[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4653914B2 - X線映像装置 - Google Patents

X線映像装置 Download PDF

Info

Publication number
JP4653914B2
JP4653914B2 JP2001281104A JP2001281104A JP4653914B2 JP 4653914 B2 JP4653914 B2 JP 4653914B2 JP 2001281104 A JP2001281104 A JP 2001281104A JP 2001281104 A JP2001281104 A JP 2001281104A JP 4653914 B2 JP4653914 B2 JP 4653914B2
Authority
JP
Japan
Prior art keywords
unit
ray
rays
detection
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001281104A
Other languages
English (en)
Other versions
JP2003083916A (ja
Inventor
憲明 木村
孝佳 弓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2001281104A priority Critical patent/JP4653914B2/ja
Publication of JP2003083916A publication Critical patent/JP2003083916A/ja
Application granted granted Critical
Publication of JP4653914B2 publication Critical patent/JP4653914B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線を検出して映像化する装置に係り、特にコンプトン散乱などの様に、極めて微弱なX線に基づいた映像を得るのに好適なX線映像装置に関する。
【0002】
【従来の技術】
X線は、医療や工業計測などの分野において広く利用されている。そして、X線は、物質に対する透過能が大きく、散乱X線が極めて微弱であって検出することが困難であるところから、一般に透過X線を利用し、被検査物(検査対象)の内部構造や内部欠陥などを検出するようにしている。図9は、従来のX線を利用した電子部品検査用のX線映像装置の要部を示す模式図である。
【0003】
図9において、X線映像装置10は、図示しない検査室に電子部品である検査対象12を配置する検査テーブル14が設けられており、マニピュレータ16によって検査対象12を検査テーブル14の上に配置できるようにしている。検査テーブル14の下方には、マイクロフォーカス型のX線源18が配設してあって、検査テーブル14越しに検査対象12にX線22を照射できるようになっている。
【0004】
検査テーブル14の上方には、X線イメージインテンシファイヤと呼ばれるイメージセンサ20がX線源18に対向するように設けてあって、検査対象12を透過したX線22が入射する。そして、イメージセンサ20は、検査対象12を透過したX線量の差を可視光に変換するように構成してあり、イメージセンサ20の出力する可視光がCCDカメラ24などの撮像装置によって撮影され、図示しないモニタ画面に画像(映像)として表示される。
【0005】
また、X線源18とイメージセンサ20とは、矢印26、28のように昇降可能となっていて、これらを昇降させることにより、鮮明な画像が得られるようにしてある。また、マニピュレータ16を操作することにより、検査対象12の向きを変え、検査対象12をあらゆる方向から検査することができるようになっている。
【0006】
【発明が解決しようとする課題】
上記したように、従来の一般的なX線検査装置やX線映像装置は、検査対象12の一側にX線源18を配置し、検査対象12の他側にX検出部となるイメージセンサ20を配置する構造となっている。このため、検査対象が大型の構造物、例えば飛行機の翼などである場合、大型構造物をX線源とX線検出部とで挟み込んだり、両者を同期させて移動させる装置が必要となり、検査のための特別の工場を必要とする。しかも、飛行機の翼などは、翼の表面を覆っているジュラルミンと、これを支持するハニカム構造の梁との接合状態や、ジュラルミンの金属疲労によるクラックの検出など、翼の表面に近い部分の検査が主であって、X線源とX線検出部とによって翼を挟み込む構造では欠陥を検出できないこともある。このため、X線源とX線検出部とを検査対象の一側に配置し、極めて微弱なX線の後方散乱(コンプトン散乱)を検出できるようなX検査装置、X線映像装置が望まれる。
【0007】
