[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020202889A1 - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
WO2020202889A1
WO2020202889A1 PCT/JP2020/007061 JP2020007061W WO2020202889A1 WO 2020202889 A1 WO2020202889 A1 WO 2020202889A1 JP 2020007061 W JP2020007061 W JP 2020007061W WO 2020202889 A1 WO2020202889 A1 WO 2020202889A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
image data
image
incident
Prior art date
Application number
PCT/JP2020/007061
Other languages
English (en)
French (fr)
Inventor
浩志 鬼橋
Original Assignee
キヤノン電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン電子管デバイス株式会社 filed Critical キヤノン電子管デバイス株式会社
Priority to CN202080027038.1A priority Critical patent/CN113711085B/zh
Priority to KR1020217031732A priority patent/KR102674553B1/ko
Priority to EP20783713.9A priority patent/EP3951437A4/en
Publication of WO2020202889A1 publication Critical patent/WO2020202889A1/ja
Priority to US17/475,955 priority patent/US11733400B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled

Definitions

  • An embodiment of the present invention relates to a radiation detector.
  • An example of a radiation detector is an X-ray detector.
  • the X-ray detector is provided with, for example, an array substrate having a plurality of photoelectric conversion units and a scintillator provided on the plurality of photoelectric conversion units to convert X-rays into fluorescence.
  • the photoelectric conversion unit is provided with, for example, a photoelectric conversion element that converts fluorescence from a scintillator into an electric charge, a thin film transistor that switches between charge accumulation and emission, and an electric charge storage capacitor.
  • the X-ray detector reads out the image data as follows. First, the incident of X-rays is recognized by the signal input from the outside. Next, after a lapse of a predetermined time, the thin film transistor of the photoelectric conversion unit to be read is turned on, and the accumulated charge is read out as image data. However, in this way, a synchronization interface for synchronizing the X-ray detector with an external device such as an X-ray source is required.
  • the X-ray starts to be incident based on the difference between the value of the current flowing through the data line when the X-ray is incident and the value of the current flowing through the data line when the X-ray is not incident.
  • a technique for detecting time has been proposed.
  • the value of the current flowing through the data line when the thin film transistor is off is extremely small. Therefore, even if the value of the current flowing through the data line is detected when the thin film transistor is in the off state, it may be difficult to accurately detect the start of X-ray incident.
  • the X-ray starts to be incident based on the difference between the value of the current flowing through the data line when the X-ray is incident and the value of the current flowing through the data line when the X-ray is not incident.
  • a technique for detecting time has been proposed. Since the value of the current flowing through the data line becomes large when the thin film transistor is in the ON state, it is possible to accurately detect the start of X-ray incident.
  • An object to be solved by the present invention is to provide a radiation detector capable of accurately detecting the start of radiation incident and improving the quality of a radiation image.
  • the radiation detector includes a substrate, a plurality of control lines provided on the substrate and extending in a first direction, and a second direction provided on the substrate and intersecting the first direction.
  • a plurality of detection units having a plurality of data lines, a thin film transistor electrically connected to the corresponding control line and the corresponding data line, and detecting radiation directly or in cooperation with a scintillator, and the above-mentioned
  • a control circuit that switches between the on state and the off state of the thin film transistor, a signal detection circuit that reads image data when the thin film transistor is on, and the radiation of the radiation based on the value of the image data read when the thin film transistor is on. It is provided with an incident radiation detection unit that determines the start of incident.
  • the signal detection circuit executes a first reading step of further reading the image data when the thin film transistor is in the ON state.
  • the control circuit executes an image storage step of turning off all the thin film transistors after the first readout step.
  • the radiation detector according to the present embodiment can be applied to various types of radiation such as ⁇ -rays in addition to X-rays.
  • ⁇ -rays in addition to X-rays.
  • X-rays as a typical example of radiation will be described as an example. Therefore, by replacing "X-ray" in the following embodiment with "other radiation”, it can be applied to other radiation.
  • the X-ray detector 1 illustrated below is an X-ray plane sensor that detects an X-ray image which is a radiation image.
  • the X-ray plane sensor is roughly divided into a direct conversion method and an indirect conversion method.
  • the direct conversion method is a method in which the photoconductive charge (charge) generated inside the photoconductive film by incident X-rays is directly guided to the storage capacitor for charge storage by a high electric field.
  • the indirect conversion method is a method in which X-rays are converted into fluorescence (visible light) by a scintillator, the fluorescence is converted into electric charges by a photoelectric conversion element such as a photodiode, and the electric charges are guided to a storage capacitor.
  • the indirect conversion type X-ray detector 1 will be illustrated as an example, but the present invention can also be applied to the direct conversion type X-ray detector. That is, the X-ray detector may have a detector that converts X-rays into electrical information. The detector may, for example, detect X-rays directly or in collaboration with a scintillator. Since a known technique can be applied to the basic configuration of the direct conversion type X-ray detector, detailed description thereof will be omitted. Further, the X-ray detector 1 can be used for general medical treatment, for example. However, the use of the X-ray detector 1 is not limited to general medical care and the like.
  • FIG. 1 is a schematic perspective view for exemplifying the X-ray detector 1.
  • the bias line 2c3 and the like are omitted.
  • FIG. 2 is a block diagram of the X-ray detector 1.
  • FIG. 3 is a circuit diagram of the array substrate 2.
  • the X-ray detector 1 can be provided with an array substrate 2, a signal processing unit 3, an image processing unit 4, a scintillator 5, an incident X-ray detection unit 6, and a memory 7. ..
  • the array substrate 2 can convert the fluorescence converted from X-rays by the scintillator 5 into an electric signal.
  • the array substrate 2 includes a substrate 2a, a photoelectric conversion unit 2b, a control line (or gate line) 2c1, a data line (or signal line) 2c2, a bias line 2c3, a wiring pad 2d1, a wiring pad 2d2, a protective layer 2f, and the like. be able to.
  • the photoelectric conversion unit 2b is a detection unit that detects X-rays in cooperation with the scintillator 5.
  • the numbers of the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, the bias line 2c3, and the like are not limited to those illustrated.
  • the substrate 2a has a plate shape and can be formed of a translucent material such as non-alkali glass.
  • a plurality of photoelectric conversion units 2b may be provided on one surface of the substrate 2a.
  • the photoelectric conversion unit 2b can be provided in the region defined by the control line 2c1 and the data line 2c2.
  • the plurality of photoelectric conversion units 2b can be arranged in a matrix. Note that one photoelectric conversion unit 2b corresponds to, for example, one pixel in an X-ray image.
  • a photoelectric conversion element 2b1 and a thin film transistor (TFT) 2b2 can be provided in each of the plurality of photoelectric conversion units 2b. Further, as shown in FIG. 3, a storage capacitor 2b3 to which the electric charge converted in the photoelectric conversion element 2b1 is supplied can be provided.
  • the storage capacitor 2b3 has, for example, a plate shape and can be provided under the thin film transistor 2b2. However, depending on the capacity of the photoelectric conversion element 2b1, the photoelectric conversion element 2b1 can also serve as the storage capacitor 2b3.
  • the photoelectric conversion element 2b1 also serves as the storage capacitor 2b3 (when the storage capacitor 2b3 is omitted), it is the photoelectric conversion element 2b1 that stores and discharges the electric charge.
  • the thin film transistor 2b2 when the thin film transistor 2b2 is turned on, the electric charge is discharged from the photoelectric conversion unit 2b, and when the thin film transistor 2b2 is turned off, the electric charge is accumulated in the photoelectric conversion unit 2b.
  • the storage capacitor 2b3 is provided, when the thin film transistor 2b2 is turned off, a constant charge is accumulated from the bias line 2c3 to the storage capacitor 2b3, and when the thin film transistor 2b2 is turned on, the charge stored in the storage capacitor 2b3 is released. Will be done. In the following, as an example, a case where the storage capacitor 2b3 is provided will be illustrated.
  • the photoelectric conversion element 2b1 can be, for example, a photodiode or the like.
  • the thin film transistor 2b2 can switch the accumulation and emission of electric charges in the storage capacitor 2b3.
  • the thin film transistor 2b2 may include a semiconductor material such as amorphous silicon (a-Si) or polysilicon (P-Si).
  • the thin film transistor 2b2 can have a gate electrode 2b2a, a drain electrode 2b2b, and a source electrode 2b2c.
  • the gate electrode 2b2a of the thin film transistor 2b2 can be electrically connected to the corresponding control line 2c1.
  • the drain electrode 2b2b of the thin film transistor 2b2 can be electrically connected to the corresponding data line 2c2.
  • the thin film transistor 2b2 can be electrically connected to the corresponding control line 2c1 and the corresponding data line 2c2.
  • the source electrode 2b2c of the thin film transistor 2b2 can be electrically connected to the corresponding photoelectric conversion element 2b1 and the storage capacitor 2b3. Further, the anode side of the photoelectric conversion element 2b1 and the storage capacitor 2b3 can be electrically connected to the corresponding bias line 2c3 (see FIG. 3).
  • a plurality of control lines 2c1 can be provided in parallel with each other at predetermined intervals.
  • the control line 2c1 extends, for example, in the row direction (corresponding to an example of the first direction).
  • One control line 2c1 can be electrically connected to one of a plurality of wiring pads 2d1 provided near the peripheral edge of the substrate 2a.
  • One of a plurality of wirings provided on the flexible printed circuit board 2e1 can be electrically connected to one wiring pad 2d1.
  • the other ends of the plurality of wirings provided on the flexible printed circuit board 2e1 can be electrically connected to the control circuits 31 provided on the signal processing unit 3, respectively.
  • a plurality of data lines 2c2 can be provided in parallel with each other at predetermined intervals.
  • the data line 2c2 extends, for example, in the column direction (corresponding to an example of the second direction) orthogonal to the row direction.
  • One data line 2c2 can be electrically connected to one of a plurality of wiring pads 2d2 provided near the peripheral edge of the substrate 2a.
  • One of a plurality of wirings provided on the flexible printed circuit board 2e2 can be electrically connected to one wiring pad 2d2.
  • the other ends of the plurality of wirings provided on the flexible printed circuit board 2e2 can be electrically connected to the signal detection circuit 32 provided on the signal processing unit 3, respectively.
  • the bias line 2c3 can be provided between the data line 2c2 and the data line 2c2 in parallel with the data line 2c2.
  • a bias power supply (not shown) can be electrically connected to the bias line 2c3.
  • a bias power supply (not shown) can be provided in, for example, the signal processing unit 3.
  • the bias line 2c3 is not always necessary, and may be provided as needed.
  • the control line 2c1, the data line 2c2, and the bias line 2c3 can be formed using, for example, a low resistance metal such as aluminum or chromium.
  • the protective layer 2f can cover the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, and the bias line 2c3.
  • the protective layer 2f contains, for example, at least one of an oxide insulating material, a nitride insulating material, an oxynitride insulating material, and a resin material.
  • the signal processing unit 3 can be provided on the side of the array substrate 2 opposite to the scintillator 5 side.
  • the signal processing unit 3 can be provided with a control circuit 31 and a signal detection circuit 32.
  • the control circuit 31 can switch between an on state and an off state of the thin film transistor 2b2.
  • the control circuit 31 can have a plurality of gate drivers 31a and a row selection circuit 31b.
  • the control signal S1 can be input to the row selection circuit 31b from the image processing unit 4 or the like.
  • the row selection circuit 31b can input the control signal S1 to the corresponding gate driver 31a according to the scanning direction of the X-ray image.
  • the gate driver 31a can input the control signal S1 to the corresponding control line 2c1.
  • the control circuit 31 can sequentially input the control signal S1 for each control line 2c1 via the flexible printed circuit board 2e1.
  • the thin film transistor 2b2 is turned on by the control signal S1 input to the control line 2c1, and the electric charge (image data S2) can be read from the photoelectric conversion unit 2b (storage capacitor 2b3).
  • image data S2 the data read when the thin film transistor 2b2 is in the on state
  • corrected data S3 the data read when the thin film transistor 2b2 is in the off state
