[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020195157A1 - 固定子コア板製造方法、固定子コア板、固定子コア及び金型 - Google Patents

固定子コア板製造方法、固定子コア板、固定子コア及び金型 Download PDF

Info

Publication number
WO2020195157A1
WO2020195157A1 PCT/JP2020/003708 JP2020003708W WO2020195157A1 WO 2020195157 A1 WO2020195157 A1 WO 2020195157A1 JP 2020003708 W JP2020003708 W JP 2020003708W WO 2020195157 A1 WO2020195157 A1 WO 2020195157A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
main body
core plate
protrusion
protruding portion
Prior art date
Application number
PCT/JP2020/003708
Other languages
English (en)
French (fr)
Inventor
武 本田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to EP20776398.8A priority Critical patent/EP3950162A4/en
Priority to JP2021508159A priority patent/JPWO2020195157A1/ja
Priority to US17/598,779 priority patent/US20220166295A1/en
Priority to CN202080024473.9A priority patent/CN113631293B/zh
Publication of WO2020195157A1 publication Critical patent/WO2020195157A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/10Incompletely punching in such a manner that the parts are still coherent with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/14Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/22Notching the peripheries of circular blanks, e.g. laminations for dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the present invention relates to a stator core plate manufacturing method, a stator core plate, a stator core and a mold.
  • a method for manufacturing a stator core of a motor As a method for manufacturing a stator core of a motor, a method is known in which a plurality of stator core plates obtained by punching a steel plate into the shape of a stator core by a pressing device or the like are laminated in the thickness direction.
  • a protruding portion for providing a mounting hole or the like on the outer periphery may be formed.
  • the stator core plate is manufactured by punching a steel plate in the shape of a stator core having a protruding portion.
  • the sheet metal member having the protrusions near the outer edge may be plastically deformed when the steel plate is punched out by the die.
  • Factors of deformation of the protruding portion include variations in the distribution of punching stress caused by contact of the protruding portion with the mold when punching the steel sheet with the die, and variations in the strength distribution in the protruding portion.
  • a manufacturing method for preventing such deformation of the protruding portion for example, as disclosed in Patent Document 1, a manufacturing method for a sheet metal member in which a portion having a strength lower than that of the protruding portion is formed around the protruding portion is known. There is. In this manufacturing method, after the window portion is punched out on the main body side of the protruding portion, the entire outer shape including the protruding portion and the main body portion is formed. That is, the entire outer shape is formed after forming a portion having a strength lower than that of the protruding portion in the main body portion.
  • the stator core manufactured by such a manufacturing method has a space in the main body of the stator core that prevents the passage of magnetic flux, so that the magnetic flux density generated in the stator core may be reduced.
  • An object of the present invention is to provide a method for manufacturing a stator core plate capable of preventing plastic deformation of a protruding portion without forming a space for reducing the magnetic flux density in the main body portion.
  • the stator core plate manufacturing method is a method for manufacturing a stator core plate having a protrusion extending radially outward from a disk-shaped main body portion.
  • This stator core plate manufacturing method includes a protrusion forming step of forming at least a part of the outer shape of the protrusion by punching a part of the steel sheet in a shape including at least a part of the outer shape of the protrusion. It has a main body portion forming step of forming the main body portion by punching the steel plate in a shape continuous with the outer shape of the protruding portion formed on the steel plate.
  • stator core plate manufacturing method it is possible to prevent the plastic deformation of the protruding portion without creating a space for reducing the magnetic flux density in the main body portion.
  • FIG. 1 is a diagram schematically showing a schematic configuration of a motor according to an embodiment in a cross section including a central axis.
  • FIG. 2 is a perspective view showing a schematic configuration of the stator core.
  • FIG. 3 is a plan view showing a schematic configuration of the stator core plate.
  • FIG. 4 is a flowchart showing a manufacturing method of the stator core.
  • FIG. 4 is a plan view showing an electromagnetic steel plate on which a protruding portion is formed.
  • 6A and 6B are a plan view showing a schematic configuration of a mold for forming a protruding portion in the projecting portion forming step, and a sectional view taken along line B in FIG. 6A.
  • FIG. 7 is an enlarged plan view showing a portion A in FIG. FIG.
  • FIG. 8 is a plan view showing an electromagnetic steel plate on which a tooth portion is formed.
  • 9A and 9B are a plan view showing a schematic configuration of a mold for molding the main body portion in the main body portion forming step, and an enlarged plan view showing the C portion in FIG. 9A.
  • FIG. 10 is a side view showing a processed surface of the stator core plate after the main body forming step.
  • FIG. 11 is a diagram schematically showing (a) a state in which the first tool is moved with respect to the second tool and (b) a state in which the first tool is returned to the original position in pushback machining. is there.
  • the direction parallel to the central axis of the rotor is the "axial direction”
  • the direction orthogonal to the central axis is the “radial direction”
  • the direction along the arc centered on the central axis is the "circumferential direction”.
  • Each is called.
  • the definition of this direction does not intend to limit the direction when the motor according to the present invention is used.
  • the expressions such as “fixed”, “connected” and “attached” are used not only when the members are directly fixed to each other, but also through other members. Including the case where it is fixed. That is, in the following description, the expression such as fixation includes the meaning of direct and indirect fixation between members.
  • FIG. 1 shows a schematic configuration of a motor 1 according to an embodiment of the present invention.
  • the motor 1 includes a rotor 2, a stator 3, a housing 4, and a lid plate 5.
  • the rotor 2 rotates about the central axis P with respect to the stator 3.
  • the motor 1 is a so-called inner rotor type motor in which the rotor 2 is rotatably arranged around the central axis P in the tubular stator 3.
  • the rotor 2 includes a shaft 20, a rotor core 21, and a magnet 22.
  • the rotor 2 is arranged inside the stator 3 in the radial direction and is rotatable with respect to the stator 3.
  • the rotor core 21 has a cylindrical shape extending along the central axis P.
  • the rotor core 21 is formed by laminating a plurality of electromagnetic steel plates formed in a predetermined shape in the thickness direction.
  • a shaft 20 extending along the central axis P is fixed to the rotor core 21 in a state of penetrating in the axial direction.
  • the rotor core 21 rotates together with the shaft 20.
  • a plurality of magnets 22 are arranged at predetermined intervals in the circumferential direction on the outer peripheral surface of the rotor core 21.
  • the magnet 22 may be a ring magnet connected in the circumferential direction.
  • the stator 3 is housed in the housing 4.
  • the stator 3 has a tubular shape, and the rotor 2 is arranged inside in the radial direction. That is, the stator 3 is arranged so as to face the rotor 2 in the radial direction.
  • the rotor 2 is rotatably arranged inside the stator 3 in the radial direction about the central axis P.
  • the stator 3 includes a stator core 31, a stator coil 33, and a bracket 34.