本発明は、上記の要請に鑑みてなされたもので、極めて微弱なX線の後方散乱による映像を得られるようにすることを目的としている。
また、本発明は、大型の構造物であっても容易に検査できるようにすることを目的としている。
そして、本発明は、三次元映像が得られるようにすることを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係るX線映像装置は、検査対象に向けて配置され、複数のX線透過部を有して面にほぼ垂直に入射した散乱X線を透過させるコリメート部と、このコリメート部の背面側に設けられ、前記散乱X線の入射により電子を生成するシンチレータ部と、前記コリメート部のX線透過部に対応して設けられ、前記シンチレータ部の生成した電子を増幅する複数の電子増幅部を備えた増幅ユニットと、この増幅ユニットの前記電子増幅部に対応して設けられ、前記電子増幅部の増幅した電子を検出する複数の電子検出部を備えた検出ユニットと、この検出ユニットの前記複数の電子検出部を直交変調パターンに基づいて動作させる動作制御部と、この動作制御部の制御信号と前記電子検出部の出力信号とに基づいて、前記検査対象の前記散乱X線による像を求める映像演算部と、を有することを特徴としている。
【0009】
コリメート部とシンチレータ部と増幅ユニットと検出ユニットとは一体に形成し、これらを直交する2軸の回りに回転可能に構成することが望ましい。また、検査対象にX線を照射するX線源は、線状のX線を放射可能に形成するとよい。
【0010】
【作用】
上記のようになっている本発明のX線映像装置は、検出ユニットを構成している複数の電子検出部を、直交変調パターン(例えば、アダマール行列に基づいて変調)によって動作させることにより、個々の電子検出部から検出信号を得る場合より、散乱X線に基づいた到来電子を効率よく検出でき、検出効率が大幅に向上して微弱な後方散乱によるX線に基づいた映像を容易に得ることができる。しかも、X線の後方散乱に基づいた映像が得られるため、X線源と、X線を検出するためのコリメート部やシンチレータ部、増幅ユニット、検出ユニットなどのX線検出部とを検査対象に対して同じ側に配置することができ、飛行機の翼などの大型構造物の検査を容易に行なうことが可能となる。
【0011】
コリメート部、シンチレータ部、増幅ユニット、検出ユニットを一体とし、これらを直交する2軸の回りに回転可能とすると、二次元的に得たデータから3次元の映像を容易に求めることができる。また、検査対象にX線を照射するX線源を、線状のX放射できるようにすると、検査対象のある断面の映像を見たい場合に、線状のX線を照射することにより、断面映像を求める処理が容易となる。
【0012】
【発明の実施の形態】
本発明に係るX線映像装置の好ましい実施の形態を、添付図面に従って詳細に説明する。
図1は、本発明の実施の形態に係るX線映像装置の概略ブロック図である。図1において、X線映像装置30は、X線検出部50と信号処理部60とを有し、X線検出部50がステージ32の上に配置した検査対象34によって散乱されたX線を検出するようになっている。
【0013】
X線検出部50は、詳細を後述するX線検出器52と、このX線検出器52を直交する2軸の回りに回転(回動)させる駆動部54と、X線検出器52と駆動部54とを制御する動作制御部56とを備えている。そして、X線検出器52は、この実施形態の場合、検査対象34にX線36を照射するX線源38と同じ側に配置してあって、検査対象34に向けられており(図2参照)、検査対象34に内部に存在する内部欠陥40などによって散乱されたX線(散乱X線)42が入射する。また、X線検出器52は、図2の矢印57、59に示したように、直交した2軸、X軸とY軸との回りに回転可能に形成してあって、動作制御部56から制御信号を受けた駆動部54によりX軸とY軸との回りに回動させられる。
すなわち、X線検出器52は、X軸とY軸との回りに走査可能となっている。
【0014】
なお、図2に示した符号38aは、検査対象34のある断面だけを見たいときに、幅の狭い線状(または帯状)のX線を放射するために、X線源38のX線出射部に装着するアダプタである。このX線源38は、実施形態の場合、拡大映像が得られるようにマイクロフォーカス型となっている。
【0015】
信号処理部60は、X線検出器52の出力信号が入力するデータ読取り部62と、このデータ読取り部62の出力側に設けたアナログ・ディジタル変換部(A/D変換部)64と、A/D変換部64の出力が入力する映像作成部66とを有する。出力読取り部62は、X線検出部50の動作制御部56がX検出器52に与える動作制御信号が入力すようになっていて、この動作制御信号に同期してX線検出器52の出力信号を読み込むようになっている。
【0016】