  • the signal detection circuit 32 can read the electric charge (image data S2) from the photoelectric conversion unit 2b (storage capacitor 2b3) when the thin film transistor 2b2 is in the ON state. Further, the signal detection circuit 32 can sequentially convert the read image data S2 (analog signal) into a digital signal.
  • the signal detection circuit 32 can further read the correction data S3 when the thin film transistor 2b2 is in the off state.
  • the signal detection circuit 32 can sequentially convert the read correction data S3 (analog signal) into a digital signal.
  • the signal detection circuit 32 reads out the correction data S3 either before reading the image data S2, after reading the image data S2, before reading the image data S2, or after reading the image data S2. be able to.
  • control circuit 31 can input a control signal S1 for switching the on state and the off state of the thin film transistor 2b2 for each of the plurality of control lines 2c1. Then, the signal detection circuit 32 can read the correction data S3 each time the control signal S1 is input.
  • the signal detection circuit 32 includes the image data S2, before reading the image data S2, after reading the image data S2, and before reading the image data S2 and after reading the image data S2.
  • An image index for pairing with the correction data S3 read in any of them can be added.
  • the signal detection circuit 32 can also convert the differential output of the read image data S2 and the read correction data S1 into a digital signal and transmit it to the image processing unit 4. In this way, the corrected image data can be input to the image processing unit 4, so that the real-time property can be improved.
  • the signal detection circuit 32 can further read the image data S2 when the thin film transistor 2b2 is on. Details of the image data S2, the correction data S3, and the image index will be described later.
  • the sampling time for reading the image data S2 time of the first sampling signal 21
  • the sampling time for reading the correction data S3 time of the second sampling signal 22
  • the current from the thin film transistor 2b2 in the off state does not flow. Therefore, after the incident of X-rays is completed, no image group is generated even if the sampling time for reading the image data S2 and the time for turning on the thin film transistor 2b2 are lengthened. Further, if the sampling time for reading the image data S2 and the time for turning on the thin film transistor 2b2 are lengthened, the quality of the X-ray image can be improved.
  • the X-ray incident period is short, the X-ray incident is detected during the sampling time for reading the image data S2 and the time for turning on the thin film 2b2 after the X-ray incident is detected. It can be made longer than the previous sampling time for reading the image data S2 and the sampling time for reading the correction data S3. By doing so, it is possible to suppress the generation of image groups and improve the quality of the X-ray image.
  • the memory 7 can be electrically connected between the signal detection circuit 32 and the image processing unit 4.
  • the memory 7 can temporarily store the image data S2 converted into a digital signal and the correction data S3. At this time, the image data S2 and the correction data S3 to which the image index is added can be saved.
  • the image processing unit 4 can configure an X-ray image based on the image data S2 stored in the memory 7. Further, the image processing unit 4 can correct the image data S2 by using the correction data S3. At this time, the image processing unit 4 can extract the correction data S3 based on the image index and correct the paired image data S2 by using the extracted correction data S3.
  • the image processing unit 4, the memory 7, and the incident X-ray detection unit 6 may be integrated with the signal processing unit 3.
  • the scintillator 5 is provided on a plurality of photoelectric conversion elements 2b1 and can convert incident X-rays into fluorescence.
  • the scintillator 5 can be provided so as to cover a region (effective pixel region) on which a plurality of photoelectric conversion units 2b are provided on the substrate 2a.
  • the scintillator 5 can be formed using, for example, cesium iodide (CsI): thallium (Tl), sodium iodide (NaI): thallium (Tl), or the like. In this case, if the scintillator 5 is formed by using a vacuum vapor deposition method or the like, the scintillator 5 composed of an aggregate of a plurality of columnar crystals can be formed.
  • the scintillator 5 can also be formed by using, for example, gadolinium acid sulfide (Gd 2 O 2 S) or the like.
  • a matrix-shaped groove can be formed so that a square columnar scintillator 5 is provided for each of the plurality of photoelectric conversion units 2b.
  • a reflective layer (not shown) can be provided so as to cover the surface side (the incident surface side of X-rays) of the scintillator 5. Further, in order to suppress deterioration of the characteristics of the scintillator 5 and the characteristics of the reflective layer due to water vapor contained in the air, a moisture-proof body (not shown) covering the scintillator 5 and the reflective layer can be provided.
  • an X-ray detector can construct an X-ray image as follows.
  • the control circuit 31 turns off the thin film transistor 2b2.
  • the thin film transistor 2b2 is turned off, a constant charge is accumulated in the storage capacitor 2b3 via the bias line 2c3.
  • the scintillator 5 converts the X-rays into fluorescence.
  • fluorescence is incident on the photoelectric conversion element 2b1
  • charges (electrons and holes) are generated by the photoelectric effect, and the generated charges and the accumulated charges (different types of charges) are combined to reduce the accumulated charges.
  • the control circuit 31 sequentially turns on the thin film transistor 2b2.
  • the signal detection circuit 32 reads out the electric charge (image data S2) stored in each storage capacitor 2b3 according to the sampling signal via the data line 2c2.
  • the signal detection circuit 32 sequentially converts the read image data S2 (analog signal) into a digital signal. Further, the signal detection circuit 32 converts the value of the current flowing through the data line 2c2 into a digital signal when the thin film transistor 2b2 is in the off state.
  • the memory 7 temporarily stores the data obtained when the thin film transistor 2b2 is on as the image data S2. Further, the memory 7 stores the data obtained when the thin film transistor 2b2 is in the off state as the correction data S3.
  • the image processing unit 4 configures an X-ray image based on the image data S2 stored in the memory 7. Further, when composing an X-ray image, the image processing unit 4 uses the correction data S3 stored in the memory 7 to perform correction for suppressing an image group described later.
  • the X-ray image data corrected for suppressing the image group is output from the image processing unit 4 to an external device or the like.
  • the shooting operation is started as follows. First, it recognizes that X-rays have entered the X-ray detector by a signal from an external device such as an X-ray source. Next, after the elapse of a predetermined time, the thin film transistor 2b2 of the photoelectric conversion unit 2b to be read is turned on, and the accumulated charge is read out. That is, in the case of a general X-ray detector, it does not detect that the X-ray actually enters the X-ray detector. Therefore, in this way, a synchronization interface for synchronizing the X-ray detector with an external device such as an X-ray source is required.
  • the thin film transistor 2b2 which is a semiconductor element
  • a current flows between the drain electrode 2b2b and the source electrode 2b2c even when the thin film transistor 2b2 is in the off state.
  • the drain electrode 2b2b of the thin film transistor 2b2 is electrically connected to the data line 2c2. Therefore, the difference between the value of the current flowing through the data line 2c2 when the X-rays are incident on the thin film transistor 2b2 in the off state and the value of the current flowing through the data line 2c2 when the X-rays are not incident on the thin film transistor 2b2 in the off state. Based on this, it is possible to detect the start of X-ray incidence. If it is possible to directly detect the start of X-ray incidence, there will be no time lag, and it will be possible to prevent the processing time from becoming long.
  • the value of the current flowing through the data line 2c2 becomes extremely small. Furthermore, since a large amount of X-ray irradiation to the human body has an adverse effect on health, the amount of X-ray irradiation to the human body can be suppressed to the minimum necessary. Therefore, in the case of an X-ray detector used in medical treatment, the intensity of the incident X-ray becomes very weak, and the value of the current flowing through the data line 2c2 becomes smaller when the thin film transistor 2b2 is in the off state.
  • the X-ray incident start time is detected based on the value of the current flowing through the data line 2c2 when the thin film transistor 2b2 is off, it may be difficult to accurately detect the X-ray incident start time. ..
  • the X-ray detector 1 is provided with the following incident X-ray detection unit 6.
  • the incident X-ray detection unit 6 can be electrically connected to the signal detection circuit 32.
  • the incident X-ray detection unit 6 can determine when the X-ray starts to be incident based on the value of the current flowing through the data line 2c2 to which the thin film transistor 2b2 is electrically connected. That is, the incident X-ray detection unit 6 can determine the start of X-ray incident based on the value of the image data S2 read when the thin film transistor is on.
  • the incident X-ray detector 6 detects the current flowing through the data line 2c2 to which the thin film transistor 2b2 in the ON state is connected, and when the value of the detected current exceeds a predetermined threshold value, X It can be determined that the line is incident.
  • the predetermined threshold values are the value of the current flowing through the data line 2c2 when the X-ray is incident on the on-state thin film transistor 2b2 and the value of the current flowing through the data line 2c2 when the X-ray is not incident on the on-state thin film transistor 2b2. Can be preset based on the difference between.
  • the thin film transistor 2b2 If the thin film transistor 2b2 is in the on state, the electrical resistance can be reduced as compared with the case in the off state, so that the value of the current flowing through the data line 2c2 becomes large. Therefore, it becomes easy to detect the start of X-ray incident. As described above, in the case of the X-ray detector 1 used in medical treatment, the intensity of incident X-rays is very weak. However, if the X-ray incident start time is detected when the thin film transistor 2b2 is in the ON state, the X-ray incident start time can be detected with high accuracy.
  • the data line 2c2 to which the thin film transistor 2b2 in the on state is connected also has a new problem that an image group is generated because the current from the other thin film transistor 2b2 in the off state also flows.
  • the current from the other thin film transistor 2b2 does not flow through the data line 2c2 to which the thin film transistor 2b2 turned on after the X-rays have been incident. Therefore, the image group can be suppressed by discarding the data at the start of the X-ray incident and constructing the X-ray image using only the data after the X-ray incident is completed. However, if this is done, the data at the start of the X-ray incident will be lost, and the quality of the X-ray image will be deteriorated accordingly.
  • the incident X-ray detection unit 6 detects the current flowing through the data line 2c2 in at least one of the off state before the thin film transistor 2b2 is turned on and the off state after the thin film transistor 2b2 is turned on. ..
  • the main cause of the image group generation is the current from the thin film transistor 2b2 which is in the off state. Therefore, in at least one of the off states before and after the on state, the current flowing through the data line 2c2 to which the thin film transistor 2b2 to be turned on is connected is detected, and the image data S2 acquired in the on state is turned off. If correction is performed with the correction data S3 acquired at the time of, the image group can be significantly suppressed.
  • the image data S2 when the X-ray incident is started can be used, it is possible to suppress the deterioration of the quality of the X-ray image. That is, if the incident X-ray detection unit 6 is provided, it is possible to detect the start of X-ray incident and suppress the deterioration of the quality of the X-ray image.
  • FIG. 4 is a timing chart for exemplifying the reading of the image data S2 and the correction data S3.
  • FIG. 4 shows a case where n control lines 2c1 and m data lines 2c2 are provided.
  • the first sampling signal 21 is input to the signal detection circuit 32 from the image processing unit 4 or the like. As shown in FIG. 4, when the first sampling signal 21 is turned on, the signal detection circuit 32 starts sampling for the data line (1) to the data line (m). The first sampling signal 21 is turned off after a predetermined period of time has elapsed.
  • the control signal S1 is input from the image processing unit 4 or the like to the control line (1) via the control circuit 31.
  • the control signal S1 is turned on, the thin film transistor 2b2 electrically connected to the control line (1) is turned on.
  • the control signal S1 is turned off after a predetermined period of time has elapsed.
  • the signal detection circuit 32 sequentially reads out the image data S2 from the data line (1) to the data line (m) when the thin film transistor 2b2 is in the ON state. Further, the incident X-ray detection unit 6 determines when the X-ray starts to be incident based on the value of the current flowing through the data line 2c2 when the first sampling signal 21 is on.
  • the second sampling signal 22 is input to the signal detection circuit 32 from the image processing unit 4 or the like.
  • the signal detection circuit 32 starts sampling for the data line (1) to the data line (m).
  • the second sampling signal 22 is turned off after a predetermined period of time has elapsed.
