wave having a wavelength of 1 to 10 mm and a frequency of 30 to 300 GHz.
  • the millimeter-wave camera 30, for example, electronically or mechanically scans a millimeter-wave beam to form a two-dimensional image of the internal state of a subject within an angle of view.
  • imaging can be speeded up.
  • a plurality of receiving antennas can be arranged in one direction and scanned in a direction orthogonal to the arrangement direction to form a two-dimensional image.
  • MIMO Multiple Input Multiple Output
  • MIMO is a technology that creates virtual receiving antennas that exceed the number of receiving antennas mounted by transmitting signals from multiple antennas. By adopting MIMO radar technology, the resolution can be further improved.
  • the millimeter wave camera 30 is communicably connected to the inspection device main body 40.
  • the form of communication is not particularly limited.
  • the image data of the millimeter wave image captured by the millimeter wave camera 30 is output to the inspection device main body 40.
  • the inspection device main body 40 receives and processes image data output from the infrared camera 10, the visible light camera 20, and the millimeter wave camera 30.
  • the inspection device main body 40 is composed of a computer including an operation unit, a display unit, and the like.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of the inspection device main body.
  • the inspection device main body 40 includes a CPU (Central Processing Unit) 41, a RAM (Random Access Memory) 42, a ROM (Read Only Memory) 43, an HDD (Hard Disk Drive) 44, and a communication interface (Interface). It is configured to include an IF) 45, an operation unit 46, a display unit 47, and the like.
  • the ROM 43 and / or the HDD 44 stores a program executed by the CPU 41 and various data.
  • the operation unit 46 is composed of, for example, a keyboard, a mouse, a touch panel, and the like.
  • the display unit 47 is composed of, for example, a liquid crystal display (Liquid Crystal Display, LCD), an organic EL display (Organic Light Emitting Display Display, OLED display), or the like.
  • the infrared camera 10, the visible light camera 20, and the millimeter wave camera 30 are communicably connected to the inspection device main body 40 via the communication interface 45.
  • FIG. 3 is a block diagram of the functions of the inspection device main body.
  • the inspection device main body 40 mainly has the functions of the image acquisition unit 40A, the image processing unit 40B, and the display control unit 40C. These functions are realized by the CPU 41 executing a predetermined program.
  • the image acquisition unit 40A acquires image data obtained by imaging from each camera in response to an instruction from the user input via the operation unit 46. Specifically, the image data of the thermal image is acquired from the infrared camera 10, the image data of the visible light image is acquired from the visible light camera 20, and the image data of the millimeter wave image is acquired from the millimeter wave camera 30.
  • the image processing unit 40B performs predetermined image processing on the image data in response to an instruction from the user input via the operation unit 46.
  • the image processing here includes a process of generating image data for display and a process of detecting a region where floating is estimated from the image with respect to a thermal image.
  • a known technology can be adopted.
  • a technique of detecting the floating of concrete from a thermal image can be adopted by using an image recognition model generated by machine learning, deep learning, or the like.
  • the type of machine learning algorithm is not particularly limited.
  • an algorithm using a neural network such as RNN (Recurrent Neural Network), CNN (Convolutional Neural Network) and MLP (Multilayer Perceptron) can be used.
  • RNN Recurrent Neural Network
  • CNN Convolutional Neural Network
  • MLP Multilayer Perceptron
  • the image processing unit 40B When the process of automatically detecting the floating from the thermal image is performed, the image processing unit 40B generates an image including the detection result as an image for display. For example, it generates an image in which the detected float is surrounded by a frame. In addition, the image processing unit 40B generates, as necessary, an image in which a visible light image and a thermal image are arranged in parallel, an image in which a thermal image is superimposed on the visible light image, and the like as an image for display. When generating an image in which a thermal image is superimposed on a visible light image, for example, an image in which a semitransparent thermal image is superimposed on a visible light image is generated. In addition, an image in which only the region where the floating is estimated is superimposed is generated. In this case, a region where floating is estimated is cut out from the thermal image, and an image superimposed on the corresponding position of the visible light image is generated.
  • the image processing unit 40B performs processing for correcting the parallax generated between the infrared camera 10 and the visible light camera 20 as necessary. Parallax correction is required, for example, when an image is taken close to the subject.
  • the display control unit 40C displays the image captured by each camera on the display unit 47 in response to an instruction from the user input via the operation unit 46.
  • FIG. 4 is a flowchart showing the inspection procedure of the present embodiment.
  • step S1 screening for floats using thermal images is performed (step S1).
  • an infrared camera 10 is used to capture a thermal image of the surface of the structure O to be inspected.
  • the visible light image is also captured by the visible light camera 20 at the same time as the thermal image is captured.
  • the term “simultaneous” here is a concept that includes a range that is considered to be substantially simultaneous.
  • the captured thermal image and visible light image are output to the inspection device main body 40.
  • the inspection device main body 40 takes in the thermal image and the visible light image output from the infrared camera 10 and the visible light camera 20 and displays them on the display unit 47 in response to an instruction from the user.
  • the thermal image and the visible light image are displayed side by side on the same screen, for example.
  • the position can be easily identified.
  • the process of automatically detecting the floating of the thermal image is performed, the result is also displayed.
  • the detected floating area (the area where the floating is estimated) is displayed surrounded by a frame.
  • the corresponding area of the visible light image is also displayed surrounded by a frame. This makes it possible to easily identify the floating region on the visible light image.
  • the user confirms the image displayed on the display unit 47 of the inspection device main body 40 and screens the float. That is, the region where the float is estimated is detected.
  • the region where the float is estimated is an example of the first region.
  • the floating area has a temperature difference from the surrounding healthy area. Therefore, by observing the thermal image, the region presumed to be floating can be discriminated.
  • the detection target area is an area imaged by the infrared camera 10.
  • a process to measure the internal state is performed.
  • a millimeter-wave image is captured and the internal state of the target region is confirmed in detail (step S3).
  • This process is carried out in the following procedure.
  • the area where the float is detected is imaged by the millimeter wave camera 30.
  • a region including a portion where floating is detected is set as a detailed confirmation target region, and the set region is imaged by the millimeter wave camera 30.
  • the detailed confirmation target area is set to a part of the thermal image. For example, an area in which a floating area is detected and surrounded by a rectangular frame is set as a detailed confirmation target area.
  • the area to be confirmed in detail exceeds the imaging range of the millimeter-wave camera 30, imaging is performed in a plurality of times. That is, the area to be confirmed in detail is divided into a plurality of areas, and an image is taken for each area.
  • the captured millimeter-wave image is output to the inspection device main body 40.
  • the inspection device main body 40 takes in the millimeter wave image output from the millimeter wave camera 30 and displays it on the display unit 47 in response to an instruction from the user.
  • the displayed millimeter-wave image is an image that visualizes the internal state of concrete, and by checking this image, the presence or absence of floating and the state can be confirmed in detail.
  • step S4 it is determined whether or not the inspection of all areas has been completed. That is, it is determined whether or not the inspection of all the areas to be inspected is completed. When the inspection of all areas is completed, the inspection process is terminated. On the other hand, if the inspection of all areas is not completed, the process returns to step S1 and the above series of processes are repeatedly executed.
  • the floating is detected based on the thermal image, and the internal state is confirmed in detail only when the floating is detected.
  • This makes it possible to efficiently carry out highly accurate inspections. That is, while the inspection of the float by the thermal image can easily inspect a wide range, there is a problem in resolution, but by inspecting the region where the float is detected in the thermal image by the millimeter wave image, the internal state can be examined in detail. You can know. Further, since the imaging of the millimeter wave image is limited to a part, the imaging can be completed in a short time. As a result, both accuracy and time can be achieved, and highly accurate inspection can be efficiently performed.
  • FIG. 5 is a flowchart showing the inspection procedure of the present embodiment.
  • step S11 screening for floats using thermal images is performed (step S11). As a result of the screening, it is determined whether or not there is a float in the inspection target area (step S12).
  • step S13 an inspection by hitting is carried out. That is, the work of hitting the area where the float is detected with a hammer for inspection and confirming the presence or absence of peeling is performed.
  • step S14 the presence or absence of abnormality is determined.
  • step S15 the detailed confirmation work of the internal state by the millimeter wave image is performed (step S15). That is, the area in which the float is detected is imaged by the millimeter wave camera 30, and the work of confirming the internal state in detail is performed by the millimeter wave image obtained by the image pickup.
  • step S16 After confirming the details, it is determined whether or not the inspection of all areas has been completed (step S16). When the inspection of all areas is completed, the inspection process is terminated. On the other hand, if the inspection of all areas is not completed, the process returns to step S11, and the above series of processes are repeatedly executed.
  • the float is detected based on the thermal image, and when the float is detected, the inspection by hitting is performed. If no abnormality is detected by the impact inspection, a millimeter-wave image is taken to check the internal state in detail. As a result, highly accurate inspection can be performed more efficiently. That is, if peeling occurs in the inspection by hitting, it is an obvious abnormality, and the subsequent detailed inspection can be omitted. On the other hand, if the inspection by impact does not cause peeling, it is necessary to confirm the internal state in detail. In this case, a millimeter wave image is captured, so that the internal state can be confirmed in detail.
  • the presence or absence of abnormality is inspected by the presence or absence of peeling of the hitting portion, but the presence or absence of abnormality may be inspected by hitting sound.
  • tapping sound inspection So-called tapping sound inspection. In this case, if no abnormality is detected in the inspection by tapping sound, a millimeter wave image is taken.