映像作成部66は、映像演算部68とメモリ70とを備えている。そして、映像演算部68には、A/D変換部64の出力信号とともに、X線検出部50の動作制御部56が出力するX線検出器52の走査角度信号が入力するようになっている。また、映像演算部68は、詳細を後述するように、A/D変換部64の出力信号を動作制御部56からの走査角度信号に対応させてメモリ70に書き込み、メモリ70に書き込まれたデータに基づいてX線36の検査対象34による散乱X線42による映像を求め、表示装置80やプリンタ82、ハードディスクなどの外部記憶装置84に出力する。
【0017】
X線検出部50のX線検出器52は、図3に示したように、X線コリメート部90と、シンチレータ部92と、増幅ユニット94と、検出ユニット96とからなっている。そして、これらのX線コリメート部90、シンチレータ部92、増幅ユニット94、検出ユニット96は、図4に示したように、相互に積層された状態で一体化され、真空容器97の内部に封入してある。
【0018】
X線コリメート部90は、X線を遮蔽可能な金属から形成してあって、X線透過部となるマトリックス状に配置された複数の微細孔90aを有している。すなわち、X線コリメート部90は、実施形態の場合、金属箔をエッチングして直径が5〜15μm程度の複数の微細孔90aを設け、この微細孔90aを有する複数の金属箔を、X線を遮蔽可能なように積層して厚さ1〜2cm程度の積層体90bとして形成してある。そして、X線コリメート部90は、入射側(図3の上側)が検査対象34に向けられ、散乱X線42を受けるようになっている。X線コリメート部90に入射する散乱X線42は、面とほぼ垂直に入射するものだけが微細孔90aを介してX線コリメート部90を透過する。
【0019】
シンチレータ部92は、X線コリメート部90の背面側(図3の下側)に配設してあって、X線コリメート部90を透過した散乱X線42の入射により蛍光を発するシンチレータ92aと、このシンチレータ92aの発する蛍光が入射すると電子(光電子)100を生成する光電変換部92bとを積層した構造となっている。
【0020】
増幅ユニット94は、いわゆるマイクロチャンネルプレートであって、X線コリメート部90に設けた微細孔90aに対応して設けた複数のマイクロキャピラリー(マイクロチャンネル)94aを一体化したものである。マイクロキャピラリ94aは、図5に示したように、例えば直径が6μm、長さが1cm程度の加速管102と、この加速管102の両端に設けたカソード104、アノード106からなっている。そして、マイクロキャピラリー94aは、カソード104とアノード106とが直流電源108に接続され、1000〜10000Vの直流高電圧がカソード104とアノード106との間に印加してある。このため、カソード104側から加速管102内に入射した電子100は、カソード104とアノード106との間に印加された高電圧によって加速され、加速管102の内壁に衝突するたびに二次電子を生じて雪崩的に数が増幅され、増幅電子110としてアノード106側から出射される。
【0021】
検出ユニット96は、図6に示したようになっている。すなわち、検出ユニット96は、実施形態の場合、MOSトランジスタからなる複数の検出トランジスタ112(112ij)と、MOSトランジスタからなる複数の読み出しトランジスタ114(114a、114b、114c……… )とを備えている。検出トランジスタ112ij(i=1、2、3、………n、j=1、2、3、………n)は、増幅ユニット94を構成しているマイクロキャピラリー94aに対応してn×n個がマトリックス状に配置してある。また、読み出しトランジスタ114は、マトリックス状に配置した検出トランジスタ112の各列に対応してn個設けてある。
【0022】
検出トランジスタ112は、各行ごとにゲートがゲート制御線116(116a、116b、116c、………)に接続され、これらのゲート制御線116が動作制御部56を構成しているゲート切替回路118に接続してある。また、検出トランジスタ112は、ドレインが各列ごとにデータ線120(120a、120b、120c、………)を介して読み出しトランジスタ114のソースに接続してある。そして、各読み出しトランジスタ114は、ドレインが信号処理部60のデータ読取り部62に接続してあり、それぞれのゲートが対応する読み出し線122(122a、122b、122c、………)に接続してある。また、検出トランジスタ112のソースには、マイクロキャピラリー94aの出力側に対面して設けた検出電極124が接続してある。
【0023】
各読み出し線122は、動作制御部56を構成している読み出し線切替回路126に接続してある。動作制御部56は、ゲート切替回路118、読み出し線切替回路126、切替制御部128などから構成してある。そして、切替制御部128は、詳細を後述するように、2値直交変調パターン(直交変調パターン)に基づいて切替制御信号を生成し、この切替制御信号をゲート切替回路118と読み出し線切替回路126とに与え、各検出トランジスタ112を直交変調パターンに基づいて切替動作させるようになっている。
