[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020101450A1 - 아질사르탄 유도체 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물 - Google Patents

아질사르탄 유도체 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물 Download PDF

Info

Publication number
WO2020101450A1
WO2020101450A1 PCT/KR2019/015706 KR2019015706W WO2020101450A1 WO 2020101450 A1 WO2020101450 A1 WO 2020101450A1 KR 2019015706 W KR2019015706 W KR 2019015706W WO 2020101450 A1 WO2020101450 A1 WO 2020101450A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
pharmaceutically acceptable
compound
azilsartan
Prior art date
Application number
PCT/KR2019/015706
Other languages
English (en)
French (fr)
Inventor
황성관
이홍우
박장하
Original Assignee
엠에프씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엠에프씨 주식회사 filed Critical 엠에프씨 주식회사
Publication of WO2020101450A1 publication Critical patent/WO2020101450A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4245Oxadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present invention relates to a novel azartartan derivative compound or a pharmaceutically acceptable salt thereof, an intermediate thereof, a method for preparing the same, and a composition comprising the same as an angiotensin II antagonist useful in the treatment of hypertensive disease.
  • Hypertension refers to a chronic disease in which blood pressure is higher than the normal range. Hypertension causes the heart to do more to circulate blood through the blood vessels. Blood pressure is summarized by two measurements of the systolic highest blood pressure and diastolic lowest blood pressure at the pulse, normal blood pressure at rest is 100-140 mmHg at contraction, 60-90 mmHg at relaxation, and blood pressure is continuously above 140/90 mmHg. Say you have high blood pressure.
  • Hypertension is divided into essential hypertension and secondary hypertension. About 90 to 95% are classified as 'essential hypertension' with no clear underlying medical cause, and the remaining 5 to 10% (secondary hypertension) are associated with other health conditions affecting the kidneys, arteries, heart or endocrine system. Is caused.
  • Hypertension is a major risk factor for stroke, myocardial infarction (heart attack), heart failure, vascular aneurysms (eg aortic aneurysms), lower extremity aneurysms, and may also cause chronic renal failure. Even moderately high arterial blood pressure can be associated with shortened life expectancy, and diet and lifestyle changes can improve blood pressure control to reduce risk, and in those cases where this is not effective or insufficient, medication is often need.
  • Azilsartan is an angiotensin II receptor antagonist, which blocks the vasoconstriction activity of angiotensin II by selectively blocking the binding of angiotensin II and vascular smooth muscle AT1 receptor.
  • Potassium nitrite medoxomil is a pro-drug that hydrolyzes upon absorption, is a selective AT1 sub-type angiotensin II receptor antagonist, and the Azilsartan medoxomil potassium is Takeda His angiotensin II receptor antagonist activity is disclosed in Japanese Patent Application 2004-048928 and Korean Patent Application 10-2006-7016710 by Takanobu Kuroita (Japan). It is a commercially available therapeutic agent for hypertension in humans. It is commercially available under the trade name Lee Dal-bi as a film coated tablet of 20mg, 40mg, and 80mg.
  • compositions must be effective, safe and stable.
  • the effectiveness, safety and stability of the pharmaceutical product are not only closely related to the effectiveness and stability of the active ingredient itself, but also the properties of the pharmaceutical preparation, such as the stability of the active ingredient in the pharmaceutical preparation, and the active ingredient from the pharmaceutical preparation, etc. It is affected by the dissolution properties, and these are extremely important. Even if the pharmaceutical preparation is effective and safe immediately after preparation, when the active ingredient is easily decomposed or denatured over time, the pharmaceutical preparation has problems in effectiveness and stability.
  • the dissolution characteristics of the active ingredient from the pharmaceutical preparation if the dissolution of the active ingredient from the pharmaceutical preparation is too slow, the blood concentration of the active ingredient cannot reach an effective level and cannot sufficiently exhibit the expected effect. . On the other hand, if the dissolution of the active ingredient from the pharmaceutical preparation is too fast, the blood concentration of the active ingredient may increase rapidly in vivo and the risk of side effects may increase.
  • Another object of the present invention is to provide a novel method for preparing azartartan derivative compounds, optical isomers and pharmaceutically acceptable salts thereof.
  • Another object of the present invention is to provide a method for preparing an intermediate for preparing a novel nitrite derivative compound, an optical isomer and a pharmaceutically acceptable salt thereof.
  • Another object of the present invention is to provide a composition effective for the prevention and treatment of hypertension, which includes a novel nitrite derivative compound, an optical isomer and a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a novel nitrite derivative compound and a method for producing the same.
  • the present invention provides an intermediate production method for preparing the novel azilsartan derivative compound of the present invention.
  • the present invention provides a method for preparing a pharmaceutically acceptable salt using the novel azilsartan derivative compound of the present invention.
  • alkyl when used alone or in combination with “heteroalkyl” refers to a straight, branched or cyclic hydrocarbon radical, respectively, each carbon atom having one or more cyano, hydroxy, alkoxy, oxo, Halogen, carbonyl, sulfonyl, cyanyl, and the like.
  • alkoxy refers to -O-alkyl, where alkyl is as defined above.
  • heteroalkyl means an alkyl containing one or more hetero atoms selected from N, O, S.
  • aryl means an aromatic group including phenyl, naphthyl, and the like, and may be optionally substituted with one or more alkyl, alkoxy, halogen, hydroxy, carbonyl, sulfonyl, cyanyl, and the like.
  • heteroaryl includes one or more, such as 1 to 4, or, in some embodiments, 1 to 3 heteroatoms selected from N, O, and S, the remaining ring atoms being carbons from 5 to 7 -Aromatic aromatic, monocyclic ring;
  • the other ring atom is carbon and at least one ring is aromatic and at least one is selected from N, O, and S, including one or more, for example 1 to 4, or in some embodiments 1 to 3 heteroatoms Heteroatoms are 8- to 12-membered bicyclic rings present in aromatic rings;
  • one or more, for example 1 to 4, or in some embodiments 1 to 3 heteroatoms selected from N, O, and S the remaining ring atoms are carbon and at least one ring is aromatic and at least one Heteroatoms refer to 11- to 14-membered tricyclic rings present in aromatic rings.
  • heteroaryl group examples include pyridyl, pyrazinyl, 2,4-pyrimidinyl, 3,5-pyrimidinyl, 2,4-imidazolyl, isoxazolyl, oxazolyl, thiazolyl, thiadiazolyl, Tetrazolyl, thienyl, benzothienyl, furyl, benzofuryl, benzoimidazolyl, indolyl, indolinyl, pyrrolyl, thiophenyl, pyridinyl, triazolyl, quinolinyl, pyrazolyl, pyrrolopyridinyl , Pyrazolopyridinyl, benzooxazolyl, benzothiazolyl, indazolyl and 5,6,7,8-tetrahydroisoquinoline.
  • m of R 2 means the number of substituents that can be substituted, that is, it means the number of R 2 , and when m is 0, it means that all hydrogen atoms are substituted, and when R 2 is 2 or more, each other It can be the same or different.
  • R 3 may be the same or different from each other, and when R 3 are all hydrogen atoms, it means that -NH 2 is substituted.
  • n means the number of alkylene (-CH 2- ), and when n is 0, it means that the atom is bonded.
  • the present invention provides a novel azilsartan derivative compound represented by Formula 1 below, an optical isomer thereof, or a pharmaceutically acceptable salt thereof.
  • R 1 and R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N ( R 3 ) 2 ,
  • A is H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, N (R 3 ) 2 , , or ego,
  • R 3 is H or a C 1-6 alkyl group
  • R a to R c are each independently an aryl group or a heteroaryl group
  • R d to R f and R g are each independently a C 1-6 alkyl group or a C 1-6 alkoxy group
  • n is any integer from 0 to 4,
  • n is an integer of 0-6.
  • novel azilsartan derivative compound according to the formula (I) of the present invention, its optical isomer or its pharmaceutically acceptable salt can be obtained with high purity, its hygroscopicity is remarkably low, its heat stability is excellent, and its electrostatic property is low. It has excellent physical and chemical properties such as low cost. Therefore, the novel azilsartan derivative compound according to the formula (I) of the present invention, its optical isomer, or a pharmaceutically acceptable salt thereof is easy to formulate, has excellent stability, and is pre-arranged during the storage / distribution period after preparation with the preparation process or preparation with the preparation It does not require strict storage conditions, so mass production is easy and economical. In addition, the novel azilsartan derivative compound according to the formula (I) of the present invention, its optical isomer or its pharmaceutically acceptable salt has excellent plasma stability, and exhibits excellent bioavailability when taken orally, thereby exhibiting excellent therapeutic effect. .
  • the novel nitrousartan derivative may be a novel ester compound of nitrousartan.
  • R 1 is a C 1-6 alkyl group
  • R 2 is a C 1-6 alkoxy group
  • A is hydrogen
  • m is 1
  • n can be 0, more preferably R 1 may be a t-butyl group, and R 2 may be a methoxy group.
  • R 1 is a C 1-6 alkyl group
  • R 2 is a C 1-6 alkoxy group
  • A is a C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 Hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, N (R 3 ) 2 , , or
  • R a to R c are each independently an aryl group
  • R d to R f are each independently C 1-6 alkyl
  • R g is a C 1-6 alkoxy group
  • m is 1, n is 0
  • R a to R c may each independently be an aryl group. More preferably, it may be any one selected from trityl, t-butyl dimethylsilyl (TBDMS) and t-butyl dicarbonyl (BOC), and is limited to this. It is not.
  • the structure of the most preferred compound of formula 1 of the present invention according to the above may be a compound represented by the following formula 1-1 or formula 1-2.
  • novel nitrite derivative compounds according to [Chemical Formula 1-1] and [Chemical Formula 1-2] of the present invention, optical isomers thereof, or pharmaceutically acceptable salts thereof can be obtained with high purity, and the hygroscopicity is remarkably low. It has excellent thermal stability, low electrostaticity and low cost, and has excellent physical and chemical properties. Therefore, the novel nitrite derivative compounds according to [Chemical Formula 1-1] and [Chemical Formula 1-2] of the present invention, their optical isomers or their pharmaceutically acceptable salts are easy to formulate, have excellent stability, and prepare the formulation. It is easy and economical for mass production because it does not require separate strict storage conditions during the storage / distribution period after manufacture as a process or preparation.
  • novel nitrite derivative compounds according to [Chemical Formula 1-1] and [Chemical Formula 1-2] of the present invention have excellent plasma stability, and are excellent when taken orally. It can show excellent bioavailability and show excellent therapeutic effect.
  • the acceptable salt of the present invention may be a sodium salt represented by the following formula 1A or a potassium salt represented by the following formula 1B.
  • R 1 and R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N ( R 3 ) 2 ,
  • R 3 is H or a C 1-6 alkyl group
  • n is any integer from 0 to 4,
  • n is an integer of 0-6.
  • the compound according to [Chemical Formula 1A] or [Chemical Formula 1B] of the present invention can be obtained with high purity, and has excellent physicochemical properties such as remarkably low hygroscopicity, excellent heat stability, low static electricity and low cost. . Therefore, the compound according to [Chemical Formula 1A] or [Chemical Formula 1B] of the present invention is easy to formulate, has excellent stability, and does not require a separate strict storage condition during the storage / distribution period after preparation as a formulation manufacturing process or as a formulation. It is easy to produce and economical. In addition, the compounds according to [Chemical Formula 1A] or [Chemical Formula 1B] of the present invention have excellent plasma stability, and exhibit excellent bioavailability when taken orally, thereby exhibiting excellent therapeutic effects.
  • R 1 is a C 1-6 alkyl group
  • R 2 is a C 1-6 alkoxy group
  • R 1 is tert butyl
  • R2 is methoxy
  • X is -OH, Cl, Br or I
  • W is H or -Ph 3
  • A is H or -Ph 3
  • n may be 0 and m may be 1.
  • acceptable salts include alkali salts, alkaline earth metal salts, and zinc (Zn). It can be strontium (Sr), basic amino acid salt (lysine, arginine, histidine), preferably sodium (Na), potassium (K), lithium (Li), calcium (Ca), magnesium (Mg), zinc (Zn) ), And more preferably sodium and potassium.
  • the structure of the most preferred compound of Formula 1A of the present invention may be a compound represented by Formula 1A1 below, and the most preferred structure of Formula 1B may be a compound represented by Formula 1B1 below.
  • the compound according to [Chemical Formula 1A1] or [Chemical Formula 1B1] of the present invention can be obtained with high purity, has excellent low hygroscopicity, excellent heat stability, low physical static electricity, low cost, and excellent physical and chemical properties. . Therefore, the compounds according to [Chemical Formula 1A1] or [Chemical Formula 1B1] of the present invention are easy to formulate, have excellent stability, and do not require separate stringent storage conditions during preparation / preparation during preparation / preparation of the preparation process or mass production. This is easy and economical. In addition to this, the compounds according to the compounds according to [Chemical Formula 1A1] or [Chemical Formula 1B1] of the present invention have excellent plasma stability, and exhibit excellent bioavailability when taken orally, thereby exhibiting excellent therapeutic effects.
  • the present invention provides a method for preparing a compound represented by Chemical Formula 1, which will be described in detail below.
  • the present invention provides a method for preparing a compound represented by Formula 1 by reacting a compound represented by Formula 6 and a compound represented by Formula 7 below.
  • R 1 to R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N ( R 3 ) 2 ,
  • R 3 is H or a C 1-6 alkyl group
  • X is any of -OH, F, Cl, Br and I,
  • n is any integer from 0 to 4,
  • n is any one of 0 to 6
  • W is H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, N (R 3 ) 2 , , or ego,
  • R 3 is H or a C 1-6 alkyl group
  • M is H, C 1-6 alkyl, Na or K
  • R a to R c are each independently an aryl group or a heteroaryl group
  • R d to R f and R g are each independently a C 1-6 alkyl group or a C 1-6 alkoxy group
  • R 1 and R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N ( R 3 ) 2 ,
  • A is H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, N (R 3 ) 2 , , or ego,
  • R 3 is H or a C 1-6 alkyl group
  • R a to R c are each independently an aryl group or a heteroaryl group
  • R d to R f and R g are each independently a C 1-6 alkyl group or a C 1-6 alkoxy group
  • n is any integer from 0 to 4,
  • n is an integer of 0-6.
  • a covalent bond may be formed with O (oxygen atom), and when M is Na or K, an ion bond with O (oxygen atom), that is, , -O - type anions and cations represented by Na + or K + can form ionic bonds.
  • M of Formula 7 may be preferably H, C 1-6 alkyl or Na, and is a compound represented by Compound 1-1 by condensation reaction with 4- (bromomethyl) -2-methoxyphenyl pivalate. Can be produced.
  • the reaction may include a coupling reaction performed in the presence of a base, and the base is potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate, cesium carbonate, diisopropylamine, triethylamine, diethylamine, etc. Can be used, and the type of base is not limited thereto.
  • the formula 7 used in the method for preparing the compound of formula 1 of the present invention can be directly prepared according to methods known in the art, and in the method for preparing the compound of formula 1 of the present invention, the coupling reaction is It can be made by a method known in the art (US Patent No. 5,616,599, Korean Patent Publication No. 2007-0020411).
  • a polar solvent such as dimethylformamide (DMF), dimethylacetamide (DMAC), dimethyl sulfoxide (DMSO), etc.
  • the temperature of the reaction is 20 to 110 ° C, preferably It can be carried out at 50 ⁇ 70 °C.
  • the step of deprotecting the functional group W in Formula 7 may be further included. That is, when W is substituted with a functional group other than a hydrogen atom, in order to prepare a compound in which A in Formula 1 is a hydrogen atom, a reaction in which a substituent is removed in the presence of a base or an acid may be further performed.
  • W is a trityl group, a t-butyl dimethylsilyl group (TBDMS) and a t-butyl dicarbonate group (tert-butyl dicarbonyl, BOC).
  • the deprotection reaction can be carried out under acidic conditions, wherein the acid is preferably acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, etc., and more preferably hydrochloric acid.
  • the reaction solvent organic solvents such as methanol, ethanol, isopropyl alcohol, acetone, methyl ethyl ketone, tetrahydrofuran, acetonitrile, ethyl acetate, and isopropyl ether and purified water can be used, and the reaction temperature is 0 ° C to 110 ° C. , Preferably 15 °C ⁇ 30 °C, most preferably can be carried out in the range of 20 °C ⁇ 25 °C.
  • the deprotection reaction may be performed under basic conditions, wherein the base may include an inorganic base consisting of NaHCO 3 , Na 2 CO 3 , Mg (OH) 2 , Cs 2 CO 3 , and Zn (OH) 2 It is possible, and the type of inorganic base is not limited thereto.
  • the present invention provides a method for preparing a pharmaceutically acceptable salt of a compound represented by Formula 1 by reacting the compound represented by Formula 1 with at least one selected from Na + or K +. Specifically, the compound represented by the formula (1) is reacted with potassium 2-ethyl hexanoate or sodium 2-ethyl hexanoate (Sodium 2-ethyl hexanoate) and represented by the formula (1) Potassium or sodium salts of the compounds can be prepared.
  • K + may be used in the form of potassium 2-ethyl hexanoate, and Na + is sodium 2-ethyl hexanoate.
  • the step of forming the salt may be performed under at least one solvent selected from the group consisting of acetone, ethyl acetate, isopropyl ether, or mixtures thereof.
  • the present invention comprises the steps of preparing a compound represented by the following formula [1-1] by reacting the compound represented by the following formula [6-1] with a compound represented by the following formula [7-1]
  • a method for preparing an azilsartan derivative compound, an isomer thereof, or a pharmaceutically acceptable salt thereof is provided.
  • the method may further include the step of purifying the compound represented by Formula 1-1.
  • the solvent used in the purification step may be ethanol, acetone, acetonitrile, water, or a mixture thereof, specifically, a mixture of acetonitrile and water.
  • the sodium salt or potassium salt of the compound represented by Chemical Formula [1-1] may be prepared by reacting the compound represented by Chemical Formula 1-1 with Na + or K +. Specifically, the compound represented by Chemical Formula 1-1 is reacted with Potassium 2-ethyl hexanoate or Sodium 2-ethyl hexanoate to form [1]. The sodium salt or potassium salt of the compound represented by -1] can be prepared.
  • the step of forming the salt may be performed under at least one solvent selected from the group consisting of acetone, ethyl acetate, isopropyl ether, or mixtures thereof.
  • a compound represented by Formula 6 may be prepared from a compound represented by Formula 5 below.
  • R 1 to R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N ( R 3 ) 2 ,
  • R 3 is H or a C 1-6 alkyl group
  • n is any integer from 0 to 4,
  • n is an integer of 0-6.
  • R 1 to R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N ( R 3 ) 2 ,
  • R 3 is H or a C 1-6 alkyl group
  • X is any of -OH, F, Cl, Br and I,
  • n is any integer from 0 to 4,
  • n is an integer of 0-6.
  • the step of preparing a compound represented by Formula 6 from the compound represented by Formula 5 may be performed by halogenating a substitution reaction of the compound represented by Formula 5.
  • the halogenation substitution reaction may be performed by a method known in the art, and a halogenation substitution reaction may be performed using a halogenating agent such as phosphorus tribromide (PBr 3 ) or thionyl chloride (SOCl 2 ), and more Phosphorous tribromide can be used as a preferred halogenating agent.
  • the reaction solvent may be an organic halogen solvent such as dichloromethane or chloroform, and the type of the reaction solvent is not limited thereto.
  • the compound represented by Formula 5 may be prepared by reducing the compound represented by Formula 4 below.
  • R 1 to R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N ( R 3 ) 2 ,
  • R 3 is H or a C 1-6 alkyl group
  • n is any integer from 0 to 4,
  • n is an integer of 0-6.
  • the reducing agent used in the reduction may be lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), sodium borohydride (LiBH 4 ), lithium aluminum hydride (LiAlH 4 ), and the like.
  • lithium borohydride (LiBH 4 ) and sodium borohydride (NaBH 4 ) are useful, and more preferably sodium borohydride (NaBH 4 ) can be used.
  • Sodium borohydride has the advantages of low commercial cost, easy post-treatment, and eco-friendliness.
  • reaction solvent a solvent such as tetrahydrofuran, dioxane, methanol, ethanol, or isopropanol may be used, and preferably tetrahydrofuran may be used.
  • a compound represented by Chemical Formula 4 may be prepared by ester-reacting a compound represented by Chemical Formula 2 and a compound represented by Chemical Formula 3 in the presence of a base.
  • R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N (R 3 ) 2 ,
  • R 3 is H or a C 1-6 alkyl group
  • n is any integer from 0 to 4,
  • n is an integer of 0-6.
  • R 1 is H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N (R 3 ) 2 ,
  • R 3 is H or a C 1-6 alkyl group
  • X is any one selected from the group consisting of F, Cl, Br and I.
  • the esterification reaction can be carried out according to methods known in the art.
  • pyridine, diisopropylethylamine, triethylamine, pyrrolidine, calcium carbonate, sodium carbonate, and caustic soda can be used as the base used in the presence of a base, preferably pyridine, di Isopropylamine, triethylamine, piperidine can be used and more preferably pyridine can be used.
  • the reaction solvent may be an organic halogenated solvent such as dichloromethane, chloroform, and the like, but is not limited thereto.
  • R1 in [Formula 1], [Formula 2], [Formula 3], [Formula 4], [Formula 5] [Formula 6] or [Formula 7] is tert butyl; R2 is methoxy; X is -OH, Cl, Br or I; W is H or -Ph 3 ; M is methyl or H; A is H or -Ph 3 , n may be 0 and m may be 1.
  • composition comprising a novel azilsartan derivative compound of Formula 1, use thereof
  • the present invention provides a pharmaceutical compound composition for the treatment or prevention of hypertension, and the use thereof, using the nitrite derivative compound represented by Formula 1 of the present invention and a pharmaceutically acceptable salt thereof as an active ingredient.
  • the composition may include at least one selected from the sodium salt represented by the formula (1A) and the potassium salt represented by the formula (1B), and may preferably include the salts represented by the following compounds (1A and 1B).
  • one or more active ingredients having the same or similar function as the present invention may be included.
  • R 1 and R 2 are each independently H, C 1-6 alkyl group, C 1-6 alkoxy group, C 1-6 hydroxyalkyl group, C 1-6 cyanoalkyl group, C 1-6 haloalkyl group, or N ( R 3 ) 2 ,
  • R 3 is H or a C 1-6 alkyl group
  • n is any integer from 0 to 4,
  • n is an integer of 0-6.
  • the composition may include a compound represented by the following Chemical Formula 1-1 or a pharmaceutically acceptable salt thereof, and specifically, from the group consisting of a compound represented by the following Chemical Formula 1-1, a sodium salt thereof and a potassium salt thereof It may include one or more selected.
  • the present invention provides a pharmaceutical composition comprising an nitrite derivative compound represented by Formula 1 of the present invention, an optical isomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention is a pharmaceutical composition for the prevention or treatment of hypertension, comprising the azilsartan derivative compound represented by Formula 1, an optical isomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient, the treatment of the disease
  • the azilsartan derivative compound represented by Formula 1, an optical isomer thereof or a pharmaceutically acceptable salt thereof and a therapeutically effective amount of the azilsartan derivative compound represented by Formula 1 above, an optical isomer thereof or a pharmaceutical thereof It provides a method for treating the disease, comprising administering to the subject an acceptable salt.
  • the present invention provides a use of the nitrite derivative compound represented by Formula 1, an optical isomer thereof, or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the prevention or treatment of hypertension, and the prevention or treatment of hypertension It provides an azilsartan derivative compound represented by Chemical Formula 1, an optical isomer thereof, or a pharmaceutically acceptable salt thereof.
  • the nitrite derivative compound may be a compound represented by Formula 1-1 or a pharmaceutically acceptable salt thereof, specifically, a compound represented by Formula 1-1, It may be one or more selected from the group consisting of sodium salts and potassium salts thereof.
  • prophylaxis refers to all actions that suppress hypertension or delay the onset of disease by administration of the pharmaceutical composition according to the present invention.
  • treatment means any action in which symptoms of hypertension are improved or beneficially altered by administration of a pharmaceutical composition according to the present invention.
  • composition of the present invention may be prepared by including at least one pharmaceutically acceptable carrier in addition to the above components for administration.
  • Pharmaceutically acceptable carriers can be used by mixing one or more of these components: saline, sterile water, Ringer's solution buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and, if necessary, antioxidants, buffers Other conventional additives, such as, bacteriostatic agents, may be added.
  • diluents, dispersants, surfactants, binders, and lubricants can be additionally added to formulate into injectable formulations such as aqueous solution suspensions, emulsions, pills, capsules, granules, or tablets.
  • injectable formulations such as aqueous solution suspensions, emulsions, pills, capsules, granules, or tablets.
  • it can be preferably formulated according to each disease or ingredient by using methods appropriate in the art or using methods described in Remington's Pharmaceutical
  • composition of the present invention can be administered orally or parenterally (for example, intravenously, subcutaneously, intraperitoneally or topically) according to the desired method, and the dosage is the patient's weight, sex, age, health status, diet ,
  • the administration time, administration method, excretion rate, and the extent of the disease vary in scope.
  • the daily dosage of the novel azilsartan ester derivative compound of Formula 1 or 2A, 2B of the present invention is about 1 mg to 100 mg, preferably 10 mg to 80 mg, more preferably 20 mg to 80 mg, divided once or several times a day It is more preferable to administer.
  • composition of the present invention alone or hormone therapy, treatment of other hypertensive drug preparations, diabetes (e.g. DPP-IV, SGLT2, etc., drug-A Glyflozines) and hyperlipidemia treatment (e.g. atorvastatin, Statins such as rochevastatin, phytavastatin) and biological response modifiers.
  • diabetes e.g. DPP-IV, SGLT2, etc., drug-A Glyflozines
  • hyperlipidemia treatment e.g. atorvastatin, Statins such as rochevastatin, phytavastatin
  • biological response modifiers e.g. atorvastatin, Statins such as rochevastatin, phytavastatin
  • composition of the present invention alone or hormone therapy, treatment of other hypertensive drug preparations, diabetes (e.g., DPP-IV, SGLT2, etc.
  • Drug-A Glyflozines e.g. atorvastatin Statins such as Rochevastatin and Pitavastatin
  • a drug using a biological response modifier and a combination of 2 or 3 agents may be used.
  • nitrite sartan derivatives of the present invention optical isomers thereof or pharmaceutically acceptable salts thereof also apply to the pharmaceutical compositions as long as there is no contradiction.
  • novel azilsartan derivative compound represented by Formula 1 of the present invention, its optical isomer, or a pharmaceutically acceptable salt thereof has excellent pharmaceutical properties such as solubility, stability, non-absorption, and the treatment or prevention of hypertension. It has the effect of showing excellent efficacy. Therefore, there is an effect that can be usefully used as an active ingredient of a pharmaceutical composition for protecting the heart and blood vessels by being formulated with a pharmaceutically acceptable carrier or a drug for treating hypertension.
  • Example 1 is a result of the stability analysis in the plasma over time of the nitrite salt compound (AZM) of the nitrite salt of the nitrite compound or a salt thereof and Comparative Example 2 according to the present invention.
  • ZAM nitrite salt compound
  • AUC 3 is a result of the maximum concentration in plasma and area under the curve (AUC) according to oral intake of a suspension of an nitrite derivative compound or a salt thereof according to the present invention.
  • FIG. 5 shows the maximum concentration in plasma and area under the curve (AUC) according to oral intake of a solution of an azilsartan derivative compound or a salt thereof according to the present invention.
  • reaction order can be appropriately changed. That is, any reaction step may be performed first or any substituent change may be inserted, and if necessary, any reagent other than the illustrated reagents may be used.
  • the obtained reaction solution was separated into layers using 800 mL of water and 800 mL of ethyl acetate, and the water layer was extracted three times (500 mLx3 times) with 500 mL of ethyl acetate.
  • the obtained ethyl acetate organic layer was collected, extracted with 250 mL of 1N hydrochloric acid solution, adjusted to pH 10 by adding 1N NaOH solution to the obtained aqueous layer, and extracted twice with 500 mL of ethyl acetate (500 mLx2 times).
  • the organic layer was washed with water and brine, and then dried using magnesium sulfate (MgSO 4 ). Thereafter, the solvent was concentrated under reduced pressure to obtain a crude compound, and ethyl acetate-methanol-hexane solvent was added to obtain 38.1 g (85%) of a compound as a solid label.
  • DMSO dimethylsulfoxide
  • CDI 1,1'-carbonyldiimidazole
  • the labeling compound was recrystallized from ethyl acetate-isopropyl ether (1: 3) to obtain 62.7 g (88%) of the compound as a solid label.
  • Example 1 3-methoxy-4- (pivaloyloxy) benzyl 2-ethoxy-1-((2 '-(5-oxo-4-trityl-4,5-dihydro-1,2 , 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (3-methoxy-4- ( pivaloyloxy) benzyl 2-ethoxy-1-((2 '-(5-oxo-4-trityl-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl] Preparation of -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate)
  • Example 2 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxa Diazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (3-methoxy-4- (pivaloyloxy) benzyl 2 -ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl)- Synthesis of 1H-benzo [d] imidazole-7-carboxylate)
  • Example 3-1 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4 -Oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate ((3-methoxy-4- (pivaloyloxy ) benzyl 2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) Synthesis of methyl) -1H-benzo [d] imidazole-7-carboxylate))
  • the obtained solid compound was dissolved in 18 mL of ethanol under reflux, 0.1 g of activated carbon was added to the solution, and the mixture was refluxed and stirred for 30 minutes. The insoluble material was removed by filtration, and the filtrate was cooled at room temperature. After 12 hours, the precipitated sieve was collected by filtration, and the solid was washed with ice-cold ethanol, and dried under reduced pressure at room temperature to obtain 3.0 g (50%) of the title compound.
  • Example 3-2 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4 -Oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate ((3-methoxy-4- (pivaloyloxy ) benzyl 2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) Synthesis of methyl) -1H-benzo [d] imidazole-7-carboxylate))
  • Example 3-3 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4 -Oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate ((3-methoxy-4- (pivaloyloxy ) benzyl 2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) Synthesis of methyl) -1H-benzo [d] imidazole-7-carboxylate))
  • Example 3-4 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4 -Oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate ((3-methoxy-4- (pivaloyloxy ) benzyl 2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) Synthesis of methyl) -1H-benzo [d] imidazole-7-carboxylate))
  • Example 3-5 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4 -Oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate ((3-methoxy-4- (pivaloyloxy ) benzyl 2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) Synthesis of methyl) -1H-benzo [d] imidazole-7-carboxylate))
  • the organic layer was washed with 400 ml of 20% brine, the organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was concentrated under reduced pressure. 200 ml of ethyl acetate was added to the residue, followed by heating to dissolve, followed by stirring under ice-cooling for 2 hours, and then filtering the solid. The filtered solid was dried under reduced pressure at 35 ° C. to give 47.94 g (65%) of the title compound.
  • Example 4 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxa Diazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate ((3-methoxy-4- (pivaloyloxy) benzyl) 2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) Synthesis of -1H-benzo [d] imidazole-7-carboxylate))
  • Example 5-1 Sodium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (a sodium nitrite pivalate sodium salt) Produce
  • Example 5-2 Sodium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (a sodium nitrite pivalate sodium salt) Synthesis of
  • Example 6-1 Potassium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (azitartan pivalate potassium salt) Produce
  • Example 6-2 Potassium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, Preparation of 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (potassium nitrite pivalate)
  • Example 6-3 Potassium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (azitartan pivalate potassium salt) Synthesis of
  • Example 6-4 Potassium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (azitartan pivalate potassium salt) Synthesis of
  • Example 6-5 Potassium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (azitartan pivalate potassium salt) Synthesis of
  • Example 6-6 Potassium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (azitartan pivalate potassium salt) Synthesis of
  • Example 6-7 Potassium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (azitartan pivalate potassium salt) Synthesis of
  • Example 6-8 Potassium 3-methoxy-4- (pivaloyloxy) benzyl-2-ethoxy-1-((2 '-(5-oxo-4,5-dihydro-1,2, 4-oxadiazol-3-yl)-[1,1'-biphenyl] -4-yl) methyl) -1H-benzo [d] imidazole-7-carboxylate (azitartan pivalate potassium salt) Synthesis of
  • Activated carbon (1.7 g) was added to the solution, stirred at reflux for 30 minutes, and then the insoluble material was removed by filtration. The filtered filtrate was cooled to room temperature for 12 hours to obtain precipitated crystals through filtration, washed with ice-cold ethanol, and dried at room temperature under reduced pressure to obtain the title compound (50.0 g, 50%).
  • Purity of sodium nitrate salt, potassium nitrite of nitrite prepared according to Example 6-3, Example 6-4 and Example 6-6 was measured using HPLC, and the results are shown in Table 1 below. .
  • Example 3-1 Example 3-2
  • Example 3-4 Example 3-5 water 99.78% 99.82% 99.87% 99.80% salt
  • Example 6-2 Example 6-4
  • Example 6-6 Example 5-2 water 99.92% 99.87% 99.85% 99.79%
  • Example 3-1, Example 3-2, Example 3-4 and Example 3-2, Example 5-2, and the nitrite free radical prepared by the preparation method of Example 3-5 It was confirmed that the purity of the nitrite salt of the nitrite salt prepared in Example 6-3, Example 6-4, and Example 6-5 was 99.5% or more. It is very difficult to introduce a separate purification process due to its poorly soluble nature, and the nitrite free radical of the present invention and the free nitrite salt of the nitrite can be secured with high purity, which is very suitable for pharmaceutical use, only by manufacturing. Yes, it was confirmed.
  • Example 6-3 an azilsartan pivalate free base prepared in Examples 3-2, 3-4 and 3-5 was prepared and Example 6-3, carried out After vacuum drying (P 2 O 5 , 1 day or more) of the nitrite potassium salt of nitrite prepared in Example 6-4 and Example 6-6 and Comparative Example 2, the initial moisture value was measured by the Karl Fischer method.
  • Moisture measurement device (model name: Hydrosorb 1000, manufacturer: Quantachrome Instruments) using a 25 °C and relative humidity 15, 35, 55, 75, 95% of the moisture was automatically measured moisture, the results are shown in Table 2 below It was described. However, the initial moisture value was set to be a moisture value in a state that is continuously dried and no longer reduced.
  • nitrite pyrvalate free base prepared according to Example 3-2, Example 3-4 and Example 3-5 and Example 6-3, Example 6-4 and Example 6 The nitrite potassium pivalate potassium salt prepared according to -6 showed a very low hygroscopicity of about 0.2% at the relative humidity of the entire range where the experiment was conducted, and it was found that it can be stably stored even when the raw material is exposed to moisture in the air.
  • the nitrite-sartan pivalate free base of the present invention and the potassium nitrite-pithalate potassium salt have excellent non-hygroscopic (non-hygroscopic) properties that are not humidified even when exposed to air at normal relative humidity.
  • Comparative Example 2 has a very poor property as a raw material for pharmaceutical use by drawing moisture in the air exponentially as the relative humidity increases, and Comparative Example 2 is too large for formulation. It is expected that it is difficult to formulate or require separate strict conditions for formulation.
  • the azilsartan pivalate free base and potassium salt of the present invention have excellent non-humidity characteristics, and are excellent in formulating as a raw material for formulation. It can be seen that formulation is easy and economical.
  • Example 3-1 99.78% 99.69%
  • Example 3-2 99.82% 99.77%
  • Example 3-4 99.87% 99.85%
  • Example 3-5 99.80% 99.76%
  • Example 6-3 99.92% 99.89%
  • Example 6-4 99.87% 99.86%
  • Example 6-6 99.85% 99.83%
  • nitrite pyrvalate free base prepared according to Example 3-2, Example 3-4 and Example 3-5 and Example 5-2, Example 6-3, Example 6
  • the compounds prepared in -4 and Examples 6-6 showed excellent stability to heat, and Comparative Example 2 was found to have relatively poor stability to heat.
  • the nitrite sarvalidate free base, sodium salt, and potassium salt prepared according to the present invention have significantly better stability than conventional nitrite medoxomil potassium salts.
  • Example 3-1, Example 3-2, Example 3-4, Example 3-5, and Example Example Example 5-2, Example 6-2, Example 6-3, Example 6-4 and the Faraday cage device for measuring the static electricity by shielding the external static electric field of the sample of Comparative Example 2 (model name: 325 Faraday Cage with SmartStirTM, manufacturer: AMETEK PAR) was tested for the electrostatic properties of each compound and the results are shown in Table 4.
  • Example 3-1 15 nc / g Example 3-2 8 nc / g Example 3-4 6 nc / g Example 3-5 10 nc / g Example 6-2 7 nc / g Example 6-3 10 nc / g Example 6-4 11 nc / g Example 5-2 14 nc / g Comparative Example 2 25 nc / g
  • Example 3-1, Example 3-2, Example 3-4 and Example 3-2 and Example 5-2 of the nitrite free base prepared by the preparation method of Example 3-5 Example It was confirmed that the samples prepared in Example 6-3, Example 6-4 and Example 6-6 had lower electrostatic properties than the samples of Comparative Example 2.
  • the nitrite free radicals, sodium nitrite pivalate sodium salt and potassium salt prepared according to the present invention have low static electricity compared to the comparative example 2, which is a conventional nitrite medoxomil potassium salt. It can be seen that the workability is remarkably low.
  • the cost of the solid may affect process convenience and the size of the formulation, and when the cost is large, the processability is very poor. As it can, cost effectiveness is an important factor in formulation.
  • Example 3-1, Example 3-2, Example 3-4, Example 3-5, Example 5 to confirm the cost of the samples of Example 6-4, Example 6-6 and Comparative Example 2 -2, Example 6-3, Example 6-4, Example 6-6, and the samples prepared in Comparative Example 2 were placed in a measuring cylinder and repeated 20 times or more at a height of 10 cm vertically to compress sufficiently. To drop naturally. The cost was measured before and after tapping, and the results are shown in Table 5.
  • Example 3-1 3.88mL / g 2.65 mL / g
  • Example 3-2 3.76 mL / g 2.71 mL / g
  • Example 3-4 3.62 mL / g 2.65 mL / g
  • Example 3-5 3.79mL / g 2.70 mL / g
  • Example 6-3 3.22mL / g 2.31mL / g
  • Example 6-4 3.86 mL / g 2.77 mL / g
  • Example 6-6 3.73 mL / g 2.67 mL / g
  • Example 5-2 3.89mL / g 2.68 mL / g
  • Example 5-2 the compounds of Example 5-2, Example 6-3, Example 6-4, and Example 6-6 had a cost reduction effect.
  • the pharmaceutical raw material in powder form has a high cost, it is designed as a formulation (tablet or capsule) that can be administered to the human body after compression molding at all times, so if the cost is large, the processability of the formulation is very poor.
  • the nitrite satan pivalate or the salt thereof of the present invention has excellent physicochemical properties of pharmaceutical processability.
  • the nitrite derivative compound prepared according to Example 6-3 has an IC50 value of 2.9 nM, which is a measure of inhibition of AT 1 activity, and exhibits efficacy similar to that of Azilsartan (IC50 2.6 nM). see.
  • the nitrite derivative compound prepared according to Example 6-3 of the present invention can exhibit excellent pharmacological effects.
  • Bioequivalence was assessed through pharmacokinetic testing of the nitrite potassium salt of the present invention.
  • the concentration of the potassium salt of the nitrite derivative compound of the present invention in the plasma of the rat separated from the blood of the rat collected for each time was measured, and the result is FIG. 1. Same as
  • CMC carboxymethylcellulose
  • MFCk potassium nitrite
  • FIGS. 2 and 3 are when a suspension containing azilsartan pivalate free base (MFC) and azilsartan pivalate potassium salt (MFCk) is administered
  • FIGS. 4 and 5 are azilsartan pivalate free bases (MFC) shows the results of blood concentrations of nitrite of nitrite when administered with a solution containing potassium nitrite salt (MFCk).
  • the nitrite pivalate free base (MFC) and the nitrite pivalate potassium salt (MFCk) according to the present invention exhibit a sufficient effect in the blood even when taken orally. It can be seen that it has an excellent therapeutic effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염을 제공한다. 본 발명의 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약제학적으로 허용 가능한 염은 용해성, 안정성, 비흡수성, 등 약제학적 특성이 우수할 뿐 아니라, 고혈압의 치료 또는 예방에 우수한 약효를 나타내는 효과가 있다. 그러므로 약학적으로 허용 가능한 담체 또는 고혈압 치료약물과 함께 조성되어 심장과 혈관 보호용 약학적 조성물의 유효성분으로 유용하게 사용될 수 있는 효과가 있다.

Description

아질사르탄 유도체 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물
본 발명은 안지오텐신 Ⅱ길항제로서 고혈압 질환의 치료에 유용한 신규한 아질사르탄 유도체 화합물 또는 이의 약학적으로 허용 가능한 염, 이의 중간체, 이의 제조 방법 및 이를 포함하는 조성물에 관한 것이다.
고혈압(hypertension)은 혈압이 정상 범위보다 높은 만성 질환을 말한다. 고혈압은 혈액이 혈관을 순환하는 데 심장이 더 많은 일을 하게 한다. 혈압은 맥박에서 수축기의 최고 혈압과 이완기의 최저 혈압의 두 측정치로 요약되는데, 휴식시 정상 혈압은 수축시 100~140 mmHg에 이완시 60~90 mmHg이고, 혈압이 지속적으로 140/90 mmHg 이상일 때 고혈압이 있다고 말한다.
고혈압은 본태성 고혈압과 이차성 고혈압으로 구분된다. 약 90~95%의 경우 명확한 근본적인 의학적 원인이 없는 '본태성 고혈압'으로 분류되고, 나머지 5~10%의 경우(이차성 고혈압)는 신장, 동맥, 심장 또는 내분비계에 영향을 주는 다른 건강 상태에 기인한다.
고혈압은 뇌졸중, 심근경색(심장마비), 심부전, 혈관 동맥류(예컨대 대동맥류), 하지동맥류 등의 주요 위험 인자이며, 만성 신부전증의 원인이 되기도 한다. 동맥 혈압이 약간만 높더라도 기대 수명 단축에 연관될 수 있는데, 식이요법과 생활 방식의 변화로 혈압 조절을 향상시켜 위험을 줄일 수 있으며, 이러한 방식이 효과적이지 않거나 충분하지 않은 사람들의 경우 종종 약물 치료가 필요하다.
고혈압 치료제로서 개발중인 약물 중 아질사르탄(Azilsartan)은 안지오텐신 II 수용체 길항제이고, 이는 안지오텐신 II 및 혈관 평활근 AT1 수용체의 결합을 선택적으로 차단함으로써 안지오텐신 II의 혈관 수축활성을 차단한다. 그 중 아질사르탄 메독소밀(Azilsartan Medoxomil) 칼륨 화합물은 화학명이(5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl-2-ethoxy-1{[2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methyl}-1H-benzimidazole-7carboxylate monopotassium salt M.W=606.62)이고 그 구조식은 하기와 같다.
Figure PCTKR2019015706-appb-img-000001
아질사르탄 메독소밀 칼륨은 흡수 시 가수분해되는 프로드럭(Pro-drug)이며, 선택적 AT1 서브타입(sub-type) 안지오텐신 II 수용체 길항제인 것으로, 상기 아질사르탄 메독소밀(Azilsartan Medoxomil) 칼륨은 Takeda(일본)사 구로이타 다카노부 등에 의해 일본 특허 출원 2004-048928 및 한국특허 출원 10-2006-7016710에 그의 안지오텐신 II 수용체 길항제 활성이 개시되어 있다. 이것은 사람의 고혈압 치료제로서 20mg, 40mg, 및 80mg의 필름 코팅정으로 상품명 이달비 정으로 시판되고 있다.
약제학적 제품은 효과적이고, 안전하고 안정성이 있어야 한다. 약제학적 제품의 효과, 안전성 및 안정성은 활성성분 자체의 효과 및 안정성과 밀접하게 관련되어 있을 뿐만 아니라 약제학적 제제에서 활성성분의 안정성과 같은 약제학적 제제의 특성, 및 약제학적 제제 등으로부터 활성성분의 용해특성에 의해 영향을 받으며, 이들은 극히 중요하다. 약제학적 제제가 제조 직후에 효과적이고 안전하다고 하더라도, 활성성분이 시간경과에 따라 용이하게 분해하거나 변성되는 경우, 약제학적 제제는 효과 및 안정성에 문제가 있다. 한편으로 약제학적 제제로부터 활성성분의 용해특성에 관하여, 약제학적 제제로부터 활성성분의 용해가 너무 느린 경우, 활성성분의 혈액농도는 효과적인 수준에 도달할 수 없으며, 기대되는 효과를 충분하게 나타낼 수 없다. 다른 한편으로 약제학적 제제로부터 활성성분의 용해가 너무 빠른 경우, 활성성분의 혈중 농도는 생체 내에서 빠르게 증가할 수 있고, 부작용의 위험이 증가할 수 있다.
따라서, 용해성, 안정성, 비흡수성등 약제학적으로 우수한 특성을 가질뿐만 아니라, 아질사르탄 메독소밀 칼륨염과 동등하거나, 그 이상의 효과를 갖는 고혈압 치료제로서의 약물의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
일본 특허 출원 2004-048928
한국특허 출원 10-2006-7016710
미국특허 제5,616,599호
한국특허 공개번호 2007-0020411호
본 발명의 목적은 신규한 아질사르탄 유도체 화합물, 광학 이성질체 및 이의 약학적으로 허용가능한 염을 제공하는데 있다.
본 발명의 다른 목적은 신규한 아질사르탄 유도체 화합물, 광학 이성질체 및 이의 약학적으로 허용가능한 염의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 신규한 아질사르탄 유도체 화합물, 광학 이성질체 및 이의 약학적으로 허용가능한 염을 제조하기 위한 중간체 제조방법을 제공하는데 있다.
본 발명의 또 다른 목적은 신규한 아질사르탄 유도체 화합물, 광학 이성질체 및 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 고혈압의 예방 및 치료에 효과적인 조성물을 제공하는데 있다.
본 발명은 신규한 아질사르탄 유도체 화합물 및 이의 제조방법을 제공한다. 또한, 본 발명은 본 발명의 신규한 아질사르탄 유도체 화합물을 제조하기 위한 중간에의 제조방법을 제공한다. 또한, 본 발명은 본 발명의 신규한 아질사르탄 유도체 화합물을 이용하여 약학적으로 허용가능한 염을 제조하는 방법을 제공한다. 이하에서는 이에 대하여 상세히 살핀다.
본 명세서를 통하여 화학식 1, 화학식 1-1, 화학식 1-2, 화학식 1A, 화학식 1A1, 화학식 1B, 화학식 1B1, 화학식 2 내지 7, 화학식 6-1, 화학식 7-1 등의 화합물을 정의함에 있어서는 다음과 같이 정의된 개념들이 사용된다. 하기 정의는 특별히 달리 지시되지 않는 한, 본 명세서 전체에 걸쳐서 개별적으로 또는 더욱 큰 군의 일부로서 사용되는 용어에도 적용된다.
용어 "알킬"은 단독으로 또는 "헤테로알킬"과 같이 조합하여 사용되는 경우에 각각 직쇄, 측쇄 또는 고리 모양의 탄화수소 라디칼을 의미하며, 각 탄소 원자는 하나 이상의 시아노, 히드록시, 알콕시, 옥소, 할로겐, 카보닐, 설포닐, 시아닐 등으로 임의로 치환될 수 있다.
용어 "알콕시" 는 -O-알킬을 말하며, 여기에서 알킬은 위에서 정의한 바와 같다.
용어 "헤테로알킬은" N, O, S 중에서 선택된 헤테로 원자를 하나 이상 포함하는 알킬을 의미한다.
용어 "아릴"은 페닐, 나프틸 등을 포함하는 방향족 그룹을 의미하며, 하나 이상의 알킬, 알콕시, 할로겐, 하이드록시, 카보닐, 설포닐, 시아닐 등으로 임의 치환될 수 있다.
용어 "헤테로아릴"은 N, O, 및 S로부터 선택되는 하나 이상의, 예를 들어 1 내지 4, 또는 일부 구현예에서는 1 내지 3의 헤테로 원자를 포함하는, 나머지 고리 원자는 탄소인 5- 내지 7-원 방향족, 일환식 고리; N, O, 및 S로부터 선택되는 하나 이상의, 예를 들어 1 내지 4, 또는 일부 구현예에서는 1 내지 3의 헤테로원자를 포함하는, 나머지 고리 원자는 탄소이고 적어도 하나의 고리는 방향족이고 적어도 하나의 헤테로원자는 방향족 고리에 존재하는 8- 내지 12-원 이환식 고리; 및 N, O, 및 S로부터 선택되는 하나 이상의, 예를 들어 1 내지 4, 또는 일부 구현예에서는 1 내지 3 헤테로원자를 포함하는, 나머지 고리 원자는 탄소이고 적어도 하나의 고리는 방향족이고 적어도 하나의 헤테로원자는 방향족 고리에 존재하는 11- 내지 14-원 삼환식 고리를 가리킨다. 헤테로아릴기의 예는 피리딜, 피라지닐, 2,4-피리미디닐, 3,5-피리미디닐, 2,4-이미다졸릴, 이속사졸릴, 옥사졸릴, 티아졸릴, 티아디아졸릴, 테트라졸릴, 티에닐, 벤조티에닐, 푸릴, 벤조푸릴, 벤조이미다졸릴, 인돌릴, 인돌리닐, 피롤릴, 티오페닐, 피리디지닐, 트리아졸릴, 퀴놀리닐, 피라졸릴, 피롤로피리디닐, 피라졸로피리디닐, 벤즈옥사졸릴, 벤조티아졸릴, 인다졸릴 및 5,6,7,8-테트라히드로이소퀴놀린을 포함하되, 이에 한정되지는 않는다.
또한, R 2의 m은 치환될 수 있는 치환기 수를 의미하는 것으로, 즉, R 2의 개수를 의미하는 것이고, m이 0인 경우 모두 수소원자가 치환된 것을 의미하며, R 2가 2이상인 경우 서로 같거나 다를 수 있다.
또한, R 3은 서로 같거나 다를 수 있고, R 3이 모두 수소 원자인 경우는 -NH 2가 치환된 것을 의미한다.
또한, n은 알킬렌(-CH 2-)의 수를 의미하며, n이 0인 경우 원자가 결합을 하는 것을 의미한다.
이밖에 본 명세서에서 사용된 용어들과 약어들은 달리 정의되지 않는 한, 그 본래의 의미를 갖는다.
신규한 아질사르탄 유도체 화합물, 이의 광학 이성질체 또는 이의 약제학적으로 허용 가능한 염 및 그의 제조방법
본 발명은 신규한 아질사르탄 유도체 화합물인 하기 화학식 1로 표시되는 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염을 제공한다.
[화학식 1]
Figure PCTKR2019015706-appb-img-000002
상기 화학식 1에서,
R 1 및 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
A가 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, N(R 3) 2,
Figure PCTKR2019015706-appb-img-000003
,
Figure PCTKR2019015706-appb-img-000004
또는
Figure PCTKR2019015706-appb-img-000005
이고,
R 3가 H 또는 C 1-6알킬기이고,
R a 내지 R c가 각각 독립적으로 아릴기 또는 헤테로아릴기이고,
R d 내지 R f 및 R g는 각각 독립적으로 C 1-6알킬기 또는 C 1-6알콕시기이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n은 0 내지 6의 정수 중 어느 하나이다.
본 발명의 화학식 I에 따른 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염은 고순도로 수득될 수 있으며, 인습성이 현저히 낮고 열에 대한 안정성이 우수하며, 정전기성이 낮고 비용적이 낮은 등 물리 화학적 성질이 현저히 우수하다. 따라서 본 발명의 화학식 I에 따른 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염은 제제화가 용이하며, 안정성이 우수하며 제제 제조 과정 또는 제제로 제조 후 보관/유통 기간 동알 별도의 엄격한 보관 조건을 요구하지 않아 대량 생산이 용이하고 경제적이다. 이에 더하여 본 발명의 화학식 I에 따른 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염은 우수한 혈장 안정성을 가지며, 경구 복용 시 우수한 생체 이용율을 나타내어 우수한 치료 효과를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 신규한 아질사르탄 유도체는 신규한 아질사르탄의 에스터 화합물일 수 있다.
본 발명에 있어서, 바람직하게는 R 1이 C 1-6알킬기이고, R 2는 C 1-6알콕시기이고, A가 수소이고, m 은 1이고, n은 0일 수 있으며, 더욱 바람직하게는 상기 R 1이 t-부틸기이고, R 2가 메톡시기일 수 있다.
또한, 본 발명에 있어서, 바람직하게는 R 1이 C 1-6알킬기이고, R 2는 C 1-6알콕시기이고, A가 C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, N(R 3) 2,
Figure PCTKR2019015706-appb-img-000006
,
Figure PCTKR2019015706-appb-img-000007
또는
Figure PCTKR2019015706-appb-img-000008
이고, R a 내지 R c가 각각 독립적으로 아릴기이고, R d 내지 R f가 각각 독립적으로 C 1-6알킬이고, R g가 C 1-6알콕시기이고, m 은 1이고, n은 0일 수 있다.
바람직하게는 A가
Figure PCTKR2019015706-appb-img-000009
이고, R a 내지 R c가 각각 독립적으로 아릴기일 수 있다. 보다 바람직하게는 트리틸기(trityl), t-부틸디메틸실릴기(tert-butyl methylsilyl, TBDMS) 및 t-부틸디카보네이트기(tert-butyl dicarbonyl, BOC) 중에서 선택된 어느 하나일 수 있으며, 이에 한정되는 것은 아니다.
위에 따른 본 발명의 화학식 1의 가장 바람직한 화합물의 구조는 하기 화학식 1-1 또는 화학식 1-2로 표시되는 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2019015706-appb-img-000010
[화학식 1-2]
Figure PCTKR2019015706-appb-img-000011
본 발명의 [화학식 1-1] 및 [화학식 1-2]에 따른 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염은 고순도로 수득될 수 있으며, 인습성이 현저히 낮고 열에 대한 안정성이 우수하며, 정전기성이 낮고 비용적이 낮은 등 물리 화학적 성질이 현저히 우수하다. 따라서 본 발명의 [화학식 1-1] 및 [화학식 1-2]에 따른 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염은 제제화가 용이하며, 안정성이 우수하며 제제 제조 과정 또는 제제로 제조 후 보관/유통 기간 동알 별도의 엄격한 보관 조건을 요구하지 않아 대량 생산이 용이하고 경제적이다. 이에 더하여 본 발명의 [화학식 1-1] 및 [화학식 1-2]에 따른 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염은 우수한 혈장 안정성을 가지며, 경구 복용 시 우수한 생체 이용율을 나타내어 우수한 치료 효과를 나타낼 수 있다.
본 발명에 있어서, 본 발명의 허용 가능한 염은 하기 화학식 1A로 표시되는 나트륨염 또는 하기 화학식 1B로 표시되는 칼륨염일 수 있다.
[화학식 1A]
Figure PCTKR2019015706-appb-img-000012
[화학식 1B]
Figure PCTKR2019015706-appb-img-000013
상기 화학식 1A 및 1B에서,
R 1 및 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
R 3가 H 또는 C 1-6알킬기이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n은 0 내지 6의 정수 중 어느 하나이다.
본 발명의 [화학식 1A] 또는 [화학식 1B]에 따른 화합물은 고순도로 수득될 수 있으며, 인습성이 현저히 낮고 열에 대한 안정성이 우수하며, 정전기성이 낮고 비용적이 낮은 등 물리 화학적 성질이 현저히 우수하다. 따라서 본 발명의 [화학식 1A] 또는 [화학식 1B]에 따른 화합물은은 제제화가 용이하며, 안정성이 우수하며 제제 제조 과정 또는 제제로 제조 후 보관/유통 기간 동알 별도의 엄격한 보관 조건을 요구하지 않아 대량 생산이 용이하고 경제적이다. 이에 더하여 본 발명의 [화학식 1A] 또는 [화학식 1B]에 따른 화합물은 우수한 혈장 안정성을 가지며, 경구 복용 시 우수한 생체 이용율을 나타내어 우수한 치료 효과를 나타낼 수 있다.
본 발명의 실시예들에 있어서, 상기 화학식 [화합물 1], [화학식 1A], 및 [화학식 1B]에서 상기 R 1은 C 1-6알킬기이고, R 2는 C 1-6알콕시기이고, A가 수소, 트리틸기(trityl), t-부틸디메틸실릴기(tert-butyl methylsilyl, TBDMS) 또는 t-부틸디카보네이트기(tert-butyl dicarbonyl, BOC) 이고, m은 1이고, n은 0일 수 있다. 바람직하게는 상기 R 1은 터트 부틸; R2는 메톡시; X는 -OH, Cl, Br 또는 I; W는 H 또는 -Ph 3; A는 H 또는 -Ph 3이며, n은 0이고 m은 1일 수 있다.
본 발명에서, 허용 가능한 염에는 알칼리염, 알칼리토금속염, 아연(Zn). 스트론튬(Sr), 염기성 아미노산염(리신, 아르기닌, 히스티딘)일 수 있으며, 바람직하게는 나트륨(Na), 칼륨(K), 리튬(Li), 칼슘(Ca), 마그네슘(Mg), 아연(Zn)일 수 있고, 보다 바람직하게는 나트륨, 칼륨일 수 있다.
본 발명에 있어서, 본 발명의 화학식 1A의 가장 바람직한 화합물의 구조는 하기 화학식 1A1로 표시되는 화합물일 수 있으며, 화학식 1B의 가장 바람직한 구조는 하기 화학식 1B1로 표시되는 화합물일 수 있다.
[화학식 1A1]
Figure PCTKR2019015706-appb-img-000014
[화학식 1B1]
Figure PCTKR2019015706-appb-img-000015
본 발명의 [화학식 1A1] 또는 [화학식 1B1]에 따른 화합물은 고순도로 수득될 수 있으며, 인습성이 현저히 낮고 열에 대한 안정성이 우수하며, 정전기성이 낮고 비용적이 낮은 등 물리 화학적 성질이 현저히 우수하다. 따라서 본 발명의 [화학식 1A1] 또는 [화학식 1B1]에 따른 화합물은 제제화가 용이하며, 안정성이 우수하며 제제 제조 과정 또는 제제로 제조 후 보관/유통 기간 동알 별도의 엄격한 보관 조건을 요구하지 않아 대량 생산이 용이하고 경제적이다. 이에 더하여 본 발명의 [화학식 1A1] 또는 [화학식 1B1]에 따른 화합물에 따른 화합물은 우수한 혈장 안정성을 가지며, 경구 복용 시 우수한 생체 이용율을 나타내어 우수한 치료 효과를 나타낼 수 있다.
또한 본 발명은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공하며, 이에 대해 아래에 구체적으로 설명하도록 한다.
본 발명은 하기 화학식 6으로 표시되는 화합물 및 하기 화학식 7로 표시되는 화합물을 반응시켜 하기 화학식 1로 표시되는 화합물을 제조하는 방법을 제공한다.
[화학식 6]
Figure PCTKR2019015706-appb-img-000016
상기 화학식 6에서,
R 1 내지 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
R 3가 H 또는 C 1-6알킬기이고,
X가 -OH, F, Cl, Br 및 I 중 어느 하나이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n 은 0 내지 6의 정수 중 어느 하나이고,
[화학식 7]
Figure PCTKR2019015706-appb-img-000017
상기 화학식 7에서,
W가 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, N(R 3) 2,
Figure PCTKR2019015706-appb-img-000018
,
Figure PCTKR2019015706-appb-img-000019
또는
Figure PCTKR2019015706-appb-img-000020
이고,
R 3가 H 또는 C 1-6알킬기이고,
M이 H, C 1-6알킬기, Na 또는 K이고,
R a 내지 R c가 각각 독립적으로 아릴기 또는 헤테로아릴기이고,
R d 내지 R f 및 R g는 각각 독립적으로 C 1-6알킬기 또는 C 1-6알콕시기이고,
[화학식 1]
Figure PCTKR2019015706-appb-img-000021
상기 화학식 1에서,
R 1 및 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
A가 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, N(R 3) 2,
Figure PCTKR2019015706-appb-img-000022
,
Figure PCTKR2019015706-appb-img-000023
또는
Figure PCTKR2019015706-appb-img-000024
이고,
R 3가 H 또는 C 1-6알킬기이고,
R a 내지 R c가 각각 독립적으로 아릴기 또는 헤테로아릴기이고,
R d 내지 R f 및 R g는 각각 독립적으로 C 1-6알킬기 또는 C 1-6알콕시기이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n 은 0 내지 6의 정수 중 어느 하나이다.
상기 화학식 7의 -OM에서 M이 H 또는 C 1-6알킬기일 때, O(산소원자)와 공유결합을 이룰 수 있고, M이 Na 또는 K일 때, O(산소원자)와 이온결합, 즉, -O -형태의 음이온과 Na + 또는 K +로 나타나는 양이온이 이온결합을 이룰 수 있다.
상기 화학식 7의 M은 바람직하게는 H, C 1-6알킬기 또는 Na일 수 있고, 4-(브로모메틸)-2-메톡시페닐 피발레이트와 축합반응시켜 상기 화합물 1-1로 표시되는 화합물을 제조할 수 있다.
상기 반응은 염기 존재 하에서 수행되는 축합반응(coupling reaction)을 포함할 수 있으며, 상기 염기가 탄산칼륨, 탄산나트륨, 중탄산칼륨, 중탄산나트륨, 세슘카보네이트, 디이소프로필아민, 트리에틸아민, 디에틸아민등을 사용할 수 있으며, 염기에 종류가 여기에 한정되는 것은 아니다.
또한, 본 발명의 화학식 1의 화합물의 제조방법에 사용된 화학식 7은 당업계에 고지된 방법에 따라 직접 제조할 수 있으며, 본 발명의 화학식 1의 화합물 제조방법에 있어서 축합반응(coupling reaction)은 당업계에 공지된 방법에 의해 이루어 질 수 있다(미국특허 제5,616,599호, 한국특허 공개번호 2007-0020411호).
상기 축합반응 시의 용매로는 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAC), 디메틸설폭사이드(DMSO) 등과 같은 극성용매를 사용할 수 있으며, 상기 반응의 온도는 20~110℃, 바람직하게는 50~70℃에서 수행될 수 있다.
상기 화학식 1의 A가 H(수소원자)인 경우, 화학식 7의 작용기 W를 탈보호시키는 단계를 더 포함할 수 있다. 즉, W는 수소원자를 제외한 다른 작용기가 치환된 경우, 화학식 1의 A가 수소원자인 화합물을 제조하기 위해서, 염기 또는 산 존재 하에서 치환기를 제거하는 반응을 추가로 수행할 수 있다.
[반응식 1]
Figure PCTKR2019015706-appb-img-000025
본 발명의 실시예들에 있어서, 상기 탈보호 반응에서 상기 W는 트리틸기(trityl), t-부틸디메틸실릴기(tert-butyl methylsilyl, TBDMS) 및 t-부틸디카보네이트기(tert-butyl dicarbonyl, BOC) 중에서 선택된 어느 하나일 수 있다.
상기 탈보호화 반응은 산성 조건에서 수행될 수 있으며, 이 때 산은 아세트산, 염산, 황산, 인산 등이 바람직하며 염산이 더욱 바람직하였다. 반응 용매는 메탄올, 에탄올, 이소프로필알콜, 아세톤, 메틸에틸케톤, 테트라히드로퓨란, 아세토니트릴, 에틸아세테이트, 및 이소프로필에테르과 같은 유기용매 및 정제수를 사용할 수 있으며, 상기 반응온도는 0℃~110℃, 바람직하게는 15℃~30℃, 가장 바람직하게는 20℃~25℃ 범위에서 수행될 수 있다.
또한, 상기 탈보호화 반응은 염기 조건 하에서 수행될 수 있으며, 이 때 염기는 NaHCO 3, Na 2CO 3, Mg(OH) 2, Cs 2CO 3, 및 Zn(OH) 2로 이루어진 무기염기을 포함할 수 있으며, 무기염기의 종류가 여기에 한정되는 것은 아니다.
본 발명은 상기 화학식 1로 표시되는 화합물을 Na+ 또는 K+ 중에서 선택된 1종 이상과 반응시켜 상기 화학식 1로 표시되는 화합물의 약학적으로 허용 가능한 염의 제조방법을 제공한다. 구체적으로는 상기 화학식 1로 표시되는 화합물을 포타슘 2-에틸헥사노에이트(Potassium 2-ethyl hexanoate) 또는 소듐 2-에틸헥사노에이트와(Sodium 2-ethyl hexanoate)와 반응시켜 상기 화학식 1로 표시되는 화합물의 칼륨 염 또는 나트륨염을 제조할 수 있다.
본 발명의 실시예들에 있어서, 상기 K+는 포타슘 2-에틸헥사노에이트와(Potassium 2-ethyl hexanoate)의 형태로 사용될 수 있으며, Na+는 소듐 2-에틸헥사노에이트와(Sodium 2-ethyl hexanoate)의 형태일 수 있다.
본 발명의 실시예들에 있어서, 상기 염을 형성하는 단계는 아세톤, 에틸아세테이트, 이소프로필에테르 또는 이들의 혼합물로 이루어진 군으로부터 선택된 적어도 하나의 용매 하에 수행될 수 있다.
본 발명은 하기 화학식 [6-1]로 표시되는 화합물을 하기 화학식 [7-1]로 표시되는 화합물을 반응시켜, 하기 화학식 [1-1]로 표시되는 화합물을 제조하는 단계를 포함하는 것인 아질사르탄 유도체 화합물, 이의 이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법을 제공한다.
[화학식 6-1]
Figure PCTKR2019015706-appb-img-000026
[화학식 7-1]
Figure PCTKR2019015706-appb-img-000027
[화학식 1-1]
Figure PCTKR2019015706-appb-img-000028
본 발명의 실시예들에 있어서, 상기 방법은 화학식 1-1로 표시되는 화합물을 정제하는 단계를 더 포함할 수 있다.
상기 정제하는 단계는
상기 화학식 1-1로 표시되는 화합물을 용매에 첨가하여 혼합액을 제조하는 단계;
상기 혼합액으로부터 고체를 수득하는 단계를 포함할 수 있다.
본 발명의 실시예들에 있어서 상기 정제하는 단계에서 사용되는 용매는 에탄올, 아세톤, 아세토니트릴, 물 또는 이들의 혼합물일 수 있으며, 구체적으로는 아세토니트릴과 물의 혼합물일 수 있다.
본 발명의 실시예들에 있어서, 상기 화학식 1-1로 표시되는 화합물을 Na+ 또는 K+와 반응시켜 화학식 [1-1]로 표시되는 화합물의 나트륨염 또는 칼륨염을 제조할 수 있다. 구체적으로는 상기 화학식 1-1로 표시되는 화합물을 포타슘 2-에틸헥사노에이트와(Potassium 2-ethyl hexanoate) 또는 소듐 2-에틸헥사노에이트와(Sodium 2-ethyl hexanoate)와 반응시켜 화학식 [1-1]로 표시되는 화합물의 나트륨 염 또는 칼륨염을 제조할 수 있다.
본 발명의 실시예들에 있어서, 상기 염을 형성하는 단계는 아세톤, 에틸아세테이트, 이소프로필에테르 또는 이들의 혼합물로 이루어진 군으로부터 선택된 적어도 하나의 용매 하에 수행될 수 있다.
또한 본 발명에 있어서, 하기 화학식 5로 표시되는 화합물로부터 상기 화학식 6으로 표시되는 화합물을 제조할 수 있다.
[화학식 5]
Figure PCTKR2019015706-appb-img-000029
상기 화학식 5에서,
R 1 내지 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
R 3가 H 또는 C 1-6알킬기이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n은 0 내지 6의 정수 중 어느 하나이다.
[화학식 6]
Figure PCTKR2019015706-appb-img-000030
상기 화학식 6에서,
R 1 내지 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
R 3가 H 또는 C 1-6알킬기이고,
X가 -OH, F, Cl, Br 및 I 중 어느 하나이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n은 0 내지 6의 정수 중 어느 하나이다.
본 발명의 실시예들에 있어서, 상기 화학식 5로 표시되는 화합물로부터 화학식 6으로 표시되는 화합물을 제조하는 단계는 상기 화학식 5로 표시되는 화합물을 할로겐화 치환반응하여 수행될 수 있다. 상기 할로겐화 치환반응은 당업계에 공지된 방법에 의해 수행될 수 있고, 삼브롬화인(PBr 3), 티오닐클로라이드(SOCl 2) 등의 할로겐화제를 사용하여 할로겐화 치환반응을 수행할 수 있으며, 보다 바람직한 할로겐화제로 삼브롬화인을 사용할 수 있다. 상기 반응용매는 디클로로메탄, 클로로포름 등과 같은 유기 할로겐 용매가 사용될 수 있으며, 상기 반응 용매의 종류가 여기에 한정되는 것은 아니다.
본 발명에 있어서, 하기 화학식 4로 표시되는 화합물을 환원반응시켜 상기 화학식 5로 표시되는 화합물을 제조할 수 있다.
[화학식 4]
Figure PCTKR2019015706-appb-img-000031
상기 화학식 4에서,
R 1 내지 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
R 3가 H 또는 C 1-6알킬기이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n은 0 내지 6의 정수 중 어느 하나이다.
상기 환원에 사용되는 환원제는 리튬보로하이드라이드(LiBH 4), 포타슘보로하이드라이드(KBH 4), 소듐보로하이드라이드(LiBH 4) 및 리튬알루미늄하이드라이드(LiAlH 4) 등을 사용할 수 있으며, 바람직하게는 리튬보로하이드라이드(LiBH 4), 소듐보로하이드라이드(NaBH 4)가 유용하며, 보다 바람직하게는 소듐보로하이드라이드(NaBH 4)를 사용할 수 있다. 소듐보로하이드라이드는 상업적 가격이 저렴하고, 사후 처리가 쉽고, 친환경적인 이점이 있다.
반응용매는 테트라히드로퓨란, 다이옥산, 메탄올, 에탄올, 이소프로판올 등의 용매가 사용될 수 있고, 바람직하게는 테트라하이드로퓨란이 사용될 수 있다.
또한, 본 발명은 하기 화학식 2로 표시되는 화합물과 하기 화학식 3으로 표시되는 화합물을 염기 존재하에서 에스테르 반응시켜 상기 화학식 4로 표시되는 화합물을 제조할 수 있다.
[화학식 2]
Figure PCTKR2019015706-appb-img-000032
상기 화학식 2에서,
R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
R 3가 H 또는 C 1-6알킬기이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n은 0 내지 6의 정수 중 어느 하나이다.
[화학식 3]
Figure PCTKR2019015706-appb-img-000033
R 1은 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
R 3가 H 또는 C 1-6알킬기이고,
X가 F, Cl, Br 및 I로 이루어진 군에서 선택된 어느 하나이다.
본 발명의 화학식 4의 화합물 제조방법에서, 에스테르화 반응은 당업계에 공지된 방법에 따라 수행될 수 있다. 예를 들어, 염기 존재하에서 수행될 수 있으며 여기서 사용된 염기에는 피리딘, 디이소프로필에틸아민, 트리에틸아민, 피롤리딘, 탄산칼슘, 탄산나트륨, 및 가성소다가 사용될 수 있고 바람직하게는 피리딘, 디이소프로필아민, 트리에틸아민, 피페리딘이 사용될 수 있고 보다 바람직하게는 피리딘이 사용될 수 있다. 반응용매는 디클로로메탄, 클로로포름, 등과 같은 유기할로겐화 용매가 사용될 수 있으며, 이에 한정되는 것은 아니다.
본 발명의 실시예들에 있어서, 상기 [화학식 1], [화학식 2], [화학식 3], [화학식 4], [화학식 5] [화학식 6] 또는 [화학식 7]에서 상기 R1은 터트 부틸; R2는 메톡시; X는 -OH, Cl, Br 또는 I; W는 H 또는 -Ph 3; M은 메틸 또는 H; A는 H 또는 -Ph 3이며, n은 0이고 m은 1일 수 있다.
화학식 1의 신규한 아질사르탄 유도체 화합물을 포함하는 조성물, 이의 용도
본 발명은 본 발명의 상기 화학식 1로 표시되는 아질사르탄 유도체 화합물 및 이의 약제학적으로 허용 가능한 염을 유효성분으로 하는 고혈압 치료 또는 예방용 약학적 화합물 조성물 및 이의 용도를 제공한다.
상기 조성물은 상기 화학식 1A로 표시되는 나트륨염 및 상기 화학식 1B로 표시되는 칼륨염 중에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 하기 화합물 1A 및 1B로 표시되는 염을 포함할 수 있다. 또한, 본 발명과 동일한 또는 유사한 기능을 가지는 유효성분을 1종 이상을 포함할 수 있다.
[화학식 1A]
Figure PCTKR2019015706-appb-img-000034
[화학식 1B]
Figure PCTKR2019015706-appb-img-000035
상기 화학식 1A 및 1B에서,
R 1 및 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
R 3가 H 또는 C 1-6알킬기이고,
m은 0 내지 4의 정수 중 어느 하나이고,
n은 0 내지 6의 정수 중 어느 하나이다.
상기 조성물은 하기 화학식 1-1로 표시되는 화합물 또는 이의 약학적으로 허용 가능함 염을 포함할 수 있으며, 구체적으로는 하기 화학식 1-1로 표시되는 화합물, 이의 나트륨 염 및 이의 칼륨염으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
[화학식 1-1]
Figure PCTKR2019015706-appb-img-000036
한편, 본 발명의 화학식 1로 표시되는 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하는 약제학적 조성물을 제공한다. 또한, 상기 본 발명은 상기 화학식 1로 표시되는 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하는, 고혈압의 예방 또는 치료용 약학적 조성물, 상기 질환의 치료를 위한 상기 화학식 1로 표시되는 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염의 용도, 및 치료상 유효량의 상기 화학식 1로 표시되는 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염을 대상체에게 투여하는 것을 포함하는 상기 질환의 치료 방법을 제공한다.
또한, 본 발명은 고혈압의 예방 또는 치료용 약제의 제조를 위한, 상기 화학식 1로 표시되는 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염의 용도를 제공하며, 고혈압의 예방 또는 치료에 이용되는 화학식 1로 표시되는 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염을 제공한다.
상기 약제학적 조성물, 치료 방법 및 용도에서 상기 아질사르탄 유도체 화합물은 상기 화학식 1-1로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염일 수 있으며, 구체적으로는 상기 화학식 1-1로 표시되는 화합물, 이의 나트륨 염 및 칼륨염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
본 발명에서 사용되는 용어, 예방이란 본 발명에 따른 약학적 조성물의 투여에 의해 고혈압을 억제시키거나 발병을 지연시키는 모든 행위를 의미한다.
본 발명에서 사용되는 용어, 치료란 본 발명에 따른 약학적 조성물의 투여에 의해 고혈압에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
본 발명의 조성물은 투여를 위해서 상기 성분 이외에 추가적으로 약제학적으로 허용 가능한 담체를 1종 이상 포함하여 제조할 수 있다. 약학적으로 허용 가능한 담체는 식염수, 멸균수, 링거액 완충 식염수, 덱스트로즈용액, 말토덱스트린용액, 글리세롤, 에탄올, 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충제, 정균제, 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제, 및 윤활제를 부가적으로 첨가하여 수용액 현탁액, 유탁액과 같은 주사용 제형, 환약, 캡슐제, 과립, 또는 정제로 제제화 할 수 있다. 더 나아가 당 분야의 적절한 방법으로 또는 Remington's Pharmaceutical Science(최신판), Mack Publishing Company, Easton PA에 기재되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.
본 발명의 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 적용) 할 수 있으며 투여량은 환자의 체중, 성별, 연령, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 정도에 따라 그 범위가 다양하다. 본 발명의 화학식 1 또는 2A, 2B의 신규한 아질사르탄 에스테르 유도체 화합물의 일일 투여양은 약 1mg~100mg이고, 바람직하게는 10mg~80mg이고 더 바람직하게는 20mg~80mg이고 하루 일회 내지는 수 회에 분할 투여하는 것이 더욱 바람직하다.
본 발명의 조성물은 고혈압의 예방 및 치료를 위하여 단독 또는 호르몬 치료, 다른 고혈압 약물 제제 치료, 당뇨병(예를 들면 DPP-IV, SGLT2 등 약물-A Glyflozines) 및 고지혈증 치료제(예를 들면 아토바스타틴, 로슈바스타틴, 피타바스타틴 등 스타틴류) 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.
본 발명의 조성물은 고혈압의 예방 및 치료를 위하여 단독 또는 호르몬 치료, 다른 고혈압 약물 제제 치료, 당뇨병(예를들면 DPP-IV, SGLT2 등 약물-A Glyflozines) 및 고지혈증 치료제(예를 들면 아토바스타틴, 로슈바스타틴, 피타바스타틴 등 스타틴류) 및 생물학적반응 조절제를 사용하는 약제와 2제 내지는 3제 복합제로 만들어 사용할 수 있다.
본 발명의 아질사르탄 유도체, 이의 광학이성질체 또는 이의 약제학적으로 허용 가능한 염에 대한 내용은 모순되지 않는 한 상기 약제학적 조성물에도 적용된다.
본 발명의 화학식 1 로 표시되는 신규한 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약제학적으로 허용 가능한 염은 용해성, 안정성, 비흡수성, 등 약제학적 특성이 우수할 뿐 아니라, 고혈압의 치료 또는 예방에 우수한 약효를 나타내는 효과가 있다. 그러므로 약학적으로 허용 가능한 담체 또는 고혈압 치료약물과 함께 조성되어 심장과 혈관 보호용 약학적 조성물의 유효성분으로 유용하게 사용될 수 있는 효과가 있다.
도 1는 본 발명에 따른 아질사르탄 유도체 화합물 또는 이의 염과 비교예 2의 아질사르탄 메독소밀 칼륨염(AZM)의 시간 경과에 따른 혈장 내 안정성 분석 결과이다.
도 2는 본 발명에 따른 아질사르탄 유도체 화합물 또는 이의 염의 현탁액 경구 섭취 후 시간에 따른 혈장 내 농도 결과이다.
도 3은 본 발명에 따른 아질사르탄 유도체 화합물 또는 이의 염의 현탁액 경구섭취에 따른 혈장 내 최대 농도 및 AUC (area under the curve) 결과이다.
도 4는 본 발명에 따른 아질사르탄 유도체 화합물 또는 이의 염의 용액 경구섭취 후 시간에 따른 혈장 내 농도 결과이다.
도 5는 본 발명에 따른 아질사르탄 유도체 화합물 또는 이의 염의 용액 경구섭취에 따른 혈장 내 최대 농도 및 AUC (area under the curve) 결과이다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시 예를 제시한다. 그러나, 하기의 실시 예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시 예에 의하여 본 발명이 한정되는 것은 아니다. 본 발명의 화합물을 제조할 때, 반응 순서는 적절히 변경할 수 있다. 즉 임의의 반응 단계를 먼저 수행하거나 임의의 치환기 변화를 삽입할 수 있고, 필요에 따라서 예시한 시약 이외의 임의의 시약을 사용할 수 있다.
본 발명의 화합물을 합성하기 위한 출발 물질의 다양한 합성법이 알려져 있으며, 상기 출발 물질이 시판되고 있는 경우는 공급처로부터 구매하여 사용할 수 있다. 이하, 실시 예에서 사용한 구조분석 기기는 Proton NMR은 Bruker 400mhz, LC-MS는 Agilent HP1100 LC-MS를 사용하였으며, 특별히 제조사를 언급하지 않는 시약 및 용매는 Aldrich로부터 구입하여 사용하였다.
먼저, 이하 실시예에서 합성에 사용되는 화합물을 하기 제조예와 같이 제조하였다. 하기의 실시예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다.
<제조예 1: 4-포르밀-2-메톡시페닐 피발레이트의 합성법>
제조예 1-1: 4-포르밀-2-메톡시페닐 피발레이트(4-Formyl-2-methoxyphenyl pivalate)의 제조-1
Figure PCTKR2019015706-appb-img-000037
4-히드록시-3-메톡시벤즈알데히드 15.3 g을 디클로로메탄 610 ml에 용해시킨 후 0℃ 냉각시켰다. 상기 용액에 피발로일 클로라이드 1.3 mL를 적가 후 10분간 빙냉하에서 교반하였다. 이후 피리딘 1.5mL 또는 4-다이메틸아미노피리딘(4-Dimethylaminopyridine) 2.3g을 20분간 적가하고 빙냉하에서(0℃) 1시간 교반하고 실온으로 온도를 상승시켜 24시간 교반하였다. 반응액에 1.0M염산 수용액 610 mL를 넣고 20분간 교반 후 유기층을 분리하였다. 유기층에 중탄산나트륨 30.4 g과 정제수 610 mL 혼합액을 넣고 20분간 교반 후 유기층을 분리하였다. 얻어진 유기층을 무수 황산마그네슘으로 건조 후 여과하고 감압 증류하여 표지의 화합물 19.2 g(81%)을 얻었다.
