WO2021192074A1 - 空気調和機 - Google Patents
空気調和機 Download PDFInfo
- Publication number
- WO2021192074A1 WO2021192074A1 PCT/JP2020/013216 JP2020013216W WO2021192074A1 WO 2021192074 A1 WO2021192074 A1 WO 2021192074A1 JP 2020013216 W JP2020013216 W JP 2020013216W WO 2021192074 A1 WO2021192074 A1 WO 2021192074A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- expansion valve
- indoor
- indoor heat
- compressor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/48—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to an air conditioner.
- Patent Document 1 describes that the heat exchanger to be cleaned is defrosted and then defrosted. Further, Patent Document 1 describes that when the high / low pressure difference of the air conditioner reaches a preset condition, the four-way valve is controlled to switch to defrosting the indoor heat exchanger.
- an object of the present invention is to provide a highly reliable air conditioner that keeps the indoor heat exchanger in a clean state.
- the air conditioner according to the present invention includes an outdoor unit having a compressor and an outdoor heat exchanger, and at least one indoor unit having a first expansion valve and an indoor heat exchanger.
- a bypass pipe for guiding a part of the refrigerant condensed by the outdoor heat exchanger to the suction side of the compressor and a second expansion valve provided in the bypass pipe are provided.
- the compressor, the first expansion valve, and a control unit that controls the second expansion valve are provided, and the control unit heats the room during the process of freezing or condensing the room heat exchanger. It was decided to control the first expansion valve based on the temperature of the exchanger and control the second expansion valve based on the discharge temperature of the compressor.
- FIG. 1 is a configuration diagram including a refrigerant circuit Q of the air conditioner 100 according to the first embodiment.
- the flow of the refrigerant in the cooling cycle is indicated by a solid line arrow
- the flow of the refrigerant in the heating cycle is indicated by a broken line arrow.
- the air flow in the vicinity of the outdoor heat exchanger 2 and the four indoor heat exchangers 10 is indicated by white arrows.
- the air conditioner 100 is a device that performs air conditioning such as cooling operation and heating operation.
- FIG. 1 as an example, one system of a multi-type air conditioner 100 in which one outdoor unit Uo and four indoor units U1, U2, U3, U4 are predeterminedly connected via a pipe is used. Shown.
- the air conditioner 100 includes a compressor 1, an outdoor heat exchanger 2, an outdoor fan 3, an outdoor expansion valve 4, a four-way valve 5, and an accumulator 6 as devices provided in the outdoor unit Uo. There is. Further, in addition to the above-described configuration, the air conditioner 100 includes a bypass pipe W, a bypass expansion valve 7 (second expansion valve), an outdoor temperature sensor 8, and a discharge temperature as equipment provided in the outdoor unit Uo. It includes a sensor 9 and blocking valves Va and Vb.
- the compressor 1 is a device that compresses a low-temperature low-pressure gas refrigerant and discharges it as a high-temperature high-pressure gas refrigerant, and includes a compressor motor 1a (see FIG. 3) as a drive source.
- a compressor 1 for example, a scroll type compressor or a rotary type compressor is used.
- the outdoor heat exchanger 2 is a heat exchanger in which heat exchange is performed between the refrigerant passing through the heat transfer tube (not shown) and the outside air sent from the outdoor fan 3.
- One end g1 of the outdoor heat exchanger 2 is connected to the suction side or the discharge side of the compressor 1 by switching the four-way valve 5, and the other end g2 is connected to the liquid side pipe J1.
- the outdoor fan 3 is a fan that sends outside air to the outdoor heat exchanger 2.
- the outdoor fan 3 includes an outdoor fan motor 3a as a drive source, and is installed in the vicinity of the outdoor heat exchanger 2.
- the outdoor expansion valve 4 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the outdoor heat exchanger 2 and reduces the pressure of the refrigerant when the outdoor heat exchanger 2 functions as an evaporator. It is provided in J1.
- the four-way valve 5 is a valve that switches the flow path of the refrigerant to a predetermined value according to the operation mode during air conditioning.
- the accumulator 6 is a shell-shaped member that gas-liquid separates the refrigerant flowing through the four-way valve 5. After gas-liquid separation by the accumulator 6, a gaseous refrigerant is guided to the suction side of the compressor 1.
- the bypass pipe W is a pipe that guides a part of the refrigerant condensed by the condenser (outdoor heat exchanger 2 or indoor heat exchanger 10) to the suction side of the compressor 1.
- one end i1 of the bypass pipe W is connected between the outdoor expansion valve 4 and the blocking valve Vb in the pipe J1.
- the other end i2 of the bypass pipe W is connected to the pipe J15 connecting the four-way valve 5 and the accumulator 6.
- the configuration in which the bypass pipe W is connected to the pipe J15 on the upstream side of the accumulator 6 is also included in the matter of "leading the refrigerant to the suction side of the compressor 1 via the bypass pipe W".
- the bypass expansion valve 7 (second expansion valve) has a function of adjusting the flow rate of the refrigerant flowing through the bypass pipe W and reducing the pressure of the refrigerant flowing through the bypass pipe W, and the bypass pipe W has a function. It is provided.
- the outdoor temperature sensor 8 is a sensor that detects the outdoor temperature (the temperature of the outside air), and is installed at a predetermined position of the outdoor unit Uo (in the example of FIG. 1, the air suction side of the outdoor heat exchanger 2).
- the discharge temperature sensor 9 is a sensor that detects the temperature of the refrigerant discharged from the compressor 1.
- the discharge temperature sensor 9 is provided in the pipe J16 on the discharge side of the compressor 1.
- the discharge temperature sensor 9 may be installed near the connection point with the pipe J16.
- each sensor for detecting one or more of the suction pressure, the suction temperature, and the discharge pressure of the compressor 1 may be appropriately provided.
- the blocking valves Va and Vb are valves for spreading the refrigerant sealed in the outdoor unit Uo throughout the refrigerant circuit Q by opening the valves after the air conditioner 100 is installed.
- One blocking valve Va is provided in the gas side pipe J10, and the other blocking valve Vb is provided in the liquid side pipe J1.
- the air conditioner 100 includes an indoor heat exchanger 10, an indoor fan 11, an indoor expansion valve 12 (first expansion valve), an indoor temperature sensor 13, and an indoor heat exchange as equipment provided in the indoor unit U1. It includes a vessel temperature sensor 14.
- the indoor heat exchanger 10 is a heat exchanger in which heat is exchanged between the refrigerant passing through the heat transfer tube (not shown) and the indoor air (air in the air conditioning room) sent from the indoor fan 11. be.
- One end h1 of the indoor heat exchanger 10 is connected to the gas side pipe J3, and the other end h2 is connected to the liquid side pipe J2.
- the indoor fan 11 is a fan that sends indoor air to the indoor heat exchanger 10.
- the indoor fan 11 has an indoor fan motor 11a as a drive source, and is installed in the vicinity of the indoor heat exchanger 10.
- the indoor expansion valve 12 is an electronic expansion valve that adjusts the flow rate of the refrigerant flowing through the indoor heat exchanger 10 and reduces the pressure of the refrigerant when the indoor heat exchanger 10 functions as an evaporator, and is a pipe on the liquid side. It is provided in J2.
- the indoor temperature sensor 13 is a sensor that detects the temperature of the indoor air. In the example of FIG. 1, the indoor temperature sensor 13 is installed on the air suction side of the indoor heat exchanger 10.
- the indoor heat exchanger temperature sensor 14 is a sensor that detects the temperature of the indoor heat exchanger 10.
- the indoor heat exchanger temperature sensor 14 is installed near the other end h2 of the indoor heat exchanger 10 in the pipe J2.
- the position of the indoor heat exchanger temperature sensor 14 is not limited to the example of FIG.
- the indoor heat exchanger temperature sensor 14 may be installed near one end h1 of the indoor heat exchanger 10.
- the indoor heat exchanger temperature sensor 14 may be installed directly on the indoor heat exchanger 10.
- the remaining three indoor units U2, U3, and U4 have the same configuration as the indoor unit U1 described above, and thus the description thereof will be omitted.
- the liquid side connection portions K1, K2, and K3 split the refrigerant during the cooling cycle and merge the refrigerant during the heating cycle.
- the refrigerant flowing through the liquid-side pipe J1 is sequentially distributed to the four indoor heat exchangers 10 via the liquid-side connection portions K1, K2, and K3.
- One end of the liquid side pipe J1 is connected to the other end g2 of the outdoor heat exchanger 2, and the other end is the liquid side connection portion K1 (the first diversion when the outdoor heat exchanger 2 functions as a condenser). It is connected to the place).
- the gas side connection portions K4, K5, and K6 combine the refrigerant during the cooling cycle and divide the refrigerant during the heating cycle. For example, during the cooling cycle, the refrigerants merge from the four indoor heat exchangers 10 through the gas side connection portions K4, K5, and K6 in sequence.
- the refrigerant circulates in a well-known refrigeration cycle (cooling cycle or heating cycle shown in FIG. 1) in the refrigerant circuit Q according to the operation mode at the time of air conditioning.
- a well-known refrigeration cycle cooling cycle or heating cycle shown in FIG. 1
- the refrigerant circulates in sequence through the compressor 1, the outdoor heat exchanger 2 (condenser), the outdoor expansion valve 4, the indoor expansion valve 12, and the indoor heat exchanger 10 (evaporator).
- the refrigerant circulates in sequence through the compressor 1, the indoor heat exchanger 10 (condenser), the indoor expansion valve 12, the outdoor expansion valve 4, and the outdoor heat exchanger 2 (evaporator). ..
- FIG. 2 is an explanatory diagram showing a connection relationship of each device of the air conditioner 100.
- the air conditioner 100 includes a remote controller 15 and a centralized management device 16 in addition to the above-described configuration.
- the outdoor unit Uo includes an outdoor control circuit 17, while the indoor units U1, U2, U3, and U4 each include an indoor control circuit 18.
- the outdoor control circuit 17 and the indoor control circuit 18 are configured to include electronic circuits such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and various interfaces. .. Then, the program stored in the ROM is read out and expanded in the RAM, and the CPU executes various processes.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the outdoor control circuit 17 is connected to the outdoor temperature sensor 8 via the wiring m11, and is also connected to the discharge temperature sensor 9 via the wiring m12. Then, in addition to the detected values of the outdoor temperature sensor 8 and the discharge temperature sensor 9, the outdoor control circuit 17 calculates the control command value of each device based on the signal from the remote controller 15 and the like.
- the outdoor control circuit 17 is connected to the indoor control circuit 18 via the communication line m3.
- the indoor control circuit 18 is connected to the indoor temperature sensor 13 via the wiring m21, and is also connected to the indoor heat exchanger temperature sensor 14 via the wiring m22. Each of these detected values is transmitted from the indoor control circuit 18 to the outdoor control circuit 17 via the communication line m3.
- the indoor control circuit 18 controls the indoor fan motor 11a (see FIG. 1) and the indoor expansion valve 12 (see FIG. 1) based on the control command value calculated by the outdoor control circuit 17.
- the four remote controllers 15 are connected via the wiring m4 so as to have a one-to-one correspondence with the indoor control circuits 18 of the four indoor units U1, U2, U3, and U4.
- a plurality of indoor units may be connected to one remote controller 15.
- the remote controller 15 connected to the indoor unit U1 has a function of giving a predetermined control command to the indoor unit U1 by a user operation. Examples of the control command described above include operation / stop of the air conditioner 100, switching of the operation mode, change of the set temperature, air volume, and wind direction, and start of the cleaning process described later. The same applies to the other indoor units U2, U3, and U4.
- the centralized management device 16 is a device that controls the display and settings of the four remote controllers 15, and is connected to the outdoor control circuit 17 via the communication line m5.
