WO2020125562A1 - 含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 - Google Patents
含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 Download PDFInfo
- Publication number
- WO2020125562A1 WO2020125562A1 PCT/CN2019/125440 CN2019125440W WO2020125562A1 WO 2020125562 A1 WO2020125562 A1 WO 2020125562A1 CN 2019125440 W CN2019125440 W CN 2019125440W WO 2020125562 A1 WO2020125562 A1 WO 2020125562A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- tin
- binder
- conductive agent
- electrode material
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application belongs to the field of batteries, and particularly relates to tin-containing negative electrode materials, negative electrodes, preparation methods thereof, negative electrode slurries, secondary batteries, and electrical equipment.
- Tin-graphite dual ion batteries have the advantages of higher specific energy density and lower cost. Its working mechanism involves the following processes: during the charging process, the cation and the negative electrode are alloyed, and the anion intercalates into the graphite positive electrode; while during the discharge process, the negative electrode is dealloyed, and the anion is deintercalated from the graphite positive electrode. During the charging and discharging process, the negative electrode tin exhibits significant volume change and pulverization. Therefore, surface modification of tin anodes is of great significance in the development of tin-graphite dual ion batteries.
- tin foil as a negative electrode current collector and active material is widely used in potassium ion batteries, sodium ion batteries and calcium ion batteries.
- the dual-ion battery based on tin anode-graphite cathode has become a research hotspot due to its high power density.
- the tin foil has a significant occurrence
- the change in volume causes powdering of the electrodes, which causes the battery capacity to decay.
- the current solution is to use carbon-coated tin foil to solve the problem of tin foil volume expansion and powdering.
- this preparation method is complicated, and the formed carbon coating layer is prone to cracking, and cannot effectively solve the problem of volume expansion of the tin anode.
- the first object of the present application is to provide a tin-containing anode material to alleviate the problem that the current tin anode tends to swell and pulverize during charging and discharging.
- the second object of the present application is to provide a method for preparing a tin-containing negative electrode material.
- the third object of the present application is to provide a negative electrode slurry containing the foregoing tin-containing negative electrode material.
- the fourth object of the present application is to provide a negative electrode.
- the raw material of the negative electrode includes the foregoing tin-containing negative electrode material, and the negative electrode has the advantage of good cycle performance.
- the fifth object of the present application is to provide a secondary battery including the above-mentioned negative electrode, and the secondary battery has an advantage of good cycle performance.
- the sixth object of the present application is to provide an electric device including the above secondary battery.
- An aspect of the present application provides a tin-containing negative electrode material, which includes, by weight percentage, tin particles 70% to 90%, an elastic binder 5% to 15%, and a conductive agent 5% to 15%;
- the tin particles are micron or nanoscale tin particles.
- the technical solutions adopted in the embodiments of the present application further include: by weight percentage: tin particles 72% to 88%, elastic binder 6% to 14%, and conductive agent 6% to 14%.
- the technical solution adopted in the embodiments of the present application further includes: by weight percentage: tin particles 75%-85%, elastic binder 8%-12% and conductive agent 8%-12%.
- the elastic binder includes an alginate binder, a polysaccharide binder, a carboxymethyl cellulose salt binder, a polyolefin binder, At least one of polyurethane-based adhesive, polyester-based adhesive, polyamide-based adhesive, or polyimide-based adhesive.
- the elastic binder includes calcium alginate, cyclodextrin polymer, gum arabic, xanthan gum, guar gum, locust bean gum, karaya gum, arabic resin -Polyacrylic acid copolymer, vinyl acetate resin, polyacrylic acid-polyvinyl alcohol copolymer, polyvinyl alcohol-polyethyleneimine copolymer, polyacrylic acid-carboxymethylcellulose sodium copolymer, ammonium polyacrylate, sodium polyacrylate At least one of sodium carboxymethyl cellulose or sodium alginate-carboxymethyl chitosan copolymer.
- the conductive agent includes an organic conductive agent and/or an inorganic conductive agent
- the organic conductive agent includes an ionic organic conductive agent and/or an electronic organic conductive agent
- the ionic organic conductive agent includes: at least one of polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene oxalate, or polyethylene glycol imine;
- the electronic organic conductive agent includes at least one of polypyrrole, polyparaphenylene, polyphenylene sulfide, polythiophene, polyparaphenylene vinylene, and polyaniline;
- the inorganic conductive agent includes a conductive carbon material and/or a conductive metal material.
- the technical solutions adopted in the embodiments of the present application further include: 0.5% to 2% of the coupling agent in terms of weight percentage;
- the coupling agent includes at least one of a chromium complex coupling agent, a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent.
- a method for preparing a tin-containing negative electrode material is provided.
- the tin particles, the elastic binder, the conductive agent, and optionally the coupling agent are mixed to obtain the Tin anode material.
- Another aspect of the present application provides a negative electrode slurry, which is obtained by mixing a tin-containing negative electrode material with an organic solvent;
- Another aspect of the present application provides a negative electrode including a negative electrode current collector and a negative electrode material layer formed on the surface of the negative electrode current collector, the negative electrode material layer being prepared from the foregoing tin-containing negative electrode material.
- Another aspect of the present application provides a secondary battery including a positive electrode, an electrolyte, a separator, and the above negative electrode;
- the secondary battery includes a single ion battery and a dual ion battery
- the dual ion battery includes a tin-graphite dual ion battery.
- Another aspect of the present application provides an electric device including the above secondary battery.
- the tin-containing negative electrode material provided in this application uses tin particles as the negative electrode active material, and a protective layer is formed on the surface of the tin particles by adding an elastic binder.
- the protective layer solves the problem caused by the direct contact of the tin particles with the electrolyte Corrosion problem; on the other hand, because the elastic binder has a certain resistance to deformation, it can suppress the volume expansion and powdering of the negative electrode tin to a certain extent.
- a binder that is in firm contact with tin particles and has elasticity, it acts as an artificial elastic SEI film while binding the negative electrode active material, which serves to isolate the tin particles from contacting the electrolyte and ensure the stable wrapping of the tin particle surface.
- a conductive agent By adding a conductive agent, it can be matched with an elastic binder to improve the conductivity of the tin-containing negative electrode material.
- the distance between the adhesive anchor point of the elastic adhesive and the tin particles will increase, and the use of the elastic adhesive can ensure the adhesive in the process The layer does not crack.
- the percentage (%) or part refers to the weight percentage or part by weight relative to the composition.
- the numerical range “a-b” represents an abbreviated representation of any combination of real numbers between a and b, where a and b are both real numbers.
- the numerical range “6-22” means that all real numbers between “6-22” have been listed in this article, and “6-22" is just an abbreviated representation of these numerical combinations.
- the forms of the "lower limit” and the upper limit disclosed in the “range” of this application may be one or more lower limits and one or more upper limits, respectively.
- each reaction or operation step may be performed sequentially or in order.
- the reaction methods herein are performed sequentially.
- the present application provides a tin-containing negative electrode material, which includes, by weight percentage, tin particles 70% to 90%, an elastic binder 5% to 15%, and a conductive agent 5% to 15%.
- the tin-containing negative electrode material provided in this application uses tin particles as the negative electrode active material, and a protective layer is formed on the surface of the tin particles by adding an elastic binder.
- the protective layer solves the problem caused by the direct contact of the tin particles with the electrolyte Corrosion problem; on the other hand, because the elastic binder has a certain resistance to deformation, it can suppress the volume expansion and powdering of the negative electrode tin to a certain extent.
- a binder that is in firm contact with tin particles and has elasticity, it acts as an artificial elastic SEI film while binding the negative electrode active material, which serves to isolate the tin particles from contacting the electrolyte and ensure the stable wrapping of the tin particle surface.
- a conductive agent By adding a conductive agent, it can be matched with an elastic binder to improve the conductivity of the tin-containing negative electrode material.
- the distance between the adhesive anchor point of the elastic adhesive and the tin particles will increase, and the use of the elastic adhesive can ensure the adhesive in the process The layer does not crack.
- the content of tin particles in terms of weight percentage is typical but not limited, for example: 70%, 72%, 75%, 78%, 80%, 82%, 85%, 88 % Or 90%;
- typical but non-limiting examples of elastic binders are: 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14% or 15 %.
- Typical but non-limiting examples of the conductive agent may be: 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, or 15%.
- the percentage by weight includes: tin particles 72% to 88%, elastic binder 6% to 14% and conductive agent 6% to 14%, further preferably: tin particles 75% to 85%, elastic binder 8%-12% and conductive agent 8%-12%.
- the structural stability of the tin-containing anode material can be further improved, thereby improving the cycle stability of the battery.
- the tin particles are micron or nanoscale tin particles.
- the micron or nanometer tin particles mean that the particle size of the tin particles is in the micron or nanometer range, for example, the tin particle size is in the range of several nanometers to tens of micrometers.
- the small-scale negative electrode active material helps to increase the specific surface area and suppress the volume expansion of the material.
- the use of anode materials containing micron or nanoscale tin particles can effectively solve the current problems of tin anodes prone to powdering and low rate performance.
- the specific principles of using tin particles to solve the above problems are as follows:
- the elastic binder includes alginate binders, polysaccharide binders, carboxymethyl cellulose salt binders, polyolefin binders, polyurethanes At least one of an adhesive, a polyester-based adhesive, a polyamide-based adhesive, or a polyimide-based adhesive.
- the elastic binder may be calcium alginate (Ca-Alg for short), cyclodextrin polymer (CDp for short), gum arabic (GA for short), xanthan gum (XG for short), guar bean Gum (abbreviated as GG), locust bean gum (abbreviated as LBG), karaya gum (abbreviated as KG), Arabic resin-polyacrylic acid copolymer (abbreviated as GA-PAA), vinyl acetate resin (abbreviated as PVAc), polymer Acrylic acid-polyvinyl alcohol copolymer (abbreviated as PAA-PVA), polyvinyl alcohol-polyethyleneimine copolymer (abbreviated as PVA-PEI), polyacrylic acid-carboxymethyl cellulose sodium copolymer (abbreviated as PAA-CMC) ), ammonium polyacrylate (referred to as PAA-NH4), sodium polyacrylate grafted sodium carboxymethyl cellulose (referred to as
- the above-mentioned elastic adhesive also covers some rubber-based adhesives, such as natural rubber NR, styrene-butadiene rubber SBR, butadiene rubber BR, isoprene rubber IR, neoprene CR, butyl rubber IIR, nitrile rubber NBR, hydrogenated nitrile rubber HNBR, ethylene propylene rubber EPM ⁇ EPDM, silicone rubber Q, fluorine rubber FPM, polyurethane rubber AU ⁇ EU, acrylic rubber ACM ⁇ AEM, chlorosulfonated polyethylene rubber CSM, chlorine At least one of ether rubber CO ⁇ ECO or chlorinated polyethylene rubber CM ⁇ CPE.
- rubber-based adhesives such as natural rubber NR, styrene-butadiene rubber SBR, butadiene rubber BR, isoprene rubber IR, neoprene CR, butyl rubber IIR, nitrile rubber NBR, hydrogenated nitrile rubber HNBR,
- the stability of the tin-containing negative electrode material during charge and discharge can be further improved, thereby further improving the cycle stability of the battery.
- the conductive agent includes an organic conductive agent and/or an inorganic conductive agent.
- the inorganic conductive agent includes a conductive carbon material and/or a conductive metal material.
- the carbon conductive material may be conductive carbon black, conductive carbon spheres, conductive graphite, graphene, carbon nanotubes, carbon nanoribbons, carbon fiber, reduced graphene oxide;
- the conductive metal material may be copper simple nanomaterials (nanowire, nanometer Tubes, nanosheets, nanoribbons, nanoparticles, etc.) or silver nanomaterials.
- the organic conductive agent is an organic substance with a certain conductivity, and at the same time, the organic substance can have a certain adhesiveness. Therefore, when the conductive agent is an organic substance with a certain adhesion, it can not only function as a conductive agent but also as a binder. When an organic substance with a binder is used as a conductive agent, a coating layer can be formed on the surface of the tin particles, which further reduces the expansion of the tin particles and reduces the occurrence of pulverization.
- the inorganic conductive agent has a particle structure and a large volume size. During the expansion of the tin particles, it will squeeze with it. The larger volume of conductive agent particles may crush the tin particles, destroy the material structure, and reduce the battery performance.
- the use of organic conductive agents can be considered to be a more uniform conductive agent to a certain extent.
- the use of an organic conductive agent can form a uniform polymer coating layer on the surface of the tin particles, which can protect the tin particles from being damaged while playing a bonding role.
- another advantage of the cladding layer is that it can isolate the tin particles from the electrolyte to a greater extent, reduce the loss of materials and improve the conductivity.
- the organic conductive agent includes an ionic organic conductive agent and/or an electronic organic conductive agent.
- the ionic organic conductive agent may be, for example, at least one of polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene oxalate, or polyethylene glycol imine, preferably Polyethylene oxide.
- the electronic type organic conductive agent may be, for example, at least one of polypyrrole, polyparaphenylene, polyphenylene sulfide, polythiophene, polyparaphenylene vinylene, or polyaniline.
- the tin-containing negative electrode material includes a coupling agent by 0.5% to 2% by weight.
- Coupling agent is a kind of substance with two functional groups with different properties.
- the biggest feature of its molecular structure is that the molecule contains two groups with different chemical properties, one is an inorganic-philic group, and it is easy to react with the surface of inorganic substances. ;
- the other is an organophilic group that can chemically react with synthetic resins or other polymers or dissolve in hydrogen bonds. Therefore, the coupling agent is called "molecular bridge" to improve the interface between inorganic and organic substances, thereby greatly improving the performance of composite materials, such as physical properties, electrical properties, thermal properties and optical properties.
- adding a coupling agent to the tin-containing negative electrode material can greatly improve the interface contact between the tin particles and the binder, while ensuring that the binder can evenly cover the tin particles, under the effect of bonding The tin particles and the adhesive are firmly attached, and the contact between the tin particles and the electrolyte is blocked.
- a coupling agent to build a molecular bridge between the inorganic tin particles and the organic binder the adhesion of the binder is further increased by adding anchor points.
- the adhesion between the binder and the anode current collector is poor, which may easily cause the tin particles to peel off from the anode current collector during the charging and discharging process, and the use of the coupling agent It can increase the binding force of tin particles and negative electrode current collector and reduce the occurrence of flaking.
- typical but non-limiting coupling agents include at least one of chromium complex coupling agents, silane coupling agents, titanate coupling agents, or aluminate coupling agents.
- the coupling agent may be a chromium complex coupling agent, silane coupling agent, titanate coupling agent, aluminate coupling agent, chromium complex coupling agent-silane coupling agent combination, silane Combination of coupling agent-titanate coupling agent or combination of titanate coupling agent-aluminate coupling agent, etc.
- the present application provides a method for preparing a tin-containing negative electrode material, the preparation method is to mix the tin particles, the elastic binder, the conductive agent, and optionally the coupling agent, The tin-containing negative electrode material is obtained.
- the tin-containing negative electrode material obtained by the preparation method has all the advantages of the above negative electrode material, and will not be described here.
- the present application provides a negative electrode slurry, which is obtained by mixing the foregoing tin-containing negative electrode material with an organic solvent.
- the preparation of the above tin-containing negative electrode material into a negative electrode slurry is more convenient for the preparation of batteries.
- the negative electrode slurry may be prepared by mixing the tin particles, the elastic binder, the conductive agent, and the optional coupling agent, and grinding them uniformly. The negative electrode slurry is obtained.
- This method is the preparation method of conventional slurry, the process is mature and stable, and it is convenient to operate.
- the negative electrode slurry may be prepared, for example, by weighing tin particles, a binder, and a conductive agent at a certain weight ratio, placing each material in a mortar, and adding an appropriate amount of organic solvent to grind it uniformly. The negative electrode slurry is obtained.
- the negative electrode slurry may be prepared by providing a suspension composed of tin particles and an organic solvent, and dissolving an optional coupling agent in the suspension, and then The binder and the conductive agent are added and mixed uniformly to obtain the negative electrode slurry.
- the coupling agent is added to the suspension composed of tin particles and an organic solvent, which can make the coupling agent fully contact with the surface of the tin particles, a bonding reaction occurs, and then the binder is added, thereby increasing the tin particles and the binder The bonding strength between.
- the present application provides a negative electrode including a negative electrode current collector and a negative electrode material layer formed on the surface of the negative electrode current collector.
- the negative electrode material layer is prepared from the foregoing tin-containing negative electrode material.
- the material of the negative electrode current collector is, for example, at least one kind or an alloy of at least one kind selected from aluminum, lithium, magnesium, vanadium, copper, iron, tin, zinc, nickel, titanium, or manganese.
- the present application provides a method for preparing the foregoing negative electrode.
- the negative electrode material layer is prepared on the surface of the negative electrode current collector using the foregoing tin-containing negative electrode material to obtain the negative electrode.
- the above negative electrode slurry may be used to prepare the negative electrode.
- the negative electrode slurry may be coated on the surface of the negative electrode current collector and dried to obtain the negative electrode.