  • the present embodiment it is determined whether or not a detailed inspection using a millimeter-wave image is necessary based on both the thermal image and the visible light image. Specifically, floating is detected in both thermal images and visible light images, and when floating is detected in both images, a detailed inspection using millimeter-wave images is performed.
  • Floating from the visible light image is detected, for example, by detecting the leaked part.
  • water leakage including rust juice
  • the leak point is an example of the second region.
  • the processing is performed by the image processing unit 40B.
  • the image processing unit 40B When the leaked portion is automatically detected from the visible light image, the image processing unit 40B generates an image including the detection result as an image for display. For example, in a visible light image, an image in which the detected leaked part is surrounded by a frame is generated as an image for display.
  • the temperature of the area where water leakage has occurred is lower than that of the surrounding healthy area. Therefore, the leaked part can be detected from the thermal image. That is, by detecting a region whose temperature is relatively lower than that of the surrounding region, a region where water leakage is estimated can be detected. In the present embodiment, as one of the regions where floating is estimated, a region whose temperature is relatively lower than that of the surroundings is detected from the thermal image.
  • the thermal image and the visible light image are individually displayed on the display unit 47 according to the instruction from the user. In addition, it is displayed in parallel on the same screen according to an instruction from the user. The user can determine the leaked part by checking the display of the display unit 47.
  • FIG. 6 is a flowchart showing the inspection procedure of the present embodiment.
  • step S21 screening for floats using thermal images is performed (step S21). As a result of the screening, it is determined whether or not there is a float in the inspection target area (step S22).
  • step S23 screening of water leaks by visible light images is performed (step S23).
  • the screening for water leakage using visible light images is performed by the following procedure.
  • the visible light camera 20 is used to capture a visible light image of the surface of the structure O to be inspected.
  • the visible light image is captured at the same time as the thermal image is captured.
  • the captured visible light image is output to the inspection device main body 40.
  • the inspection device main body 40 takes in the visible light image output from the visible light camera 20 and displays it on the display unit 47 in response to an instruction from the user.
  • the user confirms the image displayed on the display unit 47 of the inspection device main body 40 and screens for water leakage.
  • the presence or absence of water leakage in the inspection target area is determined (step S24).
  • the visible light image and the thermal image are displayed in parallel on the same screen according to the instruction from the user. In addition, it is displayed individually according to an instruction from the user.
  • step S25 When floating is detected from the thermal image and water leakage is detected from the visible light image, it is determined whether or not the locations are the same (step S25). That is, it is determined whether or not the floating region detected in the thermal image and the water leakage region detected in the visible light image are the same region. It should be noted that the same region here includes those that are recognized to be almost the same.
  • step S26 the detailed confirmation work of the internal state by the millimeter wave image is performed (step S26). That is, a work is performed in which a region in which floating and water leakage are detected is imaged by the millimeter wave camera 30, and the internal state is confirmed in detail by the millimeter wave image obtained by the image pickup.
  • step S27 After confirming the details, it is determined whether or not the inspection of all areas has been completed (step S27). When the inspection of all areas is completed, the inspection process is terminated. On the other hand, if the inspection of all areas is not completed, the process returns to step S21, and the above series of processes are repeatedly executed.
  • the necessity of detailed inspection by the millimeter wave image is determined based on both the thermal image and the visible light image. This makes it possible to efficiently carry out highly accurate inspections.
  • the leaked portion is detected from the visible light image to detect the region where the floating is estimated, but the type of abnormality detected from the visible light image is limited to this. is not it. Any abnormality (damage) of the type that is presumed to be floating may be used. For example, it is possible to detect a region where floating is estimated by detecting a predetermined pattern of cracks, free lime, discoloration of concrete, and the like. Free lime is a phenomenon in which components such as calcium oxide in concrete leak to the outside together with water such as rainwater.
  • the abnormal portion has a luminance distribution and an RGB value distribution different from those of other regions, the abnormal portion can be automatically detected from the visible light image by searching for a change in the luminance value and / or the RGB value.
  • an abnormal part when automatically detected from a visible light image, it is possible to add a process for determining the type of the detected abnormality. That is, it is also possible to add a process for determining what kind of abnormality is, such as cracks, water leakage, and free lime. This process can be performed using, for example, an image recognition model generated by machine learning, deep learning, or the like.
  • FIG. 7 is a flowchart showing the inspection procedure of the present embodiment.
  • the detailed confirmation work of the internal state by the millimeter wave image is performed (step S31). That is, the work of imaging the inspection target area with the millimeter-wave camera 30 and confirming the internal state in detail with the millimeter-wave image obtained by the imaging is performed.
  • the inspection target area is an area where floating is estimated. For example, it is within a certain range centered on the center of the floating area or the center of gravity.
  • step S32 it is determined whether or not the float is detected.
  • step S33 the depth of the generated float is estimated from the millimeter wave image.
  • the specified range is set based on the concrete cover thickness of the structure to be inspected.
  • the specified range is set to 4 to 5 cm.
  • step S35 the work of confirming the soundness of the reinforcing bar in detail is performed (step S35).
  • a non-destructive inspection method is adopted for the inspection of the soundness of the reinforcing bar. For example, it is carried out by an electromagnetic induction method, an electromagnetic wave radar method, or the like.
  • the electromagnetic induction method radiates a magnetic field line (primary magnetic field) toward the concrete from the magnetic field generation part of the exploration equipment, and detects the secondary magnetic field caused by the induced current generated in the conductive material (reinforcing bar) in the concrete. It is a method to detect the reinforcing bar and measure its position by detecting it with a unit and comparing the increase and decrease of the primary magnetic field and the secondary magnetic field.
  • the receiving section receives the electromagnetic waves reflected at the interface with substances (reinforcing bars) with different electrical properties, and the reinforcing bars are used. This is a method of detection.
  • the soundness of the reinforcing bars in the vicinity thereof is inspected as necessary. This makes it possible to inspect the internal state of the abnormal part in more detail.
  • the electromagnetic induction method, the electromagnetic wave radar method, etc. are adopted as a method for non-destructively inspecting the soundness of the reinforcing bar, but the method for inspecting the soundness of the reinforcing bar in a non-destructive manner is It is not limited to this.
  • a radiation transmission method, an ultrasonic method, or the like can be adopted.
  • the internal state of the structure is measured by visualizing the internal state of the structure using a millimeter-wave camera, but the method of measuring the internal state of the structure is limited to this. It is not something that will be done. For example, using electromagnetic waves such as microwaves and terahertz waves, or devices that visualize the internal state using ultrasonic waves (microwave imaging device, terahertz imaging, ultrasonic imaging device, etc.), the internal state of the structure can be determined. It can be measured. It is also possible to measure the internal state of the structure by adopting a non-destructive inspection method such as a non-contact acoustic exploration method. In addition, a known non-destructive exploration method can be adopted.
  • a non-destructive inspection method such as a non-contact acoustic exploration method.
  • the present invention works particularly effectively when inspecting reinforced concrete structures such as bridges, tunnels, dams, and buildings, but the application of the present invention is not limited thereto. In addition, for example, the same can be applied to a structure whose surface is made of tile, brick, or the like.
  • the abnormality (damage) to be inspected is not limited to this.
  • the present invention is particularly effective for inspecting internal abnormalities that are difficult to see from the surface.
  • Imaging with an infrared camera, a visible light camera, and a millimeter wave camera can also be performed by mounting the infrared camera, the visible light camera, and the millimeter wave camera on an unmanned aircraft (so-called drone), an unmanned traveling vehicle, or the like.
  • an infrared camera, a visible light camera, and a millimeter-wave camera are mounted on an unmanned aerial vehicle or the like to image an inspection target
  • the image can be automatically captured.
  • it may be configured to automatically fly a predetermined route and capture an image of an inspection target.
  • the inspection device main body is realized by a so-called stand-alone computer, but it can also be realized by a client-server type system.
  • the server may have a function of automatically detecting floats and the like from thermal images and visible light images.
  • the hardware that realizes the main body of the inspection device can be configured with various processors.
  • the circuit configuration can be changed after manufacturing CPU and / or GPU (Graphic Processing Unit), FPGA (Field Programmable Gate Array), which are general-purpose processors that execute programs and function as various processing units.
  • a dedicated electric circuit which is a processor having a circuit configuration specially designed for executing a specific process such as a programmable logic device (Programmable Logic Device, PLD), an ASIC (Application Specific Integrated Circuit), etc. Is done.
  • One processing unit constituting the inspection support device may be composed of one of the above-mentioned various processors, or may be composed of two or more processors of the same type or different types.
  • one processing unit may be configured by a plurality of FPGAs or a combination of a CPU and an FPGA.
  • a plurality of processing units may be configured by one processor.
  • one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client or a server.
  • the processor functions as a plurality of processing units.
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
  • the hardware-like structure of these various processors is, more specifically, an electric circuit (cyclery) in which circuit elements such as semiconductor elements are combined.
  • Inspection system 10 Infrared camera 20 Visible light camera 30 Millimeter wave camera 40 Inspection device main unit 40A Image acquisition unit 40B Image processing unit 40C Display control unit 41 CPU 42 RAM 43 ROM 44 HDD 45 Communication interface 46 Operation unit 47 Display unit O Structure S1 to S4 Inspection procedure S11 to S16 Inspection procedure S21 to S27 Inspection procedure S31 to S35 Inspection procedure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Acoustics & Sound (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

