WO2020184154A1 - 高強度鋼板およびその製造方法 - Google Patents
高強度鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2020184154A1 WO2020184154A1 PCT/JP2020/007200 JP2020007200W WO2020184154A1 WO 2020184154 A1 WO2020184154 A1 WO 2020184154A1 JP 2020007200 W JP2020007200 W JP 2020007200W WO 2020184154 A1 WO2020184154 A1 WO 2020184154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- temperature
- rolling
- rolled
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/36—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/06—Extraction of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/02—Alloys based on zinc with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-strength steel sheet and a method for manufacturing the same.
- Excellent formability is required for high-strength steel sheets used for reinforcing parts and skeletal structural parts of automobiles.
- a part such as a crash box has a punched end face and a bent portion
- a steel plate having high ductility, stretch flangeability, and bendability is preferable from the viewpoint of moldability.
- high-strength steel sheets used for reinforcing parts and skeletal structural parts of automobiles are required to be able to manufacture parts with high dimensional accuracy.
- it is important to control the yield ratio (YR yield strength YS / tensile strength TS) of the steel sheet within a certain range.
- yield ratio (YR) of the steel sheet By controlling the yield ratio (YR) of the steel sheet within a certain range, it is possible to suppress springback after forming the steel sheet and improve the dimensional accuracy at the time of forming. Further, by increasing the yield ratio (YR) of the steel sheet, the impact absorption energy of the component at the time of collision can be increased.
- Patent Document 1 in terms of body integration rate, it contains 40% or more of ferrite and 5% or more of tempered martensite, and is the ratio of the hardness of ferrite (DHTF) to the hardness of martensite (DHTM).
- DHTF hardness of ferrite
- DHTM hardness of martensite
- tempered martensite 3.0% or more
- ferrite 4.0% or more
- body integration rate at a position where the depth from the surface of the steel plate is 1/4 of the thickness of the steel plate.
- it has a structure represented by retained austenite: 5.0% or more, and the average hardness of tempered martensite in the base metal is 5 GPa to 10 GPa, and a part of tempered martensite and retained austenite in the base metal.
- MA body integration ratio of ferrite in the decarburized ferrite layer is the volume of ferrite of the base material at the position where the depth from the surface of the steel plate is 1/4 of the thickness of the steel plate.
- the fraction is 120% or more, the average particle size of ferrite in the decarburized ferrite layer is 20 ⁇ m or less, the thickness of the decarburized ferrite layer is 5 ⁇ m to 200 ⁇ m, and the tempered martensite in the decarburized ferrite layer.
- the body integration ratio is 1.0% by volume or more, the number density of tempered martensite in the decarburized ferrite layer is 0.01 / ⁇ m 2 or more, and the average hardness of tempered martensite in the decarburized ferrite layer.
- LME Liquid Metal Embrittlement
- Patent Document 1 does not study bendability and LME resistance. Further, in Patent Document 2, the hole expandability and the LME resistance are not studied. As described above, there is no steel sheet that comprehensively satisfies strength, ductility, stretch flangeability, bendability and LME resistance, and can manufacture parts with high dimensional accuracy.
- the present invention has been made in view of such circumstances, and has excellent ductility, stretch flangeability, bendability and LME resistance, and can manufacture parts with high dimensional accuracy, and has a high tensile strength of 980 MPa or more.
- An object of the present invention is to provide a steel plate and a method for manufacturing the same.
- being able to manufacture a part with high dimensional accuracy means that YR is 50% or more and 80% or less.
- YR is calculated by the following equation (1).
- YR YS / TS ... (1)
- excellent ductility means that the value of total elongation (El), which is an index of ductility, is 20% or more.
- excellent stretch flangeability means that the value of the hole expansion ratio ( ⁇ ), which is an index of stretch flangeability, is 20% or more.
- excellent bendability means that a bending test was performed by the V-block method with a bending angle of 90 °, and the ridgeline of the bending apex was observed with a microscope of 40 times, and cracks with a crack length of 200 ⁇ m or more were observed. It means that the value (R / t) obtained by dividing the minimum bending radius (R) that disappears by the plate thickness (t) is 2.0 or less.
- the fractured portion of the test piece after the high temperature tensile test described in the examples was cut so that the plate thickness cross section (L cross section) parallel to the tensile direction of the test piece became the observation surface.
- the plate thickness t By observing the cross section of the plate thickness, the plate thickness t at a position 400 ⁇ m away from the tip of the tensile fracture is obtained.
- the plate thickness reduction amount obtained by substituting the plate thickness t into the following equation (2) is 0.20 or more, it is judged that the LME resistance characteristics are excellent.
- Plate thickness reduction rate (t 0- t) / t 0 ...
- t 0 is the initial plate thickness of the tensile test piece with a notch before the tensile test
- t is the plate thickness at a position 400 ⁇ m away from the tip of the tensile break toward the grip portion. For example, in the L cross section of the fractured portion shown in FIG. 1, t is determined as shown. If the value of the plate thickness reduction rate is large, that is, if it breaks after a large constriction occurs during the tensile test, it is judged that the LME resistance is excellent.
- the present inventors have obtained the following findings as a result of repeated diligent studies in order to achieve the above-mentioned problems.
- the structure is mainly composed of ferrite, which is a soft phase, and the hard phase bainite ferrite, bainite, tempered martensite and hardened martensite, and retained austenite are dispersed in the structure to form a member. It is possible to realize a high-strength steel plate having a tensile strength of 980 MPa or more, which is excellent in dimensional accuracy and ductility.
- (2) By setting the amount of diffusible hydrogen in the steel sheet to 0.80 mass ppm or less, a high-strength steel sheet having excellent stretch flangeability can be realized.
- the present invention has been made based on the above findings. That is, the gist structure of the present invention is as follows. [1] By mass% C: 0.120% or more and 0.250% or less, Si: 0.80% or more and 2.00% or less, Mn: 1.50% or more and 2.45% or less, P: 0.001% or more and 0.100% or less, S: 0.0200% or less, Al: 0.010% or more and 1.000% or less, N: 0.0100% or less, Mo: 0.500% or less, Cr: 0.300% or less, It contains Ca: 0.0200% or less and Sb: 0.200% or less, and Mn eq obtained from the following formula (1) satisfies the relationship of 2.40% or more and 3.40% or less, and the balance is Fe and It has a component composition consisting of unavoidable impurities and Ferrite area ratio is 15% or more and 55% or less, The area ratio of the hard phase is 40% or more and 85% or less, Volume fraction of retained austenite is 4% or more
- Mn eq 0.26 ⁇ [% Si] + [% Mn] + 3.5 ⁇ [% P] + 2.68 ⁇ [% Mo] + 1.29 ⁇ [% Cr] ...
- [% X] in the formula (1) represents the content (mass%) of the element X in the steel, and if it is not contained, it is set to 0.
- the component composition is further increased by mass%.
- a steel slab having the component composition according to the above [1] or [3] is hot-rolled to obtain a hot-rolled plate.
- the hot-rolled plate is pickled and washed.
- the reduction rate of the final pass of cold rolling is 1% or more and 5% or less, and the reduction rate of the pass immediately before the final pass is 5% or more and 30% or less.
- Cold rolled to make a cold rolled plate the cold rolled plate is heated to a heating temperature of 740 ° C. or higher and 880 ° C. or lower in an atmosphere having a dew point of ⁇ 35 ° C. or higher, and then an average cooling rate from the heating temperature to 500 ° C.
- a method for producing a high-strength steel sheet in which the cold-rolled sheet is reheated to a reheating temperature of (cooling stop temperature + 50 ° C.) or more and 500 ° C. or less, and held at the reheating temperature for 10 seconds or more.
- the cold rolled sheet is heated to a heating temperature of 830 ° C. or higher, and the average cooling rate from the heating temperature to 500 ° C. is 5 ° C./s or higher.
- the cold-rolled sheet is cooled to 50 ° C. or lower, rolled at an elongation rate of 0.05% or more and 1.00% or less, and then the annealing step is performed.
- a high-strength steel plate having a tensile strength of 980 MPa or more, which is excellent in ductility, stretch flangeability, bendability and LME resistance, and capable of manufacturing parts with high dimensional accuracy, and a method for manufacturing the same. be able to.
- C 0.120% or more and 0.250% or less C produces a predetermined amount of bainitic ferrite, bainite, tempered martensite and hardened martensite, which are hard phases, and retained austenite to set TS to 980 MPa or more. Moreover, it is an effective element for obtaining excellent dimensional accuracy during molding. If the C content is less than 0.120%, the area fraction of the hard phase and the volume fraction of retained austenite decrease, and the area fraction of ferrite increases, making it difficult to set the TS to 980 MPa or more, and also. Ductility is also reduced.
- the content of C is 0.120% or more and 0.250% or less.
- the content of C is preferably 0.140% or more, more preferably 0.150% or more.
- the C content is preferably 0.230% or less, more preferably 0.220% or less.
- Si 0.80% or more and 2.00% or less Si is an element that affects the volume fraction of retained austenite and the carbon concentration in retained austenite by suppressing the formation of carbides during annealing and promoting the formation of retained austenite. Is. Further, by reducing the Si content, the frequency of corresponding grain boundaries on the surface layer of the steel sheet can be reduced, and the LME resistance characteristics can be improved. If the Si content is less than 0.80%, the volume fraction of retained austenite decreases and the ductility decreases. On the other hand, when the Si content exceeds 2.00%, the carbon concentration in the retained austenite increases excessively, and the hardness of martensite produced from the retained austenite during punching greatly increases.
- the Si content is set to 0.80% or more and 2.00% or less.
- the Si content is preferably 0.90% or more, more preferably 1.00% or more.
- the Si content is preferably 1.80% or less, more preferably 1.70% or less.
- Mn 1.50% or more and 2.45% or less
- Mn is one of the important basic components of steel, and particularly in the present invention, it is an important element that affects the area ratio of the hard phase. If the Mn content is less than 1.50%, the area ratio of the hard phase decreases and the area ratio of ferrite increases, making it difficult to set the TS to 980 MPa or more. On the other hand, when the Mn content exceeds 2.45%, the area ratio of the hard phase increases, and the dimensional accuracy and ductility during molding decrease. Therefore, the Mn content is 1.50% or more and 2.45% or less.
- the Mn content is preferably 1.70% or more, more preferably 1.80% or more.
- the Mn content is preferably 2.40% or less, more preferably 2.30% or less.
- P 0.001% or more and 0.100% or less
- P is an element that has a solid solution strengthening effect and can increase the strength of the steel sheet.
- the content of P is set to 0.001% or more.
- the P content exceeds 0.100%, it segregates at the old austenite grain boundaries and embrittles the grain boundaries, so that the amount of voids generated after punching increases and the stretch flangeability decreases. In addition, the bendability is also reduced. Therefore, the content of P is set to 0.001% or more and 0.100% or less.
- the content of P is preferably 0.002% or more, more preferably 0.003% or more.
- the P content is preferably 0.050% or less, more preferably 0.030% or less.
- S 0.0200% or less S exists as a sulfide in the steel, and when the content exceeds 0.0200%, the ultimate deformability of the steel sheet is lowered. As a result, the amount of voids generated after punching increases, and the stretch flangeability decreases. In addition, the bendability is also reduced. Therefore, the S content should be 0.0200% or less. Although the lower limit of the S content is not particularly specified, the S content is preferably 0.0001% or more due to restrictions in production technology. The S content is preferably 0.0040% or less.
- Al 0.010% or more and 1.000% or less
- Al suppresses the formation of carbides during annealing and promotes the formation of retained austenite, which affects the volume fraction of retained austenite and the carbon concentration in retained austenite. It is an element that exerts.
- the Al content is set to 0.010% or more.
- the Al content is preferably 0.015% or more, more preferably 0.020% or more.
- the Al content is preferably 0.100% or less, more preferably 0.070% or less.
- N 0.0100% or less N exists as a nitride in steel, and when the content exceeds 0.0100%, the ultimate deformability of the steel sheet is lowered. As a result, the amount of voids generated after punching increases, and the stretch flangeability decreases. In addition, the bendability is also reduced. Therefore, the N content should be 0.0100% or less. Although the lower limit of the N content is not particularly specified, the N content is preferably 0.0005% or more due to restrictions in production technology. The N content is preferably 0.0050% or less.
- Mo 0.500% or less
- Mo is an element that improves hardenability and is an effective element for forming a hard phase.
- the Mo content should be 0.500% or less.
- the lower limit of the Mo content may be 0.000%, but the Mo content is 0.010% or more from the viewpoint of increasing hardenability and keeping TS within a more preferable range. Is preferable.
- the Mo content is preferably 0.300% or less, more preferably 0.100% or less.
- the Mo content is more preferably 0.030% or more.
- Cr 0.300% or less Cr is an element that improves hardenability and is an effective element for forming a hard phase.
- the Cr content should be 0.300% or less.
- the lower limit of the Cr content may be 0.000%, but the Cr content is 0.010% or more from the viewpoint of increasing hardenability and keeping TS within a more preferable range. Is preferable.
- the Cr content is preferably 0.250% or less, more preferably 0.100% or less.
- Ca 0.0200% or less Ca exists as an inclusion in steel.
- the Ca content exceeds 0.0200%, when the steel sheet contains diffusible hydrogen, the inclusions become the starting points of cracks during the bending test, so that the bendability is lowered. Therefore, the Ca content should be 0.0200% or less.
- the lower limit of the Ca content may be 0.0000%, but the Ca content is preferably 0.0001% or more due to restrictions in production technology.
- the Ca content is preferably 0.0020% or less.
- Sb 0.200% or less This is an extremely important constituent requirement of the invention in the present invention.
- Sb is an element effective for suppressing oxidation of the surface of the steel sheet during annealing and controlling the surface softening thickness. Further, Sb is an element capable of reducing the corresponding grain boundary frequency of the steel sheet surface layer by suppressing nitriding of the steel sheet surface layer during annealing. If the Sb content exceeds 0.200%, the surface softened portion cannot be formed, so that the bendability and the LME resistance are deteriorated. Therefore, the content of Sb is set to 0.200% or less.
- the lower limit of the Sb content may be 0.000%, but in order to reduce the corresponding grain boundary frequency and obtain better LME resistance characteristics, the Sb content should be 0.001% or more. Is preferable.
- the content of Sb is more preferably 0.002% or more, still more preferably 0.005% or more.
- the Sb content is preferably 0.050% or less, more preferably 0.020% or less.
- Mn eq 2.40% or more and 3.40% or less This is an extremely important constituent requirement of the invention in the present invention.
- Mn eq is an effective parameter for controlling the area ratio of the hard phase, setting the TS to 980 MPa or more, obtaining excellent dimensional accuracy at the time of molding, and obtaining excellent ductility. If the Mn eq is less than 2.40%, the area ratio of the hard phase decreases and the area ratio of ferrite increases, making it difficult to set the TS to 980 MPa or more. On the other hand, when Mn eq exceeds 3.40%, the area ratio of the hard phase increases and the area ratio of ferrite decreases, resulting in a decrease in dimensional accuracy and ductility during molding.
- Mn eq is set to 2.40% or more and 3.40% or less.
- the Mn eq is preferably 2.50% or more, more preferably 2.55% or more.
- the Mn eq is preferably 3.30% or less, more preferably 3.20% or less.
- Mn eq is calculated by the following equation (1).
- Mn eq 0.26 x [% Si] + [% Mn] + 3.5 x [% P] + 2.68 x [% Mo] + 1.29 x [% Cr] ...
- [% X] in the formula (1) represents the content (mass%) of the element X in the steel, and if it is not contained, it is set to 0.
- the high-strength steel plate of the present invention further has Ti: 0.001% or more and 0.100% or less, Nb: 0.001% or more and 0.100% or less, V: 0.001% or more and 0.100% or less, B: 0.0001% or more and 0.0100% or less, Cu: 0.01% or more and 1.00% or less, Ni: 0.01% or more and 0.50% or less, Sn: 0.001% or more and 0.200% or less, Ta: 0.001% or more and 0.100% or less, Mg: 0.0001% or more and 0.0200% or less, Zn: 0.001% or more and 0.020%
- Ti, Nb and V increase TS by forming fine carbides, nitrides or carbonitrides during hot rolling or annealing.
- the content of at least one of Ti, Nb and V is set to 0.001% or more, respectively.
- the content of at least one of Ti, Nb and V exceeds 0.100%, a large amount of coarse precipitates and inclusions are generated, and when the steel sheet contains diffusible hydrogen, bending is performed. Since it becomes the starting point of cracks during the test, the bendability is reduced. Therefore, when at least one of Ti, Nb and V is added, their contents are 0.001% or more and 0.100% or less, respectively.
- their content is preferably 0.005% or more, respectively.
- the content thereof is preferably 0.060% or less, respectively.