- the present application provides a secondary battery including a positive electrode, an electrolyte, a separator, and the above negative electrode.
- the electrolyte and the separator are between the positive electrode and the negative electrode.
- the secondary battery includes a single ion battery and a dual ion battery.
- the above-mentioned negative electrode in this application can be used not only in conventional single ion battery systems, such as lithium ion batteries, sodium ion batteries, potassium ion batteries, but also in battery system of metal alloying reaction, especially suitable for tin metal reaction In the battery system, for example, tin-graphite-based sodium-based, potassium-based and calcium-based dual-ion battery systems, and so on.
- the positive electrode includes a positive electrode current collector and a positive electrode material layer formed on the surface of the positive electrode current collector, and the positive electrode material layer includes a positive electrode active material, a positive electrode binder, and a positive electrode conductive agent.
- the content of the positive electrode active material is 60-95 wt%
- the content of the conductive agent is 2-30 wt%
- the content of the binder is 3-10 wt%.
- the positive electrode current collector is selected from at least one or an alloy of at least one of aluminum, lithium, magnesium, vanadium, copper, iron, tin, zinc, nickel, titanium, and manganese.
- the positive electrode current collector is tin foil.
- the positive electrode active material is graphite-based materials, including mesophase carbon microsphere graphite, natural graphite, expanded graphite, glassy carbon, carbon-carbon composite materials, carbon fiber, hard carbon, highly oriented graphite, carbon black, carbon nanotubes, graphene One or more kinds, preferably expanded graphite.
- the positive electrode conductive agent may be, for example, at least one of conductive carbon black, conductive carbon spheres, conductive graphite, carbon nanotubes, conductive carbon fiber, graphene, or reduced graphene oxide.
- the positive electrode conductive agent is conductive carbon black.
- the positive electrode binder may be, for example, at least one of polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, carboxymethyl cellulose, SBR rubber, or polyolefin.
- the positive electrode binder is polyvinylidene fluoride.
- the electrolyte salt in the electrolyte may be a lithium salt, a sodium salt, a potassium salt, a magnesium salt, a calcium salt, etc. according to the type of secondary battery.
- the sodium salt may be selected from sodium tetrafluoroborate, sodium bistrifluoromethylsulfonimide, sodium bisfluorosulfonimide, sodium chloride, sodium sulfate, sodium thiosulfate, sodium carbonate , Sodium bicarbonate, sodium nitrate, sodium fluoride, sodium phenolate, sodium butyrate, sodium oxalate, sodium succinate, sodium salicylate, sodium iodoacetate, sodium perchlorate, sodium sarcosinate, sodium octyl sulfate , Sodium hexafluorophosphate, sodium silicate, sodium methyldiflavinate, sodium acetate, sodium 1,5-naphthalene disulfonate, sodium dichromate, sodium
- the electrolyte solvent is selected from one or more of organic solvents such as esters, sulfones, ethers, nitriles or ionic liquids.
- the solvent may be, for example, propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), methyl formate (MF), acetic acid Methyl ester (MA), N,N-dimethylacetamide (DMA), fluoroethylene carbonate (FEC), methyl propionate (MP), ethyl propionate (EP), ethyl acetate (EA) , ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane Alkane (4MeDOL), dimethoxymethane (DMM), 1,2-dimethoxypropane (DMP), triethylene glycol dimethyl ether (DG), dimethyl sulfone (MSM), dimethyl ether
- the electrolyte may also contain additives, which may be one or more of organic additives such as esters, sulfones, ethers, nitriles or olefins, for example, fluoroethylene carbonate, vinylene carbonate, ethylene carbonate Ethylene, 1,3-propane sultone, 1,4-butane sultone, vinyl sulfate, propylene sulfate, ethylene sulfate, vinyl sulfite, propylene sulfite, dimethyl Sulfite, diethyl sulfite, ethylene sulfite, methyl chloroformate, dimethyl sulfoxide, anisole, acetamide, diazabenzene, m-diazepine, crown ether 12 -Crown-4, crown ether 18-crown-6, 4-fluoroanisole, fluorochain ether, difluoromethyl vinyl carbonate, trifluoromethyl vinyl carbonate,
- the present application provides an electrical device.
- the electrical equipment may be, for example, an electronic device, a power tool, an electric vehicle, or a power storage system.
- the secondary battery of the embodiment of the present application has a good cycle stability effect. The same effect can also be obtained in electronic devices, power tools, electric vehicles, and power storage systems using the secondary battery of the embodiment of the present application.
- the electronic device is an electronic device that uses a lithium ion battery as a power source for operation to perform various functions (for example, playing music).
- a power tool is a power tool that uses a lithium ion battery as a driving power source to move moving parts (for example, a drill bit).
- the electric vehicle is an electric vehicle that runs on a lithium ion battery as a driving power source, and may be an automobile (including a hybrid vehicle) equipped with other driving sources in addition to the lithium ion battery.
- the power storage system is a power storage system that uses a lithium ion battery as a power storage source.
- a lithium ion battery used as a power storage source
- the power stored in the lithium ion battery is consumed as necessary to enable various devices such as home electronic products.
- This embodiment is a negative electrode including a negative electrode current collector and a negative electrode material layer formed on the surface of the negative electrode current collector.
- the raw material of the negative electrode material layer includes nano-tin particles, an elastic binder and a conductive agent.
- the negative electrode current collector is tin foil
- the elastic binder is calcium alginate
- the conductive agent is polyethylene oxide PEO.
- the preparation method of the negative electrode includes the following steps:
- Examples 2 to 15 are each a negative electrode. The difference from Example 1 is that the elastic binder used is different, and the others are the same as Example 1. The selection of specific elastic binders of Examples 1 to 15 is shown in Table 1.
- Examples 16 to 20 are each a negative electrode. The difference from Example 1 is that the conductive agent used is different, and the others are the same as Example 1. The selection of specific conductive agents in Examples 1 to 15 is shown in Table 2.
- Examples 21 to 25 are respectively a negative electrode. Compared with Example 1, the types of raw materials are the same, but the difference is that the weight ratio of tin particles, elastic binder and conductive agent is different. The weight ratio of tin particles, elastic binder and conductive agent in Examples 21-25 is shown in Table 3.
- Examples 26 to 28 are each a negative electrode.
- the difference compared with Example 1 is that Examples 26 to 28 respectively add a coupling agent, and the amount of coupling agent added is 0.5% of the weight of the tin particles .
- the compounding ratio of each raw material of Examples 26 to 28 is shown in Table 4.
- This comparative example is a negative electrode, which is a metal tin sheet.
- This comparative example is a negative electrode, which differs from Example 1 in that the binder used is different.
- the binder in this comparative example is a PVDF binder, and the solvent used in the preparation process is an NMP solvent. Others are the same as in Example 1.
- This embodiment is a tin-graphite dual ion battery, and its preparation method includes the following steps:
- Tin-graphite dual-ion battery assembly in an inert gas-protected glove box, the prepared positive electrode, organic electrolyte, and the negative electrode in Example 1 are closely stacked in sequence, and then packaged into a button-type case to obtain a button Battery, complete battery assembly.
- Examples 30 to 56 are respectively a tin-graphite dual ion battery, which differs from Example 29 in that the negative electrodes used in the batteries in Examples 30 to 56 respectively correspond to the negative electrodes provided in Examples 2 to 28 .
- Comparative Examples 3 to 4 are respectively a tin-graphite dual ion battery, which is different from Example 29 in that the negative electrodes used in the batteries in Comparative Examples 3 to 4 respectively correspond to the negative electrodes provided in Comparative Examples 1 to 2 .
- the electrical properties of the tin-graphite dual ion batteries in Examples 29 to 56 and Comparative Examples 3 to 4 were tested respectively.
- the test item is the capacity retention rate of each group of batteries after 500 charge and discharge cycles.