  • control signal S1 is not input to the control line (1), and the thin film transistor 2b2 electrically connected to the control line (1) remains in the off state.
  • the signal detection circuit 32 detects the currents flowing through the data lines (1) to the data lines (m) when the thin film transistor 2b2 is off. After that, the above procedure is performed for the control line (2) to the control line (n).
  • the data obtained as described above is stored in the memory 7.
  • the data obtained when the thin film transistor 2b2 is in the ON state is the image data S2 in n rows and m columns.
  • the data obtained when the thin film transistor 2b2 is in the off state is the correction data S3 in n rows and m columns.
  • the image data S2 and the correction data S3 may be stored in different memories.
  • an image index can be added.
  • the image index TFTon1 is assigned to the image data S2
  • the image index TFToff1 is assigned to the correction data S3 that is paired with the image data S2.
  • the image index TFTon1 represents the first acquired image data S2
  • the TFToff1 represents the correction data S3 paired with the image data S2.
  • the image index can be assigned to the data related to the control line (1) to the control line (n), respectively.
  • the second sampling signal 22 is turned on after the first sampling signal 21 is turned off, but the first sampling signal is turned on after the second sampling signal 22 is turned off. 21 may be turned on. That is, in FIG. 4, the correction data S3 is acquired after the image data S2 is acquired, but the image data S2 may be acquired after the correction data S3 is acquired.
  • the second sampling signal 22, the first sampling signal 21, and the second sampling signal 22 may be sequentially input to the signal detection circuit 32.
  • the control signal S1 when the control signal S1 is input to the next control line, only the first sampling signal 21 is input to the signal detection circuit 32, and when the control signal S1 is further input to the next control line, the control signal S1 is input to the signal detection circuit 32.
  • the second sampling signal 22, the first sampling signal 21, and the second sampling signal 22 can be sequentially input to the signal detection circuit 32. That is, the first sampling signal 21 and the second sampling signal 22 may be input alternately.
  • the first sampling signal 21 is turned on before the control signal S1 is turned on, but even if the control signal S1 is turned on and the first sampling signal 21 is turned on at the same time.
  • the first sampling signal 21 may be turned on after the control signal S1 is turned on.
  • the first sampling signal 21 is turned off after the control signal S1 is turned off, but the control signal S1 may be turned off and the first sampling signal 21 may be turned off at the same time. Then, the first sampling signal 21 may be turned off before the control signal S1 is turned off.
  • FIG. 5 is a schematic diagram for exemplifying the current flowing through the data line 2c2 when X-rays are incident.
  • “ ⁇ ” represents the timing at which the first sampling signal 21 is turned on
  • “x” represents the timing at which the second sampling signal 22 is turned on.
  • the correction data S3 described above is acquired under the same conditions as the image data S2. Therefore, it is preferable that the first sampling signal 21 and the second sampling signal 22 are input in the region B. However, it is difficult to input the first sampling signal 21 and the second sampling signal 22 in the region B because it is not known when the X-rays start to be incident.
  • the first sampling signal 21 and the second sampling signal 22 are alternately input.
  • the first sampling signal 21 related to the control line (1) can be input, and then the second sampling signal 22 can be input. ..
  • the first sampling signal 21 related to the control line (2) can be input, and then the second sampling signal 22 can be input.
  • the first sampling signal 21 and the second sampling signal 22 can be alternately input.
  • FIG. 6 is a flowchart for exemplifying the processing process in the X-ray detector 1.
  • the reading step 28 for example, one control line 2c1 can be scanned, the thin film transistor 2b2 can be turned ON, and the image data S2 can be read.
  • the correction data S3 can be read by turning off the thin film transistor 2b2.
  • the image data S2 and the correction data S3 for each control line 2c1 can be stored in the memory 7 with an image index.
  • the image data S2 stored in the memory 7 and the predetermined threshold value of the X-rays The start of incident can be determined. For example, the number of image data S2 that exceeds a predetermined threshold value is counted, and when the number reaches a predetermined count number, it can be determined that X-rays have been incident.
  • the image index can be updated and the scan of control line 2c1 can be reset. Then, it is possible to return to the reading step 28 through the image accumulating step 29.
  • the details of the image storage step 29 will be described later.
  • the signal detection circuit 32 can further read the image data S2 when the thin film transistor 2b2 is in the ON state. In this case, waiting for the scan of the control line 2c1 in the next cycle to be completed, and when the image data S2 and the correction data S3 are saved in the memory 7, the saving in the memory 7 can be interrupted. By suspending the saving in the memory 7, it is possible to prevent the already saved image data S2 and the correction data S3 from being overwritten.
  • the image data S2 and the correction data S3 after the X-ray is incident are extracted based on the image index given in the cycle determined that the X-ray is incident, and the X-ray image is configured by the image processing unit 4. can do.
  • the image group can be suppressed by correcting the image data S2 using the correction data S3.
  • the control line 2c1 is sequentially scanned, and the incident of X-rays is determined from the obtained image data S2, image spots occur.
  • the main causes of image spots can be considered as follows.
  • a plurality of thin film transistors 2b2 are electrically connected to one data line 2c2.
  • the control line 2c1 is scanned and the thin film transistor 2b2 electrically connected to the desired control line 2c1 is turned on, the other thin film transistors 2b2 electrically connected to the control line 2c1 are turned off. .. If the thin film transistor 2b2 is in the OFF state, no current flows between the source electrode 2b2c and the drain electrode 2b2b.
  • the resistance value between the source electrode 2b2c and the drain electrode 2b2b decreases.
  • this resistance value decreases, a part of the electric charge accumulated in the storage capacitor 2b3 is released to the data line 2c2 and becomes a current flowing through the data line 2c2. It is considered that image spots are generated by this current.
  • the resistance value between the source electrode 2b2c and the drain electrode 2b2b changes depending on the intensity of the X-ray incident on the X-ray detector 1.
  • the intensity of X-rays incident on the X-ray detector 1 changes significantly at the start and end of X-ray incidents. Therefore, at the start and end of the X-ray incident, the resistance value between the source electrode 2b2c and the drain electrode 2b2b also changes significantly.
  • the current flowing through the data line 2c2 also changes significantly.
  • the thin film transistor 2b2 electrically connected to the desired control line 2c1 is turned on, the thin film transistor 2b2 electrically connected to the other control lines 2c1 is turned off. It is necessary to know the change in the resistance value of the thin film transistor 2b2.
  • the number of data lines 2c2 of a general X-ray detector is 500 or more, but since many thin film transistors 2b2 are in the OFF state, if the correction data S3 created from the currents in all the data lines 2c2 is used, Image spots can be effectively suppressed.
  • the value of the current integral value illustrated in FIG. 5 fluctuates.
  • the value of the integrated current value illustrated in FIG. 5 has nothing to do with the time during which the thin film transistor 2b2 is turned on (the ON time of the control signal S1).
  • the integration of the current flowing through the data line 2c2 is started, and when the first sampling signal 21 is turned off, the integration is completed. Then, the current values that flowed while the first sampling signal 21 is ON are integrated and output as a digital signal (current integrated value).
  • the time for turning on the thin film transistor 2b2 is not long to some extent, the quality of the X-ray image may deteriorate.
  • it is not necessary to lengthen the time for turning on the thin film transistor 2b2 and in order to reduce the influence of the leak current, the time for turning on the thin film transistor 2b2 is shortened to integrate the current. It is preferable to lower the value.
  • the X-ray incident period is short, the X-ray incident is detected during the sampling time for reading the image data S2 and the time for turning on the thin film 2b2 after the X-ray incident is detected. It can be made longer than the previous sampling time for reading the image data S2 and the sampling time for reading the correction data S3.
  • FIG. 7 is a timing chart for exemplifying the acquisition of an X-ray image according to a comparative example.
  • FIG. 7 shows a case where three X-ray images are continuously taken.
  • the most of the reading step 28a (corresponding to an example of the first reading step) for reading the image data S2 of one X-ray image.
  • X-rays may start to enter.
  • the incident of X-rays may end during the reading step 28b (corresponding to an example of the second reading step) for reading the image data S2 of one X-ray image.
  • the resistance value between the source electrode 2b2c and the drain electrode 2b2b changes significantly at the start and end of the X-ray incident. Therefore, as illustrated in FIG. 5, the current flowing through the data line 2c2 changes significantly, making it difficult to suppress image spots.
  • the X-ray incident start and the X-ray incident end are not performed during the reading step 28c for reading out the image data S2 of one X-ray image. Therefore, if the image data S2 read in the reading steps 28a to 28c is added, the image spots can be suppressed.
  • FIG. 8 is a timing chart for exemplifying the acquisition of an X-ray image according to the present embodiment.
  • an image storage step 29 can be provided between the reading step 28a and the reading step 28b.
  • all the thin film transistors 2b2 are turned off, and electric charges corresponding to the intensity distribution of fluorescence generated in the scintillator 5 can be stored in all the photoelectric conversion units 2b (storage capacitors 2b3).
  • the electric charge accumulated in the image storage step 29 can be read out as image data S2 in the reading step 28b performed after the image storage step 29.
  • the signal detection circuit 32 may execute the reading step 28a to further read the image data S2 when the thin film transistor 2b2 is in the ON state. it can.
  • the control circuit 31 can execute the image storage step 29 that turns off all the thin film transistors 2b2 after the reading step 28a.
  • the signal detection circuit 32 can execute the reading step 28b to read the image data S2 when the thin film transistor 2b2 is in the ON state after the image storage step 29.
  • the period of the image accumulation step 29 can be longer than the X-ray incident period. In this way, the incident of X-rays can be completed during the period of the image storage step 29. Further, the period of the image storage step 29 can be changed according to the incident period of X-rays.
  • the control line 2c1 is not scanned, so that the image spots due to the change in the resistance value described above do not occur. Therefore, if the electric charge accumulated in the image storage step 29 is read out as image data S2 in the reading step 28b and the image data S2 read out in the reading steps 28a and 28b is added, image spots can be suppressed. ..
  • the image processing unit 4 can add the image data S2 read in the reading step 28a and the image data S2 read in the reading step 28b.
  • the correction data S3 cannot be acquired in the reading step 28b. Therefore, it is possible to determine whether or not it is necessary to correct the image data S2 based on the correction data S3 in the reading step 28a.
  • the signal detection circuit 32 can read the correction data S3 when the thin film transistor 2b2 is in the off state in the reading step 28a.
  • the signal detection circuit 32 corrects data in either before reading the image data S2, after reading the image data S2, before reading the image data S2, or after reading the image data S2. S3 can be read.
  • the image processing unit 4 can correct the image data S2 read in the reading step 28a by using the correction data S3.
  • the image data S2 read in the reading steps 28a and 28b may be added, so that the number of image data to be added can be reduced, and eventually the image deterioration due to the superimposition of noise can be prevented. It can be suppressed. Further, since the image data S2 in which the afterimage is large immediately after the end of the X-ray incident is not used, the image artifact due to the afterimage can be reduced. Therefore, if the X-ray detector 1 according to the present embodiment is used, it is possible to accurately detect the start of X-ray incident and improve the quality of the X-ray image.
  • the image storage step 29 it is possible to secure a sufficient time for determining the incident of X-rays, so that it is possible to suppress the occurrence of erroneous determination. Further, in the image storage step 29, the control line 2c1 is not scanned and the image data S2 and the correction data S3 are not read out, so that the power required to compose one X-ray image can be reduced. Can be done. Therefore, even if the reading step 28a, the image storage step 29, and the reading step 28b are repeated, the average power consumption can be reduced. In addition, it is possible to suppress an increase in noise and a limitation in the shooting time due to a temperature rise.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