【0024】
このように構成した実施形態に係るX線映像装置30の作用は、次のとおりである。X線検出部50の動作制御部56は、駆動部54にリセット信号を与えてX線検出器52の向きを初期位置にセットする。一方、X線源38からX線36が検査対象34に照射される。検査対象34に照射されたX線36は、大部分が検査対象34を透過するが、一部が検査対象34やその内部の欠陥40などによって散乱され、散乱X線42としてX線36の入射側に反射される。この散乱X線42は、X線検出部50を構成しているX線検出器52のX線コリメート部90に入射する。
【0025】
X線コリメート部90は、X線透過部となっている微細孔90aとほぼ平行な散乱X線42のみを透過させる。X線コリメート部90を透過した散乱X線42は、シンチレータ部92に入射し、シンチレータ92aに蛍光を発生させ、この蛍光が光電子変換部92bによって電子100に変換される。この電子100は、増幅ユニット94を構成しているマイクロキャピラリー94aの増幅管102に入射しする。マイクロキャプラリー94aは、増幅管102の両端に印加されている高圧直流電圧によって入射した電子100を加速し、個数を106 〜107 倍程度に増幅して増幅電子110として出力する。この増幅電子110は、検出ユニット96の検出電極124に入射し、検出電極124を帯電させる。従って、検出トランジスタ112を順次切り替えて動作させることにより、どの検出トランジスタ112の検出電極124に増幅電子110が入射したかを知ることができる。
【0026】
ところで、検査対象34に照射されたX線36は、ほとんどが検査対象34を透過する。このため、検査対象34からの散乱X線42は、わずかであって極めて微弱である。従って、検出ユニット94の各マイクロキャピラリー94aには、電子100が希にしか入射しない。すなわち、検出ユニット96の各検出電極124には、増幅電子110が希にしか入射しない。このため、ゲート1チャンネル(1つのゲート制御線116)、読み出し1チャンネル(1つの読み出し線122)を選択してデータを読み出す場合、まばらにしかパルスが出力されない。しかも、マイクロキャピラリー94aの数を例えば1万個〜100万個にすると、多大な読み出し時間を必要とする。
【0027】
そこで、この実施形態においては、複数のゲート制御線116と複数の読み出し線122とを選択し、複数の検出トランジスタ112を同時に駆動するようにしている。これにより、検出トランジスタ112を個々に駆動したときより多くの検出パルス(出力パルス)が得られる。しかし、このままでは、どの検出トランジスタ112の出力によって得られた検出パルスであるかを知ることができない。すなわち、散乱X線42がX線コリメート部90のどの位置の微細孔90aを通過し、増幅ユニット94のどの位置のマイクロキャピラリー94aによって増幅されたものであるかを特定することができない。このため、この実施形態においては、直交変調パターンに基づいた駆動信号を生成して検出トランジスタ112を駆動するようにしている。
【0028】
直交変調パターンとしては、2値直交変調パターンであるアダマール行列の各行に対応した変調パターンが適している。アダマール行列は、要素が「+1」と「−1」とからなっていて、対角線に沿って対称位置にある要素が同じである対称行列となっている。例えば、一次のアダマール行列H(1) を具体的に書くと、
【数1】
Figure 0004653914
のようになる。また、二次、三次のアダマール行列H(2) 、H(3) は、数式2、数式3のように書くことができる。
【数2】
Figure 0004653914
【数3】
Figure 0004653914
すなわち、アダマール行列は、一般的に次の漸化式によって定義することができる。
【数4】
Figure 0004653914
ただし、数式4において、kは次数を示す。
【0029】
そこで、実施形態においては、検出部50の動作制御部56を構成している切替制御部128が、スイッチをオンにする場合を「+1」、スイッチをオフにする場合を「−1」に対応したアダマール行列に基づいて、検出トランジスタ112の切替動作信号を作成し、切替制御信号としてゲート切替回路118と読み出し線切替回路126とに与える。例えば、検出ユニット96が8×8個の検出トランジスタ112で構成されている場合、検出トランジスタ112の動作信号は、図7のようになる。この図7において斜線を施した部分が動作電圧を与えられてオンとなる+1に相当し、白抜きの部分がオフである−1に相当している。
【0030】
すなわち、切替制御部128は、ゲート切替回路118にアダマール行列に従った切替制御信号を与え、ゲート制御線116を介して各検出トランジスタ112のゲートにアダマール行列に従ってゲート電圧を切り替えて印加するとともに、読み出し線切替回路126にアダマール行列に基づいた切替信号を与え、読み出しトランジスタ114をアダマール行列に従って切り替えて動作させる。例えば、検出トランジスタ112が8×8個である場合、切替制御部128は、アダマール行列に基づいて図7の下部に示した8個の変調モードを生成する。そして、まず、ゲート切替回路118に図7の下部右側に示した0次の動作信号(切替信号)を与え、すべてのゲート制御線116をゲート電源に接続し、すべての検出トランジスタ112のゲートにゲート電圧を印加するとともに、読み出し線切替回路126に図7の下部左側の0次から7次の切替信号を順次与え、読み出しトランジスタ114をアダマール行列に基づいて順次切り替えて駆動する。
【0031】
そして、切替制御部128は、読み出しトランジスタ114に対して0次から7次までの切り替えが終了したならば、ゲート切替回路118に1次の駆動信号を与え、第1行、第3行、第5行、第7行のゲート制御線116に接続した検出トランジスタ112のゲートに電圧を印加し、この状態で読み出しトランジスタ114を0次から7次まで切り替える。このようにして、切替制御部128は、検出トランジスタ112のゲートに対して印加する電圧を、0次から7次まで順に切り替えるごとに、読み出しトランジスタ114を0次から7次まで切り替える。これにより、検出トランジスタ112は、常に半分がゲート電圧を印加され、半分のデータ線122がオン状態となり、全体の1/4の検出トランジスタ112から出力信号が信号処理部60のデータ読取り部62に入力する。
【0032】
データ読取り部62は、X線検出部50の動作制御部56が出力するトランジスタの動作切替信号に同期して検出トランジスタ112の出力信号を読み込む。そして、データ読取り部62は、検出トランジスタ112の出力信号として入力する電流を電圧に変換して増幅し、図6の下部に示したような出力パルス130をアナログ電圧として出力する。この出力パルス130は、図1に示したように、信号処理部60のA/D変換部64に入力し、A/D変換部64によってディジタル信号に変換される。
【0033】
A/D変換部64の出力するディジタルデータは、映像作成部66の映像演算部68に入力する。映像演算部68は、X線検出部50の動作制御部56が出力するX線検出器52の向きの情報に基づいて、A/D変換部64から入力した検出データ、すなわちX線検出器52のコリメート部90に到来した散乱X線42の入射方向を求め、2値変調情報とともにメモリ70に書き込む。
【0034】
このようにして映像演算部68は、X線検出器52がX軸とY軸との回りに回動させられ、X線検出器52による所定の範囲の走査が終了すると、メモリ70に書き込まれているデータを読み出し、検査対象34のX線映像を演算し、表示装置80などに出力する。
【0035】
すなわち、検出トランジスタ112のゲートをアダマール行列に基づいて順次切り替えて電圧を印加し、読み出しトランジスタ114をアダマール行列によって順次切り替えて動作させた場合、データ読取り部62の出力するパルス130(アダマール行列に基づいて変調したデータ)から、アダマール逆変換して復調することにより、パルス130を出力した検出トランジスタ112を求めることができる。すなわち、ゲート制御線116を行、読み出し線122(データ線120)を列とする頻度データ行列を考えた場合、この行方向と列方向とにアダマール逆変換(二次元アダマール逆変換)を行うことにより、任意に選択した1つのゲート制御線116と1つの読み出し線122との組み合わせにより検出トランジスタ112を特定することができる。
【0036】
従って、映像演算部68は、メモリ70に格納されているデータに対してアダマール逆変換をすることにより、増幅電子110が入射した検出トランジスタ112を求めることができ、電子10が入力したマイクロキャピラリー94aの位置、および散乱X線42が入射したX線コリメート部90の微細孔90aの位置を特定することができる。また、映像演算部68は、X線検出部50の動作制御部56からのX線検出器52の走査角度情報に基づいて、検査対象34に存在する内部欠陥40などの三次元的位置を求め、表示装置80に映像(画像)として表示する。
【0037】
すなわち、図8に示したように、例えばX線検出器52をY軸の回りに矢印132のように回転させた場合、X線の方向ベクトル(検出ユニット96の出力信号)が変化する。そして、X線検出器52を矢印132のように回転(回動)すると、X線コリメート部90によって形成される平行線からなる受信系が回転し、直線と直線との交点として空間におけるX線36の散乱位置を決定することができる。従って、図2に示したように、X線検出器52を直交するX軸とY軸との回りに回転させることにより、三次元映像を合成することができる。
【0038】
このようにして、映像演算部68が求めたX線映像は、例えば図2に示した内部欠陥40のX線散乱係数が検査対象34より大きな場合、内部欠陥40が検査対象34より色の濃い映像そして映像化され、内部欠陥40が空洞などのように検査対象34よりX線透過率が大きく、散乱係数が小さい場合、検査対象34より色の薄い映像として表示装置80に表示される。
【0039】
このように、実施の形態に係るX線映像装置30は、n×n個の検出トランジスタ112を二次元アダマール行列に従いオン、オフして直交変調しているため、個々のランジスタ112について出力信号を読み出すより到来する散乱X線42を効率よく受信、転送することができ、原理的に効率をn2 /2倍向上させることができる。従って、極めて微弱なX線コンプトン散乱に基づく映像を高速に得ることができる。
【0040】
そして、実施形態においては、X線検出器52を直交する2軸の回りに回転させることにより、二次元的に得たデータから三次元映像を求めることができる。しかも、X線の後方散乱に基づいた映像が得られるため、X線源38とX線検出部50のX線検出器52とを検査対象34に対して同じ側に配置することができ、飛行機の翼などの大型構造物の検査を容易に行なうことが可能となる。
【0041】
なお、検査対象34のある断面の深さ方向を見たい場合には、図2に示したアダプタ38bをX線源38のX線出射部に装着して線状のX線を検査対象34に照射するとよい。これにより、映像演算部68による映像を求める演算を簡略化することができる。
【0042】
また、前記実施の形態においては、X線源38とX線検出器52とを検査対象34に対して同じ側に配置した場合について説明したが、X線源38を検査対象34の一側に、X線検出器52を検査対象34の他側に配置してもよい。このようにX線源38とX線検出器52とを検査対象34の反対側に配置すると、検査対象34に照射するX線の強度を従来より大幅に小さくすることができ、X線による検査、分析の安全性を大幅に向上することができる。
【0043】
なお、前記した実施の形態は、本発明の一態様を説明したものであって、これに限定されるものではない。すなわち、前記実施形態においては、X線検出器52を直交する2軸の回りに回転させる場合について説明したが、必要に応じて1つの軸の回りに回転させてもよく、また二次元の平面的な映像を求める場合には、X線検出器52を回転させる必要はない。また、前記実施の形態においては、X線検出器52の検出ユニット96の出力信号(検出トランジスタ112の出力信号)をA/D変換する場合について説明したが、検出ユニット96の出力信号をカウンタによって計数し、係数値を映像演算部68に入力するようにしてもよい。
【0044】
【発明の効果】
以上に説明したように、本発明によれば、検出ユニットを構成している複数の電子検出部を、直交変調パターンによって動作させることにより、個々の電子検出部から検出信号を得る場合より、散乱X線に基づいた到来電子を効率よく検出でき、検出効率が大幅に向上して微弱な後方散乱によるX線に基づいた映像を容易に得ることができる。しかも、X線の後方散乱に基づいた映像が得られるため、X線源と、X線を検出するためのコリメート部やシンチレータ部、増幅ユニット、検出ユニットなどのX線検出部とを検査対象に対して同じ側に配置することができ、飛行機の翼などの大型構造物の検査を容易に行なうことが可能となる。
【0045】
そして、本発明は、コリメート部、シンチレータ部、増幅ユニット、検出ユニットを一体とし、これらを直交する2軸の回りに回転可能としたことにより、二次元的に得たデータから3次元の映像を容易に求めることができる。また、検査対象にX線を照射するX線源を、線状のX放射できるようにすると、検査対象のある断面の映像を見たい場合に、線状のX線を照射することにより、断面映像を求める処理が容易となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るX線映像装置の概略ブロック図である。
【図2】実施の形態に係るX線映像装置のX線源とX線検出器との配置関係を示す斜視図である。
【図3】実施の形態に係るX線検出器の分解斜視図である。
【図4】実施の形態に係るX線検出器の真空容器の一部を切り欠いた斜視図である。
【図5】実施の形態に係るマイクロキャピラリーの詳細説明図である。
【図6】実施の形態に係るX線検出器の検出ユニットの詳細説明図である。
【図7】実施の形態に係る検出ユニットを構成している検出トランジスタの作動方法を説明する図である。
【図8】実施の形態に係るX線検出器により三次元映像を求める原理を説明する図である。
【図9】従来のX線映像装置の説明図である。
【符号の説明】
30……X線映像装置、34……検査対象、36……X線、38……X線源、42……散乱X線、50……X線検出部、52……X線検出器、54……駆動部、56……動作制御部、60……信号処理部、62……データ読取り部、66……映像作成部、68……映像演算部、90……X線コリメート部、92……シンチレータ部、94……増幅ユニット、96……検出ユニット。

Claims (3)

  1. 検査対象に向けて配置され、複数のX線透過部を有して面にほぼ垂直に入射した散乱X線を透過させるコリメート部と、
    このコリメート部の背面側に設けられ、前記散乱X線の入射により電子を生成するシンチレータ部と、
    前記コリメート部のX線透過部に対応して設けられ、前記シンチレータ部の生成した電子を増幅する複数の電子増幅部を備えた増幅ユニットと、
    この増幅ユニットの前記電子増幅部に対応して設けられ、前記電子増幅部の増幅した電子を検出する複数の電子検出部を備えた検出ユニットと、
    この検出ユニットの前記複数の電子検出部を直交変調パターンに基づいて動作させる動作制御部と、
    この動作制御部の制御信号と前記電子検出部の出力信号とに基づいて、前記検査対象の前記散乱X線による像を求める映像演算部と、
    を有することを特徴とするX線映像装置。
  2. 前記コリメート部と前記シンチレータ部と前記増幅ユニットと前記検出ユニットとは一体に形成され、直交する2軸の回りに回転可能であることを特徴とする請求項1に記載のX線映像装置。
  3. 前記検査対象にX線を照射するX線源は、線状のX線を放射可能に形成してあることを特徴とする請求項1または2に記載のX線映像装置。
JP2001281104A 2001-09-17 2001-09-17 X線映像装置 Expired - Fee Related JP4653914B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001281104A JP4653914B2 (ja) 2001-09-17 2001-09-17 X線映像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001281104A JP4653914B2 (ja) 2001-09-17 2001-09-17 X線映像装置

Publications (2)

Publication Number Publication Date
JP2003083916A JP2003083916A (ja) 2003-03-19
JP4653914B2 true JP4653914B2 (ja) 2011-03-16

Family

ID=19104993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001281104A Expired - Fee Related JP4653914B2 (ja) 2001-09-17 2001-09-17 X線映像装置

Country Status (1)

Country Link
JP (1) JP4653914B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883074B1 (fr) 2005-03-10 2007-06-08 Centre Nat Rech Scient Systeme de detection bidimensionnelle pour rayonnement neutrons
JP2010243361A (ja) * 2009-04-07 2010-10-28 Toshiba Corp 放射線検査装置
US9442083B2 (en) * 2012-02-14 2016-09-13 Aribex, Inc. 3D backscatter imaging system
JP2013178262A (ja) * 2013-04-24 2013-09-09 Toshiba Corp 放射線検査装置
JP6567792B1 (ja) * 2019-04-04 2019-08-28 キヤノン電子管デバイス株式会社 放射線検出器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503393A (ja) * 1996-01-16 2000-03-21 エーアイエル・システムズ・インコーポレーティド 正方形反対称均一冗長アレイ符号化アパーチャ撮像システム
JP2003004636A (ja) * 2001-06-21 2003-01-08 Mitsui Eng & Shipbuild Co Ltd 二次元微弱放射検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503393A (ja) * 1996-01-16 2000-03-21 エーアイエル・システムズ・インコーポレーティド 正方形反対称均一冗長アレイ符号化アパーチャ撮像システム
JP2003004636A (ja) * 2001-06-21 2003-01-08 Mitsui Eng & Shipbuild Co Ltd 二次元微弱放射検出装置

Also Published As

Publication number Publication date
JP2003083916A (ja) 2003-03-19

Similar Documents

Publication Publication Date Title
JP4229859B2 (ja) 低照射量走査ビーム型デジタルx線撮影システム用x線検出器
US7016458B2 (en) Tomographic apparatus and method
US4196352A (en) Multiple purpose high speed tomographic x-ray scanner
RU2476863C2 (ru) Устройство определения характеристик материала исследуемого объекта и способ досмотра объекта
JP2014121607A (ja) 位相ステッピングによる検査対象の微分位相コントラストイメージングのためのx線撮影システムならびにアンギオグラフィ検査方法
EP1378148B1 (en) Method and apparatus for measuring the position, shape, size and intensity distribution of the effective focal spot of an x-ray tube
JPH034156B2 (ja)
TWI830886B (zh) 一種具有校準模式的圖像感測器、其使用方法以及電腦程式產品
US20020074505A1 (en) Detection of radiation and positron emission tomography
JP3847134B2 (ja) 放射線検出装置
JP4653914B2 (ja) X線映像装置
JP3850711B2 (ja) 放射線利用検査装置
JP4732341B2 (ja) トモシンセシス用電離放射線の走査ベース検出装置及びその方法
US8295434B2 (en) X-ray imaging method and x-ray imaging system
US20140103219A1 (en) Radiation detector and imaging system
JP5486762B2 (ja) 複数焦点x線システムのための方法及びシステム
JPH06237927A (ja) 放射線画像撮影装置
JP4693358B2 (ja) X線検査システム及びそれを作動させる方法
US7326900B2 (en) Two-dimensional weak radiation detector with a detection means based on orthogonal modulation
JP4554112B2 (ja) 二次元微弱放射検出装置
JP5558746B2 (ja) X線画像形成装置
JPH05146426A (ja) 散乱線トモグラフイ及び散乱線トモグラフイ装置
JP2007267980A (ja) 回転機構のない連続処理型x線ct装置
JP2014064705A (ja) X線発生装置、x線検出装置、x線撮影システム及びx線撮影方法
JPH05332952A (ja) 産業用ct装置とそのスキャノグラム撮影方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4653914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141224

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees