[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021039178A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2021039178A1
WO2021039178A1 PCT/JP2020/027608 JP2020027608W WO2021039178A1 WO 2021039178 A1 WO2021039178 A1 WO 2021039178A1 JP 2020027608 W JP2020027608 W JP 2020027608W WO 2021039178 A1 WO2021039178 A1 WO 2021039178A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
aqueous electrolyte
secondary battery
electrolyte secondary
positive electrode
Prior art date
Application number
PCT/JP2020/027608
Other languages
English (en)
French (fr)
Inventor
聡 蚊野
尚志 寺田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/638,489 priority Critical patent/US20220416237A1/en
Priority to EP20855996.3A priority patent/EP4024524A4/en
Priority to CN202080059965.1A priority patent/CN114342120A/zh
Priority to JP2021542615A priority patent/JP7493165B2/ja
Publication of WO2021039178A1 publication Critical patent/WO2021039178A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries especially lithium ion secondary batteries, have high voltage and high energy density, and are therefore expected as power sources for small consumer applications, power storage devices, and electric vehicles.
  • Patent Document 1 proposes a lithium ion secondary battery containing lithium bis (fluorosulfonyl) imide (LiFSI) and lithium bisoxalate borate (LiBOB) in a non-aqueous electrolytic solution. Patent Document 1 states that this suppresses a decrease in capacitance and rate characteristics.
  • LiFSI lithium bis (fluorosulfonyl) imide
  • LiBOB lithium bisoxalate borate
  • a composite oxide containing lithium and a metal As the positive electrode active material of the lithium ion secondary battery, a composite oxide containing lithium and a metal (particularly, a transition metal) is used. Conventionally, lithium cobalt oxide (LiCoO 2 ) has been used as a composite oxide containing lithium and a transition metal.
  • the composite oxide containing lithium and the transition metal tends to change to a crystal structure in which it is difficult to occlude and release lithium ions due to repeated charging and discharging, and the capacity retention rate tends to decrease.
  • one aspect of the present disclosure includes a positive electrode, a separator, a negative electrode facing the positive electrode via the separator, and an electrolytic solution
  • the positive electrode includes lithium, which is a first metal, and lithium. It contains a composite oxide containing a second metal other than the above, and in the composite oxide, the second metal contains Ni, and the proportion of Ni in the second metal is 90 atomic% or more, and The ratio of Co to the second metal is 10 atomic% or less
  • the electrolytic solution is Na + , K + , Rb + , Cs + , Fr + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+.
  • the present invention relates to a non-aqueous electrolyte secondary battery containing at least one cation X selected from the group consisting of , and Al 3+, and an oxalate complex anion Y.
  • the non-aqueous electrolyte secondary battery according to the embodiment of the present disclosure has a positive electrode, a separator, a negative electrode facing the positive electrode via the separator, and an electrolytic solution.
  • the positive electrode contains a composite oxide containing lithium (a first metal) and a second metal other than lithium (hereinafter, also referred to as “lithium-containing composite oxide”).
  • the second metal contains Ni, the proportion of Ni in the second metal is 90 atomic% or more, and the proportion of Co in the second metal is 10 atomic% or less. is there.
  • this non-aqueous electrolyte secondary battery uses a lithium-containing composite oxide, the proportion of Co in the entire second metal is reduced to 10 atomic% or less. Further, by containing Ni in the second metal and setting the ratio of Ni in the second metal to 90 atomic% or more, a high capacity can be realized.
  • the ionic valence of Ni in the lithium-containing composite oxide fluctuates due to the occlusion and release of lithium ions due to charging and discharging, and the lithium-containing composite oxidation due to the fluctuation of the ionic valence of Ni.
  • the crystal structure of an object tends to become unstable.
  • the lithium-containing composite oxide changes (inactivates) to a crystal structure in which it is difficult to reversibly occlude and release lithium ions due to repeated charging and discharging. It is easy and the capacity retention rate tends to decrease.
  • the electrolyte contains at least one cation X selected from the group consisting of Na + , K + , Rb + , Cs + , Fr + , Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Al 3+.
  • the oxalate complex anion Y By including the oxalate complex anion Y, the decrease in the capacity retention rate is suppressed.
  • the non-aqueous electrolyte secondary battery is usually contained in a lithium salt (for example, LiPF 6 ) contained in the electrolytic solution, a solvent (for example, fluoroethylene carbonate (FEC)) or an additive in the electrolytic solution, or a positive electrode and a negative electrode.
  • a lithium salt for example, LiPF 6
  • a solvent for example, fluoroethylene carbonate (FEC)
  • FEC fluoroethylene carbonate
  • the resulting binder eg, polyvinylidene fluoride (PVdF), etc.
  • PVdF polyvinylidene fluoride
  • a film containing cesium fluoride CsF can be formed. It is considered that this fluoride film suppresses the irreversible structural change of the lithium-containing composite oxide due to the side reaction with the electrolytic solution. Therefore, it is considered that the decrease in the capacity retention rate is suppressed.
  • the fluoride film exists in a state where LiF and fluoride containing cation X are mixed. Since the cation X has an ionic radius different from that of the lithium ion, there may be a gap around the cation X through which the lithium ion can pass in the fluoride film. Therefore, it is considered that the fluoride film does not easily become a resistance to the movement of lithium ions, and the capacity retention rate can be maintained high. Among them, when the ionic radius of the cation X is larger than that of the lithium ion, the gap tends to be large, and the capacity retention rate is easily maintained high.
  • the oxalate complex anion Y is decomposed at the negative electrode to form a film on the surface layer of the negative electrode active material.
  • the oxalate complex anion Y adheres to the fluoride film on the surface layer of the positive electrode active material or is incorporated into the fluoride film to stabilize the fluoride film.
  • the movement resistance of lithium ions is low and a dense film is formed on the surface layer of the positive electrode active material, excessive side reactions are suppressed, and a decrease in the capacity retention rate can be further suppressed.
  • the above mechanism shows the inventor's view at the present time, and the present invention is not limited thereto.
  • Oxalato complex anion Y is, B (C 2 O 4) 2 -, BF 2 (C 2 O 4) -, P (C 2 O 4) 3 -, PF 2 (C 2 O 4) 2 -, and PF 4 (C 2 O 4 ) At least one selected from the group consisting of ⁇ may be used.
  • the oxalate complex anion Y may contain fluorine.
  • the fluorine component of the fluoride film can be supplied by decomposing the oxalate complex anion Y. Therefore, the oxalate complex anion Y include fluorine, BF 2 (C 2 O 4 ) -, PF 2 (C 2 O 4) 2 -, and PF 4 (C 2 O 4) - A at least one of You may.
  • these salts may be added to the electrolytic solution, or a salt of the cation X and another anion and a lithium salt of the oxalate complex anion Y may be added to the electrolytic solution.
  • the lithium-containing composite oxide can be a compound having a layered rock salt type crystal structure containing lithium and a transition metal.
  • the lithium-containing composite oxide contains at least nickel as a transition metal of the layered compound.
  • the atomic fraction of nickel in the metal elements other than lithium is 0.9 or more.
  • the atomic fraction of cobalt in metal elements other than lithium is 0.1 or less.
  • the atomic fraction of cobalt in metal elements other than lithium may be 0.05 or less.
  • the lithium-containing composite oxide may contain a material expressed by the composition formula Li a Ni 1-x-y Co x M y O 2.
  • M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb and B, and Al is preferable.
  • the value a which indicates the molar ratio of lithium, increases or decreases with charge and discharge.
  • the cobalt ratio x may be 0 ⁇ x ⁇ 0.05 or 0.01 ⁇ x ⁇ 0.05.
  • the non-aqueous electrolyte secondary battery includes, for example, the following electrolytic solution, a negative electrode, and a positive electrode.
  • the electrolytic solution usually contains a non-aqueous solvent and a solute dissolved in the non-aqueous solvent.
  • the solute may contain a lithium salt.
  • the solute is an electrolyte salt that dissociates ions in the electrolyte.
  • the components of the electrolytic solution other than the solvent and solute are additives.
  • the electrolyte may contain various additives.
  • the cation X and the oxalate complex anion Y can be contained in the electrolytic solution as additives.
  • cyclic carbonate ester for example, cyclic carbonate ester, chain carbonate ester, cyclic carboxylic acid ester, chain carboxylic acid ester and the like are used.
  • cyclic carbonate examples include propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC) and the like.
  • chain carbonic acid ester examples include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • examples of the cyclic carboxylic acid ester examples include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • chain carboxylic acid ester examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate (EP) and the like.
  • non-aqueous solvent one type may be used alone, or two or more types may be used in combination.
  • non-aqueous solvent examples include cyclic ethers, chain ethers, nitriles such as acetonitrile, and amides such as dimethylformamide.
  • cyclic ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4-.
  • examples thereof include dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether and the like.
  • chain ethers examples include 1,2-dimethoxyethane, dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, and butyl phenyl ether.
  • Pentylphenyl ether methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, Examples thereof include 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether and tetraethylene glycol dimethyl ether.
  • These solvents may be fluorinated solvents in which a part of hydrogen atoms is replaced with fluorine atoms.
  • fluorination solvent fluoroethylene carbonate (FEC) may be used.
  • lithium salt such as LiClO 4, LiAlCl 4, LiB 10 Cl 10) chlorine lithium salt-containing acid, lithium salt of fluorine-containing acids (LiPF 6, LiPF 2 O 2 , LiBF 4, LiSbF 6, LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, etc.), Lithium salt of fluorine-containing acidimide (LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO) 2 ), LiN (C 2 F 5 SO 2 ) 2, etc.), lithium halide (LiCl, LiBr, LiI, etc.) can be used.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • the content of lithium salt, cation X, and oxalate complex anion Y in the electrolytic solution can be measured by using, for example, NMR, ion chromatography, or the like.
  • the concentration of the lithium salt in the electrolytic solution is preferably 1 mol / liter or more and 2 mol / liter or less, and more preferably 1 mol / liter or more and 1.5 mol / liter or less.
  • the lithium salt concentration is not limited to the above.
  • the oxalate complex anion Y can also be added to the electrolytic solution in the form of a lithium salt.
  • the concentration of the lithium salt means the total concentration of the oxalate complex anion Y and the anion of the lithium salt excluding the oxalate complex anion Y (that is, the lithium ion concentration).
  • the concentration of cation X in the electrolytic solution may be 0.01 mol / liter or more. In this case, a sufficient effect of suppressing a decrease in the capacity retention rate can be obtained.
  • the concentration of cation X may be 0.05 mol / liter or more, or 0.1 mol / liter or more. From the viewpoint of suppressing the decrease in lithium ion conductivity, the concentration of cation X in the electrolytic solution may be 0.5 mol / liter or less.
  • the concentration of the oxalate complex anion Y in the electrolytic solution may be 0.01 mol / liter or more. However, the higher the concentration of the oxalate complex anion Y, the more easily the oxalate complex anion Y is decomposed, and the more gas is easily generated due to the decomposition.
  • the concentration of the oxalate complex anion Y in the electrolytic solution may be 0.5 mol / liter or less in order to suppress gas generation.
  • the electrolytic solution may contain the above-mentioned LiPF 6 as a lithium salt.
  • the ratio of the molar-based content of the oxalate complex anion Y to the molar-based content of PF 6 - ions contained in the electrolytic solution may be 0.1 or more and 0.5 or less.
  • the electrolytic solution may contain other known additives.
  • the additive include 1,3-propanesaltone, methylbenzenesulfonate, cyclohexylbenzene, biphenyl, diphenyl ether, fluorobenzene and the like.
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • the negative electrode active material layer can be formed, for example, by applying a negative electrode slurry in which a negative electrode mixture containing a negative electrode active material, a binder and the like is dispersed in a dispersion medium to the surface of a negative electrode current collector and drying it. The dried coating film may be rolled if necessary. That is, the negative electrode active material may be a mixture layer. Further, a lithium metal foil or a lithium alloy foil may be attached to the negative electrode current collector.
  • the negative electrode active material layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode active material layer contains the negative electrode active material as an essential component, and can contain a binder, a conductive agent, a thickener, and the like as optional components. Known materials can be used as the binder, the conductive agent, and the thickener.
  • the negative electrode active material includes a material that electrochemically occludes and releases lithium ions, a lithium metal, and / or a lithium alloy.
  • a material that electrochemically occludes and releases lithium ions a carbon material, an alloy-based material, or the like is used.
  • the carbon material include graphite, easily graphitized carbon (soft carbon), and non-graphitized carbon (hard carbon). Of these, graphite, which has excellent charge / discharge stability and a small irreversible capacity, is preferable.
  • the alloy-based material include those containing at least one kind of metal capable of forming an alloy with lithium, and examples thereof include silicon, tin, silicon alloys, tin alloys, and silicon compounds. Silicon oxide, tin oxide, or the like in which these are combined with oxygen may be used.
  • the alloy-based material containing silicon for example, a silicon composite material having a lithium ion conductive phase and silicon particles dispersed in the lithium ion conductive phase can be used.
  • the lithium ion conductive phase for example, a silicon oxide phase, a silicate phase and / or a carbon phase can be used.
  • the main component of the silicon oxide phase eg, 95-100% by weight
  • a composite material composed of a silicate phase and silicon particles dispersed in the silicate phase is preferable in that it has a high capacity and a small irreversible capacity.