異常箇所を簡便に検出でき、かつ、異常箇所の内部状態を詳細に検査できる構造物の検査方法及び検査システムを提供する。赤外線カメラによって構造物の表面の熱画像を撮像するステップと、熱画像に基づいて、内部に異常を有すると推定される第1領域を検出するステップと、第1領域が検出された場合に、第1領域の内部状態を計測するステップと、を含む。第1領域の内部状態を計測するステップでは、電磁波又は超音波を用いて第1領域の内部状態を可視化した画像を撮像して計測する。

Description

構造物の検査方法及び検査システム
 本発明は、構造物の検査方法及び検査システムに関する。
 構造物の非破壊検査法として、赤外線写真法(サーモグラフィ)が知られている(たとえば、特許文献1、2等)。赤外線写真法は、赤外線カメラを用いて構造物の表面の熱画像を撮像し、得られた熱画像に基づいて、内部の異常の存在を推定するものである。構造物は、外気及び太陽光の影響を受けて、外部から内部への吸熱と、内部から外部への放熱を繰り返す。吸熱と放熱の際に、空洞部を伴う異常箇所は、断熱層として機能する。この結果、異常箇所と異常のない健全な箇所との間で温度差が生じる。したがって、赤外線カメラで撮像すると、熱画像上で異常箇所と健全な箇所とが異なる色で表示される。よって、熱画像を観察することで、構造物の内部に生じた異常の有無を判定できる。また、通常、異常箇所は局所的に発生することから、熱画像を観察することで、異常箇所の発生位置も判別できる。
特開2005-37366号公報 特開2016-6398号公報
 しかしながら、赤外写真法は、異常箇所を簡便に検出できる一方、内部状態の詳細な検査はできないという欠点がある。
 本発明は、このような事情に鑑みてなされたもので、異常箇所を簡便に検出でき、かつ、異常箇所の内部状態を詳細に検査できる構造物の検査方法及びシステムを提供することを目的とする。
 (1)赤外線カメラによって構造物の熱画像を撮像するステップと、熱画像に基づいて、内部に異常を有すると推定される第1領域を検出するステップと、第1領域が検出された場合に、第1領域の内部状態を計測するステップと、を含む構造物の検査方法。
 (2)第1領域が検出された場合に、第1領域の内部状態を可視化した画像を撮像して、第1領域の内部状態を計測する、(1)の構造物の検査方法。
 (3)第1領域が検出された場合に、電磁波又は超音波を用いて第1領域の内部状態を可視化した画像を撮像し、第1領域の内部状態を計測する、(2)の構造物の検査方法。
 (4)第1領域が検出された場合に、ミリ波、マイクロ波又はテラヘルツ波を用いて第1領域の内部状態を可視化した画像を撮像し、第1領域の内部状態を計測する、(3)の構造物の検査方法。
 (5)第1領域が検出された場合に、第1領域の内部状態を非接触音響探査法で計測する、(1)の構造物の検査方法。
 (6)第1領域が検出された場合に、第1領域に打撃を加えて、第1領域の内部状態を計測するステップを更に含み、第1領域に打撃を加えて、異常なしと判定された場合に、第1領域の内部状態を計測する、(1)から(5)のいずれか一の構造物の検査方法。
 (7)第1領域に打撃を加えて、第1領域が剥落しない場合に、異常なしと判定する、(6)の構造物の検査方法。
 (8)構造物が、鉄筋コンクリート製の構造物である場合において、熱画像に基づいて、浮きが推定される領域を第1領域として検出する、(1)から(7)のいずれか一の構造物の検査方法。
 (9)可視光カメラによって構造物の表面の可視光画像を撮像するステップと、可視光画像に基づいて、内部に異常を有すると推定される第2領域を検出するステップと、を更に含み、第1領域及び第2領域が検出され、かつ、第1領域及び第2領域が同じ領域である場合に、第1領域の内部状態を計測する、(1)から(5)のいずれか一の構造物の検査方法。
 (10)第1領域が検出された場合に、第1領域の内部状態を可視化した画像を撮像して、第1領域の内部状態を計測する、(9)の構造物の検査方法。
 (11)第1領域が検出された場合に、電磁波又は超音波を用いて第1領域の内部状態を可視化した画像を撮像し、第1領域の内部状態を計測する、(10)の構造物の検査方法。
 (12)第1領域が検出された場合に、ミリ波、マイクロ波又はテラヘルツ波を用いて第1領域の内部状態を可視化した画像を撮像し、第1領域の内部状態を計測する、(11)の構造物の検査方法。
 (13)第1領域が検出された場合に、第1領域の内部状態を非接触音響探査法で計測する、(9)の構造物の検査方法。
 (14)構造物が、鉄筋コンクリート製の構造物である場合において、熱画像に基づいて、浮きが推定される領域を第1領域として検出し、可視光画像に基づいて、漏水の領域を第2領域として検出する、(9)から(13)のいずれか一の構造物の検査方法。
 (15)第1領域の内部状態を計測した結果、第1領域に浮きが検出された場合において、浮きの深さが、あらかじめ定められた範囲内の場合に、第1領域における鉄筋の健全性を検査するステップを更に含む、(14)の構造物の検査方法。
 (16)非破壊で鉄筋の健全性を検査する、(15)の構造物の検査方法。
 (17)電磁誘導法により鉄筋の健全性を検査する、(16)の構造物の検査方法。
 (18)鉄筋コンクリート製の構造物に対し、検査対象領域の内部状態を計測するステップと、計測により検査対象領域に浮きが検出され、かつ、検出された浮きの深さが、あらかじめ定められた範囲内の場合に、検査対象領域における鉄筋の健全性を検査するステップと、を含む構造物の検査方法。
 (19)非破壊で鉄筋の健全性を検査する、(18)の構造物の検査方法。
 (20)電磁誘導法により鉄筋の健全性を検査する、(19)の構造物の検査方法。
 (21)構造物の熱画像を撮像する赤外線カメラと、構造物の内部状態を可視化した画像を撮像する撮像装置と、を備え、赤外線カメラで撮像した熱画像から構造物の内部に異常を有すると推定される領域が検出された場合に、撮像装置で領域の内部状態を可視化した画像を撮像し、領域の内部状態を計測する、構造物の検査システム。
 本発明によれば、異常箇所を簡便に検出でき、かつ、異常箇所の内部状態を詳細に検査できる。
構造物の検査に使用する検査システムの概略構成図 検査装置本体のハードウェア構成の一例を示すブロック図 検査装置本体が有する機能のブロック図 第1の実施の形態の検査の手順を示すフローチャート 第2の実施の形態の検査の手順を示すフローチャート 第3の実施の形態の検査の手順を示すフローチャート 第4の実施の形態の検査の手順を示すフローチャート
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。
 [第1の実施の形態]
 ここでは、橋梁等の鉄筋コンクリート製の構造物において、コンクリートの浮きの有無を検査する場合を例に説明する。
 コンクリートの浮きとは、コンクリートの表面付近が浮いた状態のことをいう。コンクリートの浮きは、コンクリートの内部でひび割れが連続するなどして、表面付近のコンクリートが、内部のコンクリートと一体性を失いつつある状態を意味する。
 [構造物の検査に使用するシステム]
 図1は、構造物の検査に使用する検査システムの概略構成図である。
 同図に示すように、本実施の形態の検査システム1は、赤外線カメラ10と、可視光カメラ20と、ミリ波カメラ30と、検査装置本体40と、を備えて構成される。
 赤外線カメラ10は、検査対象とする構造物Oの表面の熱画像を撮像する。熱画像は、被写体の表面の温度分布(熱分布)を表す。赤外線カメラ10は、検査装置本体40と通信可能に接続される。通信の形態は、特に限定されない。赤外線カメラ10で撮像された熱画像の画像データは、検査装置本体40に出力される。