放射線の入射開始時を精度良く検出することができ、且つ、放射線画像の品質を向上させることができる放射線検出器を提供することである。 実施形態に係る放射線検出器は、基板と、前記基板に設けられ、第1の方向に延びる複数の制御ラインと、前記基板に設けられ、前記第1の方向に交差する第2の方向に延びる複数のデータラインと、対応する前記制御ラインと対応する前記データラインとに電気的に接続された薄膜トランジスタを有し、放射線を直接的またはシンチレータと協働して検出する複数の検出部と、前記薄膜トランジスタのオン状態とオフ状態を切り替える制御回路と、前記薄膜トランジスタがオン状態の時に画像データを読み出す信号検出回路と、前記薄膜トランジスタがオン状態の時に読み出された画像データの値に基づいて前記放射線の入射開始時を判定する入射放射線検出部と、を備えている。前記入射放射線検出部が、前記放射線の入射が開始されたと判定した場合には、前記信号検出回路は、前記薄膜トランジスタがオン状態の時に画像データをさらに読み出す第1の読み出し工程を実行する。前記制御回路は、前記第1の読み出し工程の後に、全ての前記薄膜トランジスタをオフ状態にする画像蓄積工程を実行する。

Description

放射線検出器
 本発明の実施形態は、放射線検出器に関する。
 放射線検出器の一例にX線検出器がある。X線検出器には、例えば、複数の光電変換部を有するアレイ基板と、複数の光電変換部の上に設けられX線を蛍光に変換するシンチレータとが設けられている。また、光電変換部には、例えば、シンチレータからの蛍光を電荷に変換する光電変換素子、電荷の蓄積および放出のスイッチングを行う薄膜トランジスタ、電荷を蓄積する蓄積キャパシタなどが設けられている。
 一般的には、X線検出器は、以下のようにして画像データを読み出す。まず、外部から入力された信号によりX線の入射を認識する。次に、予め定められた時間の経過後に、読み出しを行う光電変換部の薄膜トランジスタをオン状態にして、蓄積された電荷を画像データとして読み出す。しかしながら、この様にすると、X線源などの外部機器とX線検出器との同期をとるための同期インターフェースが必要になる。
 また、薄膜トランジスタをオフ状態とし、X線が入射した時にデータラインに流れる電流の値と、X線が入射していない時にデータラインに流れる電流の値との差に基づいて、X線の入射開始時を検出する技術が提案されている。しかしながら、薄膜トランジスタがオフ状態となっている時にデータラインに流れる電流の値は極めて小さくなる。そのため、薄膜トランジスタがオフ状態となっている時にデータラインに流れる電流の値を検出しても、X線の入射開始時を精度良く検出することが困難となるおそれがある。
 そのため、薄膜トランジスタをオン状態とし、X線が入射した時にデータラインに流れる電流の値と、X線が入射していない時にデータラインに流れる電流の値との差に基づいて、X線の入射開始時を検出する技術が提案されている。薄膜トランジスタがオン状態となっている時にデータラインに流れる電流の値は大きくなるので、X線の入射開始時を精度良く検出することができる。
 ここで、X線の入射開始時を検出する工程において読み出された画像データを用いてX線画像を構成する技術が提案されている。この様な技術においては、X線の入射開始がいつになるか分からないので、データラインに流れる電流の読み出し(画像データの読み出し)は、連続して繰り返し行う様にしている。そのため、消費電力が大きくなる。また、ノイズが増加したり、温度上昇による撮影時間の制限が発生したりするおそれがある。
 またさらに、1枚分のX線画像の画像データを読み出す工程の最中に、X線の入射が開始されたり、X線の入射が終了したりすると、X線の入射開始時およびX線の入射終了時において画像斑が発生しやすくなる。
 そこで、放射線の入射開始時を精度良く検出することができ、且つ、放射線画像の品質を向上させることができる放射線検出器の開発が望まれていた。
米国特許出願公開第2015/0078530号明細書 特許第6302122号公報
 本発明が解決しようとする課題は、放射線の入射開始時を精度良く検出することができ、且つ、放射線画像の品質を向上させることができる放射線検出器を提供することである。
 実施形態に係る放射線検出器は、基板と、前記基板に設けられ、第1の方向に延びる複数の制御ラインと、前記基板に設けられ、前記第1の方向に交差する第2の方向に延びる複数のデータラインと、対応する前記制御ラインと対応する前記データラインとに電気的に接続された薄膜トランジスタを有し、放射線を直接的またはシンチレータと協働して検出する複数の検出部と、前記薄膜トランジスタのオン状態とオフ状態を切り替える制御回路と、前記薄膜トランジスタがオン状態の時に画像データを読み出す信号検出回路と、前記薄膜トランジスタがオン状態の時に読み出された画像データの値に基づいて前記放射線の入射開始時を判定する入射放射線検出部と、を備えている。前記入射放射線検出部が、前記放射線の入射が開始されたと判定した場合には、前記信号検出回路は、前記薄膜トランジスタがオン状態の時に画像データをさらに読み出す第1の読み出し工程を実行する。前記制御回路は、前記第1の読み出し工程の後に、全ての前記薄膜トランジスタをオフ状態にする画像蓄積工程を実行する。
X線検出器を例示するための模式斜視図である。 X線検出器のブロック図である。 アレイ基板の回路図である。 画像データおよび補正データの読み出しを例示するためのタイミングチャートである。 X線が入射した際にデータラインに流れる電流を例示するための模式図である。 X線検出器における処理過程を例示するためのフローチャートである。 比較例に係るX線画像の撮影を例示するためのタイミングチャートである。 本実施の形態に係るX線画像の撮影を例示するためのタイミングチャートである。
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 
 本実施の形態に係る放射線検出器は、X線のほかにもγ線などの各種放射線に適用させることができる。ここでは、一例として、放射線の中の代表的なものとしてX線に係る場合を例にとり説明をする。したがって、以下の実施形態の「X線」を「他の放射線」に置き換えることにより、他の放射線にも適用させることができる。
 また、以下に例示をするX線検出器1は、放射線画像であるX線画像を検出するX線平面センサである。X線平面センサには、大きく分けて直接変換方式と間接変換方式がある。
 直接変換方式は、入射X線により光導電膜内部に発生した光導電電荷(電荷)を高電界により電荷蓄積用の蓄積キャパシタに直接導く方式である。 
 間接変換方式は、X線をシンチレータにより蛍光(可視光)に変換し、蛍光をフォトダイオードなどの光電変換素子により電荷に変換し、電荷を蓄積キャパシタに導く方式である。
 以下においては、一例として、間接変換方式のX線検出器1を例示するが、本発明は直接変換方式のX線検出器にも適用することができる。 
 すなわち、X線検出器は、X線を電気的な情報に変換する検出部を有するものであれば良い。検出部は、例えば、X線を直接的またはシンチレータと協働して検出するものとすることができる。 
 なお、直接変換方式のX線検出器の基本的な構成には既知の技術を適用することができるので、詳細な説明は省略する。 
 また、X線検出器1は、例えば、一般医療などに用いることができる。ただし、X線検出器1の用途は一般医療などに限定されるわけではない。
 図1は、X線検出器1を例示するための模式斜視図である。
 なお、図1においては、バイアスライン2c3などを省いて描いている。
 図2は、X線検出器1のブロック図である。
 図3は、アレイ基板2の回路図である。 
 図1~図3に示すように、X線検出器1には、アレイ基板2、信号処理部3、画像処理部4、シンチレータ5、入射X線検出部6、およびメモリ7を設けることができる。
 アレイ基板2は、シンチレータ5によりX線から変換された蛍光を電気信号に変換することができる。 
 アレイ基板2は、基板2a、光電変換部2b、制御ライン(又はゲートライン)2c1、データライン(又はシグナルライン)2c2、バイアスライン2c3、配線パッド2d1、配線パッド2d2、および保護層2fなどを有することができる。 
 本実施の形態においては、光電変換部2bがX線をシンチレータ5と協働して検出する検出部となる。 
 なお、光電変換部2b、制御ライン2c1、データライン2c2、およびバイアスライン2c3などの数は例示をしたものに限定されるわけではない。
 基板2aは、板状を呈し、無アルカリガラスなどの透光性材料から形成することができる。 
 光電変換部2bは、基板2aの一方の面に複数設けることができる。光電変換部2bは、制御ライン2c1とデータライン2c2とにより画された領域に設けることができる。複数の光電変換部2bは、マトリクス状に並べることができる。なお、1つの光電変換部2bは、例えば、X線画像における1つの画素(pixel)に対応する。
 複数の光電変換部2bのそれぞれには、光電変換素子2b1と、薄膜トランジスタ(TFT;Thin Film Transistor)2b2を設けることができる。また、図3に示すように、光電変換素子2b1において変換した電荷が供給される蓄積キャパシタ2b3を設けることができる。蓄積キャパシタ2b3は、例えば、板状を呈し、薄膜トランジスタ2b2の下に設けることができる。ただし、光電変換素子2b1の容量によっては、光電変換素子2b1が蓄積キャパシタ2b3を兼ねることができる。
 光電変換素子2b1が蓄積キャパシタ2b3を兼ねる場合(蓄積キャパシタ2b3が省略される場合)には、電荷の蓄積および放出が行われるのは光電変換素子2b1となる。 この場合、薄膜トランジスタ2b2をオン状態とすることで光電変換部2bから電荷が放出され、薄膜トランジスタ2b2をオフ状態とすることで光電変換部2bに電荷が蓄積される。 
 蓄積キャパシタ2b3が設けられる場合には、薄膜トランジスタ2b2をオフ状態にするとバイアスライン2c3から蓄積キャパシタ2b3に一定の電荷が蓄積され、薄膜トランジスタ2b2をオン状態にすると蓄積キャパシタ2b3に蓄積されている電荷が放出される。 
 なお、以下においては、一例として、蓄積キャパシタ2b3が設けられる場合を例示する。
 光電変換素子2b1は、例えば、フォトダイオードなどとすることができる。 
 薄膜トランジスタ2b2は、蓄積キャパシタ2b3への電荷の蓄積および放出のスイッチングを行うことができる。薄膜トランジスタ2b2は、アモルファスシリコン(a-Si)やポリシリコン(P-Si)などの半導体材料を含むものとすることができる。薄膜トランジスタ2b2は、ゲート電極2b2a、ドレイン電極2b2b及びソース電極2b2cを有するものとすることができる。薄膜トランジスタ2b2のゲート電極2b2aは、対応する制御ライン2c1と電気的に接続することができる。薄膜トランジスタ2b2のドレイン電極2b2bは、対応するデータライン2c2と電気的に接続することができる。
 すなわち、薄膜トランジスタ2b2は、対応する制御ライン2c1と対応するデータライン2c2とに電気的に接続することができる。薄膜トランジスタ2b2のソース電極2b2cは、対応する光電変換素子2b1と蓄積キャパシタ2b3とに電気的に接続することができる。また、光電変換素子2b1のアノード側と蓄積キャパシタ2b3は、対応するバイアスライン2c3と電気的に接続することができる(図3を参照)。
 制御ライン2c1は、所定の間隔をあけて互いに平行に複数設けることができる。制御ライン2c1は、例えば、行方向(第1の方向の一例に相当する)に延びている。1つの制御ライン2c1は、基板2aの周縁近傍に設けられた複数の配線パッド2d1のうちの1つと電気的に接続することができる。1つの配線パッド2d1には、フレキシブルプリント基板2e1に設けられた複数の配線のうちの1つを電気的に接続することができる。フレキシブルプリント基板2e1に設けられた複数の配線の他端は、信号処理部3に設けられた制御回路31とそれぞれ電気的に接続することができる。
 データライン2c2は、所定の間隔をあけて互いに平行に複数設けることができる。データライン2c2は、例えば、行方向に直交する列方向(第2の方向の一例に相当する)に延びている。1つのデータライン2c2は、基板2aの周縁近傍に設けられた複数の配線パッド2d2のうちの1つと電気的に接続することができる。1つの配線パッド2d2には、フレキシブルプリント基板2e2に設けられた複数の配線のうちの1つを電気的に接続することができる。フレキシブルプリント基板2e2に設けられた複数の配線の他端は、信号処理部3に設けられた信号検出回路32とそれぞれ電気的に接続することができる。
 図3に示すように、バイアスライン2c3は、データライン2c2とデータライン2c2との間に、データライン2c2と平行に設けることができる。バイアスライン2c3には、図示しないバイアス電源を電気的に接続することができる。図示しないバイアス電源は、例えば、信号処理部3などに設けることができる。なお、バイアスライン2c3は、必ずしも必要ではなく、必要に応じて設けるようにすればよい。バイアスライン2c3が設けられない場合には、光電変換素子2b1のアノード側と蓄積キャパシタ2b3は、バイアスライン2c3に代えてグランドに電気的に接続することができる。 
 制御ライン2c1、データライン2c2、およびバイアスライン2c3は、例えば、アルミニウムやクロムなどの低抵抗金属を用いて形成することができる。
 保護層2fは、光電変換部2b、制御ライン2c1、データライン2c2、およびバイアスライン2c3を覆うものとすることができる。保護層2fは、例えば、酸化物絶縁材料、窒化物絶縁材料、酸窒化物絶縁材料、および樹脂材料の少なくとも1種を含む。
 信号処理部3は、アレイ基板2の、シンチレータ5側とは反対側に設けることができる。
 信号処理部3には、制御回路31と、信号検出回路32とを設けることができる。 
 制御回路31は、薄膜トランジスタ2b2のオン状態とオフ状態を切り替えることができる。
 図2に示すように、制御回路31は、複数のゲートドライバ31aと行選択回路31bとを有することができる。 
 行選択回路31bには、画像処理部4などから制御信号S1を入力することができる。行選択回路31bは、X線画像のスキャン方向に従って、対応するゲートドライバ31aに制御信号S1を入力することができる。
 ゲートドライバ31aは、対応する制御ライン2c1に制御信号S1を入力することができる。例えば、制御回路31は、フレキシブルプリント基板2e1を介して、制御信号S1を各制御ライン2c1毎に順次入力することができる。制御ライン2c1に入力された制御信号S1により薄膜トランジスタ2b2がオン状態となり、光電変換部2b(蓄積キャパシタ2b3)から電荷(画像データS2)を読み出すことができるようになる。 
 なお、本明細書においては、薄膜トランジスタ2b2がオン状態の時に読み出されたデータを「画像データS2」とし、薄膜トランジスタ2b2がオフ状態の時に読み出されたデータを「補正データS3」としている。
 信号検出回路32は、薄膜トランジスタ2b2がオン状態の時に、光電変換部2b(蓄積キャパシタ2b3)から電荷(画像データS2)を読み出すことができる。また、信号検出回路32は、読み出された画像データS2(アナログ信号)を順次デジタル信号に変換することができる。
 また、信号検出回路32は、薄膜トランジスタ2b2がオフ状態の時に補正データS3をさらに読み出すことができる。信号検出回路32は、読み出された補正データS3(アナログ信号)を順次デジタル信号に変換することができる。
 また、信号検出回路32は、画像データS2を読み出す前、画像データS2を読み出した後、および、画像データS2を読み出す前と画像データS2を読み出した後、のいずれかにおいて、補正データS3を読み出すことができる。
 また、制御回路31は、薄膜トランジスタ2b2のオン状態とオフ状態を切り替える制御信号S1を複数の制御ライン2c1毎に入力することができる。そして、信号検出回路32は、制御信号S1が入力される度に、補正データS3を読み出すことができる。
 また、信号検出回路32は、画像データS2と、当該画像データS2を読み出す前、当該画像データS2を読み出した後、および、当該画像データS2を読み出す前と当該画像データS2を読み出した後、のいずれかにおいて読み出された補正データS3と、を組にするための画像インデックスを付与することができる。
 また、信号検出回路32は、読み出された画像データS2と、読み出された補正データS1と、の差動出力をデジタル信号に変換し、画像処理部4に送信することもできる。この様にすれば、補正された画像データを画像処理部4に入力することができるので、リアルタイム性を向上させることができる。
 また、入射放射線検出部6が、X線の入射が開始されたと判定した場合には、信号検出回路32は、薄膜トランジスタ2b2がオン状態の時に画像データS2をさらに読み出すことができる。 
 なお、画像データS2、補正データS3、および画像インデックスに関する詳細は後述する。
 また、半導体素子である薄膜トランジスタ2b2にX線が入射すると、薄膜トランジスタ2b2がオフ状態となっていてもドレイン電極2b2bとソース電極2b2cとの間に電流が流れる。すなわち、X線が入射している最中は、オフ状態の薄膜トランジスタ2b2からの電流が流入する。そのため、X線が入射している最中の、画像データS2を読み出すサンプリング時間(第1のサンプリング信号21の時間)、および補正データS3を読み出すサンプリング時間(第2のサンプリング信号22の時間)は短い方が好ましい。
 一方、X線の入射が終了した後には、オフ状態の薄膜トランジスタ2b2からの電流が流入しない。そのため、X線の入射が終了した後には、画像データS2を読み出すサンプリング時間、および薄膜トランジスタ2b2をオン状態とする時間を長くしても画像班の発生がない。また、画像データS2を読み出すサンプリング時間、および薄膜トランジスタ2b2をオン状態とする時間を長くすれば、X線画像の品質を向上させることができる。
 この場合、X線の入射期間は短いので、X線の入射が検出された後の、画像データS2を読み出すサンプリング時間、および薄膜トランジスタ2b2をオン状態とする時間は、X線の入射が検出される前の、画像データS2を読み出すサンプリング時間、および補正データS3を読み出すサンプリング時間よりも長くなるようにすることができる。この様にすれば、画像班の発生を抑制することができるとともに、X線画像の品質を向上させることができる。
 メモリ7は、信号検出回路32と画像処理部4との間に電気的に接続することができる。メモリ7は、デジタル信号に変換された画像データS2と補正データS3を一時的に保存することができる。この際、画像インデックスが付与された画像データS2と補正データS3が保存されるようにすることができる。
 画像処理部4は、メモリ7に保存されている画像データS2に基づいて、X線画像を構成することができる。また、画像処理部4は、補正データS3を用いて画像データS2を補正することができる。この際、画像処理部4は、画像インデックスに基づいて補正データS3を抽出し、抽出された補正データS3を用いて組となる画像データS2を補正することができる。 
 画像処理部4、メモリ7および入射X線検出部6は、信号処理部3と一体化されていてもよい。
 シンチレータ5は、複数の光電変換素子2b1の上に設けられ、入射するX線を蛍光に変換することができる。シンチレータ5は、基板2a上の複数の光電変換部2bが設けられた領域(有効画素領域)を覆うように設けることができる。シンチレータ5は、例えば、ヨウ化セシウム(CsI):タリウム(Tl)、あるいはヨウ化ナトリウム(NaI):タリウム(Tl)などを用いて形成することができる。この場合、真空蒸着法などを用いて、シンチレータ5を形成すれば、複数の柱状結晶の集合体からなるシンチレータ5を形成することができる。
 また、シンチレータ5は、例えば、酸硫化ガドリニウム(GdS)などを用いて形成することもできる。この場合、複数の光電変換部2bごとに四角柱状のシンチレータ5が設けられるように、マトリクス状の溝部を形成することができる。
 その他、蛍光の利用効率を高めて感度特性を改善するために、シンチレータ5の表面側(X線の入射面側)を覆うように図示しない反射層を設けることができる。 
 また、空気中に含まれる水蒸気により、シンチレータ5の特性と反射層の特性が劣化するのを抑制するために、シンチレータ5と反射層を覆う図示しない防湿体を設けることができる。
 一般的に、X線検出器は、以下のようにしてX線画像を構成することができる。
 まず、制御回路31は、薄膜トランジスタ2b2をオフ状態にする。薄膜トランジスタ2b2がオフ状態となることで、バイアスライン2c3を介して一定の電荷が蓄積キャパシタ2b3に蓄積される。次に、X線が入射すると、シンチレータ5によりX線が蛍光に変換される。蛍光が光電変換素子2b1に入射すると、光電効果によって電荷(電子およびホール)が発生し、発生した電荷と、蓄積されている電荷(異種電荷)とが結合して蓄積されている電荷が減少する。次に、制御回路31は、薄膜トランジスタ2b2を順次オン状態にする。信号検出回路32は、サンプリング信号に従って各蓄積キャパシタ2b3に蓄積されている電荷(画像データS2)をデータライン2c2を介して読み出す。そして、信号検出回路32は、読み出された画像データS2(アナログ信号)を順次デジタル信号に変換する。また、信号検出回路32は、薄膜トランジスタ2b2がオフ状態となっている時にデータライン2c2に流れる電流の値をデジタル信号に変換する。
 メモリ7は、薄膜トランジスタ2b2がオン状態の時に得られたデータを画像データS2として一時的に保存する。また、メモリ7は、薄膜トランジスタ2b2がオフ状態の時に得られたデータを補正データS3として保存する。
 画像処理部4は、メモリ7に保存されている画像データS2に基づいて、X線画像を構成する。また、画像処理部4は、X線画像を構成する際に、メモリ7に保存されている補正データS3を用いて後述する画像班を抑制するための補正を行う。画像班を抑制するための補正が行われたX線画像のデータは、画像処理部4から外部の機器などに向けて出力される。
 ここで、一般的なX線検出器においては、以下のようにして撮影動作を開始する。まず、X線源などの外部機器からの信号により、X線がX線検出器に入射したのを認識する。次に、予め定められた時間の経過後に、読み出しを行う光電変換部2bの薄膜トランジスタ2b2をオン状態にして、蓄積された電荷を読み出す。すなわち、一般的なX線検出器の場合には、X線が実際にX線検出器に入射したのを検出しているわけではない。そのため、この様にすると、X線源などの外部機器とX線検出器との同期をとるための同期インターフェースが必要になる。
 ここで、半導体素子である薄膜トランジスタ2b2にX線が入射すると、薄膜トランジスタ2b2がオフ状態となっていてもドレイン電極2b2bとソース電極2b2cとの間に電流が流れる。また、薄膜トランジスタ2b2のドレイン電極2b2bはデータライン2c2と電気的に接続されている。そのため、オフ状態の薄膜トランジスタ2b2にX線が入射した時にデータライン2c2に流れる電流の値と、オフ状態の薄膜トランジスタ2b2にX線が入射していない時にデータライン2c2に流れる電流の値との差に基づいて、X線の入射開始時を検出することができる。X線の入射開始時を直接検出することができれば、タイムラグなどが生じることがないので、処理時間が長くなるのを抑制することができる。
 ところが、薄膜トランジスタ2b2がオフ状態の時にデータライン2c2に流れる電流の値は極めて小さくなる。またさらに、人体に対して大量のX線照射を行うと健康への悪影響があるため、人体へのX線照射量は必要最低限に抑えられる。そのため、医療に用いられるX線検出器の場合には、入射するX線の強度が非常に弱いものとなり、薄膜トランジスタ2b2がオフ状態の時にデータライン2c2に流れる電流の値がさらに小さくなる。
 その結果、薄膜トランジスタ2b2がオフ状態の時にデータライン2c2に流れる電流の値に基づいてX線の入射開始時を検出すると、X線の入射開始時を精度良く検出することが困難となるおそれがある。
 そこで、本実施の形態に係るX線検出器1には、以下のような入射X線検出部6が設けられている。 
 入射X線検出部6は、信号検出回路32と電気的に接続することができる。入射X線検出部6は、薄膜トランジスタ2b2がオン状態の時に、当該薄膜トランジスタ2b2が電気的に接続されたデータライン2c2に流れる電流の値に基づいてX線の入射開始時を判定することができる。すなわち、入射X線検出部6は、薄膜トランジスタがオン状態の時に読み出された画像データS2の値に基づいてX線の入射開始時を判定することができる。例えば、入射X線検出部6は、オン状態となっている薄膜トランジスタ2b2が接続されたデータライン2c2に流れる電流を検出し、検出された電流の値が所定の閾値を超えた場合には、X線が入射したと判定することができる。所定の閾値は、オン状態の薄膜トランジスタ2b2にX線が入射した時にデータライン2c2に流れる電流の値と、オン状態の薄膜トランジスタ2b2にX線が入射していない時にデータライン2c2に流れる電流の値との差に基づいて予め設定することができる。
 薄膜トランジスタ2b2がオン状態となっていれば、オフ状態の場合と比べて電気抵抗を小さくすることができるので、データライン2c2に流れる電流の値が大きくなる。そのため、X線の入射開始時を検出するのが容易となる。前述したように、医療に用いられるX線検出器1の場合には、入射するX線の強度が非常に弱いものとなる。しかしながら、薄膜トランジスタ2b2がオン状態の時にX線の入射開始時を検出すれば、X線の入射開始時を精度良く検出することが可能となる。
 ところが、オン状態となっている薄膜トランジスタ2b2が接続されたデータライン2c2には、オフ状態となっている他の薄膜トランジスタ2b2からの電流も流れるので画像班が発生するという新たな問題が生じる。 
 この場合、X線の入射が終了した後にオン状態とされた薄膜トランジスタ2b2が接続されたデータライン2c2には、他の薄膜トランジスタ2b2からの電流が流れない。そのため、X線の入射が開始された際のデータを廃棄し、X線の入射が終了した後のデータのみを用いてX線画像を構成すれば画像班を抑制することができる。しかしながら、この様にすると、X線の入射が開始された際のデータが失われるので、その分、X線画像の品質が低下することになる。
 そこで、入射X線検出部6は、薄膜トランジスタ2b2をオン状態とする前のオフ状態、および、薄膜トランジスタ2b2をオン状態とした後のオフ状態の少なくともいずれかにおいて、データライン2c2に流れる電流を検出する。前述したように、画像班が発生するのは、オフ状態となっている薄膜トランジスタ2b2からの電流が主な原因と考えられる。そのため、オン状態の前および後の少なくともいずれかのオフ状態において、オン状態とする薄膜トランジスタ2b2が接続されたデータライン2c2に流れる電流を検出し、オン状態の際に取得した画像データS2をオフ状態の際に取得した補正データS3で補正すれば、画像班を大幅に抑制することができる。また、この様にすれば、X線の入射が開始された際の画像データS2を用いることができるので、X線画像の品質が低下するのを抑制することができる。 
 すなわち、入射X線検出部6が設けられていれば、X線の入射開始時を検出することができ、且つ、X線画像の品質の劣化を抑制することができる。
 図4は、画像データS2および補正データS3の読み出しを例示するためのタイミングチャートである。 
 図4は、n本の制御ライン2c1と、m本のデータライン2c2が設けられた場合である。 
 まず、画像処理部4などから信号検出回路32に第1のサンプリング信号21を入力する。図4に示すように、第1のサンプリング信号21がオンとなることで、信号検出回路32は、データライン(1)~データライン(m)に対するサンプリングを開始する。第1のサンプリング信号21は所定の期間経過後にオフとなる。
 一方、第1のサンプリング信号21がオンとなっている間に、画像処理部4などから制御回路31を介して制御ライン(1)に制御信号S1を入力する。制御信号S1がオンとなることで、制御ライン(1)に電気的に接続された薄膜トランジスタ2b2がオン状態となる。制御信号S1は所定の期間経過後にオフとなる。
 信号検出回路32は、薄膜トランジスタ2b2がオン状態の時にデータライン(1)~データライン(m)からの画像データS2を順次読み出す。 
 また、入射X線検出部6は、第1のサンプリング信号21がオンの時にデータライン2c2に流れる電流の値に基づいてX線の入射開始時を判定する。
 次に、第1のサンプリング信号21がオフとなった後に、画像処理部4などから信号検出回路32に第2のサンプリング信号22を入力する。第2のサンプリング信号22がオンとなることで、信号検出回路32は、データライン(1)~データライン(m)に対するサンプリングを開始する。第2のサンプリング信号22は所定の期間経過後にオフとなる。
 この場合、制御ライン(1)には制御信号S1が入力されず、制御ライン(1)に電気的に接続された薄膜トランジスタ2b2はオフ状態のままとなる。 
 信号検出回路32は、薄膜トランジスタ2b2がオフ状態の時にデータライン(1)~データライン(m)に流れる電流をそれぞれ検出する。 
 その後、以上の手順を制御ライン(2)~制御ライン(n)に対して行う。
 以上の様にして得られたデータは、メモリ7に保存される。薄膜トランジスタ2b2がオン状態の時に得られたデータは、n行m列の画像データS2となる。薄膜トランジスタ2b2がオフ状態の時に得られたデータは、n行m列の補正データS3となる。 
 なお、画像データS2と、補正データS3とが同じメモリ7に保存される場合を例示したが、画像データS2と、補正データS3とがそれぞれ別のメモリに保存されるようにしてもよい。
 また、画像データS2となるデータと、補正データS3となるデータをメモリ7に保存する際には、画像インデックスを付与することができる。図4に例示をしたものの場合には、画像データS2に画像インデックスTFTon1を付与し、画像データS2と組になる補正データS3に画像インデックスTFToff1を付与している。この場合、画像インデックスTFTon1は、最初に取得された画像データS2であることを表し、TFToff1は、これと組になる補正データS3であることを表している。画像インデックスは、制御ライン(1)~制御ライン(n)に関するデータに対してそれぞれ付与することができる。
 なお、図4においては、第1のサンプリング信号21がオフとなった後に、第2のサンプリング信号22をオンとしたが、第2のサンプリング信号22がオフとなった後に、第1のサンプリング信号21をオンとしてもよい。すなわち、図4においては、画像データS2の取得後に補正データS3を取得したが、補正データS3の取得後に画像データS2を取得してもよい。
 また、1つの制御ラインに制御信号S1を入力する際に、信号検出回路32に第2のサンプリング信号22、第1のサンプリング信号21、および第2のサンプリング信号22を順次入力してもよい。この場合、次の制御ラインに制御信号S1を入力する際には、信号検出回路32に第1のサンプリング信号21のみを入力し、さらに次の制御ラインに制御信号S1を入力する際には、信号検出回路32に第2のサンプリング信号22、第1のサンプリング信号21、および第2のサンプリング信号22を順次入力することができる。
 すなわち、第1のサンプリング信号21と第2のサンプリング信号22が交互に入力されるようにすればよい。
 また、図4においては、制御信号S1をオンとする前に第1のサンプリング信号21をオンにしているが、制御信号S1のオンと第1のサンプリング信号21のオンとは同時であってもよいし、制御信号S1をオンにした後に第1のサンプリング信号21をオンとしてもよい。
 また、図4においては、制御信号S1をオフとした後に第1のサンプリング信号21をオフにしているが、制御信号S1のオフと第1のサンプリング信号21のオフとは同時であってもよいし、制御信号S1をオフにする前に第1のサンプリング信号21をオフとしてもよい。
 次に、第1のサンプリング信号21と第2のサンプリング信号22とを交互に入力すること(画像データS2と補正データS3とを交互に読み出すこと)についてさらに説明する。 
 図5は、X線が入射した際にデータライン2c2に流れる電流を例示するための模式図である。 
 図5中の「○」は第1のサンプリング信号21をオンにするタイミングを表し、「×」は第2のサンプリング信号22をオンにするタイミングを表している。 
 X線検出器1にX線が入射するとデータライン2c2には図5に例示をしたような波形の電流が流れる。この場合、領域Aや領域Cにおいては単位時間当たりの電流値の変化が大きくなる。一方、領域Bにおいては単位時間当たりの電流値の変化が小さくなる。
 ここで、前述した補正データS3は、画像データS2となるべく同じ条件で取得されたものとすることが好ましい。そのため、第1のサンプリング信号21と第2のサンプリング信号22は、領域Bにおいて入力されるようにすることが好ましい。ところが、X線の入射開始時はいつになるのかがわからないので、第1のサンプリング信号21と第2のサンプリング信号22を領域Bにおいて入力するのは困難である。
 そこで、本実施の形態に係るX線検出器1においては、第1のサンプリング信号21と第2のサンプリング信号22とを交互に入力するようにしている。 
 例えば、図5に例示をしたものの場合には、図4に示すように、制御ライン(1)に関する第1のサンプリング信号21を入力し、続いて第2のサンプリング信号22を入力することができる。 
 次に、例えば、制御ライン(2)に関する第1のサンプリング信号21を入力し、続いて第2のサンプリング信号22を入力することができる。 
 以下、同様にして、第1のサンプリング信号21と第2のサンプリング信号22とを交互に入力することができる。
 この様にすれば、1つの画像データS2に対して、その前後の補正データS3を得ることができる。前後の補正データS3を取得することができれば、例えば、平均値を求めることができる。そのため、単位時間当たりの電流値の変化が大きい場合であっても、補正データS3の取得条件を画像データS2の取得条件に近づけることができる。その結果、補正の精度を向上させることができるので、後述する画像班の抑制が容易となる。
 図6は、X線検出器1における処理過程を例示するためのフローチャートである。 