  • the silicate phase may include, for example, at least one selected from the group consisting of Group 1 elements and Group 2 elements in the long periodic table.
  • Examples of the Group 1 element of the long periodic table and the Group 2 element of the long periodic table include lithium (Li), potassium (K), sodium (Na), magnesium (Mg), and calcium (Ca).
  • Strontium (Sr), barium (Ba) and the like can be used.
  • Other elements may include aluminum (Al), boron (B), lanthanum (La), phosphorus (P), zirconium (Zr), titanium (Ti) and the like.
  • a silicate phase containing lithium hereinafter, also referred to as a lithium silicate phase
  • a silicate phase containing lithium is preferable because the irreversible capacity is small and the initial charge / discharge efficiency is high.
  • the lithium silicate phase may be an oxide phase containing lithium (Li), silicon (Si), and oxygen (O), and may contain other elements.
  • the atomic ratio of O to Si in the lithium silicate phase: O / Si is, for example, greater than 2 and less than 4.
  • O / Si is greater than 2 and less than 3.
  • the atomic ratio of Li to Si in the lithium silicate phase: Li / Si is, for example, greater than 0 and less than 4.
  • Elements other than Li, Si and O that can be contained in the lithium silicate phase include, for example, iron (Fe), chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu), molybdenum (Mo), and the like. Examples thereof include zinc (Zn) and aluminum (Al).
  • the carbon phase may be composed of, for example, amorphous carbon having low crystallinity (that is, amorphous carbon).
  • amorphous carbon may be, for example, hard carbon, soft carbon, or other carbon.
  • the negative electrode current collector As the negative electrode current collector, a non-perforated conductive substrate (metal foil, etc.) and a porous conductive substrate (mesh body, net body, punching sheet, etc.) are used. Examples of the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector and containing a positive electrode active material.
  • the positive electrode mixture layer can be formed, for example, by applying a positive electrode slurry in which a positive electrode mixture containing a positive electrode active material, a binder, etc. is dispersed in a dispersion medium to the surface of a positive electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode active material for example, the above Li a Ni 1-x-y Co x M y O 2 (where 0 ⁇ a ⁇ 1.2, 0 ⁇ x ⁇ 0.1,0 ⁇ y ⁇ 0 .1, 0 ⁇ x + y ⁇ 0.1, where M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb and B.
  • a lithium-containing composite oxide represented by (is a species) is used. From the viewpoint of the stability of the crystal structure, Al may be contained as M. Specific examples of such composite oxides include lithium-nickel-cobalt-aluminum composite oxides (LiNi 0.9 Co 0.05 Al 0.05 O 2 and LiNi 0.91 Co 0.06 Al 0.03 O). 2 etc.).
  • the shape and thickness of the positive electrode current collector can be selected from the shape and range according to the negative electrode current collector.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • Separator usually, it is desirable to interpose a separator between the positive electrode and the negative electrode.
  • the separator has high ion permeability and has appropriate mechanical strength and insulation.
  • a microporous thin film, a woven fabric, a non-woven fabric, or the like can be used.
  • polyolefins such as polypropylene and polyethylene are preferable.
  • Non-aqueous electrolyte secondary battery is a group of electrodes in which a positive electrode and a negative electrode are wound around a separator, and a structure in which a non-aqueous electrolyte is housed in an exterior body.
  • a winding type electrode group instead of the winding type electrode group, another form of electrode group such as a laminated type electrode group in which a positive electrode and a negative electrode are laminated via a separator may be applied.
  • the non-aqueous electrolyte secondary battery may be in any form such as a cylindrical type, a square type, a coin type, a button type, and a laminated type.
  • FIG. 1 is a schematic perspective view in which a part of the rectangular non-aqueous electrolyte secondary battery according to the embodiment of the present disclosure is cut out.
  • the battery includes a bottomed polygonal battery case 11, an electrode group 10 housed in the battery case 11, and a non-aqueous electrolyte (not shown).
  • the electrode group 10 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator that is interposed between them and prevents direct contact.
  • the electrode group 10 is formed by winding a negative electrode, a positive electrode, and a separator around a flat plate-shaped winding core and pulling out the winding core.
  • One end of the negative electrode lead 15 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • One end of the positive electrode lead 14 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the negative electrode lead 15 is electrically connected to the negative electrode terminal 13 provided on the sealing plate 12.
  • a gasket 16 is arranged between the sealing plate 12 and the negative electrode terminal 13 to insulate the two.
  • the other end of the positive electrode lead 14 is connected to the sealing plate 12 and electrically connected to the battery case 11 that also serves as the positive electrode terminal.
  • a resin frame 18 that separates the electrode group 10 and the sealing plate 12 and the negative electrode lead 15 and the battery case 11 is arranged above the electrode group 10. Then, the opening of the battery case 11 is sealed with the sealing plate 12.
  • a liquid injection hole 17a is formed in the sealing plate 12, and the electrolyte is injected into the square battery case 11 from the liquid injection hole 17a. After that, the liquid injection hole 17a is closed by the seal 17.
  • the structure of the non-aqueous electrolyte secondary battery may be a cylinder, a coin, a button, or the like having a metal battery case, and a battery case made of a laminated sheet, which is a laminate of a barrier layer and a resin sheet, may be used. It may be a laminated battery provided.
  • the type, shape, etc. of the secondary battery are not particularly limited.
  • Example 1 [Preparation of negative electrode] Graphite, which is a negative electrode active material, sodium carboxymethyl cellulose (CMC-Na), styrene-butadiene rubber (SBR), and water were mixed at a predetermined mass ratio to prepare a negative electrode slurry. Next, the negative electrode slurry was applied to the surface of the copper foil, which is the negative electrode current collector, the coating film was dried, and then rolled to form negative electrode mixture layers on both sides of the copper foil.
  • CMC-Na sodium carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • Lithium-containing composite oxide LiNi 0.9 Co 0.05 Al 0.05 O 2
  • acetylene black acetylene black
  • polyvinylidene fluoride polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • LiPF 6 as a lithium salt and cation X and oxalate complex anion Y in a mixed solvent containing fluoroethylene carbonate (FEC), ethyl methyl carbonate (EMC), and dimethyl ether (DME) in a volume ratio of 4: 1: 15.
  • Cesium difluorooxalate volate (CsBF 2 (C 2 O 4 )) was added as a salt to and a non-aqueous electrolyte solution was prepared.
  • the concentration of LiPF 6 in the non-aqueous electrolyte solution was 1.0 mol / liter.
  • the concentration of CsBF 2 (C 2 O 4 ) in the non-aqueous electrolyte solution was 0.1 mol / liter.
  • a lead tab was attached to each electrode, and an electrode group was prepared by spirally winding a positive electrode and a negative electrode via a separator so that the lead was located at the outermost peripheral portion.
  • the electrode group is inserted into the outer body made of a laminated film having an aluminum foil as a barrier layer, vacuum dried at 105 ° C. for 2 hours, then a non-aqueous electrolytic solution is injected, and the opening of the outer body is sealed to form a battery. I got A1.
  • Example 2 In the preparation of the non-aqueous electrolyte solution, magnesium difluorooxalate borate (Mg (BF 2 (C 2 O 4 )) 2 ) was used instead of CsBF 2 (C 2 O 4). The concentration of Mg (BF 2 (C 2 O 4 )) 2 in the non-aqueous electrolyte solution was 0.1 mol / liter.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 to obtain a battery A2.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 to obtain a battery B1.
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the lithium-containing composite oxide as the positive electrode active material.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 to obtain a battery B2.
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the lithium-containing composite oxide as the positive electrode active material.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 to obtain a battery B3.
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the lithium-containing composite oxide as the positive electrode active material.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 to obtain a battery B4.
  • Capacity maintenance rate Rest period was 10 minutes between charge and discharge, at 25 ° C. environment charge and discharge repeated 100 cycles in the charge and discharge conditions to determine the discharge capacity C 1 of the 100th cycle.
  • the percentage of the discharge capacity C 1 to the initial discharge capacity C 0 of R 1 C 1 / C 0 was evaluated as the capacity retention rate.
  • Table 1 shows the evaluation results of the initial discharge capacity C 0 and the capacity retention rate R 1 in cell A1, A2, B1 ⁇ B4. Table 1 also shows the positive electrode active material and the additives used in each battery. From Table 1, batteries A1 and A2 are excellent initial discharge capacity C 0 in comparison with the batteries B1 ⁇ B4, and the capacity retention rate R 1 is high.
  • Battery B1 has a low proportion of cobalt contained in the lithium-containing composite oxide, and the proportion of nickel is high, a significant decrease in the capacity maintenance rate R 1 as compared to the battery B2.
  • the batteries B2 to B4 have a small initial discharge capacity C 0 because the proportion of cobalt contained in the lithium-containing composite oxide is high and the proportion of nickel is low.
  • non-aqueous electrolyte secondary battery According to the non-aqueous electrolyte secondary battery according to the present disclosure, it is possible to provide a non-aqueous electrolyte secondary battery having a high capacity and a reduced amount of cobalt used.
  • the non-aqueous electrolyte secondary battery according to the present disclosure is useful as a main power source for mobile communication devices, portable electronic devices, and the like.
  • Non-aqueous electrolyte secondary battery 10 Electrode group 11 Battery case 12 Seal plate 13 Negative terminal 14 Positive lead 15 Negative lead 16 Gasket 17 Seal 17a Liquid injection hole 18 Frame

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

正極、セパレータ、セパレータを介して正極と対向する負極、および、電解液、を有する非水電解質二次電池であって、正極は、第1の金属であるリチウムと、リチウム以外の第2の金属とを含む複合酸化物を含み、複合酸化物において、第2の金属はNiを含み、第2の金属に占めるNiの割合が90原子%以上であり、且つ、第2の金属に占めるCoの割合が10原子%以下である。電解液は、Na、K、Rb、Cs、Fr、Mg2+、Ca2+、Sr2+、Ba2+、Al3+よりなる群から選択される少なくとも1つのカチオンXと、オキサレート錯体アニオンYを含む。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 非水電解質二次電池、特にリチウムイオン二次電池は、高電圧かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。
 特許文献1には、リチウムビス(フルオロスルホニル)イミド(LiFSI)と、リチウムビスオキサラートボレート(LiBOB)を非水電解液に含むリチウムイオン二次電池が提案されている。特許文献1では、これにより容量およびレート特性の低下が抑制されるとしている。
特開2016-139610号公報
 リチウムイオン二次電池の正極活物質として、リチウムと金属(特に、遷移金属)とを含む複合酸化物が用いられる。リチウムと遷移金属とを含む複合酸化物としては、従来より、コバルト酸リチウム(LiCoO)が用いられてきた。
 一方で、近年では、需要増大に伴うコバルト価格高騰を受けて、Coを含まない正極活物質の使用が望まれている。この点で、複合酸化物を構成する金属の一部をCoから他の金属元素に置き換えることで、Coの含有割合を低減した複合酸化物の使用が試みられている。なかでも、高容量が得られることから、遷移金属としてNiを含むリチウムニッケル複合酸化物が期待されている。
 しかしながら、Co含有割合が低下すると、リチウムと遷移金属とを含む複合酸化物は充放電の繰り返しに伴いリチウムイオンの吸蔵および放出が困難な結晶構造に変化し易く、容量維持率が低下し易い。
 以上に鑑み、本開示の一側面は、正極、セパレータ、前記セパレータを介して前記正極と対向する負極、および、電解液、を有し、前記正極は、第1の金属であるリチウムと、リチウム以外の第2の金属とを含む複合酸化物を含み、前記複合酸化物において、前記第2の金属はNiを含み、前記第2の金属に占めるNiの割合が90原子%以上であり、且つ、前記第2の金属に占めるCoの割合が10原子%以下であり、前記電解液は、Na、K、Rb、Cs、Fr、Mg2+、Ca2+、Sr2+、Ba2+、およびAl3+からなる群より選択される少なくとも1つのカチオンXと、オキサレート錯体アニオンYを含む、非水電解質二次電池に関する。
 本開示によれば、リチウムと遷移金属とを含む複合酸化物を用いた非水電解質二次電池において、金属全体に占めるCoの含有割合を低減しながら、容量維持率の低下を抑制できる。
本開示の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 本開示の実施形態に係る非水電解質二次電池は、正極、セパレータ、セパレータを介して正極と対向する負極、および、電解液、を有する。正極は、リチウム(第1の金属)とリチウム以外の第2の金属とを含む複合酸化物(以下において、「リチウム含有複合酸化物」とも称する)を含む。リチウム含有複合酸化物において、第2の金属はNiを含み、第2の金属に占めるNiの割合が90原子%以上であり、且つ、第2の金属に占めるCoの割合が10原子%以下である。
 この非水電解質二次電池は、リチウム含有複合酸化物を用いながらも、第2の金属全体に占めるCoの含有割合が10原子%以下に低減されている。また、第2の金属にNiを含み、第2の金属に占めるNiの割合を90原子%以上とすることで、高容量を実現できる。
 一方、非水電解質二次電池は、充放電により、リチウムイオンの吸蔵および放出に伴いリチウム含有複合酸化物中のNiのイオン価数が変動し、Niのイオン価数の変動によってリチウム含有複合酸化物の結晶構造が不安定になり易い。特に、Coの含有割合が10原子%以下であると、リチウム含有複合酸化物は、充放電の繰り返しによって、リチウムイオンの可逆的な吸蔵および放出が困難な結晶構造に変化(不活性化)し易く、容量維持率が低下し易い。
 しかしながら、電解液に、Na、K、Rb、Cs、Fr、Mg2+、Ca2+、Sr2+、Ba2+、およびAl3+からなる群より選択される少なくとも1つのカチオンXと、オキサレート錯体アニオンYを含ませることによって、容量維持率の低下は抑制される。
 非水電解質二次電池は、通常、電解液に含まれるリチウム塩(例えばLiPFなど)、電解液の溶媒(例えば、フルオロエチレンカーボネート(FEC)など)や添加剤、あるいは正極および負極に含まれ得る結着剤(例えば、ポリフッ化ビニリデン(PVdF)など)に、フッ素化合物を含んでいる。これらのフッ素化合物が分解されることによって、正極(正極活物質)であるリチウム含有複合酸化物の表層には、カチオンXとフッ素とを含むフッ化物被膜が形成され得る。例えば、カチオンXがセシウムイオンである場合、フッ化セシウムCsFを含む被膜が形成され得る。このフッ化物被膜により、電解液との副反応によるリチウム含有複合酸化物の不可逆的な構造変化が抑制されるものと考えられる。よって、容量維持率の低下が抑制されると考えられる。
 フッ化物被膜は、LiFと、カチオンXを含むフッ化物とが混在した状態で存在すると考えられる。カチオンXはリチウムイオンとイオン半径が異なるため、フッ化物被膜において、カチオンXの周りにはリチウムイオンが通過可能な隙間が存在し得る。よって、フッ化物被膜がリチウムイオンの移動の抵抗となり難く、容量維持率を高く維持できると考えられる。なかでも、カチオンXのイオン半径がリチウムイオンよりも大きいと、隙間が大きくなり易く、容量維持率を高く維持し易い。
 さらに、電解液にオキサレート錯体アニオンYを含むことによって、容量維持率の低下を一層抑制できる。オキサレート錯体アニオンYは、負極において分解され、負極活物質の表層に被膜を形成する。加えて、オキサレート錯体アニオンY(またはその分解生成物)は、正極活物質の表層のフッ化物被膜に付着して、あるいはフッ化物被膜内に取り込まれ、フッ化物被膜を安定化させると考えられる。この結果、リチウムイオンの移動抵抗が低く、且つ緻密な被膜が正極活物質の表層に形成されると考えられ、過剰な副反応が抑制され、容量維持率の低下を一層抑制できると考えられる。なお、上記のメカニズムは、現時点における発明者の見解を示すものであり、本発明はこれに限定されるものではない。
 オキサレート錯体アニオンYは、B(C 、BF(C、P(C 、PF(C 、およびPF(Cからなる群より選択される少なくとも1つを用いてもよい。
 オキサレート錯体アニオンYは、フッ素を含んでいてもよい。この場合、オキサレート錯体アニオンYの分解により、フッ化物被膜のフッ素成分を供給できる。よって、フッ素を含むオキサレート錯体アニオンYとして、BF(C、PF(C 、およびPF(Cの少なくともいずれか1つであってもよい。
 カチオンXおよびオキサレート錯体アニオンYは、これらの塩を電解液に加えてもよいし、カチオンXと他のアニオンとの塩、および、オキサレート錯体アニオンYのリチウム塩を電解液に加えてもよい。
 リチウム含有複合酸化物は、リチウムと遷移金属とを含む層状岩塩型結晶構造を有する化合物であり得る。リチウム含有複合酸化物は、上記層状化合物の遷移金属として少なくともニッケルを含む。リチウム含有複合酸化物において、リチウム以外の金属元素に占めるニッケルの原子分率は0.9以上である。リチウム以外の金属元素に占めるコバルトの原子分率は0.1以下である。リチウム以外の金属元素に占めるコバルトの原子分率は0.05以下であってもよい。
 具体的に、リチウム含有複合酸化物は、組成式LiNi1-x-yCoで表される材料を含むものであってもよい。ただし、0<a≦1.2であり、0≦x≦0.1、0≦y≦0.1、0<x+y≦0.1である。Mは、Na、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選択された少なくとも1種であり、なかでもAlが好ましい。なお、リチウムのモル比を示すa値は、充放電により増減する。コバルト比率xは、0<x≦0.05であってもよく、0.01≦x≦0.05であってもよい。
 次に、本開示の実施形態に係る非水電解質二次電池について詳述する。非水電解質二次電池は、例えば、以下のような電解液と、負極と、正極とを備える。
 [電解液]
 電解液は、通常、非水溶媒と、非水溶媒に溶解した溶質とを含む。溶質は、リチウム塩を含み得る。溶質は、電解液中でイオン解離する電解質塩である。溶媒および溶質以外の電解液の成分は添加剤である。電解液には、様々な添加剤が含まれ得る。カチオンXおよびオキサレート錯体アニオンYは、添加剤として電解液に含まれ得る。
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート(VC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。また、環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水溶媒として、他に、環状エーテル類、鎖状エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類などが挙げられる。
 環状エーテルの例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等が挙げられる。
 鎖状エーテルの例としては、1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
 これらの溶媒は、水素原子の一部がフッ素原子で置換されたフッ素化溶媒であってもよい。フッ素化溶媒としては、フルオロエチレンカーボネート(FEC)を用いてもよい。
 リチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO4、LiAlCl4、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF6、LiPF、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2など)、フッ素含有酸イミドのリチウム塩(LiN(FSO22、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22など)、リチウムハライド(LiCl、LiBr、LiIなど)などが使用できる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液におけるリチウム塩、カチオンX、オキサレート錯体アニオンYの含有量は、例えば、NMR、イオンクロマトグラフィー等を用いることにより測定し得る。
 電解液におけるリチウム塩の濃度は、1mol/リットル以上2mol/リットル以下が好ましく、1mol/リットル以上1.5mol/リットル以下がより好ましい。リチウム塩濃度を上記範囲に制御することで、イオン伝導性に優れ、適度の粘性を有する電解液を得ることができる。ただし、リチウム塩濃度は上記に限定されない。なお、オキサレート錯体アニオンYもリチウム塩の形で電解液に添加され得る。オキサレート錯体アニオンYを含む場合、リチウム塩の濃度とは、オキサレート錯体アニオンYと、オキサレート錯体アニオンYを除くリチウム塩のアニオンとの合計の濃度(すなわち、リチウムイオン濃度)を意味する。
 電解液におけるカチオンXの濃度は、0.01mol/リットル以上であってもよい。この場合に、十分な容量維持率の低下抑制効果が得られる。カチオンXの濃度は、0.05mol/リットル以上、もしくは0.1mol/リットル以上であってもよい。リチウムイオン伝導性の低下を抑制する観点から、電解液におけるカチオンXの濃度を0.5mol/リットル以下としてもよい。
 電解液におけるオキサレート錯体アニオンYの濃度は、0.01mol/リットル以上であってもよい。ただし、オキサレート錯体アニオンYの濃度が高濃度であるほど、オキサレート錯体アニオンYが分解され易く、分解によるガスが発生し易くなる。ガス発生を抑える点で、電解液におけるオキサレート錯体アニオンYの濃度を0.5mol/リットル以下としてもよい。
 電解液は、リチウム塩として前述のLiPFを含むものであってもよい。この場合、電解液に含まれるPF イオンのモル基準の含有量に対する、オキサレート錯体アニオンYのモル基準の含有量の割合を、0.1以上0.5以下としてもよい。解離度が高いリチウム塩であるLiPFをこの割合で含むことにより、電解液として十分なリチウムイオン伝導性を得ることができる。
 電解液は、他の公知の添加剤を含有してもよい。添加剤としては、1,3-プロパンサルトン、メチルベンゼンスルホネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、フルオロベンゼンなどが挙げられる。
 [負極]
 負極は、例えば、負極集電体と、負極集電体の表面に形成された負極活物質層とを具備する。負極活物質層は、例えば、負極活物質、結着剤等を含む負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。つまり、負極活物質は、合剤層であってもよい。また、リチウム金属箔あるいはリチウム合金箔を負極集電体に貼り付けてもよい。負極活物質層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極活物質層は、負極活物質を必須成分として含み、任意成分として、結着剤、導電剤、増粘剤などを含むことができる。結着剤、導電剤、増粘剤としては、公知の材料を利用できる。
 負極活物質は、電気化学的にリチウムイオンを吸蔵および放出する材料、リチウム金属、および/または、リチウム合金を含む。電気化学的にリチウムイオンを吸蔵および放出する材料としては、炭素材料、合金系材料などが用いられる。炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。合金系材料としては、リチウムと合金形成可能な金属を少なくとも1種類含むものが挙げられ、ケイ素、スズ、ケイ素合金、スズ合金、ケイ素化合物などが挙げられる。これらが酸素と結合した酸化ケイ素や酸化スズ等を用いてもよい。
 ケイ素を含む合金系材料としては、例えば、リチウムイオン導電相と、リチウムイオン導電相に分散したケイ素粒子とを有するケイ素複合材料を用いることができる。リチウムイオン導電相としては、例えば、ケイ素酸化物相、シリケート相および/または炭素相等を用いることができる。ケイ素酸化物相の主成分(例えば95~100質量%)は二酸化ケイ素であり得る。なかでも、シリケート相とそのシリケート相に分散したケイ素粒子とで構成される複合材料は、高容量であり、かつ不可逆容量が少ない点で好ましい。
 シリケート相は、例えば、長周期型周期表の第1族元素および第2族元素からなる群より選択される少なくとも1種を含んでよい。長周期型周期表の第1族元素および長周期型周期表の第2族元素としては、例えば、リチウム(Li)、カリウム(K)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を用い得る。その他の元素としてアルミニウム(Al)、ホウ素(B)、ランタン(La)、リン(P)、ジルコニウム(Zr)、チタン(Ti)等を含んでも良い。中でも、不可逆容量が小さく、初期の充放電効率が高いことから、リチウムを含むシリケート相(以下、リチウムシリケート相とも称する。)が好ましい。
 リチウムシリケート相は、リチウム(Li)と、ケイ素(Si)と、酸素(O)とを含む酸化物相であればよく、他の元素を含んでもよい。リチウムシリケート相におけるSiに対するOの原子比:O/Siは、例えば、2より大きく、4未満である。好ましくは、O/Siは、2より大きく、3未満である。リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、0より大きく、4未満である。リチウムシリケート相は、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。zは、0<z<1の関係を満たすことが好ましく、z=1/2がより好ましい。リチウムシリケート相に含まれ得るLi、SiおよびO以外の元素としては、例えば、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)、亜鉛(Zn)、アルミニウム(Al)等が挙げられる。
 炭素相は、例えば、結晶性の低い無定形炭素(すなわちアモルファス炭素)で構成され得る。無定形炭素は、例えばハードカーボンでもよく、ソフトカーボンでもよく、それ以外でもよい。
 負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。
 [正極]
 正極は、例えば、正極集電体と、正極集電体の表面に形成され、かつ正極活物質を含む正極合剤層とを具備する。正極合剤層は、例えば、正極活物質、結着剤等を含む正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 正極活物質としては、例えば、上記のLiNi1-x-yCo(ただし、0<a≦1.2であり、0≦x≦0.1、0≦y≦0.1、0<x+y≦0.1であり、Mは、Na、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選択された少なくとも1種である。)で表されるリチウム含有複合酸化物が用いられる。結晶構造の安定性の観点から、MとしてAlを含んでいてもよい。このような複合酸化物の具体例として、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.9Co0.05Al0.05、LiNi0.91Co0.06Al0.03など)が挙げられる。
 正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
 [セパレータ]
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群など、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 図1は、本開示の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース11と、電池ケース11内に収容された電極群10および非水電解質(図示せず)とを備えている。電極群10は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群10は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。
 負極の負極集電体には、負極リード15の一端が溶接などにより取り付けられている。正極の正極集電体には、正極リード14の一端が溶接などにより取り付けられている。負極リード15の他端は、封口板12に設けられた負極端子13に電気的に接続される。封口板12と負極端子13との間には、ガスケット16が配置され、両者を絶縁している。正極リード14の他端は、封口板12と接続され、正極端子を兼ねる電池ケース11と電気的に接続される。電極群10の上部には、電極群10と封口板12とを隔離するとともに負極リード15と電池ケース11とを隔離する樹脂製の枠体18が配置されている。そして、電池ケース11の開口部は、封口板12で封口される。封口板12には、注液孔17aが形成されており、注液孔17aから電解質が角型電池ケース11内に注液される。その後、注液孔17aは封栓17により塞がれる。
 なお、非水電解質二次電池の構造は、金属製の電池ケースを具備する円筒形、コイン形、ボタン形などでもよく、バリア層と樹脂シートとの積層体であるラミネートシート製の電池ケースを具備するラミネート型電池でもよい。本開示において、二次電池のタイプ、形状等は、特に限定されない。
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
 <実施例1>
 [負極の作製]
 負極活物質である黒鉛と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)と、水とを所定の質量比で混合し、負極スラリーを調製した。次に、負極集電体である銅箔の表面に負極スラリーを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に負極合剤層を形成した。
 [正極の作製]
 正極活物質であるリチウム含有複合酸化物(LiNi0.9Co0.05Al0.05)と、アセチレンブラックと、ポリフッ化ビニリデンと、N-メチル-2-ピロリドン(NMP)とを所定の質量比で混合し、正極スラリーを調製した。次に、正極集電体であるアルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に正極合剤層を形成した。
 [非水電解液の調製]
 フルオロエチレンカーボネート(FEC)、エチルメチルカーボネート(EMC)、および、ジメチルエーテル(DME)を4:1:15の体積比で含む混合溶媒に、リチウム塩としてLiPF6、および、カチオンXとオキサレート錯体アニオンYとの塩としてセシウムジフルオロオキサレートボレート(CsBF(C))を加え、非水電解液を調製した。非水電解液におけるLiPF6の濃度は1.0mol/リットルとした。非水電解液におけるCsBF(C)の濃度は0.1mol/リットルとした。
 [非水電解質二次電池の作製]
 各電極にリードタブをそれぞれ取り付け、リードが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。アルミニウム箔をバリア層とするラミネートフィルム製の外装体内に電極群を挿入し、105℃で2時間真空乾燥した後、非水電解液を注入し、外装体の開口部を封止して、電池A1を得た。
 <実施例2>
 非水電解液の調製において、CsBF(C)の代わりにマグネシウムジフルオロオキサレートボレート(Mg(BF(C)))を用いた。非水電解液におけるMg(BF(C))の濃度は0.1mol/リットルとした。
 これ以外については、実施例1と同様にして、非水電解質二次電池を作製し、電池A2を得た。
 <比較例1>
 非水電解液の調製において、CsBF(C)を添加しなかった。
 これ以外については、実施例1と同様にして、非水電解質二次電池を作製し、電池B1を得た。
 <比較例2>
 正極活物質であるリチウム含有複合酸化物として、LiNi0.8Co0.15Al0.05を用いた。
 また、非水電解液の調製において、CsBF(C)を添加しなかった。
 これ以外については、実施例1と同様にして、非水電解質二次電池を作製し、電池B2を得た。
 <比較例3>
 正極活物質であるリチウム含有複合酸化物として、LiNi0.8Co0.15Al0.05を用いた。
 これ以外については、実施例1と同様にして、非水電解質二次電池を作製し、電池B3を得た。
 <比較例4>
 正極活物質であるリチウム含有複合酸化物として、LiNi0.8Co0.15Al0.05を用いた。
 これ以外については、実施例2と同様にして、非水電解質二次電池を作製し、電池B4を得た。
 [評価]
 (初期充放電)
 完成後の各電池について、25℃の環境に置き、0.3Itの電流で電圧が4.1Vになるまで定電流充電を行い、その後、4.1Vの定電圧で電流が0.02Itになるまで定電圧充電した。その後、0.3Itの電流で電圧が2.85Vになるまで定電流放電を行い、初期放電容量Cを求めた。充放電は25℃の環境で行った。
 (容量維持率)
 充電と放電との間の休止期間は10分とし、25℃の環境で、上記充放電条件で充放電を100サイクル繰り返し、100サイクル目の放電容量Cを求めた。放電容量Cの、初期放電容量Cに対する比R=C/Cの百分率を、容量維持率として評価した。
 表1に、電池A1、A2、B1~B4における初期放電容量Cおよび容量維持率Rの評価結果を示す。表1には、各電池で用いた正極活物質と添加剤が併せて示されている。表1より、電池A1およびA2は、電池B1~B4と比べて初期放電容量Cが優れ、且つ、容量維持率Rも高い。
 電池B1は、リチウム含有複合酸化物に含まれるコバルトの割合が低く、且つニッケルの割合が高いことから、電池B2と比較して容量維持率Rの低下が著しい。一方、電池B2~B4は、リチウム含有複合酸化物に含まれるコバルトの割合が高く、且つニッケルの割合が低いことから、初期放電容量Cが小さい。
 電池B2~B4において、電解液にカチオンXおよびオキサレート錯体アニオンYを加えることによる容量維持率Rの改善効果は見られず、容量維持率RはカチオンXおよびオキサレート錯体アニオンYを加えることで低下した。これに対して、電池A1およびA2では、電解液にカチオンXおよびオキサレート錯体アニオンYを加えることによって、容量維持率Rは電池B1から大きく改善した。
Figure JPOXMLDOC01-appb-T000001
 本開示に係る非水電解質二次電池によれば、高容量で、且つ、コバルト使用量が低減された非水電解質二次電池を提供することができる。本開示に係る非水電解質二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。
 1 非水電解質二次電池
 10 電極群
 11 電池ケース
 12 封口板
 13 負極端子
 14 正極リード
 15 負極リード
 16 ガスケット
 17 封栓
 17a 注液孔
 18 枠体

Claims (9)

  1.  正極、セパレータ、前記セパレータを介して前記正極と対向する負極、および、電解液、を有し、
     前記正極は、第1の金属であるリチウムと、リチウム以外の第2の金属とを含む複合酸化物を含み、
     前記複合酸化物において、前記第2の金属はNiを含み、前記第2の金属に占めるNiの割合が90原子%以上であり、且つ、前記第2の金属に占めるCoの割合が10原子%以下であり、
     前記電解液は、Na、K、Rb、Cs、Fr、Mg2+、Ca2+、Sr2+、Ba2+、およびAl3+からなる群より選択される少なくとも1つのカチオンXと、オキサレート錯体アニオンYを含む、非水電解質二次電池。
  2.  前記オキサレート錯体アニオンYは、B(C 、BF(C、P(C 、PF(C 、およびPF(Cからなる群より選択される少なくとも1つを含む、請求項1に記載の非水電解質二次電池。
  3.  前記オキサレート錯体アニオンYは、フッ素を含む、請求項1または2に記載の非水電解質二次電池。
  4.  前記電解液中の前記オキサレート錯体アニオンYの濃度は、0.5mol/リットル以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記電解液中の前記カチオンXの濃度は、0.01mol/リットル以上0.5mol/リットル以下である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記電解液は、PF イオンを含み、
     前記電解液中の前記PF イオンのモル基準の含有量に対する、前記電解液中の前記オキサレート錯体アニオンYのモル基準の含有量の割合は、0.1以上0.5以下である、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記複合酸化物は、組成式LiNi1-x-yCo(ただし、0<a≦1.2であり、0≦x≦0.1、0≦y≦0.1、0<x+y≦0.1であり、Mは、Na、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選択された少なくとも1種である。)で表される材料を含む、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記MはAlを含む、請求項7に記載の非水電解質二次電池。
  9.  前記複合酸化物は、0<x≦0.05を満たす、請求項7または8に記載の非水電解質二次電池。
PCT/JP2020/027608 2019-08-30 2020-07-16 非水電解質二次電池 WO2021039178A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/638,489 US20220416237A1 (en) 2019-08-30 2020-07-16 Non-aqueous electrolyte secondary battery
EP20855996.3A EP4024524A4 (en) 2019-08-30 2020-07-16 SECONDARY BATTERY WITH ANHYDROUS ELECTROLYTE
CN202080059965.1A CN114342120A (zh) 2019-08-30 2020-07-16 非水电解质二次电池
JP2021542615A JP7493165B2 (ja) 2019-08-30 2020-07-16 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-159023 2019-08-30