  • the stator core 31 has a cylindrical shape extending in the axial direction.
  • the stator core 31 has a plurality of teeth 31b extending radially inward from the tubular yoke 31a.
  • the stator coil 33 shown in FIG. 1 is wound on a bracket 34 made of an insulating resin material or the like mounted on the teeth 31b of the stator core 31.
  • the bracket 34 is arranged on both end faces in the axial direction of the stator core 31.
  • the stator core 31 has a plurality of flanges 31c extending radially outward from the tubular yoke 31a.
  • the stator core 31 has a plurality of stator core plates 32 formed in a predetermined shape and laminated in the thickness direction.
  • the stator core plate 32 constituting the stator core 31 has a disk-shaped main body portion 32a and a protruding portion 32d extending radially outward from the main body portion 32a.
  • the main body portion 32a has a yoke portion 32b that constitutes the yoke 31a of the stator core 31 and a teeth portion 32c that constitutes the teeth 31b of the stator core 31.
  • the protrusion 32d constitutes the flange 31c of the stator core 31.
  • the projecting portion 32d is connected by a smooth curve having a convex shape extending radially outward from the outer circumference of the main body portion 32a.
  • a through hole 32e is formed in the protruding portion 32d.
  • the housing 4 has a tubular shape and extends along the central axis P.
  • the housing 4 has a cylindrical shape having an internal space capable of accommodating the rotor 2 and the stator 3 inside.
  • the housing 4 has a cylindrical side wall 4a and a bottom portion 4b that covers one axial end of the side wall 4a.
  • the axially opposite opening of the housing 4 is covered by the lid plate 5.
  • the housing 4 and the lid plate 5 are made of, for example, a material containing iron.
  • An internal space is formed inside the housing 4 by covering the opening of the bottomed tubular housing 4 with the lid plate 5.
  • the lid plate 5 may be fixed to the housing 4 by, for example, a bolt or a method such as press fitting or adhesion.
  • the housing 4 and the lid plate 5 are not limited to the material containing iron, and may be made of other materials such as aluminum (including an aluminum alloy).
  • FIG. 4 is a flowchart showing an example of a manufacturing method of the stator core 31.
  • FIG. 5 is a plan view showing a steel plate 40 on which a part of the protruding portion is formed.
  • FIG. 6 is a diagram showing a mold for forming a groove including the outer shape of the protruding portion.
  • FIG. 7 is an enlarged plan view showing a protruding portion formed on the steel plate.
  • FIG. 8 is a plan view showing the steel plate 40 on which the teeth portion is formed.
  • FIG. 9 is a diagram showing a mold forming the main body portion.
  • the circular central hole 40a is first punched from the electromagnetic steel plate 40 forming the stator core plate. Further, a plurality of rectangular holes 40b including a part of the outer shape of the rotor core plate 23 that surrounds the central hole 40a and constitutes the rotor core 21 are punched out. This step is the central hole punching step shown in FIG. 4 (step S1). The center of the central hole 40a coincides with the central axis P of the motor 1.
  • the electromagnetic steel sheet 40 will be referred to as a steel sheet 40.
  • the above-mentioned central hole punching step is performed by press working. Since the central hole punching step is the same as the conventional method for manufacturing the stator core 31, detailed description thereof will be omitted.
  • stator core plate 32 having the protrusion 32d extending radially outward from the disk-shaped main body 32a, the method for manufacturing the stator core plate, and the mold thereof in the method for manufacturing the stator core 31. This will be described in detail.
  • a method for manufacturing the stator core plate 32 it has a protrusion forming step (step S2) and a main body forming step (step S3).
  • a plurality of protruding portions 32d are formed on the outer peripheral side of the central hole 40a.
  • a predetermined position on the concentric circle of the central hole 40a is punched out in a shape including at least a part of the outer shape X of the protruding portion 32d.
  • at least a part of the outer shape X of the protruding portion 32d extending outward in the radial direction is formed on the steel plate 40.
  • step S2 The step of forming at least a part of the outer shape X of the protruding portion 32d by punching a part of the steel plate 40 in a shape including at least a part of the outer shape X of the protruding portion 32d is the protrusion forming step shown in FIG. There is (step S2).
  • the punching process of the projecting portion forming step is performed on the projecting portion punch W1a and the projecting portion die W1b, which are dies for forming the stator core plate 32. It is performed by press working with.
  • a part of the steel plate 40 arranged on the projecting die W1b is punched out by the projecting punch W1a and the projecting die W1b in a shape including at least a part of the outer shape X of the projecting portion 32d. ..
  • the outer shape X of the protrusion 32d follows the outer shape of the protrusion punch W1a by shearing and breaking the steel plate 40 by the protrusion punch W1a.
  • the projecting portion 32d formed by punching a part of the steel plate 40 arranged on the projecting die W1b with the projecting punch W1a projects to the punched surface at the outer edge.
  • the shear surface Sp1 and the fracture surface Fp1 are formed in this order from the part punch W1a side.
  • the recess 32f is formed in the outer shape portion of the protrusion 32d.
  • both ends in the circumferential direction of the outer peripheral portion of the protruding portion 32d are recessed inward in the radial direction. That is, in the projecting portion forming step, the steel plate 40 is punched out in a shape including at least a part of the outer peripheral portion of the protruding portion 32d and having both ends in the circumferential direction of the outer peripheral portion of the protruding portion 32d dented inward in the radial direction. ..
  • the steel plate 40 is separated from the protrusion punch W1a and the protrusion die W1b after the punching process is completed.
  • step S4 the rotor core plate punching step shown in FIG. 4 (step S4).
  • a plurality of slots 40c are punched around the central hole 40a in order to form a plurality of teeth portions 32c surrounding the central hole 40a in which the rotor core plate 23 is punched.
  • This step is the slot punching step shown in FIG. 4 (step S5).
  • the rotor core plate punching step and the slot punching step described above are performed by press working. Since the rotor core plate punching step and the slot punching step are the same as the conventional stator core 31 manufacturing method, detailed description thereof will be omitted.
  • the central hole 40a and the plurality of teeth portions 32c are formed.
  • the main body portion 32a including the main body portion 32a is formed.
  • the steel plate 40 is punched out in a disk shape in a shape continuous with the outer shape X of the protruding portion 32d.
  • the main body portion 32a including the central hole 40a and the plurality of teeth portions 32c and the plurality of protruding portions 32d are formed by a single member.
  • the step of forming the main body portion 32a by punching the steel plate 40 in a shape continuous with the outer shape X of the protruding portion 32d formed on the steel plate 40 is the main body portion forming step shown in FIG. 4 (step S6).
  • the punching process of the main body forming step is performed by press working using the main body punch W2a and the main body die W2b.
  • the outer shape Y of the outer shape of the stator core plate 32 other than the portion punched by the protruding part die W1b and the protruding part punch W1a is formed by the main body punch W2a and the main body die W2b.
  • the steel plate 40 is punched out in a shape continuous with the outer shape X of the protrusion 32d formed on the steel plate 40.