 可視光カメラ20は、検査対象とする構造物Oの表面の可視光画像を撮像する。可視光画像とは、可視光の波長帯域(一般に380nmから780nm)に感度をもって被写体を撮像して得られる画像である。可視光カメラ10には、CMOSイメージセンサ(complementary metal-oxide semiconductor device image sensor)、CCDイメージセンサ(charge coupled device image sensor)等を搭載した一般的なデジタルカメラ(携帯端末等に搭載されているものを含む)を使用できる。本実施の形態では、カラー撮影が可能なデジタルカメラが使用される。したがって、可視光画像として、カラー画像が撮影される。カラー画像は、画素単位でR(red;赤)、G(green;緑)及びB(blue;青)の各強度値(輝度値)を有する画像(いわゆるRGB画像)である。可視光カメラ20は、検査装置本体40と通信可能に接続される。通信の形態は、特に限定されない。可視光カメラ20で撮像された可視光画像の画像データは、検査装置本体40に出力される。
 赤外線カメラ10及び可視光カメラ20は、ほぼ同じ画角を有し、ほぼ同じ位置からほぼ同じ範囲を撮像する。たとえば、ブラケットを介して、同じ三脚に並列して設置され、被写体をほぼ同じ位置から撮像する。
 ミリ波カメラ30は、検査対象とする構造物Oの内部状態を可視化したミリ波画像を撮像する。ミリ波カメラ30は、構造物の内部状態を計測する手段の一つである。また、ミリ波カメラ30は、構造物の内部状態を可視化した画像を撮像する撮像装置の一例である。本実施の形態のミリ波カメラ30は、いわゆる能動型(アクティブ)のミリ波カメラで構成される。能動型のミリ波カメラは、ミリ波を被写体に照射し、その反射波を受信して、被写体の内部状態を可視化したミリ波画像を生成する。ミリ波とは、波長が1~10mm、周波数が30~300GHzの電磁波である。ミリ波カメラ30は、たとえば、ミリ波ビームを電子的又は機械的に走査して、画角内の被写体の内部状態を二次元画像化する。複数の送信アンテナと複数の受信アンテナを使用することで、撮像を高速化できる。たとえば、複数の受信アンテナを一方向に配列し、配列方向と直交する方向に走査して、二次元画像化することができる。また、複数の送信アンテナと複数の受信アンテナを使用する場合は、いわゆるMIMO(Multiple Input Multiple Output)レーダ技術を採用することもできる。MIMOは、複数アンテナから信号を送信することで、実装されている受信アンテナ数以上の仮想受信アンテナを生み出す技術である。MIMOレーダ技術を採用することで、分解能をより向上できる。ミリ波カメラ30は、検査装置本体40と通信可能に接続される。通信の形態は、特に限定されない。ミリ波カメラ30で撮像されたミリ波画像の画像データは、検査装置本体40に出力される。
 検査装置本体40は、赤外線カメラ10、可視光カメラ20及びミリ波カメラ30から出力される画像データを受信して処理する。検査装置本体40は、操作部及び表示部等を備えたコンピュータで構成される。
 図2は、検査装置本体のハードウェア構成の一例を示すブロック図である。
 同図に示すように、検査装置本体40は、CPU(Central Processing Unit)41、RAM(Random Access Memory)42、ROM(Read Only Memory)43、HDD(Hard Disk Drive)44、通信インターフェース(Interface,IF)45、操作部46及び表示部47等を備えて構成される。ROM43及び/又はHDD44には、CPU41が実行するプログラム及び各種データが記憶される。操作部46は、たとえば、キーボード、マウス、タッチパネル等で構成される。表示部47は、たとえば、液晶ディスプレイ(Liquid Crystal Display,LCD)、有機ELディスプレイ(Organic Light Emitting Diode display,OLED display)等で構成される。赤外線カメラ10、可視光カメラ20及びミリ波カメラ30は、通信インターフェース45を介して検査装置本体40と通信可能に接続される。
 図3は、検査装置本体が有する機能のブロック図である。
 検査装置本体40は、主として、画像取得部40A、画像処理部40B及び表示制御部40Cの機能を有する。これらの機能は、CPU41が所定のプログラムを実行することにより実現される。
 画像取得部40Aは、操作部46を介して入力されるユーザからの指示に応じて、各カメラから撮像により得られた画像データを取得する。具体的には、赤外線カメラ10から熱画像の画像データを取得し、可視光カメラ20から可視光画像の画像データを取得し、ミリ波カメラ30からミリ波画像の画像データを取得する。
 画像処理部40Bは、操作部46を介して入力されるユーザからの指示に応じて、画像データに所定の画像処理を施す。ここでの画像処理には、表示用の画像データを生成する処理の他、熱画像に関して、画像から浮きが推定される領域を検出する処理が含まれる。
 熱画像からコンクリートの浮きを検出する技術については、公知技術を採用できる。たとえば、機械学習、深層学習等により生成した画像認識モデルを用いて、熱画像からコンクリートの浮きを検出する技術等を採用できる。機械学習アルゴリズムの種類については、特に限定されない。たとえば、RNN(Recurrent Neural Network;再帰型ニューラルネットワーク)、CNN(Convolutional Neural Network;畳み込みニューラルネットワーク)及びMLP(Multilayer Perceptron;多層パーセプトロン)等のニューラルネットワークを用いたアルゴリズムを用いることができる。画像認識モデルを用いて、浮きが推定される領域を検出する場合、必要に応じて熱画像に前処理が施される。すなわち、認識精度を向上させるための処理(たとえば、フィルタ処理等)が施される。
 熱画像から自動で浮きを検出する処理を行った場合、画像処理部40Bは、表示用の画像として、検出結果を含めた画像を生成する。たとえば、検出された浮きの箇所を枠で囲った画像を生成する。この他、画像処理部40Bは、必要に応じて、可視光画像と熱画像とを並列させた画像、可視光画像に熱画像を重畳させた画像等を表示用の画像として生成する。可視光画像に熱画像を重畳させた画像を生成する場合は、たとえば、熱画像を半透過させた画像を可視光画像に重畳させた画像を生成する。また、浮きが推定される領域のみを重畳させた画像を生成する。この場合、熱画像から浮きが推定される領域を切り出し、可視光画像の対応位置に重ね合わせた画像を生成する。
 また、画像処理部40Bは、必要に応じて赤外線カメラ10と可視光カメラ20との間で生じる視差を補正する処理を行う。視差の補正は、たとえば、被写体に近接して撮像する場合に必要となる。
 表示制御部40Cは、操作部46を介して入力されるユーザからの指示に応じて、各カメラで撮像された画像を表示部47に表示する。
 [構造物の検査方法]
 図4は、本実施の形態の検査の手順を示すフローチャートである。
 まず、熱画像による浮きのスクリーニングが行われる(ステップS1)。この処理は、まず、赤外線カメラ10を使用して、検査対象とする構造物Oの表面の熱画像を撮像する。本実施の形態の検査システムでは、熱画像の撮像と同時に可視光カメラ20によって可視光画像の撮像も行われる。なお、ここでの同時は、実質的に同時と認められる範囲を含む概念である。撮像された熱画像及び可視光画像は、検査装置本体40に出力される。検査装置本体40は、ユーザからの指示に応じて、赤外線カメラ10及び可視光カメラ20から出力された熱画像及び可視光画像を取り込み、表示部47に表示する。熱画像及び可視光画像は、たとえば、同一画面に並列して表示される。これにより、熱画像上で浮きが検出された場合に、その位置の容易に特定できる。熱画像に対して浮きを自動で検出する処理を行った場合は、その結果も表示される。たとえば、検出された浮きの領域(浮きが推定される領域)が枠で囲われて表示される。この場合、可視光画像についても対応する領域が枠で囲われて表示される。これにより、可視光画像上で浮きの領域を容易に特定できる。ユーザは、検査装置本体40の表示部47に表示される画像を確認して、浮きのスクリーニングを行う。すなわち、浮きが推定される領域を検出する。浮きが推定される領域は第1領域の一例である。上記のように、浮きの領域は、その周囲の健全な領域との間で温度差が生じる。したがって、熱画像を観察することで、浮きと推定される領域を判別できる。
 スクリーニングの結果、検査対象領域内の浮きの有無が判定される(ステップS2)。検出対象領域は、赤外線カメラ10で撮像した領域である。