JP2019159023 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039178A1 true WO2021039178A1 (ja) 2021-03-04

Family

ID=74685024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027608 WO2021039178A1 (ja) 2019-08-30 2020-07-16 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20220416237A1 (ja)
EP (1) EP4024524A4 (ja)
JP (1) JP7493165B2 (ja)
CN (1) CN114342120A (ja)
WO (1) WO2021039178A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177030A (ja) * 2009-01-29 2010-08-12 Nippon Chem Ind Co Ltd リチウム系複合酸化物の表面処理剤、リチウム系複合酸化物の表面処理液、リチウムイオン二次電池用電解液、表面処理リチウムイオン二次電池用正極活物質及びその製造方法、表面処理リチウムイオン二次電池用負極活物質及びその製造方法、並びにリチウムイオン二次電池及びその製造方法
WO2015045340A1 (ja) * 2013-09-30 2015-04-02 三洋電機株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP2016139610A (ja) 2015-01-26 2016-08-04 株式会社日本触媒 非水電解液及びこれを備えたリチウムイオン二次電池
JP2019003941A (ja) * 2017-06-12 2019-01-10 三星電子株式会社Samsung Electronics Co., Ltd. ホスフェート系添加剤を含むリチウム二次電池
JP2019526914A (ja) * 2016-09-07 2019-09-19 ソウルブレイン シーオー., エルティーディー. 電解液添加剤及びこれを含むリチウム二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124170B2 (ja) * 2007-05-09 2013-01-23 株式会社豊田中央研究所 リチウムイオン二次電池
JP5573313B2 (ja) * 2010-04-06 2014-08-20 セントラル硝子株式会社 非水電解液電池用電解液及びこれを用いる非水電解液電池
CN105576282B (zh) * 2011-02-10 2018-11-06 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质二次电池
US20150221938A1 (en) * 2012-09-28 2015-08-06 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2014060077A2 (de) * 2012-10-11 2014-04-24 Rockwood Lithium GmbH Additive für galvanische zellen
JP5975291B2 (ja) * 2013-01-23 2016-08-23 トヨタ自動車株式会社 非水電解液二次電池の製造方法
KR102436419B1 (ko) * 2015-10-30 2022-08-25 삼성에스디아이 주식회사 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬 이차 전지
CN105591156A (zh) * 2016-01-04 2016-05-18 东莞市凯欣电池材料有限公司 一种含有苯三腈的电解液及含有该电解液的锂离子二次电池
JP6860782B2 (ja) * 2016-07-01 2021-04-21 セントラル硝子株式会社 非水系電解液用添加剤、該添加剤を用いる非水系電解液、及び非水系電解液二次電池
JP6917586B2 (ja) * 2017-03-28 2021-08-11 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP6883262B2 (ja) * 2017-09-11 2021-06-09 トヨタ自動車株式会社 非水電解液二次電池
JP2019061828A (ja) * 2017-09-26 2019-04-18 Tdk株式会社 リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
CN109494406B (zh) * 2018-11-14 2021-11-02 中国科学院宁波材料技术与工程研究所 一种锂金属电池用电解液及锂金属电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177030A (ja) * 2009-01-29 2010-08-12 Nippon Chem Ind Co Ltd リチウム系複合酸化物の表面処理剤、リチウム系複合酸化物の表面処理液、リチウムイオン二次電池用電解液、表面処理リチウムイオン二次電池用正極活物質及びその製造方法、表面処理リチウムイオン二次電池用負極活物質及びその製造方法、並びにリチウムイオン二次電池及びその製造方法
WO2015045340A1 (ja) * 2013-09-30 2015-04-02 三洋電機株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP2016139610A (ja) 2015-01-26 2016-08-04 株式会社日本触媒 非水電解液及びこれを備えたリチウムイオン二次電池
JP2019526914A (ja) * 2016-09-07 2019-09-19 ソウルブレイン シーオー., エルティーディー. 電解液添加剤及びこれを含むリチウム二次電池
JP2019003941A (ja) * 2017-06-12 2019-01-10 三星電子株式会社Samsung Electronics Co., Ltd. ホスフェート系添加剤を含むリチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024524A4

Also Published As

Publication number Publication date
EP4024524A1 (en) 2022-07-06
CN114342120A (zh) 2022-04-12
EP4024524A4 (en) 2022-12-21
JP7493165B2 (ja) 2024-05-31
US20220416237A1 (en) 2022-12-29
JPWO2021039178A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
JP4237659B2 (ja) 非水電解質電池
WO2017047019A1 (ja) 電池
CN107636869B (zh) 二次电池用正极活性物质
WO2012120782A1 (ja) リチウムイオン二次電池
JP7499455B2 (ja) 非水電解質二次電池
WO2017047018A1 (ja) 電池
WO2022070893A1 (ja) 二次電池用正極活物質および二次電池
WO2014155992A1 (ja) 非水電解質二次電池
WO2021153395A1 (ja) 非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池
WO2022044554A1 (ja) 二次電池用正極活物質および二次電池
WO2022070896A1 (ja) 二次電池用正極活物質および二次電池
WO2022070897A1 (ja) 二次電池用正極活物質および二次電池
EP4113656A1 (en) Positive electrode for secondary batteries, and secondary battery
WO2024024356A1 (ja) 二次電池用正極活物質および二次電池
WO2023032807A1 (ja) 二次電池用正極活物質および二次電池
JPWO2019065196A1 (ja) 非水電解質二次電池
JP7182198B2 (ja) 非水電解質二次電池、電解液及び非水電解質二次電池の製造方法
WO2021039178A1 (ja) 非水電解質二次電池
WO2020158169A1 (ja) 非水電解質二次電池およびこれに用いる電解液
CN115023838A (zh) 非水电解液用添加剂和包含其的非水电解液以及非水电解液二次电池
WO2022045037A1 (ja) 非水電解液二次電池
WO2023120670A1 (ja) 二次電池用正極活物質および二次電池
WO2023120671A1 (ja) 二次電池用正極活物質および二次電池
WO2024135669A1 (ja) 二次電池用正極活物質および二次電池
WO2022030109A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855996

Country of ref document: EP

Effective date: 20220330