  • the main body punch W2a punches the steel plate 40 with the end of the main body die W2b facing the recess 32f formed in the outer shape of the protruding portion 32d. That is, the stator core plate 32 has a recess 32f at a connecting portion between the outer shape X of the protruding portion 32d formed in the protruding portion forming step and the outer shape Y of the main body portion 32a formed in the main body portion forming step.
  • the stator core plate 32 is formed by being divided into two steps, a protrusion forming step of punching the shape including the outer shape X of the protruding portion 32d and a main body forming step of punching only the shape of the outer shape Y of the main body 32a. be able to. As a result, it is possible to prevent plastic deformation of the protrusion 32d in the manufacturing process of the stator core plate 32.
  • the portion of the stator core plate 32 punched by the main body portion punch W2a other than the protruding portion 32d is pushed down while contacting the main body portion die W2b. That is, the main body die W2b and the main body punch W2a do not come into contact with the protruding portion 32d formed in the protruding portion forming step in the steel plate 40.
  • the portion other than the protruding portion 32d formed by the protruding portion punch W1a and the protruding portion die W1b is punched by the main body portion punch W2a and the main body portion die W2b, so that the main body portion 32a No punching stress due to punching or external force due to contact with the die for punching the main body 32a is generated in the protruding portion 32d.
  • the main body portion punch W2a and the main body portion die W2b so that the main body portion 32a No punching stress due to punching or external force due to contact with the die for punching the main body 32a is generated in the protruding portion 32d.
  • the main body portion 32a follows the shape of the main body portion die W2b by shearing and breaking the steel plate 40 by the main body portion die W2b by pressing the main body portion punch W2a.
  • the main body portion 32a formed by punching a part of the steel plate 40 arranged on the main body portion die W2b with the main body portion punch W2a is formed on the punched surface at the outer edge in order from the main body portion die W2b side.
  • a shear surface Sp2 and a fracture surface Fp2 are formed.
  • the arrangement of the fracture surface Fp1 and the shear surface Sp1 in the thickness direction at at least a part of the outer edge of the protrusion 32d is the arrangement of the fracture surface Fp2 and the shear surface at the outer edge of the main body 32a. It is different from the arrangement in the thickness direction with Sp2. That is, since the stator core plate 32 is divided into two steps, that is, a step of punching the shape including the outer shape X of the protruding portion 32d and a step of punching the shape of the main body portion 32a, the stator core plate 32 is formed.
  • the method for manufacturing the stator core plate 32 having the protrusion 32d extending radially outward from the disk-shaped main body 32a is one of the steel plates 40 having a shape including at least a part of the outer shape X of the protrusion 32d.
  • the steel plate 40 is punched out in a shape including a protrusion forming step of forming at least a part of the outer shape X of the protruding portion 32d and an outer shape Y continuous with the outer shape X of the protruding portion 32d formed on the steel plate 40.
  • it has a main body portion forming step of forming the main body portion 32a.
  • the protruding portion 32d is punched out in the protruding portion forming step, which is a pre-process of the main body portion forming step for forming the main body portion 32a. No external force due to contact with the mold is generated on the protrusion 32d. As a result, plastic deformation of the protruding portion 32d can be prevented without forming a space in the main body portion 32a that reduces the magnetic flux density.
  • the stator core plate 32 having the plurality of protrusions 32d and the plurality of teeth portions 32c formed by the method for manufacturing the stator core plate 32 is sequentially formed by punching and laminated in the thickness direction.
  • the stator core 31 as shown in FIG. 2 is obtained. Since the stator core plate 32 formed by the method for manufacturing the stator core plate 32 is prevented from plastically deforming the protruding portion 32d, the stator core 31 in which the stator core plates 32 are laminated without gaps in the thickness direction can be obtained. ..
  • This step is the laminating step shown in FIG. 4 (step S7).
  • stator core plates 32 formed by punching are laminated to obtain the stator core 31.
  • the stator core plate 32 may be formed by a so-called pushback process in which the punched portion is returned to the original position after punching in the shape of the stator core plate 32 in the thickness direction. ..
  • the first tool W3 having a pair of upper and lower tools sandwiching the steel plate 40 from the inside of the main body 32a along the outer shape Y of the main body 32a in the thickness direction and the main body 32a
  • a second tool W4 having a pair of upper and lower tools sandwiched in the thickness direction from the outside of the main body 32a along the outer shape Y.
  • the first tool W3 is movable with respect to the second tool W4 in the thickness direction of the steel plate 40.
  • the first tool W3 has the same shape as the stator core plate 32.
  • the second tool W1 has a shape that sandwiches the outer shape of the stator core plate 32 other than the portion punched out by the protrusion die W1b and the punch.
  • the first tool W3 moves in one direction in the thickness direction of the steel plate 40 with respect to the second tool W4, so that the portion of the steel plate 40 sandwiched between the first tool W3 and the second tool. 2 Shearing is performed at the boundary with the portion sandwiched between the tools W4.
  • the moving distance of the first tool W3 with respect to the second tool W4 may be a moving distance that separates the steel plate 40, or may be a moving distance that does not separate the steel plate 40.
  • the first tool W3 is returned to the original position by moving the first tool W3 to the other side in the thickness direction of the steel plate 40 with respect to the second tool W4.
  • the portion of the steel plate 40 sandwiched between the first tool W3 is fitted into the portion sandwiched between the second tool W4.
  • the main body 32a is held by friction against the steel plate 40 around the main body 32a that is not extruded by the pushback process.
  • the process of forming the main body portion 32a by the pushback process as described above corresponds to the pushback process.
  • the main body portion 32a may be formed by pushback processing in addition to punching processing.
  • the generation of residual stress and residual strain due to processing in the main body portion 32a is suppressed.
  • the punching stress due to the punching of the main body portion 32a and the external force due to the contact with the die for punching the main body portion 32a are applied to the protruding portion 32d. Does not occur. As a result, it is possible to prevent plastic deformation of the protrusion 32d in the manufacturing process of the stator core plate 32.
  • the motor is a so-called permanent magnet motor.
  • the rotor 2 has a magnet 22.
  • the motor 1 may be a motor that does not have a magnet 22, such as an induction machine, a reluctance motor, a switch reluctance motor, or a winding field type motor.
  • the method for manufacturing the stator core 31 of the motor 1 is described, but the present invention is not limited to this, and the manufacturing method of the above-described embodiment is used when manufacturing a structure having a laminated body of steel plates 40. May be applied.
  • the present invention can be applied to a method for manufacturing a stator core plate 32 having a protrusion 32d extending radially outward from a disc-shaped main body portion 32a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

円盤状の本体部から径方向外側へ延びる突出部を有する固定子コア板の製造方法であって、突出部の外形Xの少なくとも一部を含む形状で鋼板の一部を打ち抜くことで、突出部の外形の少なくとも一部を形成する突出部形成工程と、鋼板に形成された突出部の外形と連続した形状で鋼板を打ち抜くことで、本体部を形成する本体部形成工程と、を有する。

Description

固定子コア板製造方法、固定子コア板、固定子コア及び金型
本発明は、固定子コア板製造方法、固定子コア板、固定子コア及び金型に関する。
モータの固定子コアを製造する方法として、プレス装置等によって鋼板を固定子コアの形状に打ち抜いた固定子コア板を厚み方向に複数枚積層する方法が知られている。このような方法で製造される固定子コアにおいて、外周に取付穴等を設けるための突出部を形成する場合がある。この場合、固定子コア板は、突出部を有する固定子コアの形状で鋼板を打ち抜いて製造する。 
上述した突出部を有する固定子コア板のように、外縁付近に突出部を有する板金部材は、金型で鋼板を打ち抜く際に突出部が塑性変形する場合がある。突出部の変形の要因としては、金型で鋼板を打ち抜く際に、突出部の金型との接触などにより生じる抜き応力の分布のばらつき、及び突出部における強度分布のばらつきなどが挙げられる。 
このような突出部の変形を防止する製造方法として、例えば特許文献1に開示されるように、突出部よりも強度の低い部分を突出部の周囲に形成する板金部材の製造方法が知られている。この製造方法では、突出部の本体部側に窓部を打ち抜いた後、突出部と本体部とを含む全体の外形形状を形成する。つまり、本体部に突出部よりも強度が低い部分を形成した後に全体の外形形状を形成する。これにより、全体の外形形状を形成する際に、突出部が金型と接触しても突出部よりも強度の低い部分が先に弾性変形するので、突出部の塑性変形を防止することができる。
特開2017-087279号公報
上述の特許文献1に開示されている構成のように、突出部よりも強度が低い部分を製造する場合、本体側に抜き孔等を形成する必要がある。しかしながら、このような製造方法で製造した固定子コアは、固定子コアの本体部に磁束の通過を妨げる空間が生じてしまうため、固定子コアに生じる磁束密度を低下させる可能性がある。 
本発明の目的は、本体部に磁束密度を低下させる空間を形成することなく突出部の塑性変形を防止することができる固定子コア板の製造方法を提供することにある。
本発明の一実施形態に係る固定子コア板製造方法は、円盤状の本体部から径方向外側へ延びる突出部を有する固定子コア板の製造方法である。この固定子コア板製造方法は、前記突出部の外形の少なくとも一部を含む形状で鋼板の一部を打ち抜くことで、前記突出部の外形の少なくとも一部を形成する突出部形成工程と、前記鋼板に形成された突出部の外形と連続した形状で前記鋼板を打ち抜くことで、前記本体部を形成する本体部形成工程と、を有する。
本発明の一実施形態に係る固定子コア板製造方法によれば、本体部に磁束密度を低下させる空間を生じさせることなく突出部の塑性変形を防止することができる。
図1は、実施形態に係るモータの概略構成を、中心軸を含む断面で模式的に示す図である。 図2は、固定子コアの概略構成を示す斜視図である。 図3は、固定子コア板の概略構成を示す平面図である。 図4は、固定子コアの製造方法を示すフローチャートである。 図4は、突出部が形成された電磁鋼板を示す平面図である。 図6は、突出部成形工程において、(a)突出部成形用の金型の概略構成を示す平面図、(b)図6(a)におけるB矢視断面図である。 図7は、図5におけるA部分を示す拡大平面図である。 図8は、ティース部が形成された電磁鋼板を示す平面図である。 図9は、本体部形成工程において、(a)本体部成形用の金型の概略構成を示す平面図、(b)図9(a)におけるC部分を示す拡大平面図である。 図10は、本体部形成工程後の固定子コア板の加工面を示す側面図である。 図11は、プッシュバック加工において、(a)第1工具を第2工具に対して移動させた状態、(b)第1工具を元の位置に戻した状態を、それぞれ模式的に示す図である。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 
なお、以下の説明では、回転子の中心軸と平行な方向を「軸方向」、中心軸に直交する方向を「径方向」、中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。ただし、この方向の定義により、本発明に係るモータの使用時の向きを限定する意図はない。 
また、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等されている場合だけでなく、他の部材を介して固定等されている場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。
 (モータの構成)
 図1に、本発明の実施形態に係るモータ1の概略構成を示す。モータ1は、回転子2と、固定子3と、ハウジング4と、蓋板5とを備える。回転子2は、固定子3に対して、中心軸Pを中心として回転する。本実施形態では、モータ1は、筒状の固定子3内に、回転子2が中心軸Pを中心として回転可能に配置された、いわゆるインナーロータ型のモータである。
 回転子2は、シャフト20と、回転子コア21と、マグネット22とを備える。回転子2は、固定子3の径方向内側に配置され、固定子3に対して回転可能である。 
本実施形態では、回転子コア21は、中心軸Pに沿って延びる円筒状である。回転子コア21は、所定の形状に形成された電磁鋼板を、厚み方向に複数枚、積層することによって構成される。 
回転子コア21には、中心軸Pに沿って延びるシャフト20が軸方向に貫通した状態で固定される。これにより、回転子コア21は、シャフト20とともに回転する。また、本実施形態では、回転子コア21の外周面上には、周方向に所定の間隔で複数のマグネット22が配置される。なお、マグネット22は、周方向に繋がるリングマグネットであってもよい。 
固定子3は、ハウジング4内に収容される。本実施形態では、固定子3は、筒状であり、径方向内側に回転子2が配置される。すなわち、固定子3は、回転子2に対して径方向に対向して配置される。回転子2は、固定子3の径方向内側に中心軸Pを中心として回転可能に配置される。 
固定子3は、固定子コア31と、固定子コイル33と、ブラケット34とを備える。本実施形態では、固定子コア31は、軸方向に延びる円筒状である。 
図2に示すように、固定子コア31は、筒状のヨーク31aから径方向内側に延びる複数のティース31bを有する。図1に記載の固定子コイル33は、固定子コア31のティース31bに装着された絶縁性の樹脂材料等からなるブラケット34上に巻かれる。なお、ブラケット34は、固定子コア31の軸方向の両端面上に配置される。また、固定子コア31は、筒状のヨーク31aから径方向外側に延びる複数のフランジ31cを有する。固定子コア31は、所定の形状に形成され且つ厚み方向に積層された複数枚の固定子コア板32を有する。 
図3に示すように、固定子コア31を構成する固定子コア板32は、円盤状の本体部32aと、本体部32aから径方向外側へ延びる突出部32dとを有する。本体部32aは、固定子コア31のヨーク31aを構成するヨーク部32bと固定子コア31のティース31bを構成するティース部32cとを有する。突出部32dは、固定子コア31のフランジ31cを構成する。突出部32dは、本体部32aの外周から径方向外側へ延びる凸形状が滑らかな曲線でつながれている。突出部32dは、貫通孔32eが形成されている。 
図2に示すように、ハウジング4は、筒状であり、中心軸Pに沿って延びる。本実施形態では、ハウジング4は、内部に回転子2及び固定子3を収容可能な内部空間を有する円筒状である。ハウジング4は、円筒状の側壁4aと、側壁4aの軸方向の一方の端部を覆う底部4bと、を有する。ハウジング4の軸方向の他方側の開口は、蓋板5によって覆われる。ハウジング4及び蓋板5は、例えば鉄を含む材料によって構成される。有底筒状のハウジング4の開口が蓋板5によって覆われることにより、ハウジング4の内部には内部空間が形成される。特に図示しないが、蓋板5は、ハウジング4に対して、例えば、ボルト等によって固定されてもよいし、圧入や接着などの方法によって固定されてもよい。なお、ハウジング4及び蓋板5は、鉄を含む材料に限らず、アルミニウム(アルミニウム合金を含む)などの他の材料によって構成されてもよい。
 (固定子コア31の製造方法)
 次に、上述のような構成を有する固定子コア31の製造方法を、図4から図9を用いて説明する。
 図4は、固定子コア31の製造方法の一例を示すフローチャートである。図5は、突出部の一部が形成された鋼板40を示す平面図である。図6は、突出部の外形を含む溝を形成する金型を示す図である。図7は、鋼板に形成された突出部示す拡大平面図である。図8は、ティース部が形成された鋼板40を示す平面図である。図9は、本体部を形成する金型を示す図である。
 図5に示すように、固定子コア31の製造方法において、最初に固定子コア板を形成する電磁鋼板40から円形の中央孔40aを打ち抜く。さらに、中央孔40aを囲んで回転子コア21を構成する回転子コア板23の外形の一部を含む複数の矩形孔40bを打ち抜く。この工程が、図4に示す中央孔打ち抜き工程である(ステップS1)。中央孔40aの中心は、モータ1の中心軸Pと一致する。以下では、電磁鋼板40を鋼板40とする。 
上述の中央孔打ち抜き工程は、プレス加工によって行われる。中央孔打ち抜き工程は、従来の固定子コア31の製造方法と同様であるため、詳しい説明を省略する。 
以下に、固定子コア31の製造方法における円盤状の本体部32aから径方向外側へ延びる突出部32dを有する固定子コア板32の製造方法及び固定子コア板を製造する方法とその金型について詳細に説明する。固定子コア板32の製造方法として、突出部形成工程(ステップS2)と、本体部形成工程(ステップS3)とを有する。 
上述のように中央孔40a及び矩形孔40bが形成された鋼板40において、中央孔40aの外周側に、複数の突出部32dを形成する。突出部32dを形成する工程では、鋼板40において、中央孔40aの同心円上の所定位置を、突出部32dの外形Xの少なくとも一部を含む形状で打ち抜く。これにより、鋼板40には、径方向外側に延びる突出部32dの外形Xの少なくとも一部が形成される。さらに、形成された突出部32dの径方向内側に固定子コア31の取付用の貫通孔32eが打ち抜かれる。この突出部32dの外形Xの少なくとも一部を含む形状で鋼板40の一部を打ち抜くことで、突出部32dの外形Xの少なくとも一部を形成する工程が、図4に示す突出部形成工程である(ステップS2)。 
図6(a)及び図6(b)に示すように、突出部形成工程の打ち抜き加工は、固定子コア板32を形成するための金型である突出部用パンチW1a及び突出部用ダイW1bを用いたプレス加工によって行われる。突出部形成工程では、突出部用パンチW1a及び突出部用ダイW1bによって、突出部32dの外形Xの少なくとも一部を含む形状で突出部用ダイW1b上に配置された鋼板40の一部を打ち抜く。突出部32dの外形Xは、鋼板40が突出部用パンチW1aによってせん断及び破断されることで、突出部用パンチW1aの外形に倣う。 
図6(b)に示すように、突出部用ダイW1b上に配置された鋼板40の一部を突出部用パンチW1aで打ち抜いて形成された突出部32dは、外縁における打ち抜きの加工面に突出部用パンチW1a側から順にせん断面Sp1、破断面Fp1が形成される。 
図7に示すように、突出部形成工程は、突出部32dの外形部分に凹部32fを形成する。凹部32fは、突出部32dの外形部分における周方向の両端部が径方向内側に向かって凹んでいる。つまり、突出部形成工程は、突出部32dの外形部分の少なくとも一部を含む形状であって、突出部32dの外形部分における周方向の両端部を径方向内側へこました形状で鋼板40を打ち抜く。鋼板40は、打ち抜き加工の完了後に突出部用パンチW1a及び突出部用ダイW1bから離間する。 
次に、図8に示すように、中央孔40aを含む回転子コア21を構成する回転子コア板23を形成するために、中央孔40a中心軸Pを中心として回転子コア板23を打ち抜く。この工程が、図4に示す回転子コア板打ち抜き工程である(ステップS4)。 
回転子コア板打ち抜き工程の次に、回転子コア板23が打ち抜かれた中央孔40aを囲んで複数のティース部32cを形成するために、中央孔40aの周りに複数のスロット40cを打ち抜く。この工程が、図4に示すスロット打ち抜き工程である(ステップS5)。 
上述の回転子コア板打ち抜き工程及びスロット打ち抜き工程は、プレス加工によって行われる。回転子コア板打ち抜き工程及びスロット打ち抜き工程は、従来の固定子コア31の製造方法と同様であるため、詳しい説明を省略する。 
次に、図9(a)に示すように、上述のように中央孔40a、複数の突出部32d及び複数のティース部32cが形成された鋼板40において、中央孔40a及び複数のティース部32cを含む本体部32aを形成する。本体部32aを形成する工程では、鋼板40において、突出部32dの外形Xと連続した形状で円盤状に打ち抜く。これにより、中央孔40a及び複数のティース部32cを含む本体部32aと複数の突出部32dとが単一の部材で形成される。この鋼板40に形成された突出部32dの外形Xと連続した形状で鋼板40を打ち抜くことで、本体部32aを形成する工程が、図4に示す本体部形成工程である(ステップS6)。 
本体部形成工程の打ち抜き加工は、本体部用パンチW2a及び本体部用ダイW2bを用いたプレス加工によって行われる。本体部形成工程では、本体部用パンチW2a及び本体部用ダイW2bによって、固定子コア板32の外形のうち突出部用ダイW1b及び突出部用パンチW1aによって打ち抜かれた部分以外の外形Yを、鋼板40に形成された突出部32dの外形Xと連続した形状で鋼板40を打ち抜く。 
図9(b)に示すように、本体部用パンチW2aは、突出部32dの外形部分に形成された凹部32fに本体部用ダイW2bの端部が対向した状態で、鋼板40を打ち抜く。つまり、固定子コア板32は、突出部形成工程で形成された突出部32dの外形Xと本体部形成工程で形成された本体部32aの外形Yとの接続部分に凹部32fを有する。 
このように、突出部形成工程で突出部32dの外形Xと本体部32aの外形Yとが接続される部分に凹部32fが予め形成されているので、固定子コア板32に突出部32dの外形Xと本体部32aの外形Yとの継ぎ目が形成されない。よって、突出部32dの外形Xを含む形状を打ち抜く突出部形成工程と、本体部32aの外形Yのみの形状を打ち抜く本体部形成工程と、の二工程に分けて固定子コア板32を形成することができる。これにより、固定子コア板32の製造過程において突出部32dの塑性変形を防止することができる。 
また、本体部形成工程では、本体部用パンチW2aによって打ち抜かれた固定子コア板32のうち突出部32d以外の部分が本体部用ダイW2bに接触しながら押し下げられる。つまり、本体部用ダイW2b及び本体部用パンチW2aは、鋼板40において、突出部形成工程で形成された突出部32dに接触しない。 
このように、本体部形成工程では、突出部用パンチW1a及び突出部用ダイW1bで形成された突出部32d以外の部分を本体部用パンチW2a及び本体部用ダイW2bによって打ち抜くので、本体部32aの打ち抜きによる抜き応力や本体部32aを打ち抜く金型との接触による外力が突出部32dに発生しない。これにより、固定子コア板32の製造過程において突出部32dの塑性変形を防止することができる。 
図10に示すように、本体部32aは、本体部用パンチW2aの押圧により鋼板40が本体部用ダイW2bによってせん断及び破断されることで、本体部用ダイW2bの形状に倣う。これにより、本体部用ダイW2b上に配置された鋼板40の一部を本体部用パンチW2aで打ち抜いて形成された本体部32aは、外縁における打ち抜きの加工面に本体部用ダイW2b側から順にせん断面Sp2、破断面Fp2が形成される。 
このように形成される固定子コア板32は、突出部32dの外縁の少なくとも一部における破断面Fp1とせん断面Sp1との厚み方向の並びが、本体部32aの外縁における破断面Fp2とせん断面Sp2との厚み方向の並びと異なる。つまり、固定子コア板32は、突出部32dの外形Xを含む形状を打ち抜く工程と、本体部32aの形状を打ち抜く工程との二工程に分けて固定子コア板32が形成されているので、本体部32aの打ち抜きによる抜き応力や本体部32aを打ち抜く本体部用パンチW2a及び本体部用ダイW2bとの接触による外力が突出部32dに発生していない。これにより、固定子コア板32の突出部32dの塑性変形を防止することができる。 
以上のように、円盤状の本体部32aから径方向外側へ延びる突出部32dを有する固定子コア板32の製造方法は、突出部32dの外形Xの少なくとも一部を含む形状で鋼板40の一部を打ち抜くことで、突出部32dの外形Xの少なくとも一部を形成する突出部形成工程と、鋼板40に形成された突出部32dの外形Xと連続した外形Yを含む形状で鋼板40を打ち抜くことで、本体部32aを形成する本体部形成工程と、を有する。 
このように構成することで、本体部32aを形成する本体部形成工程の前工程である突出部形成工程で突出部32dを打ち抜くので、本体部32aの打ち抜きによる抜き応力や本体部32aを打ち抜く金型との接触による外力が突出部32dに発生しない。これにより、本体部32aに磁束密度を低下させる空間を形成することなく突出部32dの塑性変形を防止することができる。 
その後、固定子コア板32の製造方法によって形成された複数の突出部32dと複数のティース部32cを有する固定子コア板32を、打ち抜き加工により順次形成しつつ厚み方向に積層する。積層された固定子コア板32をかしめたり溶接したりすることにより、図2に示すような固定子コア31を得る。固定子コア板32の製造方法によって形成した固定子コア板32は、突出部32dの塑性変形が防止されるので、厚み方向に固定子コア板32を隙間なく積層した固定子コア31が得られる。この工程が、図4に示す積層工程である(ステップS7)。
 (その他の実施形態)
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記実施形態では、本体部形成工程において、打ち抜き加工によって形成された固定子コア板32を積層して固定子コア31を得ている。しかしながら、打ち抜き加工に加えて、固定子コア板32の形状で厚み方向に打ち抜いた後、該打ち抜いた部分を元の位置に戻す、いわゆるプッシュバック加工で固定子コア板32を形成してもよい。 
図11に示すように、プッシュバック加工は、鋼板40において、本体部32aの内側から本体部32aの外形Yに沿って厚み方向に挟み込む上下一対の工具を有する第1工具W3と、本体部32aの外側から本体部32aの外形Yにそって厚み方向に挟み込む上下一対の工具を有する第2工具W4とを用いて行われる。第1工具W3は、第2工具W4に対して、鋼板40の厚み方向に移動可能である。本実施形態では、第1工具W3は、固定子コア板32と同じ形状を有する。また、第2工具W1は、固定子コア板32の外形のうち突出部用ダイW1b及びパンチによって打ち抜かれた部分以外を状挟み込む形状である。 
図11(a)に示すように、第1工具W3が第2工具W4に対して鋼板40の厚み方向の一方に移動することにより、鋼板40のうち第1工具W3に挟み込まれた部分と第2工具W4に挟み込まれた部分との境界では、せん断加工が行われる。なお、第2工具W4に対する第1工具W3の移動距離は、鋼板40を分離させる移動距離であってもよいし、鋼板40を分離させない移動距離であってもよい。
 その後、図11(b)に示すように、第1工具W3を第2工具W4に対して鋼板40の厚み方向の他方に移動させることにより、第1工具W3を元の位置に戻す。これにより、前記境界では、鋼板40のうち第1工具W3に挟み込まれた部分が第2工具W4に挟み込まれた部分に嵌め込まれる。本体部32aは、プッシュバック加工によって押し出されない本体部32aの周囲の鋼板40に対して摩擦によって保持される。
 ここで、上述のようにプッシュバック加工によって本体部32aを形成する工程が、プッシュバック工程に対応する。
以上のように、固定子コア板32の製造方法における本体部形成工程は、打ち抜き加工に加えてプッシュバック加工によって本体部32aを形成してもよい。プッシュバック加工によって固定子コア板32を成形することにより、本体部32aでの加工による残留応力及び残留ひずみの発生を抑制する。このように、固定子コア板32の製造方法は、本体部32aの加工方法に関わらず、本体部32aの打ち抜きによる抜き応力や本体部32aを打ち抜く金型との接触による外力が突出部32dに発生しない。これにより、固定子コア板32の製造過程において突出部32dの塑性変形を防止することができる。 
前記実施形態では、モータは、いわゆる永久磁石モータである。永久磁石モータでは、回転子2がマグネット22を有する。しかしながら、モータ1は、誘導機、リラクタンスモータ、スイッチドリラクタンスモータ、巻線界磁型モータなどのマグネット22を有さないモータであってもよい。 
前記実施形態では、モータ1の固定子コア31の製造方法について説明しているが、これに限らず、鋼板40の積層体を有する構造体を製造する際に、上述の実施形態の製造方法を適用してもよい。
本発明は、板円盤状の本体部32aから径方向外側へ延びる突出部32dを有する固定子コア板32の製造方法に適用可能である。
 1 モータ、2 ロータ、3 固定子、31 固定子コア、32 固定子コア板、32a 本体部、32b ヨーク部、32c ティース部、32d 突出部、32e 貫通孔、32f 凹部、40 鋼板

Claims (7)

  1.  円盤状の本体部から径方向外側へ延びる突出部を有する固定子コア板の製造方法であって、
     前記突出部の外形の少なくとも一部を含む形状で鋼板の一部を打ち抜くことで、前記突出部の外形の少なくとも一部を形成する突出部形成工程と、
     前記鋼板に形成された突出部の外形と連続した形状で前記鋼板を打ち抜くことで、前記本体部を形成する本体部形成工程と、
     を有する固定子コア板の製造方法。
  2.  請求項1に記載の固定子コア板の製造方法において、
     前記突出部形成工程は、前記突出部の外形部分に凹部を形成する、
    固定子コア板の製造方法。
  3.  請求項1または請求項2に記載の固定子コア板の製造方法において、
     前記本体部形成工程は、打ち抜き加工またはプッシュバック加工によって前記本体部を形成する、固定子コア板の製造方法。
  4.  円盤状の本体部から径方向外側へ延びる突出部を有する固定子コア板であって、
     前記突出部の外縁の少なくとも一部における破断面とせん断面との厚み方向の並びが、前記本体部の外縁における破断面とせん断面との厚み方向の並びと異なる、固定子コア板。
  5.  請求項4に記載の固定子コア板において、
     前記本体部と前記突出部との接続部分に凹部を有する、固定子コア板。
  6.  請求項4または請求項5に記載の固定子コア板が厚み方向に積層された、固定子コア。
  7.  円盤状の本体部から径方向外側へ延びる突出部を有する固定子コア板を形成するための金型であって、
     前記突出部の外形の少なくとも一部を含む形状で鋼板の一部を打ち抜く第1打ち抜き部と、
     前記本体部を打ち抜くとともに、前記突出部との間に隙間を設けた本体部用金型と、
    を備える、金型。
PCT/JP2020/003708 2019-03-28 2020-01-31 固定子コア板製造方法、固定子コア板、固定子コア及び金型 WO2020195157A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20776398.8A EP3950162A4 (en) 2019-03-28 2020-01-31 PROCESS FOR MANUFACTURING A STATOR CORE PLATE, STATOR CORE PLATE, STATOR CORE AND DIE
JP2021508159A JPWO2020195157A1 (ja) 2019-03-28 2020-01-31
US17/598,779 US20220166295A1 (en) 2019-03-28 2020-01-31 Stator core plate manufacturing method, stator core plate, stator core, and mold
CN202080024473.9A CN113631293B (zh) 2019-03-28 2020-01-31 定子芯体板制造方法、定子芯体板、定子芯体以及模具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019063586 2019-03-28
JP2019-063586 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195157A1 true WO2020195157A1 (ja) 2020-10-01

Family

ID=72608579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003708 WO2020195157A1 (ja) 2019-03-28 2020-01-31 固定子コア板製造方法、固定子コア板、固定子コア及び金型

Country Status (5)

Country Link
US (1) US20220166295A1 (ja)
EP (1) EP3950162A4 (ja)
JP (1) JPWO2020195157A1 (ja)
CN (1) CN113631293B (ja)
WO (1) WO2020195157A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5799387A (en) * 1996-06-05 1998-09-01 L.H. Carbide Corpordation Lamina stack having a plurality of outer perimeter configurations and an apparatus and method for manufacturing said stack
JP2007181297A (ja) * 2005-12-27 2007-07-12 Mitsui High Tec Inc 積層鉄心の製造方法
JP2011036039A (ja) * 2009-07-31 2011-02-17 Toyota Boshoku Corp 転積前の打ち抜き方法
JP2012170222A (ja) * 2011-02-14 2012-09-06 Mitsui High Tec Inc 固定子積層鉄心の製造方法及びそれを用いて製造した固定子積層鉄心
JP2017087279A (ja) 2015-11-13 2017-05-25 盛岡セイコー工業株式会社 板金部材および板金部材の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103638A (ja) * 2003-09-10 2005-04-21 Aisin Aw Co Ltd モータ用積層コアの製造方法、その製造装置、及び積層治具
KR100816040B1 (ko) * 2007-11-13 2008-03-24 대흥기전주식회사 발전기 스테이터 어셈블리 제조방법
JP5931702B2 (ja) * 2012-11-19 2016-06-08 株式会社ミツバ ブラシレスモータ及びそれに用いられるロータコア並びにロータコアの製造方法
JP2014236576A (ja) * 2013-05-31 2014-12-15 日本電産サーボ株式会社 インナーロータ型モータ
JP2015070671A (ja) * 2013-09-27 2015-04-13 本田技研工業株式会社 回転電機用ステータコアの製造装置及び回転電機用ステータコアの製造方法
JP6320856B2 (ja) * 2014-06-18 2018-05-09 株式会社三井ハイテック 積層鉄心の製造方法
CN105305739B (zh) * 2014-07-28 2018-04-03 三菱电机株式会社 轴向间隙型旋转电机以及该电机用定子铁芯的制造方法
FR3030653B1 (fr) * 2014-12-23 2017-12-08 Airbus Operations Sas Chape avec empochement et/ou relief
JP6450222B2 (ja) * 2015-03-06 2019-01-09 株式会社三井ハイテック 打ち抜き片の形成方法及びその方法で形成した打ち抜き片を用いた積層体並びに積層鉄心の製造方法
KR101808566B1 (ko) * 2015-05-29 2017-12-13 니혼 덴산 가부시키가이샤 로터 코어의 제조 방법, 로터의 제조 방법, 로터, 및 모터
EP3312976B1 (en) * 2015-06-19 2021-03-31 Nidec Corporation Stator core manufacturing method, stator core inspection method, stator core, and motor
JP6774187B2 (ja) * 2016-02-16 2020-10-21 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心の製造装置
JP6761319B2 (ja) * 2016-10-05 2020-09-23 株式会社三井ハイテック 鉄心片の製造方法
JP6934714B2 (ja) * 2016-10-18 2021-09-15 株式会社三井ハイテック 積層鉄心の製造方法及び積層鉄心
WO2019008722A1 (ja) * 2017-07-06 2019-01-10 三菱電機株式会社 固定子、電動機、駆動装置、圧縮機、空気調和装置および固定子の製造方法
JP6609596B2 (ja) * 2017-07-10 2019-11-20 本田技研工業株式会社 回転電機のステータ
CN111033979B (zh) * 2017-09-07 2022-04-08 日本电产株式会社 定子铁芯制造方法和装置、马达以及层叠部件的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5799387A (en) * 1996-06-05 1998-09-01 L.H. Carbide Corpordation Lamina stack having a plurality of outer perimeter configurations and an apparatus and method for manufacturing said stack
JP2007181297A (ja) * 2005-12-27 2007-07-12 Mitsui High Tec Inc 積層鉄心の製造方法
JP2011036039A (ja) * 2009-07-31 2011-02-17 Toyota Boshoku Corp 転積前の打ち抜き方法
JP2012170222A (ja) * 2011-02-14 2012-09-06 Mitsui High Tec Inc 固定子積層鉄心の製造方法及びそれを用いて製造した固定子積層鉄心
JP2017087279A (ja) 2015-11-13 2017-05-25 盛岡セイコー工業株式会社 板金部材および板金部材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950162A4

Also Published As

Publication number Publication date
EP3950162A4 (en) 2022-12-21
US20220166295A1 (en) 2022-05-26
CN113631293A (zh) 2021-11-09
EP3950162A1 (en) 2022-02-09
CN113631293B (zh) 2024-03-22
JPWO2020195157A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
US10985637B2 (en) Laminated core manufacturing method
CN111095750B (zh) 旋转电机用铁芯的制造方法
US5539974A (en) Method for producing laminated iron cores
JP6723348B2 (ja) 固定子鉄心、及びその固定子鉄心を備えた電動機
WO2016067932A1 (ja) ロータ及びロータ製造方法
JP7047847B2 (ja) 固定子コア製造方法、固定子コアを備えたモータの製造方法、固定子コア製造装置及び積層部材の製造方法
JP7067563B2 (ja) 鋼板積層体の製造方法及び成形鋼板積層体
WO2020195157A1 (ja) 固定子コア板製造方法、固定子コア板、固定子コア及び金型
US7197823B2 (en) Method for manufacturing cylindrical members and method for manufacturing motors having the cylindrical member
WO2020017625A1 (ja) モータおよびそれを備えるコンプレッサ
JP7067564B2 (ja) 固定子コア製造方法
WO2022209252A1 (ja) Ipmモータ用ロータの製造方法及びipmモータ用ロータ
WO2024029065A1 (ja) 電動機、およびコアの製造方法
WO2019159847A1 (ja) コア部材製造方法及びコア部材
WO2023182257A1 (ja) 固定子コアの製造方法、固定子コア及びモータ
WO2023182256A1 (ja) 固定子コアの製造方法、固定子コア、及び、モータ
JP6945955B2 (ja) 角度検出器、及び角度検出器の製造方法
JP5518353B2 (ja) ステータ構造及びこれを用いた回転電機
JP2019004642A (ja) モータ、及び分割コア片の製造方法
JP2893415B2 (ja) 電動機の製造方法
JPH08214510A (ja) ステーターの製造方法
JP2022066662A (ja) 鋼板打抜き金型および回転電機の製造方法
JP2018125986A (ja) 回転電機のステータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020776398

Country of ref document: EP

Effective date: 20211028