- the test results are listed in Table 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备,属于电池领域。该含锡负极材料,按重量百分比计包括:锡颗粒70%~90%、弹性粘结剂5%~15%和导电剂5%~15%。利用该含锡负极材料能够缓解现有的锡金属负极作为电池负极时容易出现膨胀粉化导致循环性能差的技术问题,达到提高电池循环稳定性的目的。
Description
本申请属于电池领域,特别涉及含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备。
锡-石墨双离子电池具有比能量密度更高、成本更低的优点。它的工作机理涉及到如下过程:充电过程中,阳离子与负极发生合金化反应,阴离子插层进入石墨正极;而放电过程中,负极发生去合金化反应,阴离子从石墨正极脱嵌。由于在充放电过程中,负极锡呈现出显著的体积变化与粉化现象。所以,对锡负极进行表面改性在锡-石墨双离子电池的研发中具有重大意义。
目前,锡箔作为负极集流体与活性材料广泛运用于钾离子电池、钠离子电池和钙电离子电池。近期,基于锡负极-石墨正极的双离子电池由于具有高的功率密度而成为研究的热点,但该类双离子电池在充放电过程中,由于阳离子与锡金属发生合金化反应,导致锡箔发生显著的体积变化,造成电极粉化,从而引起电池容量衰减。为了降低锡箔负极的体积膨胀,目前的解决方法有:利用碳包覆锡箔的方法解决锡箔体积膨胀和粉化的问题。然而,这种制备方法复杂,且形成的碳包覆层易发生破裂,并不能有效解决锡负极体积膨胀的问题。
发明内容
本申请的第一目的在于提供一种含锡负极材料,以缓解目前锡负极在充放 电过程中容易产生膨胀发生粉化的问题。
本申请的第二目的在于提供一种含锡负极材料的制备方法。
本申请的第三目的在于提供一种包含上述含锡负极材料的负极浆料。
本申请的第四目的在于提供一种负极,该负极的原料包括上述含锡负极材料,该负极具有循环性能好的优点。
本申请的第五目的在于提供一种二次电池,该二次电池包括上述负极,该二次电池具有循环性能好的优点。
本申请的第六目的在于提供一种包括上述二次电池的用电设备。
为了实现本申请的上述目的,特采用以下技术方案:
本申请的一个方面,提供一种含锡负极材料,按重量百分比计包括:锡颗粒70%~90%、弹性粘结剂5%~15%和导电剂5%~15%;
所述锡颗粒为微米级或纳米级的锡颗粒。
本申请实施例采取的技术方案还包括:按重量百分比计包括:锡颗粒72%~88%、弹性粘结剂6%~14%和导电剂6%~14%。
本申请实施例采取的技术方案还包括:按重量百分比计包括:锡颗粒75%~85%、弹性粘结剂8%~12%和导电剂8%~12%。
本申请实施例采取的技术方案还包括:所述弹性粘结剂包括海藻酸盐类粘结剂、多糖类粘结剂、羧甲基纤维素盐粘结剂、聚烯烃类粘结剂、聚氨酯类粘结剂、聚酯类粘结剂、聚酰胺类粘结剂或聚亚胺类粘结剂中的至少一种。
本申请实施例采取的技术方案还包括:所述弹性粘结剂包括海藻酸钙、环糊精聚合物、阿拉伯树胶、黄原胶、胍尔豆胶、刺槐豆胶、刺梧桐树胶、阿拉伯树脂-聚丙烯酸共聚物、醋酸乙烯树脂、聚丙烯酸-聚乙烯醇共聚物、聚乙烯醇-聚乙烯亚胺共聚物、聚丙烯酸-羧甲基纤维素钠共聚物、聚丙烯酸铵、聚丙 烯酸钠接枝羧甲基纤维素钠或海藻酸钠-羧甲基壳聚糖共聚物中的至少一种。
本申请实施例采取的技术方案还包括:所述导电剂包括有机导电剂和/或无机导电剂;
所述有机导电剂包括离子型有机导电剂和/或电子型有机导电剂;
所述离子型有机导电剂包括:聚氧化乙烯、聚环氧丙烷、聚丁二酸乙二醇酯、聚葵二酸乙二酸酯或聚乙二醇亚胺中的至少一种;
所述电子型有机导电剂包括聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯、聚苯胺中的至少一种;
所述无机导电剂包括导电碳材料和/或导电金属材料。
本申请实施例采取的技术方案还包括:按重量百分比计包括偶联剂0.5%~2%;
所述偶联剂包括铬络合物偶联剂、硅烷偶联剂、钛酸酯偶联剂或铝酸盐偶联剂中的至少一种。
本申请的另一个方面,提供一种含锡负极材料的制备方法,将所述锡颗粒、所述弹性粘结剂和所述导电剂以及任选的所述偶联剂混合,得到所述含锡负极材料。
本申请的另一个方面,提供一种负极浆料,将含锡负极材料与有机溶剂混合后得到所述负极浆料;
将所述锡颗粒、所述弹性粘结剂和所述导电剂以及任选的偶联剂混合后研磨均匀,得到所述负极浆料;
或,提供锡颗粒与有机溶剂组成的悬浮液,并将任选的偶联剂溶于所述悬浮液中,再加入所述粘结剂和所述导电剂混合均匀,得到所述负极浆料。
本申请的另一个方面,提供一种负极,包括负极集流体和形成于所述负极 集流体表面的负极材料层,所述负极材料层由上述含锡负极材料制备而成。
本申请的另一个方面,提供一种二次电池,包括正极、电解液、隔膜和上述负极;
所述二次电池包括单离子电池和双离子电池;
所述双离子电池包括锡-石墨双离子电池。
本申请的另一个方面,提供一种用电设备,包括上述二次电池。
相对于现有技术,本申请实施例产生的有益效果在于:
本申请提供的含锡负极材料,以锡颗粒为负极活性材料,通过添加弹性粘结剂在锡颗粒表面形成一层防护层,该防护层一方面解决了锡颗粒直接与电解液接触而造成的腐蚀问题;另一方面,由于弹性粘结剂具有一定的抗形变的能力,在一定程度上可以抑制负极锡的体积膨胀及粉化。
通过使用与锡颗粒牢固接触且具有弹性的粘结剂,在粘结负极活性材料的同时作为人造弹性SEI膜,起到隔绝锡颗粒与电解液接触并保证稳定包裹锡颗粒表面的作用。通过添加导电剂,可以与弹性粘结剂相配合,提高含锡负极材料的导电性。
在电池的充放电过程中,当锡颗粒发生膨胀时,弹性粘结剂与锡颗粒之间的粘附锚点相隔距离会增大,弹性粘结剂的使用可保证在该过程中粘结剂层不发生破裂。
为了使本申请的目的、技术方案及优点更加清楚明白,下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施 例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
需要说明的是:
本申请中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方法可以相互组合形成新的技术方案。
本申请中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。
本申请中,如果没有特别的说明,百分数(%)或者份指的是相对于组合物的重量百分数或重量份。
本申请中,如果没有特别的说明,所涉及的各组分或其优选组分可以相互组合形成新的技术方案。
本申请中,除非有其他说明,数值范围“a~b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“6~22”表示本文中已经全部列出了“6~22”之间的全部实数,“6~22”只是这些数值组合的缩略表示。
本申请所公开的“范围”以下限和上限的形式,可以分别为一个或多个下限,和一个或多个上限。
本申请中,除非另有说明,各个反应或操作步骤可以顺序进行,也可以按照顺序进行。优选地,本文中的反应方法是顺序进行的。
除非另有说明,本文中所用的专业与科学术语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法或材料也可应用于本申请中。
一方面,本申请提供了一种含锡负极材料,按重量百分比计包括:锡颗粒70%~90%、弹性粘结剂5%~15%和导电剂5%~15%。
本申请提供的含锡负极材料,以锡颗粒为负极活性材料,通过添加弹性粘结剂在锡颗粒表面形成一层防护层,该防护层一方面解决了锡颗粒直接与电解液接触而造成的腐蚀问题;另一方面,由于弹性粘结剂具有一定的抗形变的能力,在一定程度上可以抑制负极锡的体积膨胀及粉化。
通过使用与锡颗粒牢固接触且具有弹性的粘结剂,在粘结负极活性材料的同时作为人造弹性SEI膜,起到隔绝锡颗粒与电解液接触并保证稳定包裹锡颗粒表面的作用。通过添加导电剂,可以与弹性粘结剂相配合,提高含锡负极材料的导电性。
在电池的充放电过程中,当锡颗粒发生膨胀时,弹性粘结剂与锡颗粒之间的粘附锚点相隔距离会增大,弹性粘结剂的使用可保证在该过程中粘结剂层不发生破裂。
本申请的含锡负极材料中,按重量百分比计,锡颗粒的含量典型但非限制性的例如可以为:70%、72%、75%、78%、80%、82%、85%、88%或90%;弹性粘结剂典型但非限制性的例如可以为:5%、6%、7%、8%、9%、10%、11%、12%、13%、14%或15%。导电剂典型但非限制性的例如可以为:5%、6%、7%、8%、9%、10%、11%、12%、13%、14%或15%。
在本申请的一些实施方式中,按重量百分比计包括:锡颗粒72%~88%、弹性粘结剂6%~14%和导电剂6%~14%,进一步优选为:锡颗粒75%~85%、弹性粘结剂8%~12%和导电剂8%~12%。
通过优化含锡负极材料的组成,可以进一步提高含锡负极材料的结构稳定性,从而提高电池的循环稳定性。
在本申请的一些实施方式中,所述锡颗粒为微米级或纳米级的锡颗粒。微米级或纳米级的锡颗粒是指锡颗粒的粒径在微米级或纳米级,例如锡颗粒的粒径在几纳米到几十微米范围内。
小尺度的负极活性材料有助于增大比表面积,抑制材料的体积膨胀。利用包含微米级或纳米级锡颗粒的负极材料可以有效解决目前锡负极易出现粉化、倍率性能低的问题,具体的,利用该锡颗粒解决上述问题的具体原理如下:
1)针对于膨胀粉化问题:Sn作为二次电池的负极时,由于在充放电过程中会发生合金化反应,从而导致材料本身在充放电过程中发生极大的不均匀的体积变化。对于常规金属箔负极而言,由于过大的尺寸导致金属箔无法适应剧烈的体积变化而出现粉化现象,并最终导致电池循环性能不佳。大量研究表明,降低材料的尺寸将会有效缓解体积变化导致的粉化问题,因此本申请通过将锡颗粒微米纳米化,并利用锡颗粒作为负极活性材料,在很大程度上缓解了膨胀粉化问题,有效提高电池的循环能力。
2)针对倍率不佳问题:在充放电过程中,传统利用Sn箔作为负极时,金属负极材料合金化后形成的合金导电性不佳,同时合金化过程的离子扩散过程相较于插层缓缓,导致金属负极表现出较差的倍率性能。本申请通过将Sn颗粒微米纳米化,增大了锡的比表面积,使得合金化位点大大增加,有效提高了金属合金化速度,进而改善金属材料作为负极的倍率性能。
在本申请的一些实施方式中,所述弹性粘结剂包括海藻酸盐类粘结剂、多糖类粘结剂、羧甲基纤维素盐粘结剂、聚烯烃类粘结剂、聚氨酯类粘结剂、聚酯类粘结剂、聚酰胺类粘结剂或聚亚胺类粘结剂中的至少一种。
例如,弹性粘结剂可以为海藻酸钙(简称为Ca-Alg)、环糊精聚合物(简称为CDp)、阿拉伯树胶(简称为GA)、黄原胶(简称为XG)、胍尔豆胶 (简称为GG)、刺槐豆胶(简称为LBG)、刺梧桐树胶(简称为KG)、阿拉伯树脂-聚丙烯酸共聚物(简称为GA-PAA)、醋酸乙烯树脂(简称为PVAc)、聚丙烯酸-聚乙烯醇共聚物(简称为PAA-PVA)、聚乙烯醇-聚乙烯亚胺共聚物(简称为PVA-PEI)、聚丙烯酸-羧甲基纤维素钠共聚物(简称为PAA-CMC)、聚丙烯酸铵(简称为PAA-NH4)、聚丙烯酸钠接枝羧甲基纤维素钠(简称为NaPPA-g-CMC)或海藻酸钠-羧甲基壳聚糖共聚物(简称为Alg-C-chitosan)中的至少一种。
另外,上述弹性粘结剂也涵盖一些橡胶类粘结剂,橡胶类粘结剂例如包括天然橡胶NR、丁苯橡胶SBR、顺丁橡胶BR、异戊橡胶IR、氯丁橡胶CR、丁基橡胶IIR、丁晴橡胶NBR、氢化丁晴橡胶HNBR、乙丙橡胶EPM\EPDM、硅橡胶Q、氟橡胶FPM、聚氨酯橡胶AU\EU、丙烯酸酯橡胶ACM\AEM、氯磺化聚乙烯橡胶CSM、氯醚橡胶CO\ECO或氯化聚乙烯橡胶CM\CPE中的至少一种。
通过优化弹性粘结剂的种类,可以进一步提高含锡负极材料在充放电过程中的稳定性,进而提高电池的循环稳定性。
在本申请的一些实施方式中,所述导电剂包括有机导电剂和/或无机导电剂。
无机导电剂包括导电碳材料和/或导电金属材料。例如,碳导电材料可以为导电炭黑、导电碳球、导电石墨、石墨烯、碳纳米管、碳纳米带、碳纤维、还原氧化石墨烯;导电金属材料可以为铜单质纳米材料(纳米线、纳米管、纳米片、纳米带、纳米颗粒等)或银单质纳米材料等。
有机导电剂为具有一定导电能力的有机物,同时,该有机物可以带有一定的粘结性。因此,当导电剂为具有一定粘结的有机物时,其不仅能够起到导电 剂的作用,还可以起到粘结剂的作用。利用带有粘结剂的有机物作为导电剂时,可以在锡颗粒表面形成包覆层,进一步减少锡颗粒的膨胀,降低粉化情况的发生。
另外,无机导电剂为颗粒结构,体积尺寸较大,在锡颗粒膨胀过程中,会与其发生挤压,较大体积的导电剂颗粒可能会压破锡颗粒,破坏材料结构,降低电池性能。而有机导电剂的使用在一定程度上可认为是更为均匀的导电剂。有机导电剂的使用可在锡颗粒表面形成均匀的高分子包覆层,在起到粘结作用的同时,保护锡颗粒不受损伤。另外,包覆层的另一个优点是能较大程度地隔绝锡颗粒与电解液接触,减少材料的损耗并提高导电性。
其中,有机导电剂包括离子型有机导电剂和/或电子型有机导电剂。离子型有机导电剂例如可以为:聚氧化乙烯、聚环氧丙烷、聚丁二酸乙二醇酯、聚葵二酸乙二酸酯或聚乙二醇亚胺中的至少一种,优选为聚氧化乙烯。电子型有机导电剂例如可以为聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯或聚苯胺中的至少一种。
在本申请的一些实施方式中,所述含锡负极材料按重量百分比计包括偶联剂0.5%~2%。
偶联剂是一类具有两不同性质官能团的物质,其分子结构的最大特点是分子中含有化学性质不同的两个基团,一个是亲无机物的基团,易于与无机物表面起化学反应;另一个是亲有机物的基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中。因此偶联剂被称作"分子桥",用以改善无机物与有机物之间的界面作用,从而大大提高复合材料的性能,如物理性能、电性能、热性能和光性能等。
本上述实施方式中,在含锡负极材料中加入偶联剂可以极大地改善锡颗粒 和粘结剂之间的界面接触,在保证粘结剂可均匀覆盖锡颗粒的同时,在成键作用下使得锡颗粒与粘结剂附着牢固,隔绝锡颗粒和电解液的接触。另一方面,通过使用偶联剂在无机锡颗粒与有机粘结剂之间构建分子桥,通过增加锚固点的方式进一步增加粘结剂的附着力。另外,在充放电过程中由于锡负极活性材料的体积变化,粘结剂与负极集流体的附着力差,容易导致锡颗粒在充放电过程中从负极集流体上剥落,而偶联剂的使用可增加锡颗粒与负极集流体的结合力,减少剥落情况的发生。
其中,偶联剂典型但非限制性的包括铬络合物偶联剂、硅烷偶联剂、钛酸酯偶联剂或铝酸盐偶联剂中的至少一种。例如,偶联剂可以为铬络合物偶联剂、硅烷偶联剂、钛酸酯偶联剂、铝酸盐偶联剂、铬络合物偶联剂-硅烷偶联剂的组合、硅烷偶联剂-钛酸酯偶联剂的组合或钛酸酯偶联剂-铝酸盐偶联剂的组合等等。
第二方面,本申请提供了一种含锡负极材料的制备方法,该制备方法是将所述锡颗粒、所述弹性粘结剂和所述导电剂以及任选的所述偶联剂混合,得到所述含锡负极材料。
利用该制备方法得到的含锡负极材料具备上述负极材料的全部优点,在此不再赘述。
第三方面,本申请提供了一种负极浆料,将上述含锡负极材料与有机溶剂混合后得到所述负极浆料。
将上述含锡负极材料制备成负极浆料更方便电池的制备。
在本申请的一些实施方式中,所述负极浆料可以通过以下方法制备得到:将所述锡颗粒、所述弹性粘结剂和所述导电剂以及任选的偶联剂混合后研磨均匀,得到所述负极浆料。
该方法为常规浆料的制备方法,工艺成熟稳定,方便操作。
该实施方式中,负极浆料例如可以通过以下方法制备得到:按一定重量比称取锡颗粒、粘结剂和导电剂,将各物料置于研钵中,滴加适量有机溶剂研磨均匀后,得到所述负极浆料。
在本申请的另一些实施方式中,所述负极浆料可以通过以下方法制备得到:提供锡颗粒与有机溶剂组成的悬浮液,并将任选的偶联剂溶于所述悬浮液中,再加入所述粘结剂和所述导电剂混合均匀,得到所述负极浆料。
先将偶联剂加入锡颗粒与有机溶剂组成的悬浮液中,可以使偶联剂与锡颗粒表面充分接触,发生键合反应,然后再加入粘结剂,从而提高锡颗粒与粘结剂之间的结合强度。
第四方面,本申请提供了一种负极,包括负极集流体和形成于所述负极集流体表面的负极材料层,所述负极材料层由上述含锡负极材料制备而成。
其中,负极集流体的材质例如选自铝、锂、镁、钒、铜、铁、锡、锌、镍、钛或锰中的至少一种或至少一种的合金。
第五方面,本申请提供了一种上述负极的制备方法,利用上述含锡负极材料在所述负极集流体表面制备所述负极材料层后,得到所述负极。
为方便加工制备,可以将利用上述负极浆料制备该负极,例如,可以将负极浆料涂覆于所述负极集流体表面,干燥后得到所述负极。
第六方面,本申请提供了一种二次电池,包括正极、电解液、隔膜和上述负极。电解液和隔膜介于正极和负极之间。
其中,所述二次电池包括单离子电池和双离子电池。
本申请中的上述负极不仅可以用于常规的单离子电池体系,例如锂离子电池,钠离子电池,钾离子电池,还可以用于金属合金化反应的电池体系中,尤 其适用于于锡金属反应的电池体系中,例如基于锡-石墨的钠基、钾基以及钙基双离子电池体系等等。
通过选择不同的正极材料和电解液等原料与本申请提供的负极相匹配,可以得到多种形式的二次电池。
本申请的二次电池中,正极包括正极集流体和形成于正极集流体表面的正极材料层,而正极材料层包括正极活性材料、正极粘结剂和正极导电剂。其中,正极材料层中,正极活性材料的含量为60-95wt%,导电剂的含量为2-30wt%,粘结剂的含量为3-10wt%。
正极集流体选自铝、锂、镁、钒、铜、铁、锡、锌、镍、钛、锰中的至少一种或至少一种的合金。优选地,正极集流体为锡箔。
正极活性材料为石墨类材料,包括中间相碳微球石墨、天然石墨、膨胀石墨、玻璃碳、碳碳复合材料、碳纤维、硬碳、高取向石墨、炭黑、碳纳米管、石墨烯中的一种或几种,优选为膨胀石墨。
正极导电剂例如可以为导电炭黑、导电碳球、导电石墨、碳纳米管、导电碳纤维、石墨烯或还原氧化石墨烯中的至少一种。优选地,所述正极导电剂为导电炭黑。
正极粘结剂例如可以为聚偏氟乙烯、聚四氟乙烯、聚乙烯醇、羧甲基纤维素、SBR橡胶或聚烯烃类中的至少一种。优选地,正极粘结剂为聚偏氟乙烯。
电解液中电解质盐根据二次电池的种类可以为锂盐、钠盐、钾盐、镁盐或钙盐等等。以钠盐为例,钠盐例如可以选自四氟硼酸钠、双三氟甲基磺酰亚胺钠、双氟磺酰亚胺钠、氯化钠、硫酸钠、硫代硫酸钠、碳酸钠、碳酸氢钠、硝酸钠、氟化钠、苯酚钠、丁酸钠、草酸钠、丁二酸钠、水杨酸钠、碘乙酸钠、高氯酸钠、肌氨酸钠、辛基硫酸钠、六氟磷酸钠、硅酸钠、甲基二黄酸钠、醋 酸钠、1,5-萘二磺酸钠、重铬酸钠、硫氰酸钠、苯亚磺酸钠、透明质酸钠或烯丙基磺酸钠中的至少一种,优选为六氟磷酸钠,钠盐的浓度范围优选为1–4mol/L。
电解液溶剂选自酯类、砜类、醚类、腈类或离子液体等有机溶剂的一种或几种。
溶剂例如可以为碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、甲酸甲酯(MF)、乙酸甲酯(MA)、N,N-二甲基乙酰胺(DMA)、氟代碳酸乙烯酯(FEC)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙酸乙酯(EA)、γ-丁内酯(GBL)、四氢呋喃(THF)、2-甲基四氢呋喃(2MeTHF)、1,3-二氧环戊烷(DOL)、4-甲基-1,3-二氧环戊烷(4MeDOL)、二甲氧甲烷(DMM)、1,2-二甲氧丙烷(DMP)、三乙二醇二甲醚(DG)、二甲基砜(MSM)、二甲醚(DME)、亚硫酸乙烯酯(ES)、亚硫酸丙烯脂(PS)、亚硫酸二甲脂(DMS)、亚硫酸二乙脂(DES)、冠醚(12-冠-4)、1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1-丁基-1-甲基咪唑-四氟硼酸盐、1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐、N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐或N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐中至少一种。
电解液还可以含有添加剂,该添加剂可以是酯类、砜类、醚类、腈类或烯烃类有机添加剂的一种或几种,例如可以为氟代碳酸乙烯酯、碳酸亚乙烯酯、 碳酸乙烯亚乙酯、1,3-丙磺酸内酯、1,4-丁磺酸内酯、硫酸乙烯酯、硫酸丙烯酯、硫酸亚乙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、二甲基亚硫酸酯、二乙基亚硫酸酯、亚硫酸亚乙酯、氯代甲酸甲脂、二甲基亚砜、苯甲醚、乙酰胺、二氮杂苯、间二氮杂苯、冠醚12-冠-4、冠醚18-冠-6、4-氟苯甲醚、氟代链状醚、二氟代甲基碳酸乙烯酯、三氟代甲基碳酸乙烯酯、氯代碳酸乙烯酯、溴代碳酸乙烯酯、三氟乙基膦酸、溴代丁内酯、氟代乙酸基乙烷、磷酸酯、亚磷酸酯、磷腈、乙醇胺、碳化二甲胺、环丁基砜、1,3-二氧环戊烷、乙腈、长链烯烃、三氧化二铝、氧化镁、氧化钡、碳酸钠、碳酸钙、二氧化碳、二氧化硫或碳酸锂中的至少一种。
第七方面,本申请提供了一种用电设备。
其中,用电设备例如可以为电子装置、电动工具、电动车辆、电力储存系统。在本申请实施方式的二次电池具有较好的循环稳定性效果。在使用本申请实施方式的二次电池的电子装置、电动工具、电动车辆、以及电力储存系统中也可以获得相同的效果。
其中,电子装置是使用锂离子电池作为操作的电源执行各种功能(例如,演奏音乐)的电子装置。
电动工具是使用锂离子电池作为驱动电源来移动移动部件(例如,钻头)的电动工具。
电动车辆是依靠锂离子电池作为驱动电源运行的电动车辆,并且可以是除了锂离子电池之外还装备有其他驱动源的汽车(包括混合动力车)。
电力储存系统是使用锂离子电池作为电力储存源的电力储存系统。例如,在家用电力储存系统中,使电力储存在用作电力储存源的锂离子电池中,并且根据需要消耗储存在锂离子电池中的电力以能够使用诸如家用电子产品的各 种装置。
下面将结合实施例和对比例对本申请做进一步详细的说明。
实施例1
本实施例是一种负极,包括负极集流体和形成于负极集流体表面的负极材料层,该负极材料层的原料包括纳米锡颗粒,弹性粘结剂和导电剂。其中,负极集流体为锡箔,弹性粘结剂为海藻酸钙,导电剂为聚氧化乙烯PEO。
该负极的制备方法包括以下步骤:
S1)称取0.05g的导电剂聚氧化乙烯PEO溶于5mlN-甲基吡咯烷酮(NMP)中混合均匀,然后再加入0.05g的弹性粘结剂混合均匀后形成均一溶液;
S2)将纳米锡颗粒0.4g清洗干净后,加入上述均一溶液中,混合均匀后得到负极浆料;
S3)将所得浆料涂覆于负极集流体表面,完全干燥后进行裁切,裁成直径为12mm的圆片,得到负极,放在真空干燥箱内备用。
实施例2~15
实施例2~15分别是一种负极,与实施例1的不同之处在于使用的弹性粘结剂不同,其他与实施例1均相同。实施例1~15的具体的弹性粘结剂的选择如表1所示。
表1
实施例16~20
实施例16~20分别是一种负极,与实施例1的不同之处在于使用的导电剂不同,其他与实施例1均相同。实施例1~15的具体的导电剂的选择如表2所示。
表2
序号 | 导电高分子 |
实施例1 | PEO |
实施例16 | 聚环氧丙烷 |
实施例17 | 聚丁二酸乙二醇酯 |
实施例18 | 聚葵二酸乙二酸酯 |
实施例19 | 聚乙二醇亚胺 |
实施例20 | PEO+聚乙二醇亚胺 |
实施例21~25
实施例21~25分别是一种负极,与实施例1相比,原料种类相同,不同之处在于锡颗粒、弹性粘结剂和导电剂的重量比不同。实施例21~25中锡颗粒、弹性粘结剂和导电剂的重量比列于表3。
表3
序号 | 锡颗粒:弹性高分子:导电剂 |
实施例1 | 8:1:1 |
实施例21 | 7.5:1:1.5 |
实施例22 | 7.5:1.5:1 |
实施例23 | 9:0.5:0.5 |
实施例24 | 8.5:1:0.5 |
实施例25 | 8.5:0.5:1 |
实施例26~28
实施例26~28分别是一种负极,与实施例1相比不同之处在于,实施例26~28分别添加了一种偶联剂,偶联剂的添加量均为锡颗粒重量的0.5%。实施例26~28各原料的配比列于表4。
表4
序号 | 偶联剂 |
实施例1 | / |
实施例26 | 铝酸酯偶联剂 |
实施例27 | 钛酸酯偶联剂 |
实施例28 | 硅烷偶联剂 |
对比例1
本对比例为一种负极,该负极为金属锡片。
对比例2
本对比例为一种负极,与实施例1的不同之处在于使用的粘结剂不同,该对比例中的粘结剂为PVDF粘结剂,制备过程中使用的溶剂为NMP溶剂。其他与实施例1均相同。
实施例29
本实施例是一种锡-石墨双离子电池,其制备方法包括以下步骤:
S1)制备正极:将0.4g膨胀石墨、0.05g导电碳黑和0.05g聚四氟乙烯充分研磨后加入大约4ml氮甲基吡咯烷酮溶液中,获得均匀浆料;然后将浆料均匀的涂覆于涂炭铝箔(即正极集流体)表面,并真空干燥;对干燥所得电极片裁切成直径10mm的圆片,压实后作为正极备用;
S2)制备电解液:称取一定量0.50钠盐加入到3ml碳酸乙烯酯/碳酸二甲酯/碳酸甲乙酯的混合溶液中,其中,碳酸乙烯酯:碳酸二甲酯:碳酸甲乙酯的体积比为1:1:1,充分搅拌溶解后在手套箱备用;
S3)锡-石墨双离子电池组装:在惰性气体保护的手套箱中,将制备好的正极、有机电解液和实施例1中的负极依次紧密堆叠,然后将封装入扣式壳体,得到扣式电池,完成电池组装。
实施例30~56
实施例30~56分别是一种锡-石墨双离子电池,其与实施例29的不同之处在于,实施例30~56中的电池所用的负极分别依次对应实施例2~28所提供的负极。
对比例3~4
对比例3~4分别是一种锡-石墨双离子电池,其与实施例29的不同之处在于,对比例3~4中的电池所用的负极分别依次对应对比例1~2所提供的负极。
分别测试实施例29~56和对比例3~4中的锡-石墨双离子电池电性能。测试项目为各组电池充放电循环500次后的容量保持率,测试结果列于表5。
表5测试结果
序号 | 循环次数 | 容量保持率 |
实施例29 | 500 | 93% |
实施例30 | 500 | 89% |
实施例31 | 500 | 90% |
实施例32 | 500 | 90% |
实施例33 | 500 | 90% |
实施例34 | 500 | 92% |
实施例35 | 500 | 91% |
实施例36 | 500 | 89% |
实施例37 | 500 | 93% |
实施例38 | 500 | 94% |
实施例39 | 500 | 90% |
实施例40 | 500 | 89% |
实施例41 | 500 | 90% |
实施例42 | 500 | 90% |
实施例43 | 500 | 90% |
实施例44 | 500 | 87% |
实施例45 | 500 | 89% |
实施例46 | 500 | 90% |
实施例47 | 500 | 89% |
实施例48 | 500 | 90% |
实施例49 | 500 | 88% |
实施例50 | 500 | 89% |
实施例51 | 500 | 88% |
实施例52 | 500 | 90% |
实施例53 | 500 | 91% |
实施例54 | 500 | 94% |
实施例55 | 500 | 95% |
实施例56 | 500 | 95% |
对比例3 | 500 | 82% |
对比例4 | 500 | 81% |
从表5中的测试数据可以看出,利用本申请提供的方法得到的锡-石墨双 离子电池500次后的容量保持率要明显高于对比例3和对比例4,说明利用本申请提供的方法能显著提高锡-石墨双离子电池的循环性能。
从实施例29-53中的数据可以看出,当弹性粘结剂的种类不同、导电剂不同以及弹性粘结剂和导电剂的添加量不同时,均会对电池的循环性能产生一定的影响。其中,弹性粘结剂的选择产生的影响较大,而导电剂的影响则相对较小。
从实施例29和实施例54-56中的数据可以看出,当添加偶联剂后,还可以进一步提高电池的循环性能,且不同的偶联剂对电池的循环性能也会有一定的影响。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (13)
- 一种含锡负极材料,其特征在于,按重量百分比计包括:锡颗粒70%~90%、弹性粘结剂5%~15%和导电剂5%~15%;所述锡颗粒为微米级或纳米级的锡颗粒。
- 根据权利要求1所述的含锡负极材料,其特征在于,按重量百分比计包括:锡颗粒72%~88%、弹性粘结剂6%~14%和导电剂6%~14%。
- 根据权利要求2所述的含锡负极材料,其特征在于,按重量百分比计包括:锡颗粒75%~85%、弹性粘结剂8%~12%和导电剂8%~12%。
- 根据权利要求1所述的含锡负极材料,其特征在于,所述弹性粘结剂包括海藻酸盐类粘结剂、多糖类粘结剂、羧甲基纤维素盐粘结剂、聚烯烃类粘结剂、聚氨酯类粘结剂、聚酯类粘结剂、聚酰胺类粘结剂或聚亚胺类粘结剂中的至少一种。
- 根据权利要求4所述的含锡负极材料,其特征在于,所述弹性粘结剂包括海藻酸钙、环糊精聚合物、阿拉伯树胶、黄原胶、胍尔豆胶、刺槐豆胶、刺梧桐树胶、阿拉伯树脂-聚丙烯酸共聚物、醋酸乙烯树脂、聚丙烯酸-聚乙烯醇共聚物、聚乙烯醇-聚乙烯亚胺共聚物、聚丙烯酸-羧甲基纤维素钠共聚物、聚丙烯酸铵、聚丙烯酸钠接枝羧甲基纤维素钠或海藻酸钠-羧甲基壳聚糖共聚物中的至少一种。
- 根据权利要求1所述的含锡负极材料,其特征在于,所述导电剂包括有机导电剂和/或无机导电剂;所述有机导电剂包括离子型有机导电剂和/或电子型有机导电剂;所述离子型有机导电剂包括:聚氧化乙烯、聚环氧丙烷、聚丁二酸乙二醇 酯、聚葵二酸乙二酸酯或聚乙二醇亚胺中的至少一种;所述电子型有机导电剂包括聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯、聚苯胺中的至少一种;所述无机导电剂包括导电碳材料和/或导电金属材料。
- 根据权利要求1,4-6任一项所述的含锡负极材料,其特征在于,按重量百分比计包括偶联剂0.5%~2%;所述偶联剂包括铬络合物偶联剂、硅烷偶联剂、钛酸酯偶联剂或铝酸盐偶联剂中的至少一种。
- 一种权利要求1-7任一项所述的含锡负极材料的制备方法,其特征在于,将所述锡颗粒、所述弹性粘结剂和所述导电剂以及任选的所述偶联剂混合,得到所述含锡负极材料。
- 一种负极浆料,其特征在于,将权利要求1-7任一项所述的含锡负极材料与有机溶剂混合后得到所述负极浆料;将所述锡颗粒、所述弹性粘结剂和所述导电剂以及任选的偶联剂混合后研磨均匀,得到所述负极浆料;或,提供锡颗粒与有机溶剂组成的悬浮液,并将任选的偶联剂溶于所述悬浮液中,再加入所述粘结剂和所述导电剂混合均匀,得到所述负极浆料。
- 一种负极,其特征在于,包括负极集流体和形成于所述负极集流体表面的负极材料层,所述负极材料层由权利要求1-7任一项所述的含锡负极材料制备而成。
- 一种权利要求10所述的负极的制备方法,其特征在于,利用权利要求1-7任一项所述的含锡负极材料在所述负极集流体表面制备所述负极材料层后,得到所述负极;将权利要求9所述的负极浆料涂覆于所述负极集流体表面,干燥后得到所述负极。
- 一种二次电池,其特征在于,包括正极、电解液、隔膜和权利要求11所述的负极;所述二次电池包括单离子电池和双离子电池;所述双离子电池包括锡-石墨双离子电池。
- 一种用电设备,其特征在于,包括权利要求12所述的二次电池。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811561445.1A CN109671936B (zh) | 2018-12-19 | 2018-12-19 | 含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 |
CN201811561445.1 | 2018-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020125562A1 true WO2020125562A1 (zh) | 2020-06-25 |
Family
ID=66143959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/125440 WO2020125562A1 (zh) | 2018-12-19 | 2019-12-14 | 含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109671936B (zh) |
WO (1) | WO2020125562A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112408355A (zh) * | 2020-08-26 | 2021-02-26 | 中南大学 | 一种锡单质/普鲁士蓝框架@碳复合材料的制备方法 |
CN112456497A (zh) * | 2020-11-23 | 2021-03-09 | 北京工业大学 | Si纳米线制造方法、Si纳米线锂离子电池电极制造方法 |
CN112909230A (zh) * | 2021-01-19 | 2021-06-04 | 江西科技师范大学 | 一种盐藻吸收复合锡单质的电极及其制备方法 |
CN114447519A (zh) * | 2020-10-21 | 2022-05-06 | 安徽盟维新能源科技有限公司 | 锂电池隔膜、锂金属电池及其制备方法 |
CN116463885A (zh) * | 2023-03-29 | 2023-07-21 | 郑州大学 | 一种用于纸质文物保护的CS-FEC/CS-Arg-FEC多功能保护液 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109671936B (zh) * | 2018-12-19 | 2021-10-29 | 深圳先进技术研究院 | 含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 |
CN110277559B (zh) * | 2019-06-17 | 2022-02-01 | 南开大学 | 用于锂离子电池硅基负极的聚亚胺导电粘结剂 |
CN111769282B (zh) * | 2020-06-22 | 2021-10-22 | 上海交通大学 | 一种水系粘结剂在镁硫电池中的应用方法 |
CN112563478B (zh) * | 2020-12-10 | 2022-05-03 | 深圳中科瑞能实业有限公司 | 一种基于改性的合金型负极浆料及制备方法、二次电池 |
CN114335546B (zh) * | 2022-03-07 | 2022-05-10 | 北京壹金新能源科技有限公司 | 一种电池电极用粘结剂以及电池电极 |
US12002927B1 (en) * | 2023-08-04 | 2024-06-04 | Unigrid, Inc. | Electrolytes, electrodes, electrolytes and electrodes materials, and manufacturing thereof |
CN117691116B (zh) * | 2024-02-04 | 2024-04-26 | 中自环保科技股份有限公司 | 一种钠离子电池负极导电剂及钠离子电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1682393A (zh) * | 2002-09-20 | 2005-10-12 | 3M创新有限公司 | 具有弹性体粘合剂和增粘剂的阳极组合物 |
CN108155363A (zh) * | 2017-12-26 | 2018-06-12 | 深圳先进技术研究院 | 高分子涂层在铝负极中的应用、铝负极、其制备方法及二次电池 |
CN108346523A (zh) * | 2018-02-13 | 2018-07-31 | 清华大学 | 一种混合型储能器件的含锂金属负极制备方法 |
CN109671936A (zh) * | 2018-12-19 | 2019-04-23 | 深圳先进技术研究院 | 含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201014707D0 (en) * | 2010-09-03 | 2010-10-20 | Nexeon Ltd | Electroactive material |
CN103346304B (zh) * | 2013-06-25 | 2015-04-22 | 南开大学 | 一种用于锂二次电池负极的锡碳复合材料及其制备方法 |
CN107482222A (zh) * | 2017-09-05 | 2017-12-15 | 深圳市比克动力电池有限公司 | 复合导电剂、锂离子电池极片及锂离子电池 |
CN108206285B (zh) * | 2017-12-12 | 2021-08-24 | 中国科学院物理研究所 | 一种复合包覆的纳米锡负极材料及其制备方法和应用 |
-
2018
- 2018-12-19 CN CN201811561445.1A patent/CN109671936B/zh active Active
-
2019
- 2019-12-14 WO PCT/CN2019/125440 patent/WO2020125562A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1682393A (zh) * | 2002-09-20 | 2005-10-12 | 3M创新有限公司 | 具有弹性体粘合剂和增粘剂的阳极组合物 |
CN108155363A (zh) * | 2017-12-26 | 2018-06-12 | 深圳先进技术研究院 | 高分子涂层在铝负极中的应用、铝负极、其制备方法及二次电池 |
CN108346523A (zh) * | 2018-02-13 | 2018-07-31 | 清华大学 | 一种混合型储能器件的含锂金属负极制备方法 |
CN109671936A (zh) * | 2018-12-19 | 2019-04-23 | 深圳先进技术研究院 | 含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112408355A (zh) * | 2020-08-26 | 2021-02-26 | 中南大学 | 一种锡单质/普鲁士蓝框架@碳复合材料的制备方法 |
CN112408355B (zh) * | 2020-08-26 | 2023-03-24 | 中南大学 | 一种锡单质/普鲁士蓝框架@碳复合材料的制备方法 |
CN114447519A (zh) * | 2020-10-21 | 2022-05-06 | 安徽盟维新能源科技有限公司 | 锂电池隔膜、锂金属电池及其制备方法 |
CN114447519B (zh) * | 2020-10-21 | 2024-01-26 | 安徽盟维新能源科技有限公司 | 锂电池隔膜、锂金属电池及其制备方法 |
CN112456497A (zh) * | 2020-11-23 | 2021-03-09 | 北京工业大学 | Si纳米线制造方法、Si纳米线锂离子电池电极制造方法 |
CN112909230A (zh) * | 2021-01-19 | 2021-06-04 | 江西科技师范大学 | 一种盐藻吸收复合锡单质的电极及其制备方法 |
CN116463885A (zh) * | 2023-03-29 | 2023-07-21 | 郑州大学 | 一种用于纸质文物保护的CS-FEC/CS-Arg-FEC多功能保护液 |
CN116463885B (zh) * | 2023-03-29 | 2024-04-05 | 郑州大学 | 一种用于纸质文物保护的CS-FEC/CS-Arg-FEC多功能保护液 |
Also Published As
Publication number | Publication date |
---|---|
CN109671936A (zh) | 2019-04-23 |
CN109671936B (zh) | 2021-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020125562A1 (zh) | 含锡负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 | |
Lingappan et al. | The significance of aqueous binders in lithium-ion batteries | |
US11326010B2 (en) | Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material | |
CN102576858B (zh) | 锂离子二次电池负极及锂离子二次电池 | |
JP5953966B2 (ja) | 正極合材 | |
KR20150067049A (ko) | 리튬 이차 전지용 도전 조성물, 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지 | |
WO2012114590A1 (ja) | 非水電解質二次電池用電極及びその製造方法並びに非水電解質二次電池 | |
JP2018518810A (ja) | リチウム二次電池用電極スラリーの製造方法 | |
CN109698354B (zh) | 一种粘结剂、使用它的负极浆料及其制备方法和应用 | |
CN104241696A (zh) | 一种高能量密度的锂离子电池及其制备方法 | |
WO2018170925A1 (zh) | 一种基于钙离子的二次电池及其制备方法 | |
JP6101683B2 (ja) | 二次電池用負極およびその製造方法、ならびに二次電池 | |
WO2020066909A1 (ja) | 二次電池用電極およびリチウムイオン二次電池 | |
TW201740603A (zh) | 非水系二次電池 | |
Jia et al. | Novel rigid-flexible hydrogenated carboxyl nitrile rubber-guar gum binder for ultra-long cycle silicon anodes in lithium-ion batteries | |
WO2017216822A1 (en) | Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte | |
JP5707804B2 (ja) | 非水電解質二次電池正極用スラリー組成物 | |
Yuan et al. | In-situ crosslinked binder for high-stability S cathodes with greatly enhanced conduction and polysulfides anchoring | |
CN114497549B (zh) | 电化学制备正极补锂材料的方法和补锂材料及补锂浆料 | |
CN112164769A (zh) | 一种基于聚酰亚胺基电极粘结剂的硅基负极材料的制备方法 | |
WO2020125561A1 (zh) | 负极材料、负极及其制备方法与负极浆料、二次电池和用电设备 | |
CN113471512B (zh) | 一种低温锂电池 | |
CN108028365A (zh) | 用于制备锂离子二次电池用负极的方法 | |
JP5232353B2 (ja) | 非水電解質二次電池用電極組成物、これを用いた電極および電池 | |
CN109935780B (zh) | 粘结剂及其制备方法、负极材料组合物、电池负极及其制备方法以及锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19899325 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11-11-2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19899325 Country of ref document: EP Kind code of ref document: A1 |