- B is an element that can improve hardenability by segregating at the austenite grain boundaries, and by adding B to steel, it is possible to suppress the formation of ferrite and grain growth during annealing cooling. Is.
- the content of B is set to 0.0001% or more.
- the B content exceeds 0.0100%, cracks occur inside the steel sheet during hot rolling and the ultimate deformability of the steel sheet is reduced, so that the total void number density after punching increases and elongation occurs. Flangeability is reduced.
- the bendability is also reduced. Therefore, when B is added, its content is 0.0001% or more and 0.0100% or less. When B is added, its content is preferably 0.0002% or more. When B is added, its content is preferably 0.0050% or less.
- Cu is an element that enhances hardenability, and is an element that is effective for keeping the area ratio of the hard phase within a more suitable range, TS within a more suitable range, and further improving the dimensional accuracy during molding. is there.
- the Cu content is set to 0.01% or more.
- the Cu content exceeds 1.00%, the area ratio of the hard phase increases, and the dimensional accuracy and ductility during molding decrease. Further, when coarse precipitates and inclusions increase and diffusible hydrogen is contained in the steel sheet, it becomes a starting point of cracks during the bending test, so that the bendability is lowered. Therefore, when Cu is added, its content is 0.01% or more and 1.00% or less. When Cu is added, its content is preferably 0.02% or more. When Cu is added, its content is preferably 0.20% or less.
- Ni is an element that enhances hardenability, and is an element that is effective for keeping the area ratio of the hard phase within a more suitable range, TS within a more suitable range, and further improving the dimensional accuracy during molding. is there.
- the Ni content is set to 0.01% or more.
- the Ni content exceeds 0.50%, the area ratio of the hard phase increases, and the dimensional accuracy and ductility during molding decrease. Further, when coarse precipitates and inclusions increase and diffusible hydrogen is contained in the steel sheet, it becomes a starting point of cracks during the bending test, so that the bendability is lowered. Therefore, when Ni is added, its content is 0.01% or more and 0.50% or less. When Ni is added, its content is preferably 0.02% or more. When Ni is added, its content is preferably 0.20% or less.
- Sn is an element effective for suppressing oxidation of the surface of the steel sheet during annealing and more preferably controlling the surface softening thickness.
- the Sn content is set to 0.001% or more.
- Sn content exceeds 0.200%, coarse precipitates and inclusions increase, and when diffusible hydrogen is contained in the steel sheet, the precipitates and inclusions are the starting points of cracks during the bending test. Therefore, the bendability is reduced. Therefore, when Sn is added, its content is 0.001% or more and 0.200% or less. When Sn is added, its content is preferably 0.005% or more. When Sn is added, its content is preferably 0.050% or less.
- Ta like Ti, Nb and V, raises TS by forming fine carbides, nitrides or carbonitrides during hot rolling or annealing.
- Ta is partially dissolved in Nb carbides and Nb carbonitrides to form composite precipitates such as (Nb, Ta) (C, N), which significantly suppresses the coarsening of the precipitates.
- the Ta content is set to 0.001%.
- the Ta content exceeds 0.100%, a large amount of coarse precipitates and inclusions are generated, and when the steel sheet contains diffusible hydrogen, the precipitates and inclusions crack during the bending test.
- Ta since it is the starting point of, the bendability is reduced. Therefore, when Ta is added, its content is 0.001% or more and 0.100% or less. When Ta is added, its content is preferably 0.005% or more. When Ta is added, the content thereof is preferably 0.020% or less.
- Mg is an element effective for spheroidizing the shape of inclusions such as sulfides and oxides, improving the ultimate deformability of the steel sheet, and improving the stretch flangeability.
- the Mg content is set to 0.0001% or more.
- Mg content exceeds 0.0200%, a large amount of coarse precipitates and inclusions are generated, and when the steel sheet contains diffusible hydrogen, the precipitates and inclusions crack during the bending test. Since it is the starting point of, the bendability is reduced. Therefore, when Mg is added, its content should be 0.0001% or more and 0.0200% or less.
- Mg is added, its content is preferably 0.0005% or more.
- the content thereof is preferably 0.0050% or less.
- Zn, Co and Zr are all effective elements for spheroidizing the shape of inclusions, improving the ultimate deformability of the steel sheet, and improving the stretch flangeability.
- the content of one or more of Zn, Co and Zr is set to 0.001% or more, respectively.
- the content of one or more of Zn, Co and Zr exceeds 0.020%, a large amount of coarse precipitates and inclusions are generated, and the steel sheet contains diffusible hydrogen. Since the precipitates and inclusions serve as the starting points of cracks during the bending test, the bendability is lowered.
- the content of one or more of Zn, Co and Zr is 0.0001% or more and 0.020% or less, respectively.
- the content of one or more of Zn, Co and Zr is preferably 0.002% or more, respectively.
- the content of one or more of Zn, Co and Zr is preferably 0.010% or less, respectively.
- REM is an element effective for spheroidizing the shape of inclusions, improving the ultimate deformability of the steel sheet, and improving the stretch flangeability.
- the content of REM should be 0.0001% or more.
- the REM content exceeds 0.0200%, a large amount of coarse precipitates and inclusions are generated, and when the steel sheet contains diffusible hydrogen, the precipitates and inclusions crack during the bending test. Since it is the starting point of, the bendability is reduced. Therefore, when REM is added, its content is 0.0001% or more and 0.0200% or less. When REM is added, its content is preferably 0.0010% or more. When REM is added, its content is preferably 0.0100% or less.
- the rest other than the above-mentioned components are Fe and unavoidable impurities.
- the content of the optional component is less than the lower limit, the effect of the present invention is not impaired. Therefore, when the content is less than the lower limit, it is treated as an unavoidable impurity.
- the area ratio of ferrite is set to 15% or more.
- the area ratio of ferrite is set to 15% or more and 55% or less.
- the area ratio of ferrite is preferably 19% or more, more preferably 22% or more.
- the area ratio of ferrite is preferably 51% or less, more preferably 48% or less.
- the TS is 980 MPa or more and molding. Sometimes excellent dimensional accuracy can be obtained. On the other hand, if the area ratio of the hard phase exceeds 85%, the dimensional accuracy and ductility at the time of molding deteriorate. In addition, the amount of diffusible hydrogen in the steel sheet increases, and the stretch flangeability decreases. In addition, the bendability is also reduced. Therefore, the area ratio of the hard phase is set to 40% or more and 85% or less.
- the area ratio of the hard phase is preferably 45% or more, more preferably 49% or more, still more preferably 52% or more.
- the area ratio of the hard phase is preferably 81% or less, more preferably 78% or less.
- the method for measuring the area ratio of ferrite and the area ratio of the hard phase is as follows. After cutting out the sample so that the thickness cross section (L cross section) parallel to the rolling direction of the steel sheet becomes the observation surface, the observation surface is polished with diamond paste. Next, the observation surface is finish-polished using alumina. Using an electron probe microanalyzer (EPMA), the accelerating voltage is 7 kV and the measurement area is 45 ⁇ m ⁇ 45 ⁇ m, and measurements are taken for four fields on the observation surface. The data after measurement is converted to carbon concentration by the calibration curve method using a standard sample.
- EPMA electron probe microanalyzer
- the data of the four fields are totaled, and the carbon concentration in the steel is [% C], and the region containing a carbon concentration of 0.5 ⁇ [% C] or less is ferrite, which is larger than 0.5 ⁇ [% C].
- the area ratio of each is calculated.
- volume fraction of retained austenite 4% or more and 20% or less
- excellent ductility can be obtained.
- the volume fraction of retained austenite exceeds 20%, the retained austenite has a high hydrogen concentration. Therefore, when the retained austenite is processed during punching or bending test and undergoes martensitic transformation, voids are formed inside the martensite. Occurs. Therefore, the amount of voids generated after punching increases, and the stretch flangeability decreases.
- the volume fraction of retained austenite is 4% or more and 20% or less.
- the volume fraction of retained austenite is preferably 5% or more, more preferably 6% or more.
- the volume fraction of retained austenite is preferably 18% or less, more preferably 16% or less.
- Carbon concentration in retained austenite 0.55% or more and 1.10% or less
- excellent ductility can be obtained and excellent dimensional accuracy during molding can be obtained. Can be obtained.
- the carbon concentration in the retained austenite exceeds 1.10%, the hardness of martensite generated from the retained austenite at the time of punching is greatly increased, so that crack growth at the time of drilling is promoted and the elongation flangeability is lowered. .. In addition, the bendability is also reduced. Therefore, the carbon concentration in the retained austenite is 0.55% or more and 1.10% or less.
- the carbon concentration in the retained austenite is preferably 0.60% or more, more preferably 0.65% or more.
- the carbon concentration in the retained austenite is preferably 1.00% or less, more preferably 0.95% or less, still more preferably 0.90% or less.
- the method for measuring the volume fraction of retained austenite is as follows. After mechanically grinding the steel sheet to 1/4 of the plate thickness in the plate thickness direction (depth direction), chemical polishing with oxalic acid is performed to obtain an observation surface. The observation surface is observed by an X-ray diffraction method. As the incident X-ray, a K ⁇ radiation source of Co is used, and (200), (220), (311) of fcc iron (austenite) with respect to the diffraction intensity of each surface of bcc iron (200), (211), (220). ) Obtain the ratio of the diffraction intensity of each surface, and use this as the volume ratio of retained austenite.
- a 3.578 + 0.00095 [% Mn] + 0.022 [% N] + 0.0006 [% Cr] + 0.0031 [% Mo] + 0.0051 [% Nb] + 0.0039 [% Ti] + 0.0056 [ % Al] + 0.033 [% C] ⁇ ⁇ ⁇ (4)
- a is the lattice constant ( ⁇ ) of the retained austenite
- ⁇ is the value obtained by dividing the diffraction peak angle of the (220) plane by 2
- [% C] is the mass% of C in the retained austenite.
- [% M] other than [% C] is the content (mass%) of the element M in the entire steel.
- Average minor axis length of retained austenite 2.0 ⁇ m or less
- the average minor axis length of the retained austenite is preferably 2.0 ⁇ m or less.
- the lower limit of the average minor axis length of retained austenite is not particularly specified, but if the average minor axis length of retained austenite is less than 0.2 ⁇ m, retained austenite is martensite even at the time of late tensile deformation. Since it does not transform, its contribution to ductility is small.
- the average minor axis length of retained austenite is preferably 0.2 ⁇ m or more.
- the average minor axis length of retained austenite is more preferably 1.9 ⁇ m or less, still more preferably 1.6 ⁇ m or less, and 1.0 ⁇ m or less.
- the method for measuring the average minor axis length of retained austenite is as follows. After cutting out the sample so that the thickness cross section (L cross section) parallel to the rolling direction of the steel sheet becomes the observation surface, the observation surface is polished with diamond paste. Then, the observation surface is finish-polished using alumina. Then, 1 vol. % Corrodes the observation surface with nital. Three-field observation at a magnification of 5000 times using a scanning electron microscope (SEM) for a plate thickness 1/4 position (a position corresponding to 1/4 of the plate thickness in the depth direction from the steel plate surface) To do. The obtained tissue image is analyzed using Adobe Photoshop manufactured by Adobe Systems, Inc., and the minor axis length of retained austenite is calculated for three visual fields.
- SEM scanning electron microscope
- the minor axis lengths of retained austenite for three fields of view are averaged to obtain the average minor axis length of retained austenite.
- the retained austenite since the retained austenite exhibits a fine white structure having an average crystal grain size of 5.0 ⁇ m or less, it is possible to identify and measure the minor axis length.
- the steel structure according to the present invention in addition to the above-mentioned ferrite, bainite ferrite, bainite, tempered martensite, hardened martensite, and retained austenite, carbides such as pearlite and cementite, and other known structures of steel sheets.
- carbides such as pearlite and cementite
- the structure of the other steel sheet may be confirmed and determined by, for example, SEM observation.
- Amount of diffusible hydrogen in steel sheet 0.80 mass ppm or less This is an extremely important constituent requirement of the invention in the present invention.
- the present inventors have found that the amount of diffusible hydrogen in the steel sheet is related to the stretch flangeability and bendability. I found it.
- excellent elongation and flangeability and bendability can be obtained by reducing the amount of diffusible hydrogen in the steel sheet to 0.80 mass ppm or less, and the present invention has been completed. ..
- the lower limit of the amount of diffusible hydrogen in the steel sheet is not particularly specified, it is preferable that the amount of diffusible hydrogen in the steel sheet is 0.01 mass ppm or more due to restrictions in production technology.
- the amount of diffusible hydrogen in the steel sheet is more preferably 0.05 mass ppm or more.
- the amount of diffusible hydrogen in the steel sheet is preferably 0.60 mass ppm or less, more preferably 0.35 mass ppm or less.
- the steel sheet for measuring the amount of diffusible hydrogen may be a high-strength steel sheet before the plating treatment or a base steel sheet of a high-strength hot-dip galvanized steel sheet after the plating treatment and before processing.
- it may be a base material of a steel sheet that has been subjected to processing such as punching, stretch flange forming, and bending after plating, and may be a base material of a product manufactured by welding the processed steel sheet. It may be a steel plate part.
- the method for measuring the amount of diffusible hydrogen in the steel sheet is as follows.
- a test piece having a length of 30 mm and a width of 5 mm is collected.
- a test piece having a length of 30 mm and a width of 5 mm is collected, and the hot-dip galvanized layer or the alloyed hot-dip galvanized layer is alkali-removed.
- the amount of hydrogen released from the test piece is measured by a thermal desorption analysis method. Specifically, the steel sheet is continuously heated from room temperature to 300 ° C. at a heating rate of 200 ° C./h, cooled to room temperature, and the cumulative amount of hydrogen released from the test piece is measured from room temperature to 210 ° C. Let it be the amount of diffusible hydrogen inside.
- the thickness of the surface softening portion (surface softening thickness) is set to 5 ⁇ m or more.
- the surface softening thickness is set to 150 ⁇ m or less. Therefore, the surface softening thickness is set to 5 ⁇ m or more and 150 ⁇ m or less.
- the surface softening thickness is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more.
- the surface softening thickness is preferably 110 ⁇ m or less, more preferably 80 ⁇ m or less.
- the method for measuring the surface softening thickness is as follows. After smoothing the plate thickness cross section (L cross section) parallel to the rolling direction of the steel sheet by wet polishing, using a Vickers hardness tester, with a load of 10 gf, from a position 5 ⁇ m in the plate thickness direction from the plate thickness surface, 100 ⁇ m in the plate thickness direction. Measures are performed at 5 ⁇ m intervals up to the position of. After that, the measurement is performed at intervals of 20 ⁇ m to the center of the plate thickness.
- the region where the hardness is reduced to 95% or less of the hardness at the plate thickness 1/4 position is defined as the softening region, and the thickness in the plate thickness direction from the surface layer of the steel sheet to the softening region is defined as the surface softening thickness.
- Corresponding grain boundary frequency of the surface layer of the steel sheet after the high temperature tensile test 0.45 or less This is an extremely important constituent requirement of the invention in the present invention.
- the corresponding grain boundary frequency of the surface layer of the steel sheet after the high-temperature tensile test 0.45 or less
- the number of corresponding grain boundaries where LME cracking preferentially progresses can be reduced, and excellent LME resistance characteristics can be obtained.
- the lower limit of the corresponding grain boundary frequency of the steel sheet surface layer after the high temperature tensile test is not particularly specified, the corresponding grain boundary frequency of the steel sheet surface layer after the high temperature tensile test is generally 0.05 or more.
- the corresponding grain boundary frequency of the surface layer of the steel sheet after the high temperature tensile test is preferably 0.15 or more.
- the corresponding grain boundary frequency of the surface layer of the steel sheet after the high temperature tensile test is preferably 0.40 or less, more preferably 0.35 or less.
- the corresponding grain boundary frequency of the surface layer of the steel sheet after the high temperature tensile test is calculated as follows. Corresponding grain boundary frequency measurement by cutting so that the plate thickness cross section (L cross section) parallel to the tensile direction of the test piece becomes the observation surface so as to include the fractured portion of the test piece after the high temperature tensile test described in the examples. Take a sample for. Next, buffing with diamond paste and alumina paste smoothes the plate thickness cross section of the corresponding grain boundary frequency measurement sample, and then ion milling completely removes the processed layer.
- the crystal orientation is set to the surface layer of the steel sheet bonded to the plated steel sheet, and when the test steel is a plated steel sheet, the crystal orientation is set to the surface layer of the steel sheet on the plated layer side, FE-SEM. / EBSD (JSM7100F: manufactured by Nippon Denshi Co., Ltd., OIM: manufactured by TSL Co., Ltd.).
- the EBSD measurement is performed under sufficient measurement conditions for evaluating the substructure of martensite in the crystal orientation (observation position: near the LME crack occurrence part, measurement field: 60 ⁇ m (tensile direction) ⁇ 40 ⁇ m (crack growth direction), measurement point interval. : 40 nm).
- the vicinity of the LME crack generation portion refers to an intermediate region of a plurality of cracks (LME cracks) generated on the surface of the steel sheet after the high temperature tensile test.
- LME cracks a plurality of cracks
- the region A between the cracks a and b and the region B between the cracks b and c are in the vicinity of the LME crack generation portion, respectively.
- the corresponding grain boundary frequency may be observed at any location.
- the characteristics of the whole grain boundaries of the steel sheet surface layer in the measurement field of view are investigated.
- the corresponding grain boundary frequency of the steel sheet surface layer is calculated by the following formula from the number of grain boundaries having a relationship of the corresponding grain boundaries of the steel sheet surface layer in the measurement field of view and the total number of grain boundaries of the steel sheet surface layer in the measurement field of view.
- [Corresponding grain boundary frequency of steel sheet surface layer after high temperature tensile test] [Number of grain boundaries having a relationship of corresponding grain boundary of steel sheet surface layer in measurement field of view] / [Total number of grain boundaries of steel sheet surface layer in measurement field of view]
- the corresponding grain boundary is defined as a low ⁇ CSL (Coincident Site Latety) grain boundary of ⁇ 23 or less.
- the high-strength steel sheet according to the present invention has a tensile strength (TS) of 980 MPa or more.
- the TS is measured as follows in accordance with JIS Z 2241. From the high-strength steel sheet, take a JIS No. 5 test piece so that the longitudinal direction is perpendicular to the rolling direction of the steel sheet. Using the test piece, a tensile test is performed under the condition that the crosshead displacement velocity Vc is 1.67 ⁇ 10 -1 mm / s, and TS is measured.
- the high-strength steel sheet according to the present invention may have a plating layer on its surface.
- the composition of the plating layer is not particularly limited and may be a general composition.
- the plating layer may be formed by any method, and may be, for example, a hot-dip plating layer or an electroplating layer. Further, the plating layer may be alloyed.
- the plating layer is a hot-dip galvanized layer.
- the composition of the hot-dip galvanized layer is not particularly limited.
- the plating layer contains Fe: 20% by mass or less, Al: 0.001% by mass or more and 1.0% by mass or less, and further, Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr. , Co, Ca, Cu, Li, Ti, Be, Bi, and REM containing one or more selected from the group consisting of 0% by mass or more and 3.5% by mass or less in total, and the balance is Zn and unavoidable. It has a composition consisting of target impurities.
- the Fe content in the plating layer is less than 7% by mass, and when the alloyed hot-dip galvanized layer is used, the Fe content in the plating layer is 7 to 15% by mass. More preferably, it is 8 to 13% by mass.
- molten zinc-aluminum-magnesium alloy plating (Zn-Al-Mg plating layer) is also preferable.
- the composition of the Zn—Al—Mg plating layer is not particularly limited, but contains Al in an amount of 1% by mass or more and 22% by mass or less, Mg in an amount of 0.1% by mass or more and 10% by mass or less, and the balance is composed of Zn and unavoidable impurities.
- the composition is preferable.
- the Zn—Al—Mg plating layer may contain one or more selected from the group consisting of Si, Ni, Ce, and La in a total amount of 1% by mass or less. ..
- the plating layer may be mainly composed of any metal, and may be, for example, an Al plating layer or the like.
- the amount of plating adhered is not particularly limited, but it is preferable that the amount of plating adhered per one side of the base steel sheet is 20 to 80 g / m 2 .
- the plating layer preferably has cracks.
- the amount of diffusible hydrogen in the base steel sheet can be reduced to a more suitable range. As a result, stretch flangeability and bendability can be improved.
- the plating layer has cracks.
- a total of 4 fields of view were observed for each of the front surface and the back surface of the base steel sheet at a magnification of 1500 times using SEM, and the length was 10 ⁇ m or more.
- the thickness of the high-strength steel sheet according to the present invention is not particularly limited, but is usually 0.3 mm or more and 2.8 mm or less.
- a method for manufacturing a high-strength steel sheet according to an embodiment of the present invention will be described.
- a steel slab having the above-mentioned composition is produced.
- the steel material is melted to obtain molten steel having the above-mentioned composition.
- the melting method is not particularly limited, and any known melting method such as converter melting or electric furnace melting is suitable.
- the obtained molten steel is solidified to produce a steel slab (slab).
- the method for producing steel slabs from molten steel is not particularly limited, and a continuous casting method, an ingot forming method, a thin slab casting method, or the like can be used.
- the steel slab is preferably manufactured by a continuous casting method.
- the manufactured steel slab is subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot-rolled plate.
- the steel slab produced as described above is once cooled to room temperature, then slab heated and then rolled.
- the slab heating temperature is preferably 1100 ° C. or higher from the viewpoint of melting carbides and reducing the rolling load. Further, in order to prevent an increase in scale loss, the slab heating temperature is preferably 1300 ° C. or lower.
- the slab heating temperature is based on the temperature of the slab surface during heating.
- hot rolling may be performed by applying an energy saving process.
- an energy-saving process the manufactured steel slab is not cooled to room temperature, but is charged into a heating furnace as a hot piece and hot-rolled by direct rolling, or after the manufactured steel slab is slightly heat-retained. Examples include direct rolling, which rolls immediately.
- the steel slab is roughly rolled under normal conditions to obtain a seat bar.
- the sheet bar is subjected to finish rolling to obtain a hot-rolled plate.
- the finish rolling temperature is for reducing the rolling load, and if the rolling reduction rate of austenite in the unrecrystallized state is high, an abnormal structure extending in the rolling direction may develop, which may reduce the workability of the annealed plate. Therefore, it is preferable that the temperature is equal to or higher than the Ar 3 transformation point.
- the hot-rolled plate is wound up and recovered.
- the winding temperature is preferably 300 ° C. or higher and 700 ° C. or lower from the viewpoint of moldability of the annealed plate.
- rough-rolled plates may be joined to each other during hot rolling to continuously perform finish rolling.
- the rough-rolled plate sheet bar
- the rough-rolled plate may be wound once before the finish rolling.
- part or all of the finish rolling may be lubricated rolling.
- Lubrication rolling is also effective from the viewpoint of uniform steel sheet shape and uniform material. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 or more and 0.25 or less.
- pickle the hot-rolled plate Since the oxide on the surface of the steel sheet can be removed by pickling, it is important for ensuring good chemical conversion treatment and plating quality in the high-strength steel sheet of the final product.
- the pickling may be performed only once or may be divided into a plurality of times.
- cold rolling is performed by multi-pass rolling that requires two or more passes, such as tandem multi-stand rolling or reverse rolling.
- the reduction rate of the final pass is 1% or more and 5% or less, and the reduction rate of the pass immediately before the final pass is 5% or more and 30% or less. It is an invention constituent requirement.
- cold rolling may be performed without heat treatment, or cold rolling may be performed after heat treatment.
- cold rolling is performed after the heat treatment, it is preferable to hold the product at a holding temperature of 450 ° C. or higher and 800 ° C. or lower for 900 s or more and 36000 s or less.
- Reduction rate of the final pass of cold rolling 1% or more and 5% or less This is an extremely important constituent requirement of the invention in the present embodiment.
- By appropriately controlling the rolling reduction of the final pass to create a cold-rolled structure on the surface of the steel sheet and then annealing it is possible to control the corresponding grain boundary frequency on the surface of the steel sheet and obtain excellent LME resistance. it can. If the reduction rate of the final pass of cold rolling is less than 1%, the cold rolled structure of the surface layer of the steel sheet cannot be formed, the frequency of corresponding grain boundaries of the surface layer of the steel sheet increases after annealing, and the LME resistance property deteriorates.
- the rolling reduction of the final pass of cold rolling is 1% or more and 5% or less.
- the rolling reduction of the final pass of cold rolling is preferably 2% or more, more preferably 3% or more.
- the rolling reduction of the final pass of cold rolling is preferably 4% or less.
- Reduction rate of the pass immediately before the final pass 5% or more and 30% or less This is an extremely important constituent requirement of the invention in the present embodiment.
- the reduction rate of the pass immediately before the final pass is set to 5% or more and 30% or less.
- the reduction rate of the pass immediately before the final pass is preferably 6% or more, more preferably 7% or more.
- the reduction rate of the pass immediately before the final pass is preferably 28% or less, more preferably 25% or less.
- the cumulative reduction rate of cold rolling is not particularly specified, the area ratio of the hard phase can be controlled within a suitable range, and the TS can be set within a more suitable range.
- the cumulative rolling reduction rate is preferably 30% or more.
- the upper limit of the cumulative rolling reduction rate of cold rolling is not particularly specified, it is preferably 80% or less, more preferably 70% or less in order to improve the dimensional accuracy at the time of molding. Therefore, the cumulative rolling reduction of cold rolling is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more.
- the cumulative rolling reduction of cold rolling is preferably 80% or less, more preferably 70% or less.
- the number of rolling passes for cold rolling and the rolling reduction rate of the final pass and the passes other than the one immediately before the final pass are not particularly limited.
- the cold rolled plate obtained as described above is annealed.
- Annealing may be performed once or twice.
- the first annealing step when annealing is performed twice is referred to as a preliminary annealing step
- the second annealing step when annealing is performed twice and the first annealing step when annealing is performed once are referred to as a preliminary annealing step.
- the annealing process By performing the annealing twice, fine retained austenite can be generated, and ductility and stretch flangeability can be improved.
- the preliminary annealing process when annealing is performed twice will be described.
- the heating temperature of the preliminary annealing is preferably 830 ° C. or higher.
- Pre-annealing heating temperature 830 ° C or higher.
- the upper limit of the heating temperature for the first annealing is not particularly specified, but in order to improve the dimensional accuracy at the time of molding, it is preferably 950 ° C. or lower, more preferably 920 ° C. or lower.
- the heating temperature for the first annealing is more preferably 850 ° C. or higher, and even more preferably 870 ° C. or higher.
- the heat retention time of the pre-annealing heat treatment is not particularly limited, but is preferably in the range of 10 s or more and 1000 s or less.
- the cold rolled plate heated to a heating temperature of 830 ° C. or higher under the condition that the average cooling rate from the heating temperature to 500 ° C. is 5 ° C./s or higher.
- the area ratio of ferrite in the structure obtained after the annealing step can be within a more suitable range, and the volume ratio of retained austenite can be controlled within a more suitable range, ductility can be improved. It can be within a more suitable range. Further, since the area ratio of the hardened martensite can be within a more suitable range, the dimensional accuracy at the time of molding can be within a more suitable range. Further, by setting the area ratio of the hardened martensite within a more suitable range, the amount of diffusible hydrogen in the steel sheet can also be within a more suitable range, so that the amount of voids generated after punching can be reduced. The stretch flangeability can be further improved.
- the bendability can be set within a more suitable range.
- the upper limit of the average cooling rate from a heating temperature of 830 ° C. or higher to 500 ° C. is not particularly specified, but it is preferably 1000 ° C./s or less due to restrictions in production technology.
- the average cooling rate from a heating temperature of 830 ° C. or higher to 500 ° C. is more preferably 8 ° C./s or higher.
- the cooling method from the heating temperature of 830 ° C. or higher is not particularly limited, and cooling methods such as gas jet cooling, mist cooling, water cooling, and air cooling can be applied.
- the average cooling rate from less than 500 ° C., the cooling stop temperature, and the cooling method are not particularly limited.
- the cooling method gas jet cooling, mist cooling, water cooling, air cooling and the like can be applied.
- the cooling can be performed from less than 500 ° C. to a cooling stop temperature of 450 ° C. or lower and about room temperature.
- the average cooling rate from less than 500 ° C. to the cooling stop temperature is 5 ° C./s or more and 1000 ° C./s or less in one example.
- the cooling stop temperature is in the range of 450 ° C.
- the cooling stop temperature may be kept at 10 s or more and 1000 s or less, and then cooled to a temperature of 50 ° C. or lower and about room temperature.
- the cooling stop temperature is in the range of about 250 ° C. or lower and about room temperature, after cooling is stopped, the heat is kept at a temperature higher than the cooling stop temperature for 10 s or more and 1000 s or less, and then cooled to a temperature of 50 ° C. or lower and about room temperature. May be good.
- the cold-rolled sheet is cooled to 50 ° C. or lower and then rolled at an elongation rate of 0.05% or more and 1.00% or less.
- Elongation rate of rolling after pre-annealing and cooling to 50 ° C or less 0.05% or more and 1.00% or less
- Correspondence of steel sheet surface layer after pre-annealing by performing rolling after cooling to 50 ° C or less after pre-annealing The grain boundary frequency can be reduced and the LME resistance can be improved.
- the elongation rate of rolling after pre-annealing and cooling to 50 ° C. or lower is 0.05% or more.
- the elongation rate of rolling after cooling to 50 ° C. or lower after pre-annealing exceeds 1.00%, the particle size of ferrite and hard phase after annealing decreases, so YR increases and the dimensions at the time of molding increase. Accuracy is reduced. Therefore, the elongation rate of rolling after pre-annealing and cooling to 50 ° C. or lower is preferably 1.00% or less, more preferably 0.70% or less. The elongation rate of rolling after cooling to 50 ° C. or lower after pre-annealing is more preferably 0.10% or more.
- Rolling after cooling to 50 ° C. or lower may be performed (online) on a device continuous with the annealing device for performing the pre-annealing step described above, or is not an annealing device for performing the pre-annealing step. It may be done on a continuous device (offline). Further, the desired elongation rate may be achieved by one rolling, or a plurality of rolling times may be performed to achieve a total elongation rate of 0.05% or more and 1.00% or less.
- the rolling described here generally refers to temper rolling, but as long as an elongation rate equivalent to that of temper rolling can be imparted, rolling by a method such as processing by a leveler may be used.
- the second annealing condition when annealing is performed twice, or the annealing condition when annealing is performed only once will be described.
- the cold rolled plate is heated to a heating temperature of 740 ° C. or higher and 880 ° C. or lower in an atmosphere having a dew point of ⁇ 35 ° C. or higher, and the average cooling rate from the heating temperature to 500 ° C. is 10 ° C./s.
- the mixture is cooled to a cooling stop temperature of 150 ° C. or higher and 300 ° C. or lower.
- the cold-rolled sheet after cold rolling or further pre-annealing is heated to 740 ° C. or higher and 880 ° C. or lower in an atmosphere having a dew point of ⁇ 35 ° C. or higher.
- Heating temperature in the annealing step 740 ° C or higher and 880 ° C or lower If the heating temperature in the annealing step is lower than 740 ° C, the austenite formation ratio during heating in the two-phase region of ferrite and austenite becomes insufficient, and thus the hardness after annealing.
- the area ratio of the phase and the volume ratio of retained austenite decrease, and the area ratio of ferrite increases, resulting in a decrease in TS and ductility.
- the heating temperature is set to 740 ° C. or higher and 880 ° C. or lower.
- the heating temperature is preferably 760 ° C. or higher, more preferably 770 ° C. or higher, and even more preferably 780 ° C. or higher.
- the heating temperature is preferably 860 ° C. or lower. More preferably, it is 850 ° C. or lower.
- the holding time at the heating temperature is not particularly limited, but is preferably 10 s or more and 600 s or less.
- Dew point of the atmosphere at the above heating temperature -35 ° C or higher
- the upper limit of the dew point in the heating temperature range is not particularly specified, it is preferably 15 ° C. or lower, more preferably 5 ° C. or lower in order to keep TS within a suitable range.
- the dew point at the heating temperature is preferably ⁇ 30 ° C. or higher, more preferably ⁇ 25 ° C. or higher.
- the temperature in the heating temperature range is based on the surface temperature of the steel sheet. That is, when the surface temperature of the steel sheet is at the heating temperature, the dew point of the atmosphere is adjusted within the above range.
- the cold rolled plate is cooled to a cooling stop temperature of 150 ° C. or higher and 300 ° C. or lower under the condition that the average cooling rate up to 500 ° C. is 10 ° C./s or higher.
- Average cooling rate from heating temperature to 500 ° C 10 ° C / s or more 740 ° C or more and 880 ° C or less
- the area ratio of the above can be controlled within a desired range, the TS can be set to 980 MPa or more, and excellent dimensional accuracy can be obtained at the time of molding.
- the upper limit of the average cooling rate from the heating temperature to 500 ° C. is preferably 50 ° C./s or less, more preferably 35 ° C./s or less. ..
- the average cooling rate from the heating temperature to 500 ° C. is preferably 12 ° C./s or higher, more preferably 15 ° C./s or higher, and even more preferably 20 ° C./s or higher.
- Cooling stop temperature in the annealing process 150 ° C or more and 300 ° C or less
- the area ratio of bainitic ferrite generated in the heat retention step after reheating which will be described later, is increased.
- the volume ratio of retained austenite can be within a desired range.
- the amount of diffusible hydrogen in the steel sheet can be reduced, and as a result, the amount of voids generated after punching is reduced and the elongation flangeability is improved. be able to. In addition, excellent bendability can be obtained.
- the cooling stop temperature is less than 150 ° C.
- the untransformed austenite present during cooling is transformed into almost all martensite at the time of cooling stop, so that the area ratio of bainitic ferrite decreases and the volume ratio of retained austenite is reduced. It cannot be secured within the desired range, and the ductility is reduced. Further, since the area ratio of tempered martensite increases, YR increases and the dimensional accuracy at the time of molding decreases. Further, the carbon concentration in the retained austenite cannot be kept within a desired range, and it becomes difficult to secure ductility and dimensional accuracy at the time of molding.
- the cooling stop temperature exceeds 300 ° C.
- the area fraction of bainitic ferrite decreases, the volume fraction of retained austenite does not fall within a desired range, and the ductility decreases.
- the area ratio of the hardened martensite increases, YR decreases and the dimensional accuracy at the time of molding decreases.
- the carbon concentration in the retained austenite cannot be kept within a desired range, and it becomes difficult to secure ductility and dimensional accuracy at the time of molding.
- the area ratio of the hardened martensite increases, the amount of diffusible hydrogen in the steel sheet also increases, so that the amount of voids generated after punching increases and the stretch flangeability decreases. In addition, the bendability is also reduced.
- the cooling stop temperature is set to 150 ° C. or higher and 300 ° C. or lower.
- the cooling stop temperature is preferably 170 ° C. or higher, more preferably 180 ° C. or higher.
- the cooling stop temperature is preferably 270 ° C. or lower, more preferably 240 ° C. or lower.
- the average cooling rate from less than 500 ° C. to the above cooling stop temperature in the above cooling is not particularly limited, but is usually 1 ° C./s or more and 50 ° C./s or less.
- the cold rolled plate after the annealing step is reheated to a reheating temperature of (cooling stop temperature + 50 ° C.) or more and 500 ° C. or less, and held at the reheating temperature for 10 seconds or more.
- Reheating temperature (cooling stop temperature + 50 ° C) or more and 500 ° C or less
- the reheating temperature is less than (cooling stop temperature + 50 ° C.)
- the area fraction of bainite ferrite is reduced and the volume fraction of retained austenite is within the desired range because it is on the lower temperature side than the nose position of the bainite transformation. Is not possible and ductility is reduced.
- the carbon concentration in the retained austenite cannot be kept within a desired range, and it becomes difficult to secure ductility and dimensional accuracy at the time of molding. In addition, it becomes difficult to reduce the amount of diffusible hydrogen in the steel sheet, and the stretch flangeability and bendability are lowered. Further, since the area ratio of the hardened martensite increases, YR decreases and the dimensional accuracy at the time of molding decreases. Further, as the area ratio of the hardened martensite increases, the amount of voids generated after punching increases, and the stretch flangeability decreases. In addition, the bendability is also reduced.
- the area fraction of bainitic ferrite decreases because it is on the higher temperature side than the nose position of the bainite transformation, and the volume fraction of retained austenite can be kept within a desired range.
- ductility is reduced.
- the carbon concentration in the retained austenite cannot be kept within a desired range, and it becomes difficult to secure ductility and dimensional accuracy at the time of molding.
- the area ratio of the hardened martensite increases, YR decreases and the dimensional accuracy at the time of molding decreases. Further, as the area ratio of the hardened martensite increases, the amount of voids generated after punching increases, and the stretch flangeability decreases.
- the reheating temperature is set to (cooling stop temperature + 50 ° C.) or more and 500 ° C. or lower.
- the reheating temperature is preferably (cooling stop temperature + 80 ° C.) or higher, and more preferably (cooling stop temperature + 100 ° C.) or higher.
- the reheating temperature (of the second annealing) is preferably 450 ° C. or lower.
- Heat retention time at reheating temperature By retaining heat at a reheating temperature of 10 s or more, the area fraction of bainitic ferrite can be increased and the volume fraction of retained austenite can be achieved within a desired range. If the heat retention time at the reheating temperature is less than 10 s, the area fraction of bainitic ferrite decreases, the volume fraction of retained austenite cannot be secured within a desired range, and ductility decreases. Further, the carbon concentration in the retained austenite cannot be kept within a desired range, and it becomes difficult to secure ductility and dimensional accuracy at the time of molding. In addition, it becomes difficult to reduce the amount of diffusible hydrogen in the steel sheet, and the stretch flangeability and bendability are lowered.
- the heat retention time at the reheating temperature is set to 10 s or more.
- the upper limit of the heat retention time at the reheating temperature is not particularly limited, but is preferably 1000 s or less due to restrictions on production technology.
- the heat retention time at the reheating temperature is preferably 13 s or more, more preferably 16 s or more.
- the heat retention time at the reheating temperature is preferably 1000 s or less, more preferably 200 s or less.
- the average cooling rate after heat retention at the reheating temperature, the cooling stop temperature, and the cooling method are not particularly limited.
- As the cooling method gas jet cooling, mist cooling, water cooling, air cooling and the like can be applied.
- the average cooling rate of the cooling is usually 1 ° C./s or more and 50 ° C./s or less.
- the above-mentioned high-strength steel sheet may be temper-rolled. If the rolling reduction ratio exceeds 1.50%, the yield stress of the steel increases and the dimensional accuracy at the time of forming decreases. Therefore, the rolling reduction ratio is preferably 1.50% or less.
- the lower limit of the rolling reduction in temper rolling is not particularly limited, but is preferably 0.05% or more from the viewpoint of productivity.
- the temper rolling may be performed (online) on a device continuous with the annealing device for performing the annealing step described above, or on a device discontinuous with the annealing device for performing the annealing step (offline). You may go there.
- the desired rolling reduction may be achieved by one rolling, or the rolling may be performed a plurality of times to achieve a total rolling reduction of 0.05% or more and 1.00% or less.
- the rolling described here generally refers to temper rolling, but rolling by a leveler or the like may be used as long as an elongation rate equivalent to that of temper rolling can be imparted.
- the minor axis length of austenite should be 2.0 ⁇ m or less by setting the cooling stop temperature in the annealing step to 160 ° C or higher and 250 ° C or lower and the reheating temperature to 300 ° C or higher and 450 ° C or lower. Can be done.
- the high-strength steel sheet may be plated.
- the type of plating metal is not particularly limited, and one example is zinc.
- the galvanizing treatment include a hot-dip galvanizing treatment and an alloying hot-dip galvanizing treatment in which an alloying treatment is performed after the hot-dip galvanizing treatment.
- the annealing and hot-dip galvanizing treatment may be performed (on one line) using an apparatus configured to continuously perform the annealing and hot-dip galvanizing treatment.
- hot-dip zinc-aluminum-magnesium alloy plating treatment may be performed.
- a high-strength steel plate is immersed in a zinc-plating bath at 440 ° C or higher and 500 ° C or lower to perform hot-dip galvanizing, and then the amount of plating adhered is adjusted by gas wiping or the like. To do.
- a zinc plating bath having an Al content of 0.10% by mass or more and 0.23% by mass or less and a composition in which the balance is Fe and unavoidable impurities.
- the zinc plating is alloyed, after the hot dip galvanizing, the zinc plating is alloyed in a temperature range of 460 ° C. or higher and 600 ° C. or lower.
- the alloying temperature is less than 460 ° C., the Zn—Fe alloying rate becomes excessively slow, and alloying becomes extremely difficult.
- the alloying temperature exceeds 600 ° C., untransformed austenite may be transformed into pearlite, and TS and ductility may decrease. Therefore, when the zinc plating is alloyed, it is preferable to perform the alloying treatment in a temperature range of 460 ° C. or higher and 600 ° C. or lower, more preferably 470 ° C. or higher and 560 ° C. or lower, and further preferably 470 ° C. or higher and 530 ° C. It is as follows.
- the plating adhesion amount of the hot-dip galvanized steel sheet (GI) and the alloyed hot-dip galvanized steel sheet (GA) is preferably 20 to 80 g / m 2 (double-sided plating) per side.
- the amount of plating adhered can be adjusted by performing gas wiping or the like after galvanizing.
- a plating layer such as Zn plating, Zn—Ni electric alloy plating, or Al plating may be formed by electroplating.
- the plating layer is an electrogalvanized layer.
- a plating solution containing Ni: 9% by mass or more and 25% by mass or less and the balance being Zn and unavoidable impurities can be used as the plating solution.
- a plating bath having a room temperature or higher and 100 ° C. or lower.
- the plating adhesion amount of the electrogalvanized steel sheet (EG) is preferably 15 to 100 g / m 2 (double-sided plating) per side.
- the plated high-strength steel sheet may be cooled to 50 ° C. or lower and then rolled at an elongation rate of 0.05% or more and 1.00% or less.
- the elongation rate of rolling performed after cooling to 50 ° C. or lower to 0.05% or more
- cracks can be introduced into the plating layer.
- the amount of diffusible hydrogen in the steel sheet can be reduced, and as a result, the stretch flangeability can be further improved.
- the elongation rate of rolling after cooling to 50 ° C. or lower exceeds 1.00%, YS increases and the dimensional accuracy at the time of molding decreases.
- the elongation rate of rolling after cooling to 50 ° C. or lower is preferably 1.00% or less, more preferably 0.70% or less. Further, the elongation rate of rolling after cooling to 50 ° C. or lower is more preferably 0.10% or more.
- Rolling after cooling to 50 ° C. or lower may be performed (online) on a device continuous with the plating device for performing the plating process described above, or discontinuous with the plating device for performing the plating process. It may be done on the device (offline). Further, the desired elongation rate may be achieved by one rolling, or a plurality of rolling times may be performed to achieve a total elongation rate of 0.05% or more and 1.00% or less.
- the rolling described here generally refers to temper rolling, but as long as an elongation rate equivalent to that of temper rolling can be imparted, rolling by a method such as processing by a leveler may be used.
- heat may be retained in a temperature range of room temperature or higher and 300 ° C. or lower.
- the amount of diffusible hydrogen in the steel sheet can be further reduced, and as a result, the amount of voids generated after punching is reduced, and the stretch flangeability and bendability are reduced. Can be improved.
- the heat retention time is usually about 3 to 7 days, but the heat retention may be up to about 6 months.
- the reduction rate of cold rolling is 1% or more and 5% or less, and the reduction rate of the pass immediately before the final pass is 5% or more and 30% or less, instead of being hot. It can also be produced by winding a rolled hot-rolled sheet at a winding temperature of 350 ° C. or higher and 600 ° C. or lower, and then allowing it to stay in a temperature range of 300 ° C. or higher for 5000 s or more and then cooling.
- the method for manufacturing a high-strength steel sheet according to this embodiment is A steel slab having the above-mentioned composition is hot-rolled to obtain a hot-rolled plate.
- the hot-rolled plate is wound at a winding temperature of 350 ° C. or higher and 600 ° C. or lower. Then, it was allowed to stay in a temperature range of 300 ° C. or higher for 5000 s or more, and then cooled.
- the hot-rolled plate is pickled and washed.
- the hot-rolled plate was cold-rolled under the condition that the cumulative reduction rate of cold-rolling was 30% or more and 75% or less to obtain a cold-rolled plate.
- the cold rolled plate is heated to a heating temperature of 740 ° C.
- an annealing step of cooling to a cooling stop temperature of 150 ° C. or higher and 300 ° C. or lower is performed.
- it is a method for producing a high-strength steel sheet in which the cold-rolled sheet is reheated to a reheating temperature of (cooling stop temperature + 50 ° C.) or more and 500 ° C. or less, and held at the reheating temperature for 10 seconds or more.
- a steel slab having the above-mentioned composition is hot-rolled to obtain a hot-rolled plate.
- the details of hot rolling are the same as those in the first embodiment.
- Winding temperature after hot rolling 350 ° C or higher and 600 ° C or lower
- the hot rolled plate is wound and recovered.
- C diffuses into the oxide scale generated during hot rolling, that is, decarburization of the surface layer of the steel sheet is promoted, the surface softening thickness of the annealed sheet, and the steel sheet.
- the corresponding grain boundary frequency of the surface layer can be controlled within a desired range. As a result, excellent bendability and LME resistance can be obtained.
- the take-up temperature after hot rolling is 350 ° C. or higher and 600 ° C. or lower.
- the winding temperature after hot rolling is preferably 380 ° C. or higher.
- the temperature is preferably 410 ° C. or higher.
- the take-up temperature after hot rolling is preferably 570 ° C. or lower, more preferably 550 ° C. or lower.
- Dwelling time in a temperature range of 300 ° C. or higher after winding: 5000 s or longer This is an extremely important constituent requirement of the invention in the present embodiment.
- the hot-rolled coil After winding the hot-rolled plate to obtain a hot-rolled coil, the hot-rolled coil is allowed to stay in a temperature range of 300 ° C. or higher with a residence time of 5000 s or more.
- the residence time is measured from the time when the hot-rolled plate becomes a hot-rolled coil.
- C is diffused into the oxide scale generated during hot rolling, that is, decarburization of the surface layer of the steel sheet is promoted, and the surface softening thickness of the annealed sheet and the corresponding grain boundary frequency of the surface layer of the steel sheet are kept within a desired range.
- the hot-rolled plate After winding the hot-rolled plate, it may be kept warm or cooled so that the residence time in the temperature range of 300 ° C. or higher is 5000 s or more from the winding temperature, or it is once less than 300 ° C. from the winding temperature. After cooling to, it may be reheated to 300 ° C. or higher and retained in a temperature range of 300 ° C. or higher for 5000 s or longer.
- the upper limit of the residence time in the temperature range of 300 ° C. or higher after winding is not particularly specified, but in order to keep TS within a suitable range, the residence time in the temperature range of 300 ° C.
- the residence time in the temperature range of 300 ° C. or higher after winding is set to 5000 s or longer. From the viewpoint of controlling the ratio of the C strength of the surface layer of the steel sheet to the C strength at the 1/4 position of the thickness of the steel sheet to 0.7 or less, the residence time in the temperature range of 300 ° C. or higher after winding is preferable. Is 7,000 s or more, more preferably 9000 s or more.
- the residence time in the temperature range of 300 ° C. or higher after winding is preferably 80,000 s or less, more preferably 40,000 s or less.
- the temperature at which the hot-rolled coil is retained is not particularly limited as long as it is in the temperature range of 300 ° C. or higher, but is preferably 600 ° C. or lower.
- the temperature at which the hot-rolled coil is retained is preferably 350 ° C. or higher.
- the hot-rolled plate After allowing to stay for 5000 s or more in a temperature range of 300 ° C or higher, the hot-rolled plate is cooled.
- the cooling rate at this time is not particularly limited, but is, for example, 0.001 ° C./s or more and 1 ° C./s or less.
- the cooling stop temperature is not particularly limited, and may be, for example, 20 ° C. or higher and 200 ° C. or lower.
- pickle the hot-rolled plate Since the oxide on the surface of the steel sheet can be removed by pickling, it is important for ensuring good chemical conversion treatment and plating quality in the high-strength steel sheet of the final product.
- the pickling may be performed only once or may be divided into a plurality of times.
- the hot-rolled plate may be heat-treated before or after pickling.
- heat-treating the hot-rolled sheet before or after pickling decarburization of the surface layer of the steel sheet is promoted, and the surface softening thickness of the annealed sheet can be kept within a more preferable range.
- the ratio of the C strength of the surface layer of the steel sheet to the C strength at the position 1/4 of the thickness of the steel sheet can be controlled within a desired range.
- the heat treatment conditions before or after pickling are preferably maintained at 900 s or more in a temperature range of 450 ° C. or higher and 650 ° C. or lower.
- the upper limit of the holding time of the heat treatment is not particularly specified, but it is preferably held at 36000 s or less.
- cold rolling is performed by multi-pass rolling that requires two or more passes, such as tandem multi-stand rolling or reverse rolling.
- Cumulative reduction rate of cold rolling 30% or more and 75% or less
- the cumulative reduction rate of cold rolling exceeds 75%
- the cumulative rolling reduction rate of cold rolling exceeds 75%
- the cumulative rolling reduction of cold rolling is preferably 40% or more, more preferably 45% or more.
- the cumulative rolling reduction of cold rolling is preferably 70% or less, more preferably 65% or less.
- the reduction rate of the final pass of cold rolling and the reduction rate of the pass immediately before the final pass are not particularly limited, but as in the first embodiment, the final pass It is preferable that the rolling rate of the roll is 1% or more and 5% or less, and the rolling ratio of the pass immediately before the final pass is 5% or more and 30% or less.
- Cold rolling final pass reduction rate 1% or more and 5% or less
- the rolling reduction of the final pass of cold rolling is preferably 1% or more and 5% or less.
- the rolling reduction of the final pass of cold rolling is more preferably 2% or more, still more preferably 3% or more.
- the rolling reduction of the final pass of cold rolling is more preferably 4% or less.
- Ductility of the pass immediately before the final pass 5% or more and 30% or less
- the area ratio of the hard phase after annealing is in a more preferable range. It is possible to control the inside, keep the TS within a more suitable range, obtain better dimensional accuracy at the time of molding, and further obtain better ductility.
- the reduction ratio of the pass immediately before the final pass to 5% or more
- the area ratio of the hard phase and the ferrite can be set within a more suitable range
- the TS can be set within a more suitable range.
- the reduction rate of the pass immediately before the final pass is preferably 5% or more and 30% or less.
- the reduction rate of the pass immediately before the final pass is more preferably 6% or more, still more preferably 7% or more.
- the reduction rate of the pass immediately before the final pass is more preferably 28% or less, still more preferably 25% or less.
- the number of cold rolling rolling passes and the rolling reduction rate of the final pass and the passes other than the one immediately before the final pass are not particularly limited.
- the cold rolled plate obtained as described above is annealed.
- the cold-rolled sheet after annealing is reheated and held at the reheating temperature for 10 seconds or more to obtain a high-strength steel sheet according to the present embodiment.
- the details of the annealing step and the reheating after annealing are the same as those in the first embodiment described above, and thus the description thereof will be omitted here.
- a steel material having the composition shown in Table 1 and the balance consisting of Fe and unavoidable impurities was melted in a converter and made into a steel slab by a continuous casting method.
- the obtained steel slab was heated to 1250 ° C. and roughly rolled.
- finish rolling was performed at a finish rolling temperature of 900 ° C.
- winding was performed at a winding temperature of 450 ° C. to obtain a hot-rolled plate.
- the hot-rolled plate was pickled and then cold-rolled.
- the rolling reduction of the final pass of cold rolling and the pass immediately before the final pass was as shown in Tables 2-1 and 2-2.
- the thickness of the cold-rolled plate after cold-rolling was 1.2 mm.
- annealing treatment was performed under the conditions shown in Table 2-1 and Table 2-2 to obtain a cold-rolled steel sheet (CR).
- the holding time at the heating temperature was 140 to 210 s.
- the holding time at the heating temperature was set to 50 to 120 s.
- the average cooling rate from less than 500 ° C. was 3 to 100 ° C./s.
- the average cooling rate from less than 500 ° C. to the cooling stop temperature was 5 to 25 ° C./s.
- GI hot-dip galvanized steel sheets
- GA alloyed hot-dip galvanized steel sheets
- EG electrogalvanized steel sheets
- GI hot-dip galvanized steel sheets
- GA alloyed hot-dip galvanized steel sheets
- EG electrogalvanized steel sheets
- GI hot-dip galvanized steel sheets
- GA zinc bath containing 0.14% by mass of Al and the balance being Zn and unavoidable impurities
- the bath temperature was 470 ° C. regardless of whether GI or GA was produced.
- a plating solution containing Ni: 9% by mass or more and 25% by mass or less and having a balance of Zn and unavoidable impurities was used as the plating solution.
- Coating weight, when manufacturing a GI is a 45 ⁇ 72g / m 2 (two-sided plating) degree per side
- when manufacturing a GA was per one surface 45 g / m 2 (two-sided plating) degree.
- When producing EG it was set to about 60 g / m 2 (double-sided plating) per side.
- the alloying treatment for producing GA was carried out at about 550 ° C.
- the composition of the GI plating layer contained Fe: 0.1 to 1.0% by mass and Al: 0.2 to 1.0% by mass, and the balance consisted of Fe and unavoidable impurities.
- the composition of the plating layer of GA contained Fe: 7 to 15% by mass and Al: 0.1 to 1.0% by mass, and the balance consisted of Fe and unavoidable impurities.
- the tensile test was performed in accordance with JIS Z 2241. From the obtained steel sheet, JIS No. 5 test pieces were collected so that the longitudinal direction was perpendicular to the rolling direction of the steel sheet. Using the test piece, a tensile test was performed under the condition that the crosshead displacement velocity Vc was 1.67 ⁇ 10 -1 mm / s, and YS, TS and El were measured. In the present invention, TS: 980 MPa or more was judged to be acceptable. Further, when YR, which is an index of dimensional accuracy at the time of molding, is 50% or more and 80% or less, it is judged that the dimensional accuracy at the time of molding is good. YR was calculated based on the above formula (1). Further, when El was 20% or more, it was judged that the ductility was excellent.
- the stretch flangeability was evaluated by a hole expansion test.
- the drilling test was performed in accordance with JIS Z 2256. From the obtained steel sheet, a sample of 100 mm ⁇ 100 mm was collected by shearing. A hole having a diameter of 10 mm was punched in the sample with a clearance of 12.5%. Using a die with an inner diameter of 75 mm, a conical punch with an apex angle of 60 ° was pushed into the hole with a wrinkle pressing force of 9 ton (88.26 kN) around the hole, and the hole diameter at the crack generation limit was measured.
- the limit hole expansion rate: ⁇ (%) was obtained from the following formula, and the hole expansion property was evaluated from the value of this limit hole expansion rate.
- the bending test was performed in accordance with JIS Z 2248. From the obtained steel sheet, strip-shaped test pieces having a width of 30 mm and a length of 100 mm were collected so that the direction parallel to the rolling direction of the steel sheet was the axial direction of the bending test. Then, a bending test was performed by the V block method with a bending angle of 90 ° under the condition that the pressing load was 100 kN and the pressing holding time was 5 s. In the present invention, a 90 ° V bending test was performed, and the ridgeline of the bending apex was observed with a 40-fold microscope (RH-2000: manufactured by Hirox Co., Ltd.), and cracks having a crack length of 200 ⁇ m or more were observed. The minimum bending radius (R) was defined as the bending radius when the bending radius was no longer possible. When the value (R / t) obtained by dividing R by the plate thickness (t) was 2.0 or less, the bending test was judged to be good.
- the LME resistance property was judged by a high temperature tensile test. As described below, when the test steel is a plated steel sheet, the steel sheet was cut out so as to include a plated layer to prepare a tensile test piece, which was subjected to a high-temperature tensile test. On the other hand, when the test steel is a cold-rolled steel sheet having no plating layer, the plated steel sheet is overlaid on the cold-rolled steel sheet and spot-welded in order to judge the LME resistance when the welding partner is the plated steel sheet. Then, a tensile test piece was prepared and subjected to a high-temperature tensile test.
- the corresponding grain boundary frequency was determined for the surface layer of the steel sheet bonded to the plated steel sheet.
- a strip-shaped sample having a width of 105 mm and a length of 25 mm was taken from the test steel so that the direction perpendicular to the rolling direction of the steel sheet was the tensile direction of the high-temperature tensile test.
- the obtained strip-shaped sample is overlaid with a 270 MPa class GA steel sheet of the same size and a thickness of 0.6 mm, and spot welded to both ends of the sample to cool it.
- a rolled steel sheet and a 270 MPa class GA steel sheet were joined.
- the end faces of the cold-rolled steel sheet bonded to the 270 MPa class GA steel sheet and each plated steel sheet (GI, GA, EG) were ground to a width of 99 mm and a length of 20 mm.
- the shoulder portion has a radius of 20 mm
- the width of the parallel portion is 5 mm
- the length of the parallel portion is 20 mm.
- a notch having a radius of 2 mm is formed in the center of the parallel portion on the plating layer side at a notch interval.
- the 270 MPa class GA steel sheet is ground 0.55 mm and the cold-rolled steel sheet is ground 0.25 mm while leaving the joint surface with the 270 MPa class GA steel sheet, and the thickness of the tensile test piece is set to 1. Adjusted to 0.0 mm.
- the plate thickness was adjusted to 1.0 mm by one-side grinding to prepare a notched tensile test piece having a plating layer on one side. Using the obtained tensile test piece with a notch, a high-temperature tensile test was performed using a hot working reproduction device (Thermec Master Z).
- the area ratio of ferrite and hard phase, the volume ratio of retained austenite, the carbon concentration in retained austenite, the corresponding grain boundary frequency of the surface layer of the steel sheet, the amount of diffusible hydrogen in the steel sheet, the softening thickness of the surface layer, and , The minor axis length of retained austenite was determined.
- the remaining tissue was also confirmed by tissue observation.
- the presence or absence of cracks in the plating layer was investigated. The results are shown in Table 3-1 and Table 3-2.
- the TS is 980 MPa or more, and the dimensional accuracy, ductility, stretch flangeability, bendability and LME resistance at the time of molding are excellent.
- tensile strength (TS), dimensional accuracy during molding (YR), ductility (El), stretch flangeability ( ⁇ ), bendability (R / t) and LME resistance (plate thickness reduction rate). ) Is inferior to any one or more.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
YR=YS/TS・・・・(1)
板厚減少率=(t0-t)/t0・・・(2)
ここで、t0は引張試験前の切欠き付引張試験片の初期板厚、tは引張破断先端部からつかみ部側に向かって400μm離れた位置の板厚である。例えば図1に示す破断部のL断面においては、tは図示する通りに定まる。
なお、板厚減少率の数値が大きい場合、すなわち、引張試験時にくびれが大きく生じた後に破断した場合、耐LME特性に優れると判断する。
(1)軟質相であるフェライトを主体とする組織とし、該組織中に、硬質相であるベイニティックフェライト、ベイナイト、焼戻しマルテンサイトおよび焼入れマルテンサイト、ならびに残留オーステナイトを分散させることで、部材の寸法精度、および延性に優れた、引張強さ980MPa以上の高強度鋼板を実現することができる。
(2)鋼板中の拡散性水素量を0.80質量ppm以下とすることで、伸びフランジ性に優れた高強度鋼板を実現することができる。
(3)Caの含有量および鋼板中の拡散性水素量を低減し、かつ、表層軟化厚みを5μm以上150μm以下に制御することで、曲げ性に優れた高強度鋼板を実現することができる。
(4)高温引張試験後の鋼板表層の対応粒界頻度を0.45以下、かつ、表層軟化厚みを5μm以上150μm以下に制御することで、耐LME特性に優れた高強度鋼板を実現することができる。
[1]質量%で、
C:0.120%以上0.250%以下、
Si:0.80%以上2.00%以下、
Mn:1.50%以上2.45%以下、
P:0.001%以上0.100%以下、
S:0.0200%以下、
Al:0.010%以上1.000%以下、
N:0.0100%以下、
Mo:0.500%以下、
Cr:0.300%以下、
Ca:0.0200%以下および
Sb:0.200%以下を含有するとともに、下記(1)式から求められるMneqが2.40%以上3.40%以下の関係を満たし、残部がFeおよび不可避的不純物からなる成分組成を有し、
フェライトの面積率が15%以上55%以下、
硬質相の面積率が40%以上85%以下、
残留オーステナイトの体積率が4%以上20%以下、
前記残留オーステナイト中の炭素濃度が0.55%以上1.10%以下、
鋼板中の拡散性水素量が0.80質量ppm以下、
表層軟化厚みが5μm以上150μm以下および
高温引張試験後の鋼板表層の対応粒界頻度が0.45以下である鋼組織を有し、
引張強さが980MPa以上である、高強度鋼板。
記
Mneq=0.26×[%Si]+[%Mn]+3.5×[%P]+2.68×[%Mo]+1.29×[%Cr]・・・(1)
なお、(1)式中の[%X]は、鋼中の元素Xの含有量(質量%)を表し、含有しない場合は0とする。
Ti:0.001%以上0.100%以下、
Nb:0.001%以上0.100%以下、
V:0.001%以上0.100%以下、
B:0.0001%以上0.0100%以下、
Cu:0.01%以上1.00%以下、
Ni:0.01%以上0.50%以下、
Sn:0.001%以上0.200%以下、
Ta:0.001%以上0.100%以下、
Mg:0.0001%以上0.0200%以下、
Zn:0.001%以上0.020%以下、
Co:0.001%以上0.020%以下、
Zr:0.001%以上0.020%以下および
REM:0.0001%以上0.0200%以下からなる群から選ばれる少なくとも1種を含有する、上記[1]または[2]に記載の高強度鋼板。
次いで、前記熱延板に酸洗を施し、
次いで、前記熱延板に、冷間圧延の最終パスの圧下率が1%以上5%以下であり、該最終パスの一つ前のパスの圧下率が5%以上30%以下である条件で冷間圧延を施して冷延板とし、
次いで、前記冷延板を、露点が-35℃以上の雰囲気中で、740℃以上880℃以下の加熱温度まで加熱し、次いで、該加熱温度から500℃までの平均冷却速度が10℃/s以上となる条件で、150℃以上300℃以下の冷却停止温度まで冷却する焼鈍工程を行い、
次いで、前記冷延板を、(冷却停止温度+50℃)以上500℃以下の再加熱温度まで再加熱し、該再加熱温度にて10s以上保持する、高強度鋼板の製造方法。
先ず、鋼板の成分組成の適正範囲およびその限定理由について説明する。なお、以下の説明において、鋼板の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。
Cは、硬質相であるベイニティックフェライト、ベイナイト、焼戻しマルテンサイトおよび焼入れマルテンサイト、並びに残留オーステナイトを所定の量生成させて、TSを980MPa以上とし、かつ成形時に優れた寸法精度を得るために有効な元素である。Cの含有量が0.120%未満では、硬質相の面積率や残留オーステナイトの体積率が減少し、またフェライトの面積率が増加して、TSを980MPa以上とすることが困難になり、また延性も低下する。一方、Cの含有量が0.250%を超えると、硬質相中の炭素濃度が過度に増加し、硬質相の硬さが上昇した結果、軟質相であるフェライトと硬質相の硬度差が大きくなることから、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。したがって、Cの含有量は、0.120%以上0.250%以下とする。Cの含有量は、好ましくは0.140%以上、より好ましくは0.150%以上とする。また、Cの含有量は、好ましくは0.230%以下、より好ましくは0.220%以下とする。
Siは、焼鈍中の炭化物生成を抑制し、残留オーステナイトの生成を促進することで、残留オーステナイトの体積率および残留オーステナイト中の炭素濃度に影響する元素である。また、Siの含有量を低減することで、鋼板表層の対応粒界頻度を低減し、耐LME特性を向上することができる。Siの含有量が0.80%未満では、残留オーステナイトの体積率が減少し、延性が低下する。一方、Siの含有量が2.00%を超えると、残留オーステナイト中の炭素濃度が過度に増加し、打抜き時に残留オーステナイトから生成するマルテンサイトの硬度が大きく上昇する。その結果、穴広げ時の亀裂進展が促進され、伸びフランジ性が低下する。また、曲げ性も低下する。さらに、対応粒界頻度が増加するため、耐LME特性が低下する。したがって、Siの含有量は、0.80%以上2.00%以下とする。Siの含有量は、好ましくは0.90%以上、より好ましくは1.00%以上とする。また、Siの含有量は、好ましくは1.80%以下、より好ましくは1.70%以下とする。
Mnは、鋼の重要な基本成分の1つであり、特に本発明では、硬質相の面積率に影響する重要な元素である。Mnの含有量が1.50%未満では、硬質相の面積率が減少し、またフェライトの面積率が増加して、TSを980MPa以上とすることが困難になる。一方、Mnの含有量が2.45%を超えると、硬質相の面積率が増加し、成形時の寸法精度および延性が低下する。したがって、Mnの含有量は、1.50%以上2.45%以下とする。Mnの含有量は、好ましくは1.70%以上、より好ましくは1.80%以上とする。また、Mnの含有量は、好ましくは2.40%以下、より好ましくは2.30%以下とする。
Pは、固溶強化の作用を有し、鋼板の強度を上昇させることができる元素である。こうした効果を得るためには、Pの含有量を0.001%以上にする。一方、Pの含有量が0.100%を超えると、旧オーステナイト粒界に偏析して粒界を脆化させるため、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。したがって、Pの含有量は、0.001%以上0.100%以下とする。Pの含有量は、好ましくは0.002%以上、より好ましくは0.003%以上とする。また、Pの含有量は、好ましくは0.050%以下、より好ましくは0.030%以下とする。
Sは、鋼中で硫化物として存在し、含有量が0.0200%を超えると、鋼板の極限変形能を低下させる。その結果、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。そのため、Sの含有量は0.0200%以下にする。なお、Sの含有量の下限は特に規定しないが、生産技術上の制約から、Sの含有量は0.0001%以上とすることが好ましい。また、Sの含有量は、好ましくは0.0040%以下とする。
Alは、焼鈍中の炭化物生成を抑制し、また残留オーステナイトの生成を促進して、残留オーステナイトの体積率、および残留オーステナイト中の炭素濃度に影響を及ぼす元素である。こうした効果を得るためには、Alの含有量を0.010%以上にする。一方、Al含有量が1.000%を超えると、フェライトが多量に生成し、成形時の寸法精度が低下する。したがって、Alの含有量は、0.010%以上1.000%以下とする。Alの含有量は、好ましくは0.015%以上、より好ましくは0.020%以上とする。また、Alの含有量は、好ましくは0.100%以下、より好ましくは0.070%以下とする。
Nは、鋼中で窒化物として存在し、含有量が0.0100%を超えると、鋼板の極限変形能を低下させる。その結果、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。そのため、Nの含有量は0.0100%以下にする。なお、Nの含有量の下限は特に規定しないが、生産技術上の制約から、Nの含有量は0.0005%以上とすることが好ましい。また、Nの含有量は、好ましくは0.0050%以下とする。
Moは、焼入れ性を向上させる元素であり、硬質相を生成させるために有効な元素である。Moの含有量が0.500%を超えると、硬質相の面積率が増加し、成形時の寸法精度および延性が低下する。したがって、Moの含有量は0.500%以下にする。なお、Moの含有量の下限は0.000%であってもよいが、焼入れ性を大きくし、TSをより好適な範囲内とする観点から、Moの含有量は0.010%以上とすることが好ましい。Moの含有量は、好ましくは0.300%以下、より好ましくは0.100%以下とする。また、Moの含有量は、より好ましくは0.030%以上とする。
Crは、焼入れ性を向上させる元素であり、硬質相を生成させるために有効な元素である。Crの含有量が0.300%を超えると、硬質相の面積率が増加し、成形時の寸法精度および延性が低下する。したがって、Crの含有量は0.300%以下にする。なお、Crの含有量の下限は0.000%であってもよいが、焼入れ性を大きくし、TSをより好適な範囲内とする観点から、Crの含有量は0.010%以上とすることが好ましい。また、Crの含有量は、好ましくは0.250%以下、より好ましくは0.100%以下とする。
Caは、鋼中で介在物として存在する。Caの含有量が0.0200%を超えると、鋼板中に拡散性水素を含有する場合、上記介在物が曲げ試験時に亀裂の起点となるため、曲げ性が低下する。そのため、Caの含有量は0.0200%以下にする。なお、Caの含有量の下限は0.0000%であってもよいが、生産技術上の制約から、Caの含有量は0.0001%以上とすることが好ましい。また、Caの含有量は、好ましくは0.0020%以下とする。
本発明において、極めて重要な発明構成要件である。Sbは、焼鈍中の鋼板表面の酸化を抑制し、表層軟化厚みを制御するために有効な元素である。また、Sbは、焼鈍中に鋼板表層の窒化を抑制することで、鋼板表層の対応粒界頻度を低減することができる元素である。Sbの含有量が0.200%を超えると、表層軟化部を形成することができないため、曲げ性および耐LME特性が低下する。そのため、Sbの含有量は0.200%以下にする。なお、Sbの含有量の下限は0.000%であってもよいが、対応粒界頻度を低減し、より良好な耐LME特性を得るためには、Sbの含有量は0.001%以上とすることが好ましい。Sbの含有量は、より好ましくは0.002%以上、さらに好ましくは0.005%以上とする。また、Sbの含有量は、好ましくは0.050%以下、より好ましくは0.020%以下とする。
本発明において、極めて重要な発明構成要件である。Mneqは、硬質相の面積率を制御し、TSを980MPa以上とし、成形時に優れた寸法精度を得、かつ優れた延性を得るために有効なパラメータである。Mneqが2.40%未満では、硬質相の面積率が減少し、またフェライトの面積率が増加して、TSを980MPa以上とすることが困難になる。一方、Mneqが3.40%を超えると、硬質相の面積率が増加し、またフェライトの面積率が減少して、成形時の寸法精度および延性が低下する。したがって、Mneqは2.40%以上3.40%以下とする。Mneqは、好ましくは2.50%以上、より好ましくは2.55%以上とする。また、Mneqは、好ましくは3.30%以下、より好ましくは3.20%以下とする。
ここで、Mneqは、次式(1)によって算出する。
Mneq=0.26×[%Si]+[%Mn]+3.5×[%P]+2.68×[%Mo]+1.29×[%Cr]・・・(1)
なお、(1)式中の[%X]は、鋼中の元素Xの含有量(質量%)を表し、含有しない場合は0とする。
本発明の高強度鋼板は、上記の成分組成に加えて、さらに、質量%で、Ti:0.001%以上0.100%以下、Nb:0.001%以上0.100%以下、V:0.001%以上0.100%以下、B:0.0001%以上0.0100%以下、Cu:0.01%以上1.00%以下、Ni:0.01%以上0.50%以下、Sn:0.001%以上0.200%以下、Ta:0.001%以上0.100%以下、Mg:0.0001%以上0.0200%以下、Zn:0.001%以上0.020%以下、Co:0.001%以上0.020%以下、Zr:0.001%以上0.020%以下およびREM:0.0001%以上0.0200%以下からなる群から選ばれる少なくとも1種を、単独で、または組み合わせて含有することが好ましい。
フェライトの面積率:15%以上55%以下
軟質相であるフェライトを主体とする組織とすることで、YRを所望の範囲に制御することができることから、成形時に優れた寸法精度を得ることができ、かつ優れた延性を得ることができる。また、フェライトは水素の固溶度が低いため、フェライトを主体とする組織とすることで、鋼板中の拡散性水素量を低減することができ、その結果、打抜き後のボイドの生成量が減少し、伸びフランジ性が向上する。また、曲げ性も向上する。こうした効果を得るためには、フェライトの面積率を15%以上にする。一方、フェライトの面積率が55%を超えると、TSを980MPa以上とすることが困難になる。したがって、フェライトの面積率は15%以上55%以下とする。フェライトの面積率は、好ましくは19%以上、より好ましくは22%以上とする。また、フェライトの面積率は、好ましくは51%以下、より好ましくは48%以下とする。
硬質相であるベイニティックフェライト、ベイナイト、焼戻しマルテンサイトおよび焼入れマルテンサイトを、合計で40%以上含有することで、TSを980MPa以上とし、かつ成形時に優れた寸法精度を得ることができる。一方、硬質相の面積率が85%を超えると、成形時の寸法精度および延性が低下する。また、鋼板中の拡散性水素量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。したがって、硬質相の面積率は40%以上85%以下とする。硬質相の面積率は、好ましくは45%以上、より好ましくは49%以上、さらに好ましくは52%以上とする。また、硬質相の面積率は、好ましくは81%以下、より好ましくは78%以下とする。
鋼板の圧延方向に平行な板厚断面(L断面)が観察面となるよう試料を切り出した後、観察面をダイヤモンドペーストで研磨する。次いで、アルミナを用いて観察面に仕上げ研磨を施す。電子線マイクロアナライザ(EPMA;Electron Probe Micro Analyzer)を用いて、加速電圧を7kV、測定領域を45μm×45μmとして、観察面の4視野について測定する。測定後のデータを標準試料を用いた検量線法により炭素濃度に変換する。4視野のデータを合計し、鋼中の炭素濃度を[%C]として、0.5×[%C]以下の炭素濃度を含有する領域をフェライト、0.5×[%C]より大きく3.2×[%C]より小さい炭素濃度を含有する領域を硬質相と定義することで、それぞれの面積率を算出する。
残留オーステナイトを4%以上含有することで、優れた延性を得ることができる。一方、残留オーステナイトの体積率が20%を超えると、残留オーステナイトは高い水素濃度を有していることから、打抜き時または曲げ試験時に加工を受けてマルテンサイト変態した際に、マルテンサイト内部でボイドが生じる。よって、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ試験時にマルテンサイト内部で生じるボイドが亀裂の起点となるため、曲げ性も低下する。したがって、残留オーステナイトの体積率は4%以上20%以下とする。残留オーステナイトの体積率は、好ましくは5%以上、より好ましくは6%以上とする。また、残留オーステナイトの体積率は、好ましくは18%以下、より好ましくは16%以下とする。
残留オーステナイト中の炭素濃度を0.55%以上とすることで、優れた延性を得ることができ、かつ成形時に優れた寸法精度を得ることができる。一方、残留オーステナイト中の炭素濃度が1.10%を超えると、打抜き時に残留オーステナイトから生成するマルテンサイトの硬度が大きく上昇するため、穴広げ時の亀裂進展が促進され、伸びフランジ性が低下する。また、曲げ性も低下する。したがって、残留オーステナイト中の炭素濃度は0.55%以上1.10%以下する。残留オーステナイト中の炭素濃度は、好ましくは0.60%以上、より好ましくは0.65%以上とする。また、残留オーステナイト中の炭素濃度は、好ましくは1.00%以下、より好ましくは0.95%以下、さらに好ましくは0.90%以下とする。
まず残留オーステナイトの格子定数を、オーステナイトの(220)面の回折ピークのシフト量から、下記式(3)により算出する。
a=1.79021√2/sinθ ・・・(3)
得られた残留オーステナイトの格子定数a、および鋼全体に占める元素Mの含有量(質量%)を、下記式(4)に代入することにより、残留オーステナイト中の炭素濃度[%C]を算出する。
a=3.578+0.00095[%Mn]+0.022[%N]+0.0006[%Cr]+0.0031[%Mo]+0.0051[%Nb]+0.0039[%Ti]+0.0056[%Al]+0.033[%C] ・・・(4)
ここで、aは残留オーステナイトの格子定数(Å)、θは(220)面の回折ピーク角度を2で除した値(rad)、[%C]は残留オーステナイト中のCの質量%である。[%C]以外の[%M]は、鋼全体に占める元素Mの含有量(質量%)である。
上記残留オーステナイトの平均短軸長さは、2.0μm以下とすることが好ましい。残留オーステナイトの平均短軸長さを2.0μm以下にすることで、打抜き後のボイドの生成量を減少し、伸びフランジ性をより向上することができる。なお、残留オーステナイトの平均短軸長さの下限は特に規定しないが、残留オーステナイトの平均短軸長さが0.2μm未満であると、引張変形後期の時点であっても、残留オーステナイトがマルテンサイト変態しないため、延性への寄与が小さくなる。したがって、残留オーステナイトの平均短軸長さは、好ましくは0.2μm以上とする。また、残留オーステナイトの平均短軸長さは、より好ましくは1.9μm以下、さらに好ましくは1.6μm以下、1.0μm以下とする。
鋼板の圧延方向に平行な板厚断面(L断面)が観察面となるように試料を切り出した後、観察面をダイヤモンドペーストで研磨する。その後、アルミナを用いて観察面に仕上げ研磨を施す。次いで、1vol.%ナイタールで観察面を腐食する。鋼板の板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)について、走査電子顕微鏡(SEM;Scanning Electron Microscope)を用いて5000倍の倍率で3視野観察する。得られた組織画像をAdobe Systems社のAdobe Photoshopを用いて解析し、残留オーステナイトの短軸長さを3視野分算出する。3視野分の残留オーステナイトの短軸長さを平均して、残留オーステナイトの平均短軸長さとする。なお、上記の組織画像において、残留オーステナイトは平均結晶粒径が5.0μm以下の微細な白色の組織を呈しているので、識別および短軸長さの測定が可能である。
本発明において、極めて重要な発明構成要件である。本発明者らは、伸びフランジ性に優れた高強度鋼板を実現すべく、鋭意検討を重ねた結果、鋼板中の拡散性水素量が、伸びフランジ性、および曲げ性と関連していることを見出した。さらなる検討の結果、鋼板中の拡散性水素量を0.80質量ppm以下に低減することにより、優れた伸びフランジ性、および曲げ性を得ることができることを見出し、本発明を完成するに至った。なお、鋼板中の拡散性水素量の下限は特に規定しないが、生産技術上の制約から、鋼板中の拡散性水素量は0.01質量ppm以上とすることが好ましい。鋼板中の拡散性水素量は、より好ましくは、0.05質量ppm以上とする。また、鋼板中の拡散性水素量は、好ましくは0.60質量ppm以下、より好ましくは0.35質量ppm以下とする。なお、拡散性水素量を測定する鋼板は、めっき処理前の高強度鋼板の他、めっき処理後加工前の高強度溶融亜鉛めっき鋼板の母材鋼板であってもよい。また、めっき処理後、打ち抜き加工、伸びフランジ成形、および曲げ加工等の加工を施された鋼板の母材鋼板であってもよく、さらに加工後の鋼板を溶接して製造された製品の母材鋼板部分であってもかまわない。
板厚1/4位置と比較して、鋼板の表層部を軟化させることで、優れた曲げ性および耐LME特性を得ることができる。こうした効果を得るためには、表層軟化部の厚み(表層軟化厚み)を5μm以上にする。一方、TSを980MPa以上とするために、表層軟化厚みは150μm以下とする。したがって、表層軟化厚みは5μm以上150μm以下とする。表層軟化厚みは、好ましくは10μm以上、より好ましくは15μm以上とする。また、表層軟化厚みは、好ましくは110μm以下、より好ましくは80μm以下とする。
鋼板の圧延方向に平行な板厚断面(L断面)を湿式研磨により平滑化した後、ビッカース硬度計を用いて、荷重10gfで、板厚表面から板厚方向5μmの位置より、板厚方向100μmの位置まで、5μm間隔で測定を行なう。その後は板厚中心まで20μm間隔で測定を行なう。硬度が板厚1/4位置の硬度に比して95%以下に減少した領域を軟化領域とし、鋼板表層から軟化領域までの板厚方向の厚みを表層軟化厚みと定義する。
本発明において、極めて重要な発明構成要件である。高温引張試験後の鋼板表層の対応粒界頻度を0.45以下に低減することにより、LME割れが優先的に進行する対応粒界の数を減らすことができ、優れた耐LME特性を得ることができる。なお、高温引張試験後の鋼板表層の対応粒界頻度の下限は特に規定しないが、高温引張試験後の鋼板表層の対応粒界頻度は0.05以上であるのが一般的である。高温引張試験後の鋼板表層の対応粒界頻度は、好ましくは0.15以上とする。また、高温引張試験後の鋼板表層の対応粒界頻度は、好ましくは0.40以下、より好ましくは0.35以下とする。
実施例で記載する高温引張試験後の試験片の破断部を含むように、試験片の引張方向に平行な板厚断面(L断面)が観察面となるように、切断により対応粒界頻度測定用サンプルを採取する。次いで、ダイヤモンドペーストおよびアルミナペーストを用いたバフ研磨で、対応粒界頻度測定用サンプルの板厚断面を平滑化した後、イオンミリングで加工層を完全に除去する。次いで、供試鋼が冷延鋼板の場合は、めっき鋼板と接合させた側の鋼板表層について、供試鋼がめっき鋼板の場合は、めっき層側の鋼板表層について、結晶方位を、FE-SEM/EBSD(JSM7100F:日本電子株式会社製、OIM:株式会社TSL製)で測定する。EBSD測定は、マルテンサイトの下部組織を結晶方位で評価するために十分な測定条件(観察位置:LME割れ発生部近傍、測定視野:60μm(引張方向)×40μm(亀裂進展方向)、測定点間隔:40nm)で行う。ここで、LME割れ発生部近傍とは、高温引張試験後に鋼板表面に生じた複数の亀裂(LME割れ)の中間の領域を指す。図1の例においては、亀裂aとbとの中間の領域Aと、亀裂bとcとの中間の領域Bとが、それぞれLME割れ発生部近傍である。なお、図1の例のようにLME割れ発生部近傍が複数存在する場合、対応粒界頻度の観察は、いずれの箇所において行ってもよい。得られたEBSD観察結果について、測定視野内における鋼板表層の全粒界の性格を調査する。次いで、測定視野内における鋼板表層の対応粒界の関係を有する粒界の数、および測定視野内における鋼板表層の粒界の総数から、次式によって鋼板表層の対応粒界頻度を算出する。
[高温引張試験後の鋼板表層の対応粒界頻度]=[測定視野内における鋼板表層の対応粒界の関係を有する粒界の数]/[測定視野内における鋼板表層の粒界の総数]
ここで、対応粒界とは、Σ23以下の低ΣCSL(Coincident Site Lattice)粒界と定義する。
なお、TSの測定は、JIS Z 2241に準拠して、以下の通り行う。高強度鋼板より、長手方向が鋼板の圧延方向に対して直角となるようにJIS5号試験片を採取する。該試験片を用いて、クロスヘッド変位速度Vcが1.67×10-1mm/sの条件で引張試験を行い、TSを測定する。
[実施形態1]
はじめに、上述した成分組成を有する鋼スラブを製造する。まず鋼素材を溶製して上記成分組成を有する溶鋼とする。溶製方法は特に限定されず、転炉溶製や電気炉溶製等、公知の溶製方法のいずれもが適合する。得られた溶鋼を固めて鋼スラブ(スラブ)を製造する。溶鋼から鋼スラブを製造する方法は特に限定されず、連続鋳造法、造塊法または薄スラブ鋳造法等を用いることができる。マクロ偏析を防止するため、鋼スラブは連続鋳造法によって製造することが好ましい。
一例においては、上記のように製造した鋼スラブを、一旦室温まで冷却し、その後スラブ加熱してから圧延する。スラブ加熱温度は、炭化物の溶解や、圧延荷重の低減の観点から、1100℃以上とすることが好ましい。また、スケールロスの増大を防止するため、スラブ加熱温度は1300℃以下とすることが好ましい。なお、スラブ加熱温度は、加熱時のスラブ表面の温度を基準とする。
本実施形態において、極めて重要な発明構成要件である。最終パスの圧下率を適正に制御して、鋼板表層の冷間圧延組織を作りこみ、次いで、焼鈍することで、鋼板表層の対応粒界頻度を制御し、優れた耐LME特性を得ることができる。冷間圧延の最終パスの圧下率が1%未満では、鋼板表層の冷間圧延組織の作りこみができず、焼鈍後に鋼板表層の対応粒界頻度が増加し、耐LME特性が低下する。一方、冷間圧延の最終パスの圧下率が5%を超えると、冷間圧延時に鋼板表層の加工ひずみ量が大きくなり、焼鈍後に鋼板表層の対応粒界頻度が増加し、耐LME特性が低下する。したがって、冷間圧延の最終パスの圧下率は1%以上5%以下とする。冷間圧延の最終パスの圧下率は、好ましくは2%以上、より好ましくは3%以上とする。また、冷間圧延の最終パスの圧下率は、好ましくは、4%以下とする。
本実施形態において、極めて重要な発明構成要件である。最終パスの一つ前のパスの圧下率を適正に制御することで、焼鈍後における硬質相の面積率を適正に制御し、TSを980MPa以上とし、かつ成形時に優れた寸法精度を得ることができ、さらに優れた延性を得ることができる。最終パスの一つ前のパスの圧下率が5%未満では、硬質相の面積率が低下し、またフェライトの面積率が増加して、TSを980MPa以上とすることが困難になる。一方、最終パスの前のパスの圧下率が30%を超えると、焼鈍後におけるフェライトの面積率が減少し、成形時の寸法精度および延性が低下する。したがって、最終パスの一つ前のパスの圧下率は5%以上30%以下とする。最終パスの一つ前のパスの圧下率は、好ましくは6%以上、より好ましくは7%以上である。また、最終パスの一つ前のパスの圧下率は、好ましくは28%以下、より好ましくは25%以下である。
予備焼鈍の加熱温度:830℃以上
予備焼鈍の加熱温度を830℃以上とすることで、二回目焼鈍後の組織におけるフェライトの面積率および残留オーステナイトの体積率をより好適な範囲内に制御して、延性を向上することができる。また、焼入れマルテンサイトの面積率をより低減して、成形時の寸法精度をより向上することができる。さらに、焼入れマルテンサイトの面積率をより低減して、鋼板中の拡散性水素量も低減し、打抜き後のボイドの生成量をより好適な範囲内とし、伸びフランジ性をより向上する。また、曲げ性もより向上する。なお、一回目焼鈍の加熱温度の上限は特に規定しないが、成形時の寸法精度を向上するためには、950℃以下であることが好ましく、より好ましくは920℃以下とする。また、一回目焼鈍の加熱温度は、より好ましくは850℃以上、さらに好ましくは870℃以上とする。
830℃以上の加熱温度から500℃までの平均冷却速度:5℃/s以上
830℃以上の加熱温度から500℃までの平均冷却速度を5℃/s以上とすることで、予備焼鈍の冷却中にフェライトの生成量を抑え、焼鈍工程後に得られる組織中のフェライトの面積率をより好適な範囲内とし、かつ残留オーステナイトの体積率をより好適な範囲内に制御することができるため、延性をより好適な範囲内とすることができる。また、焼入れマルテンサイトの面積率をより好適な範囲内とすることができるため、成形時の寸法精度をより好適な範囲内とすることができる。また、焼入れマルテンサイトの面積率をより好適な範囲内とすることで、鋼板中の拡散性水素量もより好適な範囲内とすることができるため、打抜き後のボイドの生成量を低減し、伸びフランジ性をより向上することができる。また、曲げ性もより好適な範囲内とすることができる。なお、830℃以上の加熱温度から500℃までの平均冷却速度の上限は特に規定しないが、生産技術上の制約から、1000℃/s以下であることが好ましい。また、830℃以上の加熱温度から500℃までの平均冷却速度は、より好ましくは8℃/s以上とする。なお、830℃以上の加熱温度からの冷却方法は特に限定されず、ガスジェット冷却、ミスト冷却、水冷、および空冷などの冷却方法を適用できる。
予備焼鈍後、50℃以下まで冷却後の圧延の伸長率:0.05%以上1.00%以下
予備焼鈍後に50℃以下まで冷却した後に圧延を実施することで、焼鈍後の鋼板表層の対応粒界頻度を低減し、耐LME特性を向上することができる。こうした効果を得るためには、予備焼鈍後に50℃以下まで冷却した後の圧延の伸長率を0.05%以上とすることが好ましい。一方、予備焼鈍後に50℃以下まで冷却した後における圧延の伸長率が1.00%を超えると、焼鈍後のフェライトおよび硬質相の粒径が減少するため、YRが増加し、成形時の寸法精度が低下する。そのため、予備焼鈍後に50℃以下まで冷却した後の圧延の伸長率は1.00%以下であることが好ましく、より好ましくは0.70%以下とする。予備焼鈍後に50℃以下まで冷却した後の圧延の伸長率は、より好ましくは0.10%以上とする。
焼鈍工程の加熱温度:740℃以上880℃以下
焼鈍工程の加熱温度が740℃未満では、フェライトとオーステナイトの二相域での加熱中におけるオーステナイトの生成割合が不十分になるため、焼鈍後の硬質相の面積率および残留オーステナイトの体積率が減少し、またフェライトの面積率が増加して、TSおよび延性が低下する。一方、加熱温度が900℃を超えると、オーステナイト単相域での加熱となるため、焼鈍後のフェライトの面積率が減少し、また硬質相の面積率が増加して、成形時の寸法精度、および延性が低下する。したがって、加熱温度は740℃以上880℃以下とする。加熱温度は、好ましくは760℃以上、より好ましくは770℃以上、さらに好ましくは780℃以上とする。また、加熱温度は、好ましくは860℃以下とする。より好ましくは850℃以下とする。
加熱温度における雰囲気の露点を-35℃以上にすることで、空気中の水分を介して脱炭が進行し、鋼板表層部に軟化層を形成することができる。その結果、優れた曲げ性および耐LME特性を得ることができる。なお、加熱温度域における露点の上限は特に規定しないが、TSを好適な範囲内とするためには15℃以下であることが好ましく、より好ましくは5℃以下とする。上記加熱温度における露点は、好ましくは-30℃以上、より好ましくは-25℃以上とする。なお、上記加熱温度域の温度は鋼板の表面温度を基準とする。即ち、鋼板の表面温度が上記加熱温度にある場合に、雰囲気の露点を上記範囲内に調整する。
加熱温度から500℃までの平均冷却速度:10℃/s以上
740℃以上880℃以下までの上記加熱温度から500℃までの平均冷却速度を10℃/s以上とすることで、硬質相およびフェライトの面積率を所望の範囲内に制御することができ、TSを980MPa以上とし、かつ成形時に優れた寸法精度を得ることができる。なお、加熱温度から500℃までの平均冷却速度の上限は特に規定しないが、加熱温度から500℃までの平均冷却速度が50℃/sを超えると、焼鈍後のフェライトの面積率が減少する。そのため、成形時の寸法精度および延性を向上する観点からは、加熱温度から500℃までの平均冷却速度の上限は50℃/s以下にすることが好ましく、より好ましくは35℃/s以下とする。また、加熱温度から500℃までの平均冷却速度は、好ましくは12℃/s以上、より好ましくは15℃/s以上、さらに好ましくは20℃/s以上とする。
冷却停止温度をマルテンサイト変態開始温度以下まで冷却することで、後述する再加熱後の保熱工程で生成するベイニティックフェライトの面積率を増加し、残留オーステナイトの体積率を所望の範囲内とすることができる。また、冷却停止時点で、オーステナイトの一部をマルテンサイト変態させることで、鋼板中の拡散性水素量が低減でき、その結果、打抜き後のボイドの生成量を減少し、伸びフランジ性を向上することができる。また、優れた曲げ性を得ることもできる。冷却停止温度が150℃未満では、冷却中に存在する未変態オーステナイトが、冷却停止時点でほぼ全量マルテンサイトに変態するために、ベイニティックフェライトの面積率が減少し、残留オーステナイトの体積率を所望の範囲内に確保できず、延性が低下する。また、焼戻しマルテンサイトの面積率が増加するため、YRが増加し、成形時の寸法精度が低下する。また、残留オーステナイト中の炭素濃度を所望の範囲内とすることができず、延性および成形時の寸法精度の確保が困難となる。一方、冷却停止温度が300℃を超えると、ベイニティックフェライトの面積率が減少し、残留オーステナイトの体積率が所望の範囲内とならず、延性が低下する。また、焼入れマルテンサイトの面積率が増加するため、YRが減少し、成形時の寸法精度が低下する。また、残留オーステナイト中の炭素濃度を所望の範囲内とすることができず、延性および成形時の寸法精度の確保が困難となる。また、焼入れマルテンサイトの面積率の増加に伴い、鋼板中の拡散性水素量も増加するため、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。したがって、冷却停止温度は150℃以上300℃以下とする。冷却停止温度は、好ましくは170℃以上、より好ましくは180℃以上とする。また、冷却停止温度は、好ましくは270℃以下、より好ましくは240℃以下とする。
焼鈍工程の後に冷却停止温度より高い温度で再加熱することで、冷却停止時に存在するマルテンサイトを焼戻し、かつ、マルテンサイト中に過飽和に固溶したCをオーステナイトへと拡散させることで、室温で安定なオーステナイト、すなわち残留オーステナイトの生成が可能となる。再加熱温度が(冷却停止温度+50℃)未満では、ベイナイト変態のノーズ位置より低温側であるため、ベイニティックフェライトの面積率が減少し、残留オーステナイトの体積率を所望の範囲内とすることができず、延性が低下する。また、残留オーステナイト中の炭素濃度を所望の範囲内とすることができず、延性および成形時の寸法精度の確保が困難となる。また、鋼板中の拡散性水素量の低減が困難となり、伸びフランジ性および曲げ性が低下する。また、焼入れマルテンサイトの面積率が増加するため、YRが減少し、成形時の寸法精度が低下する。また、焼入れマルテンサイトの面積率の増加に伴い、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。一方、再加熱温度が500℃を超えると、ベイナイト変態のノーズ位置より高温側であるため、ベイニティックフェライトの面積率が減少し、残留オーステナイトの体積率を所望の範囲内とすることができず、延性が低下する。また、残留オーステナイト中の炭素濃度を所望の範囲内とすることができず、延性および成形時の寸法精度の確保が困難となる。また、焼入れマルテンサイトの面積率が増加するため、YRが減少し、成形時の寸法精度が低下する。また、焼入れマルテンサイトの面積率の増加に伴い、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。したがって、再加熱温度は(冷却停止温度+50℃)以上500℃以下とする。再加熱温度は、好ましくは(冷却停止温度+80℃)以上、より好ましくは(冷却停止温度+100℃)以上とする。また、(二回目焼鈍の)再加熱温度は、好ましくは450℃以下とする。
再加熱温度で保熱することで、ベイニティックフェライトの面積率を増加させ、残留オーステナイトの体積率を所望の範囲内に実現することができる。再加熱温度での保熱時間が10s未満の場合、ベイニティックフェライトの面積率が減少し、残留オーステナイトの体積率を所望の範囲内に確保できず、延性が低下する。また、残留オーステナイト中の炭素濃度を所望の範囲内とすることができず、延性および成形時の寸法精度の確保が困難となる。また、鋼板中の拡散性水素量の低減が困難となり、伸びフランジ性および曲げ性が低下する。また、焼入れマルテンサイトの面積率が増加するため、YRが減少し、成形時の寸法精度が低下する。また、焼入れマルテンサイトの面積率の増加に伴い、打抜き後のボイドの生成量が増加し、伸びフランジ性が低下する。また、曲げ性も低下する。したがって、再加熱温度での保熱時間は10s以上とする。なお、再加熱温度での保熱時間の上限は特に限定しないが、生産技術上の制約から、1000s以下とすることが好ましい。再加熱温度での保熱時間は、好ましくは13s以上、より好ましくは16s以上とする。また、再加熱温度での保熱時間は好ましくは1000s以下、より好ましくは200s以下とする。
以下では、本発明に係る高強度鋼板の他の実施形態に係る製造方法について説明する。本発明に係る高強度鋼板は、冷間圧延の圧下率を1%以上5%以下とし、かつ最終パスの一つ前のパスの圧下率を5%以上30%以下とする代わりに、熱間圧延後の熱延板を350℃以上600℃以下の巻取温度で巻き取り、その後、300℃以上の温度域に5000s以上滞留させた後、冷却することによって製造することもできる。
すなわち、本実施形態に係る高強度鋼板の製造方法は、
上述した成分組成を有する鋼スラブに熱間圧延を施して熱延板とし、
次いで、前記熱延板を350℃以上600℃以下の巻取温度で巻き取り、
その後、300℃以上の温度域に5000s以上滞留させた後、冷却し、
次いで、前記熱延板に酸洗を施し、
次いで、前記熱延板に、冷間圧延の累積圧下率が30%以上75%以下である条件で冷間圧延を施して冷延板とし、
次いで、前記冷延板を、露点が-35℃以上の雰囲気中で、740℃以上880℃以下の加熱温度まで加熱し、次いで、該加熱温度から500℃までの平均冷却速度が10℃/s以上となる条件で、150℃以上300℃以下の冷却停止温度まで冷却する、焼鈍工程を行い、
次いで、前記冷延板を、(冷却停止温度+50℃)以上500℃以下の再加熱温度まで再加熱し、該再加熱温度にて10s以上保持する、高強度鋼板の製造方法である。
仕上げ圧延後、熱延板を巻き取って回収する。この際、巻取温度を350℃以上とすることで、熱間圧延時に生成した酸化スケールにCが拡散し、すなわち、鋼板表層の脱炭が促進し、焼鈍板の表層軟化厚み、および、鋼板表層の対応粒界頻度を所望の範囲内に制御することができる。その結果、優れた曲げ性および耐LME特性を得ることができる。一方、熱間圧延後の巻取温度が600℃を超えると、焼鈍板の表層軟化厚みが増大し、980MPa以上のTSを実現することが困難になる。したがって、熱間圧延後の巻取温度は350℃以上600℃以下とする。鋼板の板厚の1/4位置のC強度に対する鋼板の表層のC強度の比を0.7以下に制御する観点からは、熱間圧延後の巻取温度は、好ましくは380℃以上、より好ましくは410℃以上とする。また、熱間圧延後の巻取温度は、好ましくは570℃以下、より好ましくは550℃以下とする。
本実施形態において、極めて重要な発明構成要件である。熱延板を巻取って熱延コイルを得た後、該熱延コイルを、300℃以上の温度域で、滞留時間を5000s以上として滞留させる。なお、滞留時間は、熱延板が熱延コイルとなった時点から測定する。これにより、熱間圧延時に生成した酸化スケールにCが拡散し、すなわち、鋼板表層の脱炭が促進し、焼鈍板の表層軟化厚み、および、鋼板表層の対応粒界頻度を所望の範囲内に制御することができる。その結果、優れた曲げ性および耐LME特性を得ることができる。なお、熱延板を巻取り後、該巻取温度から、300℃以上の温度域での滞留時間が5000s以上となるように保温または冷却してもよいし、巻取温度から一端300℃未満まで冷却させた後、300℃以上まで再加熱して、300℃以上の温度域で5000s以上滞留させてもよい。一方、巻取後の300℃以上の温度域での滞留時間の上限は特に規定しないが、TSを好適な範囲内とするためには、巻取後の300℃以上の温度域での滞留時間は100000s以下とすることが好ましい。したがって、巻取後の300℃以上の温度域での滞留時間は5000s以上とする。鋼板の板厚の1/4位置のC強度に対する鋼板の表層のC強度の比を0.7以下に制御する観点からは、巻取後の300℃以上の温度域での滞留時間は、好ましくは7000s以上、より好ましくは9000s以上とする。また、巻取後の300℃以上の温度域での滞留時間は、好ましくは80000s以下、より好ましくは40000s以下とする。また、熱延コイルを滞留させる温度は、300℃以上の温度域であれば、特に限定されないが、好ましくは、600℃以下とする。また、熱延コイルを滞留させる温度は、好ましくは、350℃以上とする。
冷間圧延の累積圧下率を30%以上とすることで、フェライトの面積率を25%以下とすることができる。その結果、YRを所望の範囲内に制御し、成形時に優れた寸法精度を得ることができる。一方、冷間圧延の累積圧下率が75%を超えると、冷間圧延時に鋼板表層の加工ひずみ量が大きくなり、焼鈍後に鋼板表層の対応粒界頻度が増加し、耐LME特性が低下する。したがって、冷間圧延の累積圧下率は30%以上75%以下とする。冷間圧延の累積圧下率は、好ましくは40%以上、より好ましくは45%以上とする。また、冷間圧延の累積圧下率は、好ましくは70%以下、より好ましくは65%以下とする。
最終パスの圧下率を適正に制御して、鋼板表層の冷間圧延組織を作りこみ、次いで、焼鈍することで、鋼板表層の対応粒界頻度をより好適な範囲に制御し、より優れた耐LME特性を得ることができる。冷間圧延の最終パスの圧下率を1%以上とすることで、鋼板表層の冷間圧延組織を好適に作りこみ、焼鈍後の鋼板表層の対応粒界頻度をより好適な範囲に制御し、より優れた耐LME特性を得ることができる。また、冷間圧延の最終パスの圧下率を5%以下とすることで、冷間圧延時の鋼板表層の加工ひずみ量を好適な範囲内とし、焼鈍後の鋼板表層の対応粒界頻度をより好適な範囲に制御し、より優れた耐LME特性を得ることができる。したがって、冷間圧延の最終パスの圧下率は1%以上5%以下とすることが好ましい。冷間圧延の最終パスの圧下率は、より好ましくは2%以上、さらに好ましくは3%以上とする。また、冷間圧延の最終パスの圧下率は、より好ましくは、4%以下とする。
最終パスの一つ前のパスの圧下率を適正に制御することで、焼鈍後における硬質相の面積率をより好適な範囲内に制御し、TSをより好適な範囲内とし、かつ成形時により優れた寸法精度を得ることができ、さらに、より優れた延性を得ることができる。最終パスの一つ前のパスの圧下率を5%以上とすることで、硬質相、およびフェライトの面積率をより好適な範囲内として、TSをより好適な範囲内とすることができる。また、最終パスの前のパスの圧下率を30%以下とすることで、焼鈍後におけるフェライトの面積率をより好適な範囲内とし、成形時に、より優れた寸法精度および延性を得ることができる。したがって、最終パスの一つ前のパスの圧下率は5%以上30%以下とすることが好ましい。最終パスの一つ前のパスの圧下率は、より好ましくは6%以上、さらに好ましくは7%以上である。また、最終パスの一つ前のパスの圧下率は、より好ましくは28%以下、さらに好ましくは25%以下である。
限界穴広げ率:λ(%)={(Df-D0)/D0}×100
ただし、上式において、Dfは亀裂発生時の穴径(mm)、D0は初期穴径(mm)である。鋼板の強度に関係なく、λの値が20%以上の場合に、伸びフランジ性が良好であると判断した。
まず供試鋼より、鋼板の圧延方向に対して直角方向が高温引張試験の引張方向となるように、幅が105mm、長さが25mmの短冊状のサンプルを採取した。冷延鋼板を供試鋼とする場合は、得られた短冊状のサンプルに、同サイズで剪断した板厚0.6mmの270MPa級GA鋼板を重ね、サンプルの両端にスポット溶接を施すことで冷延鋼板と270MPa級GA鋼板とを接合した。270MPa級GA鋼板と接合した冷延鋼板、および、各めっき鋼板(GI、GA、EG)について、幅が99mm、長さが20mmとなるよう端面研削した。次いで、肩部の半径が20mm、平行部の幅が5mm、平行部の長さが20mmとなるように加工し、さらに、めっき層側の平行部の中央に半径が2mmのノッチを、ノッチ間隔が3mmとなるように加工して、切欠き付引張試験片を作製した。なお、電極との接触性を確保する観点から、切欠き付引張試験片の板厚を1.0mmに調整した。供試鋼が冷延鋼板の場合、270MPa級GA鋼板との接合面を残しつつ270MPa級GA鋼板を0.55mm研削、冷延鋼板を0.25mm研削して、引張試験片の板厚を1.0mmに調整した。供試鋼が各めっき鋼板の場合は、片側研削により板厚を1.0mmに調整して、片面にめっき層を有する切欠き付引張試験片を作製した。得られた切欠き付引張試験片を用いて、熱間加工再現装置(サーメックマスターZ)を使用し、高温引張試験を行った。900℃まで100℃/sで昇温した後、すぐに40℃/sでガス冷却し、700℃に到達後、直ちに50mm/sのクロスヘッド速度で破断まで引張試験を行うことで、LME割れを発生させた。試験片破断後は100℃/sで200℃以下までガス冷却した。
結果を表3-1および表3-2に示す。
Claims (7)
- 質量%で、
C:0.120%以上0.250%以下、
Si:0.80%以上2.00%以下、
Mn:1.50%以上2.45%以下、
P:0.001%以上0.100%以下、
S:0.0200%以下、
Al:0.010%以上1.000%以下、
N:0.0100%以下、
Mo:0.500%以下、
Cr:0.300%以下、
Ca:0.0200%以下および
Sb:0.200%以下を含有するとともに、下記(1)式から求められるMneqが2.40%以上3.40%以下の関係を満たし、残部がFeおよび不可避的不純物からなる成分組成を有し、
フェライトの面積率が15%以上55%以下、
硬質相の面積率が40%以上85%以下、
残留オーステナイトの体積率が4%以上20%以下、
前記残留オーステナイト中の炭素濃度が0.55%以上1.10%以下、
鋼板中の拡散性水素量が0.80質量ppm以下、
表層軟化厚みが5μm以上150μm以下および
高温引張試験後の鋼板表層の対応粒界頻度が0.45以下である鋼組織を有し、
引張強さが980MPa以上である、高強度鋼板。
記
Mneq=0.26×[%Si]+[%Mn]+3.5×[%P]+2.68×[%Mo]+1.29×[%Cr]・・・(1)
なお、(1)式中の[%X]は、鋼中の元素Xの含有量(質量%)を表し、含有しない場合は0とする。 - 前記残留オーステナイトの平均短軸長さが2.0μm以下である、請求項1に記載の高強度鋼板。
- 前記成分組成は、さらに、質量%で、
Ti:0.001%以上0.100%以下、
Nb:0.001%以上0.100%以下、
V:0.001%以上0.100%以下、
B:0.0001%以上0.0100%以下、
Cu:0.01%以上1.00%以下、
Ni:0.01%以上0.50%以下、
Sn:0.001%以上0.200%以下、
Ta:0.001%以上0.100%以下、
Mg:0.0001%以上0.0200%以下、
Zn:0.001%以上0.020%以下、
Co:0.001%以上0.020%以下、
Zr:0.001%以上0.020%以下および
REM:0.0001%以上0.0200%以下からなる群から選ばれる少なくとも1種を含有する、請求項1または2に記載の高強度鋼板。 - 表面にめっき層を有する、請求項1~3のいずれか1項に記載の高強度鋼板。
- 請求項1または3に記載の成分組成を有する鋼スラブに熱間圧延を施して熱延板とし、
次いで、前記熱延板に酸洗を施し、
次いで、前記熱延板に、冷間圧延の最終パスの圧下率が1%以上5%以下であり、該最終パスの一つ前のパスの圧下率が5%以上30%以下である条件で冷間圧延を施して冷延板とし、
次いで、前記冷延板を、露点が-35℃以上の雰囲気中で、740℃以上880℃以下の加熱温度まで加熱し、次いで、該加熱温度から500℃までの平均冷却速度が10℃/s以上となる条件で、150℃以上300℃以下の冷却停止温度まで冷却する焼鈍工程を行い、
次いで、前記冷延板を、(冷却停止温度+50℃)以上500℃以下の再加熱温度まで再加熱し、該再加熱温度にて10s以上保持する、高強度鋼板の製造方法。 - 前記冷間圧延後、かつ前記焼鈍工程の前に、前記冷延板を、830℃以上の加熱温度まで加熱し、該加熱温度から500℃までの平均冷却速度が5℃/s以上となる条件で冷却する予備焼鈍工程を行う、請求項5に記載の高強度鋼板の製造方法。
- 前記予備焼鈍工程の後、前記冷延板を50℃以下まで冷却し、0.05%以上1.00%以下の伸長率で圧延し、その後、前記焼鈍工程を行う、請求項6に記載の高強度鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080019932.4A CN113544302B (zh) | 2019-03-11 | 2020-02-21 | 高强度钢板及其制造方法 |
KR1020217028775A KR102566083B1 (ko) | 2019-03-11 | 2020-02-21 | 고강도 강판 및 그 제조 방법 |
US17/593,062 US20220195552A1 (en) | 2019-03-11 | 2020-02-21 | High-strength steel sheet and method for producing same |
EP20770785.2A EP3940094A4 (en) | 2019-03-11 | 2020-02-21 | HIGH STRENGTH STEEL SHEET AND METHOD OF PRODUCTION THEREOF |
MX2021010854A MX2021010854A (es) | 2019-03-11 | 2020-02-21 | Lamina de acero de alta resistencia y metodo para producir la misma. |
JP2020533314A JP6787535B1 (ja) | 2019-03-11 | 2020-02-21 | 高強度鋼板およびその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019044066 | 2019-03-11 | ||
JP2019-044066 | 2019-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184154A1 true WO2020184154A1 (ja) | 2020-09-17 |
Family
ID=72426395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/007200 WO2020184154A1 (ja) | 2019-03-11 | 2020-02-21 | 高強度鋼板およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220195552A1 (ja) |
EP (1) | EP3940094A4 (ja) |
JP (1) | JP6787535B1 (ja) |
KR (1) | KR102566083B1 (ja) |
CN (1) | CN113544302B (ja) |
MX (1) | MX2021010854A (ja) |
WO (1) | WO2020184154A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022136689A1 (en) * | 2020-12-23 | 2022-06-30 | Voestalpine Stahl Gmbh | A zinc or zinc-alloy coated strip or steel with improved zinc adhesion |
WO2023112461A1 (ja) * | 2021-12-13 | 2023-06-22 | Jfeスチール株式会社 | 鋼板および部材、ならびに、それらの製造方法 |
WO2023188539A1 (ja) * | 2022-03-31 | 2023-10-05 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
KR20240011760A (ko) | 2021-07-09 | 2024-01-26 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판, 고강도 도금 강판 및 그것들의 제조 방법 그리고 부재 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220013405A (ko) * | 2019-07-30 | 2022-02-04 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
WO2022249919A1 (ja) | 2021-05-26 | 2022-12-01 | 株式会社神戸製鋼所 | 高強度合金化溶融亜鉛めっき鋼板およびその製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302918A (ja) | 2006-05-09 | 2007-11-22 | Nippon Steel Corp | 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法 |
KR20100096840A (ko) * | 2009-02-25 | 2010-09-02 | 현대제철 주식회사 | 내지연파괴특성이 우수한 초고강도 용융아연도금강판 및 그제조방법 |
JP2011225976A (ja) * | 2010-03-31 | 2011-11-10 | Kobe Steel Ltd | 加工性および耐遅れ破壊性に優れた超高強度鋼板 |
WO2013047760A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2016171237A1 (ja) | 2015-04-22 | 2016-10-27 | 新日鐵住金株式会社 | めっき鋼板 |
WO2018124157A1 (ja) * | 2016-12-27 | 2018-07-05 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015034334A (ja) * | 2013-07-12 | 2015-02-19 | 株式会社神戸製鋼所 | めっき性、加工性、および耐遅れ破壊特性に優れた高強度めっき鋼板、並びにその製造方法 |
MX2017001720A (es) * | 2014-08-07 | 2017-04-27 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo de produccion para la misma, y metodo de produccion para lamina de acero galvanizada de alta resistencia. |
WO2016021197A1 (ja) * | 2014-08-07 | 2016-02-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
KR101758485B1 (ko) * | 2015-12-15 | 2017-07-17 | 주식회사 포스코 | 표면품질 및 점 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법 |
JP6597374B2 (ja) * | 2016-02-18 | 2019-10-30 | 日本製鉄株式会社 | 高強度鋼板 |
JP6414246B2 (ja) * | 2017-02-15 | 2018-10-31 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
-
2020
- 2020-02-21 JP JP2020533314A patent/JP6787535B1/ja active Active
- 2020-02-21 CN CN202080019932.4A patent/CN113544302B/zh active Active
- 2020-02-21 EP EP20770785.2A patent/EP3940094A4/en active Pending
- 2020-02-21 US US17/593,062 patent/US20220195552A1/en active Pending
- 2020-02-21 MX MX2021010854A patent/MX2021010854A/es unknown
- 2020-02-21 KR KR1020217028775A patent/KR102566083B1/ko active IP Right Grant
- 2020-02-21 WO PCT/JP2020/007200 patent/WO2020184154A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007302918A (ja) | 2006-05-09 | 2007-11-22 | Nippon Steel Corp | 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法 |
KR20100096840A (ko) * | 2009-02-25 | 2010-09-02 | 현대제철 주식회사 | 내지연파괴특성이 우수한 초고강도 용융아연도금강판 및 그제조방법 |
JP2011225976A (ja) * | 2010-03-31 | 2011-11-10 | Kobe Steel Ltd | 加工性および耐遅れ破壊性に優れた超高強度鋼板 |
WO2013047760A1 (ja) * | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2016171237A1 (ja) | 2015-04-22 | 2016-10-27 | 新日鐵住金株式会社 | めっき鋼板 |
WO2018124157A1 (ja) * | 2016-12-27 | 2018-07-05 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板及びその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022136689A1 (en) * | 2020-12-23 | 2022-06-30 | Voestalpine Stahl Gmbh | A zinc or zinc-alloy coated strip or steel with improved zinc adhesion |
KR20240011760A (ko) | 2021-07-09 | 2024-01-26 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판, 고강도 도금 강판 및 그것들의 제조 방법 그리고 부재 |
EP4361303A4 (en) * | 2021-07-09 | 2024-11-06 | Jfe Steel Corp | HIGH STRENGTH STEEL PLATE, HIGH STRENGTH COATED STEEL PLATE, METHOD FOR PRODUCING THE SAME AND ELEMENT |
WO2023112461A1 (ja) * | 2021-12-13 | 2023-06-22 | Jfeスチール株式会社 | 鋼板および部材、ならびに、それらの製造方法 |
JP7311069B1 (ja) * | 2021-12-13 | 2023-07-19 | Jfeスチール株式会社 | 鋼板および部材、ならびに、それらの製造方法 |
WO2023188539A1 (ja) * | 2022-03-31 | 2023-10-05 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113544302A (zh) | 2021-10-22 |
CN113544302B (zh) | 2022-11-18 |
JPWO2020184154A1 (ja) | 2021-03-18 |
MX2021010854A (es) | 2021-10-22 |
US20220195552A1 (en) | 2022-06-23 |
EP3940094A4 (en) | 2022-05-18 |
KR102566083B1 (ko) | 2023-08-10 |
JP6787535B1 (ja) | 2020-11-18 |
KR20210124418A (ko) | 2021-10-14 |
EP3940094A1 (en) | 2022-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6901050B1 (ja) | 高強度鋼板およびその製造方法 | |
EP3309273B1 (en) | Galvannealed steel sheet and method for manufacturing same | |
JP7001204B1 (ja) | 鋼板及び部材 | |
JP7044197B2 (ja) | 鋼板の製造方法及び部材の製造方法 | |
JP6787535B1 (ja) | 高強度鋼板およびその製造方法 | |
JP6777267B1 (ja) | 高強度溶融亜鉛めっき鋼板およびその製造方法 | |
US20220056549A1 (en) | Steel sheet, member, and methods for producing them | |
JP6747612B1 (ja) | 高強度鋼板およびその製造方法 | |
US12071682B2 (en) | Steel sheet, member, and methods for producing them | |
WO2022004818A1 (ja) | 鋼板、部材及びそれらの製造方法 | |
WO2022270053A1 (ja) | 溶融亜鉛めっき鋼板およびその製造方法、ならびに、部材 | |
JP7239078B1 (ja) | 高強度鋼板、高強度めっき鋼板及びそれらの製造方法並びに部材 | |
JP7193044B1 (ja) | 高強度鋼板およびその製造方法、ならびに、部材 | |
JP7541653B1 (ja) | 鋼板および部材、ならびに、それらの製造方法 | |
WO2024116396A1 (ja) | 溶融亜鉛めっき鋼板、溶融亜鉛めっき鋼板を用いてなる部材、部材からなる自動車の骨格構造部品用又は自動車の補強部品、ならびに溶融亜鉛めっき鋼板及び部材の製造方法 | |
JP2022024998A (ja) | 高強度鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020533314 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20770785 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217028775 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020770785 Country of ref document: EP Effective date: 20211011 |