 熱画像から浮きが検出された場合、内部状態を計測する処理が行われる。本実施の形態では、ミリ波画像を撮像して、対象領域の内部状態の詳細に確認する(ステップS3)。この処理は、次の手順で実施される。まず、浮きが検出された領域をミリ波カメラ30で撮像する。この際、浮きが検出された箇所を含む領域を詳細確認対象領域に設定し、設定した領域をミリ波カメラ30で撮像する。詳細確認対象領域は、熱画像中の一部の領域に設定される。たとえば、浮きが検出された領域を矩形の枠で囲う領域が詳細確認対象領域に設定される。なお、詳細確認対象領域が、ミリ波カメラ30の撮像範囲を超える場合は、複数回に分けて撮像する。すなわち、詳細確認対象領域を複数の領域に分割し、領域ごとに撮像する。撮像されたミリ波画像は、検査装置本体40に出力される。検査装置本体40は、ユーザからの指示に応じて、ミリ波カメラ30から出力されたミリ波画像を取り込み、表示部47に表示する。表示されるミリ波画像は、コンクリートの内部状態を可視化した画像であり、この画像を確認することにより、浮きの有無及び状態を詳細に確認できる。
 詳細確認後、全領域の検査が終了したか否かが判定される(ステップS4)。すなわち、検査対象とするすべての領域の検査が完了したか否かが判定される。すべての領域の検査が完了した場合は、検査の処理を終了する。一方、すべての領域の検査が完了していない場合は、ステップS1に戻り、上記一連の処理を繰り返し実行する。
 このように、本実施の形態の検査方法では、熱画像に基づいて浮きを検出し、浮きが検出された場合に限り、内部状態を詳細に確認する。これにより、精度の高い検査を効率よく実施できる。すなわち、熱画像による浮きの検査は、広範囲を簡便に検査できる一方、解像度に問題があるが、熱画像で浮きが検出された領域をミリ波画像で検査することにより、その内部状態を詳細に知ることができる。また、ミリ波画像の撮像は、一部に限定されるため、短時間で撮像を終えることができる。これにより、精度と時間を両立でき、精度の高い検査を効率よく実施できる。
 [第2の実施の形態]
 本実施の形態では、熱画像から浮きが検出された場合に、打撃による検査を実施する。打撃による検査で異常が検出されない場合に、ミリ波画像を撮像し、内部状態を詳細に確認する作業を実施する。打撃による検査は、たとえば、検査員が検査用のハンマで該当箇所を叩き、剥落の有無を確認することにより行われる。
 図5は、本実施の形態の検査の手順を示すフローチャートである。
 まず、熱画像による浮きのスクリーニングが行われる(ステップS11)。スクリーニングの結果、検査対象領域内の浮きの有無が判定される(ステップS12)。
 熱画像から浮きが検出された場合、打撃による検査が実施される(ステップS13)。すなわち、浮きが検出された領域を検査用のハンマで叩き、剥落の有無を確認する作業が行われる。
 打撃による検査の結果、異常の有無が判定される(ステップS14)。ここでは、剥落の有無が判定される。剥落がない場合、ミリ波画像による内部状態の詳細確認作業が行われる(ステップS15)。すなわち、浮きが検出された領域をミリ波カメラ30で撮像し、撮像により得られたミリ波画像により、内部状態を詳細に確認する作業が行われる。
 詳細確認後、全領域の検査が終了したか否かが判定される(ステップS16)。すべての領域の検査が完了した場合は、検査の処理を終了する。一方、すべての領域の検査が完了していない場合は、ステップS11に戻り、上記一連の処理を繰り返し実行する。
 このように、本実施の形態の検査方法では、熱画像に基づいて浮きを検出し、浮きが検出された場合、打撃による検査を実施する。打撃による検査で異常が検出されない場合、ミリ波画像を撮像して、その内部状態を詳細に確認する。これにより、精度の高い検査をより効率よく実施できる。すなわち、打撃による検査で剥落が生じた場合は、明らかな異常であるので、その後の詳細な検査を省略できる。その一方で打撃による検査で剥落が生じない場合は、内部状態を詳細に確認する必要があるが、この場合はミリ波画像が撮像されるので、内部の状態を詳細に確認できる。
 なお、本実施の形態では、打撃による検査を実施する際、打撃箇所の剥落の有無によって、異常の有無を検査する構成としているが、打音により異常の有無を検査する構成とすることもできる(いわゆる打音検査)。この場合、打音による検査で異常が検出されない場合、ミリ波画像が撮像される。
 [第3の実施の形態]
 本実施の形態では、熱画像及び可視光画像の双方の画像に基づいて、ミリ波画像による詳細な検査の要否を判断する。具体的には、熱画像及び可視光画像の双方の画像で浮きを検出し、双方の画像から浮きが検出された場合に、ミリ波画像による詳細な検査を実施する。
 可視光画像からの浮きの検出は、たとえば、漏水箇所を検出することにより行う。ここで、漏水(さび汁を含む)とは、コンクリート中の水分及び雨水等が、ひび割れ、打ち継ぎ目、目地及び剥離部等を通じて、外部へ漏れ出る現象である。したがって、可視光画像から漏水箇所を検出することにより、浮きが推定される領域を検出できる。漏水箇所は、第2領域の一例である。
 可視光画像から漏水箇所を自動で検出する構成を加えることもできる。たとえば、機械学習、深層学習等により生成した画像認識モデルを用いて、画像から漏水箇所を自動で検出する技術等を採用できる。
 可視光画像から漏水箇所を自動で検出する場合、その処理は画像処理部40Bで行われる。可視光画像から漏水箇所を自動で検出する場合、画像処理部40Bは、表示用の画像として、検出結果を含めた画像を生成する。たとえば、可視光画像において、検出された漏水箇所を枠で囲んだ画像を表示用の画像として生成する。
 なお、漏水が生じている領域は、周辺の健全な領域に比して、温度が低下する。したがって、熱画像からも漏水箇所を検出できる。すなわち、周辺よりも相対的に温度の低い領域を検出することで、漏水が推定される領域を検出できる。本実施の形態では、浮きが推定される領域の一つとして、熱画像から周辺よりも相対的に温度の低い領域が検出される。
 熱画像及び可視光画像は、ユーザからの指示に応じて、個別に表示部47に表示される。また、ユーザからの指示に応じて、同一画面に並列して表示される。ユーザは、この表示部47の表示を確認することで漏水箇所を判別できる。
 図6は、本実施の形態の検査の手順を示すフローチャートである。
 まず、熱画像による浮きのスクリーニングが行われる(ステップS21)。スクリーニングの結果、検査対象領域内の浮きの有無が判定される(ステップS22)。
 熱画像による浮きのスクリーニングと平行して、可視光画像による漏水のスクリーニングが行われる(ステップS23)。なお、可視光画像による漏水のスクリーニングは、次の手順で行われる。まず、可視光カメラ20を使用して、検査対象とする構造物Oの表面の可視光画像を撮像する。なお、本実施の形態の検査システムでは、可視光画像の撮像は、熱画像の撮像と同時に行われる。撮像された可視光画像は、検査装置本体40に出力される。検査装置本体40は、ユーザからの指示に応じて、可視光カメラ20から出力された可視光画像を取り込み、表示部47に表示する。ユーザは、検査装置本体40の表示部47に表示される画像を確認して、漏水のスクリーニングを行う。スクリーニングの結果、検査対象領域内の漏水の有無が判定される(ステップS24)。
 上記のように、可視光画像及び熱画像は、ユーザからの指示に応じて、同一画面に並列して表示される。また、ユーザからの指示に応じて、個別に表示される。
 熱画像から浮きが検出され、かつ、可視光画像から漏水が検出された場合、同一箇所か否かが判断される(ステップS25)。すなわち、熱画像で検出された浮きの領域と、可視光画像から検出された漏水の領域とが同じ領域か否かが判断される。なお、ここでの同じ領域は、ほぼ同じと認められるものを含むものである。
 同じ領域の場合、ミリ波画像による内部状態の詳細確認作業が行われる(ステップS26)。すなわち、浮き及び漏水が検出された領域をミリ波カメラ30で撮像し、撮像により得られたミリ波画像により、内部状態を詳細に確認する作業が行われる。
 詳細確認後、全領域の検査が終了したか否かが判定される(ステップS27)。すべての領域の検査が完了した場合は、検査の処理を終了する。一方、すべての領域の検査が完了していない場合は、ステップS21に戻り、上記一連の処理を繰り返し実行する。
