[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020250949A1 - 1-ハロ-2-フルオロエチレンの製造方法 - Google Patents

1-ハロ-2-フルオロエチレンの製造方法 Download PDF

Info

Publication number
WO2020250949A1
WO2020250949A1 PCT/JP2020/022917 JP2020022917W WO2020250949A1 WO 2020250949 A1 WO2020250949 A1 WO 2020250949A1 JP 2020022917 W JP2020022917 W JP 2020022917W WO 2020250949 A1 WO2020250949 A1 WO 2020250949A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoroethylene
halo
trans
cis
isomerization reaction
Prior art date
Application number
PCT/JP2020/022917
Other languages
English (en)
French (fr)
Inventor
朋生 大塚
翼 仲上
一博 高橋
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20821598.8A priority Critical patent/EP3981754B1/en
Priority to CN202080042867.7A priority patent/CN113966321A/zh
Publication of WO2020250949A1 publication Critical patent/WO2020250949A1/ja
Priority to US17/544,109 priority patent/US12054445B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/358Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by isomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation

Definitions

  • This disclosure relates to a method for producing 1-halo-2-fluoroethylene.
  • Non-Patent Documents 1 and 2 sulfur dioxide is used as a photosensitizer in the gas phase, and light irradiation is performed to trans-1,2-difluoroethylene (HFO-1132 (E)) and cis-1. , 2-Difluoroethylene (HFO-1132 (Z)) is isomerized.
  • An object of the present invention is to provide a method for efficiently obtaining trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form).
  • a composition containing trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form) was supplied to the reactor in the presence of a photosensitizer. Includes a step of isomerizing trans-1-halo-2-fluoroethylene (E-form) and cis-1-halo-2-fluoroethylene (Z-form) in the liquid phase by light irradiation. , Trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form).
  • Item 2 In the reactor, cis-1-halo-2-fluoroethylene (Z form), or trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2-fluoroethylene (Z form) By supplying a composition containing the above and irradiating with light in the presence of a photosensitizer, trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2 are used in the liquid phase.
  • Item 2 The production method according to Item 1, wherein the trans-1-halo-2-fluoroethylene (E-form) is produced, which comprises a step of performing an isomerization reaction with fluoroethylene (Z-form).
  • Item 3 Trans-1-halo-2-fluoroethylene (E-form) or trans-1-halo-2-fluoroethylene (E-form) and cis-1-halo-2-fluoroethylene (Z-form) in the reactor.
  • trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2 are used in the liquid phase.
  • Item 2. The production method according to Item 1, wherein cis-1-halo-2-fluoroethylene (Z-form) is produced, which comprises a step of performing an isomerization reaction with fluoroethylene (Z-form).
  • Item 4 The production method according to any one of Items 1 to 3, wherein the light irradiation is performed by irradiating light having a wavelength of 200 nm or more and 450 nm or less.
  • Item 5 to the above, which comprises a step of separating trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2-fluoroethylene (Z form) by distillation after the isomerization reaction.
  • the production method according to any one of 4.
  • Item 8 Using the still part of the distillation column as the reactor, trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2-fluoroethylene (Z) are subjected to the isomerization reaction and distillation.
  • Item 2. The production method according to Item 1, 2 or 4, wherein the separation from the body) is carried out at the same time.
  • trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form) can be efficiently obtained.
  • trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form) in the present disclosure cis-1-halo-2- It is the schematic of the manufacturing facility which produces trans-1-halo-2-fluoroethylene (E form) from fluoroethylene (Z form).
  • trans-1-halo-2- It is the schematic of the manufacturing facility which produces cis-1-halo-2-fluoroethylene (Z form) from fluoroethylene (E form).
  • trans-1-halo-2-fluoroethylene E-form
  • Z-form cis-1-halo-2-fluoroethylene
  • the present inventors also carry out a hydrogen fluoride reaction in the presence of a catalyst using ethane trihalide such as 1,1,2-trifluoroethane (HFC-143) as a raw material, thereby HFO-.
  • ethane trihalide such as 1,1,2-trifluoroethane (HFC-143)
  • HFC-143 1,1,2-trifluoroethane
  • the subject of this disclosure is to provide a means for solving such a problem.
  • trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2-fluoroethylene (Z form) are used together. It is an object of the present invention to provide a method for more efficiently obtaining trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form) in the case of being produced. And.
  • the production method of the present disclosure has a composition containing trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form) in the reactor.
  • Trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2-fluoroethylene (Z form) in the liquid phase by supplying a substance and irradiating with light in the presence of a photosensitizer.
  • trans-1-halo-2-fluoroethylene (Z form), or trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2 are used in a reactor.
  • trans-1-halo-2-fluoroethylene (E form) and trans-1-halo-2-fluoroethylene (E form) can be obtained in the liquid phase.
  • trans-1-halo-2-fluoroethylene (E form), or trans-1-halo-2-fluoroethylene (E form) and cis-1-halo-2 are used in a reactor.
  • trans-1-halo-2-fluoroethylene (E-form) can be mixed in the liquid phase.
  • This is a method for producing cis-1-halo-2-fluoroethylene (Z-form), which comprises a step of performing an isomerization reaction with cis-1-halo-2-fluoroethylene (Z-form).
  • an isomerization reaction is carried out between trans-1-halo-2-fluoroethylene (E-form) and cis-1-halo-2-fluoroethylene (Z-form).
  • This isomerization reaction follows the following reaction formula. Since the E-isomer is thermodynamically less stable than the Z-isomer, this equilibrium is tilted toward the Z-isomer.
  • X represents a halogen atom selected from a fluorine atom, a chlorine atom, and a bromine atom.
  • a composition containing HFO-1132 (E) and / or HFO-1132 (Z) is subjected to an isomerization reaction in a liquid phase by light irradiation in the presence of a photosensitizer, thereby HFO.
  • a composition in which the content ratio of -1132 (E) is changed can be obtained.
  • the light in the isomerization reaction it is preferable to irradiate the light in the isomerization reaction with light having a wavelength of 200 nm or more and 450 nm or less.
  • E-Ethylene Trans-1-Halo-2-Fluorethylene
  • Z-Form Sith-1-Halo-2-Fluorethylene
  • the raw materials for isomerization are represented by the following formulas.
  • a composition comprising trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form).
  • X represents a halogen atom selected from a fluorine atom, a chlorine atom, and a bromine atom.
  • the composition containing trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form) used as a raw material for isomerization contains other components. You may be.
  • the other components are not particularly limited and can be widely selected as long as they do not significantly interfere with the isomerization reaction.
  • impurities mixed in the process of obtaining a composition containing trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form), And the produced by-products and the like are included.
  • the mixed impurities include impurities contained in the raw material.
  • a composition containing raw materials HFO-1132 (E) and / or HFO-1132 (Z) examples include a method obtained by subjecting ethane halide to a dehydrohalogenation reaction or a dehalogenation reaction.
  • the halogenated ethane used in such a reaction is not particularly limited and can be widely selected. Specific examples include the following ethane halides. These halogenated ethanes are widely used as refrigerants, solvents, foaming agents, propellants and the like, and are generally available.
  • CHClFCH 2 F 1,2-dichloro-1,2-difluoroethane
  • CHClFCHClF 1,1,2,2-Tetrafluoroethane
  • CHF 2 CHF 2 1-Chloro-1,2,2-trifluoroethane
  • cis-1-halo-2-fluoroethylene (Z-form) is used as a raw material. Effectively, the isomerization reaction from cis-1-halo-2-fluoroethylene (Z form) to trans-1-halo-2-fluoroethylene (E form) can proceed.
  • trans-1-halo-2-fluoroethylene (E form) is used as a raw material. Therefore, the isomerization reaction from trans-1-halo-2-fluoroethylene (E-form) to cis-1-halo-2-fluoroethylene (Z-form) can be effectively promoted.