 図6に示すように、読み出し工程28においては、例えば、一つの制御ライン2c1をスキャンし、薄膜トランジスタ2b2をON状態にして画像データS2を読み出すことができる。薄膜トランジスタ2b2をOFF状態にして補正データS3を読み出すことができる。制御ライン2c1毎の画像データS2と補正データS3を画像インデックスを付けてメモリ7に保存することができる。
 次に、一つの制御ライン2c1に電気的に接続された全ての薄膜トランジスタ2b2のスキャン(読み出し)が終了したら、メモリ7に保存されている画像データS2と、予め定められた閾値とによりX線の入射開始を判定することができる。例えば、予め定められた閾値を超えた画像データS2の数をカウントし、あらかじめ定められたカウント数に達した場合にはX線が入射したと判定することができる。
 X線が入射していないと判定された場合には、画像インデックスを更新し、制御ライン2c1のスキャンをリセットすることができる。そして、画像蓄積工程29を経て読み出し工程28に戻ることができる。 
 なお、画像蓄積工程29に関する詳細は後述する。
 X線が入射したと判定された場合には、信号検出回路32は、薄膜トランジスタ2b2がオン状態の時に画像データS2をさらに読み出すことができる。 
 この場合、次の周期の制御ライン2c1のスキャンが終了するのを待ち、画像データS2と補正データS3とがメモリ7に保存された段階で、メモリ7への保存を中断することができる。メモリ7への保存を中断することで、既に保存されている画像データS2と補正データS3とが上書きされないようにすることができる。
 次に、X線が入射したと判定された周期において付与された画像インデックスに基づいて、X線の入射後の画像データS2と補正データS3を抽出し、画像処理部4によりX線画像を構成することができる。この際、補正データS3を用いて画像データS2を補正することで、画像班を抑制することができる。
 ここで、画像班の抑制についてさらに説明する。 
 前述したように、薄膜トランジスタ2b2をON状態にして制御ライン2c1を順次スキャンし、得られた画像データS2からX線の入射を判定するようにすると、画像斑が発生する。画像斑が発生する主な原因は、以下のように考えることができる。1つのデータライン2c2には複数の薄膜トランジスタ2b2が電気的に接続されている。制御ライン2c1をスキャンして所望の制御ライン2c1に電気的に接続された薄膜トランジスタ2b2をオン状態とした場合、それ以外の制御ライン2c1に電気的に接続された薄膜トランジスタ2b2はOFF状態となっている。薄膜トランジスタ2b2がOFF状態となっていれば、ソース電極2b2cとドレイン電極2b2bとの間には電流が流れない。ところが、X線またはシンチレータ5により変換された蛍光が、薄膜トランジスタ2b2に入射すると、ソース電極2b2cとドレイン電極2b2bとの間の抵抗値が下がる。この抵抗値が下がると、蓄積キャパシタ2b3に蓄積されている電荷の一部がデータライン2c2に放出されて、データライン2c2に流れる電流となる。この電流により画像斑が発生すると考えられる。
 ここで、ソース電極2b2cとドレイン電極2b2bとの間の抵抗値は、X線検出器1に入射するX線の強度で変化する。例えば、X線検出器1に入射するX線の強度は、X線の入射開始時や終了時には大きく変化する。そのため、X線の入射開始時や終了時には、ソース電極2b2cとドレイン電極2b2bとの間の抵抗値も大きく変化する。この場合、図5に例示をしたように、データライン2c2に流れる電流も大きく変化する。 
 画像斑を効果的に抑制するためには、所望の制御ライン2c1に電気的に接続された薄膜トランジスタ2b2をオン状態とした場合に、それ以外の制御ライン2c1に電気的に接続されたオフ状態の薄膜トランジスタ2b2の抵抗値変化を知る必要がある。
 前述したように、薄膜トランジスタ2b2をON状態とする(第1のサンプリング信号21をオンとする)前後のタイミングで、全薄膜トランジスタ2b2をOFF状態として第2のサンプリング信号22をオンとし、全データライン2c2における電流を検出すれば、抵抗値変化を知ることが可能となる。
 一般的なX線検出器のデータライン2c2の数は500ライン以上あるが、多くの薄膜トランジスタ2b2はOFF状態となっているため、全データライン2c2における電流から作成された補正データS3を用いれば、画像斑を効果的に抑制することができる。
 また、第1のサンプリング信号21および第2のサンプリング信号22のON時間を変えると、図5に例示をした電流積分値の値が変動する。一方、図5に例示をした電流積分値の値は、薄膜トランジスタ2b2をオン状態とする時間(制御信号S1のON時間)には関係がない。
 第1のサンプリング信号21がONとなることでデータライン2c2に流れる電流の積分が開始され、第1のサンプリング信号21がOFFとなることで積分が終了する。そして、第1のサンプリング信号21がONとなっている間に流れた電流値が積算されて、デジタル信号(電流積分値)として出力される。
 薄膜トランジスタ2b2をオン状態とする時間は、ある程度長くしないとX線画像の品質が劣化するおそれがある。しかしながら、X線が入射している期間は、薄膜トランジスタ2b2をオン状態とする時間を長くする必要がなく、リーク電流の影響を低くするために薄膜トランジスタ2b2をオン状態とする時間を短くして電流積分値を低くした方が好ましい。一方、X線の入射が終了した後には、リーク電流がないので、薄膜トランジスタ2b2をオン状態とする時間を長くすることが好ましい。
 この場合、X線の入射期間は短いので、X線の入射が検出された後の、画像データS2を読み出すサンプリング時間、および薄膜トランジスタ2b2をオン状態とする時間は、X線の入射が検出される前の、画像データS2を読み出すサンプリング時間、および補正データS3を読み出すサンプリング時間よりも長くなるようにすることができる。
 この様にすれば、画像班の発生を抑制することができるとともに、X線画像の品質を向上させることができる。
 次に、画像蓄積工程29についてさらに説明する。 
 図7は、比較例に係るX線画像の撮影を例示するためのタイミングチャートである。 
 図7は、3枚のX線画像を連続的に撮影する場合である。 
 X線画像を連続的に撮影する場合には、図7に示すように、1枚分のX線画像の画像データS2を読み出す読み出し工程28a(第1の読み出し工程の一例に相当する)の最中に、X線の入射が開始される場合がある。また、1枚分のX線画像の画像データS2を読み出す読み出し工程28b(第2の読み出し工程の一例に相当する)の最中に、X線の入射が終了する場合がある。前述したように、X線の入射開始時や終了時には、ソース電極2b2cとドレイン電極2b2bとの間の抵抗値が大きく変化する。そのため、図5に例示をしたように、データライン2c2に流れる電流が大きく変化して、画像斑の抑制が難しくなる。
 この場合、1枚分のX線画像の画像データS2を読み出す読み出し工程28cの最中には、X線の入射開始およびX線の入射終了は行われていない。そのため、読み出し工程28a~28cにおいて読み出された画像データS2を加算すれば、画像斑の抑制を図ることができる。
 しかしながら、この様にすると、X線画像を構成する際に必要となる画像データS2の数が多くなる。また、加算する画像データS2の数が多くなると、ノイズが加算されるのでX線画像の品質が劣化するなどの新たな課題が生じる。
 図8は、本実施の形態に係るX線画像の撮影を例示するためのタイミングチャートである。 
 図8に示すように、読み出し工程28aと、読み出し工程28bとの間に、画像蓄積工程29を設けることができる。画像蓄積工程29においては、全ての薄膜トランジスタ2b2をオフ状態とし、全ての光電変換部2b(蓄積キャパシタ2b3)に、シンチレータ5において発生した蛍光の強弱分布に対応した電荷を蓄積することができる。画像蓄積工程29において蓄積された電荷は、画像蓄積工程29の後に行われる読み出し工程28bにおいて画像データS2として読み出すことができる。
 すなわち、入射放射線検出部6が、X線の入射が開始されたと判定した場合には、信号検出回路32は、薄膜トランジスタ2b2がオン状態の時に画像データS2をさらに読み出す読み出し工程28aを実行することができる。制御回路31は、読み出し工程28aの後に、全ての薄膜トランジスタ2b2をオフ状態にする画像蓄積工程29を実行することができる。
 信号検出回路32は、画像蓄積工程29の後に、薄膜トランジスタ2b2がオン状態の時に画像データS2を読み出す読み出し工程28bを実行することができる。
 画像蓄積工程29の期間は、X線の入射期間よりも長くすることができる。この様にすれば、X線の入射が、画像蓄積工程29の期間中に終了するようにすることができる。また、画像蓄積工程29の期間は、X線の入射期間に応じて変更可能とすることができる。
 画像蓄積工程29においては、X線が入射したとしても、制御ライン2c1をスキャンしていないので、前述した抵抗値の変化による画像斑は発生しない。そのため、画像蓄積工程29において蓄積された電荷を、読み出し工程28bにおいて画像データS2として読み出し、読み出し工程28a、28bにおいて読み出された画像データS2を加算すれば、画像斑の抑制を図ることができる。
 すなわち、画像処理部4は、読み出し工程28aにおいて読み出された画像データS2と、読み出し工程28bにおいて読み出された画像データS2と、を加算することができる。
 この場合、読み出し工程28bにおいては補正データS3を取得することができなくなる。そのため、読み出し工程28aにおける補正データS3に基づいて、画像データS2を補正する必要があるか否かを判断することができる。
 すなわち、信号検出回路32は、読み出し工程28aにおいて、薄膜トランジスタ2b2がオフ状態の時に補正データS3を読み出すことができる。
 信号検出回路32は、読み出し工程28aにおいて、画像データS2を読み出す前、画像データS2を読み出した後、および、画像データS2を読み出す前と画像データS2を読み出した後、のいずれかにおいて、補正データS3を読み出すことができる。
 画像処理部4は、補正データS3を用いて、読み出し工程28aにおいて読み出された画像データS2を補正することができる。
 画像蓄積工程29を設ければ、読み出し工程28a、28bにおいて読み出された画像データS2を加算すればよいので、加算する画像データの数を減らすことができ、ひいては、ノイズの重畳による画像劣化を抑制することができる。また、X線の入射終了直後の残像が大きい状態の画像データS2が用いられないため、残像による画像アーチファクトも軽減させることができる。 
 そのため、本実施の形態に係るX線検出器1とすれば、X線の入射開始時を精度良く検出することができ、且つ、X線画像の品質を向上させることができる。
 またさらに、画像蓄積工程29を設ければ、X線の入射を判定する時間を十分に確保することができるので、誤判定が生じるのを抑制することができる。 
 また、画像蓄積工程29においては、制御ライン2c1のスキャンと、画像データS2および補正データS3の読み出しが行われないので、1枚のX線画像を構成するのに必要となる電力を削減することができる。そのため、仮に、読み出し工程28a、画像蓄積工程29、および読み出し工程28bが繰り返されたとしても、平均消費電力を低減させることができる。また、ノイズが増加したり、温度上昇による撮影時間の制限が発生したりするのを抑制することができる。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。

Claims (8)

  1.  基板と、
     前記基板に設けられ、第1の方向に延びる複数の制御ラインと、
     前記基板に設けられ、前記第1の方向に交差する第2の方向に延びる複数のデータラインと、
     対応する前記制御ラインと対応する前記データラインとに電気的に接続された薄膜トランジスタを有し、放射線を直接的またはシンチレータと協働して検出する複数 の検出部と、
     前記薄膜トランジスタのオン状態とオフ状態を切り替える制御回路と、
     前記薄膜トランジスタがオン状態の時に画像データを読み出す信号検出回路と、
     前記薄膜トランジスタがオン状態の時に読み出された画像データの値に基づいて前記放射線の入射開始時を判定する入射放射線検出部と、
     を備え、
     前記入射放射線検出部が、前記放射線の入射が開始されたと判定した場合には、
     前記信号検出回路は、前記薄膜トランジスタがオン状態の時に画像データをさらに読み出す第1の読み出し工程を実行し、
     前記制御回路は、前記第1の読み出し工程の後に、全ての前記薄膜トランジスタをオフ状態にする画像蓄積工程を実行する放射線検出器。
  2.  前記画像蓄積工程の期間は、前記放射線の入射期間よりも長い請求項1記載の放射線検出器。
  3.  前記放射線の入射は、前記画像蓄積工程の期間中に終了する請求項1または2に記載の放射線検出器。
  4.  前記信号検出回路は、前記画像蓄積工程の後に、前記薄膜トランジスタがオン状態の時に画像データを読み出す第2の読み出し工程を実行する請求項1~3のいずれか1つに記載の放射線検出器。
  5.  前記画像データに基づいて放射線画像を構成する画像処理部をさらに備え、
     前記画像処理部は、前記第1の読み出し工程において読み出された前記画像データと、前記第2の読み出し工程において読み出された前記画像データと、を加算する請求項4記載の放射線検出器。
  6.  前記信号検出回路は、前記第1の読み出し工程において、前記薄膜トランジスタがオフ状態の時に補正データをさらに読み出す請求項5記載の放射線検出器。
  7.  前記信号検出回路は、前記第1の読み出し工程において、前記画像データを読み出す前、前記画像データを読み出した後、および、前記画像データを読み出す前と前記画像データを読み出した後、のいずれかにおいて、前記補正データを読み出す請求項6記載の放射線検出器。
  8.  前記画像処理部は、前記補正データを用いて、前記第1の読み出し工程において読み出された前記画像データを補正する請求項6または7に記載の放射線検出器。
PCT/JP2020/007061 2019-04-04 2020-02-21 放射線検出器 WO2020202889A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080027038.1A CN113711085B (zh) 2019-04-04 2020-02-21 放射线检测器
KR1020217031732A KR102674553B1 (ko) 2019-04-04 2020-02-21 방사선 검출기
EP20783713.9A EP3951437A4 (en) 2019-04-04 2020-02-21 RADIATION DETECTOR
US17/475,955 US11733400B2 (en) 2019-04-04 2021-09-15 Radiation detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019071958A JP6567792B1 (ja) 2019-04-04 2019-04-04 放射線検出器
JP2019-071958 2019-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/475,955 Continuation US11733400B2 (en) 2019-04-04 2021-09-15 Radiation detector

Publications (1)

Publication Number Publication Date
WO2020202889A1 true WO2020202889A1 (ja) 2020-10-08

Family

ID=67766682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007061 WO2020202889A1 (ja) 2019-04-04 2020-02-21 放射線検出器

Country Status (7)

Country Link
US (1) US11733400B2 (ja)
EP (1) EP3951437A4 (ja)
JP (1) JP6567792B1 (ja)
KR (1) KR102674553B1 (ja)
CN (1) CN113711085B (ja)
TW (1) TWI737206B (ja)
WO (1) WO2020202889A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632122B2 (ja) 1981-06-23 1988-01-18 Tokyo Shibaura Electric Co
US20150078530A1 (en) 2013-09-18 2015-03-19 Carestream Health, Inc. Digital radiography detector image readout process
JP2018015455A (ja) * 2016-07-29 2018-02-01 富士フイルム株式会社 放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
JP2018107598A (ja) * 2016-12-26 2018-07-05 東芝電子管デバイス株式会社 放射線検出器

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721839A (en) * 1971-03-24 1973-03-20 Philips Corp Solid state imaging device with fet sensor
JPS632122U (ja) 1986-06-20 1988-01-08
JP4809999B2 (ja) * 2001-05-25 2011-11-09 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP4653914B2 (ja) * 2001-09-17 2011-03-16 三井造船株式会社 X線映像装置
US7120282B2 (en) * 2003-01-29 2006-10-10 General Electric Company Method and apparatus for correcting digital X-ray images
US7692704B2 (en) * 2003-12-25 2010-04-06 Canon Kabushiki Kaisha Imaging apparatus for processing noise signal and photoelectric conversion signal
JP2009233044A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp 放射線画像検出装置
JP5358509B2 (ja) * 2010-04-15 2013-12-04 浜松ホトニクス株式会社 放射線検出器モジュール
JP5457320B2 (ja) * 2010-09-28 2014-04-02 富士フイルム株式会社 放射線画像検出装置
JP5208186B2 (ja) * 2010-11-26 2013-06-12 富士フイルム株式会社 放射線画像検出装置およびその駆動制御方法
JP5764468B2 (ja) * 2010-11-26 2015-08-19 富士フイルム株式会社 放射線画像検出装置、及び放射線画像撮影システム
JP5490038B2 (ja) * 2011-02-25 2014-05-14 富士フイルム株式会社 乳房画像撮影装置
JP5506726B2 (ja) * 2011-03-28 2014-05-28 富士フイルム株式会社 放射線画像撮影方法、並びに、放射線検出器および放射線画像撮影装置
JP5866814B2 (ja) * 2011-06-20 2016-02-24 コニカミノルタ株式会社 放射線画像撮影システムおよび放射線画像撮影装置
JP5731444B2 (ja) * 2011-07-07 2015-06-10 富士フイルム株式会社 放射線検出器、放射線画像撮影装置、及び放射線画像撮影システム
FR2977977B1 (fr) 2011-07-13 2013-08-30 Trixell Procede de commande d'un detecteur photosensible par detection automatique d'un rayonnement incident
JP5811653B2 (ja) * 2011-07-15 2015-11-11 コニカミノルタ株式会社 放射線画像撮影装置
JP2013246078A (ja) * 2012-05-28 2013-12-09 Fujifilm Corp 放射線画像検出装置
JP2014081358A (ja) * 2012-09-27 2014-05-08 Fujifilm Corp 放射線画像検出装置
JP2014112760A (ja) * 2012-12-05 2014-06-19 Sony Corp 固体撮像装置および電子機器
JP2015186005A (ja) * 2014-03-24 2015-10-22 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
JP2015220577A (ja) * 2014-05-16 2015-12-07 株式会社東芝 固体撮像装置
JP2016134776A (ja) * 2015-01-20 2016-07-25 株式会社東芝 欠陥検査装置、放射線検出器、および欠陥検査方法
WO2017119251A1 (ja) * 2016-01-06 2017-07-13 東芝電子管デバイス株式会社 放射線検出器
JP2017143943A (ja) * 2016-02-16 2017-08-24 富士フイルム株式会社 放射線画像処理装置、方法およびプログラム
JP6148758B2 (ja) * 2016-05-09 2017-06-14 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
WO2018207731A1 (ja) * 2017-05-10 2018-11-15 ブリルニクスジャパン株式会社 固体撮像装置、固体撮像装置の駆動方法、および電子機器
JP6302122B1 (ja) * 2017-07-11 2018-03-28 東芝電子管デバイス株式会社 放射線検出器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632122B2 (ja) 1981-06-23 1988-01-18 Tokyo Shibaura Electric Co
US20150078530A1 (en) 2013-09-18 2015-03-19 Carestream Health, Inc. Digital radiography detector image readout process
JP2018015455A (ja) * 2016-07-29 2018-02-01 富士フイルム株式会社 放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
JP2018107598A (ja) * 2016-12-26 2018-07-05 東芝電子管デバイス株式会社 放射線検出器

Also Published As

Publication number Publication date
TW202043805A (zh) 2020-12-01
EP3951437A1 (en) 2022-02-09
JP6567792B1 (ja) 2019-08-28
KR102674553B1 (ko) 2024-06-13
TWI737206B (zh) 2021-08-21
KR20210133294A (ko) 2021-11-05
US11733400B2 (en) 2023-08-22
EP3951437A4 (en) 2022-12-28
JP2020170957A (ja) 2020-10-15
US20220043168A1 (en) 2022-02-10
CN113711085B (zh) 2024-03-15
CN113711085A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
US8866090B2 (en) Radiation detecting element and radiographic imaging device
JP4965931B2 (ja) 放射線撮像装置、放射線撮像システム、その制御方法、及び制御プログラム
KR101973170B1 (ko) 방사선 검출기
JP6590950B2 (ja) 放射線検出器
WO2020202889A1 (ja) 放射線検出器
JP2017188784A (ja) 欠陥画素検出装置、放射線検出器、および欠陥画素検出方法
WO2018030068A1 (ja) 放射線検出器
WO2022004142A1 (ja) 放射線検出器
JP2020081325A (ja) 放射線検出器
JP2018107598A (ja) 放射線検出器
JP7361008B2 (ja) 放射線検出器
JP7236916B2 (ja) 放射線検出器
JP7061420B2 (ja) 放射線検出器
JP7003015B2 (ja) 放射線検出器
JP2019161614A (ja) 放射線検出器
JP2020068358A (ja) 放射線検出器
JP6555893B2 (ja) 放射線撮像装置および放射線撮像システム
KR20120121923A (ko) 방사선 화상검출기 및 그 구동방법
JP2020010161A (ja) 放射線検出器
JP2019012774A (ja) 放射線検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217031732

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783713

Country of ref document: EP

Effective date: 20211104