 このように、本実施の形態の検査方法では、熱画像及び可視光画像の双方の画像に基づいて、ミリ波画像による詳細な検査の要否を判断する。これにより、精度の高い検査を効率よく実施できる。
 なお、本実施の形態では、可視光画像から漏水箇所を検出して、浮きが推定される領域を検出する構成としているが、可視光画像から検出する異常の種類は、これに限定されるものではない。浮きが生じていると推定される種類の異常(損傷)であればよい。たとえば、所定パターンのひび割れ、遊離石灰、コンクリートの変色等を検出して、浮きが推定される領域を検出することができる。なお、遊離石灰とは、コンクリート中の酸化カルシウムなどの成分が、雨水などの水分と共に外部に漏れ出る現象である。
 また、可視光画像については、たとえば、画像の輝度分布、及び/又は、RGB値分布に基づいて、異常箇所を自動で検出する技術等を採用することもできる。異常箇所は、他の領域とは異なる輝度分布及びRGB値分布となるため、輝度値、及び/又は、RGB値の変化を探索することにより、可視光画像から異常箇所を自動で検出できる。
 また、可視光画像から異常箇所を自動で検出する場合、検出した異常の種類を判別する処理を加えることもできる。すなわち、ひび割れ、漏水、遊離石灰等、どのような種類の異常であるかを判別する処理を加えることもできる。この処理は、たとえば、機械学習、深層学習等により生成した画像認識モデルを用いて行うことができる。
 [第4の実施の形態]
 ここでは、ミリ波画像を用いて内部状態を詳細に確認した後の処理について説明する。
 鉄筋コンクリート製の構造物において、浮きが内部で大きくなっている場合は、鉄筋の腐食が進行している可能性がある。
 ミリ波画像によって内部状態を詳細に検査した場合において、所定サイズ以上の浮きが検出された場合、その周辺の鉄筋の健全性を重点的に検査する。これにより、劣化要因の推定に役立てたり、その後の補修設計の支援に役立てたりできる。
 図7は、本実施の形態の検査の手順を示すフローチャートである。
 まず、ミリ波画像による内部状態の詳細確認作業が行われる(ステップS31)。すなわち、検査対象領域をミリ波カメラ30で撮像し、撮像により得られたミリ波画像により、内部状態を詳細に確認する作業が行われる。検査対象領域は、浮きが推定される領域である。たとえば、浮きの領域の中心又は重心を中心とした一定の範囲内である。ミリ波画像により内部状態を詳細に確認することにより、浮きの有無を詳細に検出できる。
 確認作業の結果、浮きが検出されたか否かが判断される(ステップS32)。浮きが検出された場合、発生している浮きの深さがミリ波画像から推定される(ステップS33)。
 推定された浮きの深さが、規定範囲内の深さか否かが判定される(ステップS34)。規定範囲は、検査対象とする構造物のコンクリートのかぶり厚に基づいて設定される。検査対象とする構造物のコンクリートのかぶり厚が、たとえば、4~5cmの場合、規定範囲は4~5cmに設定される。
 推定された浮きの深さが、規定範囲内の場合、鉄筋の健全性を詳細に確認する作業が行われる(ステップS35)。鉄筋の健全性の検査は、非破壊の検査方法が採用される。たとえば、電磁誘導法、電磁波レーダ法等により実施される。
 電磁誘導法とは、探査機器の磁界発生部から磁力線(一次磁界)をコンクリートに向けて放射し、コンクリート内にある導電性物質(鉄筋)に発生する誘導電流に起因した二次磁界を磁界検知部で検知して、一次磁界と二次磁界の増減を比較することにより、鉄筋を検知し、その位置を測定する手法である。
 電磁波レーダ法とは、探査機器の送信部からコンクリートに向けて電磁波を放射した場合に、電気的性質の異なる物質(鉄筋)との境界面で反射される電磁波を受信部によって受信し、鉄筋の検知を行なう方法である。
 このように、本実施の形態では、ミリ波画像によって内部状態を詳細に検査した場合において、浮きが検出された場合に、必要に応じて、その周辺の鉄筋の健全性が検査される。これにより、異常箇所の内部状態をより詳細に検査できる。
 なお、本実施の形態では、鉄筋の健全性を非破壊で検査する方法として、電磁誘導法、電磁波レーダ法等を採用することとしているが、鉄筋の健全性を非破壊で検査する方法は、これに限定されるものではない。この他、たとえば、放射線透過法、超音波法等を採用することもできる。
 [その他の実施の形態]
 [構造物の内部状態を計測する手段]
 上記実施の形態では、ミリ波カメラを使用して構造物の内部状態を可視化することにより、構造物の内部状態を計測しているが、構造物の内部状態を計測する方法は、これに限定されるものではない。たとえば、マイクロ波、テラヘルツ波等の電磁波、又は、超音波を用いて内部状態を可視化する装置(マイクロ波イメージング装置、テラヘルツイメージング、超音波イメージング装置等)を使用して、構造物の内部状態を計測することができる。また、非接触音響探査法等の非破壊の検査法を採用して、構造物の内部状態を計測することもできる。この他、公知の非破壊探査法を採用できる。
 [検査対象]
 本発明は、橋梁、トンネル、ダム、建築物などの鉄筋コンクリート製の構造物を検査する場合に特に有効に作用するが、本発明の適用は、これに限定されるものではない。この他、たとえば、表面がタイル、レンガ等で構成された構造物にも同様に適用できる。
 また、上記実施の形態では、コンクリートの浮きの有無を検査する場合を例に説明したが、検査対象とする異常(損傷)は、これに限定されるものではない。本発明は、特に表面から視認しにくい内部の異常を検査するのに有効である。
 [撮像手法]
 赤外線カメラ、可視光カメラ及びミリ波カメラによる撮像は、赤外線カメラ、可視光カメラ及びミリ波カメラを無人航空機(いわゆるドローン)、無人走行車等に搭載して行うこともできる。
 また、赤外線カメラ、可視光カメラ及びミリ波カメラを無人航空機等に搭載して検査対象を撮像する場合は、自動で撮像する構成とすることもできる。たとえば、あらかじめ定められたルートを自動で飛行し、検査対象を撮像する構成としてもよい。
 [システム構成]
 上記実施の形態では、検査装置本体が、いわゆるスタンドアローンコンピュータで実現されているが、クライアントサーバ型のシステムで実現することもできる。たとえば、熱画像及び可視光画像から浮き等を自動検出する機能をサーバに持たせてもよい。
 また、検査装置本体を実現するハードウェアは、各種のプロセッサで構成できる。各種プロセッサには、プログラムを実行して各種の処理部として機能する汎用的なプロセッサであるCPU及び/又はGPU(Graphic Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device,PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。点検支援装置を構成する1つの処理部は、上記各種プロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサで構成されてもよい。たとえば、1つの処理部は、複数のFPGA、あるいは、CPUとFPGAの組み合わせによって構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第一に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第二に、システムオンチップ(System on Chip,SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種プロセッサを1つ以上用いて構成される。更に、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。
1 検査システム
10 赤外線カメラ
20 可視光カメラ
30 ミリ波カメラ
40 検査装置本体
40A 画像取得部
40B 画像処理部
40C 表示制御部
41 CPU
42 RAM
43 ROM
44 HDD
45 通信インターフェース
46 操作部
47 表示部
O 構造物
S1~S4 検査の手順
S11~S16 検査の手順
S21~S27 検査の手順
S31~S35 検査の手順

Claims (21)

  1.  赤外線カメラによって構造物の熱画像を撮像するステップと、
     前記熱画像に基づいて、内部に異常を有すると推定される第1領域を検出するステップと、
     前記第1領域が検出された場合に、前記第1領域の内部状態を計測するステップと、
     を含む構造物の検査方法。
  2.  前記第1領域が検出された場合に、前記第1領域の内部状態を可視化した画像を撮像して、前記第1領域の内部状態を計測する、
     請求項1に記載の構造物の検査方法。
  3.  前記第1領域が検出された場合に、電磁波又は超音波を用いて前記第1領域の内部状態を可視化した画像を撮像し、前記第1領域の内部状態を計測する、
     請求項2に記載の構造物の検査方法。
  4.  前記第1領域が検出された場合に、ミリ波、マイクロ波又はテラヘルツ波を用いて前記第1領域の内部状態を可視化した画像を撮像し、前記第1領域の内部状態を計測する、
     請求項3に記載の構造物の検査方法。
  5.  前記第1領域が検出された場合に、前記第1領域の内部状態を非接触音響探査法で計測する、
     請求項1に記載の構造物の検査方法。
  6.  前記第1領域が検出された場合に、前記第1領域に打撃を加えて、前記第1領域の内部状態を計測するステップを更に含み、
     前記第1領域に打撃を加えて、異常なしと判定された場合に、前記第1領域の内部状態を計測する、
     請求項1から5のいずれか1項に記載の構造物の検査方法。
  7.  前記第1領域に打撃を加えて、前記第1領域が剥落しない場合に、異常なしと判定する、
     請求項6に記載の構造物の検査方法。
  8.  前記構造物が、鉄筋コンクリート製の構造物である場合において、
     前記熱画像に基づいて、浮きが推定される領域を前記第1領域として検出する、
     請求項1から7のいずれか1項に記載の構造物の検査方法。
  9.  可視光カメラによって前記構造物の表面の可視光画像を撮像するステップと、
     前記可視光画像に基づいて、内部に異常を有すると推定される第2領域を検出するステップと、
     を更に含み、
     前記第1領域及び前記第2領域が検出され、かつ、前記第1領域及び前記第2領域が同じ領域である場合に、前記第1領域の内部状態を計測する、
     請求項1から5のいずれか1項に記載の構造物の検査方法。
  10.  前記第1領域が検出された場合に、前記第1領域の内部状態を可視化した画像を撮像して、前記第1領域の内部状態を計測する、
     請求項9に記載の構造物の検査方法。
  11.  前記第1領域が検出された場合に、電磁波又は超音波を用いて前記第1領域の内部状態を可視化した画像を撮像し、前記第1領域の内部状態を計測する、
     請求項10に記載の構造物の検査方法。
  12.  前記第1領域が検出された場合に、ミリ波、マイクロ波又はテラヘルツ波を用いて前記第1領域の内部状態を可視化した画像を撮像し、前記第1領域の内部状態を計測する、
     請求項11に記載の構造物の検査方法。
  13.  前記第1領域が検出された場合に、前記第1領域の内部状態を非接触音響探査法で計測する、
     請求項9に記載の構造物の検査方法。
  14.  前記構造物が、鉄筋コンクリート製の構造物である場合において、
     前記熱画像に基づいて、浮きが推定される領域を前記第1領域として検出し、
     前記可視光画像に基づいて、漏水の領域を前記第2領域として検出する、
     請求項9から13のいずれか1項に記載の構造物の検査方法。
  15.  前記第1領域の内部状態を計測した結果、前記第1領域に前記浮きが検出された場合において、前記浮きの深さが、あらかじめ定められた範囲内の場合に、前記第1領域における鉄筋の健全性を検査するステップを更に含む、
     請求項14に記載の構造物の検査方法。
  16.  非破壊で前記鉄筋の健全性を検査する、
     請求項15に記載の構造物の検査方法。
  17.  電磁誘導法により前記鉄筋の健全性を検査する、
     請求項16に記載の構造物の検査方法。
  18.  鉄筋コンクリート製の構造物に対し、検査対象領域の内部状態を計測するステップと、
     計測により前記検査対象領域に浮きが検出され、かつ、検出された前記浮きの深さが、あらかじめ定められた範囲内の場合に、前記検査対象領域における鉄筋の健全性を検査するステップと、
     を含む構造物の検査方法。
  19.  非破壊で前記鉄筋の健全性を検査する、
     請求項18に記載の構造物の検査方法。
  20.  電磁誘導法により前記鉄筋の健全性を検査する、
     請求項19に記載の構造物の検査方法。
  21.  構造物の熱画像を撮像する赤外線カメラと、
     前記構造物の内部状態を可視化した画像を撮像する撮像装置と、
     を備え、
     前記赤外線カメラで撮像した前記熱画像から前記構造物の内部に異常を有すると推定される領域が検出された場合に、前記撮像装置で前記領域の内部状態を可視化した画像を撮像し、前記領域の内部状態を計測する、
     構造物の検査システム。
PCT/JP2021/019703 2020-05-29 2021-05-25 構造物の検査方法及び検査システム WO2021241536A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022526555A JPWO2021241536A1 (ja) 2020-05-29 2021-05-25
US18/050,911 US20230111766A1 (en) 2020-05-29 2022-10-28 Structure inspection method and structure inspection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020094328 2020-05-29
JP2020-094328 2020-05-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/050,911 Continuation US20230111766A1 (en) 2020-05-29 2022-10-28 Structure inspection method and structure inspection system

Publications (1)

Publication Number Publication Date
WO2021241536A1 true WO2021241536A1 (ja) 2021-12-02

Family

ID=78744426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019703 WO2021241536A1 (ja) 2020-05-29 2021-05-25 構造物の検査方法及び検査システム

Country Status (3)

Country Link
US (1) US20230111766A1 (ja)
JP (1) JPWO2021241536A1 (ja)
WO (1) WO2021241536A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136998A (zh) * 2021-12-28 2022-03-04 北京西管安通检测技术有限责任公司 一种微波无损检测的方法、装置、系统、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12073626B1 (en) * 2023-11-22 2024-08-27 The Adt Security Corporation Analytics for detection of fluid leaks by premises monitoring systems

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151719A (ja) * 1993-11-30 1995-06-16 Dai Ichi High Frequency Co Ltd コンクリート中の鉄筋の発錆進行状況判定方法
JPH11259656A (ja) * 1998-03-10 1999-09-24 Teito Rapid Transit Authority トンネル壁面判定装置
JP2007183227A (ja) * 2006-01-10 2007-07-19 Nippon Telegr & Teleph Corp <Ntt> 電磁波イメージングシステム、構造物透視装置および構造物透視方法
JP2008151809A (ja) * 2008-03-10 2008-07-03 West Nippon Expressway Engineering Shikoku Co Ltd 赤外線カメラによる構造物調査方法
JP2011039690A (ja) * 2009-08-07 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> 画像処理方法、画像処理装置及びひび割れ検知システム
CN102095755A (zh) * 2010-12-09 2011-06-15 重庆建工市政交通工程有限责任公司 一种混凝土结构的无损检测方法
JP2011133322A (ja) * 2009-12-24 2011-07-07 Pasuko:Kk 内部変状検出支援装置及び内部変状検出支援プログラム
JP2012202859A (ja) * 2011-03-25 2012-10-22 Railway Technical Research Institute コンクリート表面の変状領域の検出方法
JP2015219014A (ja) * 2014-05-14 2015-12-07 コニカミノルタ株式会社 物体診断装置
JP2017138239A (ja) * 2016-02-04 2017-08-10 学校法人桐蔭学園 非接触音響探査システム
WO2017154731A1 (ja) * 2016-03-11 2017-09-14 Ntn株式会社 振動検査装置
JP2018054319A (ja) * 2016-09-26 2018-04-05 新日鐵住金株式会社 煙道又は煙突の調査方法
JP2019039849A (ja) * 2017-08-28 2019-03-14 積水ハウス株式会社 シーリング目地検査方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037366A (ja) * 2003-06-24 2005-02-10 Constec Engi Co 赤外線構造物診断システム及び赤外線構造物診断方法
JP7304060B2 (ja) * 2018-07-26 2023-07-06 直人 今西 構造内部変状特性検出装置
JP7033045B2 (ja) * 2018-10-17 2022-03-09 株式会社神戸製鋼所 学習装置、推定装置、亀裂検出装置、亀裂検出システム、学習方法、推定方法、亀裂検出方法、及びプログラム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151719A (ja) * 1993-11-30 1995-06-16 Dai Ichi High Frequency Co Ltd コンクリート中の鉄筋の発錆進行状況判定方法
JPH11259656A (ja) * 1998-03-10 1999-09-24 Teito Rapid Transit Authority トンネル壁面判定装置
JP2007183227A (ja) * 2006-01-10 2007-07-19 Nippon Telegr & Teleph Corp <Ntt> 電磁波イメージングシステム、構造物透視装置および構造物透視方法
JP2008151809A (ja) * 2008-03-10 2008-07-03 West Nippon Expressway Engineering Shikoku Co Ltd 赤外線カメラによる構造物調査方法
JP2011039690A (ja) * 2009-08-07 2011-02-24 Nippon Telegr & Teleph Corp <Ntt> 画像処理方法、画像処理装置及びひび割れ検知システム
JP2011133322A (ja) * 2009-12-24 2011-07-07 Pasuko:Kk 内部変状検出支援装置及び内部変状検出支援プログラム
CN102095755A (zh) * 2010-12-09 2011-06-15 重庆建工市政交通工程有限责任公司 一种混凝土结构的无损检测方法
JP2012202859A (ja) * 2011-03-25 2012-10-22 Railway Technical Research Institute コンクリート表面の変状領域の検出方法
JP2015219014A (ja) * 2014-05-14 2015-12-07 コニカミノルタ株式会社 物体診断装置
JP2017138239A (ja) * 2016-02-04 2017-08-10 学校法人桐蔭学園 非接触音響探査システム
WO2017154731A1 (ja) * 2016-03-11 2017-09-14 Ntn株式会社 振動検査装置
JP2018054319A (ja) * 2016-09-26 2018-04-05 新日鐵住金株式会社 煙道又は煙突の調査方法
JP2019039849A (ja) * 2017-08-28 2019-03-14 積水ハウス株式会社 シーリング目地検査方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136998A (zh) * 2021-12-28 2022-03-04 北京西管安通检测技术有限责任公司 一种微波无损检测的方法、装置、系统、设备及介质

Also Published As

Publication number Publication date
US20230111766A1 (en) 2023-04-13
JPWO2021241536A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US20230082753A1 (en) Structure inspection method and structure inspection system
US20230111766A1 (en) Structure inspection method and structure inspection system
US10620115B2 (en) Microwave horn antennas-based transducer system for CUI inspection without removing the insulation
US20190137448A1 (en) Real-Time Fusion of Ultrasound and Eddy Current Data During Non-Destructive Examination
US11714024B2 (en) Vision-based fatigue crack detection using feature tracking
TWI305395B (en) System and method for detecting wafer failure in wet bench application
JP6393442B2 (ja) 超音波源の方位標定装置及び重ね合わせ画像の解析方法
EP3708946A1 (en) Sub-surface patterning for diffraction-based strain measurement and damage detection in structures
KR20060026865A (ko) 3차원 초음파 화상화 장치
TW201944069A (zh) 超音波檢查裝置及超音波檢查方法
JP2007322162A (ja) 3次元形状測定装置及び3次元形状測定方法
JP2006010392A (ja) 貫通穴計測システム及び方法並びに貫通穴計測用プログラム
JP4038578B1 (ja) 電磁波による鉄筋コンクリート構造物の非破壊検査装置及び方法
KR101864943B1 (ko) 적외선 열화상 기술을 이용한 비파괴 결함 검사 장치
JPWO2021241535A5 (ja)
JPWO2021241536A5 (ja)
JP2011191252A (ja) 金属の表面品質評価方法および金属の表面品質評価装置
US20230075504A1 (en) Damage diagram creation support method and damage diagram creation support device
JP6652327B2 (ja) 検査対象物の状態評価装置
US20110206186A1 (en) X-ray analyzer and mapping method for an x-ray analysis
JP2019120491A (ja) 欠陥検査方法、および、欠陥検査システム
JP2010085255A (ja) 欠陥検査装置および欠陥検査方法
JP4738243B2 (ja) 超音波探傷システム
Omidi et al. Integration of active thermography and ground penetrating radar for the detection and evaluation of delamination in concrete slabs
JP2024060115A (ja) 情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21810908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526555

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21810908

Country of ref document: EP

Kind code of ref document: A1