[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020261965A1 - 缶用鋼板およびその製造方法 - Google Patents

缶用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020261965A1
WO2020261965A1 PCT/JP2020/022579 JP2020022579W WO2020261965A1 WO 2020261965 A1 WO2020261965 A1 WO 2020261965A1 JP 2020022579 W JP2020022579 W JP 2020022579W WO 2020261965 A1 WO2020261965 A1 WO 2020261965A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
steel
strength
Prior art date
Application number
PCT/JP2020/022579
Other languages
English (en)
French (fr)
Inventor
房亮 假屋
芳恵 椎森
克己 小島
大介 大谷
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MYPI2021007272A priority Critical patent/MY196470A/en
Priority to CA3142677A priority patent/CA3142677A1/en
Priority to CN202310045025.2A priority patent/CN115976416A/zh
Priority to CN202080043123.7A priority patent/CN113950536B/zh
Priority to MX2021015950A priority patent/MX2021015950A/es
Priority to JP2020563725A priority patent/JP6881696B1/ja
Priority to US17/596,677 priority patent/US20220316023A1/en
Priority to BR112021026166A priority patent/BR112021026166A2/pt
Priority to KR1020217039768A priority patent/KR102587650B1/ko
Priority to AU2020302464A priority patent/AU2020302464A1/en
Publication of WO2020261965A1 publication Critical patent/WO2020261965A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel sheet for cans and a method for manufacturing the same.
  • the steel plate to be thinned is a can body of a two-piece can formed by drawing, a can body of a three-piece can formed by cylindrical molding, and a steel plate used for a can lid.
  • Simply thinning the steel plate reduces the strength of the can body and can lid, so for parts such as re-squeezed cans (DRD (draw-redo) cans) and welded can bodies, for high-strength ultra-thin cans.
  • Steel sheets are desired.
  • the high-strength ultra-thin can steel sheet is manufactured by using the Double Reduce method (hereinafter, also referred to as “DR method”) in which secondary cold rolling is performed so that the rolling reduction ratio becomes 20% or more after annealing.
  • DR method Double Reduce method
  • a steel sheet manufactured by using the DR method (hereinafter, also referred to as “DR material”) has high strength, but has low total elongation (poor ductility) and is inferior in workability.
  • the diameter of the can mouth may be designed to be smaller than the diameter of other parts for the purpose of reducing the material cost of the lid.
  • the process of reducing the diameter of the can mouth is called neck processing, and the can mouth is subjected to die neck processing using a die of a mold or spin neck processing using a rotary roll to reduce the diameter of the can mouth and form the neck part. ..
  • neck processing The process of reducing the diameter of the can mouth is called neck processing, and the can mouth is subjected to die neck processing using a die of a mold or spin neck processing using a rotary roll to reduce the diameter of the can mouth and form the neck part. .
  • the material has high strength like the DR material, a dent is generated in the neck portion due to buckling due to the local deformation of the material.
  • the dents should be avoided because the appearance of the can is poor and the commercial value is damaged.
  • the material becomes thinner and the neck portion is more likely to be dented.
  • the DR material that is generally used as a steel plate for high-strength ultra-thin cans has poor ductility and it is often difficult to process the neck of the can body. Therefore, when a DR material is used, a product is obtained through a large number of mold adjustments and multi-step processing. Furthermore, since the strength of the DR material is increased by work hardening by secondary cold rolling, the DR material is processed as a result of work hardening being introduced into the steel sheet unevenly depending on the accuracy of the secondary cold rolling. In some cases, local deformation may occur. This local deformation causes a dent in the neck of the can body and should be avoided.
  • Patent Document 1 a steel sheet having excellent deep drawing property and flange workability during can manufacturing and surface shape after can manufacturing by improving the strength by making the steel structure finer and optimizing the steel structure.
  • Patent Document 2 by adjusting Mn, P, and N to appropriate amounts in low carbon steel, it is soft at the time of processing, but a hard state can be obtained by heat treatment after processing.
  • Patent Document 3 proposes a three-piece can steel sheet having excellent formability of a welded portion by controlling the particle size of oxide-based inclusions, for example, less neck wrinkles and improved flange cracking. There is.
  • Patent Document 4 the tensile strength is 400 MPa or more and the breaking elongation is 10% or more by controlling the dislocation density in the plate thickness direction of the steel sheet by increasing the N content to increase the strength by the solid solution N.
  • High-strength container steel sheets have been proposed.
  • any one of strength, ductility (total elongation), uniform deformability, and workability of the neck portion is inferior.
  • Patent Document 1 proposes a steel having a good balance of high strength and ductility by miniaturizing the steel structure and optimizing the steel structure.
  • Patent Document 1 does not consider local deformation of the steel sheet at all, and the manufacturing method described in Patent Document 1 cannot obtain a steel sheet that satisfies the workability required for the neck portion of the can body. difficult.
  • Patent Document 2 proposes to enhance the can strength characteristics by miniaturizing the steel structure by P and aging of N.
  • increasing the strength of the steel sheet by adding P according to Patent Document 2 tends to cause local deformation of the steel sheet, and the technique described in Patent Document 2 provides the workability required for the neck portion of the can body. It is difficult to obtain a satisfactory steel plate.
  • Patent Document 3 obtains desired strength by refining crystal grains by Nb and B.
  • the tensile strength of the steel sheet according to Patent Document 3 is less than 540 MPa, and the strength as a high-strength ultra-thin can steel sheet is inferior.
  • addition of Ca or REM is indispensable, and the technique of Patent Document 3 has a problem of deteriorating corrosion resistance.
  • Patent Document 3 does not consider the local deformation of the steel sheet at all, and the manufacturing method described in Patent Document 3 can obtain a steel sheet satisfying the workability required for the neck portion of the can body. difficult.
  • Patent Document 4 evaluates the pressure resistance strength by molding a can lid using a steel plate for a high-strength container having a tensile strength of 400 MPa or more and a breaking elongation of 10% or more. However, Patent Document 4 does not consider the shape of the neck portion of the can body at all, and it is difficult to obtain a good neck portion of the can body by the technique described in Patent Document 4.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel sheet for cans having high strength and particularly high workability as a material for a can body having a neck portion, and a method for manufacturing the same. To do.
  • the gist structure of the present invention for solving the above problems is as follows. [1] In terms of mass%, C: 0.010% or more and 0.130% or less, Si: 0.04% or less, Mn: 0.10% or more and 1.00% or less, P: 0.007% or more and 0.
  • the component composition further comprises, in mass%, Nb: 0.0050% or more and 0.0500% or less, Mo: 0.0050% or more and 0.0500% or less, and V: 0.0050% or more and 0.
  • a hot rolling step in which the steel sheet is wound at a temperature of 640 ° C. or higher and 780 ° C. or lower, and then cooled so that the average cooling rate from 500 ° C. to 300 ° C. is 25 ° C./h or higher and 55 ° C./h or lower.
  • the steel sheet is primarily cooled to a temperature range of 500 ° C. or more and 600 ° C. or less at an average cooling rate of 7 ° C./s or more and 180 ° C./s or less, and then the steel sheet is continuously cooled at 0.1 ° C./s or more.
  • the component composition further comprises, in mass%, Nb: 0.0050% or more and 0.0500% or less, Mo: 0.0050% or more and 0.0500% or less, and V: 0.0050% or more and 0.
  • the present invention will be described based on the following embodiments. First, the component composition of the steel sheet for cans according to the embodiment of the present invention will be described.
  • the unit in the component composition is "mass%”, but hereinafter, unless otherwise specified, it is simply indicated by "%".
  • the steel sheet for cans in the present embodiment has a top yield strength of 550 MPa or more.
  • the C content in the steel sheet for cans is important. When the C content is less than 0.010%, the strength increasing effect due to the precipitation strengthening described above is reduced, and the upper yield strength is less than 550 MPa. Therefore, the lower limit of the C content is preferably 0.010% and 0.015% or more.
  • the C content exceeds 0.130%, subcapsular cracking occurs in the cooling process during melting of the steel, and the steel sheet becomes excessively hard, so that the ductility decreases. Further, the ratio of unrecrystallized ferrite becomes more than 3%, and dents occur when the steel plate is processed into the neck portion of the can body. Therefore, the upper limit of the C content is set to 0.130%.
  • the C content is 0.060% or less, the strength of the hot-rolled plate is suppressed, the deformation resistance during cold rolling becomes smaller, and surface defects are less likely to occur even if the rolling speed is increased. Therefore, from the viewpoint of ease of manufacture, the C content is preferably 0.060% or less.
  • the C content is more preferably 0.015% or more and 0.060% or less.
  • Si 0.04% or less Si is an element that increases the strength of steel by solid solution strengthening.
  • the Si content is preferably 0.01% or more.
  • the Si content is set to 0.04% or less.
  • the Si content is preferably 0.03% or less, more preferably 0.01% or more and 0.03% or less.
  • Mn 0.10% or more and 1.00% or less Mn increases the strength of steel by solid solution strengthening. If the Mn content is less than 0.10%, it is not possible to secure an upper yield strength of 550 MPa or more. Therefore, the lower limit of the Mn content is set to 0.10%. On the other hand, when the Mn content exceeds 1.00%, not only the corrosion resistance and surface characteristics are inferior, but also the ratio of unrecrystallized ferrite becomes more than 3%, local deformation occurs, and the uniform deformability is inferior. Therefore, the upper limit of the Mn content is set to 1.00%.
  • the Mn content is preferably 0.20% or more, preferably 0.60% or less, and more preferably 0.20% or more and 0.60% or less.
  • P 0.007% or more and 0.100% or less
  • P is an element having a large solid solution strengthening ability. In order to obtain such an effect, it is necessary to contain P in an amount of 0.007% or more. Therefore, the lower limit of the P content is set to 0.007%. On the other hand, when the P content exceeds 0.100%, the steel sheet is excessively hardened, so that the ductility is lowered and the corrosion resistance is further deteriorated. Therefore, the upper limit of the P content is set to 0.100%.
  • the P content is preferably 0.008% or more, preferably 0.015% or less, and more preferably 0.008% or more and 0.015% or less.
  • the steel sheet for cans in the present embodiment has obtained high strength by precipitation strengthening with Ti-based carbides.
  • S easily forms Ti and TiS, and when TiS is formed, the amount of Ti-based carbides useful for precipitation strengthening is reduced, and high strength cannot be obtained. That is, when the S content exceeds 0.0090%, a large amount of TiS is formed and the strength is lowered. Therefore, the upper limit of the S content is set to 0.0090%.
  • the S content is preferably 0.0080% or less.
  • the lower limit of the S content is set to 0.0005%.
  • Al 0.001% or more and 0.100% or less
  • Al is an element contained as a deoxidizer and is also useful for refining steel. If the Al content is less than 0.001%, the effect as a deoxidizer is insufficient, causing solidification defects and increasing the steelmaking cost. Therefore, the lower limit of the Al content is set to 0.001%. On the other hand, if the Al content exceeds 0.100%, surface defects may occur. Therefore, the upper limit of the Al content is set to 0.100% or less. It is preferable that the Al content is 0.010% or more and 0.060% or less because Al can function better as a deoxidizer.
  • the steel sheet for cans in this embodiment has high strength due to precipitation strengthening by Ti-based carbides. N easily forms Ti and TiN, and when TiN is formed, the amount of Ti-based carbides useful for precipitation strengthening is reduced, and high strength cannot be obtained. Further, if the N content is too large, slab cracking is likely to occur in the lower straightening band where the temperature during continuous casting is lowered. Therefore, the upper limit of the N content is set to 0.0050%. The lower limit of the N content does not need to be set in particular, but from the viewpoint of steelmaking cost, the N content is preferably more than 0.0005%.
  • Ti 0.0050% or more and 0.1000% or less
  • Ti is an element having a high ability to generate carbides and is effective for precipitating fine carbides. This increases the yield strength.
  • the top yield strength can be adjusted by adjusting the Ti content. Since this effect is produced by setting the Ti content to 0.0050% or more, the lower limit of the Ti content is set to 0.0050%.
  • Ti causes an increase in the recrystallization temperature. Therefore, when the Ti content exceeds 0.1000%, the proportion of unrecrystallized ferrite exceeds 3% in annealing at 640 to 780 ° C., and the steel plate is used as the neck of the can body. A dent occurs when the part is processed. Therefore, the upper limit of the Ti content is set to 0.1000%.
  • the Ti content is preferably 0.0100% or more, preferably 0.0800% or less, and more preferably 0.0100% or more and 0.0800% or less.
  • B 0.0005% or more and less than 0.0020% B is effective for refining the ferrite grain size and increasing the top yield strength.
  • the upper yield strength can be adjusted by adjusting the B content. Since this effect is produced by setting the B content to 0.0005% or more, the lower limit of the B content is set to 0.0005%.
  • B causes an increase in the recrystallization temperature, when the B content is 0.0020% or more, the proportion of unrecrystallized ferrite becomes more than 3% by annealing at 640 ° C to 780 ° C, and the steel sheet is used as a can body. A dent occurs when the neck is processed. Therefore, the B content is set to less than 0.0020%.
  • the B content is preferably 0.0006% or more, preferably 0.0018% or less, and more preferably 0.0006% or more and 0.0018% or less.
  • Cr 0.08% or less
  • Cr is an element that forms a carbonitride.
  • the carbonitride of Cr has a smaller reinforcing ability than that of Ti-based carbides, it contributes to increasing the strength of steel.
  • the Cr content is preferably 0.001% or more.
  • the Cr content exceeds 0.08%, the carbonitride of Cr is excessively formed, the formation of Ti-based carbides that most contributes to the reinforcing ability of the steel is suppressed, and the desired strength cannot be obtained. Therefore, the Cr content is set to 0.08% or less.
  • Ti forms fine precipitates (Ti-based carbides) with C and contributes to increasing the strength of steel.
  • C which does not form Ti-based carbides, will be present in the steel as cementite or solid solution C. This solid solution C causes local deformation during processing of the steel sheet, and dents are generated when the steel sheet is processed into the neck portion of the can body.
  • Ti easily combines with S to form TiS, and when TiS is formed, the amount of Ti-based carbides useful for precipitation strengthening is reduced, and high strength cannot be obtained.
  • the present inventors have achieved high strength due to Ti-based carbides, and at the same time, have dents caused by local deformation during processing of the steel sheet. We have found that it can be suppressed, and have reached the present invention. That is, when (Ti * / 48) / (C / 12) is less than 0.005, the amount of Ti-based carbides that contribute to increasing the strength of the steel is reduced, the top yield strength is less than 550 MPa, and it is not yet.
  • the rest other than the above components are Fe and unavoidable impurities.
  • Nb 0.0050% or more and 0.0500% or less
  • Nb is an element having a high carbide-forming ability like Ti, and is effective for precipitating fine carbides. This increases the yield strength.
  • the upper yield strength can be adjusted by adjusting the Nb content. Since this effect is produced by setting the Nb content to 0.0050% or more, it is preferable to set the lower limit of the Nb content to 0.0050% when Nb is added.
  • Nb causes an increase in recrystallization temperature, when the Nb content exceeds 0.0500%, the proportion of unrecrystallized ferrite becomes more than 3% in annealing at 640 ° C to 780 ° C, and the steel sheet is used as a can body.
  • the upper limit of the Nb content is preferably 0.0500%.
  • the Nb content is more preferably 0.0080% or more, more preferably 0.0300% or less, and further preferably 0.0080% or more and 0.0300% or less.
  • Mo 0.0050% or more and 0.0500% or less
  • Mo is an element having a high carbide-forming ability like Ti and Nb, and is effective for precipitating fine carbides. This increases the yield strength.
  • the upper yield strength can be adjusted by adjusting the Mo content. Since this effect is produced by setting the Mo content to 0.0050% or more, it is preferable to set the lower limit of the Mo content to 0.0050% when Mo is added.
  • Mo causes an increase in the recrystallization temperature. Therefore, when the Mo content exceeds 0.0500%, the proportion of unrecrystallized ferrite becomes more than 3% by annealing at 640 ° C to 780 ° C, and the steel sheet is used as a can body.
  • the upper limit of the Mo content is preferably 0.0500%.
  • the Mo content is more preferably 0.0080% or more, more preferably 0.0300% or less, still more preferably 0.0080% or more and 0.0300% or less.
  • V 0.0050% or more and 0.0500% or less V is effective for refining the ferrite grain size and increasing the top yield strength.
  • the upper yield strength can be adjusted by adjusting the V content. Since this effect is produced by setting the V content to 0.0050% or more, it is preferable to set the lower limit of the V content to 0.0050% when V is added.
  • V causes an increase in the recrystallization temperature
  • the V content exceeds 0.0500%, the proportion of unrecrystallized ferrite becomes more than 3% in annealing at 640 ° C to 780 ° C, and the steel sheet is used as a can body. A dent occurs when the neck is processed. Therefore, when V is added, the upper limit of the V content is preferably 0.0500%.
  • the V content is more preferably 0.0080% or more, more preferably 0.0300% or less, and further preferably 0.0080% or more and 0.0300% or less.
  • Top yield strength 550 MPa or more and 620 MPa or less
  • the top yield strength of the steel sheet is set to 550 MPa or more in order to secure the dent strength, which is the strength against dents in the welded can, and the pressure resistance strength of the can lid.
  • the yield strength of the steel sheet is set to 550 MPa or more and 620 MPa or less.
  • the yield strength can be measured by the metal material tensile test method shown in "JIS Z 2241: 2011".
  • the above-mentioned yield strength includes the composition, the winding temperature in the hot rolling process, the cooling rate in the cooling process after winding in the hot rolling process, the rolling reduction in the cold rolling process, the soaking temperature and the holding time in the annealing process. It can be obtained by adjusting the cooling rate in the annealing process and the rolling reduction rate in the temper rolling process.
  • the yield strength of 550 MPa or more and 620 MPa or less is the above-mentioned component composition
  • the winding temperature is set to 640 ° C or more and 780 ° C or less in the hot rolling step
  • the average cooling rate of 500 ° C to 300 ° C after winding is used. 25 ° C./h or more and 55 ° C./h or less
  • the rolling reduction in the cold rolling process was 86% or more
  • the holding time in the temperature range of 640 ° C. or more and 780 ° C. or less in the annealing step was 10 s or more and 90 s or less.
  • Primary cooling to a temperature range of 500 ° C or more and 600 ° C or less at an average cooling rate of 7 ° C / s or more and 180 ° C / s or less, and up to 300 ° C or less at an average cooling rate of 0.1 ° C / s or more and 10 ° C / s or less. It can be obtained by secondary cooling and setting the rolling reduction in the temper rolling step to 0.1% or more and 3.0% or less.
  • Percentage of unrecrystallized ferrite 3% or less
  • the ratio of unrecrystallized ferrite in the metal structure exceeds 3%, it is caused by local deformation during processing, for example, when processing a steel plate into the neck of a can body. A dent is generated. Therefore, the ratio of unrecrystallized ferrite in the metal structure is set to 3% or less.
  • the mechanism by which local deformation occurs during processing is not clear, but it is presumed that if a large amount of unrecrystallized ferrite is present, the balance of interaction between unrecrystallized ferrite and dislocations will be lost during processing, leading to the occurrence of dents. To.
  • the ratio of unrecrystallized ferrite in the metal structure is preferably 2.7% or less. It is preferable that the ratio of unrecrystallized ferrite in the metal structure is 0.5% or more because the annealing temperature can be relatively low, and more preferably 0.8% or more.
  • the ratio of unrecrystallized ferrite in the metal structure can be measured by the following method. After polishing the cross section in the plate thickness direction parallel to the rolling direction of the steel sheet, it is corroded with a corrosive liquid (3% by volume nital). Next, using an optical microscope, the plate thickness is 1 from the depth position of 1/4 of the plate thickness (the position of 1/4 of the plate thickness in the plate thickness direction from the surface in the above cross section) over 10 fields of view at a magnification of 400 times. Observe the area up to the position of / 2. Next, the unrecrystallized ferrite is visually identified using a microstructure photograph taken with an optical microscope, and the area ratio of the unrecrystallized ferrite is determined by image analysis.
  • the unrecrystallized ferrite is a metal structure having a shape elongated in the rolling direction under an optical microscope having a magnification of 400 times.
  • the area ratio of unrecrystallized ferrite in each field of view is obtained, and the average value of the area ratios of 10 fields of view is taken as the ratio of unrecrystallized ferrite in the metal structure.
  • the steel sheet for cans according to the present embodiment does not reduce the strength of the can body, for example, the pressure resistance of the can lid, and does not cause molding defects such as dents during processing even when the plate thickness is thin. .. That is, when the plate thickness is thin, the effect of the present invention of high strength and high processing accuracy is remarkably exhibited. Therefore, from this viewpoint, it is preferable that the thickness of the steel plate for cans is 0.4 mm or less.
  • the plate thickness may be 0.3 mm or less, or 0.2 mm or less.
  • the temperature is based on the surface temperature of the steel sheet.
  • the average cooling rate is a value obtained by calculating as follows based on the surface temperature of the steel sheet.
  • the average cooling rate from 500 ° C to 300 ° C is represented by ⁇ (500 ° C)-(300 ° C) ⁇ / (cooling time from 500 ° C to 300 ° C).
  • the molten steel is adjusted to the above-mentioned composition by a known method using a converter or the like, and then made into a slab by, for example, a continuous casting method.
  • the slab heating temperature in the hot rolling process is less than 1200 ° C, unrecrystallized structure remains on the steel sheet after annealing, and dents occur when the steel sheet is processed into the neck of the can body. .. Therefore, the lower limit of the slab heating temperature is set to 1200 ° C.
  • the slab heating temperature is preferably 1220 ° C. or higher. Since the effect is saturated even if the slab heating temperature exceeds 1350 ° C, the upper limit is preferably 1350 ° C.
  • Finish rolling temperature 850 ° C or higher
  • the finish temperature in the hot rolling process is less than 850 ° C
  • the unrecrystallized structure due to the unrecrystallized structure of the hot-rolled steel sheet remains on the annealed steel sheet and is locally present during the processing of the steel sheet. A dent is generated due to the deformation. Therefore, the lower limit of the finish rolling temperature is set to 850 ° C.
  • the finish rolling temperature is 950 ° C. or lower, scale generation on the surface of the steel sheet is suppressed and better surface texture can be obtained, which is preferable.
  • Winding temperature 640 ° C. or higher and 780 ° C. or lower
  • the winding temperature in the hot rolling process is less than 640 ° C.
  • a large amount of cementite is deposited on the hot-rolled steel sheet.
  • the proportion of unrecrystallized ferrite in the metallographic structure after annealing becomes more than 3%, and dents due to local deformation occur when the steel sheet is processed into the neck portion of the can body. Therefore, the lower limit of the winding temperature is set to 640 ° C.
  • the upper limit of the winding temperature is set to 780 ° C.
  • the winding temperature is preferably 660 ° C. or higher, preferably 760 ° C. or lower, and more preferably 660 ° C. or higher and 760 ° C. or lower.
  • cementite is formed on the hot-rolled steel sheet. Precipitates in large quantities.
  • the proportion of unrecrystallized ferrite in the metallographic structure after annealing becomes more than 3%, and dents due to local deformation occur when the steel sheet is processed into the neck portion of the can body.
  • the amount of fine Ti-based carbides that contribute to the strength is reduced, and the strength of the steel sheet is reduced. Therefore, the lower limit of the average cooling rate from 500 ° C.
  • the average cooling rate from 500 ° C. to 300 ° C. after winding exceeds 55 ° C./h, the solid solution C existing in the steel increases, and the solid solution when the steel sheet is processed into the neck of the can body A dent caused by C occurs. Therefore, the upper limit of the average cooling rate from 500 ° C. to 300 ° C. after winding is set to 55 ° C./h.
  • the above-mentioned average cooling rate can be achieved by air cooling. Further, the "average cooling rate" is based on the average temperature between the edge in the coil width direction and the center.
  • Pickling After that, it is preferable to pickle if necessary. Pickling only needs to be able to remove the surface scale, and it is not necessary to limit the conditions in particular. Further, the scale may be removed by a method other than pickling.
  • the rolling reduction in the cold rolling process is set to 86% or more.
  • the rolling reduction in the cold rolling step is preferably 87% or more, preferably 94% or less, and more preferably 87% or more and 94% or less.
  • another step for example, an annealing step for softening the hot rolled plate may be included as appropriate. Further, the cold rolling step may be performed immediately after the hot rolling step without pickling.
  • Holding temperature 640 ° C. or higher and 780 ° C. or lower
  • the holding temperature in the annealing step exceeds 780 ° C.
  • plate troubles such as heat buckles are likely to occur in annealing.
  • the ferrite grain size of the steel sheet is partially coarsened, the steel sheet is softened, and the top yield strength is less than 550 MPa. Therefore, the holding temperature is set to 780 ° C. or lower.
  • the annealing temperature is less than 640 ° C., the recrystallization of the ferrite grains is incomplete, the proportion of unrecrystallized ferrite exceeds 3%, and dents occur when the steel sheet is processed into the neck of the can body. ..
  • the holding temperature is set to 640 ° C. or higher.
  • the holding temperature is preferably 660 ° C. or higher, preferably 740 ° C. or lower, and more preferably 660 ° C. or higher and 740 ° C. or lower.
  • the holding time exceeds 90 s the Ti-based carbides precipitated mainly in the winding process of hot rolling become coarse during the temperature rise and become strong. Decreases.
  • the holding time is less than 10 s the recrystallization of the ferrite grains is incomplete, unrecrystallized remains, the ratio of unrecrystallized ferrite becomes more than 3%, and when the steel sheet is processed into the neck of the can body. A dent occurs.
  • a continuous annealing device can be used for annealing. Further, another step may be appropriately included after the cold rolling step and before the annealing step, for example, an annealing step for softening the hot-rolled sheet, or an annealing step may be performed immediately after the cold rolling step. ..
  • Primary cooling Cooling to a temperature range of 500 ° C or more and 600 ° C or less at an average cooling rate of 7 ° C / s or more and 180 ° C / s or less. After holding the above, 500 ° C at an average cooling rate of 7 ° C / s or more and 180 ° C / s or less. Cool to a temperature range of 600 ° C or lower. If the average cooling rate exceeds 180 ° C./s, the steel sheet becomes excessively hard, and dents occur when the steel sheet is processed into the neck portion of the can body. On the other hand, when the average cooling rate is less than 7 ° C./s, the Ti-based carbide becomes coarse and the strength decreases.
  • the average cooling rate is preferably 20 ° C./s or more, preferably 160 ° C./s or less, and more preferably 20 ° C./s or more and 160 ° C./s or less.
  • the cooling stop temperature in the primary cooling after holding is set to 500 ° C. or higher.
  • the cooling stop temperature in the primary cooling after holding is 520 ° C. or higher. If the cooling stop temperature in the primary cooling after holding exceeds 600 ° C., the Ti-based carbides become coarse and the strength decreases, so the cooling stop temperature is set to 600 ° C. or lower.
  • Secondary cooling Cooling to 300 ° C or less at an average cooling rate of 0.1 ° C / s or more and 10 ° C / s or less
  • average cooling of 0.1 ° C / s or more and 10 ° C / s or less Cool to a temperature range of 300 ° C or lower at a rate.
  • the average cooling rate exceeds 10 ° C./s, the steel sheet becomes excessively hard, and dents occur when the steel sheet is processed into the neck portion of the can body.
  • the average cooling rate is less than 0.1 ° C./s, the Ti-based carbide becomes coarse and the strength decreases.
  • the average cooling rate is preferably 1.0 ° C./s or higher, preferably 8.0 ° C./s or lower, and more preferably 1.0 ° C./s or higher and 8.0 ° C./s or lower.
  • Secondary cooling it is cooled to 300 ° C. or lower.
  • the secondary cooling is stopped at a temperature higher than 300 ° C., the steel sheet becomes excessively hard, and dents occur when the steel sheet is processed into the neck portion of the can body.
  • Secondary cooling is preferably performed to 290 ° C. or lower.
  • the rolling reduction in temper rolling is set to 3.0% or less, preferably 1.6% or less.
  • temper rolling has a role of imparting surface roughness to the steel sheet, and in order to impart uniform surface roughness to the steel sheet and to make the top yield strength 550 MPa or more, the rolling reduction ratio of temper rolling is adjusted. It should be 0.1% or more.
  • the temper rolling step may be carried out in the annealing device or may be carried out in an independent rolling step.
  • the steel plate for cans according to the present embodiment can be obtained.
  • various steps can be further performed after the temper rolling.
  • the steel sheet for cans of the present invention may have a plating layer on the surface of the steel sheet.
  • the plating layer include a Sn plating layer, a Cr plating layer such as tin-free, a Ni plating layer, and a Sn—Ni plating layer.
  • a process such as a coating baking process and a film laminating process may be performed. Since the film thickness of plating, laminated film, etc. is sufficiently smaller than the plate thickness, the influence on the mechanical properties of the steel sheet for cans can be ignored.
  • a steel slab containing the composition shown in Table 1 and having the balance of Fe and unavoidable impurities was melted in a converter and continuously cast to obtain a steel slab.
  • the steel slab was hot-rolled under the hot-rolling conditions shown in Tables 2 and 3, and pickling was performed after the hot-rolling.
  • cold rolling is performed at the reduction rate shown in Tables 2 and 3
  • continuous annealing is performed under the annealing conditions shown in Tables 2 and 3
  • temper rolling is performed at the reduction rate shown in Tables 2 and 3 to obtain a steel sheet.
  • Got The steel sheet was continuously subjected to ordinary Sn plating to obtain a Sn-plated steel sheet (tinplate) having a single-sided adhesion amount of 11.2 g / m 2 .
  • the following evaluation was performed on the Sn-plated steel sheet subjected to the heat treatment corresponding to the coating baking treatment at 210 ° C. for 10 minutes.
  • ⁇ Tensile test> The tensile test was carried out in accordance with the metal material tensile test method shown in "JIS Z 2241: 2011". That is, a JIS No. 5 tensile test piece (JIS Z 2201) is collected so that the direction perpendicular to the rolling direction is the tensile direction, and a 50 mm (L) reference point is given to the parallel portion of the tensile test piece.
  • a tensile test conforming to JIS Z 2241 was carried out at a tensile speed of 10 mm / min until the tensile test piece broke, and the top yield strength was measured. The measurement results are shown in Tables 2 and 3.
  • ⁇ Investigation of metallographic structure> A cross section in the thickness direction parallel to the rolling direction of the Sn-plated steel sheet was polished and then corroded with a corrosive liquid (3% by volume nital). Then, using an optical microscope, the plate thickness is 1/4 from the depth position of 1/4 of the plate thickness (the position of 1/4 of the plate thickness in the plate thickness direction from the surface in the above cross section) over 10 fields of view at a magnification of 400 times. The area up to position 2 was observed. Next, the unrecrystallized ferrite occupying the metal structure was visually identified using a microstructure photograph taken with an optical microscope, and the area ratio of the unrecrystallized ferrite was determined by image analysis.
  • the unrecrystallized ferrite is a metal structure having a shape elongated in the rolling direction with an optical microscope having a magnification of 400 times.
  • the area ratio of unrecrystallized ferrite in each field of view was determined, and the value obtained by averaging the area ratios of 10 fields of view was taken as the ratio of unrecrystallized ferrite in the metal structure.
  • Image analysis software (particle analysis manufactured by Nippon Steel & Sumitomo Metal Industries, Ltd.) was used for image analysis. The survey results are shown in Tables 2 and 3.
  • a can body was produced by collecting a square blank from a steel plate and sequentially processing it by rolling, wire seam welding, and neck processing. The neck portion of the prepared can body was visually observed at eight locations in the circumferential direction to check for the presence or absence of dents.
  • the evaluation results are shown in Tables 2 and 3. If a dent occurs in any one of the eight locations in the circumferential direction, it is regarded as "occurrence of dent: yes", and if no dent occurs in any of the eight locations in the circumferential direction, "occurrence of dent:”. None. "
  • the present invention it is possible to obtain a steel plate for cans having high strength and particularly having sufficiently high processing accuracy as a material for the neck portion of the can body. Further, according to the present invention, since the uniform deformability of the steel sheet is high, it is possible to manufacture a can body product having high processing accuracy, for example, when processing a can body. Further, the present invention is most suitable as a three-piece can with a high degree of processing of the can body, a two-piece can in which the bottom portion is processed by several%, and a steel plate for a can centering on a can lid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高強度であり、特に、ネック部を有する缶胴の素材として十分に高い加工性を有する缶用鋼板を提供する。本発明の缶用鋼板は、質量%で、C:0.010~0.130%、Si:0.04%以下、Mn:0.10~1.00%、P:0.007~0.100%、S:0.0005~0.0090%、Al:0.001~0.100%、N:0.0050%以下、Ti:0.0050~0.1000%、B:0.0005~0.0020%未満、Cr:0.08%以下を含有し、0.005≦(Ti*/48)/(C/12)≦0.700を満たす成分組成と、未再結晶フェライトの割合が3%以下である組織とを有し、上降伏強度が550~620MPaである。

Description

缶用鋼板およびその製造方法
 本発明は、缶用鋼板およびその製造方法に関する。
 鋼板が使用される食缶や飲料缶の缶胴や蓋において、製缶コストの低減が要望されており、その対策として、使用する鋼板の薄肉化による素材の低コスト化が進められている。薄肉化の対象となる鋼板は、絞り加工により成形される2ピース缶の缶胴、および円筒成形により成形される3ピース缶の缶胴、ならびに缶蓋に使用される鋼板である。単に鋼板を薄肉化すると、缶胴や缶蓋の強度が低下するため、再絞り缶(DRD(draw-redraw)缶)や溶接缶の缶胴のような部位には、高強度極薄缶用鋼板が望まれている。
 高強度極薄缶用鋼板は、焼鈍後に圧下率が20%以上となる二次冷間圧延を施すDouble Reduce法(以下、「DR法」とも称する。)を用いて製造されている。DR法を用いて製造された鋼板(以下、「DR材」とも称する。)は、高強度であるが、全伸びが小さく(延性に乏しく)、加工性が劣る。
 缶胴において、蓋の材料コスト削減を目的に缶口の径を他の部分の径より小さく設計することがある。缶口の径を縮小させる加工はネック加工と呼ばれ、金型のダイを使用したダイネック加工または回転ロールを使用するスピンネック加工を缶口に施して缶口を縮径させネック部を成形する。DR材のように素材が高強度となると、ネック部に、素材の局所的な変形に起因した座屈によるへこみが発生する。へこみは、缶の外観不良となり商品価値を毀損するため回避すべきである。また、素材が薄肉化するとともにネック部のへこみは発生し易くなる。
 高強度極薄缶用鋼板として一般的に用いられるDR材は、延性に乏しく缶胴のネック部の加工が困難であることが多い。そのため、DR材を用いる場合、多回数の金型調整と多段階加工を経て製品を得ている。さらに、DR材では二次冷間圧延による加工硬化により鋼板を高強度化しているため、二次冷間圧延の精度によっては加工硬化が不均一に鋼板に導入される結果、DR材を加工する際に局所的な変形が生じる場合がある。この局所的な変形は、缶胴のネック部にへこみを発生させる原因となるため回避すべきである。
 このようなDR材の欠点を回避するため、種々の強化法を用いた高強度鋼板の製造方法が提案されている。特許文献1では、鋼組織の微細化で高強度化を図るとともに鋼組織の適正化を図ることで、製缶時の深絞り性及びフランジ加工性と製缶後の表面形状とに優れた鋼板が提案されている。特許文献2では、低炭素鋼にMn、P、及びNを適正量に調整することで、加工時は軟質であるが、加工後の熱処理により硬質状態が得られる薄肉化深絞りしごき缶用鋼板が提案されている。特許文献3では、酸化物系介在物の粒径を制御することにより、溶接部の成形性に優れた、例えばネックしわ発生が少なく、かつフランジ割れを改善する3ピース缶用鋼板が提案されている。特許文献4では、N含有量を高めることにより固溶Nによる高強度化を図り、鋼板の板厚方向の転位密度を制御することにより、引張強度が400MPa以上であり、破断伸びが10%以上である高強度容器用鋼板が提案されている。
特開平8-325670号公報 特開2004-183074号公報 特開2001-89828号公報 国際公開第2015/166653号
 上述したように、缶用鋼板を薄肉化するには強度を確保することが必要である。一方、ネック部を有する缶胴の素材として鋼板を用いる場合には、該鋼板は高延性である必要がある。さらに、缶胴のネック部においてへこみが発生するのを抑制するためには、鋼板の局所的な変形を抑制する必要がある。しかしながら、これらの特性について、上記の従来技術では、強度、延性(全伸び)、均一変形能、ネック部の加工性のいずれかが劣る。
 特許文献1では、鋼組織の微細化と鋼組織の適正化とで高強度かつ延性のバランスがとれた鋼が提案されている。しかしながら、特許文献1では鋼板の局所的な変形については全く考慮されておらず、特許文献1に記載の製造方法では、缶胴のネック部に要求される加工性を満足する鋼板を得ることは難しい。
 特許文献2は、Pによる鋼組織の微細化とNの時効とにより缶強度特性を高める提案をしている。しかしながら、特許文献2による、Pの添加による鋼板の高強度化は、鋼板の局所的な変形を招きやすくなり、特許文献2に記載の技術では、缶胴のネック部に要求される加工性を満足する鋼板を得ることは難しい。
 特許文献3は、Nb、Bによる結晶粒の微細化で、所望の強度を得ている。しかしながら、特許文献3による鋼板の引張強度は540MPa未満であり、高強度極薄缶用鋼板としての強度が劣る。さらに、溶接部の成形性および表面性状の観点からは、CaやREMの添加も必須であり、特許文献3の技術では耐食性を劣化させる問題がある。また、特許文献3では鋼板の局所的な変形については全く考慮されておらず、特許文献3に記載の製造方法では、缶胴のネック部に要求される加工性を満足する鋼板を得ることは難しい。
 特許文献4は、引張強度が400MPa以上であり、破断伸びが10%以上である高強度容器用鋼板を用いて、缶蓋を成形することにより、耐圧強度評価を実施している。しかしながら、特許文献4では缶胴のネック部の形状については全く考慮されておらず、特許文献4に記載の技術では良好な缶胴のネック部を得ることは難しい。
 本発明は、かかる事情に鑑みなされたもので、高強度であり、特に、ネック部を有する缶胴の素材として十分に高い加工性を有する缶用鋼板およびその製造方法を提供することを目的とする。
 上記課題を解決する本発明の要旨構成は以下のとおりである。
 [1]質量%で、C:0.010%以上0.130%以下、Si:0.04%以下、Mn:0.10%以上1.00%以下、P:0.007%以上0.100%以下、S:0.0005%以上0.0090%以下、Al:0.001%以上0.100%以下、N:0.0050%以下、Ti:0.0050%以上0.1000%以下、B:0.0005%以上0.0020%未満、およびCr:0.08%以下を含有し、さらにTi*=Ti-1.5Sとするとき、0.005≦(Ti*/48)/(C/12)≦0.700の関係を満たし、残部がFeおよび不可避的不純物である成分組成と、未再結晶フェライトの割合が3%以下である組織とを有し、上降伏強度が550MPa以上620MPa以下である缶用鋼板。
 [2]前記成分組成は、さらに、質量%で、Nb:0.0050%以上0.0500%以下、Mo:0.0050%以上0.0500%以下、およびV:0.0050%以上0.0500%以下から選ばれる一種または二種以上を含有する、上記[1]に記載の缶用鋼板。
 [3]質量%で、C:0.010%以上0.130%以下、Si:0.04%以下、Mn:0.10%以上1.00%以下、P:0.007%以上0.100%以下、S:0.0005%以上0.0090%以下、Al:0.001%以上0.100%以下、N:0.0050%以下、Ti:0.0050%以上0.1000%以下、B:0.0005%以上0.0020%未満、およびCr:0.08%以下を含有し、さらにTi*=Ti-1.5Sとするとき、0.005≦(Ti*/48)/(C/12)≦0.700の関係を満たし、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブを、1200℃以上で加熱し、850℃以上の仕上げ圧延温度で圧延して鋼板とし、前記鋼板を640℃以上780℃以下の温度で巻取り、その後500℃から300℃までにおける平均冷却速度を25℃/h以上55℃/h以下とする冷却を行う熱間圧延工程と、前記熱間圧延工程後の鋼板に、86%以上の圧下率で冷間圧延を施す冷間圧延工程と、前記冷間圧延工程後の鋼板を640℃以上780℃以下の温度域で10s以上90s以下保持し、その後、前記鋼板を7℃/s以上180℃/s以下の平均冷却速度で500℃以上600℃以下の温度域まで一次冷却し、引き続き、前記鋼板を0.1℃/s以上10℃/s以下の平均冷却速度で300℃以下まで二次冷却する焼鈍工程と、前記焼鈍工程後の鋼板に、0.1%以上3.0%以下の圧下率で調質圧延を施す工程と、を有する缶用鋼板の製造方法。
 [4]前記成分組成は、さらに、質量%で、Nb:0.0050%以上0.0500%以下、Mo:0.0050%以上0.0500%以下、およびV:0.0050%以上0.0500%以下から選ばれる一種または二種以上を含有する、上記[3]に記載の缶用鋼板の製造方法。
 本発明によれば、高強度であり、特に、ネック部を有する缶胴の素材として十分に高い加工精度を有する缶用鋼板を得ることができる。
 本発明を以下の実施形態に基づいて説明する。まず、本発明の一実施形態に係る缶用鋼板の成分組成について説明する。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
 C:0.010%以上0.130%以下
 本実施形態における缶用鋼板は、550MPa以上の上降伏強度を有することが重要である。そのためには、Tiを含有することにより生成するTi系炭化物による析出強化を利用することが重要となる。Ti系炭化物による析出強化を利用するためには、缶用鋼板におけるC含有量が重要となる。C含有量が0.010%未満となると、上述した析出強化による強度上昇効果が低減し、上降伏強度が550MPa未満となる。よって、C含有量の下限を0.010%とし、0.015%以上とすることが好ましい。一方、C含有量が0.130%を超えると、鋼の溶製中の冷却過程において亜包晶割れを起こすとともに、鋼板が過剰に硬質化するので延性が低下する。さらに未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、C含有量の上限を0.130%とする。なお、C含有量が0.060%以下であれば、熱延板の強度が抑えられ、冷間圧延時の変形抵抗がより小さくなり、圧延速度を大きくしても表面欠陥が生じ難い。このため、製造しやすさの観点からは、C含有量を0.060%以下とすることが好ましい。C含有量は、0.015%以上0.060%以下とすることがより好ましい。
 Si:0.04%以下
 Siは固溶強化により鋼を高強度化させる元素である。この効果を得るためには、Si含有量を0.01%以上とすることが好ましい。しかし、Si含有量が0.04%を超えると耐食性が著しく損なわれる。よって、Si含有量を0.04%以下とする。Si含有量は、0.03%以下が好ましく、より好ましくは0.01%以上0.03%以下である。
 Mn:0.10%以上1.00%以下
 Mnは固溶強化により鋼の強度を増加させる。Mn含有量が0.10%未満となると、550MPa以上の上降伏強度を確保することができない。よって、Mn含有量の下限を0.10%とする。一方、Mn含有量が1.00%を超えると、耐食性および表面特性が劣るばかりでなく、未再結晶フェライトの割合が3%超となり、局所的な変形が発生し、均一変形能に劣る。よって、Mn含有量の上限を1.00%とする。Mn含有量は、0.20%以上が好ましく、0.60%以下が好ましく、0.20%以上0.60%以下がより好ましい。
 P:0.007%以上0.100%以下
 Pは固溶強化能が大きい元素である。このような効果を得るためには、Pを0.007%以上で含有させることが必要となる。よって、P含有量の下限を0.007%とする。一方、Pの含有量が0.100%を超えると、鋼板が過剰に硬質化するため延性が低下し、さらに耐食性が劣るものとなる。よって、P含有量の上限を0.100%とする。P含有量は、0.008%以上が好ましく、0.015%以下が好ましく、0.008%以上0.015%以下がより好ましい。
 S:0.0005%以上0.0090%以下
 本実施形態における缶用鋼板は、Ti系炭化物による析出強化により高強度を得ている。SはTiとTiSを形成しやすく、TiSが形成されると析出強化に有用なTi系炭化物の量が低減し、高強度を得られない。すなわち、S含有量が0.0090%超となると、TiSが多量に形成され、強度が低下する。よって、S含有量の上限を0.0090%とする。S含有量は、好ましくは0.0080%以下である。一方、S含有量が0.0005%未満となると、脱Sコストが過大となる。よって、S含有量の下限を0.0005%とする。
 Al:0.001%以上0.100%以下
 Alは、脱酸剤として含有させる元素であり、鋼の微細化にも有用である。Al含有量が0.001%未満となると、脱酸剤としての効果が不十分であり、凝固欠陥の発生を招くとともに製鋼コストが増大する。よって、Al含有量の下限を0.001%とする。一方、Al含有量が0.100%を超えると、表面欠陥が発生するおそれがある。よって、Al含有量の上限を0.100%以下とする。なお、Al含有量を0.010%以上0.060%以下とすれば、Alを脱酸剤としてより良好に機能させることができ、好ましい。
 N:0.0050%以下
 本実施形態における缶用鋼板は、Ti系炭化物による析出強化により高強度を得ている。Nは、TiとTiNを形成しやすく、TiNが形成されると析出強化に有用なTi系炭化物の量が低減し、高強度を得られない。また、N含有量が多すぎると、連続鋳造時の温度が低下する下部矯正帯においてスラブ割れが生じやすくなる。よって、N含有量の上限を0.0050%とする。N含有量の下限は、特に設ける必要はないが、製鋼コストの観点からは、N含有量を0.0005%超とすることが好ましい。
 Ti:0.0050%以上0.1000%以下
 Tiは炭化物生成能の高い元素であり、微細な炭化物を析出させるのに有効である。これにより、上降伏強度が上昇する。本実施形態では、Ti含有量を調整することによって上降伏強度を調整することができる。Ti含有量を0.0050%以上とすることによりこの効果が生じるため、Ti含有量の下限を0.0050%とする。一方、Tiは再結晶温度の上昇をもたらすので、Ti含有量が0.1000%を超えると、640~780℃の焼鈍では未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、Ti含有量の上限を0.1000%とする。Ti含有量は、0.0100%以上が好ましく、0.0800%以下が好ましく、より好ましくは0.0100%以上0.0800%以下である。
 B:0.0005%以上0.0020%未満
 Bは、フェライト粒径を微細化し、上降伏強度を上昇させるのに有効である。本実施形態では、B含有量を調整することによって上降伏強度を調整することができる。B含有量を0.0005%以上とすることによりこの効果が生じるため、B含有量の下限を0.0005%とする。一方、Bは再結晶温度の上昇をもたらすので、B含有量が0.0020%以上となると、640℃~780℃の焼鈍では未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、B含有量を0.0020%未満とする。B含有量は、0.0006%以上が好ましく、0.0018%以下が好ましく、より好ましくは0.0006%以上0.0018%以下である。
 Cr:0.08%以下
 Crは炭窒化物を形成する元素である。Crの炭窒化物は、強化能がTi系炭化物と比べて小さいものの、鋼の高強度化に寄与する。この効果を十分に得る観点からは、Cr含有量を0.001%以上とすることが好ましい。ただし、Cr含有量が0.08%を超えると、Crの炭窒化物を過剰に形成し、鋼の強化能に最も寄与するTi系炭化物の形成が抑制され、所望の強度が得られなくなる。よって、Cr含有量を0.08%以下とする。
 0.005≦(Ti*/48)/(C/12)≦0.700
 高強度を得て、かつ加工時に局所的な変形を抑制するためには、(Ti*/48)/(C/12)の値が重要である。ここで、Ti*は、Ti*=Ti-1.5Sにより定義される。TiはCと微細な析出物(Ti系炭化物)を形成し、鋼の高強度化に寄与する。Ti系炭化物を形成しないCは、セメンタイトあるいは固溶Cとして鋼中に存在することになる。この固溶Cは、鋼板の加工時に局所的な変形の原因となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。また、TiはSと結合してTiSを形成しやすく、TiSが形成されると析出強化に有用なTi系炭化物の量が低減し、高強度を得られない。本発明者らは、(Ti*/48)/(C/12)の値を制御することにより、Ti系炭化物による高強度化を達成しつつ、鋼板の加工時の局所変形に起因したへこみを抑制できることを見出し、本発明に至った。すなわち、(Ti*/48)/(C/12)が0.005未満となると、鋼の高強度化に寄与するTi系炭化物の量が低減し、上降伏強度が550MPa未満となるとともに、未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、(Ti*/48)/(C/12)を0.005以上とする。一方で、(Ti*/48)/(C/12)が0.700を超えると、640℃~780℃の焼鈍では未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、(Ti*/48)/(C/12)を0.700以下とする。(Ti*/48)/(C/12)は、0.090以上が好ましく、0.400以下が好ましく、より好ましくは0.090以上0.400以下である。
 上記成分以外の残部はFeおよび不可避的不純物である。
 以上、本発明の基本成分について説明したが、必要に応じて以下の元素を適宜含有させることができる。
 Nb:0.0050%以上0.0500%以下
 Nbは、Tiと同様に炭化物生成能の高い元素であり、微細な炭化物を析出させるのに有効である。これにより、上降伏強度が上昇する。本実施形態では、Nb含有量を調整することによって上降伏強度を調整することができる。Nb含有量を0.0050%以上とすることによりこの効果が生じるため、Nbを添加する場合は、Nb含有量の下限を0.0050%とすることが好ましい。一方、Nbは再結晶温度の上昇をもたらすので、Nb含有量が0.0500%を超えると、640℃~780℃の焼鈍では未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、Nbを添加する場合は、Nb含有量の上限を0.0500%とすることが好ましい。Nb含有量は、0.0080%以上がより好ましく、0.0300%以下がより好ましく、更に好ましくは0.0080%以上0.0300%以下である。
 Mo:0.0050%以上0.0500%以下
 Moは、TiとNbと同様に炭化物生成能の高い元素であり、微細な炭化物を析出させるのに有効である。これにより、上降伏強度が上昇する。本実施形態では、Mo含有量を調整することによって上降伏強度を調整することができる。Mo含有量を0.0050%以上とすることによりこの効果が生じるため、Moを添加する場合は、Mo含有量の下限を0.0050%とすることが好ましい。一方、Moは再結晶温度の上昇をもたらすので、Mo含有量が0.0500%を超えると、640℃~780℃の焼鈍では未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、Moを添加する場合は、Mo含有量の上限を0.0500%とすることが好ましい。Mo含有量は、0.0080%以上がより好ましく、0.0300%以下がより好ましく、更に好ましくは0.0080%以上0.0300%以下である。
 V:0.0050%以上0.0500%以下
 Vは、フェライト粒径を微細化し、上降伏強度を上昇させるのに有効である。本実施形態では、V含有量を調整することによって上降伏強度を調整することができる。V含有量を0.0050%以上とすることによりこの効果が生じるため、Vを添加する場合は、V含有量の下限を0.0050%とすることが好ましい。一方、Vは再結晶温度の上昇をもたらすので、V含有量が0.0500%を超えると、640℃~780℃の焼鈍では未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、Vを添加する場合は、V含有量の上限を0.0500%とすることが好ましい。V含有量は、0.0080%以上がより好ましく、0.0300%以下がより好ましく、更に好ましくは0.0080%以上0.0300%以下である。
 次に、本実施形態による缶用鋼板の機械的性質について説明する。
 上降伏強度:550MPa以上620MPa以下
 溶接缶のへこみに対する強度であるデント強度および缶蓋の耐圧強度等を確保するために、鋼板の上降伏強度を550MPa以上とする。一方、鋼板の上降伏強度が620MPa超となると、鋼板を缶胴のネック部に加工した際にへこみが発生する。したがって、鋼板の上降伏強度は550MPa以上620MPa以下とする。
 なお、降伏強度は「JIS Z 2241:2011」に示される金属材料引張試験方法により測定できる。上記した降伏強度は、成分組成、熱間圧延工程の巻取温度、熱間圧延工程の巻取り後の冷却工程における冷却速度、冷間圧延工程における圧下率、焼鈍工程における均熱温度および保持時間、焼鈍工程における冷却速度、ならびに、調質圧延工程における圧下率を調整することにより得ることができる。具体的には、550MPa以上620MPa以下の降伏強度は、上記の成分組成とし、熱間圧延工程において巻取温度を640℃以上780℃以下とし、巻取り後の500℃から300℃の平均冷却速度を25℃/h以上55℃/h以下とし、冷間圧延工程における圧下率を86%以上とし、焼鈍工程において、640℃以上780℃以下の温度域にある保持時間を10s以上90s以下とし、7℃/s以上180℃/s以下の平均冷却速度で500℃以上600℃以下の温度域まで一次冷却し、0.1℃/s以上10℃/s以下の平均冷却速度で300℃以下まで二次冷却し、調質圧延工程における圧下率を0.1%以上3.0%以下とすることで得ることができる。
 次に、本発明に係る缶用鋼板の金属組織について説明する。
 未再結晶フェライトの割合:3%以下
 金属組織中に占める未再結晶フェライトの割合が3%超となると、加工時、例えば、鋼板を缶胴のネック部に加工する時に局所的な変形に起因するへこみが発生する。よって、金属組織中に占める未再結晶フェライトの割合を3%以下とする。加工時に局所変形が発生するメカニズムは明らかではないが、未再結晶フェライトが多量に存在すると、加工時に未再結晶フェライトと転位との相互作用のバランスが崩れて、へこみの発生に至ると推察される。金属組織中に占める未再結晶フェライトの割合は、好ましくは2.7%以下である。金属組織中に占める未再結晶フェライトの割合を0.5%以上とすれば焼鈍温度を比較的低くできるため好ましく、0.8%以上とすることがより好ましい。
 金属組織中に占める未再結晶フェライトの割合は、以下の方法により測定することができる。鋼板の圧延方向に平行な板厚方向の断面を研磨後、腐食液(3体積%ナイタール)で腐食する。次に、光学顕微鏡を用いて、400倍の倍率で10視野にわたり板厚1/4の深さ位置(上記断面における、表面から板厚方向に板厚の1/4の位置)から板厚1/2の位置までの領域を観察する。次に、光学顕微鏡により撮影した組織写真を用いて未再結晶フェライトを目視判定により特定し、画像解析により未再結晶フェライトの面積率を求める。ここで未再結晶フェライトは、400倍の倍率の光学顕微鏡にて圧延方向に伸長した形状を呈した金属組織である。各視野において未再結晶フェライトの面積率を求めて、10視野の面積率を平均した値を金属組織中に占める未再結晶フェライトの割合とする。
 板厚:0.4mm以下
 現在、製缶コストの低減を目的として、鋼板の薄肉化が進められている。しかしながら、鋼板の薄肉化、すなわち、鋼板の板厚を低減するに伴って、缶体強度の低下および加工時の成形不良が懸念される。これに対して、本実施形態による缶用鋼板は、板厚が薄い場合でも、缶体強度、例えば缶蓋の耐圧強度を低下させることがなく、加工時にへこみが発生するという成形不良が生じない。すなわち、板厚が薄い場合に、高強度かつ加工精度が高いという本発明の効果が顕著に発揮されるのである。したがって、この観点からは、缶用鋼板の板厚を0.4mm以下とすることが好ましい。なお、板厚は0.3mm以下としてもよく、0.2mm以下としてもよい。
 次に、本発明の一実施形態に係る缶用鋼板の製造方法について説明する。以下、温度は、鋼板の表面温度を基準とする。また、平均冷却速度は、鋼板の表面温度に基づいて次のとおりに計算して得られた値とする。例えば、500℃から300℃までの平均冷却速度は、{(500℃)-(300℃)}/(500℃から300℃までの冷却時間)により表される。
 本実施形態による缶用鋼板を製造する際は、転炉などを用いた公知の方法により、溶鋼を上記の成分組成に調整し、その後、例えば連続鋳造法によりスラブとする。
 スラブ加熱温度:1200℃以上
 熱間圧延工程のスラブ加熱温度が1200℃未満となると、焼鈍後に未再結晶組織が鋼板に残存し、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、スラブ加熱温度の下限を1200℃とする。スラブ加熱温度は、好ましくは1220℃以上である。スラブ加熱温度は、1350℃超としても効果が飽和するため、上限を1350℃とすることが好ましい。
 仕上げ圧延温度:850℃以上
 熱間圧延工程の仕上げ温度が850℃未満となると、熱延鋼板の未再結晶組織に起因する未再結晶組織が焼鈍後の鋼板に残存し、鋼板の加工時に局所的な変形によりへこみが発生する。よって、仕上げ圧延温度の下限を850℃とする。一方、仕上げ圧延温度が950℃以下であれば、鋼板表面のスケール発生が抑えられ、より良好な表面性状が得られるので好ましい。
 巻取温度:640℃以上780℃以下
 熱間圧延工程の巻取温度が640℃未満となると、熱延鋼板にセメンタイトが多量に析出する。それにより、焼鈍後の金属組織中に占める未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際に局所的な変形に起因したへこみが発生する。よって、巻取温度の下限を640℃とする。一方、巻取温度が780℃を超えると、連続焼鈍後の鋼板のフェライトの一部が粗大化し、鋼板が軟質化し、上降伏強度が550MPa未満となる。よって、巻取温度の上限を780℃とする。巻取温度は、660℃以上が好ましく、760℃以下が好ましく、より好ましくは660℃以上760℃以下である。
 500℃から300℃までにおける平均冷却速度:25℃/h以上55℃/h以下
 巻取り後の500℃から300℃までの平均冷却速度が25℃/h未満となると、熱延鋼板にセメンタイトが多量に析出する。それにより、焼鈍後の金属組織中に占める未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際に局所的な変形に起因したへこみが発生する。また、強度に寄与する微細なTi系炭化物量が低減し、鋼板の強度が低下する。よって、巻取り後の500℃から300℃までにおける平均冷却速度の下限を25℃/hとする。一方、巻取り後の500℃から300℃までの平均冷却速度が55℃/hを超えると、鋼中に存在する固溶Cが増大し、鋼板を缶胴のネック部に加工した時に固溶Cに起因したへこみが発生する。よって、巻取り後の500℃から300℃までにおける平均冷却速度の上限を55℃/hとする。巻取り後の500℃から300℃の平均冷却速度は、30℃/h以上が好ましく、50℃/h以下が好ましく、30℃/h以上50℃/h以下とすることがより好ましい。なお、上記した平均冷却速度は、空冷により達成することができる。また、「平均冷却速度」とは、コイル幅方向エッジとセンターとの平均温度を基準とする。
 酸洗
 その後、必要に応じて、酸洗を行うことが好ましい。酸洗は、表層スケールを除去することができればよく、特に条件を限定する必要はない。また、酸洗以外の方法でスケールを除去してもよい。
 冷間圧延における圧下率:86%以上
 冷間圧延工程の圧下率が86%未満となると、冷間圧延で鋼板に付与されるひずみが低下するため、焼鈍後の鋼板の上降伏強度を550MPa以上とすることが困難となる。よって、冷間圧延工程の圧下率を86%以上とする。冷間圧延工程の圧下率は、87%以上が好ましく、94%以下が好ましく、87%以上94%以下とすることがより好ましい。なお、熱間圧延工程後であって冷間圧延工程前に適宜他の工程、例えば熱延板を軟質化させるための焼鈍工程を含んでもよい。また、熱間圧延工程の直後に酸洗を行わずに冷間圧延工程を行ってもよい。
 保持温度:640℃以上780℃以下
 焼鈍工程における保持温度が780℃を超えると、焼鈍においてヒートバックルなどの通板トラブルが発生しやすくなる。また、鋼板のフェライト粒径が一部粗大化し、鋼板が軟質化し、上降伏強度が550MPa未満となる。よって、保持温度を780℃以下とする。一方、焼鈍温度が640℃未満であると、フェライト粒の再結晶が不完全となり、未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。よって、保持温度を640℃以上とする。なお、保持温度は660℃以上が好ましく、740℃以下が好ましく、660℃以上740℃以下とすることがより好ましい。
 640℃以上780℃以下の温度域にある保持時間:10s以上90s以下
 保持時間が90sを超えると、主に熱間圧延の巻取り工程において析出するTi系炭化物が昇温中に粗大となり、強度が低下する。一方、保持時間が10s未満となると、フェライト粒の再結晶が不完全となり、未再結晶が残存し、未再結晶フェライトの割合が3%超となり、鋼板を缶胴のネック部に加工した際にへこみが発生する。
 焼鈍には連続焼鈍装置を用いることができる。また、冷間圧延工程後であって焼鈍工程前に適宜他の工程、例えば熱延板を軟質化させるための焼鈍工程を含んでもよく、冷間圧延工程の直後に焼鈍工程を行ってもよい。
 一次冷却:7℃/s以上180℃/s以下の平均冷却速度で500℃以上600℃以下の温度域まで冷却
 前記保持後、7℃/s以上180℃/s以下の平均冷却速度で500℃以上600℃以下の温度域まで冷却する。平均冷却速度が180℃/sを超えると、鋼板が過剰に硬質化し、鋼板を缶胴のネック部に加工した際にへこみが発生する。一方、平均冷却速度が7℃/s未満となると、Ti系炭化物が粗大となり、強度が低下する。平均冷却速度は、20℃/s以上が好ましく、160℃/s以下が好ましく、より好ましくは20℃/s以上160℃/s以下である。また、保持後の一次冷却における冷却停止温度が500℃未満となると、鋼板が過剰に硬質化し、鋼板を缶胴のネック部に加工した時にへこみが発生する。このため、冷却停止温度は500℃以上とする。好ましくは、保持後の一次冷却における冷却停止温度は520℃以上とする。保持後の一次冷却における冷却停止温度が600℃を超えると、Ti系炭化物が粗大となり、強度が低下するため、冷却停止温度を600℃以下とする。
 二次冷却:0.1℃/s以上10℃/s以下の平均冷却速度で300℃以下まで冷却
 一次冷却後の二次冷却では、0.1℃/s以上10℃/s以下の平均冷却速度で300℃以下の温度域まで冷却する。平均冷却速度が10℃/s超となると、鋼板が過剰に硬質化し、鋼板を缶胴のネック部に加工した時にへこみが発生する。一方、平均冷却速度が0.1℃/s未満となると、Ti系炭化物が粗大となり、強度が低下する。平均冷却速度は、1.0℃/s以上が好ましく、8.0℃/s以下が好ましく、より好ましくは1.0℃/s以上8.0℃/s以下である。二次冷却では300℃以下まで冷却する。300℃超で二次冷却を停止すると、鋼板が過剰に硬質化し、鋼板を缶胴のネック部に加工した時にへこみが発生する。好ましくは290℃以下まで二次冷却を行う。
 調質圧延における圧下率:0.1%以上3.0%以下
 焼鈍後の調質圧延における圧下率が3.0%を超えると、過剰な加工硬化が鋼板に導入されることに起因して、鋼板強度が過剰に上昇し、鋼板の加工時、例えば缶胴のネック部の加工でへこみが発生したりする。よって、調質圧延における圧下率を3.0%以下とし、好ましくは、1.6%以下とする。一方、調質圧延には鋼板に表面粗さを付与する役割があり、均一な表面粗さを鋼板に付与し、かつ上降伏強度を550MPa以上とするためには、調質圧延の圧下率を0.1%以上とする必要がある。なお、調質圧延工程は、焼鈍装置内で実施してもよく、独立した圧延工程で実施してもよい。
 以上により、本実施形態における缶用鋼板を得ることができる。なお、本発明では、調質圧延後に、さらに種々の工程を行うことが可能である。例えば、本発明の缶用鋼板は、鋼板表面にめっき層を有していてもよい。めっき層としては、Snめっき層、ティンフリー等のCrめっき層、Niめっき層、Sn-Niめっき層等が挙げられる。また、塗装焼付け処理工程、フィルムラミネート等の工程を行ってもよい。なお、めっきやラミネートフィルム等は、板厚に対して膜厚が十分に小さいので、缶用鋼板の機械特性への影響は無視することができる。
 表1に示す成分組成を含有し、残部がFeおよび不可避的不純物からなる鋼を転炉で溶製し、連続鋳造することにより鋼スラブを得た。次いで、当該鋼スラブに対して、表2,3に示す熱間圧延条件にて熱間圧延を施し、熱間圧延後に酸洗を行った。次いで、表2,3に示す圧下率で冷間圧延を行い、表2,3に示す焼鈍条件にて連続焼鈍し、引き続き、表2,3に示す圧下率で調質圧延を施すことによって鋼板を得た。当該鋼板に通常のSnめっきを連続的に施して、片面付着量が11.2g/m2となるSnめっき鋼板(ぶりき)を得た。その後、210℃、10分の塗装焼付け処理に相当する熱処理を施したSnめっき鋼板に対して、以下の評価を行った。
 <引張試験>
 「JIS Z 2241:2011」に示される金属材料引張試験方法に準拠して、引張試験を実施した。すなわち、圧延方向に対して直角方向が引張方向となるようにJIS 5号引張試験片(JIS Z 2201)を採取し、引張試験片の平行部に50mm(L)の標点を付与して、JIS Z 2241の規定に準拠した引張試験を引張速度10mm/分にて引張試験片が破断するまで実施し、上降伏強度を測定した。測定結果を表2および表3に示す。
 <金属組織の調査>
 Snめっき鋼板の圧延方向に平行な板厚方向の断面を研磨後、腐食液(3体積%ナイタール)で腐食した。次いで、光学顕微鏡を用いて、400倍の倍率で10視野にわたり板厚1/4の深さ位置(上記断面における、表面から板厚方向に板厚の1/4の位置)から板厚1/2の位置までの領域を観察した。次いで、光学顕微鏡により撮影した組織写真を用いて金属組織中に占める未再結晶フェライトを目視判定により特定し、画像解析により未再結晶フェライトの面積率を求めた。ここで、未再結晶フェライトは、400倍の倍率の光学顕微鏡にて圧延方向に伸長した形状を呈した金属組織である。次いで、各視野で未再結晶フェライトの面積率を求めて、10視野の面積率を平均した値を金属組織中に占める未再結晶フェライトの割合とした。なお、画像解析は、画像解析ソフトウェア(粒子解析 日鉄住金テクノロジー株式会社製)を用いた。調査結果を表2および表3に示す。
 <耐食性>
 Snめっき鋼板に対して、光学顕微鏡を用いて、測定面積が2.7mm2である領域を50倍の倍率で観察し、Snめっきが薄くなり穴状の部位の個数を計測した。穴状の部位の個数が20個未満の場合を○、20個以上25個以下の場合を△、25個超の場合を×とした。観察結果を表2および表3に示す。
 <へこみの発生の有無>
 鋼板より角形のブランクを採取し、ロール加工、ワイヤーシーム溶接、ネック加工を順次加工することで、缶胴を作製した。作製した缶胴のネック部を周方向8か所にて目視にて観察し、へこみの発生の有無を調べた。評価結果を表2および表3に示す。なお、周方向8か所のうち1か所でもへこみが発生した場合を「へこみの発生:有」とし、周方向8か所のいずれにおいてもへこみが発生しなかった場合を「へこみの発生:無」とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
 本発明によれば、高強度であり、特に、缶胴のネック部の素材として十分に高い加工精度を有する缶用鋼板を得ることができる。また、本発明によれば、鋼板の均一変形能が高いため、例えば缶胴加工を行う場合、高い加工精度を有する缶胴製品を製作することが可能となる。さらに、本発明は、高加工度の缶胴加工を伴う3ピース缶、ボトム部が数%加工される2ピース缶、缶蓋を中心に缶用鋼板として最適である。

Claims (4)

  1.  質量%で、C:0.010%以上0.130%以下、Si:0.04%以下、Mn:0.10%以上1.00%以下、P:0.007%以上0.100%以下、S:0.0005%以上0.0090%以下、Al:0.001%以上0.100%以下、N:0.0050%以下、Ti:0.0050%以上0.1000%以下、B:0.0005%以上0.0020%未満、およびCr:0.08%以下を含有し、さらにTi*=Ti-1.5Sとするとき、0.005≦(Ti*/48)/(C/12)≦0.700の関係を満たし、残部がFeおよび不可避的不純物である成分組成と、未再結晶フェライトの割合が3%以下である組織とを有し、上降伏強度が550MPa以上620MPa以下である缶用鋼板。
  2.  前記成分組成は、さらに、質量%で、Nb:0.0050%以上0.0500%以下、Mo:0.0050%以上0.0500%以下、およびV:0.0050%以上0.0500%以下から選ばれる一種または二種以上を含有する、請求項1に記載の缶用鋼板。
  3.  質量%で、C:0.010%以上0.130%以下、Si:0.04%以下、Mn:0.10%以上1.00%以下、P:0.007%以上0.100%以下、S:0.0005%以上0.0090%以下、Al:0.001%以上0.100%以下、N:0.0050%以下、Ti:0.0050%以上0.1000%以下、B:0.0005%以上0.0020%未満、およびCr:0.08%以下を含有し、さらにTi*=Ti-1.5Sとするとき、0.005≦(Ti*/48)/(C/12)≦0.700の関係を満たし、残部がFeおよび不可避的不純物である成分組成を有する鋼スラブを、1200℃以上で加熱し、850℃以上の仕上げ圧延温度で圧延して鋼板とし、前記鋼板を640℃以上780℃以下の温度で巻取り、その後500℃から300℃までにおける平均冷却速度を25℃/h以上55℃/h以下とする冷却を行う熱間圧延工程と、前記熱間圧延工程後の鋼板に、86%以上の圧下率で冷間圧延を施す冷間圧延工程と、前記冷間圧延工程後の鋼板を640℃以上780℃以下の温度域で10s以上90s以下保持し、その後、前記鋼板を7℃/s以上180℃/s以下の平均冷却速度で500℃以上600℃以下の温度域まで一次冷却し、引き続き、前記鋼板を0.1℃/s以上10℃/s以下の平均冷却速度で300℃以下まで二次冷却する焼鈍工程と、前記焼鈍工程後の鋼板に、0.1%以上3.0%以下の圧下率で調質圧延を施す工程と、を有する缶用鋼板の製造方法。
  4.  前記成分組成は、さらに、質量%で、Nb:0.0050%以上0.0500%以下、Mo:0.0050%以上0.0500%以下、およびV:0.0050%以上0.0500%以下から選ばれる一種または二種以上を含有する、請求項3に記載の缶用鋼板の製造方法。
PCT/JP2020/022579 2019-06-24 2020-06-08 缶用鋼板およびその製造方法 WO2020261965A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MYPI2021007272A MY196470A (en) 2019-06-24 2020-06-08 Steel Sheet for Cans and Method of Producing Same
CA3142677A CA3142677A1 (en) 2019-06-24 2020-06-08 Steel sheet for cans and method of producing same
CN202310045025.2A CN115976416A (zh) 2019-06-24 2020-06-08 罐用钢板及其制造方法
CN202080043123.7A CN113950536B (zh) 2019-06-24 2020-06-08 罐用钢板及其制造方法
MX2021015950A MX2021015950A (es) 2019-06-24 2020-06-08 Lamina de acero para latas y metodo para producirlas.
JP2020563725A JP6881696B1 (ja) 2019-06-24 2020-06-08 缶用鋼板およびその製造方法
US17/596,677 US20220316023A1 (en) 2019-06-24 2020-06-08 Steel sheet for cans and method of producing same
BR112021026166A BR112021026166A2 (pt) 2019-06-24 2020-06-08 Chapa de aço para latas e método de produção da mesma
KR1020217039768A KR102587650B1 (ko) 2019-06-24 2020-06-08 캔용 강판 및 그의 제조 방법
AU2020302464A AU2020302464A1 (en) 2019-06-24 2020-06-08 Steel sheet for cans and method of producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-116706 2019-06-24
JP2019116706 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020261965A1 true WO2020261965A1 (ja) 2020-12-30

Family

ID=74059696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022579 WO2020261965A1 (ja) 2019-06-24 2020-06-08 缶用鋼板およびその製造方法

Country Status (11)

Country Link
US (1) US20220316023A1 (ja)
JP (1) JP6881696B1 (ja)
KR (1) KR102587650B1 (ja)
CN (2) CN113950536B (ja)
AU (1) AU2020302464A1 (ja)
BR (1) BR112021026166A2 (ja)
CA (1) CA3142677A1 (ja)
MX (1) MX2021015950A (ja)
MY (1) MY196470A (ja)
TW (1) TWI729852B (ja)
WO (1) WO2020261965A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325670A (ja) * 1995-03-29 1996-12-10 Kawasaki Steel Corp 製缶時の深絞り性及びフランジ加工性と、製缶後の表面性状とに優れ、十分な缶強度を有する製缶用鋼板及びその製造方法
JPH0953123A (ja) * 1995-08-11 1997-02-25 Nippon Steel Corp 加工性に優れた熱延鋼板の製造方法
JP2001107186A (ja) * 1999-08-05 2001-04-17 Kawasaki Steel Corp 高強度缶用鋼板およびその製造方法
CN102912227A (zh) * 2012-10-23 2013-02-06 鞍钢股份有限公司 一种软质镀锡原钢板及其制造方法
WO2015146136A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2016157878A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 缶用鋼板及び缶用鋼板の製造方法
CN109423577A (zh) * 2017-08-30 2019-03-05 宝山钢铁股份有限公司 一种高强多相钢镀锡原板及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4051778B2 (ja) 1998-10-08 2008-02-27 Jfeスチール株式会社 表面性状が良好な3ピース缶に適した缶用鋼板
JP3887009B2 (ja) 2002-12-05 2007-02-28 東洋鋼鈑株式会社 薄肉化深絞りしごき缶用鋼板およびその製造法
JP4972771B2 (ja) * 2006-12-05 2012-07-11 Jfeスチール株式会社 エアゾール用絞り加工缶の製造方法およびエアゾール用絞り加工缶
JP5135868B2 (ja) * 2007-04-26 2013-02-06 Jfeスチール株式会社 缶用鋼板およびその製造方法
PL2500445T3 (pl) * 2009-11-09 2020-08-10 Nippon Steel Corporation Blacha stalowa cienka o dużej wytrzymałości mająca doskonałą obrabialność i utwardzalność farby przy wypalaniu oraz sposób wytwarzania blachy stalowej cienkiej o dużej wytrzymałości
JP5541263B2 (ja) * 2011-11-04 2014-07-09 Jfeスチール株式会社 加工性に優れた高強度熱延鋼板およびその製造方法
WO2015166653A1 (ja) 2014-04-30 2015-11-05 Jfeスチール株式会社 高強度容器用鋼板及びその製造方法
JP6048618B2 (ja) * 2014-11-12 2016-12-21 Jfeスチール株式会社 缶用鋼板及び缶用鋼板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325670A (ja) * 1995-03-29 1996-12-10 Kawasaki Steel Corp 製缶時の深絞り性及びフランジ加工性と、製缶後の表面性状とに優れ、十分な缶強度を有する製缶用鋼板及びその製造方法
JPH0953123A (ja) * 1995-08-11 1997-02-25 Nippon Steel Corp 加工性に優れた熱延鋼板の製造方法
JP2001107186A (ja) * 1999-08-05 2001-04-17 Kawasaki Steel Corp 高強度缶用鋼板およびその製造方法
CN102912227A (zh) * 2012-10-23 2013-02-06 鞍钢股份有限公司 一种软质镀锡原钢板及其制造方法
WO2015146136A1 (ja) * 2014-03-28 2015-10-01 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2016157878A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 缶用鋼板及び缶用鋼板の製造方法
CN109423577A (zh) * 2017-08-30 2019-03-05 宝山钢铁股份有限公司 一种高强多相钢镀锡原板及其制造方法

Also Published As

Publication number Publication date
CN115976416A (zh) 2023-04-18
CN113950536A (zh) 2022-01-18
US20220316023A1 (en) 2022-10-06
CA3142677A1 (en) 2020-12-30
MY196470A (en) 2023-04-12
TW202117034A (zh) 2021-05-01
MX2021015950A (es) 2022-02-03
TWI729852B (zh) 2021-06-01
KR102587650B1 (ko) 2023-10-10
JPWO2020261965A1 (ja) 2021-09-13
BR112021026166A2 (pt) 2022-02-15
JP6881696B1 (ja) 2021-06-02
KR20220004196A (ko) 2022-01-11
AU2020302464A1 (en) 2022-02-17
CN113950536B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
TWI617677B (zh) Steel plate for can and method for producing steel plate for can
JP5958038B2 (ja) 外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法
JP6813132B2 (ja) 缶用鋼板およびその製造方法
JP6699310B2 (ja) 絞り缶用冷延鋼板及びその製造方法
TW201732054A (zh) 罐用鋼板及其製造方法
JP6881696B1 (ja) 缶用鋼板およびその製造方法
JP6421773B2 (ja) 缶用鋼板およびその製造方法
JP4677914B2 (ja) 軟質缶用鋼板およびその製造方法
JPH11222647A (ja) 耐時効性に優れかつ耳発生率の小さい表面処理鋼板用原板およびその製造方法
JP3108615B2 (ja) フランジ加工性およびネック成形性に優れる溶接缶用鋼板の製造方法
TWI750033B (zh) 鋼板以及鋼板之製造方法
JP6809619B2 (ja) 缶用鋼板およびその製造方法
JP7585896B2 (ja) 缶用鋼板およびその製造方法
JP3596036B2 (ja) 製缶用鋼板の製造方法
JP2021155849A (ja) 缶用鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020563725

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217039768

Country of ref document: KR

Kind code of ref document: A

Ref document number: 3142677

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021026166

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021026166

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211222

ENP Entry into the national phase

Ref document number: 2020302464

Country of ref document: AU

Date of ref document: 20200608

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20831669

Country of ref document: EP

Kind code of ref document: A1