- the user operating the centralized management device 16 in a predetermined manner, it is possible to change not only the air conditioning setting but also the display method on the four remote controllers 15.
- FIG. 3 is a functional block diagram of the air conditioner 100.
- the outdoor control circuit 17 includes a storage unit 17a and an outdoor control unit 17b.
- the storage unit 17a in addition to a predetermined program and detection values of each sensor, data input from the centralized management device 16 and the like are stored.
- the outdoor control unit 17b controls the compressor motor 1a, the four-way valve 5, the outdoor expansion valve 4, the outdoor fan motor 3a, the bypass expansion valve 7, and the like based on the data stored in the storage unit 17a.
- the indoor control circuit 18 includes a storage unit 18a and an indoor control unit 18b.
- the indoor control unit 18b predeterminedly controls the indoor expansion valve 12, the indoor fan motor 11a, the wind direction plate motor 19, and the like based on the data stored in the storage unit 18a.
- the outdoor control circuit 17 and the indoor control circuit 18 are collectively referred to as “control unit 20”.
- the wind direction plate motor 19 shown in FIG. 3 is a motor that adjusts the wind direction of the air blown into the room by adjusting the angle of the wind direction plate (not shown) of the indoor unit U1.
- a filter (not shown) for collecting dust and dirt is often provided on the air suction side of the indoor heat exchanger 10. However, fine dust and dirt may pass through the filter and adhere to the indoor heat exchanger 10. Therefore, it is desirable to clean the indoor heat exchanger 10 on a regular basis. Therefore, in the first embodiment, after the indoor heat exchanger 10 is frozen (frosted), the indoor heat exchanger 10 is washed by melting the ice and frost of the indoor heat exchanger 10. Such a series of processes is referred to as "cleaning process" of the indoor heat exchanger 10.
- FIG. 4 is a flowchart of processing executed by the control unit of the air conditioner (see FIGS. 1 and 3 as appropriate). Note that in FIG. 4, processes other than the cleaning process (normal air conditioning operation, etc.) are omitted. Further, at the time of "START" in FIG. 4, it is assumed that the indoor units U1, U2, U3 and U4 are stopped in addition to the outdoor unit Uo.
- step S101 the control unit 20 determines whether or not the condition for starting the cleaning process of the indoor heat exchanger 10 is satisfied. For example, the control unit 20 integrates the air-conditioning operation time from the end of the previous cleaning process in the predetermined indoor unit set by the centralized management device 16 among the four indoor units U1, U2, U3, U4. It is determined whether or not the value (or the integrated value of the driving time of the indoor fan 11) has reached a predetermined value. Of the four indoor units U1, U2, U3, and U4, the indoor units whose integrated values such as the air-conditioning operation time have reached a predetermined value may be individually cleaned.
- step S101 when the start condition of the cleaning process of the indoor heat exchanger 10 is not satisfied (S101: No), the process of the control unit 20 returns to "START" (RETURN).
- step S101 when the start condition of the cleaning process of the indoor heat exchanger 10 is satisfied (S101: Yes), the process of the control unit 20 proceeds to step S102.
- step S102 the control unit 20 freezes the indoor heat exchanger 10. That is, the control unit 20 causes the indoor heat exchanger 10 to function as an evaporator, and frosts (freezes) the indoor heat exchanger 10. More specifically, the control unit 20 sets the valve body (not shown) of the four-way valve 5 at the position of the cooling cycle, drives the compressor 1 at a predetermined rotation speed, and further expands the indoor expansion valve 12 and the bypass.
- the valve 7 is controlled as follows.
- the control unit 20 bases the indoor expansion valve 12 (first expansion valve) based on the detected value (temperature of the indoor heat exchanger 10) of the indoor heat exchanger temperature sensor 14. ) Is controlled. For example, when the detected value of the indoor heat exchanger temperature sensor 14 is higher than a predetermined target temperature (value below freezing point), the control unit 20 makes the opening degree of the indoor expansion valve 12 smaller than the current state. On the other hand, when the detected value of the indoor heat exchanger temperature sensor 14 is lower than the predetermined target temperature, the control unit 20 makes the opening degree of the indoor expansion valve 12 larger than the current state. As a result, the temperature of the indoor heat exchanger 10 approaches a predetermined target temperature, and frost formation of the indoor heat exchanger 10 proceeds.
- a predetermined target temperature value below freezing point
- control unit 20 controls the bypass expansion valve 7 (second expansion valve) based on the discharge temperature of the compressor 1 during the process of freezing the indoor heat exchanger 10. For example, the control unit 20 increases the opening degree of the bypass expansion valve 7 as the discharge temperature of the compressor 1 increases while the indoor heat exchanger 10 is frozen. The larger the opening degree of the bypass expansion valve 7, the larger the amount of refrigerant guided to the suction side of the compressor 1 via the bypass pipe W. As a result, the relatively low temperature refrigerant that is not endothermic in the indoor heat exchanger 10 is guided to the suction side of the compressor 1, so that the discharge temperature of the compressor 1 can be suppressed to a predetermined allowable temperature or lower.
- the following situations are likely to occur during freezing of the indoor heat exchanger 10. .. That is, during the freezing of the indoor heat exchanger 10, the refrigerant evaporated in the indoor heat exchanger 10 absorbs heat from the outside air in the process of passing through the gas side pipes J3, J5, J7, J9, J10, and the temperature of the refrigerant rises. As a result, the discharge temperature of the compressor 1 tends to rise.
- the control unit 20 controls the bypass expansion valve 7 in a predetermined manner so as to guide the relatively low temperature refrigerant to the suction side of the compressor 1 via the bypass pipe W. I have to. This makes it possible to prevent the discharge temperature of the compressor 1 from becoming too high. Further, as described above, since the opening degree of the indoor expansion valve 12 is adjusted based on the temperature of the indoor heat exchanger 10, the indoor heat exchanger 10 is frozen while suppressing the increase in the discharge temperature of the compressor 1. Can be promoted.
- control of the bypass expansion valve 7 is not limited to the above example.
- the control unit 20 may increase the opening degree of the bypass expansion valve 7 as the degree of discharge superheat based on the discharge temperature of the compressor 1 increases. Even with such control, an increase in the discharge temperature of the compressor 1 can be suppressed.
- discharge superheat degree is the superheat degree of the refrigerant on the discharge side of the compressor 1.
- the "superheat degree” of the refrigerant is a value obtained by subtracting the saturation temperature (also referred to as evaporation temperature) of the gas refrigerant from the actual temperature of the gas refrigerant (detected value of the discharge temperature sensor 9). Further, the saturation temperature of the refrigerant is calculated based on, for example, the detected value of the discharge pressure of the compressor 1.
- the control unit 20 may calculate the saturation temperature of the refrigerant based on the temperature of the refrigerant near the outlet of the condenser (for example, the outdoor heat exchanger 2 during the cooling cycle).
- the control unit 20 drives the outdoor fan 3 at a predetermined rotation speed while each indoor heat exchanger 10 is frozen, while stopping each indoor fan 11. As a result, outside air is sent to the outdoor heat exchanger 2 that functions as a condenser. On the other hand, air flows by natural convection through the gaps between the fins (not shown) of the indoor heat exchanger 10. As a result, it is possible to prevent the air conditioning room from being excessively cooled.
- the control unit 20 may drive the indoor fan 11 at a low speed.
- the outdoor expansion valve 4 may be in a predetermined open state (for example, a fully open state) while the indoor heat exchanger 10 is frozen.
- control unit 20 is in the process of freezing the indoor heat exchanger 10 when the discharge temperature of the compressor 1 is equal to or lower than a predetermined value, or when the discharge superheat degree based on the discharge temperature of the compressor 1 is equal to or lower than a predetermined value.
- predetermined value is a threshold value that serves as a criterion for determining whether or not to close the bypass expansion valve 7, and is set in advance. This makes it possible to prevent the discharge temperature of the compressor 1 from becoming too low.
- step S103 the control unit 20 defrosts the indoor heat exchanger 10. That is, the control unit 20 freezes the indoor heat exchanger 10 and then causes the indoor heat exchanger 10 to function as a condenser to thaw the indoor heat exchanger 10. Specifically, the control unit 20 switches the four-way valve 5 from the cooling cycle to the heating cycle, sets the outdoor expansion valve 4 and the indoor expansion valve 12 (first expansion valve) to a predetermined opening degree, and drives the compressor 1. Let me. As a result, the indoor heat exchanger 10 functions as a condenser, and the frost of the indoor heat exchanger 10 melts. Then, the dust and dirt of the indoor heat exchanger 10 are washed away by the water accompanying the thawing of the frost.
- control unit 20 maintains the bypass expansion valve 7 (second expansion valve) in the closed state while the indoor heat exchanger 10 is thawed.
- the flow of the refrigerant through the bypass pipe W is blocked, so that a sufficient flow rate of the refrigerant flowing through the indoor heat exchanger 10 (condenser) can be secured.
- the temperature of the refrigerant rises due to endothermic heat from the outside air in the process of guiding the refrigerant to the outdoor heat exchanger 2 via the pipes J2, J4, J6, J8 and pipe J1.
- the refrigerant only evaporates on the upstream side of the outdoor expansion valve 4.
- the control unit 20 may be a part of the indoor units U1, U2, U3, U4 (for example, the indoor units U1, U2, U3) depending on the model and setting conditions of each indoor unit. While the indoor heat exchanger 10 is frozen, the remaining indoor heat exchanger 10 (for example, the indoor unit U4) may not be frozen. Even in such a case, during the thawing of the indoor heat exchanger 10, the control unit 20 keeps the indoor expansion valves 12 of all the indoor units U1, U2, U3, and U4 open (for example, fully open). As a result, it is possible to prevent the liquid refrigerant from accumulating in the indoor heat exchanger 10 of the indoor unit (for example, the indoor unit U4) that is not subject to freezing.
- the control unit 20 drives the outdoor fan 3 at a predetermined rotation speed, while maintaining each indoor fan 11 in a stopped state. As a result, it is possible to prevent the cold air accompanying the thawing of the indoor heat exchanger 10 from flowing into the air conditioning chamber from the indoor units U1, U2, U3, U4. During thawing of the indoor heat exchanger 10, the control unit 20 may drive the indoor fan 11 at a low speed.
- step S104 the control unit 20 dries the indoor heat exchanger 10.
- the control unit 20 puts each device including the compressor 1 in a stopped state, and prohibits the air conditioning operation for a predetermined period from the end of defrosting.
- the indoor heat exchanger 10 is dried by the natural convection of air.
- the control unit 20 may drive the indoor fan 11 at a low speed while the indoor heat exchanger 10 is drying.
- the control unit 20 controls the indoor expansion valve 12 based on the temperature of the indoor heat exchanger 10 and the discharge temperature of the compressor 1.
- the bypass expansion valve 7 is controlled based on the above.
- the control unit 20 uses the indoor expansion valve 12 to suppress an increase in the discharge temperature of the compressor 1 while the indoor heat exchanger 10 is frozen. If the opening degree of is increased, the following problems may occur. That is, since the refrigerant is not sufficiently depressurized by the indoor expansion valve 12, the amount of frost formed in the indoor heat exchanger 10 is reduced. Further, since the refrigerant is less likely to evaporate in the indoor heat exchanger 10, the liquid refrigerant tends to flow into the suction side of the compressor 1, and there is a high possibility that so-called liquid compression occurs.
- the indoor heat exchanger 10 can be appropriately frozen, and further, the compressor 1 can be frozen.
- the rise in discharge temperature can be suppressed. Further, there is almost no possibility that liquid compression will occur in the compressor 1 while the indoor heat exchanger 10 is frozen.
- the air conditioner 100A (see FIG. 5) is provided with a supercooler E (see FIG. 5), and the bypass expansion valve 7 (see FIG. 5) of the supercooler E is predeterminedly controlled.
- the point is different from the first embodiment. Others are the same as those in the first embodiment (see FIGS. 2 to 4). Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
- FIG. 5 is a configuration diagram including a refrigerant circuit QA of the air conditioner 100A according to the second embodiment.
- the air conditioner 100A includes a supercooler E.
- the supercooler E has a function of cooling the refrigerant condensed by the condenser (outdoor heat exchanger 2 or indoor heat exchanger 10).
- the supercooler E shown in FIG. 5 includes a first heat exchange unit Ea, a second heat exchange unit Eb, and a bypass expansion valve 7 (second expansion valve).
- the first heat exchange unit Ea is a predetermined heat transfer tube, and is included in the liquid side pipe J1.
- the liquid-side pipe J1 is a pipe through which the refrigerant condensed by the outdoor heat exchanger 2 flows when the refrigerant is circulated in the cooling cycle in the refrigerant circuit QA.
- the refrigerant condensed by the indoor heat exchanger 10 passes through the liquid side pipe J1.
- the second heat exchange section Eb is a predetermined heat transfer tube and is included in the bypass pipe WA.
- one end i1 of the bypass pipe WA is connected between the outdoor expansion valve 4 and the first heat exchange portion Ea in the pipe J1.
- the other end i2 of the bypass pipe WA is connected to the pipe J15 that connects the four-way valve 5 and the accumulator 6.
- the bypass expansion valve 7 has a function of adjusting the flow rate of the refrigerant flowing through the bypass pipe WA and reducing the pressure of the refrigerant flowing through the bypass pipe WA, and is provided in the bypass pipe WA.
- the bypass pipe WA has a second heat exchange portion Eb on the downstream side of the bypass expansion valve 7 (second expansion valve) in this bypass pipe WA. Then, heat exchange is performed between the refrigerant flowing through the first heat exchange unit Ea and the refrigerant flowing through the second heat exchange unit Eb.
- the structure of the first heat exchange section Ea and the second heat exchange section Eb include, but are not limited to, a well-known double tube structure.
- the control unit 20 (see FIG. 3) supercools the bypass expansion valve 7, the first heat exchange unit Ea, and the second heat exchange unit Eb during normal air conditioning operation (during cooling operation or heating operation).
- "functioning as a supercooler” means that the refrigerant flowing through the first heat exchange section Ea of the supercooler E is cooled by the refrigerant flowing through the second heat exchange section Eb. ing.
- the specific enthalpy of the refrigerant on the inlet side of the evaporator (indoor heat exchanger 10 or outdoor heat exchanger 2) becomes smaller, so that the difference in the specific enthalpy of the refrigerant on the inlet side and the outlet side of the evaporator is sufficiently secured. NS. Therefore, the air conditioning capacity in normal air conditioning operation can be increased.
- control unit 20 controls the bypass expansion valve 7 based on, for example, the degree of supercooling of the refrigerant cooled by the first heat exchange unit Ea of the supercooler E.
- the "supercooling degree” is calculated by subtracting the temperature of the refrigerant on the downstream side of the first heat exchange unit Ea from the saturation temperature (condensation temperature) of the refrigerant.
- control unit 20 functions as a supercooler by using the bypass expansion valve 7, the first heat exchange unit Ea, and the second heat exchange unit Eb even during the freezing process of the indoor heat exchanger 10. Let me. As a result, the specific enthalpy of the refrigerant on the inlet side of the evaporator (indoor heat exchanger 10) becomes small, so that the indoor heat exchanger 10 is easily frosted.
- the cleaning treatment of the indoor heat exchanger 10 (S101 to S104 in FIG. 4) is the same as that in the first embodiment. Further, the control of the bypass expansion valve 7 during freezing of the indoor heat exchanger 10 is the same as that of the first embodiment. That is, the control unit 20 controls the indoor expansion valve 12 (first expansion valve) based on the temperature of the indoor heat exchanger 10 during the process of freezing the indoor heat exchanger 10, and the discharge temperature of the compressor 1. The bypass expansion valve 7 (second expansion valve) is controlled based on the above. Further, the control unit 20 increases the opening degree of the bypass expansion valve 7 as the discharge temperature (or discharge superheat degree) of the compressor 1 increases during the freezing process of the indoor heat exchanger 10. As a result, a sufficient amount of frost can be attached to the indoor heat exchanger 10, and it is possible to prevent the discharge temperature of the compressor 1 from becoming too high.
- the control unit 20 controls the bypass expansion valve 7 of the supercooler E based on the discharge temperature of the compressor 1. This makes it possible to prevent the discharge temperature of the compressor 1 from becoming too high during freezing of the indoor heat exchanger 10. Further, the supercooler E used for improving the air conditioning capacity can also be used (also used) for freezing the indoor heat exchanger 10.
- the bypass pipe WB instead of the bypass expansion valve 7 (see FIG. 1) of the first embodiment, the bypass pipe WB (see FIG. 6) has a capillary tube 31 (see FIG. 6) and a two-way valve 32 (see FIG. 6). (See) is provided, which is different from the first embodiment. Others are the same as those in the first embodiment (see FIGS. 2 to 4). Therefore, a part different from the first embodiment will be described, and a description of the overlapping part will be omitted.
- FIG. 6 is a configuration diagram including a refrigerant circuit QB of the air conditioner 100B according to the third embodiment.
- the air conditioner 100B includes a capillary tube 31 and a two-way valve 32.
- the capillary tube 31 is a pipe for reducing the pressure of the refrigerant flowing through the bypass pipe WB, and is provided in the bypass pipe WB.
- the two-way valve 32 is a solenoid valve that switches the flow / shutoff of the refrigerant in the bypass pipe WB. That is, when the two-way valve 32 is in the valve open state, the refrigerant flows through the bypass pipe WB, while when the two-way valve 32 is in the valve closed state, the refrigerant flows in the bypass pipe WB. Is blocked.
- a two-way valve 32 is provided on the downstream side of the capillary tube 31 in the bypass pipe WB. Since the connection points of one end i1 and the other end i2 of the bypass pipe WB are the same as those of the bypass pipe W (see FIG. 1) of the first embodiment, the description thereof will be omitted.
- the control unit 20 controls the indoor expansion valve 12 based on the temperature of the indoor heat exchanger 10 while the indoor heat exchanger 10 is frozen, and the unit is based on the discharge temperature of the compressor 1.
- the valve opening time of the two-way valve 32 per hour is adjusted.
- the control unit 20 lengthens the valve opening time of the two-way valve 32 per unit time as the discharge temperature (or discharge superheat degree) of the compressor 1 increases. As a result, the flow rate per unit time in the bypass pipe WB is increased, so that an increase in the discharge temperature of the compressor 1 can be suppressed.
- valve opening time the sum of the times during which the two-way valve 32 is in the open state.
- Valve opening time the control unit 20 may perform the following processing regarding the adjustment of the valve opening time of the two-way valve 32. For example, when the two-way valve 32 is opened and closed a predetermined number of times per unit time, the higher the discharge temperature (or the degree of discharge superheat) of the compressor 1, the more the control unit 20 causes the two-way valve 32 to open and close. The valve opening time per valve opening may be lengthened. As a result, it is possible to suppress an increase in the discharge temperature of the compressor 1.
- control unit 20 maintains the two-way valve 32 in the closed state during the thawing of the indoor heat exchanger 10. As a result, a sufficient flow rate of the refrigerant flowing through the indoor heat exchanger 10 can be secured.
- control of each device other than the two-way valve 32 is the same as that of the first embodiment, and thus the description thereof will be omitted.
- the capillary tube 31 and the two-way valve 32 are used to suppress an increase in the discharge temperature of the compressor 1 and enhance the reliability of the air conditioner 100B. be able to.
- the air conditioner 100 according to the present invention has been described above in each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.
- the process of freezing the indoor heat exchanger 10 has been described, but the present invention is not limited to this. That is, instead of freezing the indoor heat exchanger 10, dew condensation may occur on the indoor heat exchanger 10.
- the control unit 20 determines that the temperature of the indoor heat exchanger 10 is equal to or lower than the dew point of the outside air and is higher than the predetermined freezing temperature.
- the opening degree of 12 and the like are adjusted, and the state is continued for a predetermined time.
- the above-mentioned “freezing temperature” is a temperature at which the moisture contained in the air begins to freeze in the indoor heat exchanger 10 when the temperature of the indoor heat exchanger 10 is gradually lowered.
- the control content is the same as in the case of “freezing” except that the opening degree of the indoor expansion valve 12 is larger in “condensation” than in the case of “freezing” the indoor heat exchanger 10. The same can be said for the second embodiment.
- the control unit 20 controls the indoor expansion valve 12 (first expansion valve) based on the temperature of the indoor heat exchanger 10 during the process of dew condensation on the indoor heat exchanger 10, and also discharges the compressor 1.
- the bypass expansion valve 7 (second expansion valve) is controlled based on the above.
- the control unit 20 has described the process of causing the indoor heat exchanger 10 to function as a condenser and thawing the indoor heat exchanger 10, but the present invention is not limited to this. ..
- the control unit 20 may set the opening degree of the indoor expansion valve 12 to be larger than that at the time of freezing (for example, fully open). As a result, the high-temperature refrigerant flows from the outdoor heat exchanger 2 through the indoor expansion valve 12 into the indoor heat exchanger 10, so that the indoor heat exchanger 10 is thawed.
- the present invention is not limited to this.
- thawing and drying of the indoor heat exchanger 10 may be omitted as appropriate. This is because the natural convection of air in the indoor unit promotes thawing and drying of the indoor heat exchanger 10.
- one end i1 of the bypass pipe WA is connected between the first heat exchange portion Ea and the outdoor expansion valve 4 in the liquid side pipe J1 .
- one end i1 of the bypass pipe WA may be connected between the first heat exchange portion Ea and the blocking valve Vb in the liquid side pipe J1.
- the present invention is not limited to this. That is, the two-way valve 32 may be provided on the upstream side of the capillary tube 31 in the bypass pipe WB.
- the control unit 20 may adjust the number of valve opening times of the two-way valve 32 per unit time. ..
- control unit 20 increases the number of times the two-way valve 32 is opened per unit time as the discharge temperature (or discharge superheat degree) of the compressor 1 increases. As a result, the flow rate per unit time in the bypass pipe WB is increased, so that an increase in the discharge temperature of the compressor 1 can be suppressed. Both the number of valve opening times per unit time of the two-way valve 32 and the valve opening time per one time of the two-way valve 32 may be adjusted. Such processing is also included in the matter that the control unit 20 adjusts the valve opening time of the two-way valve per unit time.
- each embodiment can be combined as appropriate.
- the second embodiment (see FIG. 5) and the third embodiment (see FIG. 6) may be combined and configured as follows. That is, instead of the bypass expansion valve 7 of the supercooler E (second embodiment), the capillary tube 31 and the two-way valve 32 (third embodiment) may be provided in the bypass pipe WA. Since the control of the bypass expansion valve 7 during freezing of the indoor heat exchanger 10 is the same as that of the third embodiment, the description thereof will be omitted.
- the types of indoor units U1 to U4 are not particularly limited. For example, any one of a plurality of types such as a four-way cassette type, a ceiling-embedded type, a floor-standing type, and a wall-mounted type may be used, or a plurality of types of indoor units may be mixed.
- the configuration in which the outdoor unit Uo (see FIG. 1) includes the outdoor expansion valve 4 and the four-way valve 5 has been described, but the present invention is not limited to this.
- the outdoor expansion valve 4 and the four-way valve 5 may be omitted.
- the configuration in which four indoor units U1, U2, U3, U4 (see FIG. 1) are provided has been described, but the number of indoor units connected to the outdoor unit Uo is one. It may be two or three, or five or more. That is, at least one indoor unit needs to be connected to the outdoor unit Uo.