1H-NMR (400 MHz, CDCl 3) δ 1.40(s, 9H), 3.90(s, 3H), 7.20-7.22(d, 1H), 7.48-7.49(d, 1H), 7.50(s, 1H), 9.97(s, 1H)
IR(KBr) 1725, 1640, 1275, 1080, 770cm -1,
mp: 135-138℃,
MS(ESI) m/z(M+1); 237.10(100%), 238.11(14.4%0, 239.11(1.8%),
Elemental Analysis: C, 66.09. H, 6.80; O, 27.09.
제조예 1-2 : 4-포르밀-2-메톡시페닐 피발레이트(4-Formyl-2-methoxyphenyl pivalate)의 제조-2
Figure PCTKR2019015706-appb-img-000038
4-하이드록시-3-메톡시-벤즈알데하이드 100 g(0.66 mol, 1.0 eq)에 다이클로로메탄 1000 ml를 투입 후, 0 내지 5℃로 냉각하였다. 4-다이메틸아미노피리딘 4.01g (0.03 mol, 0.05 eq)을 투입하고 5℃ 이하를 유지하며 교반하였다. 피발로일 클로라이드 83.21 g (0.69 mol, 1.05 eq)을 투입하고, 트라이에틸아민 76.48 g (0.76 mol, 1.15 eq)을 10℃ 이하로 유지하여 2시간 적가하고, 1시간 교반하였다. 반응 종결 확인 후 0 - 5 ℃에서 반응기에 냉각수 800mL를 투입하고 유기층을 층분리하였다. 분리된 유기층을 무수황산마그네슘 50 g으로 건조 후, 여과하고 용매를 감압 농축하여 표제 화합물 155.29 g (100.00%)을 수득했다.
1H-NMR (400 MHz, CDCl 3) δ 1.40(s, 9H), 3.90(s, 3H), 7.20-7.22(d, 1H), 7.48-7.49(d, 1H), 7.50(s, 1H), 9.97(s, 1H)
<4-(히드록시메틸)-2-메톡시페닐 피발레이트의 합성법>
제조예 2-1: 4-(히드록시메틸)-2-메톡시페닐 피발레이트(4-(hydroxymethyl)-2-methoxyphenyl pivalate)의 제조
Figure PCTKR2019015706-appb-img-000039
제조예 1-1에서 수득된 화합물 24.5 g을 에탄올 350 mL에 녹인 후, 0℃ 로 냉각시켰다. 소듐보로하이드라이드 13.7 g을 넣고 0℃ 에서 4 시간 동안 교반시켜 반응액을 제조하였다. 상기 반응액에 5% 아세트산 수용액 150 ml를 0℃에서 30분간 적가한 후, 온도를 실온으로 올리고, 에틸아세테이트 150 ml를 가하여 유기층을 분리하였다. 유기층 10% 중탄산나트륨 수용액 200 mL와 물로 세척 후 유기층을 분리하였다. 얻어진 유기층을 무수 황산마그네슘(MgSO 4)으로 건조 후 여과하고, 감압 증류하여 표지의 고체 화합물 18.5 g(75%)을 얻었다.
1H-NMR (400 MHz, CDCl 3) δ 1.38(s, 9H), 2.56(br s, 1H), 3.78(s, 3H), 4.59(s, 2H), 6.86-6.88(dd, 1H), 6.94-6.96(d, 2H)
IR(KBr) 3350, 3150, 1765, 1725, 1640, 1430, 1275, 1055, 745cm -1,
mp: 135-138℃, mp 수정 37~40℃(실제측정치임)
MS(ESI) m/z(M+1); 239.12(100%), 240.12(14.2%),
Elemental Analysis: C, 65.53. H, 7.61; O, 26.86.
제조예 2-2 : 4-(히드록시메틸)-2-메톡시페닐 피발레이트(4-(hydroxymethyl)-2-methoxyphenyl pivalate)의 제조
Figure PCTKR2019015706-appb-img-000040
제조예 1-2에서 제조된 4-포르밀-2-메톡시페닐 피발레이트 155.29 g (0.66 mol, 1.0eq)에 테트라하이드로퓨란 900mL를 투입하여 0 - 5 ℃로 냉각하였다. 소듐 보로하이드라이드 12.43 g (0.33 mol, 0.5 eq)을 투입하여 상온으로 승온시킨 후 1시간 교반하였다. HPLC로 반응 종결 확인 후 0 ℃ 이하로 냉각시킨 후 20% 차가운 소금물 900 ml을 천천히 넣고 에틸아세테이트 900 ml을 넣고 유기층을 층분리하여 바로 감압 농축하였다. 유기층을 무수황산마그네슘 100g으로 건조 후 여과하고 용매를 감압 농축하였다. 농축물에 750ml 헵탄을 투입한 다음 15 - 20 ℃로 냉각한 다음 30분 동안 교반하고 0 - 5 ℃로 냉각하여 1시간 교반 후 여과하여 고체를 얻었다. 고체를 감압 하에 상온에서 13시간 건조시켜 표제 화합물 134.39g (85.81%)을 수득하였다.
1H-NMR (400 MHz, CDCl 3) δ 1.38(s, 9H), 2.56(br s, 1H), 3.78(s, 3H), 4.59(s, 2H), 6.86-6.88(dd, 1H), 6.94-6.96(d, 2H)
제조예 3: 4-(브로모메틸)-2-메톡시페닐 피발레이트(4-(bromomethyl)-2-methoxyphenyl pivalate)의 제조
Figure PCTKR2019015706-appb-img-000041
제조예 2-1에서 수득된 화합물 24.5 g을 디클로로메탄 30 0mL에 녹인 후 0℃로 냉각시켰다. 삼브롬화인 2.1 g을 디클로로메탄 20 mL에 용해시킨 용액을 20분간 적가하고, 0℃ 에서 4시간 동안 교반시켰다. 이후 정제수 500 mL를 0℃에서 30분간 적가하고 실온으로 승온하여 30분간 교반시킨 후 유기층을 분리하였다. 유기층에 10% 중탄산나트륨 수용액을 넣고 20분간 교반 후 유기층을 분리하였다. 얻어진 유기층을 포화 염화나트륨 수용액 300 mL로 세척 후 유기층을 분리하였다. 얻어진 유기층을 무수 황산마그네슘으로 건조한뒤, 여과하고 감압 증류하였다. 감압 증류 후 얻어진 잔유물에 이소프로필에테르 60 mL와 n-헥산 100 mL을 각각 가하고 실온에서 4시간 동안 교반시켜 고체를 얻었다. 생성된 고체를 여과한 후 실온에서 건조하여 표지의 화합물 21.5 g(69%)을 얻었다.
1H-NMR (400 MHz, CDCl 3) δ 1.23 (s, 9H), 3.83(s, 3H), 4.69(s, 2H), 6.76(d, 1H), 6.98(s, 1H), 7.06(d, 1H)
IR(KBr) 1775, 1725, 1680, 1480, 1275, 1020, 765cm -1,
mp: 189-192℃,
MS(ESI) m/z(M+1) 301.04(100%), 303.03(97.3%), 3302.04(14.4%), 304.04(14.1%), 303.04(1.5%), 305.04(1.5%),
Elemental Analysis: C, 51.84. H, 5.69; Br, 26.53, O, 15.94.
< 메틸 2-에톡시-1-((2'-(N'-히드록시카바이미도일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 또는 이의 광학 이성질체의 합성법>
제조예 4-1: 메틸 2-에톡시-1-((2'-(N'-히드록시카바이미도일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(methyl 2-ethoxy-1-((2'-(N'-hydroxycarbamimidoyl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate)의 제조
Figure PCTKR2019015706-appb-img-000042
디메틸설폭사이드(DMSO) 250 mL에 트리에틸아민 15.5 g과 히드록시아민 염산염 7.2 g을 각각 가하고, 실온에서 30분간 교반 후 용해되지 않는 부유물을 여과하여 제거하고 테트라하이드로퓨란(THF) 150 mL로 세척하였다. 여과된 액을 모아 감압 농축하여 THF를 제거하였다. 얻어진 여액(히드록시아민을 포함한 DMSO용액)에 메틸 1-((2'-시아노-[1,1'-비페닐]-4-일)메틸)-2-에톡시-1H-벤조[d]이미다졸-7-카복실레이트(methyl 1-((2'-cyano-[1,1'-biphenyl]-4-yl)methyl)-2-ethoxy-1H-benzo[d]imidazole-7-carboxylate) 41.1 g을 가하고 75~80℃에서 15시간 교반하여 반응을 종결 한 후 반응액을 실온으로 냉각시켰다.
본 제조에 사용된 메틸 1-((2'-시아노-[1,1'-비페닐]-4-일)메틸)-2-에톡시-1H-벤즈이미다졸-7-카복실레이트는 기존에 공지된 문헌(J. Med. Chem. Vol.36, pp2182-2195, 1993) 에 따라 제조하여 사용하였다.
얻어진 반응액에 물 800 mL와 에틸아세테이트 800 mL를 사용하여 층 분리하고, 물 층을 에틸아세테이트 500 mL로 3회(500 mLx3회) 추출하였다. 얻어진 에틸아세테이트 유기층을 모은 다음 1N 염산용액 250 mL로 추출하고 얻어진 수용액 층에 1N NaOH 용액을 가하여 pH 10으로 맞춘 다음 에틸아세테이트 500 mL로 2회(500 mLx2회) 추출하였다. 유기층을 물과 브라인(brine)을 사용하여 각각 세척 후 마그네슘설페이트(MgSO 4)를 사용하여 건조시켰다. 이후 용매를 감압 농축하여 조결정(crude) 화합물을 얻고, 에틸아세테이트-메탄올-헥산 용매를 가하여 고체인 표지의 화합물 38.1 g(85%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 1.42 (t, 3H), 3.72 (s, 3H), 4.62 (q, 2H), 5.51 (s, 2H), 5.55 (br s, 2H), 6.93 (d, 2H), 7.19 (t, 1H), 7.29 (d, 1H), 7.34-7.42 (m, 5H), 7.46 (d, 1H), 7.70 (d, 1H), 9.18 (br s, 1H)
IR(KBr) 3440, 3345, 1715, 1640, 1545, 1435, 1275, 1040, 760cm -1,
mp: 207-209℃.
제조예 4-2 : 메틸 (Z)-2-에톡시-1-((2‘-(N’-하이드록시카바미미도일)-[1,1‘-바이페닐]-4-일)메틸)-1H-벤조[d]-이미다졸-7-카복실레이트의 제조
Figure PCTKR2019015706-appb-img-000043
하이드록실아민 하이드로클로라이드 76.00 g (1.10 mol)을 다이메틸설폭사이드(DMSO) 450 mL에 투입 후 소듐바이카보네이트 101.06 g (1.20 mol)을 첨가하여 50℃까지 승온하였다. 승온 후 메틸 1-((2‘-시아노-[1,1’-바이페닐]-4-일)메틸)-2-에톡시-1H-벤조[d]이미다졸-7-카복실레이트 90 g (0.22 mol)을 첨가하여 92℃에서 6 시간 동안 환류 교반시켰다. 반응 종결 확인 후 60℃까지 냉각하여 1800 mL의 정제수를 1시간동안 투입하였다. 25℃까지 냉각 후 30분 동안 교반하였다. 생성된 고체를 여과 후 180 mL의 정제수로 세척하였다. 에탄올 450 mL로 1시간 동안 환류 교반 후, 석출된 고체를 여과하였다. 40℃에서 건조하여 표제 화합물 73.4 %의 수율로 71.36 g (0.16 mol)을 얻었다.
1H NMR (400 MHz, DMSO-d 6) δ 1.42 (t, 3H), 3.72 (s, 3H), 4.62 (q, 2H), 5.51 (s, 2H), 5.55 (br s, 2H), 6.93 (d, 2H), 7.19 (t, 1H), 7.29 (d, 1H), 7.34-7.42 (m, 5H), 7.46 (d, 1H), 7.70 (d, 1H), 9.18 (br s, 1H)
<메틸 2-에톡시-1-((2‘-(5-옥소-2,5-다이하이드로1,2,4-옥사다이아졸-3-일)-[1,1’-바이페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트의 합성법>
제조예 5-1: 메틸 2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(methyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate)의 제조
Figure PCTKR2019015706-appb-img-000044
제조예 4-1에서 수득된 화합물 44.5 g과 피리딘 8.5 g을 디메틸포름아미드 용액 300mL에 가하여 용해시킨 후, 2-에틸 헥실 클로로포르메이트 21.1 g을 가하고 빙냉하에서 30분간 교반 후 물 300 mL와 에틸아세테이트 500 mL로 3회(500 mLx3회) 가하여 추출하였다. 얻어진 유기층을 물로 세척하고 마그네슘설페이트를 사용하여 건조시킨 후 용매를 감압 농축하여 잔유물을 얻고 크실렌 800 mL를 가하고 2시간 동안 가열환류(reflux)시킨 후, 감압 농축하여 고체 상태의 잔사를 얻었다. 다음으로, 상기 잔사에 클로로포름-에틸아세테이트 200 mL(3:1(v:v))을 가하고 24시간 실온에서 방치한 후 여과하고 얻어진 고체를 메탄올로 세척 후에 건조시켜 프리즘 결정형태의 표제 화합물 37.6 g(80%)을 얻었다.
본 제조에 사용된 제조법은 기존에 공지된 문헌의 방법(J. Med. Chem. Vol 36, No. 26, pp5228-5235, 1996)에 따라 제조하였다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.39 (t, 3H), 3.68 (s, 3H), 4.60 (q, 2H), 5.53 (s, 2H), 7.00 (d, 2H), 7.19 (t, 1H), 7.24 (d, 2H), 7.46 (d, 2H), 7.52-7.56 (m, 1H), 7.63-7.71 (m, 3H), 12.4 (br s, 1H)
IR(KBr) 1780, 1720, 1550, 1470, 1285, 1040, 760cm -1,
mp: 196-197℃.
제조예 5-2 : 메틸 2-에톡시-1-((2‘-(5-옥소-2,5-다이하이드로1,2,4-옥사다이아졸-3-일)-[1,1’-바이페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트의 제조
Figure PCTKR2019015706-appb-img-000045
제조예 4-2에서 제조한 메틸 (Z)-2-에톡시-1-((2‘-(N’-하이드록시카바미미도일)-[1,1‘-바이페닐]-4-일)메틸)-1H-벤조[d]-이미다졸-7-카복실레이트 80 g (0.18 mol)을 720 mL의 다이메틸설폭사이드(DMSO)에 용해시킨 후 1,1’-카보닐다이이미다졸(CDI) 35.02 g (0.22 mol)을 가하여 25℃에서 1시간 동안 교반하였다. 이후 2,3,4,6,7,8,9,10-옥타하이드로피리미도[1,2-a]아제핀(DBU) 35.07 g (0.23 mol)을 첨가하여 25℃에서 30분간 교반하였다. 반응 종결 확인 후 반응액을 3L의 정제수에 1시간 동안 적가 후 5% 염산 수용액으로 pH를 4-4.5가 되도록 조절하고 1시간 동안 교반하였다. 생성된 고체를 여과 후 320 mL의 정제수로 세척하였다. 아세톤 400mL로 재결정하고, 석출된 고체를 여과하였다. 40℃에서 10시간 건조하여 목적화합물 85.8%의 수율로 72.65 g (0.15 mol)을 얻었다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.39 (t, 3H), 3.68 (s, 3H), 4.60 (q, 2H), 5.53 (s, 2H), 7.00 (d, 2H), 7.19 (t, 1H), 7.24 (d, 2H), 7.46 (d, 2H), 7.52-7.56 (m, 1H), 7.63-7.71 (m, 3H), 12.4 (br s, 1H)
제조예 6: 메틸 2-에톡시-1-((2'-(5-옥소-4-트리틸-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(methyl 2-ethoxy-1-((2'-(5-oxo-4-trityl-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate)의 제조
Figure PCTKR2019015706-appb-img-000046
상기 제조예 5-1에서 수득된 화합물 47.1 g을 디메틸포름아미드(DMF) 300 mL에 용해시켰다. 이후, 트리에틸아민 15.5 g과 트리틸클로라이드 30.5g을 가하여 60-70℃에서 10시간 반응시켰다. 반응액을 실온으로 냉각시키고 물 300ml를 가한 후, 에틸아세테이트 300 ml를 3회 (300 mLx3회) 가하여 추출하고 얻어진 유기층을 염화암모늄 수용액(NH 4Cl) 300 mL를 3회(300 mLx3회) 및 물로 각각 세척한 후, 마그네슘설페이트(MgSO 4)로 건조시키고 감압 농축한 후 고체의 표지 화합물을 수득하였다.
상기 표지 화합물을 에틸아세테이트-이소프로필에테르(1:3)에서 재결정하여 고체 상태의 표지의 화합물 62.7 g(88%)을 얻었다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.40(t, 3H), 3.68(s, 3H), 4.61(q, 2H), 5.54(s, 2H), 6.68-6.90 (m, 20H), 6.93-7.07(3H), 7.25-7.45(m, 3H)
IR(KBr) 1780, 1720, 1550, 1470, 1285, 1040, 760cm -1,
mp: 196-197℃,
MS(ESI) m/z(M+1); 713.27(100%), 714.27(50.8%), 715.28(11.9%), 716.28(2.4%), 715.27(1.8%).
제조예 7 : 2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실산의 제조
Figure PCTKR2019015706-appb-img-000047
수산화나트륨 13.99 g (0.35 mol)을 정제수 280 mL에 용해시킨 후 제조예 5-2에서 제조한 메틸 2-에톡시-1-((2‘-(5-옥소-다이하이드로-1,2,4-옥사다이아졸-3-일)-[1,1‘-바이페닐]-4-일)메틸)-1H-벤조[d]-이미다졸-7-카복실레이트 28 g (0.06 mol)을 투입하여 50℃에서 2시간 동안 교반하였다. 반응 종결 확인 후 반응액을 상온까지 냉각하여 메틸렌클로라이드 140 mL로 씻어주었다. 반응액을 45℃까지 승온 후 아세톤 160 mL, 초산 26.5 g, 정제수 98 mL를 첨가하여 고체를 석출시켰다. 반응액을 상온까지 냉각 후 1시간 동안 교반하였다. 생성된 고체를 여과 후 아세톤 9 mL및 정제수 18 mL를 혼합한 혼합 용매로 세척하였다. 세척 후 상기 고체를 아세톤 56 mL에 첨가하여 상온에서 1시간 동안 교반 후, 석출된 고체를 여과하였다. 상기 고체를 40℃에서 10시간 건조하여 표제 화합물 92.3%의 수율로 25.7 g (0.055 mol)을 얻었다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.38 (t, 3H), 4.58 (q, 2H), 5.68 (s, 2H), 7.06 (d, 2H), 7.18 (t, 1H), 7.24 (d, 2H), 7.47 (d, 1H), 7.52-7.57 (m, 2H), 7.65 (d, 2H), 7.67 (d, 1H), 12.44 (br s, 1H) 13.13 (br s, 1H)
실시예 1: 3-메톡시-4-(피발로일옥시)벤질 2-에톡시-1-((2'-(5-옥소-4-트리틸-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(3-methoxy-4-(pivaloyloxy)benzyl 2-ethoxy-1-((2'-(5-oxo-4-trityl-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate)의 제조
Figure PCTKR2019015706-appb-img-000048
제조예 6에 따라 제조된 화합물 35.6 g을 N,N-디메틸아세트아미드(DMAC) 250 mL에 녹였다. 여기에 트리에틸아민 7.7 g를 넣고 빙냉하에서 2시간 교반 후 상기 제조예3에서 수득된 화합물(4-(브로모메틸)-2-메톡시페닐 피발레이트) 15.5 g을 가하고 실온에서 2시간 교반 후 60℃에서 4시간 교반시켜 반응액을 제조하였다. 상기 반응액 온도를 실온으로 낮추고, 에틸아세테이트 550 mL, 염화암모늄 50.6 mL 과 정제수 600 mL가 혼합된 혼합액을 가하고 30분 동안 교반하였다. 유기층을 분리한 후 염화암모늄 53.6 g과 정제수 600 mL 혼합액을 가하고 30분간 교반하였다. 유기층을 모으고 무수 황산마그네슘으로 건조 후 여과하고 감압 농축하여 고체인 표지의 화합물 33.2 g(72%)을 얻었다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 19H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H), 8.0(s, 1H),
IR(KBr) 2240, 1745, 1715, 1650, 1275, 1050, 750cm -1,
mp: 215℃ (decom),
MS(ESI) m/z (M+1) 919.36(100.0%), 920.37(62.5%), 922.37(5.1%), 920.36(1.5%),
Elemental Analysis: C, 74.49; H, 5.48; N, 6.10; O, 13.93.
실시예 2: 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(3-methoxy-4-(pivaloyloxy)benzyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate)의 합성
Figure PCTKR2019015706-appb-img-000049
실시예 1에 따라 제조된 화합물 10.3 g을 메탄올 120 mL에 용해시켜 빙냉하에서 교반하면서 1.0M 염산수용액 40 mL에 메탄올 200 mL를 혼합한 용액을 적가한 후, 빙냉하에서 2시간 교반 후 실온에서 6시간 교반하였다. 메탄올 용매를 감압 증발시켜 얻어진 농축액을 이소프로필에테르 100 mL와 혼합하고 교반 후 얻어진 잔사를 여과하고 감압 건조하여 고체인 표지의 화합물 5.46 g(72%)을 얻었다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(d, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H), 11.47 (br s, 1H)
IR(KBr) 2210, 1785, 1745, 1610, 1225, 1050, 755cm -1,
MS(ESI) m/z (M+1) 676.24 (100.0%), 677.24 (41.8%), 678.24 (10.8%), 677.23 (1.5%), 679.25 (1.1%).
<3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트의 합성법>
실시예 3-1: 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트((3-methoxy-4-(pivaloyloxy)benzyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate))의 합성
Figure PCTKR2019015706-appb-img-000050
2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실산 5.0 g 및 트리에틸아민 1.69 mL 및 THF 50 mL으로 포함하는 용액에 2,4,6-트리클로로벤조일 클로라이드 1.81 mL를 빙냉 하에 적가하여 혼합물을 제조하였다. 상기 혼합물을 실온에서 12시간 동안 교반한 후, 불용성 물질들을 여과 제거하고, 여과액을 농축했다. 잔사를 메틸렌 클로라이드 50 mL에 용해시키고, 제조예 2-1에 따라 제조된 4-(히드록시메틸)-2-메톡시페닐 피발레이트 2.6 g 및 N,N-디메틸아미노피리딘 1.61 g을 빙냉 하에 첨가하여 혼합물을 제조하였다. 제조된 혼합물을 실온에서 4시간 동안 교반한 후, 반응 혼합물을 클로로포름 150mL로 희석하고, 물, 포화 탄산수소나트륨 수용액, 1N 염산 및 포화 식염수로 세척하고, 무수 황산나트륨 상에서 건조시키고 농축했다. 잔사에 디이소프로필에테르를 첨가한 후 이로부터 다시 고체 화합물을 수득하였다. 수득된 고체 화합물을 환류하며 에탄올 18 mL 에 용해시킨 후, 활성탄 0.1 g을 용액에 첨가하고, 혼합물을 환류하며 30 분 동안 교반했다. 불용성 물질을 여과하여 제거하고, 여과액을 실온에서 냉각하였다. 12 시간 후, 침전된 체를 여과하여 수집하고, 고체를 빙냉 에탄올로 세척하고, 감압 하에 실온에서 건조시켜 표제 화합물 3.0 g(50%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(d, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H), 11.47 (br s, 1H)
IR(KBr) 2210, 1785, 1745, 1610, 1225, 1050, 755cm -1,
MS(ESI) m/z (M+1) 676.24 (100.0%), 677.24 (41.8%), 678.24 (10.8%), 677.23 (1.5%), 679.25 (1.1%).
실시예 3-2 : 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트((3-methoxy-4-(pivaloyloxy)benzyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate))의 합성
Figure PCTKR2019015706-appb-img-000051
2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실산 50g(0.11mol, 1eq), 4-(히드록시메틸)-2-메톡시페닐 피발레이트 28.59g(0.12mol, 1.1eq)을 N,N-디메틸아세트아미드(DMAc) 200ml에 용해하였다. 빙냉하에서 탄산칼륨 22.67g(0.16mol, 1.5eq), p-톨루엔설포닐 클로라이드 22.88g(0.12mol, 1.1eq), DMAP(4-dimethylaminopyridine) 2.0g(16.35mmol, 0.15eq)을 투입하였다. 실온에서 2~3 시간 교반하고, 반응액을 냉각한 후 에틸아세테이트 400ml를 투입하여 유기층을 층분리하였다. 얻어진 유기층을 20% 소금물 400ml로 세척한 후, 유기층을 무수황산마그네슘으로 건조 후 여과하고 용매를 감압 농축하였다. 잔사에 아세토니트릴 200ml를 투입한 후 가열하여 용해시키고, 빙냉하에서 2시간 교반한 후 여과하여 고체를 수득하였다. 상기 수득된 고체를 감압 하에 35℃에서 건조시켜 표제 화합물 59.01 g(80%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(d, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H), 11.47 (br s, 1H)
실시예 3-3 : 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트((3-methoxy-4-(pivaloyloxy)benzyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate))의 합성
Figure PCTKR2019015706-appb-img-000052
2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실산 50g(0.109mol, 1eq), 4-(히드록시메틸)-2-메톡시페닐 피발레이트 28.59g(0.120mol, 1.1eq)을 N,N-디메틸아세트아미드(DMAcC) 200ml에 용해하였다. 빙냉하에서 탄산칼륨 22.67g(0.164mol, 1.5eq), p-톨루엔설포닐 클로라이드 22.88g(0.120mol, 1.1eq), DMAP 2.0g(16.35mmol, 0.15eq)을 투입하였다. 실온에서 2~3 시간 교반하였다. 반응액을 냉각한 후 초산에틸 400ml를 투입하였다. 20% 소금물 400ml를 서서히 투입하였다. 10% 초산용액으로 중화한 후 유기층을 층분리하였다.
유기층을 20% 소금물 400ml로 세척하였다. 유기층을 무수황산마그네슘으로 건조 후 여과하고 용매를 감압 농축하였다. 잔사에 아세토니트릴 200ml를 투입한 후 가열하여 용해하였다. 빙냉하에서 2시간 교반한 후 고체를 여과하였다. 고체을 감압 하에 35℃에서 건조시켜 표제 화합물 59.01 g(80%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6): 실시예3-2와 실질적으로 동일함.
실시예 3-4 : 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트((3-methoxy-4-(pivaloyloxy)benzyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate))의 합성
Figure PCTKR2019015706-appb-img-000053
2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실산 50g(0.109mol, 1eq), 4-(히드록시메틸)-2-메톡시페닐 피발레이트 28.59g(0.120mol, 1.1eq)을 N,N-디메틸아세트아미드(DMAc) 200ml에 용해하였다. 빙냉하에서 탄산칼륨 22.67g(0.164mol, 1.5eq), p-톨루엔설포닐 클로라이드 22.88g(0.120mol, 1.1eq), DMAP 2.0g(16.35mmol, 0.15eq)을 투입하고 실온에서 2~3 시간 교반하였다. 반응액을 냉각한 후 에틸아세테이트 400ml를 투입하였다. 20% 소금물 400ml를 서서히 투입하였다. 10% 초산용액으로 중화한 후 유기층을 층분리하였다. 유기층을 20% 소금물 400ml로 세척하고, 유기층을 무수황산마그네슘으로 건조 후 여과하고 용매를 감압 농축하였다. 잔사에 아세토니트릴 200ml를 투입한 후 가열하여 용해한 뒤, 빙냉하에서 2시간 교반한 후 고체를 여과하였다.
여과한 고체에 아세톤 150ml와 정제수 300ml 를 투입한 후 40~45℃에서 3시간 교반하였다. 실온에서 1시간 교반하고 여과한 후 얻어진 고체를 아세톤/정제수=1/2 75ml로 세척한 후 정제수 150ml로 세척하였다. 세척된 고체를 감압 하에 35℃에서 건조시켜 표제 화합물 57.32 g(77%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6): 실시예3-2와 실질적으로 동일함.
실시예 3-5 : 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트((3-methoxy-4-(pivaloyloxy)benzyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate))의 합성
Figure PCTKR2019015706-appb-img-000054
2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실산 50g(0.109mol, 1eq), 4-(히드록시메틸)-2-메톡시페닐 피발레이트 28.59g(0.120mol, 1.1eq)을 N,N-디메틸아세트아미드(DMAc) 200ml에 용해하였다. 빙냉하에서 탄산칼륨 22.67g(0.164mol, 1.5eq), p-톨루엔설포닐 클로라이드 22.88g(0.120mol, 1.1eq), DMAP 2.0g(16.35mmol, 0.15eq)을 투입하고 실온에서 2~3 시간 교반하였다. 반응액을 냉각한 후 에틸아세테이트 400ml를 투입하였다. 20% 소금물 400ml를 서서히 투입하고, 10% 초산용액으로 중화한 후 유기층을 층분리하였다.
상기 유기층을 20% 소금물 400ml로 세척하고, 유기층을 무수황산마그네슘으로 건조 후 여과하고 용매를 감압 농축하였다. 잔사에 에틸아세테이트 200ml를 투입한 후 가열하여 용해한 뒤, 빙냉하에서 2시간 교반한 후 고체를 여과하였다. 여과된 고체를 감압 하에 35℃에서 건조시켜 표제 화합물 47.94 g(65%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6): 실시예3-2와 실질적으로 동일함.
실시예 4: 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트((3-methoxy-4-(pivaloyloxy)benzyl 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-[1,1'-biphenyl]-4-yl)methyl)-1H-benzo[d]imidazole-7-carboxylate))의 합성
Figure PCTKR2019015706-appb-img-000055
나트륨 2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실레이트 10 g을 N,N-디메틸아세트아미드(DMAC) 150 mL에 녹였다. 빙냉하에서 NaI 3.1 g를 넣고 상기 제조예 3에서 수득된 화합물(4-(브로모메틸)-2-메톡시페닐 피발레이트) 6.3 g을 가하고 0~5℃에서 2시간 교반시켜 반응액을 제조하였다. 에틸아세테이트 200 mL, 염화암모늄 40.0 g 과 정제수 200 mL가 혼합된 혼합액을 가하고 30분 동안 교반하였다. 유기층을 분리한 후 염화나트륨 20.0 g과 정제수 200 mL 혼합액을 가하고 30분간 교반하였다. 유기층을 모으고 무수 황산마그네슘으로 건조 후 여과하고 감압 농축하여 표지의 화합물 12.5 g(88%)을 얻었다.
1H-NMR (400 MHz, DMSO-d 6) δ 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(d, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H), 11.47 (br s, 1H)
IR(KBr) 2210, 1785, 1745, 1610, 1225, 1050, 755cm -1,
MS(ESI) m/z (M+1) 676.24 (100.0%), 677.24 (41.8%), 678.24 (10.8%), 677.23 (1.5%), 679.25 (1.1%).
<아질사르탄 피발레이트 나트륨염의 제법>
실시예 5-1: 나트륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 나트륨염) 제조
Figure PCTKR2019015706-appb-img-000056
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 6.8 g을 아세톤 100 mL에 녹인 후 트리에틸아민 1.5 mL를 가하여 빙냉하에서 30분 교반하였다. 소듐 2-에틸헥사노네이트 1.75 g을 아세톤 25 mL에 혼합한 용액을 20분간 적가하고 30분 교반 후 45~50℃에서 10시간 교반하여 반응액을 제조하였다. 상기 반응액을 감압 농축하여 잔사를 얻고 실리카겔 크로마토그래피로 정제하여 표제의 화합물 4.56 g(65%)을 얻었다.
1H-NMR (400 MHz, DMSO-d 6) 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H)
IR(KBr) 2240, 1745, 1715, 1650, 1275, 1050, 750cm -1,
mp: 215 ℃ (decom),
MS(ESI) m/z (M+1), 699.24 (100.0%), 700.24 (41.8%), 701.24 (10.8%), 700.23 (1.5%), 702.25 (1.1%),
Chemical Formula: C 38H 35N 4NaO 8,
Elemental Analysis: C, 65.32; H, 5.05; N, 8.02; Na, 3.29; O, 18.32.
실시예 5-2: 나트륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 나트륨염)의 합성
Figure PCTKR2019015706-appb-img-000057
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 50g(73.887mmol)에 아세톤 500ml를 투입한 후 40~45℃로 가열하여 용해하였다. 40~45℃에서 소듐 2-에틸헥사노에이트 13.51g(81.276mmol, 1.1eq)을 투입한 후 1~2시간 환류하였다. 실온에서 2~3시간 교반 후, 고체를 여과하고, 감압 하에 35℃에서 건조시켜 표제 화합물 33.55g(65%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H)
<아질사르탄 피발레이트 칼륨염의 제법>
실시예 6-1: 칼륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 칼륨염) 제조
Figure PCTKR2019015706-appb-img-000058
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1'-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 6.8 g을 아세톤 150 mL에 녹인 후 트리에틸아민 1.5 mL를 가하여 빙냉하에서 30분 교반하였다. 칼륨 2-에틸헥사노네이트 1.85 g을 아세톤 40 mL에 혼합한 용액을 20분간 적가하고 30분 교반 후 45~50℃에서 10시간 교반하여 반응액을 제조하였다. 상기 반응액을 감압 농축하여 잔사를 얻고 실리카겔 크로마토그래피로 정제하여 고체인 표제의 화합물 3.95 g(55%)을 얻었다.
1H-NMR (400 MHz, DMSO-d 6) 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H),
IR(KBr) 2240, 1745, 1715, 1650, 1275, 1050, 750cm -1,
mp: 215℃ (decom),
MS(ESI) m/z (M+1), 699.24 (100.0%), 700.24 (41.8%), 701.24 (10.8%), 700.23 (1.5%), 702.25 (1.1%),
Chemical Formula: C 38H 35N 4NaO 8,
Elemental Analysis: C, 65.32; H, 5.05; N, 8.02; Na, 3.29; O, 18.32.
실시예 6-2 : 칼륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사탄 피발레이트 칼륨염) 제조
Figure PCTKR2019015706-appb-img-000059
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 35g(51.721mmol)에 아세톤 350ml를 투입한 후 40~45℃로 가열하여 용해하였다. 40~45℃에서 칼륨 2-에틸헥사노네이트 10.37g(56.893mmol, 1.1eq)을 투입한 후 1~2시간 환류하였다. 실온에서 2~3시간 교반한 후, 고체를 여과하고, 감압 하에 35℃에서 건조시켜 표제 화합물 26.39 g(71%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H)
실시예 6-3 : 칼륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 칼륨염)의 합성
Figure PCTKR2019015706-appb-img-000060
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 50g(73.887mmol)에 아세톤 500ml를 투입한 후 40~45℃로 가열하여 용해하였다. 40~45℃에서 칼륨 2-에틸헥사노에이트 14.82g(81.276mmol, 1.1eq)을 투입한 후 1~2시간 환류하였다. 실온에서 2~3시간 교반하였다. 고체를 여과하고, 감압 하에 35℃에서 건조시켜 표제 화합물 37.50g(71%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6): 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H)
실시예 6-4: 칼륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 칼륨염)의 합성
Figure PCTKR2019015706-appb-img-000061
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 50g(73.887mmol)에 에틸아세테이트 500ml를 투입한 후 50~55℃로 가열하여 용해하였다. 이후, 50~55℃에서 칼륨 2-에틸헥사노에이트 14.82g(81.276mmol, 1.1eq)을 투입한 후 1~2시간 환류하고, 실온에서 2~3시간 교반한 후, 고체를 여과하고, 감압 하에 35℃에서 건조시켜 표제 화합물 33.80g(64%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H)
실시예 6-5: 칼륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 칼륨염)의 합성
Figure PCTKR2019015706-appb-img-000062
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 4.54g(6.709mmol)에 에틸아세테이트 18ml를 투입한 후 50~55℃로 가열하여 용해하였다. 54℃에서 칼륨 2-에틸헥사노네이트 1.11g(6.709mmol, 1.0eq)을 에틸아세테이트 5ml에 용해한 용액을 15분 동안 적가하였다. 1~2시간 환류한 후 실온에서 2~3시간 교반하였다. 고체를 여과하고, 감압 하에 35℃에서 건조시켜 표제 화합물 3.06 g(64%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6): 실시예 6-4와 실질적으로 동일함.
실시예 6-6: 칼륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 칼륨염)의 합성
Figure PCTKR2019015706-appb-img-000063
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 50g(73.887mmol)에 이소프로필에테르 800ml를 투입한 후 50~55℃로 가열하여 용해하였다. 50~55℃에서 칼륨 2-에틸헥사노에이트 14.82g(81.276mmol, 1.1eq)을 투입한 후 1~2시간 환류하였다. 실온에서 2~3시간 교반한 후, 고체를 여과하고 감압 하에 35℃에서 건조시켜 표제 화합물 35.91g(68%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H)
실시예 6-7: 칼륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 칼륨염)의 합성
Figure PCTKR2019015706-appb-img-000064
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 3g(4.433mmol)에 이소프로필에테르 50ml를 투입한 후 50~55℃로 가열하여 용해하였다. 55℃에서 칼륨 2-에틸헥사노네이트 0.81g(4.433mmol, 1.0eq)을 이소프로필에테르 5ml에 용해한 용액을 5분 동안 적가하였다. 1~2시간 환류한 후 실온에서 2~3시간 교반하였다. 고체를 여과하고, 감압 하에 35℃에서 건조시켜 표제 화합물 2.43 g(77%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6): 실시예 6-6와 실질적으로 동일함.
실시예 6-8: 칼륨 3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트(아질사르탄 피발레이트 칼륨염)의 합성
Figure PCTKR2019015706-appb-img-000065
3-메톡시-4-(피발로일옥시)벤질-2-에톡시-1-((2’-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)-[1,1’-비페닐]-4-일)메틸)-1H-벤조[d]이미다졸-7-카복실레이트 5.0g(7.389mmol)에 삼차부탄올 30ml를 투입한 후 50~55℃로 가열하여 용해하였다. 58℃에서 칼륨 2-에틸헥사노네이트 1.35g(7.389mmol, 1.0eq)을 삼차부탄올 5ml에 용해한 용액을 10분 동안 적가하였다. 60~70℃에서 2~3시간 교반한 후 실온에서 2~3시간 교반하였다. 고체를 여과하고, 감압 하에 35℃에서 건조시켜 표제 화합물 3.98 g(75%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) 1.23(s, 9H), 1.32(t, 3H), 3.83(s, 3H), 4.29(q, 2H), 5.26(s, 2H), 5.46(s, 2H), 6.63(d, 1H), 7.11(m, 2H), 7.29-7.33(m, 5H), 7.48(t, 1H), 7.58(t, 1H), 7.74-7.89(m, 4H)
<기존의 아질사르탄 메독소밀 화합물 및 이의 칼륨염의 제법>
비교예 1: (5-메틸-2-옥소-1,3-디옥솔-4-일)메틸-2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]-메틸}-1H-벤즈이미다졸-7-카르복실레이트의 제조(아질사르탄 메독소밀 화합물)
Figure PCTKR2019015706-appb-img-000066
2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실산(83.5g), 트리에틸아민(28.2 mL) 및 THF(835 mL)를 혼합한 용액에 2,4,6-트리클로로벤조일클로라이드(30.2 mL)를 빙냉하에 적가했다. 혼합물을 실온에서 12시간 동안 교반한 후, 불용성 물질들을 여과하여 제거하고, 여과액을 농축하였다. 잔사를 메틸렌클로라이드(835 mL)에 용해시키고, 4-히드록시메틸-5-메틸-1,3-디옥솔-2-온(28.7g) 및 N,N-디메틸아미노피리딘(26.9g)을 빙냉하에 첨가하여 혼합물을 제조하였다. 제조된 혼합물을 실온에서 4시간 동안 교반한 후, 클로로포름(2500 mL)으로 희석하고, 물, 포화 탄산수소나트륨 수용액, 1N 염산 및 포화 식염수로 세척하고, 무수 황산나트륨 상에서 건조시키고 농축했다. 잔사를 다이이소프로필에테르를 사용하여 고체 형태로서 얻은 후, 상기 고체를 에탄올(300mL)에서 환류하면서 용해시켜 용액을 제조하였다. 활성탄(1.7g)을 상기 용액에 첨가하고, 환류하며 30분 동안 교반한 후, 불용성 물질을 여과를 이용해 제거하였다. 여과된 여과액을 실온으로 12시간 냉각하여 침전된 결정을 여과를 통해 수득한 후, 빙냉 에탄올로 세척하고, 감압하에 실온에서 건조시켜 표제 화합물 (50.0 g, 50%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) 1.40(t, 3H), 2.16(s, 3H), 4.60(q, 2H), 5.11(s, 2H), 5.55(s, 2H), 700(d, 2H), 7.20-7.23(m, 3H), 7.46-751(m, 1H), 7.53(dd, 1H), 7.54(dd, 1H) 7.56-7.68(m, 2H), 7.73(d, 1H), 12.374 (br s, 1H)
비교예 2: (5-메틸-2-옥소-1,3-디옥솔-4-일)메틸-2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실레이트 칼륨염의 제조(아질사르탄 메독소밀 칼륨염)
Figure PCTKR2019015706-appb-img-000067
(5-메틸-2-옥소-1,3-디옥솔-4-일)메틸-2-에톡시-1-{[2'-(5-옥소-4,5-디히드로-1,2,4-옥사디아졸-3-일)비페닐-4-일]메틸}-1H-벤즈이미다졸-7-카르복실레이트 50g(87.946mmol)을 아세톤 500ml에 50℃의 온도에서 용해시켰다. 이후, 20 내지 25℃에서 칼륨 2-에틸헥사노에이트 17.64g(96.741mmol, 1.1eq) 투입한 후 1 내지 2시간 동안 교반하고, 빙냉하에서 2 내지 3시간 교반하였다. 이후, 침전된 결정을 여과하고, 감압 하에 25℃에서 건조시켜 표제 화합물 34.68g(65%)을 수득했다.
1H-NMR (400 MHz, DMSO-d 6) 1.42(t, 3H), 2.16(s, 3H), 4.61(q, 2H), 5.11(s, 2H), 5.52(s, 2H), 6.87(d, 2H), 7.19-7.22(m, 3H), 7.25(d, 1H), 7.33-7.39(m, 2H), 7.50(d, 2H), 7.73(d, 1H)
<실험예 1> 순도 평가
실시예 3-1, 실시예 3-2, 실시예 3-4 및 실시예 3-5의 제조방법으로 제조된 아질사르탄 피발레이트 유리 염기와 실시예 5-2에 따라 제조된 아질사르탄 피발레이트 나트륨염, 실시예 6-3, 실시예 6-4 및 실시예 6-6에 따라 제조된 아질사르탄 피발레이트 칼륨염의 순도를 HPLC를 이용하여 측정하고, 그 결과를 하기 표 1에 기재하였다.
유리염기 실시예 3-1 실시예 3-2 실시예 3-4 실시예 3-5
순도 99.78% 99.82% 99.87% 99.80%
실시예 6-2 실시예 6-4 실시예 6-6 실시예 5-2
순도 99.92% 99.87% 99.85% 99.79%
상기 표에서 알 수 있듯이 실시예 3-1, 실시예 3-2, 실시예 3-4 및 실시예 3-5의 제조방법으로 제조된 아질사르탄 피발레이트 유리 염기와 실시예 5-2, 실시예 6-3, 실시예 6-4 및 실시예 6-5에서 제조된 아질사르탄 피발레이트 염의 순도는 모두 99.5% 이상인 것으로 확인되었다. 아질사르탄 유리염기는 종래 난용성으로 별도의 정제과정을 도입하는 것이 무척 어려운데 본 발명의 아질사르탄 피발레이트 유리염기 및 아질사르탄 피발레이트 염은 제조만으로도 약제학적으로 매우 적합한 고순도를 확보할 수 있음이 확인되었다.
<실험예 2> 인습성 평가
낮은 인습성은 화합물이 의약품 원료로 사용되기 위하여 요구되는 물성 중 실제 의약품의 가공 및 보관을 위한 매우 중요한 요소이다. 본 발명에 따른 화합물들의 인습성을 측정하기 위하여 실시예 3-2, 실시예 3-4 및 실시예 3-5의 제조방법으로 제조된 아질사르탄 피발레이트 유리 염기와 실시예 6-3, 실시예 6-4 및 실시예 6-6 및 비교예 2에서 제조된 아질사르탄 피발레이트 칼륨염을 진공건조 (P 2O 5, 1일 이상)한 후, 칼피셔법으로 초기 수분값을 측정하고, 인습성측정기기 (모델명:Hydrosorb 1000, 제조사: Quantachrome Instruments)를 이용하여 25℃ 및 상대습도 15, 35, 55, 75, 95%에서 인습된 수분량을 자동 측정하였으며, 그 결과를 하기 표 2에 기재하였다. 단, 초기 수분값은 지속적으로 건조하여 더 이상 감량되지 않는 상태의 수분값으로 하였다.
초기 수분값 상대습도15% 상대습도35% 상대습도55% 상대습도75% 상대습도95%
실시예 3-2 0.18% 0.17% 0.17% 0.16% 0.19% 0.20%
실시예 3-4 0.12% 0.13% 0.14% 0.13% 0.14% 0.15%
실시예 3-5 0.14% 0.13% 0.14% 0.15% 0.16% 0.17%
실시예 6-3 0.14% 0.13% 0.14% 0.15% 0.15% 0.16%
실시예 6-4 0.16% 0.17% 0.17% 0.16% 0.19% 0.20%
실시예 6-6 0.12% 0.13% 0.14% 0.13% 0.15% 0.16%
비교예 2 0.28% 0.59% 2.64% 4.25% 8.35% 12.15%
(단위: 중랑%)
상기 표를 참조하면, 실시예 3-2, 실시예 3-4 및 실시예 3-5에 따라 제조된 아질사르탄 피발레이트 유리 염기와 실시예 6-3, 실시예 6-4 및 실시예 6-6에 따라 제조된 아질사탄 피발레이트 칼륨염은 실험을 실시한 전 범위 상대습도에서 약 0.2%의 매우 낮은 인습성을 나타내어 공기 중 수분에 원료가 노출되더라도 안정하게 보관될 수 있음을 알 수 있었다.
따라서, 본 발명의 아질사르탄 피발레이트 유리 염기와 아질사탄 피발레이트 칼륨염은 통상적인 상대습도의 공기 중에 노출되더라도 인습되지 않는 우수한 비흡습성(비인습성) 특성을 가짐이 확인되었다.
반면, 비교예 2에 따라 제조된 화합물은 상대습도가 증가할수록 기하급수적으로 공기 중 수분을 인습하여 약제학 용도의 원료로서 매우 불량한 특성을 가지고 있음을 확인되었으며, 비교예 2는 제제화하기에는 너무나 큰 인습성을 가지고 있어 제제화가 어렵거나 제제화를 위해 별도의 엄격한 조건이 필요할 것으로 예상된다.
따라서, 비교예 2에 따라 제조된 아질사르탄 메독소밀 칼륨염에 비해 본 발명의 아질사르탄 피발레이트 유리염기 및 칼륨염이 우수한 비인습성 특성을 가지는 바, 제제의 원료로서 제제화하는데 있어 우수하며, 제제화가 용이하고 경제적임을 알 수 있다.
<실험예 3> 안정성 시험
고체상태의 우수한 안정성은 정제 및 캅셀제에 중요한 요소인 바, 안정성을 평가하기 위하여 실시예 3-1, 실시예 3-2, 실시예 3-4 및 실시예 3-5의 제조방법으로 제조된 아질사르탄 피발레이트 유리 염기와 실시예 5-2, 실시예 6-3, 실시예 6-4, 실시예 6-6 및 비교예 2에서 제조된 화합물을 이용하여 100℃의 가혹조건(기밀상태)에 1주일간 보관하고 열에 대한 상대적인 안정성을 HPLC로 측정하여 그 결과를 하기 표 3에 기재하였다.
구분 초기값 1주일 후
실시예 3-1 99.78% 99.69%
실시예 3-2 99.82% 99.77%
실시예 3-4 99.87% 99.85%
실시예 3-5 99.80% 99.76%
실시예 6-3 99.92% 99.89%
실시예 6-4 99.87% 99.86%
실시예 6-6 99.85% 99.83%
실시예 5-2 99.79% 99.75%
비교예 2 98.20% 96.80%
상기 표를 참조하면, 실시예 3-2, 실시예 3-4 및 실시예 3-5에 따라 제조된 아질사르탄 피발레이트 유리 염기와 실시예 5-2, 실시예 6-3, 실시예 6-4 및 실시예 6-6에서 제조된 화합물은 열에 대해 우수한 안정성을 나타내었고, 비교예 2는 상대적으로 열에 대한 안정성이 취약한 것으로 확인되었다.
따라서, 본 발명에 따라 제조된 아질사르탄 피발레이트 유리염기, 나트륨염 및 칼륨염은 종래의 아질사르탄 메독소밀 칼륨염에 비해 안정성이 현저히 우수하였다.
<실험예 4> 정전기성 시험
정전기가 많이 발생하는 화합물은 정량측정 및 약제학적 제형으로 가공시 기기와 스티킹(sticking) 등의 문제를 발생시킬 수 있으므로, 정전기성은 제형화에 있어 중요한 요소이다. 실시예 3-1, 실시예 3-2, 실시예 3-4 및 실시예 3-5의 제조방법으로 제조된 아질사르탄 피발레이트 유리 염기와 실시예 5-2, 실시예 6-3, 실시예 6-4, 실시예 6-6 및 비교예 2에 따른 화합물의 정전기성을 확인하기 위해, 실시예 3-1, 실시예 3-2, 실시예 3-4, 실시예 3-5, 실시예 5-2, 실시예 6-2, 실시예 6-3, 실시예 6-4 및 비교예 2의 시료의 정전기성을 외부의 정전기장을 차폐시켜 정전기를 측정하는 패러데이케이지 장치(모델명: 325 Faraday Cage with SmartStirTM, 제조사: AMETEK PAR)를 통해 각 화합물의 정전기성을 실험하고 그 결과를 표 4에 기재하였다.
  정전기성(nc/g)
실시예 3-1 15 nc/g
실시예 3-2 8 nc/g
실시예 3-4 6 nc/g
실시예 3-5 10 nc/g
실시예 6-2 7 nc/g
실시예 6-3 10 nc/g
실시예 6-4 11 nc/g
실시예 5-2 14 nc/g
비교예 2 25 nc/g
상기 표를 참조하면, 실시예 3-1, 실시예 3-2, 실시예 3-4 및 실시예 3-5의 제조방법으로 제조된 아질사르탄 피발레이트 유리 염기와 실시예 5-2, 실시예 6-3, 실시예 6-4 및 실시예 6-6에서 제조된 시료가 비교예 2의 시료에 비하여 정전기성이 낮은 것을 확인할 수 있었다.
따라서, 본 발명에 따라 제조된 아질사르탄 피발레이트 유리염기, 아질사르탄 피발레이트 나트륨염 및 칼륨염은 종래의 아질사르탄 메독소밀 칼륨염인 비교예 2에 대비하여 정전기성이 낮아 제제로의 가공성이 현저히 낮음을 알 수 있다.
<실험예 5> 비용적(단위 중량당 부피) 시험
화합물을 약품의 원료로 사용하여 정제로 가공시 고체의 비용적(동일한 단위 중량당 부피)은 공정상 편의성 및 제형의 크기에 영향을 줄 수 있고, 비용적이 클 경우, 가공성이 매우 불량한 문제를 야기할 수 있으므로, 비용적성은 제제화에 있어 중요한 요소이다. 실시예 3-1, 실시예 3-2, 실시예 3-4 및 실시예 3-5의 제조방법으로 제조된 아질사르탄 피발레이트 유리 염기와 실시예 5-2, 실시예 6-3, 실시예 6-4, 실시예 6-6 및 비교예 2의 시료의 비용적을 확인하기 위해, 실시예 3-1, 실시예 3-2, 실시예 3-4, 실시예 3-5, 실시예 5-2, 실시예 6-3, 실시예 6-4, 실시예 6-6 및 비교예 2에서 제조된 시료를 메스실린더에 넣고 수직으로 10cm의 높이에서 20차례 이상 태핑하여 압축이 충분히 이뤄지도록 반복하여 자연낙하시켰다. 태핑을 실시하기 전후로 구분하여 그 비용적을 측정하고, 그 결과를 표 5에 기재하였다.
  태핑 전 태핑 후
실시예 3-1 3.88mL/g 2.65mL/g
실시예 3-2 3.76mL/g 2.71mL/g
실시예 3-4 3.62mL/g 2.65mL/g
실시예 3-5 3.79mL/g 2.70mL/g
실시예 6-3 3.22mL/g 2.31mL/g
실시예 6-4 3.86mL/g 2.77mL/g
실시예 6-6 3.73mL/g 2.67mL/g
실시예 5-2 3.89mL/g 2.68mL/g
상기 표를 참조하면, 실시예 5-2, 실시예 6-3, 실시예 6-4, 실시예 6-6의 화합물은 비용적 감소효과가 있는 것을 확인할 수 있었다. 일반적으로 분말성상의 의약품 원료는 비용적이 높아 항상 압축성형된 이후, 인체에 투약이 가능한 제형(정제나 캡슐제)로 설계되므로 비용적이 큰 경우, 제제 가공성이 매우 떨어지게 된다.
따라서, 본 발명의 아질사탄 피발레이트 또는 이의 염은 약제학적 가공성이 우수한 물리화학적 특징을 갖는 것을 알 수 있었다.
<실험예 6> AT1에 대한 억제 활성 특성 평가(IC50)
본 발명의 실시예 6-3에 따라 제조된 아질사르탄 유도체 화합물의 AT 1에 대한 억제 활성 검증 실험을 위해 하기와 같은 실험을 수행하였다.
10㎍의 AT 1 이 부착된 96well Plate에 45㎕ assay buffer(50 mM Tris-HCl, 5 mMMgCl 2, 1 mM EDTA, and 0.005% CHAPS, pH 7.4)를 넣어 90분간 실온에서 방치한 후, 5㎕ 125I-Sar 1-Ile 8-AII(최종 농도가 0.6nM이 되도록 한다.)를 첨가하여 5시간 동안 교반하여 반응시킨다. 동시에 준비한 MFC-1101를 45㎕ assay buffer에 농도 구배하여 넣어 90분간 실온에서 방치한다. 그 후 즉시 well당 200㎕ assay buffer를 사용하여 결합하지 않은 MFC-1101을 제거하고 5㎕ 125I-Sar 1-Ile 8-AII를 첨가하여 5시간 동안 교반하여 반응시킨다. 이 후 well당 200㎕ assay buffer를 사용하여 2회 세척하고 125I를 측정할수 있는 96well Plate 분석기를 사용하여 AT 1의 활성 억제를 측정하였고, 그 결과를 하기 표 6에 나타내었다.
화합물 IC50(n Μ)
실시예 6-3 2.9(2.6-3.2)
Azilsartan 2.6(1.7-4.1)
상기 표를 참조하면, 실시예 6-3에 따라 제조된 아질사르탄 유도체 화합물은 AT 1 활성억제를 나타내는 척도인 IC50 값이 2.9nM로 나타나 Azilsartan(IC50 2.6nM)과 유사한 강도의 효능을 나타나는 것으로 보인다.
따라서 본 발명의 실시예 6-3에 따라 제조된 아질사르탄 유도체 화합물은 우수한 약리 효과를 나타낼 수 있음을 알 수 있다.
<실험예 7> 본 발명의 아질사르탄 피발레이트 칼륨염의 약동학적 평가
본 발명의 아질사르탄 피발레이트 칼륨염의 약동학적 시험을 통해 생물학적 동등성을 평가하였다.
(1) 혈장내 안정성 분석
본 발명의 아질사르탄 피발레이트 칼륨염을 정맥 투여한 후 각 시간 별로 채집된 랫트의 혈액에서 분리한 랫트의 혈장 내 본 발명의 아질사르탄 유도체 화합물의 칼륨염의 농도를 측정하였으며, 결과는 도 1과 같다.
(2) 현탁액 및 용액 경구섭취 후 시간에 따른 혈장 내 농도, 혈장내 최대 농도 및 AUC 분석
본 발명의 실시예 3-4에 따른 아질사르탄 피발레이트 유리염기(MFC), 실시예 6-3에 따른 아질사르탄 피발레이트 칼륨염(MFCk)을 0.5% carboxymethylcellulose (CMC) 용액으로 현탁액과 용액을 모두 제조하고, 하기 표 7과 같은 조건으로 투여 후 각 시간 별로 채집된 랫트의 혈액에서 분리한 혈장에 본 발명의 아질사르탄의 농도를 측정하였으며, 결과는 도 2 내지 5와 같다.
성별 동물수 투여경로 투여량(mg/kg) 투여액량 (mL/kg)
M 3 경구 1 5
도 2 내지 5는 본 발명의 아질사르탄 피발레이트 유리염기(MFC), 아질사르탄 피발레이트 칼륨염(MFCk)의 경구 섭취에 대한 아질사르탄의 혈중 농도 결과를 나타낸 것이다.
상기 도 2 및 도 3은 아질사르탄 피발레이트 유리염기(MFC), 아질사르탄 피발레이트 칼륨염(MFCk)을 포함하는 현탁액을 투여했을 때이며, 도 4 및 도 5는 아질사르탄 피발레이트 유리염기(MFC), 아질사르탄 피발레이트 칼륨염(MFCk)을 포함하는 용액을 투여했을 때의 아질사르탄의 혈중 농도 결과를 나타낸 것이다.
상기 도 2 내지 도 5에서 확인되는 바와 같이 본 발명에 따른 아질사르탄 피발레이트 유리염기(MFC), 아질사르탄 피발레이트 칼륨염(MFCk)는 경구 섭취시에도 혈중에서 충분한 효과를 나타내는 바, 현저히 우수한 치료 효과를 가짐을 알 수 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 관련 기술 분야의 통상의 지식을 가진 자에게 있어 이러한 구체적인 기술은 단지 바람직한 구현예일뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구범위와 그의 등가물에 의하여 정의될 것이다.

Claims (21)

  1. 하기 화학식 1로 표시되는 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염:
    [화학식 1]
    Figure PCTKR2019015706-appb-img-000068
    상기 화학식 1에서,
    R 1 및 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
    A가 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, N(R 3) 2,
    Figure PCTKR2019015706-appb-img-000069
    ,
    Figure PCTKR2019015706-appb-img-000070
    또는
    Figure PCTKR2019015706-appb-img-000071
    이고,
    R 3가 H 또는 C 1-6알킬기이고,
    R a 내지 R c가 각각 독립적으로 아릴기 또는 헤테로아릴기이고,
    R d 내지 R f 및 R g는 각각 독립적으로 C 1-6알킬기 또는 C 1-6알콕시기이고,
    m은 0 내지 4의 정수 중 어느 하나이고,
    n은 0 내지 6의 정수 중 어느 하나이다.
  2. 제1항에 있어서,
    상기 약학적으로 허용 가능한 염은
    하기 화학식 1A 또는 1B 로 표시되는 것인,
    아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염:
    [화학식 1A]
    Figure PCTKR2019015706-appb-img-000072
    [화학식 1B]
    Figure PCTKR2019015706-appb-img-000073
    상기 화학식 1A 및 1B에서,
    R 1 및 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
    R 3가 H 또는 C 1-6알킬기이고,
    m은 0 내지 4의 정수 중 어느 하나이고,
    n은 0 내지 6의 정수 중 어느 하나이다.
  3. 제1항 또는 제2항에 있어서,
    R 1이 C 1-6알킬기이고,
    R 2는 C 1-6알콕시기이고,
    A가 수소, 트리틸기(trityl), t-부틸디메틸실릴기(tert-butyl methylsilyl, TBDMS) 또는 t-부틸디카보네이트기(tert-butyl dicarbonyl, BOC) 이고,
    m은 1이고, n은 0인,
    아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염.
  4. 제3항에 있어서,
    R 1이 t-부틸기이고, R 2가 메톡시기인,
    아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염.
  5. 제1항 또는 제2항에 있어서,
    R 1이 C 1-6알킬기이고,
    R 2는 C 1-6알콕시기이고,
    A가 C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, N(R 3) 2,
    Figure PCTKR2019015706-appb-img-000074
    ,
    Figure PCTKR2019015706-appb-img-000075
    또는
    Figure PCTKR2019015706-appb-img-000076
    이고,
    R a 내지 R c가 각각 독립적으로 페닐이고,
    R d 내지 R f 및 R g는 각각 독립적으로 C 1-6알킬기 또는 C 1-6알콕시기이고,
    m은 1이고,
    n은 0인 것인,
    아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염.
  6. 제5항에 있어서,
    A가
    Figure PCTKR2019015706-appb-img-000077
    이고, R a 내지 R c가 각각 독립적으로 아릴기인 것인,
    아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염.
  7. 제5항에 있어서,
    A가 트리틸기(trityl), t-부틸디메틸실릴기(tert-butyl methylsilyl, TBDMS) 및 t-부틸디카보네이트기(tert-butyl dicarbonyl, BOC) 중에서 선택된 어느 하나인, 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염.
  8. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시되는 것인, 아질사르탄 유도체 화합물, 이의 광학이성질체, 또는 이의 약학적으로 허용가능한 염:
    [화학식 1-1]
    Figure PCTKR2019015706-appb-img-000078
  9. 제8항에 있어서, 이의 약학적으로 허용 가능한 염은 칼륨염 또는 나트륨염인 것인, 아질사르탄 유도체 화합물, 이의 광학이성질체, 또는 이의 약학적으로 허용가능한 염.
  10. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-2로 표시되는 것인, 아질사르탄 유도체 화합물, 이의 광학이성질체, 또는 이의 약학적으로 허용가능한 염:
    [화학식 1-2]
    Figure PCTKR2019015706-appb-img-000079
    상기 화학식 1-2에서 Ph는 페닐기임.
  11. 하기 화학식 6으로 표시되는 화합물 및 하기 화학식 7로 표시되는 화합물을 반응시켜 하기 화학식 1로 표시되는 아질사르탄 유도체 화합물을 제조하는 단계를 포함하는,
    아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법:
    [화학식 6]
    Figure PCTKR2019015706-appb-img-000080
    상기 화학식 6에서,
    R 1 내지 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
    R 3가 H 또는 C 1-6알킬기이고,
    X가 -OH, F, Cl, Br 및 I 중 어느 하나이고,
    m은 0 내지 4의 정수 중 어느 하나이고,
    n은 0 내지 6의 정수 중 어느 하나이며,
    [화학식 7]
    Figure PCTKR2019015706-appb-img-000081
    상기 화학식 7에서,
    W가 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, N(R 3) 2,
    Figure PCTKR2019015706-appb-img-000082
    ,
    Figure PCTKR2019015706-appb-img-000083
    또는
    Figure PCTKR2019015706-appb-img-000084
    이고,
    R 3가 H 또는 C 1-6알킬기이고,
    M이 H, C 1-6알킬기, Na 또는 K이고,
    R a 내지 R c가 각각 독립적으로 아릴기 또는 헤테로아릴기이고,
    R d 내지 R f 및 R g는 각각 독립적으로 C 1-6알킬기 또는 C 1-6알콕시기이고,
    [화학식 1]
    Figure PCTKR2019015706-appb-img-000085
    상기 화학식 1에서,
    R 1 및 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
    A가 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, N(R 3) 2,
    Figure PCTKR2019015706-appb-img-000086
    ,
    Figure PCTKR2019015706-appb-img-000087
    또는
    Figure PCTKR2019015706-appb-img-000088
    이고,
    R 3가 H 또는 C 1-6알킬기이고,
    R a 내지 R c가 각각 독립적으로 아릴기 또는 헤테로아릴기이고,
    R d 내지 R f 및 R g는 각각 독립적으로 C 1-6알킬기 또는 C 1-6알콕시기이고,
    m은 0 내지 4의 정수 중 어느 하나이고,
    n은 0 내지 6의 정수 중 어느 하나이다.
  12. 제11항에 있어서,
    화학식 1의 A가 H인 경우,
    화학식 7의 작용기 W를 탈보호시키는 단계를 더 포함하며,
    상기에서 W는 트리틸기(trityl), t-부틸디메틸실릴기(tert-butyl methylsilyl, TBDMS) 및 t-부틸디카보네이트기(tert-butyl dicarbonyl, BOC) 중에서 선택된 어느 하나인 것인,
    아질사르탄 유도체 화합물, 이의 광학 이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법.
  13. 제11항에 있어서,
    상기 R 1은 터트 부틸,
    R 2는 메톡시, X는 -OH, Cl, Br 또는 I,
    W는 H 또는 -Ph 3
    M은 메틸 또는 H,
    A는 H 또는 -Ph 3이며,
    n은 0이고 m은 1인 것인,
    아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법.
  14. 제11항에 있어서,
    상기 반응이 탄산칼륨, 탄산나트륨, 중탄산칼륨, 중탄산나트륨, 세슘카보네이트, 디이소프로필아민, 트리에틸아민 및 디에틸아민 중에서 선택된 1종 이상을 포함하는 염기 존재 하에서 수행되는 축합반응을 포함하는 것인, 아질사르탄 유도체 화합물, 이의 이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법.
  15. 하기 화학식 [6-1]로 표시되는 화합물을 하기 화학식 [7-1]로 표시되는 화합물을 반응시켜, 하기 화학식 [1-1]로 표시되는 화합물을 제조하는 단계를 포함하는 것인 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법:
    [화학식 6-1]
    Figure PCTKR2019015706-appb-img-000089
    [화학식 7-1]
    Figure PCTKR2019015706-appb-img-000090
    [화학식 1-1]
    Figure PCTKR2019015706-appb-img-000091
  16. 제15항에 있어서, 상기 화학식 1-1로 표시되는 화합물을 Na+ 또는 K+와 반응시키는 단계를 더 포함하는 것인, 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법.
  17. 제16항에 있어서, 상기 화학식 1-1로 표시되는 화합물을 Na+ 또는 K+와 반응시키는 단계는 상기 화학식 1-1로 표시되는 화합물을 포타슘 2-에틸헥사노에이트와(Potassium 2-ethyl hexanoate) 또는 소듐 2-에틸헥사노에이트와(Sodium 2-ethyl hexanoate)와 반응시키는 것인,
    아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법.
  18. 제16항 또는 제17항에 있어서, 상기 반응은 아세톤, 에틸아세테이트 및 이소프로필에테르로 이루어진 군으로부터 선택된 적어도 하나의 용매 하에 수행되는 것인 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용가능한 염을 제조하는 방법.
  19. 제1항의 화학식 1로 표시되는 아질사르탄 유도체 화합물, 이의 광학이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하는 고혈압 치료 또는 예방용 약학적 조성물.
  20. 제19항에 있어서,
    상기 조성물이 하기 화학식 1A로 표시되는 나트륨염 및 하기 화학식 1B로 표시되는 칼륨염 중에서 선택된 1종 이상을 포함하는 것인 약학적 조성물:
    [화학식 1A]
    Figure PCTKR2019015706-appb-img-000092
    [화학식 1B]
    Figure PCTKR2019015706-appb-img-000093
    상기 화학식 1A 및 1B에서,
    R 1 및 R 2는 각각 독립적으로 H, C 1-6알킬기, C 1-6알콕시기, C 1-6히드록시알킬기, C 1-6시아노알킬기, C 1-6할로알킬기, 또는 N(R 3) 2이고,
    R 3가 H 또는 C 1-6알킬기이고,
    m은 0 내지 4의 정수 중 어느 하나이고,
    n은 0 내지 6의 정수 중 어느 하나이다.
  21. 제19항에 있어서,
    상기 조성물이 하기 화학식 1-1로 표시되는 화합물, 이의 나트륨 염 및 이의 칼륨염으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인 약학적 조성물:
    [화학식 1-1]
    Figure PCTKR2019015706-appb-img-000094
PCT/KR2019/015706 2018-11-16 2019-11-15 아질사르탄 유도체 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물 WO2020101450A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0141993 2018-11-16
KR20180141993 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020101450A1 true WO2020101450A1 (ko) 2020-05-22

Family

ID=70730324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015706 WO2020101450A1 (ko) 2018-11-16 2019-11-15 아질사르탄 유도체 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물

Country Status (2)

Country Link
KR (1) KR20200057662A (ko)
WO (1) WO2020101450A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240147572A (ko) * 2023-03-31 2024-10-08 (주)셀트리온 아질사르탄을 포함하는 고혈압 치료용 약학 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100110438A (ko) * 2009-04-03 2010-10-13 주식회사종근당 올메살탄의 신규한 에스테르 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물
WO2012139536A1 (en) * 2011-04-11 2012-10-18 Zentiva, K.S. A method of preparing 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl- 4-yl)methyl)-1h-benzo[d]imidazole-7-carboxylates and conversion thereof to azilsartan
WO2014049512A2 (en) * 2012-09-26 2014-04-03 Lupin Limited Novel process for preparation of azilsartan medoxomil
CN107400122A (zh) * 2016-05-20 2017-11-28 武汉朗来科技发展有限公司 化合物及其制备方法、组合物和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616599A (en) 1991-02-21 1997-04-01 Sankyo Company, Limited Angiotensin II antagosist 1-biphenylmethylimidazole compounds and their therapeutic use
JP2004048928A (ja) 2002-07-12 2004-02-12 Matsushita Electric Ind Co Ltd モータとディスク装置
US7157584B2 (en) 2004-02-25 2007-01-02 Takeda Pharmaceutical Company Limited Benzimidazole derivative and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100110438A (ko) * 2009-04-03 2010-10-13 주식회사종근당 올메살탄의 신규한 에스테르 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물
WO2012139536A1 (en) * 2011-04-11 2012-10-18 Zentiva, K.S. A method of preparing 2-ethoxy-1-((2'-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)biphenyl- 4-yl)methyl)-1h-benzo[d]imidazole-7-carboxylates and conversion thereof to azilsartan
WO2014049512A2 (en) * 2012-09-26 2014-04-03 Lupin Limited Novel process for preparation of azilsartan medoxomil
CN107400122A (zh) * 2016-05-20 2017-11-28 武汉朗来科技发展有限公司 化合物及其制备方法、组合物和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE Chemical Abstract 22 February 2019 (2019-02-22), retrieved from STN Database accession no. 2271 428-32 -9 *
DATABASE Chemical Abstract 22 February 2019 (2019-02-22), retrieved from STN Database accession no. 2271428-31-8 *

Also Published As

Publication number Publication date
KR20200057662A (ko) 2020-05-26

Similar Documents

Publication Publication Date Title
WO2011083999A2 (ko) 바이구아나이드 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 약학 조성물
WO2022216094A1 (ko) Glp-1 수용체 효능제, 이를 포함하는 약학적 조성물 및 이의 제조방법
WO2019078522A1 (ko) 세레브론 단백질의 분해 유도 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
AU2019310508B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and pharmaceutical composition comprising the same
WO2017188694A1 (ko) 질소를 포함하는 헤테로아릴 화합물 및 이의 용도
WO2014109530A1 (ko) 2-(페닐에티닐)티에노[3,4-b]피라진 유도체 및 이를 포함하는 암의 예방 또는 치료용 약학적 조성물
WO2016032209A2 (ko) 야누스인산화효소 억제제로서의 치환된 n-(피롤리딘-3-일)-7h-피롤로[2,3-d]피리미딘-4-아민
WO2012134188A2 (ko) 신규한 옥사졸리디논 유도체 및 이를 함유하는 의약 조성물
WO2011132901A2 (en) Novel benzamide derivatives
WO2011122815A2 (en) Novel quinoxaline derivatives
WO2020101450A1 (ko) 아질사르탄 유도체 화합물, 이의 중간체, 이의 제조방법 및 이를 포함하는 조성물
WO2011105643A1 (ko) 퍼록시솜 증식자 활성화 수용체 리간드 셀레나졸 유도체, 이의 제조방법 및 이들 화합물의 용도
WO2012148140A2 (ko) 혈관 신생 억제 및 항산화 효과를 가지는 이미다졸계 알칼로이드 유도체 및 이의 제조방법
WO2015060613A1 (en) Novel antifungal oxodihydropyridinecarbohydrazide derivative
WO2018056621A1 (ko) 신규한 이미다졸일 피리미딘 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2022177307A1 (ko) 벤즈이미다졸 유도체를 유효 성분으로 포함하는 인터페론 유전자 자극제 조성물
WO2023080652A1 (en) Androgen receptor degraders for the treatment of castration-resistant prostate cancer and use thereof
WO2010032986A2 (ko) 신규 5-(4-아미노페닐)-이소퀴놀린 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료용 조성물
WO2023085785A1 (ko) 글루타이미드 모핵을 갖는 이소인돌리논 유도체 및 이의 용도
WO2022086110A1 (ko) 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
WO2021137665A1 (ko) Hsp90 억제제로서의 1,2,3-트리아졸 유도체 화합물 및 이의 용도
WO2019098785A1 (ko) 7-아미노-1h-인돌-5-카르복사미드 유도체 및 이의 용도
WO2016108319A1 (ko) 신규 레바미피드 전구체의 염 및 이의 용도
WO2018021762A1 (ko) 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물
WO2023113474A1 (ko) 1-설포닐 피롤 유도체의 신규 염, 이의 제조 방법 및 이를 포함하는 약학 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884442

Country of ref document: EP

Kind code of ref document: A1