  • Liquid phase reaction In the production method of the present disclosure, the isomerization reaction is carried out in the reactor with trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form).
  • E form trans-1-halo-2-fluoroethylene
  • Z form cis-1-halo-2-fluoroethylene
  • the composition containing the above is supplied, and it is carried out in a liquid phase by light irradiation in the presence of a photosensitizer.
  • An important feature of the production method of the present disclosure is that the isomerization reaction by light irradiation is carried out in the liquid phase. Pressurization and / or cooling to liquefy the raw material trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form) composition. You may.
  • trans-1-halo-2-fluoroethylene E form
  • cis-1-halo-2-fluoroethylene Z form
  • Photosensitizer As the photosensitizer used in the isomerization reaction in the present disclosure, a ketone compound having an aromatic ring such as acetophenone or benzophenone, an aromatic hydrocarbon compound such as benzene or naphthalene, or the like can be used. ..
  • photosensitizers such as acetophenone, benzophenone, benzene, and naphthalene are used for the purpose of adjusting (tuning) the excitation wavelength and the excitation energy order of the sensitizer.
  • a compound having a structure in which various functional groups are introduced can be used as the agent.
  • photosensitizer examples include 2,2,2-trifluoro-4'-methoxyacetophenone, 4'-acetylacetophenone, 2-paleololoacetophenone, 4'-hydroxyacetophenone, and 2,2,2-tri.
  • the photosensitizer used in the isomerization reaction in the present disclosure may be used alone from the above photosensitizers, or may be used in combination of two or more.
  • a ketone compound having an aromatic ring such as acetophenone and benzophenone is preferable, and benzophenone is more preferable, because it can be obtained at a relatively low cost and a light source having a wavelength to be irradiated is easily available.
  • the photosensitizer used in the isomerization reaction in the present disclosure can be appropriately selected depending on the wavelength of light irradiation described later when used as a light source when performing light irradiation.
  • the amount of the photosensitizer used in the isomerization reaction in the present disclosure is not particularly limited. Generally, in a photoisomerization reaction using a photosensitizer, if the concentration of the photosensitizer is too high, the self-quenching of the photosensitizer may hinder the progress of the isomerization reaction.
  • the concentration of the photosensitizer in the liquid phase to be irradiated with light is preferably in the range of about 0.1 mM to 2 M, and in the range of about 1 mM to 500 mM. It is more preferable to set the temperature in the range of about 5 mM to 100 mM.
  • the photosensitizer used is liquefied trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form). ) Is mixed with the composition, no solvent is required.
  • the photosensitizer used contains liquefied trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form).
  • E form trans-1-halo-2-fluoroethylene
  • Z form cis-1-halo-2-fluoroethylene
  • a solvent can be used as needed.
  • a composition containing trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form) and light if necessary, a composition containing trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form) and light.
  • E form trans-1-halo-2-fluoroethylene
  • Z form cis-1-halo-2-fluoroethylene
  • the solvent either water or a non-aqueous solvent can be adopted.
  • a non-aqueous solvent it is available at a relatively low cost, and after the reaction, trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z form).
  • Alcohols such as methanol, ethanol and isopropyl alcohol; nitriles such as acetonitrile, propionitrile and benzonitrile are preferable because they are relatively easy to separate from.
  • the solvent used may be used alone from the above solvents, or two or more kinds may be used in combination. Among them, isopropyl alcohol, acetonitrile and the like can be preferably used.
  • reaction temperature can be appropriately set by heating and cooling.
  • the reaction temperature can be in the range of about -100 ° C to 100 ° C, preferably in the range of about -50 ° C to 50 ° C, or at room temperature.
  • the reaction time is not particularly limited, and the light irradiation time in the photoisomerization reaction can be appropriately set depending on the output (irradiance) of the light source used.
  • the composition of the reaction solution can be brought to the equilibrium composition by lengthening the irradiation time, it is economically inefficient to perform excessive light irradiation, so that an appropriate irradiation time can be set.
  • it can be in the range of about 0.01 hour to 10 hours, preferably in the range of about 0.1 hour to 3 hours.
  • the pressure of the reactor is not particularly limited and can be set as appropriate. Since the formation of a polymer such as tar is promoted when the pressure is high, an appropriate pressure can be set.
  • the isomerization reaction in the present disclosure in consideration of the case where 1,2-difluoroethylene having the highest vapor pressure among the above compounds is usually heated, the isomerization reaction is usually in the range of normal pressure to about 2.5 MPa, preferably normal pressure to 1. The range may be about 0.7 MPa.
  • the light irradiation in the isomerization reaction is performed by irradiating light having a wavelength of 200 nm or more and 450 nm or less.
  • the light source for performing light irradiation is not particularly limited, but a high-pressure mercury lamp, a xenon lamp, a fluorescent lamp, an incandescent lamp, an ultraviolet light emitting diode, or the like can be preferably used. In the present disclosure, for example, a 250 W high-pressure mercury lamp can be used as the light irradiation device.
  • trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo- is transmitted through a photosensitizer. It is characterized in that the isomerization reaction proceeds from 2-fluoroethylene (Z form).
  • the production method of the present disclosure is economically advantageous trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene (Z) via a photosensitizer. It is a manufacturing method of body).
  • the wavelength of light irradiation can be appropriately adjusted in consideration of the ultraviolet / visible spectrum of the photosensitizer used described above.
  • benzophenone when used as a photosensitizer, it is preferable to irradiate light having a wavelength of 240 nm or more and 420 nm or less.
  • acetophenone when used as a photosensitizer, it is preferable to irradiate light having a wavelength of 220 nm or more and 400 nm or less.
  • benzene when used as a photosensitizer, it is preferable to irradiate light having a wavelength of 200 nm or more and 370 nm or less.
  • naphthalene when used as a photosensitizer, it is preferable to irradiate light having a wavelength of 240 nm or more and 450 nm or less.
  • the isomerization reaction is carried out in a liquid phase and the isomerization reaction is carried out using a batch-type reaction vessel as a reactor for carrying out the isomerization reaction.
  • a closed reaction system reaction vessel can be used.
  • the reaction is carried out in a batch manner, for example, trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene, which are used as raw materials for isomerization in the reactor.
  • It is preferable to supply a composition containing (Z-form) set an appropriate reaction temperature using a heater or the like in the presence of a photosensitizer, perform light irradiation, and react for a certain period of time.
  • the reaction temperature can be appropriately adjusted. That is, cooling can be performed for the purpose of removing heat generated from the light source, and the inside of the reactor can be kept within a desired temperature range. Heating can also be performed for the purpose of preventing precipitation of the used sensitizer.
  • the equilibrium composition after light irradiation is biased toward cis-1-halo-2-fluoroethylene (Z form) (as an example, when benzophenone is used as a sensitizer, E Body: Z body ⁇ 5:95), cis-1-halo-2-fluoroethylene (Z body) can be efficiently obtained by carrying out in a batch type reaction vessel (sealed reaction vessel or the like).
  • the isomerization reaction is carried out in a liquid phase and the isomerization reaction is carried out in a liquid-phase continuous flow type using a tubular reactor.
  • the liquid phase continuous flow method is used, it is economically advantageous because the equipment, operation, etc. can be simplified.
  • the reaction is carried out by the flow method, for example, trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene, which are used as raw materials for isomerization in the reactor.
  • E form trans-1-halo-2-fluoroethylene
  • cis-1-halo-2-fluoroethylene which are used as raw materials for isomerization in the reactor.
  • It is preferable to supply a composition containing (Z-form) set an appropriate reaction temperature with a heater or a cooler in the presence of a photosensitizer, perform light irradiation, and react for a certain period of time.
  • trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo-2-fluoroethylene can be efficiently carried out by carrying out in a flow-type reaction vessel. (Z body) can be obtained.
  • the isomerization reaction can be carried out by either a distribution method or a batch method in which raw materials are continuously charged into the reactor and the target compound is continuously extracted from the reactor.
  • the separation process can be made continuous by using a continuous reaction device, and the efficiency of the production equipment can be improved. Can be planned. For example, by using two distillation columns in the separation step, it is possible to continuously carry out the reaction / separation using the continuous reaction apparatus shown in FIGS. 1 and 2.
  • the isomerization reaction from cis-1-halo-2-fluoroethylene (Z form) to trans-1-halo-2-fluoroethylene (E form) is carried out, the E form after light irradiation is used. Since the composition ratio never increases and the Z-form, which has a higher boiling point than the E-form, the solvent, and the sensitizer do not necessarily need to be separated, the distillation column still (described later) can be used by using a continuous reactor. It is more efficient and economical to carry out the photoisomerization reaction in the still) part and simultaneously obtain the E form continuously by distillation.
  • the E form has a lower boiling point (Table). 2).
  • trans-1-halo-2-fluoroethylene E form
  • trans-1 is distilled while irradiating cis-1-halo-2-fluoroethylene (Z form) with light.
  • -It is preferable to separate halo-2-fluoroethylene (form E) (FIGS. 2 and 3).
  • the reaction products obtained by the isomerization reaction are, for example, a first stream containing trans-1-halo-2-fluoroethylene (E form) as a main component and cis-1-halo-2-fluoroethylene (form). It is separated into a second stream containing (Z form) as a main component.
  • the reactor outlet gas generated by the isomerization reaction is cooled, liquefied, and then distilled to obtain the first gas containing trans-1-halo-2-fluoroethylene (E form) as a main component.
  • the stream is separated into a second stream containing cis-1-halo-2-fluoroethylene (Z form) as a main component.
  • a composition having a higher content of either trans-1-halo-2-fluoroethylene (E form) or cis-1-halo-2-fluoroethylene (Z form) is used.
  • the second stream containing Z-form as a main component can be recycled for the isomerization reaction.
  • the disclosure comprises, after the separation step, preferably the step of transferring cis-1-halo-2-fluoroethylene (Z form) to the reactor, recycling and subjecting it to the isomerization reaction again.
  • Trans-1-halo-2-fluoroethylene (E form) is produced (Fig. 2).
  • trans-1-halo- is used in the isomerization reaction after recycling.
  • a composition having a higher content of 2-fluoroethylene (E form) can be obtained.
  • trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form) is irradiated with light and subjected to an isomerization reaction
  • the reaction is carried out after the reaction.
  • the equilibrium composition of is largely biased toward the Z-form (as an example, when benzophenone is used as a sensitizer, the E-form: Z-form ⁇ 5:95). Therefore, in the present disclosure, it is possible to increase the E-form by separating the E-form after the light irradiation, recycling the pure Z-form, and performing the isomerization reaction by light irradiation again.
  • the first stream containing trans-1-halo-2-fluoroethylene (E form) as a main component is recycled, so that in the isomerization reaction after recycling, cis-1- A composition having a higher content of halo-2-fluoroethylene (Z form) can be obtained.
  • Steps in which the isomerization reaction and the separation by distillation proceed simultaneously In the present disclosure, the still part of the distillation column is used as the reactor, and the isomerization reaction and the trans-1-halo-2-fluoroethylene by distillation are used. It is preferable to simultaneously carry out the separation of (E-form) and cis-1-halo-2-fluoroethylene (Z-form) (reactive distillation).
  • the boiling point is higher than that of E form. Since it is not always necessary to separate the Z-form, the solvent, and the sensitizer, by using a continuous reactor, the photoisomerization reaction is carried out in the still part of the distillation column, and E is efficiently distilled. The body can be obtained continuously and the equipment is economical.
  • FIG. 3 shows the trans-1-halo-2-fluoroethylene (E form) and / or cis-1-halo in the present disclosure.
  • Z-form cis-1-halo-2-fluoroethylene (Z-form) is efficiently continuously converted to trans-1-halo-2-fluoroethylene (E-form). The outline of the manufacturing equipment to be produced is shown.
  • the equilibrium composition after light irradiation is biased toward cis-1-halo-2-fluoroethylene (Z-form) (for example, when benzophenone is used as a sensitizer, E-form: Z-form ⁇ 5:95).
  • Z-form cis-1-halo-2-fluoroethylene
  • trans-1-halo-2-fluoroethylene (E form) has a lower boiling point, so cis-1-halo-2-fluoroethylene (Z form). It is preferable to separate trans-1-halo-2-fluoroethylene (E form) while irradiating light (6 in FIG. 3) (7 in FIG. 3). This makes it possible to continuously produce trans-1-halo-2-fluoroethylene (E-form) regardless of the equilibrium composition after light irradiation.
  • FIG. 4 shows trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2- in the present disclosure.
  • Outline of manufacturing equipment for efficiently producing cis-1-halo-2-fluoroethylene (Z-form) from trans-1-halo-2-fluoroethylene (E-form) in the method for producing fluoroethylene (Z-form) Is shown.
  • the equilibrium composition of trans-1-halo-2-fluoroethylene (E-form) and cis-1-halo-2-fluoroethylene (Z-form) after light irradiation is significantly biased to Z-form.
  • the residual trans-1-halo-2-fluoroethylene (E form) was separated (Fig. 4-4 and 5) and reused. (6 in FIG. 4), it is preferable to carry out the isomerization reaction again by irradiation with light (2 in FIG. 4).
  • trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form) may be produced as a by-product.
  • the unavoidable and unwanted isomers can be converted into the desired isomers with high efficiency, and the economic efficiency of the method for producing the desired isomers can be greatly improved.
  • the trans-1-halo-2-fluoroethylene (E-form) and / or cis-1-halo-2-fluoroethylene (Z-form) produced by the production method in the present disclosure are, for example, resin product raw materials and organic synthetic intermediates. It can be effectively used for various purposes such as a body and a heat medium.
  • HFO-1132 (Z) An isomerization reaction liquefied cis-1,2-difluoroethylene (HFO-1132 (Z)) was used. Before light irradiation, the cis-1,2-difluoroethylene (HFO-1132 (Z)) (composition) was subjected to 19 F-NMR measurement and found to be 300 ppm of trans-1,2-difluoroethylene (HFO). -1132 (E)) was included.
  • a PFA resin tube having an outer diameter of 4 mm and an inner diameter of 3 mm was used as the reactor.
  • benzophenone as a photosensitizer
  • 77 ⁇ L of a composition containing 315 ⁇ L of an acetonitrile solution of benzophenone (benzophenone concentration 50 mM) and the liquefied cis-1,2-difluoroethylene (HFO-1132 (Z)) was subjected to the above reaction.
  • the liquid phase portion of the reactor was irradiated with a 250 W high-pressure mercury lamp (mainly light having a wavelength of 230 nm to 440 nm) at room temperature.
  • a photosensitizer was added to the reactor (liquid phase) containing HFO-1132 (Z), and the progress of the isomerization reaction from HFO-1132 (Z) to HFO-1132 (E) was confirmed by light irradiation. Was done. In addition, it was confirmed that the equilibrium composition was almost reached 9 hours after the start of light irradiation.
  • FIG. 5 shows the 19 F-NMR spectra of the sample before and after 9 hours of light irradiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

効率的にトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を得る方法を提供する。 反応器に、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を供給し、光増感剤の存在下、光照射により、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含む、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法。

Description

1-ハロ-2-フルオロエチレンの製造方法
 本開示は1-ハロ-2-フルオロエチレンの製造方法に関する。
 非特許文献1及び2には、気相中で、光増感剤として二酸化硫黄を使用し、光照射を行い、トランス-1,2-ジフルオロエチレン(HFO-1132(E))及びシス-1,2-ジフルオロエチレン(HFO-1132(Z))を異性化する方法が開示されている。
International Journal of Chemical Kinetics 1976,8,511-517. International Journal of Chemical Kinetics 1976,8,519-528.
 効率的にトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を得る方法を提供することを課題とする。
 項1.
 反応器に、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を供給し、光増感剤の存在下、光照射により、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含む、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法。
 項2.
 反応器に、シス-1-ハロ-2-フルオロエチレン(Z体)を、又はトランス-1-ハロ-2-フルオロエチレン(E体)及びシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を、供給し、光増感剤の存在下、光照射を行うことにより、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含み、トランス-1-ハロ-2-フルオロエチレン(E体)を製造する、前記項1に記載の製造方法。
 項3.
 反応器に、トランス-1-ハロ-2-フルオロエチレン(E体)を、又はトランス-1-ハロ-2-フルオロエチレン(E体)及びシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を、供給し、光増感剤の存在下、光照射を行うことにより、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含み、シス-1-ハロ-2-フルオロエチレン(Z体)を製造する、前記項1に記載の製造方法。
 項4.
 前記光照射を、200nm以上450nm以下の波長を有する光を照射して行う、前記項1~3のいずれか1項に記載の製造方法。
 項5.
 前記異性化反応後、蒸留により、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)とに分離する工程を含む、前記項1~4のいずれか1項に記載の製造方法。
 項6.
 前記分離する工程の後、シス-1-ハロ-2-フルオロエチレン(Z体)を、前記異性化反応にリサイクルして、再び異性化反応に供する工程を含み、トランス-1-ハロ-2-フルオロエチレン(E体)を製造する、前記項5に記載の製造方法。
 項7.
 前記分離する工程の後、トランス-1-ハロ-2-フルオロエチレン(E体)を、前記異性化反応にリサイクルして、再び異性化反応に供する工程を含み、シス-1-ハロ-2-フルオロエチレン(Z体)を製造する、前記項5に記載の製造方法。
 項8.
 前記反応器に蒸留塔のスチル(still)部を用い、前記異性化反応と、蒸留によりトランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との分離とを同時に実施する、前記項1、2又は4に記載の製造方法。
 本開示によれば、効率的にトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を得ることができる。
本開示におけるトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法を模式的に示す図面である。 本開示におけるトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法において、効率的にトランス-1-ハロ-2-フルオロエチレン(E体)を得る方法を模式的に示す図面である。 本開示におけるトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法において、効率的にシス-1-ハロ-2-フルオロエチレン(Z体)からトランス-1-ハロ-2-フルオロエチレン(E体)を生産する製造設備の概略図である。 本開示におけるトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法において、効率的にトランス-1-ハロ-2-フルオロエチレン(E体)からシス-1-ハロ-2-フルオロエチレン(Z体)を生産する製造設備の概略図である。 本開示におけるトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法のうち、実施例の光照射前及び光照射9時間後のサンプルの19F-NMRスペクトルを示す図である。
 従来の増感剤として二酸化硫黄を使用して、気相で、光異性化反応を進行させる方法では、反応の効率が低く原料の1-ハロ-2-フルオロエチレンに対して大過剰量の二酸化硫黄を必要であった。また、従来の光異性化反応では、反応後に二酸化硫黄を回収したり、再利用したりする際に、1-ハロ-2-フルオロエチレンは、二酸化硫黄(沸点:-10℃)との沸点が近接しており、異性化反応後に、1-ハロ-2-フルオロエチレンのE体とZ体とを分離し、更に二酸化硫黄を分離することは、非常に煩雑であった。本発明者らは、その様な従来の光異性化反応では、生産時の経済性を損なうという課題を見出した。
 本発明者らは、また、例えば、1,1,2-トリフルオロエタン(HFC-143)等のトリハロゲン化エタンを原料として、触媒存在下で脱フッ化水素反応を行うことにより、HFO-1132を得る従来の方法においては、異性体であるHFO-1132(E)とHFO-1132(Z)とが併産されるため、いずれかの異性体のみを得たい場合には、他方の異性体が不要となり、コスト面で非効率的となるという課題を見出した。
 よって、本開示は、かかる課題を解決する手段を提供することを課題とする。具体的には、1-ハロ-2-フルオロエチレンを得る方法において、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)とが併産される場合において、より効率的にトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を得る方法を提供することを課題とする。
 本発明者らは、上記課題を解決すべく、鋭意検討を行ったところ、1-ハロ-2-フルオロエチレンを含む反応組成物において、光増感剤の存在下、光照射により、液相で、異性化が可能であることを見出した。また異性化反応を行う工程と、所望の異性体を分離する工程とを組み合わせることによって、上記の課題を解決できることを見出した。本開示はかかる知見に基づいてさらに検討を加えることにより完成したものであり、以下の態様を含む。
 1.異性化反応
 本開示の製造方法は、反応器に、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を供給し、光増感剤の存在下、光照射により、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含む、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法である(図1)。
 本開示の製造方法は、反応器に、シス-1-ハロ-2-フルオロエチレン(Z体)を、又はトランス-1-ハロ-2-フルオロエチレン(E体)及びシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を、供給し、光増感剤の存在下、光照射を行うことにより、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含み、トランス-1-ハロ-2-フルオロエチレン(E体)を製造する方法である。
 本開示の製造方法は、反応器に、トランス-1-ハロ-2-フルオロエチレン(E体)を、又はトランス-1-ハロ-2-フルオロエチレン(E体)及びシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を、供給し、光増感剤の存在下、光照射を行うことにより、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含み、シス-1-ハロ-2-フルオロエチレン(Z体)を製造する方法である。
 量子化学計算によれば1-ハロ-2-フルオロエチレンの三重項励起エネルギーは大きく、光増感剤を用いても異性化反応が極めて進行し難いと考えられている(表1)。
Figure JPOXMLDOC01-appb-T000001
 本開示の製造方法では、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う。この異性化反応は、以下の反応式に従う。E-異性体は、Z-異性体よりも熱力学的に安定性が低いため、この平衡はZ-異性体側に傾いている。
Figure JPOXMLDOC01-appb-C000002
(式中、Xは、フッ素原子、塩素原子、及び臭素原子から選ばれるハロゲン原子を示す。)
 本開示では、HFO-1132(E)及び/又はHFO-1132(Z)を含む組成物を、光増感剤の存在下、光照射により、液相で、異性化反応に供することにより、HFO-1132(E)の含有割合が変化した組成物が得られる。
 本開示では、前記異性化反応における光照射を、200nm以上450nm以下の波長を有する光を照射して行うことが好ましい。
 本開示では、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応における平衡関係を利用することにより、いずれかの化合物の含有割合がより高められた組成物を得ることができる。
 1-1.トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物
 本開示では、異性化の原料は、以下の式で表されるトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物
Figure JPOXMLDOC01-appb-C000003
(式中、Xは、フッ素原子、塩素原子、及び臭素原子から選ばれるハロゲン原子を示す。)
である。
 異性化の原料として用いられる、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物は、その他の成分を含んでいてもよい。その他の成分としては、上記異性化反応を著しく妨げない限り、特に限定されず、幅広く選択することができる。
 その他の成分の例として、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を得る過程で混入した不純物、及び生成した副生成物等が含まれる。混入した不純物には、原料に含まれる不純物等が含まれる。
 例として、HFO-1132(E)及び/又はHFO-1132(Z)を含む組成物を得る方法であれば、原料のHFO-1132(E)及び/又はHFO-1132(Z)を含む組成物を得る方法として、例えば、ハロゲン化エタンを脱ハロゲン化水素反応又は脱ハロゲン化反応に供することにより得る方法等が挙げられる。かかる反応において用いられるハロゲン化エタンとしては、特に限定されず、幅広く選択できる。具体例として、以下のハロゲン化エタン等が挙げられる。これらのハロゲン化エタンは、冷媒、溶剤、発泡剤、噴射剤等の用途として広く使用されており、一般に入手可能である。
 1,1,2-トリフルオロエタン(CHFCHF、HFC-143)
 1-ブロモ-1,2-ジフルオロエタン(CHFBrCHF)
 1-クロロ-1,2-ジフルオロエタン(CHClFCHF)
 1,2-ジクロロ-1,2-ジフルオロエタン(CHClFCHClF)
 1,1,2,2-テトラフルオロエタン(CHFCHF
 1-クロロ-1,2,2-トリフルオロエタン(CHClFCHF
 本開示では、特に、トランス-1-ハロ-2-フルオロエチレン(E体)の製造方法とする時、原料として、シス-1-ハロ-2-フルオロエチレン(Z体)を使用することで、効果的に、シス-1-ハロ-2-フルオロエチレン(Z体)からトランス-1-ハロ-2-フルオロエチレン(E体)への異性化反応を進めることができる。
 本開示では、また、特に、シス-1-ハロ-2-フルオロエチレン(Z体)の製造方法とする時、原料として、トランス-1-ハロ-2-フルオロエチレン(E体)を使用することで、効果的に、トランス-1-ハロ-2-フルオロエチレン(E体)からシス-1-ハロ-2-フルオロエチレン(Z体)への異性化反応を進めることができる。
 1-2.液相反応
 本開示の製造方法では、異性化反応は、反応器に、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を供給し、光増感剤の存在下、光照射により、液相で行う。
 本開示の製造方法の重要な特徴は、光照射による異性化反応を液相で実施することである。原料のトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を液化するために、加圧及び/又は冷却をしても良い。
 後述する図3に示す様に、生産設備で、連続的に、シス-1-ハロ-2-フルオロエチレン(Z体)からトランス-1-ハロ-2-フルオロエチレン(E体)を生産する時には、蒸留塔内の還流を維持する目的で、加熱しても良い。
 光増感剤
 本開示における異性化反応において、使用する光増感剤としては、アセトフェノン、ベンゾフェノン等の芳香環を有するケトン化合物、ベンゼン、ナフタレン等の芳香族炭化水素化合物等をもちいちることができる。
 また、本開示における異性化反応において、使用する光増感剤としては、増感剤の励起波長や励起エネルギー順位を調整(チューニング)する目的で、アセトフェノン、ベンゾフェノン、ベンゼン、ナフタレン等の光増感剤に、各種官能基を導入した構造を持つ化合物を使用することができる。
 前記光増感剤としては、例えば、2,2,2-トリフルオロ-4‘-メトキシアセトフェノン、4’-アセチルアセトフェノン、2-古ロロアセトフェノン、4‘-ヒドロキシアセトフェノン、2,2,2-トリフェニルアセトフェノン、4’-メトキシアセトフェノン、4‘-クロロアセトフェノン、3’-メチルアセトフェノン、2-プロピルアセトフェノン、4,4‘-ジカルボメトキシベンゾフェノン、4、4’-ビス(ジメチルアミノ)ベンゾフェノン、2,2‘-ビス(トリフルオロメチル)ベンゾフェノン、4-カルボメトキシベンゾフェノン、4-アミノベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ヒドロキシベンゾフェノン、2,4-ジメチルベンゾフェノン、3,4-ジメチルベンゾフェノン、2-ベンジルベンゾフェノン、4,4‘-ジ-tert-ブチルベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4‘-ジフルオロベンゾフェノン、4-シアノベンゾフェノン、1,3-ジシアノベンゼン、1,4-ジメトキシベンゼン、ヘキサメチルベンゼン、1,4-ジクロロベンゼン、メタキシレン、1,4-ジフルオロベンゼン、ヘキサフルオロベンゼン、1,2,3-トリフルオロベンゼン、ベンゾチアゾール、2,7ジヒドロキシナフタレン、1-メチルナフタレン等が挙げられる。
 本開示における異性化反応において、使用する光増感剤は、前記光増感剤の中から単独で使用することもでき、2種以上を組合せて用いることもできる。中でも、比較的安価に入手可能であり、照射すべき波長の光源が入手し易いという点で、アセトフェノン、ベンゾフェノン等の芳香環を有するケトン化合物が好ましく、ベンゾフェノンはより好ましい。
 本開示における異性化反応において、使用する光増感剤は、光照射を実施する際の光源として使用する時に、後述する光照射の波長により適宜選択することができる。
 本開示における異性化反応において、光増感剤の使用量については、特に限定的ではない。一般に光増感剤を用いる光異性化反応において、光増感剤の濃度が高過ぎる場合、光増感剤の自己消光により、異性化反応の進行が阻害されることがある。本開示では、効率良く異性化反応を進める為に、光照射を行う液相中の光増感剤濃度は、0.1mM~2M程度の範囲とすることが好ましく、1mM~500mM程度の範囲とすることがより好ましく、5mM~100mM程度の範囲とすることが更に好ましい。前記光増感剤を用いることで、光照射により、液相で、効率良く異性化反応を進めることができる。
 反応の溶媒
 本開示における異性化反応では、使用する光増感剤が液化したトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物に混和する時は、特に溶媒を必要としない。
 本開示における異性化反応では、使用する光増感剤が液化したトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物に混和しない時は、必要に応じて溶媒を使用することができる。
 本開示における異性化反応では、必要に応じて、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物と光増感剤とを溶解させる溶媒を使用する。
 前記溶媒としては、水及び非水溶媒のいずれも採用することができる。非水溶媒としては、比較的安価に入手が可能であり、反応後のトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)との分離が比較的容易である点で、メタノール、エタノール、イソプロピルアルコール等のアルコール;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル等が好ましい。
 本開示における異性化反応において、使用する溶媒は、前記溶媒の中から単独で使用することもでき、2種以上を組合せて用いることもできる。なかでも、イソプロピルアルコール、アセトニトリル等を好ましく用いることができる。
 反応の温度、時間及び圧力
 一般に、光異性化反応の進行は温度依存性が無い、若しくは非常に小さいことから、本開示における異性化反応では、反応温度は特に限定されない。本開示における異性化反応では、反応温度は加熱・冷却により適宜設定することができる。反応温度は-100℃~100℃程度の範囲とすることができ、好ましくは-50℃~50℃程度の範囲、或は室温とすればよい。
 本開示における異性化反応では、反応時間は特に限定されず、光異性化反応における光照射時間は、使用する光源の出力(放射照度)により適宜設定することができる。照射時間を長くすれば反応溶液の組成を平衡組成に達せしめることができるが、過剰な光照射を行うことは経済的に非効率となるため、適当な照射時間を設定することができる。通常は、0.01時間~10時間程度の範囲とすることができ、好ましくは0.1時間~3時間程度の範囲とすればよい。
 本開示における異性化反応では、反応器の圧力は特に限定されず、適宜設定することができる。圧力が高いとタール等の重合物の生成が促進されるため、適当な圧力を設定することができる。本開示における異性化反応では、通常、上記化合物の中で最も蒸気圧の高い1,2-ジフルオロエチレンを加熱した場合を考慮すると、常圧~2.5MPa程度の範囲、好ましくは常圧~1.7MPa程度の範囲とすればよい。
 光照射
 本開示では、前記異性化反応における光照射を、200nm以上450nm以下の波長を有する光を照射して行うことが好ましい。光照射を実施する際の光源としては、特に限定的ではないが、高圧水銀ランプ、キセノンランプ、蛍光ランプ、白熱ランプ、紫外線発光ダイオード等を好ましく使用することができる。本開示では、光照射装置として、例えば、250Wの高圧水銀ランプを使用することができる。
 本開示では、200nm以上450nm以下の波長を有する光を照射することから、光増感剤を介して、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)から異性化反応を進行させることが特徴である。本開示の製造方法は、光増感剤を介することで、経済的に有利なトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法である。
 本開示における異性化反応において、光照射の波長は、前述の使用する光増感剤の紫外・可視スペクトルを考慮して、適宜調整することができる。本開示では、光増感剤としてベンゾフェノンを用いる時、240nm以上420nm以下の波長を有する光を照射することが好ましい。本開示では、光増感剤としてアセトフェノンを用いる時、220nm以上400nm以下の波長を有する光を照射することが好ましい。本開示では、光増感剤としてベンゼンを用いる時、200nm以上370nm以下の波長を有する光を照射することが好ましい。本開示では、光増感剤としてナフタレンを用いる時、240nm以上450nm以下の波長を有する光を照射することが好ましい。
 バッチ式反応
 本開示では、異性化反応を液相で行い、異性化反応を行う反応器として、バッチ式の反応容器を用いて、異性化反応を行うことが好ましい。バッチ式の反応では、密閉反応系の反応容器を用いることができる。バッチ式で反応を行う場合には、例えば、反応器に異性化の原料として用いられる、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を供給し、光増感剤の存在下、ヒーター等を用いて適切な反応温度に設定し、光照射を実施し、一定時間反応することが好ましい。
 本開示では、異性化反応をバッチ式で反応(例えば、密閉反応系)を行う場合には、反応温度は、適宜調節することができる。即ち、光源から発生する熱を除去する目的で冷却を行い、反応装置内を所望の温度範囲内に保つことができる。使用した増感剤の析出を防ぐ等の目的で加熱を行うこともできる。
 本開示における異性化反応する工程では、また、光照射後の平衡組成はシス-1-ハロ-2-フルオロエチレン(Z体)に偏るため(一例として増感剤にベンゾフェノンを用いた場合、E体:Z体≒5:95)、バッチ式の反応容器(密閉反応容器等)で行うことにより、効率的にシス-1-ハロ-2-フルオロエチレン(Z体)を得ることができる。
 流通式反応
 本開示では、異性化反応を液相で行い、異性化反応を行う反応器として、管型反応器を用いた液相連続流通式で行うことが好ましい。液相連続流通式で行う場合は、装置、操作等を簡略化できることから、経済的に有利である。流通式で反応を行う場合には、例えば、反応器に異性化の原料として用いられる、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を供給し、光増感剤の存在下、ヒーターもしくは冷却器にて適切な反応温度に設定し、光照射を実施し、一定時間反応することが好ましい。
 本開示における異性化反応する工程では、流通式の反応容器で行うことにより、効率的にトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を得ることができる。
 異性化反応は、反応器に原料を連続的に仕込み、当該反応器から目的化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。
 本開示では、トランス-1-ハロ-2-フルオロエチレン(E体)からシス-1-ハロ-2-フルオロエチレン(Z体)への異性化反応を実施する場合、異性化反応を行った後で残余のE体と目的のZ体、更に溶媒や増感剤を分離する必要がある為、連続式反応装置を使用することによって、分離工程も連続化することができ、生産設備の効率化を図ることができる。例えば、分離工程で、蒸留塔を2塔使用することで、図1や図2で表す連続式反応装置を用いて、連続的に反応・分離を実施することが可能である。
 本開示では、シス-1-ハロ-2-フルオロエチレン(Z体)からトランス-1-ハロ-2-フルオロエチレン(E体)への異性化反応を実施する場合、光照射後のE体の組成比が決して大きくならないこと、E体に比べて高沸点なZ体と溶媒、増感剤は必ずしも分離する必要が無いことから、連続式反応装置を使用することによって、後述する蒸留塔スチル(still)部で光異性化反応を行い、同時に蒸留によってE体を連続的に得る方が効率良く、設備も経済的である。
 2.分離する工程
 本開示では、前記異性化反応後、蒸留により、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)とに分離する工程を含み、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を製造する(図2)。
 本開示で、原料とするトランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)とでは、E体の方が低沸点である(表2)。
Figure JPOXMLDOC01-appb-T000004
 本開示で、トランス-1-ハロ-2-フルオロエチレン(E体)を得る時は、シス-1-ハロ-2-フルオロエチレン(Z体)に光照射を行いながら、蒸留により、トランス-1-ハロ-2-フルオロエチレン(E体)を分離することが好ましい(図2及び図3)。この操作により、光照射後のE体とZ体との平衡組成に関わらず、トランス-1-ハロ-2-フルオロエチレン(E体)を連続的に効率良く生産することが可能となる。
 前記異性化反応で得られた反応生成物を、例えば、トランス-1-ハロ-2-フルオロエチレン(E体)を主成分とする第1ストリームと、シス-1-ハロ-2-フルオロエチレン(Z体)を主成分とする第2ストリームとに分離する。具体的には、異性化反応により生成した反応器出口ガスを、冷却して液化させた後、蒸留して、トランス-1-ハロ-2-フルオロエチレン(E体)を主成分とする第1ストリームと、シス-1-ハロ-2-フルオロエチレン(Z体)を主成分とする第2ストリームとに分離する。
 3.リサイクルする工程
 本開示では、トランス-1-ハロ-2-フルオロエチレン(E体)又はシス-1-ハロ-2-フルオロエチレン(Z体)のいずれかの含有割合がより高められた組成物を回収するために、前記分離する工程で得られた、トランス-1-ハロ-2-フルオロエチレン(E体)を主成分とする第1ストリーム、或はシス-1-ハロ-2-フルオロエチレン(Z体)を主成分とする第2ストリームとを、前記異性化反応にリサイクルすることができる。
 本開示では、前記分離する工程の後、好ましくは、シス-1-ハロ-2-フルオロエチレン(Z体)を、前記反応器に移し、リサイクルして、再び異性化反応に供する工程を含み、トランス-1-ハロ-2-フルオロエチレン(E体)を製造する(図2)。分離する工程の後、例えば、シス-1-ハロ-2-フルオロエチレン(Z体)を主成分とする第2ストリームをリサイクルすることによって、リサイクル後の異性化反応において、トランス-1-ハロ-2-フルオロエチレン(E体)の含有割合がより高められた組成物を得ることができる。
 トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物に、光照射し、異性化反応を行うと、反応後の平衡組成は大きくZ体に偏る(一例として増感剤にベンゾフェノンを用いた場合、E体:Z体≒5:95)。その為、本開示では、前記光照射後、E体を分離し、純粋なZ体をリサイクルして、再び光照射により異性化反応を行うことで、E体を増加させることが可能である。
 本開示では、また、リサイクル工程において、トランス-1-ハロ-2-フルオロエチレン(E体)を主成分とする第1ストリームをリサイクルすることによって、リサイクル後の異性化反応において、シス-1-ハロ-2-フルオロエチレン(Z体)の含有割合がより高められた組成物を得ることができる。
 4.異性化反応と蒸留による分離とを同時進行する工程
 本開示では、前記反応器に蒸留塔のスチル(still)部を用い、前記異性化反応と、蒸留によりトランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との分離とを同時に実施する(反応蒸留)ことが好ましい。
 本開示では、シス-1-ハロ-2-フルオロエチレン(Z体)からトランス-1-ハロ-2-フルオロエチレン(E体)への異性化反応を実施する場合、E体に比べて高沸点なZ体と溶媒、増感剤は必ずしも分離する必要が無いことから、連続式反応装置を使用することによって、蒸留塔スチル(still)部で光異性化反応を行いつつ、効率良く蒸留によってE体を連続的に得ることができ、設備も経済的である。
 5.好ましい製造方法
 好ましいトランス-1-ハロ-2-フルオロエチレン(E体)の製造方法
 図3に、本開示におけるトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法において、効率的にシス-1-ハロ-2-フルオロエチレン(Z体)からトランス-1-ハロ-2-フルオロエチレン(E体)を連続的に生産する製造設備の概略を示す。
 光照射後の平衡組成はシス-1-ハロ-2-フルオロエチレン(Z体)に偏る(一例として増感剤にベンゾフェノンを用いた場合、E体:Z体≒5:95)。原料(反応ガス)(図3の1)中、トランス-1-ハロ-2-フルオロエチレン(E体)の方が低沸点であるため、シス-1-ハロ-2-フルオロエチレン(Z体)に光照射を行いながら(図3の6)、トランス-1-ハロ-2-フルオロエチレン(E体)を分離する(図3の7)ことが好ましい。これにより光照射後の平衡組成に関わらず、トランス-1-ハロ-2-フルオロエチレン(E体)を連続的に生産することが可能となる。
 本開示では、シス-1-ハロ-2-フルオロエチレン(Z体)からトランス-1-ハロ-2-フルオロエチレン(E体)への異性化反応を実施する場合、例えば、連続式反応装置を使用することによって、蒸留塔スチル(still)部(図3の6)で光異性化反応を行いつつ、効率良く、蒸留によってE体を連続的に得る(図3の7及び8)ことができ、設備も経済的である。本開示では、シス-1-ハロ-2-フルオロエチレン(Z体)からトランス-1-ハロ-2-フルオロエチレン(E体)を生産する場合には、光異性化反応と蒸留分離とを同時に実施することが好ましい。
 好ましいシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法
 図4に、本開示におけるトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法において、効率的にトランス-1-ハロ-2-フルオロエチレン(E体)からシス-1-ハロ-2-フルオロエチレン(Z体)を生産する製造設備の概略を示す。
 本開示では、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)とでは、光照射後の平衡組成が大幅にZ体に偏るため、平衡組成に達するまで光照射を行った後に(図4の2)、残余のトランス-1-ハロ-2-フルオロエチレン(E体)を分離し(図4の4及び5)、再利用して(図4の6)、再度、光照射により、異性化反応を行う(図4の2)ことが好ましい。本開示では、トランス-1-ハロ-2-フルオロエチレン(E体)からシス-1-ハロ-2-フルオロエチレン(Z体)を生産する場合には、蒸留塔のスチル部内が平衡組成に達するまでは光照射のみを行い(図4の4)、最後に残ったE体のみを分離すること(図4の5)が好ましい。
 本開示における製造方法によれば、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を製造する際に副生することが不可避な所望しない異性体を、高効率的に所望の異性体に変換することが可能となり、所望の異性体を生産する方法の経済性を大きく向上することができる。本開示における製造方法により製造したトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)は、例えば、樹脂製品原料、有機合成中間体、熱媒体等の各種用途に、有効に用いることができる。
 以下、実施例を挙げて本開示を説明するが、本開示はこれらの実施例等に限定されるものではない。
 (1)異性化反応
 液化したシス-1,2-ジフルオロエチレン(HFO-1132(Z))を用いた。光照射前では、前記シス-1,2-ジフルオロエチレン(HFO-1132(Z))(組成物)には、19F-NMR測定を行うと、300ppmのトランス-1,2-ジフルオロエチレン(HFO-1132(E))が含まれていた。
 反応器として外径4mm、内径3mmのPFA樹脂製チューブを用いた。光増感剤としてベンゾフェノンを用い、ベンゾフェノンのアセトニトリル溶液(ベンゾフェノン濃度50mM)315μLと、前記液化したシス-1,2-ジフルオロエチレン(HFO-1132(Z))とを含む組成物77μLを、前記反応器に封入した。前記反応器の液相部に対して、室温で、250Wの高圧水銀ランプ(主に230nm~440nmの波長を有する光)を照射した。
 (2)異性化反応の結果
 光照射開始から、1時間後、3時間後、及び9時間後の時点に、19F-NMR測定を行い、液相の組成を確認した。液相内のHFO-1132(Z)とHFO-1132(E)とのモル比は、HFO-1132(Z):HFO-1132(E)が、夫々96.38:3.62(光照射開始から1時間後)、95.48:4.52(光照射開始から3時間後)、95.12:4.88(光照射開始から9時間後)となった。
 HFO-1132(Z)を含む反応器(液相)に、光増感剤を添加し、光照射により、HFO-1132(Z)からHFO-1132(E)への異性化反応の進行が確認された。また、光照射開始から9時間の時点で、ほぼ平衡組成に達していることが確認された。
 図5に、光照射前及び光照射9時間後のサンプルの19F-NMRスペクトルを示す。
 比較実験として、上記方法で、ベンゾフェノン(光増感剤)を含むアセトニトリル溶液に替えて、光増感剤を添加していないアセトニトリルを用いて光照射を行った。比較実験では、HFO-1132(E)の生成は確認されなかった。
 本開示の製造方法により、目的とするトランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を効率よく製造する方法が構築でき、特にHFO-1132(E)を高効率的に得ることが可能であると評価できた。

Claims (8)

  1.  反応器に、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を供給し、光増感剤の存在下、光照射により、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含む、トランス-1-ハロ-2-フルオロエチレン(E体)及び/又はシス-1-ハロ-2-フルオロエチレン(Z体)の製造方法。
  2.  反応器に、シス-1-ハロ-2-フルオロエチレン(Z体)を、又はトランス-1-ハロ-2-フルオロエチレン(E体)及びシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を、供給し、光増感剤の存在下、光照射を行うことにより、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含み、トランス-1-ハロ-2-フルオロエチレン(E体)を製造する、請求項1に記載の製造方法。
  3.  反応器に、トランス-1-ハロ-2-フルオロエチレン(E体)を、又はトランス-1-ハロ-2-フルオロエチレン(E体)及びシス-1-ハロ-2-フルオロエチレン(Z体)を含む組成物を、供給し、光増感剤の存在下、光照射を行うことにより、液相で、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との間の異性化反応を行う工程を含み、シス-1-ハロ-2-フルオロエチレン(Z体)を製造する、請求項1に記載の製造方法。
  4.  前記光照射を、200nm以上450nm以下の波長を有する光を照射して行う、請求項1~3のいずれか1項に記載の製造方法。
  5.  前記異性化反応後、蒸留により、トランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)とに分離する工程を含む、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記分離する工程の後、シス-1-ハロ-2-フルオロエチレン(Z体)を、前記異性化反応にリサイクルして、再び異性化反応に供する工程を含み、トランス-1-ハロ-2-フルオロエチレン(E体)を製造する、請求項5に記載の製造方法。
  7.  前記分離する工程の後、トランス-1-ハロ-2-フルオロエチレン(E体)を、前記異性化反応にリサイクルして、再び異性化反応に供する工程を含み、シス-1-ハロ-2-フルオロエチレン(Z体)を製造する、請求項5に記載の製造方法。
  8.  前記反応器に蒸留塔のスチル(still)部を用い、前記異性化反応と、蒸留によりトランス-1-ハロ-2-フルオロエチレン(E体)とシス-1-ハロ-2-フルオロエチレン(Z体)との分離とを同時に実施する、請求項1、2又は4に記載の製造方法。
PCT/JP2020/022917 2019-06-10 2020-06-10 1-ハロ-2-フルオロエチレンの製造方法 WO2020250949A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20821598.8A EP3981754B1 (en) 2019-06-10 2020-06-10 Method for manufacturing 1-halo-2-fluoroethylene
CN202080042867.7A CN113966321A (zh) 2019-06-10 2020-06-10 1-卤-2-氟乙烯的制造方法
US17/544,109 US12054445B2 (en) 2019-06-10 2021-12-07 Method for manufacturing 1-halo-2-fluoroethylene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019107969A JP6870704B2 (ja) 2019-06-10 2019-06-10 1−ハロ−2−フルオロエチレンの製造方法
JP2019-107969 2019-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/544,109 Continuation US12054445B2 (en) 2019-06-10 2021-12-07 Method for manufacturing 1-halo-2-fluoroethylene

Publications (1)

Publication Number Publication Date
WO2020250949A1 true WO2020250949A1 (ja) 2020-12-17

Family

ID=73742440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022917 WO2020250949A1 (ja) 2019-06-10 2020-06-10 1-ハロ-2-フルオロエチレンの製造方法

Country Status (5)

Country Link
US (1) US12054445B2 (ja)
EP (1) EP3981754B1 (ja)
JP (1) JP6870704B2 (ja)
CN (1) CN113966321A (ja)
WO (1) WO2020250949A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048438A1 (ja) * 2022-09-01 2024-03-07 学校法人東京理科大学 ジアステレオマー調製方法及び固相光増感剤

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229768A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 熱サイクル用作動媒体およびその製造方法
JP2019214535A (ja) * 2018-06-13 2019-12-19 ダイキン工業株式会社 ジフルオロエチレンの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181186A1 (en) * 2007-07-20 2010-07-22 Solvay Fluor Gmbh Process for obtaining a purified hydrofluoroalkane
JP2014118162A (ja) * 2012-12-13 2014-06-30 Kyodo Printing Co Ltd 剥離できる蓋材及びその蓋材を有する容器
US20140275644A1 (en) * 2013-03-14 2014-09-18 Honeywell International Inc. Method to produce cis-1-chloro-3,3,3-trifluoropropene
CN107709278B (zh) * 2015-06-30 2020-12-18 Agc株式会社 氢氯氟烯烃的制造方法以及2,3,3,3-四氟丙烯的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229768A (ja) * 2014-06-06 2015-12-21 旭硝子株式会社 熱サイクル用作動媒体およびその製造方法
JP2019214535A (ja) * 2018-06-13 2019-12-19 ダイキン工業株式会社 ジフルオロエチレンの製造方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Handbook of Chemistry: Volume Applied Chemistry; 6th edition", 2003, CHEMICAL SOCIETY OF JAPAN, JP, ISBN: 4-621-07138-6, article "Passage; Handbook of Chemistry: Volume Applied Chemistry; 6th edition", pages: 176, 177, 190, 191, XP009532542 *
ARAI TATSUO, TOKUMARU KATSUMI: "Novel Insight into the Photochemical cis-trans Isomerization of Olefins", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, vol. 44, no. 11, 1986, Japan, pages 999 - 1009, XP055771604 *
CRAIG, N. C. ET AL.: "Thermodynamics of cis-trans Isomerizations. The 1, 2- Difluoroethylenes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 83, 1961, pages 3047 - 3050, XP055663370 *
GUILLORY WILLIAM A., ANDREWS GEORGE H.: "The vacuum‐ultraviolet photolysis of the difluoroethylenes", THE JOURNAL OF CHEMICAL PHYSICS, vol. 62, no. 8, 15 April 1975 (1975-04-15), US , pages 3208 - 3216, XP009532505, ISSN: 0021-9606, DOI: 10.1063/1.430871 *
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, vol. 8, 1976, pages 519 - 528
MATSUURA TERUO: "Photochemical Reactions in Organic Synthesis", YUKI GOSEI KAGAKU KYOKAISHI - JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, vol. 30, no. Special, 1 January 1972 (1972-01-01), JP , pages 83 - 97, XP055876526, ISSN: 0037-9980, DOI: 10.5059/yukigoseikyokaishi.30.Special_83 *
See also references of EP3981754A4
STRAUSZ O P, NORSTROM R J, SALAHUB D, GOSAVI R K, GUNNING E, CSIZMADIA I G: "Mercury 6(3P1) Photosensitization of Mono- and Difluoroethylenes. Correlation of Mechanism with Calculated Molecular Orbital Energy Levels", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 92, no. 22, 1970, pages 6395 - 6402, XP055771601 *
WAMPLER, F. B. ET AL.: "The S02(3B1) Photosensitized Isomerization of cis-and trans-1, 2-dichloroethylene", INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, vol. 8, no. 4, July 1976 (1976-07-01), pages 511 - 517, XP055663372 *
WAMPLER, F. B.: "The Photolysis of S02 at 3080A in the Presence of Cis- and Trans-1, 2- Difluoroethylene", INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, vol. 8, July 1976 (1976-07-01), pages 519 - 528, XP055771599 *
WAMPLER, F. B.: "The S02(3B1) Photosensitized Isomerization of Cis- and Trans-1, 2- Difluoroethylene", INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, vol. 8, 1976, pages 511 - 517, XP055663372 *

Also Published As

Publication number Publication date
EP3981754A1 (en) 2022-04-13
JP6870704B2 (ja) 2021-05-12
EP3981754B1 (en) 2024-11-06
US12054445B2 (en) 2024-08-06
US20220089513A1 (en) 2022-03-24
CN113966321A (zh) 2022-01-21
JP2020200265A (ja) 2020-12-17
EP3981754A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
US10399915B2 (en) Manufacturing method of 1-chloro-2,3,3,3-tetrafluoropropene
EP1943202B1 (en) Method for producing fluorinated organic compounds
JP5027670B2 (ja) 光化学反応用の末端官能化パーフルオロ(アルキルビニルエーテル)反応器壁の官能化共重合体、炭化水素およびハロ炭化水素中のフッ素含有率の増加方法およびオレフィン製造方法
JP2010533678A (ja) 精製ヒドロフルオロアルカンを得るための方法
EP3442935A1 (en) Process for the manufacture of 2,3,3,3-tetrafluoropropene
US5705779A (en) Preparation of 1,1,1,3,3-pentachloropropane by photochlorination of 1,1,1,3-tetrachloropropane
WO2005023734A1 (ja) 含塩素含フッ素化合物の製造方法
JP6870704B2 (ja) 1−ハロ−2−フルオロエチレンの製造方法
TW201623198A (zh) 用於製造高純度氯化烷烴的方法
JP5266902B2 (ja) 含フッ素オレフィン化合物の製造方法
JP2000007593A (ja) ペルフルオロ(n−ペンタン)の製造方法
WO2020250914A1 (ja) ジフルオロエチレンの製造方法
EP3995479A1 (en) Alkane production method
ES2705051T3 (es) Procedimiento para la fabricación de olefinas fluoradas
EP3303273A1 (en) Method for producing fluorinated olefins
WO2019168115A1 (ja) 1,2-ジクロロ-2,3,3,3-テトラフルオロプロパンの製造方法及び1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
JP2020193173A (ja) ハロゲン化物の製造方法
JP6809589B1 (ja) ジフルオロエチレンの製造方法
WO2022191185A1 (ja) 1,1,2-トリフルオロエタンの製造方法
JP2006257019A (ja) 1,1−ジフルオロエテンおよび1,1,1−トリフルオロエタンの製造方法
JP2015117188A (ja) トリフルオロエチレンの製造方法
WO2014208452A1 (ja) トリフルオロエチレンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020821598

Country of ref document: EP

Effective date: 20220110