- each embodiment the configuration in which the air conditioner 100 (see FIG. 1) includes one outdoor unit Uo has been described, but a configuration in which a plurality of outdoor units are connected in parallel in one system may be used. .. Further, each embodiment can be applied to various types of air conditioners such as a multi air conditioner for buildings (VRF: Variable Refrigerant Flow), a packaged air conditioner (PAC: Packaged Air Conditioner), and a room air conditioner.
- VRF Variable Refrigerant Flow
- PAC Packaged Air Conditioner
- each embodiment is described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the configurations described. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of each embodiment.
- the above-mentioned mechanism and configuration show what is considered necessary for explanation, and do not necessarily show all the mechanisms and configurations in the product.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
室内熱交換器を清潔な状態にする、信頼性の高い空気調和機を提供する。空気調和機(100)は、冷媒回路(Q)を備えるとともに、室外熱交換器(2)で凝縮した冷媒の一部を圧縮機(1)の吸入側に導くバイパス配管(W)と、バイパス配管(W)に設けられるバイパス用膨張弁(7)と、制御部と、を備えている。制御部は、室内熱交換器(10)を凍結又は結露させる処理中、室内熱交換器(10)の温度に基づいて、室内膨張弁(12)を制御するとともに、圧縮機(1)の吐出温度に基づいて、バイパス用膨張弁(7)を制御する。
Description
本発明は、空気調和機に関する。
空気調和機の室内熱交換器を清潔な状態にする技術として、例えば、特許文献1には、被洗浄熱交換器を着霜させた後、除霜を行うことが記載されている。さらに、特許文献1には、空気調和機の高低圧力差が予め設定された条件に到達した場合、四方弁を制御して室内熱交換器の除霜に切り替えることが記載されている。
例えば、複数台の室内機を備えるマルチ型の空気調和機では、室外機と各室内機とを接続する配管の長さが比較的長くなることが多い。このような構成で、室外温度が高いときに室内熱交換器を凍結させると、室内熱交換器から圧縮機に導かれる冷媒の温度が、外気からの吸熱によって上昇する。なお、室内熱交換器の凍結中には、冷房サイクルで冷媒が循環するが、通常の冷房運転時と比較して、ガス冷媒が通流する配管の温度が低くなる。その結果、前記した配管を通流するガス冷媒が外気から吸熱しやすくなり、場合によっては、圧縮機の吐出温度が所定の許容範囲を超える可能性がある。このような、室内熱交換器の凍結に特有の問題点に着目した技術については、特許文献1には記載されていない。
そこで、本発明は、室内熱交換器を清潔な状態にする、信頼性の高い空気調和機を提供することを課題とする。
前記した課題を解決するために、本発明に係る空気調和機は、圧縮機及び室外熱交換器を有する室外機と、第1膨張弁及び室内熱交換器を有する少なくとも1台の室内機と、が配管を介して接続されてなる冷媒回路を備えるとともに、前記室外熱交換器で凝縮した冷媒の一部を前記圧縮機の吸入側に導くバイパス配管と、前記バイパス配管に設けられる第2膨張弁と、少なくとも前記圧縮機、前記第1膨張弁、及び前記第2膨張弁を制御する制御部と、を備え、前記制御部は、前記室内熱交換器を凍結又は結露させる処理中、前記室内熱交換器の温度に基づいて、前記第1膨張弁を制御するとともに、前記圧縮機の吐出温度に基づいて、前記第2膨張弁を制御することとした。
本発明によれば、室内熱交換器を清潔な状態にする、信頼性の高い空気調和機を提供できる。
≪第1実施形態≫
<空気調和機の構成>
図1は、第1実施形態に係る空気調和機100の冷媒回路Qを含む構成図である。
なお、図1では、冷房サイクル(冷房運転時の冷凍サイクル)における冷媒の流れを実線矢印で示す一方、暖房サイクル(暖房運転時の冷凍サイクル)における冷媒の流れを破線矢印で示している。また、図1では、室外熱交換器2や4つの室内熱交換器10の付近における空気の流れを白抜き矢印で示している。
<空気調和機の構成>
図1は、第1実施形態に係る空気調和機100の冷媒回路Qを含む構成図である。
なお、図1では、冷房サイクル(冷房運転時の冷凍サイクル)における冷媒の流れを実線矢印で示す一方、暖房サイクル(暖房運転時の冷凍サイクル)における冷媒の流れを破線矢印で示している。また、図1では、室外熱交換器2や4つの室内熱交換器10の付近における空気の流れを白抜き矢印で示している。
空気調和機100は、冷房運転や暖房運転等の空調を行う機器である。図1では、一例として、1台の室外機Uoと、4台の室内機U1,U2,U3,U4と、が配管を介して所定に接続された1系統のマルチ型の空気調和機100を示している。
空気調和機100は、室外機Uoに設けられる機器として、圧縮機1と、室外熱交換器2と、室外ファン3と、室外膨張弁4と、四方弁5と、アキュムレータ6と、を備えている。また、空気調和機100は、室外機Uoに設けられる機器として、前記した構成の他に、バイパス配管Wと、バイパス用膨張弁7(第2膨張弁)と、室外温度センサ8と、吐出温度センサ9と、阻止弁Va,Vbと、を備えている。
圧縮機1は、低温低圧のガス冷媒を圧縮し、高温高圧のガス冷媒として吐出する機器であり、駆動源である圧縮機モータ1a(図3参照)を備えている。このような圧縮機1として、例えば、スクロール式圧縮機やロータリ式圧縮機が用いられる。
室外熱交換器2は、その伝熱管(図示せず)を通流する冷媒と、室外ファン3から送り込まれる外気と、の間で熱交換が行われる熱交換器である。室外熱交換器2の一端g1は、四方弁5の切替えによって圧縮機1の吸入側又は吐出側に接続され、他端g2は液側の配管J1に接続されている。
室外ファン3は、室外熱交換器2に外気を送り込むファンである。室外ファン3は、駆動源である室外ファンモータ3aを備え、室外熱交換器2の付近に設置されている。
室外膨張弁4は、室外熱交換器2に流れる冷媒の流量を調整したり、室外熱交換器2を蒸発器として機能させる際に冷媒を減圧したりする電子膨張弁であり、液側の配管J1に設けられている。
室外膨張弁4は、室外熱交換器2に流れる冷媒の流量を調整したり、室外熱交換器2を蒸発器として機能させる際に冷媒を減圧したりする電子膨張弁であり、液側の配管J1に設けられている。
四方弁5は、空調時の運転モードに応じて、冷媒の流路を所定に切り替える弁である。
アキュムレータ6は、四方弁5を介して流れ込む冷媒を気液分離する殻状部材である。アキュムレータ6によって気液分離された後、ガス状の冷媒が圧縮機1の吸入側に導かれる。
アキュムレータ6は、四方弁5を介して流れ込む冷媒を気液分離する殻状部材である。アキュムレータ6によって気液分離された後、ガス状の冷媒が圧縮機1の吸入側に導かれる。
バイパス配管Wは、凝縮器(室外熱交換器2又は室内熱交換器10)で凝縮した冷媒の一部を圧縮機1の吸入側に導く配管である。図1の例では、バイパス配管Wの一端i1が、配管J1において室外膨張弁4と阻止弁Vbとの間に接続されている。また、バイパス配管Wの他端i2が、四方弁5とアキュムレータ6とを接続する配管J15に接続されている。このように、アキュムレータ6の上流側の配管J15にバイパス配管Wが接続されている構成も、「バイパス配管Wを介して、圧縮機1の吸入側に冷媒を導く」という事項に含まれる。
バイパス用膨張弁7(第2膨張弁)は、バイパス配管Wを通流する冷媒の流量を調整したり、バイパス配管Wを通流する冷媒を減圧したりする機能を有し、バイパス配管Wに設けられている。
室外温度センサ8は、室外温度(外気の温度)を検出するセンサであり、室外機Uoの所定箇所(図1の例では、室外熱交換器2の空気吸込側)に設置されている。
吐出温度センサ9は、圧縮機1から吐出される冷媒の温度を検出するセンサである。図1の例では、吐出温度センサ9は、圧縮機1の吐出側の配管J16に設けられている。なお、圧縮機1のハウジング(図示せず)において、配管J16との接続箇所付近に吐出温度センサ9が設置されるようにしてもよい。
その他、図1では図示していないが、圧縮機1の吸入圧力・吸入温度・吐出圧力のうち一つ又は複数を検出するための各センサが適宜に設けられていてもよい。
吐出温度センサ9は、圧縮機1から吐出される冷媒の温度を検出するセンサである。図1の例では、吐出温度センサ9は、圧縮機1の吐出側の配管J16に設けられている。なお、圧縮機1のハウジング(図示せず)において、配管J16との接続箇所付近に吐出温度センサ9が設置されるようにしてもよい。
その他、図1では図示していないが、圧縮機1の吸入圧力・吸入温度・吐出圧力のうち一つ又は複数を検出するための各センサが適宜に設けられていてもよい。
阻止弁Va,Vbは、空気調和機100の据付後に開弁されることで、室外機Uoに封入されている冷媒を冷媒回路Qの全体に行き渡らせるための弁である。一方の阻止弁Vaはガス側の配管J10に設けられ、他方の阻止弁Vbは液側の配管J1に設けられている。
また、空気調和機100は、室内機U1に設けられる機器として、室内熱交換器10と、室内ファン11と、室内膨張弁12(第1膨張弁)と、室内温度センサ13と、室内熱交換器温度センサ14と、を備えている。
室内熱交換器10は、その伝熱管(図示せず)を通流する冷媒と、室内ファン11から送り込まれる室内空気(空調室の空気)と、の間で熱交換が行われる熱交換器である。室内熱交換器10の一端h1はガス側の配管J3に接続され、他端h2は液側の配管J2に接続されている。
室内熱交換器10は、その伝熱管(図示せず)を通流する冷媒と、室内ファン11から送り込まれる室内空気(空調室の空気)と、の間で熱交換が行われる熱交換器である。室内熱交換器10の一端h1はガス側の配管J3に接続され、他端h2は液側の配管J2に接続されている。
室内ファン11は、室内熱交換器10に室内空気を送り込むファンである。室内ファン11は、駆動源である室内ファンモータ11aを有し、室内熱交換器10の付近に設置されている。
室内膨張弁12は、室内熱交換器10に流れる冷媒の流量を調整したり、室内熱交換器10を蒸発器として機能させる際に冷媒を減圧したりする電子膨張弁であり、液側の配管J2に設けられている。
室内温度センサ13は、室内空気の温度を検出するセンサである。図1の例では、室内熱交換器10の空気吸込側に室内温度センサ13が設置されている。
室内膨張弁12は、室内熱交換器10に流れる冷媒の流量を調整したり、室内熱交換器10を蒸発器として機能させる際に冷媒を減圧したりする電子膨張弁であり、液側の配管J2に設けられている。
室内温度センサ13は、室内空気の温度を検出するセンサである。図1の例では、室内熱交換器10の空気吸込側に室内温度センサ13が設置されている。
室内熱交換器温度センサ14は、室内熱交換器10の温度を検出するセンサである。図1の例では、配管J2において室内熱交換器10の他端h2付近に室内熱交換器温度センサ14が設置されている。
なお、室内熱交換器温度センサ14の位置は、図1の例に限定されない。例えば、配管J3において室内熱交換器10の一端h1付近に室内熱交換器温度センサ14が設置されてもよい。また、室内熱交換器10に直接的に室内熱交換器温度センサ14が設置されてもよい。
残り3台の室内機U2,U3,U4については、前記した室内機U1と同様の構成であるから、説明を省略する。
なお、室内熱交換器温度センサ14の位置は、図1の例に限定されない。例えば、配管J3において室内熱交換器10の一端h1付近に室内熱交換器温度センサ14が設置されてもよい。また、室内熱交換器10に直接的に室内熱交換器温度センサ14が設置されてもよい。
残り3台の室内機U2,U3,U4については、前記した室内機U1と同様の構成であるから、説明を省略する。
液側接続部K1,K2,K3は、冷房サイクル中には冷媒を分流させ、また、暖房サイクル中には冷媒を合流させるものである。例えば、冷房サイクル中には、液側の配管J1を通流する冷媒が、液側接続部K1,K2,K3を順次に介して、4つの室内熱交換器10に所定に分配される。なお、液側の配管J1は、その一端が室外熱交換器2の他端g2に接続され、他端が液側接続部K1(室外熱交換器2が凝縮器として機能する場合の最初の分流箇所)に接続されている。
ガス側接続部K4,K5,K6は、冷房サイクル中には冷媒を合流させ、また、暖房サイクル中には冷媒を分流させるものである。例えば、冷房サイクル中には、4つの室内熱交換器10からガス側接続部K4,K5,K6を順次に介して、冷媒が合流するようになっている。
そして、空調時の運転モードに応じて、冷媒回路Qにおいて周知の冷凍サイクル(図1に示す冷房サイクル又は暖房サイクル)で冷媒が循環するようになっている。例えば、冷房サイクルでは、圧縮機1、室外熱交換器2(凝縮器)、室外膨張弁4、室内膨張弁12、及び室内熱交換器10(蒸発器)を順次に介して、冷媒が循環する。一方、暖房サイクルでは、圧縮機1、室内熱交換器10(凝縮器)、室内膨張弁12、室外膨張弁4、及び室外熱交換器2(蒸発器)を順次に介して、冷媒が循環する。
図2は、空気調和機100の各機器の接続関係を示す説明図である。
図2に示すように、空気調和機100は、前記した構成の他に、リモコン15と、集中管理機器16と、を備えている。また、室外機Uoは室外制御回路17を備える一方、室内機U1,U2,U3,U4は、それぞれ、室内制御回路18を備えている。
図2に示すように、空気調和機100は、前記した構成の他に、リモコン15と、集中管理機器16と、を備えている。また、室外機Uoは室外制御回路17を備える一方、室内機U1,U2,U3,U4は、それぞれ、室内制御回路18を備えている。
室外制御回路17及び室内制御回路18は、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。
図2に示すように、室外制御回路17は、配線m11を介して室外温度センサ8に接続され、また、配線m12を介して吐出温度センサ9に接続されている。そして、室外温度センサ8や吐出温度センサ9の検出値の他、リモコン15からの信号等に基づいて、室外制御回路17が各機器の制御指令値を算出するようになっている。
さらに、室外制御回路17は、通信線m3を介して、室内制御回路18に接続されている。室内制御回路18は、配線m21を介して室内温度センサ13に接続され、また、配線m22を介して室内熱交換器温度センサ14に接続されている。これらの各検出値は、通信線m3を介して、室内制御回路18から室外制御回路17に伝達される。そして、室内制御回路18は、室外制御回路17によって算出された制御指令値に基づき、室内ファンモータ11a(図1参照)や室内膨張弁12(図1参照)を制御するようになっている。
図2の例では、4つのリモコン15は、4台の室内機U1,U2,U3,U4のそれぞれの室内制御回路18と一対一で対応するように、配線m4を介して接続されているが、1つのリモコン15に複数台の室内機が接続されるようにしてもよい。
室内機U1に接続されているリモコン15は、ユーザの操作によって、室内機U1に所定の制御指令を与える機能を有している。前記した制御指令として、空気調和機100の運転/停止や、運転モードの切替えや設定温度・風量・風向の変更の他、後記する洗浄処理の開始が挙げられる。なお、他の室内機U2,U3,U4についても同様である。
室内機U1に接続されているリモコン15は、ユーザの操作によって、室内機U1に所定の制御指令を与える機能を有している。前記した制御指令として、空気調和機100の運転/停止や、運転モードの切替えや設定温度・風量・風向の変更の他、後記する洗浄処理の開始が挙げられる。なお、他の室内機U2,U3,U4についても同様である。
集中管理機器16は、4つのリモコン15の表示や設定等を制御する装置であり、通信線m5を介して、室外制御回路17に接続されている。なお、ユーザ(管理者)が集中管理機器16を所定に操作することで、空調の設定の他、4つのリモコン15における表示のさせ方等を変更することも可能である。
図3は、空気調和機100の機能ブロック図である。
なお、図3では、4台の室内機U1,U2,U3,U4のうち1台の室内機U1を図示し、残り3台の室内機U2,U3,U4の図示を省略している。
図3に示すように、室外制御回路17は、記憶部17aと、室外制御部17bと、を備えている。記憶部17aには、所定のプログラムや各センサの検出値の他、集中管理機器16から入力されたデータ等が格納される。室外制御部17bは、記憶部17aに格納されているデータに基づいて、圧縮機モータ1a、四方弁5、室外膨張弁4、室外ファンモータ3a、バイパス用膨張弁7等を制御する。
なお、図3では、4台の室内機U1,U2,U3,U4のうち1台の室内機U1を図示し、残り3台の室内機U2,U3,U4の図示を省略している。
図3に示すように、室外制御回路17は、記憶部17aと、室外制御部17bと、を備えている。記憶部17aには、所定のプログラムや各センサの検出値の他、集中管理機器16から入力されたデータ等が格納される。室外制御部17bは、記憶部17aに格納されているデータに基づいて、圧縮機モータ1a、四方弁5、室外膨張弁4、室外ファンモータ3a、バイパス用膨張弁7等を制御する。
一方、室内制御回路18は、記憶部18aと、室内制御部18bと、を備えている。
記憶部18aには、所定のプログラムや各センサの検出値の他、リモコン15を介して入力されたデータ等が格納される。室内制御部18bは、記憶部18aに格納されているデータに基づいて、室内膨張弁12や室内ファンモータ11aの他、風向板用モータ19等を所定に制御する。以下では、室外制御回路17及び室内制御回路18を総称して、「制御部20」という。
なお、図3に示す風向板用モータ19は、室内機U1の風向板(図示せず)の角度を調整することで、室内に吹き出される空気の風向きを調整するモータである。
記憶部18aには、所定のプログラムや各センサの検出値の他、リモコン15を介して入力されたデータ等が格納される。室内制御部18bは、記憶部18aに格納されているデータに基づいて、室内膨張弁12や室内ファンモータ11aの他、風向板用モータ19等を所定に制御する。以下では、室外制御回路17及び室内制御回路18を総称して、「制御部20」という。
なお、図3に示す風向板用モータ19は、室内機U1の風向板(図示せず)の角度を調整することで、室内に吹き出される空気の風向きを調整するモータである。
次に、室内熱交換器10(図1参照)を洗浄するための一連の処理について説明する。
室内熱交換器10の空気吸込側には、塵や埃を捕集するためのフィルタ(図示せず)が設けられていることが多い。しかしながら、細かい塵や埃がフィルタを通り抜けて、室内熱交換器10に付着する可能性がある。したがって、室内熱交換器10を定期的に洗浄することが望ましい。そこで、第1実施形態では、室内熱交換器10を凍結(着霜)させた後、室内熱交換器10の氷や霜を溶かすことで、室内熱交換器10を洗浄するようにしている。このような一連の処理を、室内熱交換器10の「洗浄処理」という。
室内熱交換器10の空気吸込側には、塵や埃を捕集するためのフィルタ(図示せず)が設けられていることが多い。しかしながら、細かい塵や埃がフィルタを通り抜けて、室内熱交換器10に付着する可能性がある。したがって、室内熱交換器10を定期的に洗浄することが望ましい。そこで、第1実施形態では、室内熱交換器10を凍結(着霜)させた後、室内熱交換器10の氷や霜を溶かすことで、室内熱交換器10を洗浄するようにしている。このような一連の処理を、室内熱交換器10の「洗浄処理」という。
図4は、空気調和機の制御部が実行する処理のフローチャートである(適宜、図1、図3を参照)。
なお、図4では、洗浄処理以外の処理(通常の空調運転等)については、省略している。また、図4の「START」時には、室外機Uoの他、室内機U1,U2,U3,U4が停止中であるものとする。
なお、図4では、洗浄処理以外の処理(通常の空調運転等)については、省略している。また、図4の「START」時には、室外機Uoの他、室内機U1,U2,U3,U4が停止中であるものとする。
ステップS101において制御部20は、室内熱交換器10の洗浄処理の開始条件が満たされているか否かを判定する。例えば、制御部20は、4台の室内機U1,U2,U3,U4のうち、集中管理機器16で設定された所定の室内機において、前回の洗浄処理の終了時からの空調運転時間の積算値(又は、室内ファン11の駆動時間の積算値)が所定値に達したか否かを判定する。なお、4台の室内機U1,U2,U3,U4のうち、空調運転時間等の積算値が所定値に達した室内機で個別に洗浄処理を行うようにしてもよい。
ステップS101において、室内熱交換器10の洗浄処理の開始条件が満たされていない場合(S101:No)、制御部20の処理は「START」に戻る(RETURN)。一方、ステップS101において、室内熱交換器10の洗浄処理の開始条件が満たされている場合(S101:Yes)、制御部20の処理はステップS102に進む。
ステップS102において制御部20は、室内熱交換器10を凍結させる。すなわち、制御部20は、室内熱交換器10を蒸発器として機能させ、室内熱交換器10を着霜(凍結)させる。より詳しく説明すると、制御部20は、四方弁5の弁体(図示せず)を冷房サイクルの位置とし、圧縮機1を所定の回転速度で駆動させ、さらに、室内膨張弁12やバイパス用膨張弁7を次のように制御する。
すなわち、制御部20は、室内熱交換器10を凍結させる処理中、室内熱交換器温度センサ14の検出値(室内熱交換器10の温度)に基づいて、室内膨張弁12(第1膨張弁)を制御する。例えば、室内熱交換器温度センサ14の検出値が所定の目標温度(氷点下の値)よりも高い場合、制御部20は、室内膨張弁12の開度を現状よりも小さくする。一方、室内熱交換器温度センサ14の検出値が所定の目標温度よりも低い場合、制御部20は、室内膨張弁12の開度を現状よりも大きくする。これによって、室内熱交換器10の温度が所定の目標温度に近づき、室内熱交換器10の着霜が進む。
また、制御部20は、室内熱交換器10を凍結させる処理中、圧縮機1の吐出温度に基づいて、バイパス用膨張弁7(第2膨張弁)を制御する。例えば、制御部20は、室内熱交換器10の凍結中、圧縮機1の吐出温度が高いほど、バイパス用膨張弁7の開度を大きくする。バイパス用膨張弁7の開度が大きいほど、バイパス配管Wを介して、圧縮機1の吸入側に導かれる冷媒の量が多くなる。その結果、室内熱交換器10で吸熱していない比較的低温の冷媒が圧縮機1の吸入側に導かれるため、圧縮機1の吐出温度を所定の許容温度以下に抑えることができる。
例えば、ガス側の配管J3,J5,J7,J9,J10の長さが比較的長い構成で、外気温度が高い環境下では、室内熱交換器10の凍結中に次のような事態が生じやすい。すなわち、室内熱交換器10の凍結中、室内熱交換器10で蒸発した冷媒がガス側の配管J3,J5,J7,J9,J10を通流する過程で外気から吸熱し、冷媒の温度が上昇して、圧縮機1の吐出温度が高くなりやすい。これに対して、第1実施形態では、制御部20がバイパス用膨張弁7を所定に制御することで、バイパス配管Wを介して、比較的低温の冷媒を圧縮機1の吸入側に導くようにしている。これによって、圧縮機1の吐出温度が高くなりすぎることを防止できる。また、前記したように、室内熱交換器10の温度に基づいて、室内膨張弁12の開度が調整されるため、圧縮機1の吐出温度の上昇を抑えつつ、室内熱交換器10の凍結を促進できる。
なお、バイパス用膨張弁7の制御は、前記した例に限定されない。例えば、室内熱交換器10の凍結中、制御部20が、圧縮機1の吐出温度に基づく吐出過熱度が高いほど、バイパス用膨張弁7の開度を大きくするようにしてもよい。このような制御でも、圧縮機1の吐出温度の上昇を抑制できる。
前記した「吐出過熱度」とは、圧縮機1の吐出側における冷媒の過熱度である。また、冷媒の「過熱度」とは、ガス冷媒の実際の温度(吐出温度センサ9の検出値)から、ガス冷媒の飽和温度(蒸発温度ともいう)を減算した値である。また、冷媒の飽和温度は、例えば、圧縮機1の吐出圧力の検出値に基づいて算出される。なお、凝縮器(例えば、冷房サイクル時の室外熱交換器2)の出口付近の冷媒の温度に基づいて、制御部20が、冷媒の飽和温度を算出するようにしてもよい。
制御部20は、それぞれの室内熱交換器10の凍結中、室外ファン3を所定の回転速度で駆動させる一方、それぞれの室内ファン11を停止状態にする。その結果、凝縮器として機能する室外熱交換器2に外気が送り込まれる。一方、室内熱交換器10のフィン(図示せず)の隙間を介して、自然対流で空気が流れる。これによって、空調室が過度に冷やされることを抑制できる。なお、それぞれの室内熱交換器10の凍結中、制御部20が室内ファン11を低速で駆動させてもよい。室外膨張弁4については、室内熱交換器10の凍結中、所定に開いた状態(例えば、全開の状態)であってもよい。
また、制御部20は、室内熱交換器10の凍結の処理中、圧縮機1の吐出温度が所定値以下である場合、又は、圧縮機1の吐出温度に基づく吐出過熱度が所定値以下である場合、バイパス用膨張弁7(第2膨張弁)を閉弁することが好ましい。前記した「所定値」は、バイパス用膨張弁7を閉弁するか否かの判定基準となる閾値であり、予め設定されている。これによって、圧縮機1の吐出温度が低くなりすぎることを防止できる。
次に、ステップS103において制御部20は、室内熱交換器10を解凍する。すなわち、制御部20は、室内熱交換器10の凍結を行った後、室内熱交換器10を凝縮器として機能させ、室内熱交換器10を解凍する。具体的に説明すると、制御部20は、四方弁5を冷房サイクルから暖房サイクルに切り替え、室外膨張弁4や室内膨張弁12(第1膨張弁)を所定開度にして、圧縮機1を駆動させる。これによって、室内熱交換器10が凝縮器として機能し、室内熱交換器10の霜が溶ける。そして、霜の解凍に伴う水で、室内熱交換器10の塵や埃が洗い流される。
また、制御部20は、室内熱交換器10の解凍中、バイパス用膨張弁7(第2膨張弁)を閉弁状態で維持する。これによって、バイパス配管Wを介した冷媒の流れが遮断されるため、室内熱交換器10(凝縮器)を通流する冷媒の流量を十分に確保できる。なお、室内熱交換器10の解凍中、配管J2,J4,J6,J8や配管J1を介して冷媒が室外熱交換器2に導かれる過程で、外気からの吸熱によって冷媒の温度が上昇しても、特に問題はない。室外膨張弁4の上流側で冷媒の蒸発が進むにすぎないからである。
なお、空調室の温度の他、各室内機の機種や設定条件によっては、制御部20が、室内機U1,U2,U3,U4のうち一部(例えば、室内機U1,U2,U3)の室内熱交換器10を凍結させる一方、残り(例えば、室内機U4)の室内熱交換器10を凍結させないこともある。このような場合でも、室内熱交換器10の解凍中、制御部20は、全ての室内機U1,U2,U3,U4の室内膨張弁12を開いた状態(例えば、全開)にする。これによって、凍結対象外の室内機(例えば、室内機U4)の室内熱交換器10に液冷媒が溜まり込むことを防止できる。
また、室内熱交換器10の解凍中、制御部20は、室外ファン3を所定の回転速度で駆動させる一方、それぞれの室内ファン11を停止状態で維持する。これによって、室内熱交換器10の解凍に伴う冷気が室内機U1,U2,U3,U4から空調室に流れ込むことを抑制できる。なお、室内熱交換器10の解凍中、制御部20が、室内ファン11を低速で駆動させるようにしてもよい。
次に、ステップS104において制御部20は、室内熱交換器10を乾燥させる。例えば、制御部20は、圧縮機1を含む各機器を停止状態とし、解凍の終了時から所定期間は空調運転を禁止する。これによって、空気の自然対流で室内熱交換器10の乾燥が進む。また、室内熱交換器10の乾燥に伴う冷気が室内機U1,U2,U3,U4から空調室に流れ込むことを抑制できる。なお、室内熱交換器10の乾燥中、制御部20が、室内ファン11を低速で駆動させるようにしてもよい。ステップS104の処理を行った後、制御部20の処理は「START」に戻る(RETURN)。
<効果>
第1実施形態によれば、室内熱交換器10を凍結させる処理中、制御部20が、室内熱交換器10の温度に基づいて、室内膨張弁12を制御するとともに、圧縮機1の吐出温度に基づいて、バイパス用膨張弁7を制御する。これによって、室内熱交換器10に十分な量の霜を付着させることができ、さらに、圧縮機1の吐出温度が高くなりすぎることを防止できる。
第1実施形態によれば、室内熱交換器10を凍結させる処理中、制御部20が、室内熱交換器10の温度に基づいて、室内膨張弁12を制御するとともに、圧縮機1の吐出温度に基づいて、バイパス用膨張弁7を制御する。これによって、室内熱交換器10に十分な量の霜を付着させることができ、さらに、圧縮機1の吐出温度が高くなりすぎることを防止できる。
なお、仮に、バイパス配管Wやバイパス用膨張弁7が設けられていない構成で、室内熱交換器10の凍結中、圧縮機1の吐出温度の上昇を抑えるために制御部20が室内膨張弁12の開度を大きくすると、次のような問題が生じる可能性がある。すなわち、室内膨張弁12で冷媒が十分に減圧されないため、室内熱交換器10の着霜量が減少する。さらに、室内熱交換器10において冷媒が蒸発しにくくなるため、圧縮機1の吸入側に液冷媒が流れ込みやすくなり、いわゆる液圧縮が生じる可能性が高くなる。
これに対して第1実施形態では、室内膨張弁12やバイパス用膨張弁7について、前記した制御が行われるため、室内熱交換器10を適切に凍結させることができ、さらに、圧縮機1の吐出温度の上昇を抑制できる。また、室内熱交換器10の凍結中、圧縮機1で液圧縮が生じるおそれもほとんどない。このように、第1実施形態によれば、室内熱交換器10を清潔な状態にする、信頼性の高い空気調和機100を提供できる。
≪第2実施形態≫
第2実施形態は、空気調和機100A(図5参照)が過冷却器E(図5参照)を備え、この過冷却器Eのバイパス用膨張弁7(図5参照)等が所定に制御される点が、第1実施形態とは異なっている。なお、その他については、第1実施形態(図2~図4参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
第2実施形態は、空気調和機100A(図5参照)が過冷却器E(図5参照)を備え、この過冷却器Eのバイパス用膨張弁7(図5参照)等が所定に制御される点が、第1実施形態とは異なっている。なお、その他については、第1実施形態(図2~図4参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
図5は、第2実施形態に係る空気調和機100Aの冷媒回路QAを含む構成図である。
図5に示すように、空気調和機100Aは、過冷却器Eを備えている。過冷却器Eは、凝縮器(室外熱交換器2又は室内熱交換器10)で凝縮した冷媒を冷やす機能を有している。
図5に示すように、空気調和機100Aは、過冷却器Eを備えている。過冷却器Eは、凝縮器(室外熱交換器2又は室内熱交換器10)で凝縮した冷媒を冷やす機能を有している。
図5に示す過冷却器Eは、第1熱交換部Eaと、第2熱交換部Ebと、バイパス用膨張弁7(第2膨張弁)と、を備えている。
第1熱交換部Eaは、所定の伝熱管であり、液側の配管J1に含まれている。液側の配管J1は、冷媒回路QAにおいて冷房サイクルで冷媒が循環しているとき、室外熱交換器2で凝縮した冷媒が通流する配管である。なお、冷媒回路QAにおいて暖房サイクルで冷媒が循環しているときには、室内熱交換器10で凝縮した冷媒が液側の配管J1を通流する。
第1熱交換部Eaは、所定の伝熱管であり、液側の配管J1に含まれている。液側の配管J1は、冷媒回路QAにおいて冷房サイクルで冷媒が循環しているとき、室外熱交換器2で凝縮した冷媒が通流する配管である。なお、冷媒回路QAにおいて暖房サイクルで冷媒が循環しているときには、室内熱交換器10で凝縮した冷媒が液側の配管J1を通流する。
第2熱交換部Ebは、所定の伝熱管であり、バイパス配管WAに含まれている。図5の例では、バイパス配管WAの一端i1が、配管J1において室外膨張弁4と第1熱交換部Eaとの間に接続されている。また、バイパス配管WAの他端i2は、四方弁5とアキュムレータ6とを接続する配管J15に接続されている。
バイパス用膨張弁7は、バイパス配管WAを流れる冷媒の流量を調整したり、バイパス配管WAを流れる冷媒を減圧したりする機能を有し、バイパス配管WAに設けられている。
バイパス用膨張弁7は、バイパス配管WAを流れる冷媒の流量を調整したり、バイパス配管WAを流れる冷媒を減圧したりする機能を有し、バイパス配管WAに設けられている。
バイパス配管WAは、このバイパス配管WAにおいてバイパス用膨張弁7(第2膨張弁)の下流側に第2熱交換部Ebを有している。そして、第1熱交換部Eaを通流する冷媒と、第2熱交換部Ebを通流する冷媒と、の間で熱交換が行われるようになっている。このような第1熱交換部Ea及び第2熱交換部Ebの構造として、例えば、周知の二重管構造が挙げられるが、これに限定されるものではない。
制御部20(図3参照)は、通常の空調運転中(冷房運転や暖房運転の実行中)、バイパス用膨張弁7、第1熱交換部Ea、及び第2熱交換部Ebを過冷却器として機能させる。ここで、「過冷却器として機能する」とは、過冷却器Eの第1熱交換部Eaを通流する冷媒が、第2熱交換部Ebを通流する冷媒によって冷やされることを意味している。
これによって、蒸発器(室内熱交換器10又は室外熱交換器2)の入口側における冷媒の比エンタルピが小さくなるため、蒸発器の入口側・出口側における冷媒の比エンタルピ差が十分に確保される。したがって、通常の空調運転における空調能力を高めることができる。
通常の空調運転中、制御部20は、例えば、過冷却器Eの第1熱交換部Eaで冷やされた冷媒の過冷却度に基づいて、バイパス用膨張弁7を制御する。なお、「過冷却度」は、冷媒の飽和温度(凝縮温度)から、第1熱交換部Eaの下流側における冷媒の温度を減算することで算出される。
また、制御部20(図3参照)は、室内熱交換器10の凍結の処理中も、バイパス用膨張弁7、第1熱交換部Ea、及び第2熱交換部Ebを過冷却器として機能させる。これによって、蒸発器(室内熱交換器10)の入口側における冷媒の比エンタルピが小さくなるため、室内熱交換器10に着霜しやすくなる。
なお、室内熱交換器10の洗浄処理(図4のS101~S104)については、第1実施形態と同様である。また、室内熱交換器10の凍結中におけるバイパス用膨張弁7の制御についても、第1実施形態と同様である。すなわち、制御部20は、室内熱交換器10を凍結させる処理中、室内熱交換器10の温度に基づいて、室内膨張弁12(第1膨張弁)を制御するとともに、圧縮機1の吐出温度に基づいて、バイパス用膨張弁7(第2膨張弁)を制御する。また、制御部20は、室内熱交換器10の凍結の処理中、圧縮機1の吐出温度(又は吐出過熱度)が高いほど、バイパス用膨張弁7の開度を大きくする。これによって、室内熱交換器10に十分な量の霜を付着させることができ、また、圧縮機1の吐出温度が高くなりすぎることを防止できる。
<効果>
第2実施形態によれば、室内熱交換器10の凍結中、制御部20が、圧縮機1の吐出温度に基づいて、過冷却器Eのバイパス用膨張弁7を制御する。これによって、室内熱交換器10の凍結中、圧縮機1の吐出温度が高くなりすぎることを防止できる。また、空調能力の向上に用いられる過冷却器Eを室内熱交換器10の凍結にも活用(兼用)できる。
第2実施形態によれば、室内熱交換器10の凍結中、制御部20が、圧縮機1の吐出温度に基づいて、過冷却器Eのバイパス用膨張弁7を制御する。これによって、室内熱交換器10の凍結中、圧縮機1の吐出温度が高くなりすぎることを防止できる。また、空調能力の向上に用いられる過冷却器Eを室内熱交換器10の凍結にも活用(兼用)できる。
≪第3実施形態≫
第3実施形態は、第1実施形態のバイパス用膨張弁7(図1参照)に代えて、バイパス配管WB(図6参照)にキャピラリチューブ31(図6参照)及び二方弁32(図6参照)が設けられる点が、第1実施形態とは異なっている。なお、その他については、第1実施形態(図2~図4参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
第3実施形態は、第1実施形態のバイパス用膨張弁7(図1参照)に代えて、バイパス配管WB(図6参照)にキャピラリチューブ31(図6参照)及び二方弁32(図6参照)が設けられる点が、第1実施形態とは異なっている。なお、その他については、第1実施形態(図2~図4参照)と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
図6は、第3実施形態に係る空気調和機100Bの冷媒回路QBを含む構成図である。
図6に示すように、空気調和機100Bは、キャピラリチューブ31と、二方弁32と、を備えている。キャピラリチューブ31は、バイパス配管WBを通流する冷媒を減圧する管であり、バイパス配管WBに設けられている。二方弁32は、バイパス配管WBにおいて、冷媒の通流・遮断を切り替える電磁弁である。すなわち、二方弁32が開弁状態である場合には、バイパス配管WBを介して冷媒が通流する一方、二方弁32が閉弁状態である場合には、バイパス配管WBにおける冷媒の流れが遮断される。
図6に示すように、空気調和機100Bは、キャピラリチューブ31と、二方弁32と、を備えている。キャピラリチューブ31は、バイパス配管WBを通流する冷媒を減圧する管であり、バイパス配管WBに設けられている。二方弁32は、バイパス配管WBにおいて、冷媒の通流・遮断を切り替える電磁弁である。すなわち、二方弁32が開弁状態である場合には、バイパス配管WBを介して冷媒が通流する一方、二方弁32が閉弁状態である場合には、バイパス配管WBにおける冷媒の流れが遮断される。
図6の例では、バイパス配管WBにおいてキャピラリチューブ31の下流側に二方弁32が設けられている。なお、バイパス配管WBの一端i1・他端i2の接続箇所については、第1実施形態のバイパス配管W(図1参照)と同様であるから、説明は省略する。
制御部20(図3参照)は、室内熱交換器10の凍結中、室内熱交換器10の温度に基づいて、室内膨張弁12を制御するとともに、圧縮機1の吐出温度に基づいて、単位時間当たりの二方弁32の開弁時間を調整する。例えば、制御部20は、圧縮機1の吐出温度(又は吐出過熱度)が高いほど、単位時間当たりの二方弁32の開弁時間を長くする。これによって、バイパス配管WBにおける単位時間当たりの流量が大きくなるため、圧縮機1の吐出温度の上昇を抑制できる。
なお、単位時間当たりに二方弁32の開弁・閉弁が複数回行われる場合には、二方弁32が開弁状態になっている時間の和を「単位時間当たりの二方弁32の開弁時間」とする。また、二方弁32の開弁時間の調整に関して、制御部20が、次の処理を行うようにしてもよい。例えば、二方弁32の開弁・閉弁が単位時間当たりに所定回数行われる場合において、圧縮機1の吐出温度(又は吐出過熱度)が高いほど、制御部20が、二方弁32の1回当たりの開弁時間を長くするようにしてもよい。これによって、圧縮機1の吐出温度の上昇を抑制できる。
なお、単位時間当たりに二方弁32の開弁・閉弁が複数回行われる場合には、二方弁32が開弁状態になっている時間の和を「単位時間当たりの二方弁32の開弁時間」とする。また、二方弁32の開弁時間の調整に関して、制御部20が、次の処理を行うようにしてもよい。例えば、二方弁32の開弁・閉弁が単位時間当たりに所定回数行われる場合において、圧縮機1の吐出温度(又は吐出過熱度)が高いほど、制御部20が、二方弁32の1回当たりの開弁時間を長くするようにしてもよい。これによって、圧縮機1の吐出温度の上昇を抑制できる。
また、制御部20(図3参照)は、室内熱交換器10の解凍中、二方弁32を閉弁状態で維持する。これによって、室内熱交換器10を通流する冷媒の流量を十分に確保できる。なお、室内熱交換器10の洗浄処理に関して、二方弁32以外の各機器の制御は、第1実施形態と同様であるため、説明を省略する。
<効果>
第3実施形態によれば、室内熱交換器10の凍結中、キャピラリチューブ31及び二方弁32を用いて、圧縮機1の吐出温度の上昇を抑制し、空気調和機100Bの信頼性を高めることができる。
第3実施形態によれば、室内熱交換器10の凍結中、キャピラリチューブ31及び二方弁32を用いて、圧縮機1の吐出温度の上昇を抑制し、空気調和機100Bの信頼性を高めることができる。
≪変形例≫
以上、本発明に係る空気調和機100について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、第1実施形態では、室内熱交換器10を凍結させる処理について説明したが、これに限らない。すなわち、室内熱交換器10の凍結に代えて、室内熱交換器10を結露させてもよい。このように室内熱交換器10を結露させる場合、制御部20は、室内熱交換器10の温度が、外気の露点以下であり、かつ、所定の凍結温度よりも高くなるように、室内膨張弁12の開度等を調整し、その状態を所定時間継続させる。前記した「凍結温度」とは、室内熱交換器10の温度を徐々に低下させたとき、空気に含まれる水分が室内熱交換器10で凍結し始める温度である。なお、室内熱交換器10を「凍結」させる場合よりも、「結露」の方が室内膨張弁12の開度が大きい点以外は、「凍結」の場合の制御内容と同様である。また、第2実施形態についても同様のことがいえる。
そして、制御部20は、室内熱交換器10を結露させる処理中、室内熱交換器10の温度に基づいて、室内膨張弁12(第1膨張弁)を制御するとともに、圧縮機1の吐出温度に基づいて、バイパス用膨張弁7(第2膨張弁)を制御する。
以上、本発明に係る空気調和機100について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、第1実施形態では、室内熱交換器10を凍結させる処理について説明したが、これに限らない。すなわち、室内熱交換器10の凍結に代えて、室内熱交換器10を結露させてもよい。このように室内熱交換器10を結露させる場合、制御部20は、室内熱交換器10の温度が、外気の露点以下であり、かつ、所定の凍結温度よりも高くなるように、室内膨張弁12の開度等を調整し、その状態を所定時間継続させる。前記した「凍結温度」とは、室内熱交換器10の温度を徐々に低下させたとき、空気に含まれる水分が室内熱交換器10で凍結し始める温度である。なお、室内熱交換器10を「凍結」させる場合よりも、「結露」の方が室内膨張弁12の開度が大きい点以外は、「凍結」の場合の制御内容と同様である。また、第2実施形態についても同様のことがいえる。
そして、制御部20は、室内熱交換器10を結露させる処理中、室内熱交換器10の温度に基づいて、室内膨張弁12(第1膨張弁)を制御するとともに、圧縮機1の吐出温度に基づいて、バイパス用膨張弁7(第2膨張弁)を制御する。
また、各実施形態では、室内熱交換器10の凍結後、制御部20が室内熱交換器10を凝縮器として機能させ、室内熱交換器10を解凍させる処理について説明したが、これに限らない。例えば、室内熱交換器10の凍結後、制御部20が室内膨張弁12の開度を凍結時よりも大きくする(例えば、全開にする)ようにしてもよい。これによって、室外熱交換器2から室内膨張弁12を介して、室内熱交換器10に高温の冷媒が流れ込むため、室内熱交換器10が解凍される。
また、各実施形態では、室内熱交換器10の洗浄処理として凍結・解凍・乾燥が順次に行われる場合について説明したが(図4参照)、これに限らない。例えば、室内熱交換器10の解凍・乾燥のうち一方又は両方が適宜に省略されてもよい。室内機における空気の自然対流によって、室内熱交換器10の解凍や乾燥が進むからである。
また、第2実施形態(図5参照)では、バイパス配管WAの一端i1が、液側の配管J1において第1熱交換部Eaと室外膨張弁4との間に接続される構成について説明したが、これに限らない。例えば、バイパス配管WAの一端i1が、液側の配管J1において第1熱交換部Eaと阻止弁Vbとの間に接続される構成であってもよい。
また、第3実施形態(図6参照)では、バイパス配管WBにおいてキャピラリチューブ31の下流側に二方弁32が設けられる構成について説明したが、これに限らない。すなわち、バイパス配管WBにおいてキャピラリチューブ31の上流側に二方弁32が設けられるようにしてもよい。
また、第3実施形態(図6参照)では、二方弁32の開弁・閉弁が単位時間当たりに所定回数行われる場合において、圧縮機1の吐出温度(又は吐出過熱度)が高いほど、二方弁32の1回当たりの開弁時間を長くする処理について説明したが、これに限らない。例えば、二方弁32の1回当たりの開弁時間が固定値として設定されている場合において、制御部20が、二方弁32の単位時間当たりの開弁回数を調整するようにしてもよい。具体的には、制御部20は、圧縮機1の吐出温度(又は吐出過熱度)が高いほど、二方弁32の単位時間当たりの開弁回数を多くする。これによって、バイパス配管WBにおける単位時間当たりの流量が大きくなるため、圧縮機1の吐出温度の上昇を抑制できる。
なお、二方弁32の単位時間当たりの開弁回数、及び、二方弁32の1回当たりの開弁時間の両方が調整されるようにしてもよい。このような処理も、制御部20が、単位時間当たりの二方弁の開弁時間を調整する、という事項に含まれる。
なお、二方弁32の単位時間当たりの開弁回数、及び、二方弁32の1回当たりの開弁時間の両方が調整されるようにしてもよい。このような処理も、制御部20が、単位時間当たりの二方弁の開弁時間を調整する、という事項に含まれる。
また、各実施形態は、適宜に組み合わせることができる。例えば、第2実施形態(図5参照)と第3実施形態(図6参照)とを組み合わせ、次のように構成してもよい。すなわち、過冷却器E(第2実施形態)のバイパス用膨張弁7に代えて、キャピラリチューブ31及び二方弁32(第3実施形態)をバイパス配管WAに設けるようにしてもよい。なお、室内熱交換器10の凍結中におけるバイパス用膨張弁7の制御については、第3実施形態と同様であるから、説明を省略する。
また、室内機U1~U4の種類は、特に限定されるものではない。例えば、4方向カセット型、天井埋込型、床置型、壁掛型等の複数種類うち、いずれか1種類が用いられてもよいし、また、複数種類の室内機が混在していてもよい。
また、各実施形態では、室外機Uo(図1参照)が室外膨張弁4や四方弁5を備える構成について説明したが、これに限らない。例えば、冷房専用の空気調和機において、室外膨張弁4や四方弁5が省略されてもよい。
また、各実施形態では、4台の室内機U1,U2,U3,U4(図1参照)が設けられる構成について説明したが、室外機Uoに接続される室内機の台数は、1台であってもよいし、また、2台や3台の他、5台以上であってもよい。つまり、少なくとも1台の室内機が室外機Uoに接続されていればよい。
また、各実施形態では、4台の室内機U1,U2,U3,U4(図1参照)が設けられる構成について説明したが、室外機Uoに接続される室内機の台数は、1台であってもよいし、また、2台や3台の他、5台以上であってもよい。つまり、少なくとも1台の室内機が室外機Uoに接続されていればよい。
また、各実施形態では、空気調和機100(図1参照)が1台の室外機Uoを備える構成について説明したが、1系統で複数台の室外機が並列接続された構成であってもよい。
また、各実施形態は、ビル用マルチエアコン(VRF:Variable Refrigerant Flow)やパッケージエアコン(PAC:Packaged Air Conditioner)、ルームエアコンといった様々な種類の空気調和機に適用可能である。
また、各実施形態は、ビル用マルチエアコン(VRF:Variable Refrigerant Flow)やパッケージエアコン(PAC:Packaged Air Conditioner)、ルームエアコンといった様々な種類の空気調和機に適用可能である。
また、制御部20の処理(図4参照)をコンピュータに実行させるためのプログラムを通信回線を介して提供することが可能であり、また、CD-ROM等の記録媒体に所定のプログラムを書き込んで配布することも可能である。
また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
1 圧縮機
2 室外熱交換器
3 室外ファン
4 室外膨張弁
5 四方弁
6 アキュムレータ
7 バイパス用膨張弁(第2膨張弁)
8 室外温度センサ
9 吐出温度センサ
10 室内熱交換器
11 室内ファン
12 室内膨張弁(第1膨張弁)
13 室内温度センサ
14 室内熱交換器温度センサ
15 リモコン
16 集中管理機器
20 制御部
31 キャピラリチューブ
32 二方弁
100,100A,100B 空気調和機
E 過冷却器
Ea 第1熱交換部
Eb 第2熱交換部
Q,QA,QB 冷媒回路
Uo,UAo,UBo 室外機
U1,U2,U3,U4 室内機
W,WA,WB バイパス配管
2 室外熱交換器
3 室外ファン
4 室外膨張弁
5 四方弁
6 アキュムレータ
7 バイパス用膨張弁(第2膨張弁)
8 室外温度センサ
9 吐出温度センサ
10 室内熱交換器
11 室内ファン
12 室内膨張弁(第1膨張弁)
13 室内温度センサ
14 室内熱交換器温度センサ
15 リモコン
16 集中管理機器
20 制御部
31 キャピラリチューブ
32 二方弁
100,100A,100B 空気調和機
E 過冷却器
Ea 第1熱交換部
Eb 第2熱交換部
Q,QA,QB 冷媒回路
Uo,UAo,UBo 室外機
U1,U2,U3,U4 室内機
W,WA,WB バイパス配管
Claims (9)
- 圧縮機及び室外熱交換器を有する室外機と、第1膨張弁及び室内熱交換器を有する少なくとも1台の室内機と、が配管を介して接続されてなる冷媒回路を備えるとともに、
前記室外熱交換器で凝縮した冷媒の一部を前記圧縮機の吸入側に導くバイパス配管と、
前記バイパス配管に設けられる第2膨張弁と、
少なくとも前記圧縮機、前記第1膨張弁、及び前記第2膨張弁を制御する制御部と、を備え、
前記制御部は、前記室内熱交換器を凍結又は結露させる処理中、前記室内熱交換器の温度に基づいて、前記第1膨張弁を制御するとともに、前記圧縮機の吐出温度に基づいて、前記第2膨張弁を制御する空気調和機。 - 前記制御部は、前記処理中、前記圧縮機の吐出温度が高いほど、前記第2膨張弁の開度を大きくすること
を特徴とする請求項1に記載の空気調和機。 - 前記制御部は、前記処理中、前記圧縮機の吐出過熱度が高いほど、前記第2膨張弁の開度を大きくすること
を特徴とする請求項1に記載の空気調和機。 - 前記室外熱交換器で凝縮した冷媒が通流する配管は、第1熱交換部を有し、
前記バイパス配管は、当該バイパス配管において前記第2膨張弁の下流側に第2熱交換部を有し、
前記第1熱交換部を通流する冷媒と、前記第2熱交換部を通流する冷媒と、の間で熱交換が行われること
を特徴とする請求項1に記載の空気調和機。 - 前記制御部は、
通常の空調運転中、前記第2膨張弁、前記第1熱交換部、及び前記第2熱交換部を過冷却器として機能させ、
前記処理中も、前記第2膨張弁、前記第1熱交換部、及び前記第2熱交換部を過冷却器として機能させること
を特徴とする請求項4に記載の空気調和機。 - 前記制御部は、
通常の空調運転中、前記第1熱交換部で冷やされた冷媒の過冷却度に基づいて、前記第2膨張弁を制御し、
前記処理中には、前記圧縮機の吐出温度に基づいて、前記第2膨張弁を制御すること
を特徴とする請求項5に記載の空気調和機。 - 前記バイパス配管には、前記第2膨張弁に代えて、キャピラリチューブ及び二方弁が設けられ、
前記制御部は、前記圧縮機の吐出温度に基づいて、単位時間当たりの前記二方弁の開弁時間を調整すること
を特徴とする請求項1に記載の空気調和機。 - 前記制御部は、前記処理として前記室内熱交換器の凍結を行った後、前記室内熱交換器を凝縮器として機能させ、前記室内熱交換器を解凍し、前記室内熱交換器の解凍中、前記第1膨張弁を所定開度にする一方、前記第2膨張弁を閉弁状態で維持すること
を特徴とする請求項1に記載の空気調和機。 - 前記制御部は、前記処理中、前記圧縮機の吐出温度が所定値以下である場合、又は、前記圧縮機の吐出過熱度が所定値以下である場合、前記第2膨張弁を閉弁すること
を特徴とする請求項1に記載の空気調和機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/013216 WO2021192074A1 (ja) | 2020-03-25 | 2020-03-25 | 空気調和機 |
TW109133637A TW202136691A (zh) | 2020-03-25 | 2020-09-28 | 空調機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/013216 WO2021192074A1 (ja) | 2020-03-25 | 2020-03-25 | 空気調和機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021192074A1 true WO2021192074A1 (ja) | 2021-09-30 |
Family
ID=77890004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/013216 WO2021192074A1 (ja) | 2020-03-25 | 2020-03-25 | 空気調和機 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202136691A (ja) |
WO (1) | WO2021192074A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114659170A (zh) * | 2022-03-28 | 2022-06-24 | 青岛海尔空调器有限总公司 | 用于控制新风空调的方法及装置、新风空调、存储介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60108668A (ja) * | 1983-11-15 | 1985-06-14 | 松下冷機株式会社 | 冷凍装置用減圧装置 |
JPH1038399A (ja) * | 1996-07-24 | 1998-02-13 | Daikin Ind Ltd | 冷凍装置の制御方法および冷凍装置 |
JP2003083619A (ja) * | 2001-09-10 | 2003-03-19 | Espec Corp | 電磁弁式の冷凍能力制御装置及びこれを備えた環境試験装置 |
JP2012189238A (ja) * | 2011-03-09 | 2012-10-04 | Mitsubishi Electric Corp | 冷凍空調装置 |
WO2015121992A1 (ja) * | 2014-02-14 | 2015-08-20 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP2018054236A (ja) * | 2016-09-30 | 2018-04-05 | ダイキン工業株式会社 | 空気調和装置 |
JP2018189365A (ja) * | 2017-04-28 | 2018-11-29 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機 |
WO2019043968A1 (ja) * | 2017-08-28 | 2019-03-07 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機 |
JP6514422B1 (ja) * | 2018-06-29 | 2019-05-15 | 日立ジョンソンコントロールズ空調株式会社 | 空調管理システム、空調管理方法、及びプログラム |
-
2020
- 2020-03-25 WO PCT/JP2020/013216 patent/WO2021192074A1/ja active Application Filing
- 2020-09-28 TW TW109133637A patent/TW202136691A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60108668A (ja) * | 1983-11-15 | 1985-06-14 | 松下冷機株式会社 | 冷凍装置用減圧装置 |
JPH1038399A (ja) * | 1996-07-24 | 1998-02-13 | Daikin Ind Ltd | 冷凍装置の制御方法および冷凍装置 |
JP2003083619A (ja) * | 2001-09-10 | 2003-03-19 | Espec Corp | 電磁弁式の冷凍能力制御装置及びこれを備えた環境試験装置 |
JP2012189238A (ja) * | 2011-03-09 | 2012-10-04 | Mitsubishi Electric Corp | 冷凍空調装置 |
WO2015121992A1 (ja) * | 2014-02-14 | 2015-08-20 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP2018054236A (ja) * | 2016-09-30 | 2018-04-05 | ダイキン工業株式会社 | 空気調和装置 |
JP2018189365A (ja) * | 2017-04-28 | 2018-11-29 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機 |
JP2018189356A (ja) * | 2017-04-28 | 2018-11-29 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機 |
WO2019043968A1 (ja) * | 2017-08-28 | 2019-03-07 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機 |
JP6514422B1 (ja) * | 2018-06-29 | 2019-05-15 | 日立ジョンソンコントロールズ空調株式会社 | 空調管理システム、空調管理方法、及びプログラム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114659170A (zh) * | 2022-03-28 | 2022-06-24 | 青岛海尔空调器有限总公司 | 用于控制新风空调的方法及装置、新风空调、存储介质 |
CN114659170B (zh) * | 2022-03-28 | 2024-04-26 | 青岛海尔空调器有限总公司 | 用于控制新风空调的方法及装置、新风空调、存储介质 |
Also Published As
Publication number | Publication date |
---|---|
TW202136691A (zh) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4069947B2 (ja) | 冷凍装置 | |
JP5213817B2 (ja) | 空気調和機 | |
JP6786019B1 (ja) | 空気調和機 | |
EP3388758A1 (en) | Heat-pump air conditioner | |
CN112050399B (zh) | 一种空调装置 | |
JPH1068553A (ja) | 空気調和機 | |
JP2008082589A (ja) | 空気調和装置 | |
JPWO2016113850A1 (ja) | 空気調和装置 | |
JP5310101B2 (ja) | 空気調和装置 | |
JP5734205B2 (ja) | 空気調和装置 | |
WO2023175656A1 (ja) | 空気調和装置 | |
WO2021192074A1 (ja) | 空気調和機 | |
WO2018167961A1 (ja) | 空気調和機 | |
JP7512650B2 (ja) | 空気調和機 | |
KR101692243B1 (ko) | 캐스캐이드 사이클을 이용한 히트 펌프 | |
JP7198918B2 (ja) | 空気調和機 | |
JP6573723B2 (ja) | 空気調和装置 | |
CN213089945U (zh) | 一种空调装置 | |
CN113669844A (zh) | 空调器及其控制方法 | |
JP6704513B2 (ja) | 冷凍サイクル装置 | |
KR20050080601A (ko) | 멀티공기조화기의 제어방법 | |
KR100800623B1 (ko) | 공기조화기의 운전제어방법 | |
WO2021176640A1 (ja) | 空気調和機 | |
WO2024214130A1 (ja) | 除湿装置 | |
CN214501455U (zh) | 空调器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20927033 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |