WO2016021197A1 - 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 - Google Patents
高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 Download PDFInfo
- Publication number
- WO2016021197A1 WO2016021197A1 PCT/JP2015/003948 JP2015003948W WO2016021197A1 WO 2016021197 A1 WO2016021197 A1 WO 2016021197A1 JP 2015003948 W JP2015003948 W JP 2015003948W WO 2016021197 A1 WO2016021197 A1 WO 2016021197A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- mass
- strength
- temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a high-strength steel sheet excellent in formability suitable mainly for structural members of automobiles and a method for producing the same, and in particular, has a tensile strength (TS) of 780 MPa or more, and has excellent fatigue properties as well as ductility. Furthermore, the present invention seeks to obtain a high-strength steel plate that is excellent in surface properties and plate-passability.
- TS tensile strength
- the shape freezing property of steel sheets is significantly reduced by increasing the strength and thinning of the steel sheet.
- the shape change after mold release is predicted in advance during press forming, and the shape change. It is widely practiced to design molds that allow for quantity.
- this shape change amount is predicted based on the TS, if the TS of the steel plate varies, the deviation between the predicted shape change value and the actual shape change amount becomes large, and a shape defect is induced. become. And, the steel plates that have become defective in shape need to be reworked such as sheet metal processing one by one after press forming, so that mass production efficiency is remarkably reduced. Therefore, it is required that the variation in TS of the steel sheet be as small as possible.
- the area ratio is 5% or more and 60% or less, the volume ratio of the retained austenite to the entire structure is 5% or more, and further has a structure that may contain bainite and / or martensite, and A high-strength steel sheet excellent in workability and shape freezing property, characterized in that the proportion of retained austenite that transforms into martensite by applying 2% strain in the retained austenite is 20 to 50% is disclosed. .
- Patent Document 2 in mass%, C: 0.05% to 0.35%, Si: 0.05% to 2.00%, Mn: 0.8% to 3.0% P: 0.0010% or more and 0.1000% or less, S: 0.0005% or more and 0.0500% or less, Al: 0.01% or more and 2.00% or less, and the balance from Fe and inevitable impurities
- a high-strength thin steel sheet excellent in elongation and hole expansibility characterized by being above is disclosed.
- Patent Document 3 in mass%, C: more than 0.17% and 0.73% or less, Si: 3.0% or less, Mn: 0.5% or more and 3.0% or less, P: 0.1%
- S: 0.07% or less, Al: 3.0% or less and N: 0.010% or less are satisfied, and Si + Al: 0.7% or more is satisfied, and the balance is composed of Fe and inevitable impurities.
- the area ratio of martensite to the entire steel sheet structure is 10% to 90%, the amount of retained austenite is 5% to 50%, and the area ratio of bainitic ferrite in the upper bainite to the entire steel sheet structure is 5% or more, and 25% or more of the martensite is tempered martensite, the area ratio of the martensite to the whole steel sheet structure, the amount of the retained austenite, and the bay in the upper bainite.
- the total area ratio of tick ferrite to the entire steel sheet structure is 65% or more, the area ratio of polygonal ferrite to the entire steel sheet structure is 10% or less, and the average C content in the retained austenite is 0.70% or more.
- a high-strength steel sheet characterized by TS of 980 MPa or more is disclosed.
- Patent Document 5 in mass%, C: 0.05% to 0.30%, Si: 0.01% to 2.50%, Mn: 0.5% to 3.5%, P : 0.003% to 0.100%, S: 0.02% or less, Al: 0.010% to 1.500%, Si + Al: 0.5% to 3.0% And having a composition composed of the balance Fe and inevitable impurities, containing 20% or more of ferrite by area ratio, 10% or more and 60% or less of tempered martensite, 0% or more and 10% of martensite, and retained austenite by volume ratio 3% to 10%, and has a workability characterized by having a metal structure in which the ratio m / f of Vickers hardness (m) of tempered martensite to Vickers hardness (f) of ferrite is 3.0 or less High strength steel sheet is disclosed .
- Patent Document 6 in mass%, C: 0.03% to 0.15%, Si: 0.3% to 1.5%, Mn: 0.1% to 2.0%, P : 0.1% or less, Al: 0.005% or more and 0.1% or less, S: 0.005% or less, consisting of the balance iron and inevitable impurities, hard bainite phase and martensite in ferrite phase It contains a site phase, the ferrite crystal grain size is 4 ⁇ m or more and 15 ⁇ m or less, the ferrite Vickers hardness (Hv) is 140 or more and 180 or less, the bainite crystal grain size is 6 ⁇ m or less, and the bainite Vickers hardness (Hv) is 250.
- a composite structure steel sheet which mean free path of the entire hard phase has excellent fatigue properties at 20 ⁇ m or less.
- the high-strength steel sheet described in Patent Document 1 is excellent in workability and shape freezing property
- the high-strength thin steel sheet described in Patent Document 2 is excellent in elongation and hole expandability.
- the described high-strength steel sheets each disclose that the workability is particularly excellent in ductility and stretch flangeability, but none of them considers material stability, that is, variation in TS.
- the high yield ratio high strength cold-rolled steel sheet described in Patent Document 4 is expensive because Mo and V, which are expensive elements, are used. Furthermore, the elongation (EL) of the steel sheet is as low as about 19%.
- TS of 980 MPa or more shows TS ⁇ EL of about 24000 MPa ⁇ %, which is higher than general-purpose materials, but responds to the recent demand for steel sheets.
- EL elongation
- Patent Document 6 discloses that the fatigue characteristics are excellent, since the retained austenite is not utilized, the problem that the EL is low remains.
- the present invention obtains a high-strength steel sheet that has a tensile strength (TS) of 780 MPa or more, is excellent not only in ductility but also in fatigue properties, and is excellent in surface properties and sheet-passability. It aims at providing the advantageous manufacturing method of a strength steel plate.
- excellent ductility that is, EL (total elongation) means that EL ⁇ 34% in the TS: 780 MPa class, EL ⁇ 27% in the TS: 980 MPa class, and EL ⁇ 23% in the TS: 1180 MPa class.
- the inventors have intensively studied to solve the above problems, and have found the following.
- a slab having an appropriate composition After heating a slab having an appropriate composition to a predetermined temperature, it is hot-rolled to obtain a hot-rolled sheet, and if necessary, the hot-rolled sheet is subjected to a heat treatment after the hot-rolling to soften the hot-rolled sheet. Thereafter, ferrite transformation and pearlite transformation are suppressed by cold speed control after the first annealing treatment in the austenite single phase region after cold rolling.
- the present invention has been made based on the above findings.
- the gist configuration of the present invention is as follows. 1. C: 0.08% to 0.35%, Si: 0.50% to 2.50%, Mn: 1.50% to 3.00%, P: 0.001% or more Containing 0.100% or less, S: 0.0001% or more and 0.0200% or less and N: 0.0005% or more and 0.0100% or less, with the balance being Fe and inevitable impurities, In area ratio, ferrite is 20% to 50%, bainitic ferrite is 5% to 25%, martensite is 5% to 20%, and volume ratio is 10% or more of retained austenite.
- the average grain size of the retained austenite is 2 ⁇ m or less,
- the average amount of Mn (mass%) in the retained austenite is 1.2 times or more of the amount of Mn (mass%) in steel,
- a high-strength steel sheet characterized by comprising:
- the component composition is further mass%, Al: 0.01% to 1.00%, Ti: 0.005% to 0.100%, Nb: 0.005% to 0.100%, B : 0.0001% to 0.0050%, Cr: 0.05% to 1.00%, Cu: 0.05% to 1.00%, Sb: 0.0020% to 0.2000% Sn: 0.0020% to 0.2000%, Ta: 0.0010% to 0.1000%, Ca: 0.0003% to 0.0050%, Mg: 0.0003% to 0.0050 % Or less and REM: 0.0003% or more and 0.0050% or less,
- the high-strength steel sheet according to 1 above which contains at least one element selected from the group consisting of 0.0003% and 0.0050%.
- the steel slab having the component composition according to 1 or 2 is heated to 1100 ° C. or higher and 1300 ° C. or lower, The steel slab is hot rolled into a steel plate at a finish rolling exit temperature of 800 ° C. or higher and 1000 ° C. or lower, Winding the steel sheet with an average winding temperature of 450 ° C. or higher and 700 ° C. or lower, The steel plate is subjected to pickling treatment, Thereafter, optionally, the steel sheet is held at a temperature not lower than 450 ° C.
- the steel sheet is cold-rolled at a reduction ratio of 30% or more, Thereafter, a first annealing treatment is performed to heat the steel sheet to a temperature of 820 ° C. or higher and 950 ° C. or lower, Next, the steel sheet is cooled to a first cooling stop temperature below the Ms point under the condition that the average cooling rate up to 500 ° C. is 15 ° C./s or more, Thereafter, the steel sheet is subjected to a second annealing treatment for reheating the steel sheet to a temperature of 740 ° C. or higher and 840 ° C.
- a method for producing a high-strength steel plate comprising producing the high-strength steel plate according to 1 or 2 above.
- a method for producing a high-strength galvanized steel sheet comprising subjecting the high-strength steel sheet according to 1 or 2 to galvanizing treatment.
- the present invention it is possible to effectively obtain a high-strength steel sheet having a TS of 780 MPa or more and excellent in not only ductility but also fatigue characteristics, and further excellent in surface properties and plate-through properties. Further, by applying the high-strength steel plate obtained according to the method of the present invention to, for example, an automobile structural member, the fuel efficiency can be improved by reducing the weight of the vehicle body, and the industrial utility value is extremely large.
- the slab is hot-rolled to obtain a hot-rolled sheet.
- the hot-rolled sheet is subjected to heat treatment after hot rolling to soften the hot-rolled sheet.
- the cooling speed after the first annealing treatment in the austenite single phase region after cold rolling the ferrite transformation and the pearlite transformation are suppressed, and the structure before the second annealing is changed to a martensite single phase structure, bainite.
- a single phase structure or a structure mainly composed of martensite and bainite is used.
- the present invention actively utilizes the ferrite generated in the second annealing and cooling process, and finely disperses the retained austenite, thereby having a TS of 780 MPa or more and excellent fatigue properties as well as ductility. Furthermore, it is possible to obtain a high-strength steel plate that is excellent in surface properties and plate-through properties.
- ferrite when the term “ferrite” is simply used, as in the case of the above-mentioned ferrite, acicular ferrite is mainly used, but polygonal ferrite or non-recrystallized ferrite may be included. However, in order to ensure good ductility, the non-recrystallized ferrite is preferably suppressed to 5% or less in terms of the area ratio relative to the ferrite.
- C 0.08 mass% or more and 0.35 mass% or less
- C is an element important for strengthening steel, and has a high solid solution strengthening ability.
- it is an indispensable element for adjusting the area ratio and hardness of martensite. If the C content is less than 0.08% by mass, the required martensite area ratio is not obtained, and martensite is not hardened, so that sufficient strength of the steel sheet cannot be obtained.
- the amount of C exceeds 0.35% by mass, there is a concern about the embrittlement or delayed fracture of the steel sheet. Accordingly, the C content is in the range of 0.08% by mass to 0.35% by mass, preferably 0.12% by mass to 0.30% by mass, more preferably 0.17% by mass to 0.26% by mass.
- Si 0.50% by mass or more and 2.50% by mass or less
- Si is an element effective for the decomposition of residual austenite to suppress the formation of carbides.
- Si has a high solid-solution strengthening ability in ferrite, and also has the property of discharging solid solution C from ferrite to austenite to clean the ferrite and improve the ductility of the steel sheet.
- Si dissolved in ferrite has an effect of improving work hardening ability and increasing the ductility of the ferrite itself. In order to obtain such an effect, it is necessary to contain 0.50% by mass or more of Si.
- the Si amount is 0.50% by mass or more and 2.50% by mass or less, preferably 0.80% by mass or more and 2.00% by mass or less, more preferably 1.20% by mass or more and 1.80% by mass or less. .
- Mn 1.50 mass% or more and 3.00 mass% or less Mn is effective for ensuring the strength of the steel sheet.
- the hardenability is improved to facilitate complex organization.
- Mn has an effect of suppressing the formation of pearlite and bainite during the cooling process, and facilitates transformation from austenite to martensite.
- the amount of Mn needs to be 1.50% by mass or more.
- the Mn content is 1.50 mass% or more and 3.00 mass% or less, preferably 1.50 mass% or more and less than 2.50 mass%, more preferably 1.80 mass% or more and 2.40 mass% or less. .
- P 0.001% by mass or more and 0.100% by mass or less
- P is an element that has a solid solution strengthening action and can be added according to a desired strength. In addition, it is an element effective for complex organization in order to promote ferrite transformation. In order to acquire such an effect, it is necessary to make P amount 0.001 mass% or more. On the other hand, if the amount of P exceeds 0.100% by mass, the weldability is deteriorated, and when alloying the galvanizing, the alloying speed is reduced to deteriorate the quality of the galvanizing. Therefore, the amount of P is 0.001% by mass or more and 0.100% by mass or less, preferably 0.005% by mass or more and 0.050% by mass or less.
- S 0.0001 mass% or more and 0.0200 mass% or less S segregates at the grain boundary and embrittles the steel during hot working, and also exists as a sulfide and reduces local deformability. Therefore, the steel content needs to be 0.0200% by mass or less. On the other hand, the amount of S needs to be 0.0001% by mass or more due to restrictions on production technology. Therefore, the S content is 0.0001 mass% or more and 0.0200 mass% or less, preferably 0.0001 mass% or more and 0.0050 mass% or less.
- N 0.0005 mass% or more and 0.0100 mass% or less
- N is an element that deteriorates the aging resistance of steel.
- the amount of N exceeds 0.0100% by mass, deterioration of aging resistance becomes remarkable, so the smaller the amount, the better.
- the amount of N needs to be 0.0005% by mass or more due to restrictions on production technology. Therefore, the N amount is 0.0005 mass% or more and 0.0100 mass% or less, preferably 0.0005 mass% or more and 0.0070 mass% or less.
- the high-strength steel sheet of the present invention further includes Al: 0.01% by mass to 1.00% by mass, Ti: 0.005% by mass to 0.100% by mass, Nb: 0.005 mass% or more and 0.100 mass% or less, B: 0.0001 mass% or more and 0.0050 mass% or less, Cr: 0.05 mass% or more and 1.00 mass% or less, Cu: 0.05 mass% 1.00% by mass or less, Sb: 0.0020% by mass to 0.2000% by mass, Sn: 0.0020% by mass to 0.2000% by mass, Ta: 0.0010% by mass to 0.1000% by mass % Or less, Ca: 0.0003 mass% or more and 0.0050 mass% or less, Mg: 0.0003 mass% or more and 0.0050 mass% or less, REM: 0.0003 mass% or more and 0.0050 mass% or less. At least One element is preferably contained alone or in combination. The balance of the component composition of the steel sheet is Fe and inevitable impurities.
- Al 0.01% by mass or more and 1.00% by mass or less
- Al is an element effective for generating ferrite and improving the balance between strength and ductility.
- the Al amount needs to be 0.01% by mass or more.
- the Al content is preferably 0.01% by mass or more and 1.00% by mass or less, and more preferably 0.03% by mass or more and 0.50% by mass or less.
- Ti and Nb increase the strength by forming fine precipitates during hot rolling or annealing. In order to obtain such an effect, it is necessary to add 0.005% by mass or more of Ti and Nb, respectively. On the other hand, if the amount of Ti and the amount of Nb exceed 0.100% by mass, formability is deteriorated. Therefore, when adding Ti and Nb, the content is 0.005 mass% or more and 0.100 mass% or less, respectively.
- B is an element effective for strengthening steel, and the effect of addition is obtained at 0.0001% by mass or more.
- the B content is 0.0001 mass% or more and 0.0050 mass% or less, preferably 0.0005 mass% or more and 0.0030 mass% or less.
- Cr and Cu not only serve as solid solution strengthening elements, but also stabilize austenite in the cooling process during annealing to facilitate complex organization.
- the Cr content and the Cu content must each be 0.05% by mass or more.
- both the Cr content and the Cu content exceed 1.00% by mass, the formability of the steel sheet is lowered. Therefore, when adding Cr and Cu, the content shall be 0.05 mass% or more and 1.00 mass% or less, respectively.
- Sb and Sn are added as necessary from the viewpoint of suppressing decarburization in the region of several tens of ⁇ m of the steel sheet surface layer caused by nitriding and oxidation of the steel sheet surface. This is because suppressing such nitriding and oxidation prevents the martensite generation amount on the steel sheet surface from decreasing and is effective in ensuring the strength and material stability of the steel sheet. On the other hand, if these elements are added excessively exceeding 0.2000 mass%, the toughness is reduced. Therefore, when adding Sb and Sn, let the content be in the range of 0.0020 mass% or more and 0.2000 mass% or less, respectively.
- Ta like Ti and Nb, generates alloy carbide and alloy carbonitride and contributes to high strength. In addition, it partially dissolves in Nb carbide and Nb carbonitride to produce a composite precipitate such as (Nb, Ta) (C, N), and remarkably suppress the coarsening of the precipitate. And it is thought that suppression of the coarsening of a precipitate has the effect of stabilizing the contribution rate to the strength improvement of a steel plate. Therefore, it is preferable to contain Ta.
- the effect of stabilizing the precipitate described above can be obtained by setting the content of Ta to 0.0010% by mass or more, but the effect of stabilizing the precipitate is saturated even if Ta is added excessively.
- the alloy costs increase. Therefore, when Ta is added, the content is within the range of 0.0010% by mass to 0.1000% by mass.
- Ca, Mg and REM are elements used for deoxidation. Further, it is an element effective for making the shape of sulfide spherical and improving the adverse effect of sulfide on local ductility and stretch flangeability. In order to obtain these effects, addition of 0.0003 mass% or more is necessary. On the other hand, when Ca, Mg and REM are added in excess exceeding 0.0050 mass%, inclusions and the like are increased to cause defects on the surface and inside. Therefore, when adding Ca, Mg, and REM, the content shall be 0.0003 mass% or more and 0.0050 mass% or less, respectively.
- the high-strength steel sheet of the present invention is composed of a composite structure in which retained austenite mainly responsible for ductility and martensite responsible for strength are dispersed in soft ferrite rich in ductility. And in order to ensure sufficient ductility and balance between strength and ductility, in the present invention, the area ratio of ferrite generated in the second annealing and cooling process needs to be 20% or more. On the other hand, in order to ensure the strength of the steel sheet, the area ratio of ferrite needs to be 50% or less.
- Area ratio of bainitic ferrite 5% or more and 25% or less Bainitic ferrite is formed adjacent to ferrite and retained austenite. And since it has the effect of relieving the hardness difference between the ferrite and the retained austenite and suppressing the occurrence of fatigue cracks and crack propagation, good fatigue properties can be ensured. And in order to acquire the effect, it is necessary to make the area ratio of bainitic ferrite 5% or more. On the other hand, in order to ensure the strength of the steel sheet, the area ratio of bainitic ferrite needs to be 25% or less.
- the bainitic ferrite in the present invention is a ferrite formed in a cooling and holding process at 550 ° C. or lower after annealing in a temperature range of 740 ° C. or higher and 840 ° C. or lower, and has a higher dislocation density than ordinary ferrite. It is ferrite.
- area ratio of ferrite and bainitic ferrite is obtained by the following method. First, after the plate thickness cross section (L cross section) parallel to the rolling direction of the steel plate is polished, it is corroded with 3 vol.% Nital and corresponds to the plate thickness 1/4 position (1/4 of the plate thickness in the depth direction from the steel plate surface). 10 views are observed at a magnification of 2000 times using a scanning electron microscope (SEM). Next, using the obtained tissue image, the area ratio of each tissue (ferrite, bainitic ferrite) is calculated for 10 visual fields using Image-Pro of Media Cybernetics. The average of the area ratios of these 10 fields of view is defined as “area ratio of ferrite and bainitic ferrite”. In the above structure image, ferrite and bainitic ferrite have a gray structure (underground structure), and retained austenite and martensite have a white structure.
- ferrite and bainitic ferrite are performed by EBSD (electron beam backscatter diffraction) measurement.
- a crystal grain (phase) including a sub-grain boundary having a grain boundary angle of less than 15 ° is determined to be bainitic ferrite, and the area ratio is obtained to be the area ratio of bainitic ferrite.
- the area ratio of ferrite is calculated by subtracting the area ratio of bainitic ferrite from the area ratio of the gray structure.
- Martensite area ratio 5% or more and 20% or less
- the martensite area ratio needs to be 5% or more.
- the martensite area ratio needs to be 20% or less.
- the martensite area ratio is preferably 15% or less.
- the “martensite area ratio” is obtained by the following method. First, after polishing the L cross section of the steel plate, it corrodes with 3 vol.% Nital, and a plate thickness of 1/4 position (a position corresponding to 1/4 of the plate thickness in the depth direction from the steel plate surface) is 2000 using SEM. Observe 10 fields of view at double magnification.
- the total area ratio of white martensite and residual austenite is calculated for 10 visual fields using Image-Pro. Then, the “martensite area ratio” can be obtained by subtracting the area ratio of retained austenite from the average value of these values.
- martensite and retained austenite have a white structure.
- the value of the volume ratio of the retained austenite shown below is used as the value of the area ratio of the retained austenite.
- volume ratio of retained austenite 10% or more
- the volume ratio of retained austenite in order to ensure good ductility and a balance between strength and ductility, the volume ratio of retained austenite needs to be 10% or more.
- the volume ratio of retained austenite is preferably 12% or more. Further, the volume ratio of retained austenite is determined by diffracted X-ray intensity of the 1/4 thickness of the steel plate after polishing the steel plate to 1/4 of the thickness direction.
- MoK ⁇ rays are used as incident X-rays, and ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , ⁇ 311 ⁇ planes of the retained austenite have peak integrated intensities of ferrite ⁇ 110 ⁇ , ⁇ 200 ⁇ , ⁇ 211 ⁇ .
- the intensity ratios of all 12 combinations with respect to the integrated intensity of the peak of the surface are obtained, and the average value thereof is taken as the volume ratio of retained austenite.
- Average crystal grain size of retained austenite 2 ⁇ m or less Refinement of crystal grains of retained austenite contributes to improvement of ductility and material stability of the steel sheet. Therefore, in order to ensure good ductility and material stability, the average crystal grain size of retained austenite needs to be 2 ⁇ m or less. In order to ensure better ductility and material stability, the average crystal grain size of retained austenite is preferably 1.5 ⁇ m or less.
- “average crystal grain size of retained austenite” is determined by the following method. First, a TEM (transmission electron microscope) is used to observe 20 fields of view at a magnification of 15000 times to obtain a tissue image.
- the area of each residual austenite crystal grain in the structure image of 20 fields of view is calculated, the equivalent circle diameter is calculated, and the average of these values is determined to determine the “average crystal grain size of residual austenite”.
- the visual field observation is performed by grinding from the front and back to 0.3 mm thickness so that the 1/4 thickness portion is the center of the thickness, and then performing electropolishing from the front and back to make a hole.
- the portion where the peripheral plate thickness is thin is observed from the plate surface direction using TEM.
- the average amount of Mn (mass%) in the retained austenite is 1.2 times or more the amount of Mn (mass%) in steel. In the present invention, this is an extremely important control factor. This is because the average amount of Mn (mass%) in the retained austenite is 1.2 times or more the amount of Mn (mass%) in the steel, and the structure before the second annealing is a martensite single phase structure, bainite. By using a single-phase structure or a structure in which martensite and bainite are mixed, carbides enriched with Mn are first precipitated in the temperature raising process of the second annealing.
- the average Mn amount (mass%) of each phase was computed by analyzing with FE-EPMA (field emission type electron probe microanalyzer).
- the average amount of Mn (mass%) in retained austenite is not particularly limited as long as it is 1.2 times or more the amount of Mn (mass%) in steel, but is preferably about 2.5 times.
- Mean free path of retained austenite 1.2 ⁇ m or less In the present invention, this is a very important control factor. In the present invention, it is possible to suppress the occurrence of fatigue cracks and crack propagation by finely dispersing the retained austenite. However, in order to ensure better fatigue characteristics and the like, it is necessary to make the mean free path (L RA ) of retained austenite 1.2 ⁇ m or less.
- the lower limit of the mean free path of retained austenite is not particularly limited, but is preferably about 0.1 ⁇ m.
- the mean free path (L RA ) of retained austenite is calculated by the following equation [Equation 1].
- L RA Mean free path of retained austenite ( ⁇ m)
- d RA Average crystal grain size ( ⁇ m) of retained austenite
- f Area ratio (%) of retained austenite / 100
- the microstructure according to the present invention may include carbides such as tempered martensite, pearlite, and cementite, and other structures known as steel sheet structures.
- carbides such as tempered martensite, pearlite, and cementite
- other structures such as these tempered martensite, are included in the range of 10% or less by area ratio, the effect of this invention is not impaired.
- the high-strength steel sheet of the present invention is a steel slab having the above-mentioned predetermined component composition heated to 1100 ° C. or higher and 1300 ° C. or lower, and hot rolled at a finish rolling exit temperature of 800 ° C. or higher and 1000 ° C. or lower. To do. Next, the steel sheet is wound at an average winding temperature of 450 ° C. or higher and 700 ° C. or lower, and the steel sheet is subjected to pickling treatment. After that, the steel sheet is optionally maintained at a temperature of 450 ° C. or higher and Ac 1 transformation point or lower for 900 s or higher and 36000 s or lower. To do.
- the steel sheet is cold-rolled at a reduction ratio of 30% or more, and a first annealing treatment is performed in which the steel sheet is heated to a temperature of 820 ° C. or more and 950 ° C. or less. Subsequently, it cools to the 1st cooling stop temperature below Ms point on the conditions whose average cooling rate to 500 degreeC is 15 degrees C / s or more. Then, the 2nd annealing process which heats a steel plate to the temperature of 740 degreeC or more and 840 degrees C or less is given. Furthermore, the steel sheet is cooled to a temperature in the second cooling stop temperature range of 300 ° C. or more and 550 ° C.
- the high-strength galvanized steel sheet of the present invention can be manufactured by subjecting the above-described high-strength steel sheet to a publicly known galvanizing treatment.
- Steel slab heating temperature 1100 ° C or higher and 1300 ° C or lower
- Precipitates present in the steel slab heating stage exist as coarse precipitates in the finally obtained steel sheet and do not contribute to strength. It is necessary to redissolve the deposited Ti and Nb-based precipitates.
- the heating temperature of the steel slab is less than 1100 ° C., it is difficult to sufficiently dissolve the carbide, and problems such as an increased risk of trouble occurring during hot rolling due to an increase in rolling load arise.
- the heating temperature of the steel slab exceeds 1300 ° C., the scale loss increases as the oxidation amount increases. Therefore, the heating temperature of the steel slab needs to be 1300 ° C. or lower. Therefore, the heating temperature of the slab is set to 1100 ° C. or higher and 1300 ° C. or lower. Preferably, it is 1150 degreeC or more and 1250 degrees C or less.
- the steel slab is preferably manufactured by a continuous casting method in order to prevent macro segregation, but can also be manufactured by an ingot-making method or a thin slab casting method.
- the conventional method of once cooling to room temperature, and heating again after that can be applied.
- energy-saving processes such as direct feed rolling and direct rolling should be applied without problems, such as charging into a heating furnace as it is without cooling to room temperature, or rolling immediately after a little heat retention. Can do.
- the slab is made into a sheet bar by rough rolling under normal conditions, but if the heating temperature is lowered, a bar heater or the like is used before finish rolling from the viewpoint of preventing problems during hot rolling. It is preferable to heat the sheet bar.
- Finishing rolling exit temperature of hot rolling 800 ° C. or more and 1000 ° C. or less
- the heated steel slab is hot rolled by rough rolling and finish rolling to become a hot rolled steel plate.
- the finish rolling exit temperature exceeds 1000 ° C.
- the amount of oxide (scale) generated increases rapidly, the interface between the base iron and the oxide becomes rough, and the surface quality after pickling and cold rolling is high. It tends to deteriorate.
- the ductility and stretch flangeability are adversely affected.
- the crystal grain size becomes excessively coarse, and the surface of the pressed product may be roughened during processing.
- the finish rolling exit temperature is less than 800 ° C.
- the rolling load increases and the rolling load increases.
- the reduction rate of the austenite in an unrecrystallized state increases, an abnormal texture develops, and the in-plane anisotropy in the final product becomes significant.
- the finish rolling outlet temperature of hot rolling is set in the range of 800 ° C. or higher and 1000 ° C. or lower.
- it is set as the range of 820 degreeC or more and 950 degrees C or less.
- Average coiling temperature after hot rolling 450 ° C. or more and 700 ° C. or less If the average coiling temperature of the steel sheet after hot rolling exceeds 700 ° C., the crystal grain size of ferrite in the hot rolled sheet structure becomes large, and the final It becomes difficult to ensure the desired strength of the annealed plate. On the other hand, if the average coiling temperature after hot rolling is less than 450 ° C., the hot-rolled sheet strength increases, the rolling load in cold rolling increases, and the productivity decreases. Further, when the average winding temperature is less than 450 ° C., martensite is generated in the hot rolled sheet.
- the average winding temperature after hot rolling needs to be 450 ° C. or higher and 700 ° C. or lower.
- the temperature is 450 ° C. or higher and 650 ° C. or lower.
- rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.
- part or all of the finish rolling may be lubricated rolling. Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient at the time of lubrication rolling into the range of 0.10 or more and 0.25 or less.
- pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion properties and plating quality in the final high-strength steel sheet. Moreover, pickling may be performed once or may be divided into a plurality of times.
- Heat treatment temperature and holding time after pickling treatment of hot-rolled sheet Hold at 900 s or more and 36000 s or less at 450 ° C. or more and Ac 1 transformation point or less
- the heat treatment temperature is less than 450 ° C. or the heat treatment holding time is less than 900 s
- Subsequent tempering is insufficient, resulting in a heterogeneous structure in which ferrite, bainite, and martensite are mixed. And under such a hot-rolled sheet structure, uniform refinement of the steel sheet structure becomes insufficient.
- the ratio of coarse martensite increases in the structure of the final annealed plate, resulting in a non-uniform structure, and the hole expandability (stretch flangeability) and material stability of the final annealed plate may decrease.
- productivity may be adversely affected.
- the heat treatment temperature is higher than the Ac 1 transformation point, a coarse and hardened two-phase structure of ferrite and martensite or pearlite is formed, and the structure becomes non-uniform before cold rolling.
- the heat treatment temperature after hot-rolled plate pickling treatment should be 450 ° C. or more and Ac 1 transformation point or less, and the holding time should be 900 s or more and 36000 s or less.
- the rolling reduction during cold rolling needs to be 30% or more. Preferably, it is 40% or more.
- count of a rolling pass and the rolling reduction for every pass the effect of this invention can be acquired, without being specifically limited.
- the upper limit of the rolling reduction is not particularly limited, but is about 80% that is industrially practical.
- first annealing treatment 820 ° C. or more and 950 ° C. or less
- this heat treatment is a heat treatment in a two-phase region of ferrite and austenite. It contains a lot of ferrite (polygonal ferrite) generated in the two-phase region. As a result, a desired amount of fine retained austenite is not generated, and it becomes difficult to ensure a good balance between strength and ductility.
- the holding time for the first annealing treatment is not particularly limited, but is preferably in the range of 10 s to 1000 s.
- Average cooling rate to 500 ° C after the first annealing treatment 15 ° C / s or more
- the average cooling rate to 500 ° C after the first annealing treatment is less than 15 ° C / s, ferrite and pearlite are generated during cooling. Therefore, in the structure before the second annealing, a structure mainly composed of a low temperature transformation phase (bainite or martensite) cannot be obtained. As a result, since a desired amount of fine retained austenite is not finally produced, it is difficult to ensure a good balance between strength and ductility. Moreover, the material stability of a steel plate will also be impaired.
- the upper limit of the average cooling rate is not particularly limited, but is industrially possible up to about 80 ° C./s.
- the first annealing process finally cools to the first cooling stop temperature below the Ms point.
- the structure before the second annealing treatment is a martensite single phase structure, a bainite single phase structure, or a structure mainly composed of martensite and bainite.
- many non-polygonal ferrites and bainitic ferrites are generated which have a grain boundary shape generated at 600 ° C. or lower.
- an appropriate amount of fine retained austenite can be ensured, and good ductility can be ensured.
- Second annealing treatment 740 ° C. or higher and 840 ° C. or lower
- the second annealing temperature is lower than 740 ° C.
- sufficient austenite volume fraction cannot be secured during annealing, and finally the desired martensite area And the volume ratio of retained austenite are not ensured. For this reason, it is difficult to ensure strength and secure a balance between good strength and ductility.
- the annealing temperature for the second time exceeds 840 ° C., the temperature range of the austenite single phase is reached, so that a desired amount of fine retained austenite is not finally produced. As a result, it becomes difficult to ensure a good balance between strength and ductility.
- the holding time of the second annealing treatment is not particularly limited, but is preferably 10 s or more and 1000 s or less.
- the average cooling rate up to the temperature of the second cooling stop temperature range of 300 ° C. or more and 550 ° C. or less: 1 ° C./s or more and 10 ° C./s or less is an extremely important control factor in the present invention. This is because productivity is impaired when the average cooling rate up to the temperature in the second cooling stop temperature range of 300 ° C. or more and 550 ° C. or less is less than 1 ° C./s. On the other hand, if the average cooling rate exceeds 10 ° C./s, ferrite produced during cooling cannot be sufficiently secured, and the balance between ductility, strength and ductility, and fatigue characteristics of the steel sheet are deteriorated.
- the cooling in this case is preferably furnace cooling or gas cooling in which slow cooling control is easy.
- Holding time in the second cooling stop temperature region (300 ° C. or more and 550 ° C. or less) of the second annealing treatment 10 s or more
- the time for the C concentration to austenite to proceed becomes insufficient, and it becomes difficult to finally secure a desired volume ratio of retained austenite.
- the holding time in the second cooling stop temperature region is 10 s or more, and preferably 600 s or less.
- the cooling after the holding does not need to be specified, and may be cooled to a desired temperature by any method.
- the desired temperature is preferably about room temperature.
- the steel plate once lowered to room temperature can be further subjected to the third annealing treatment.
- the third annealing treatment is lower than 100 ° C., the temper softening of martensite becomes insufficient, and it may be difficult to ensure better local ductility.
- the third annealing treatment exceeds 300 ° C., the retained austenite is decomposed, and it may be difficult to finally secure a desired volume ratio of retained austenite. Therefore, the temperature when the third annealing treatment is performed is preferably 100 ° C. or more and 300 ° C. or less.
- the holding time of the third annealing treatment is not particularly limited, but is preferably 10 s or more and 36000 s or less.
- the steel plate subjected to the annealing treatment is immersed in a galvanizing bath at 440 ° C. or higher and 500 ° C. or lower to perform hot dip galvanizing treatment, followed by gas wiping.
- the amount of plating adhesion is adjusted by, for example.
- the galvanizing alloying treatment is performed in the temperature range of 470 ° C. or more and 600 ° C. or less after the hot dip galvanizing treatment.
- the reduction ratio of skin pass rolling after heat treatment is preferably in the range of 0.1% to 1.0%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit of the good range. Moreover, since productivity will fall remarkably when it exceeds 1.0%, this is made the upper limit of a favorable range.
- ⁇ ⁇ ⁇ Skin pass rolling may be performed online or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.
- Other production method conditions are not particularly limited, but from the viewpoint of productivity, the series of treatments such as annealing, hot dip galvanization, galvanizing alloying treatment, etc. are performed by CGL (Continuous Galvanizing). Line). After hot dip galvanization, wiping is possible to adjust the amount of plating.
- conditions, such as plating other than the above-mentioned conditions can depend on the conventional method of hot dip galvanization.
- the steel sheet was subjected to annealing treatment twice or three times under the conditions shown in Table 2 to obtain a high-strength cold-rolled steel sheet (CR). Furthermore, some high-strength cold-rolled steel sheets (CR) were galvanized to obtain hot-dip galvanized steel sheets (GI), galvannealed steel sheets (GA), electrogalvanized steel sheets (EG), and the like.
- GI hot-dip galvanized steel sheets
- GA galvannealed steel sheets
- EG electrogalvanized steel sheets
- the hot dip galvanizing bath a zinc bath containing Al: 0.19% by mass was used in GI, and a zinc bath containing Al: 0.14% by mass was used in GA, and the bath temperature was 465 ° C.
- the plating adhesion amount was 45 g / m 2 per side (double-sided plating), and GA had an Fe concentration in the plating layer of 9% by mass to 12% by mass.
- Ac 1 transformation point (°C) was determined using the following equation.
- Ac 1 transformation point (° C.) 751-16 ⁇ (% C) + 11 ⁇ (% Si) ⁇ 28 ⁇ (% Mn) ⁇ 5.5 ⁇ (% Cu) + 13 ⁇ (% Cr)
- (% X) indicates the content (mass%) of element X in steel.
- Ms point (degreeC) was calculated
- Ms point (° C.) 550-361 ⁇ (% C) ⁇ 0.01 ⁇ [A fraction (%) immediately after annealing in the second annealing treatment] ⁇ 69 ⁇ [Mn amount in residual austenite (%)] ⁇ 20 ⁇ (% Cr) -10 ⁇ (% Cu) + 30 ⁇ (% Al)
- (% X) indicates the content (mass%) of element X in steel.
- the A fraction (%) immediately after annealing in the second annealing treatment is water quenching immediately after annealing in the second annealing treatment (from 740 ° C.
- the area ratio of the martensite of the structure was defined.
- the area ratio of martensite can be obtained by the method described above.
- the Mn content (%) in the retained austenite in the above formula is the average Mn content (mass%) in the retained austenite for the final high-strength steel sheet.
- Hot rolling plateability was judged as poor when the risk of trouble during hot rolling increased due to an increase in rolling load.
- the plateability of cold rolling was judged to be poor when the risk of trouble occurrence during cold rolling due to an increase in rolling load increased.
- the surface properties of the cold-rolled steel sheet defects such as bubbles and segregation in the surface layer of the slab could not be scaled off, and cracks and irregularities on the steel sheet surface increased and a smooth steel sheet surface could not be obtained.
- the amount of oxide (scale) generated increases rapidly, the interface between the base iron and the oxide becomes rough, the surface quality after pickling and cold rolling deteriorates, and the hot-rolled scale remains after pickling. Such a case is judged as defective.
- the high-strength steel sheet of the invention example has a TS of 780 MPa or more, is excellent in ductility and fatigue properties, has a high balance between strength and ductility, and is excellent in surface properties and plate-through properties.
- the comparative example is inferior in any one or more of threading properties, productivity, strength, ductility, fatigue characteristics, balance between strength and ductility, surface properties and sheeting properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
加えて、最近では、980MPa級、1180MPa級のTSを有する極めて強度の高い高強度鋼板の適用も検討されている。
なお、本発明において、延性すなわちEL(全伸び)に優れるとは、TS:780MPa級ではEL≧34%、TS:980MPa級ではEL≧27%、TS:1180MPa級ではEL≧23%とする。また、疲労特性に優れるとは、疲労限強度≧400MPa、耐久比≧0.40の場合とする。
本発明は、上記知見に基づいてなされたものである。
1.質量%で、C:0.08%以上0.35%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下およびN:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
面積率で、フェライトが20%以上50%以下、ベイニティックフェライトが5%以上25%以下、マルテンサイトが5%以上20%以下であって、体積率で、残留オーステナイトが10%以上であり、
上記残留オーステナイトの平均結晶粒径が2μm以下であって、
上記残留オーステナイト中の平均Mn量(質量%)が鋼中のMn量(質量%)の1.2倍以上であり、
上記残留オーステナイトの平均自由行程が1.2μm以下である鋼組織と、
を有することを特徴とする高強度鋼板。
仕上げ圧延出側温度を800℃以上1000℃以下として前記鋼スラブを熱間圧延して鋼板とし、
平均巻き取り温度を450℃以上700℃以下として前記鋼板を巻き取り、
前記鋼板に酸洗処理を施し、
その後、任意に、前記鋼板を450℃以上Ac1変態点以下の温度で900s以上36000s以下の間保持し、
その後、前記鋼板を圧下率:30%以上で冷間圧延し、
その後、前記鋼板を820℃以上950℃以下の温度に加熱する1回目の焼鈍処理を行い、
次いで、前記鋼板を、500℃までの平均冷却速度が15℃/s以上の条件で、Ms点以下の第1冷却停止温度まで冷却し、
その後、前記鋼板を740℃以上840℃以下の温度に再加熱する2回目の焼鈍処理を行い、
その後、1℃/s以上10℃/s以下の平均冷却速度で、300℃以上550℃以下の第2冷却停止温度域の温度まで冷却し、
前記鋼板を前記第2冷却停止温度域で10s以上の間保持して、
前記1または2に記載の高強度鋼板を製造することを特徴とする高強度鋼板の製造方法。
本発明は、スラブを所定温度に加熱したのち、このスラブを熱間圧延して熱延板を得る。次いで、必要に応じて、熱延後に熱延板に熱処理を施して熱延板を軟質化させる。その後、冷間圧延後のオーステナイト単相域での1回目焼鈍処理後に冷速制御を行うことで、フェライト変態およびパーライト変態を抑制し、2回目焼鈍前の組織を、マルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトとを主体とする組織とする。そして、最終的には微細な残留オーステナイトとベイニティックフェライトを適正量、鋼組織に含ませる。
すなわち、本発明は、2回目の焼鈍および冷却過程で生成されるフェライトを積極活用し、残留オーステナイトを微細分散させることによって、780MPa以上のTSを有しつつ、延性のみならず疲労特性に優れ、さらには表面性状や通板性に優れる高強度鋼板を得ることができる。
C:0.08質量%以上0.35質量%以下
Cは、鋼を強化するにあたり重要な元素であって、高い固溶強化能を有する。マルテンサイトによる組織強化を利用する場合などは、マルテンサイトの面積率や硬度を調整するために不可欠な元素である。
ここに、C量が0.08質量%未満では、必要なマルテンサイトの面積率が得られずに、マルテンサイトが硬質化しないため、鋼板の十分な強度が得られない。一方、C量が0.35質量%を超えると、鋼板の脆化や遅れ破壊の懸念が生じる。
従って、C量は0.08質量%以上0.35質量%以下、好ましくは0.12質量%以上0.30質量%以下、より好ましくは0.17質量%以上0.26質量%以下の範囲とする。
Siは、残留オーステナイトが分解して炭化物の生成を抑制するのに有効な元素である。さらに、Siは、フェライト中で高い固溶強化能を有するとともに、フェライトからオーステナイトに固溶Cを排出させてフェライトを清浄化し、鋼板の延性を向上させる性質を有する。また、フェライトに固溶したSiは、加工硬化能を向上させて、フェライト自身の延性を高める効果がある。こうした効果を得るには、Si量を0.50質量%以上含有する必要がある。
一方、Si量が2.50質量%を超えると、異常組織が発達し、鋼板の延性と材質安定性が低下する。従って、Si量は0.50質量%以上2.50質量%以下、好ましくは0.80質量%以上2.00質量%以下、より好ましくは1.20質量%以上1.80質量%以下とする。
Mnは、鋼板の強度確保のために有効である。また、焼入れ性を向上させて複合組織化を容易にする。同時に、Mnは、冷却過程でのパーライトやベイナイトの生成を抑制する作用があり、オーステナイトからマルテンサイトへの変態を容易にする。こうした効果を得るには、Mn量を1.50質量%以上にする必要がある。
一方、Mn量が3.00質量%を超えると、板厚方向のMn偏析が顕著となって、材質安定性の低下を招く。従って、Mn量は1.50質量%以上3.00質量%以下、好ましくは1.50質量%以上2.50質量%未満、より好ましくは1.80質量%以上2.40質量%以下とする。
Pは、固溶強化の作用を有し、所望の強度に応じて添加できる元素である。また、フェライト変態を促進するために複合組織化にも有効な元素である。こうした効果を得るためには、P量を0.001質量%以上にする必要がある。
一方、P量が0.100質量%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には、合金化速度を低下させて亜鉛めっきの品質を損なう。従って、P量は0.001質量%以上0.100質量%以下、好ましくは0.005質量%以上0.050質量%以下とする。
Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させる。そのため、鋼中含有量は0.0200質量%以下とする必要がある。
一方、生産技術上の制約からは、S量を0.0001質量%以上にする必要がある。従って、S量は0.0001質量%以上0.0200質量%以下、好ましくは0.0001質量%以上0.0050質量%以下とする。
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.0100質量%を超えると、耐時効性の劣化が顕著となるため、その量は少ないほど好ましい。
一方、生産技術上の制約から、N量は0.0005質量%以上にする必要がある。従って、N量は0.0005質量%以上0.0100質量%以下、好ましくは0.0005質量%以上0.0070質量%以下とする。
Alは、フェライトを生成させ、強度と延性のバランスを向上させるのに有効な元素である。こうした効果を得るには、Al量を0.01質量%以上にする必要がある。一方、Al量が1.00質量%を超えると、表面性状の劣化を招く。従って、Al量は0.01質量%以上1.00質量%以下が好ましく、より好ましくは0.03質量%以上0.50質量%以下である。
ここで、前述の析出物安定化の効果は、Taの含有量を0.0010質量%以上とすることで得られる一方で、Taを過剰に添加しても、析出物安定化効果が飽和する上に、合金コストが増加する。従って、Taを添加する場合、その含有量は、0.0010質量%以上0.1000質量%以下の範囲内とする。
従って、Ca、MgおよびREMを添加する場合、その含有量はそれぞれ0.0003質量%以上0.0050質量%以下とする。
フェライトの面積率:20%以上50%以下
本発明において、極めて重要な制御因子である。本発明の高強度鋼板は、延性に富む軟質なフェライト中に、主として延性を担う残留オーステナイトと強度を担うマルテンサイトとを分散させた複合組織からなる。そして、十分な延性および強度と延性のバランスの確保するために、本発明では、2回目の焼鈍および冷却過程に生成するフェライトの面積率を20%以上にする必要がある。一方、鋼板の強度確保のため、フェライトの面積率を50%以下にする必要がある。
ベイニティックフェライトは、フェライトと残留オーステナイトに隣接して生成する。そして、前記フェライトと前記残留オーステナイトとの硬度差を緩和して、疲労亀裂の発生や亀裂伝播を抑制する効果があるため、良好な疲労特性を確保することができる。そして、その効果を得るためには、ベイニティックフェライトの面積率を5%以上にする必要がある。一方、鋼板の強度確保のため、ベイニティックフェライトの面積率を25%以下にする必要がある。
本発明では、鋼板の強度確保のため、マルテンサイトの面積率を5%以上にする必要がある。一方、鋼板の良好な延性を確保するためには、マルテンサイトの面積率を20%以下にする必要がある。また、より良好な延性および伸びフランジ性を確保するため、マルテンサイトの面積率は15%以下であることが好ましい。
なお、「マルテンサイトの面積率」は、以下の方法で求める。まず、鋼板のL断面を研磨後、3vol.%ナイタールで腐食し、板厚1/4位置(鋼板表面から深さ方向で板厚の1/4に相当する位置)を、SEMを用いて2000倍の倍率で10視野観察する。ついで、得られた組織画像を用いて、前記Image-Proを用いて白色を呈しているマルテンサイトおよび残留オーステナイトの合計面積率を10視野分算出する。そして、それらの値の平均値から、残留オーステナイトの面積率を引くことによって、「マルテンサイトの面積率」を求めることができる。また、上記の組織画像において、マルテンサイトおよび残留オーステナイトは白色の組織を呈している。ここで、残留オーステナイトの面積率の値には、以下に示す残留オーステナイトの体積率の値を用いる。
本発明では、良好な延性および強度と延性のバランスを確保するため、残留オーステナイトの体積率を10%以上にする必要がある。より良好な延性および強度と延性のバランスを確保するために、残留オーステナイトの体積率は12%以上であることが好ましい。
また、残留オーステナイトの体積率は、鋼板を板厚方向の1/4面まで研磨し、この板厚1/4面の回折X線強度により求める。入射X線にはMoKα線を使用し、残留オーステナイトの{111}、{200}、{220}、{311}面のピークの積分強度の、フェライトの{110}、{200}、{211}面のピークの積分強度に対する、12通り全ての組み合わせの強度比を求め、これらの平均値を残留オーステナイトの体積率とする。
残留オーステナイトの結晶粒の微細化は、鋼板の延性および材質安定性の向上に寄与する。そのため、良好な延性および材質安定性を確保するためには、残留オーステナイトの平均結晶粒径を2μm以下にする必要がある。より良好な延性および材質安定性を確保するためには、残留オーステナイトの平均結晶粒径を1.5μm以下とすることが好ましい。
なお、本発明では、「残留オーステナイトの平均結晶粒径」は以下の方法で求める。まず、TEM(透過型電子顕微鏡)を用い、15000倍の倍率で20視野観察して組織画像を得る。前記Image-Proを用いて20視野の組織画像中の各々の残留オーステナイト結晶粒の面積を求め、円相当直径を算出し、それらの値を平均して「残留オーステナイトの平均結晶粒径」を求める。ここで、上記視野観察は、板厚1/4の部分が板厚中心となるように、表裏から研削を行い、0.3mm厚とし、次いで、表裏から電解研磨を行い、穴を開け、この穴周辺の板厚が薄い部分について、板面方向からTEMを用いて観察したものである。
本発明において、極めて重要な制御因子である。
というのは、残留オーステナイト中の平均Mn量(質量%)を鋼中のMn量(質量%)の1.2倍以上とし、さらに、2回目の焼鈍前組織を、マルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトが混在した組織とすることで、2回目焼鈍の昇温過程では、まずMnが濃化した炭化物が析出する。そして、この炭化物が逆変態によるオーステナイトの核となり、最終的に微細な残留オーステナイトが均一分散した組織が得られ、材質安定性が向上する。
なお、FE-EPMA(電界放出型電子プローブマイクロアナライザ)で分析することにより、各相の平均Mn量(質量%)を算出した。
また、残留オーステナイト中の平均Mn量(質量%)は、鋼中のMn量(質量%)の1.2倍以上であれば、特に上限の制限はないが、2.5倍程度が好ましい。
本発明において、極めて重要な制御因子である。本発明では、残留オーステナイトを微細分散させることによって、疲労亀裂の発生や亀裂伝播を抑制することが可能である。しかしながら、より良好な疲労特性等を確保するためには、残留オーステナイトの平均自由行程(LRA)を1.2μm以下にする必要がある。
また、残留オーステナイトの平均自由行程の下限に特に制限はないが、0.1μm程度が好ましい。
なお、残留オーステナイトの平均自由行程(LRA)は、下式〔数1〕により算出する。
本発明の高強度鋼板は、上述した所定の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、仕上げ圧延出側温度を800℃以上1000℃以下で熱間圧延して鋼板とする。
次いで、平均巻き取り温度を450℃以上700℃以下で巻き取り、鋼板に酸洗処理を施し、その後、任意に、鋼板を450℃以上Ac1変態点以下の温度で900s以上36000s以下の間保持する。その後、必要に応じて、酸洗処理を施し、鋼板を圧下率:30%以上で冷間圧延し、820℃以上950℃以下の温度に加熱する1回目の焼鈍処理を行う。
次いで、500℃までの平均冷却速度を15℃/s以上の条件で、Ms点以下の第1冷却停止温度まで冷却する。
引き続き、鋼板を740℃以上840℃以下の温度に加熱する2回目の焼鈍処理を施す。さらに、1℃/s以上10℃/s以下の平均冷却速度で、鋼板を300℃以上550℃以下の第2冷却停止温度域の温度まで冷却し、該第2冷却停止温度域で10s以上保持する。
さらに本発明では、後述するように、前記第2冷却停止温度域での保持後、さらに前記鋼板を100℃以上300℃以下の温度に加熱する3回目の焼鈍処理を行うこともできる。
また、本発明の高強度亜鉛めっき鋼板は、上述した高強度鋼板に、公知公用の亜鉛めっき処理を施すことにより製造することができる。
鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi、Nb系析出物を再溶解させる必要がある。
ここに、鋼スラブの加熱温度が1100℃未満では、炭化物の十分な溶解が困難であって、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する必要性もある。従って、本発明の鋼スラブの加熱温度は1100℃以上にする必要がある。一方、鋼スラブの加熱温度が1300℃超では、酸化量の増加に伴いスケールロスが増大してしまう。そのため、鋼スラブの加熱温度は1300℃以下にする必要がある。従って、スラブの加熱温度は1100℃以上1300℃以下とする。好ましくは、1150℃以上1250℃以下である。
加熱後の鋼スラブは、粗圧延および仕上げ圧延により熱間圧延され熱延鋼板となる。このとき、仕上げ圧延出側温度が1000℃を超えると、酸化物(スケール)の生成量が急激に増大し、地鉄と酸化物の界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する傾向にある。また、酸洗後に熱延スケールの取れ残りなどが一部に存在すると、延性や伸びフランジ性に悪影響を及ぼす。さらに、結晶粒径が過度に粗大となり、加工時にプレス品表面荒れを生じる場合がある。
一方、仕上げ圧延出側温度が800℃未満では、圧延荷重が増大し、圧延負荷が大きくなる。また、オーステナイトが未再結晶状態での圧下率が高くなって、異常な集合組織が発達し、最終製品における面内異方性が顕著となる。その結果、材質の均一性や材質安定性が損なわれるだけでなく、延性そのものも低下する。
従って、熱間圧延の仕上げ圧延出側温度を800℃以上1000℃以下の範囲にする必要がある。好ましくは820℃以上950℃以下の範囲とする。
熱間圧延後の鋼板の平均巻き取り温度が700℃を超えると、熱延板組織のフェライトの結晶粒径が大きくなって、最終焼鈍板の所望の強度確保が困難となる。一方、熱間圧延後の平均巻き取り温度が450℃未満では、熱延板強度が上昇して、冷間圧延における圧延負荷が増大し、生産性が低下する。また、平均巻き取り温度が450℃未満では、熱延板にマルテンサイトが生成する。そして、マルテンサイトを主体とする硬質な熱延板に冷間圧延を施すと、マルテンサイトの旧オーステナイト粒界に沿った微小な内部割れ(脆性割れ)が生じやすく、最終焼鈍板の延性が低下する。従って、熱間圧延後の平均巻き取り温度を450℃以上700℃以下にする必要がある。好ましくは450℃以上650℃以下とする。
なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。また、熱間圧延時の圧延荷重を低減するために仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下の範囲とすることが好ましい。
熱処理温度が450℃未満または熱処理保持時間が900s未満の場合は、鋼板の熱延後の焼戻しが不十分で、フェライトや、ベイナイト、マルテンサイトが混在した不均一な組織となる。そして、かかる熱延板組織の下では、鋼板組織の均一微細化が不十分となる。その結果、最終焼鈍板の組織において、粗大なマルテンサイトの割合が増加し、不均一な組織となって、最終焼鈍板の穴広げ性(伸びフランジ性)および材質安定性が低下する場合がある。
一方、熱処理保持時間が36000s超の場合には、生産性に悪影響を及ぼす場合がある。また、熱処理温度がAc1変態点超の場合は、フェライトとマルテンサイトまたはパーライトの不均一かつ硬質化した粗大な2相組織となって、冷間圧延前に不均一な組織となる。その結果、最終焼鈍板の粗大なマルテンサイトの割合が増加して、やはり最終焼鈍板の穴広げ性(伸びフランジ性)および材質安定性が低下する場合がある。
従って、熱延板酸洗処理後の熱処理温度は450℃以上Ac1変態点以下とし、保持時間は900s以上36000s以下とする必要がある。
圧下率が30%に満たない場合には、引き続く焼鈍時において、オーステナイトへの逆変態の核となる粒界や転位の単位体積あたりの総数が減少し、上述した最終のミクロ組織を得ることが困難になる。そして、ミクロ組織に不均一が生じると、鋼板の延性は低下する。
したがって、冷間圧延時の圧下率は30%以上にする必要がある。好ましくは、40%以上とする。なお、圧延パスの回数、各パス毎の圧下率については、とくに限定されることなく本発明の効果を得ることができる。また、上記圧下率の上限に特に限定はないが、工業上、実用的な80%程度である。
1回目の焼鈍温度が820℃未満の場合、この熱処理はフェライトとオーステナイトの2相域での熱処理になるため、最終組織にフェライトとオーステナイトの2相域で生成したフェライト(ポリゴナルフェライト)を多く含むことになる。その結果、微細な残留オーステナイトが所望量生成されずに、良好な強度と延性のバランスの確保が困難となる。一方、1回目の焼鈍温度が950℃を超えた場合、焼鈍中のオーステナイトの結晶粒が粗大化して、最終的に微細な残留オーステナイトが生成されずに、やはり良好な強度と延性のバランスの確保が困難となり、生産性が低下する。
なお、1回目の焼鈍処理の保持時間は、特に限定はしないが10s以上1000s以下の範囲が好ましい。
1回目の焼鈍処理後の500℃までの平均冷却速度が15℃/s未満では、冷却中にフェライトおよびパーライトが生成されるため、2回目の焼鈍前組織において、低温変態相(ベイナイトもしくはマルテンサイト)を主体とした組織が得られない。その結果、最終的に微細な残留オーステナイトが所望量生成されないため、良好な強度と延性のバランスの確保が困難となる。また、鋼板の材質安定性が損なわれることにもなる。なお、上記平均冷却速度の上限に特に限定は無いが、工業的に可能なのは、80℃/s程度までである。
1回目の焼鈍処理は、最終的に、Ms点以下の第1冷却停止温度まで冷却する。
2回目の焼鈍処理前の組織を、マルテンサイト単相組織、ベイナイト単相組織、またはマルテンサイトとベイナイトを主体とした組織とするためである。それにより、2回目の焼鈍後の冷却および保持過程において、600℃以下で生成する粒界形状が歪な、ポリゴナルでないフェライトおよびベイニティックフェライトが多く生成される。その結果、微細な残留オーステナイトの適正量の確保が可能となり、良好な延性の確保が可能になる。
2回目の焼鈍温度が740℃未満の場合は、焼鈍中に十分なオーステナイトの体積率を確保できず、最終的に所望のマルテンサイトの面積率と残留オーステナイトの体積率が確保されない。そのため、強度確保と、良好な強度と延性のバランスの確保とが困難となる。一方、2回目の焼鈍温度が840℃を超えた場合は、オーステナイト単相の温度域になるため、最終的に微細な残留オーステナイトが所望量生成されない。その結果、やはり良好な強度と延性のバランスの確保が困難となる。また、フェライトとオーステナイトの2相域での熱処理とは異なるため、拡散によるMn分配が殆ど生じない。その結果、残留オーステナイト中の平均Mn量(質量%)は、鋼中のMn量(質量%)の1.2倍以上にならず、所望の安定な残留オーステナイトの体積率の確保が困難となる。なお、2回目の焼鈍処理の保持時間は、特に限定はしないが、10s以上1000s以下が好ましい。
本発明において、極めて重要な制御因子である。というのは、300℃以上550℃以下の第2冷却停止温度域の温度までの平均冷却速度が1℃/s未満では、生産性が損なわれる。一方で、当該平均冷却速度が10℃/sを超えると、冷却中に生成するフェライトを十分に確保できずに、鋼板の延性および強度と延性のバランスおよび疲労特性が低下するからである。なお、この場合の冷却は、徐冷の制御が容易な炉冷やガス冷却が好ましい。
上記第2冷却停止温度域(300℃以上550℃以下)での保持時間が10s未満では、オーステナイトへのC濃化が進行する時間が不十分となって、最終的に所望の残留オーステナイトの体積率の確保が困難になる。一方、600sを超えて滞留した場合、残留オーステナイトの体積率は増加せずに、延性の顕著な向上は確認されず飽和傾向となるため、600s以下が好ましい。
従って、上記第2冷却停止温度域での保持時間は10s以上とし、600s以下が好ましい。なお、保持後の冷却はとくに規定する必要がなく、任意の方法により所望の温度に冷却してよい。なお、上記所望の温度は、室温程度が望ましい。
本発明では、一旦室温まで下がった鋼板に、さらに3回目の焼鈍処理を行うことができる。
3回目の焼鈍処理が100℃より低い場合、マルテンサイトの焼戻し軟質化が不十分となって、より良好な局部延性の確保が困難となるおそれがある。一方、3回目の焼鈍処理が300℃を超えると、残留オーステナイトが分解して、最終的に所望の残留オーステナイトの体積率の確保が困難となるおそれがある。従って、3回目の焼鈍処理を行う場合の温度は100℃以上300℃以下が好ましい。なお、3回目の焼鈍処理の保持時間は、特に限定はしないが、10s以上36000s以下が好ましい。
溶融亜鉛めっき処理を施すときは、前記焼鈍処理を施した鋼板を、440℃以上500℃以下の亜鉛めっき浴中に浸漬して溶融亜鉛めっき処理を施した後、ガスワイピング等によって、めっき付着量を調整する。溶融亜鉛めっきはAl量が0.10質量%以上0.22質量%以下である亜鉛めっき浴を用いることが好ましい。また、亜鉛めっきの合金化処理を施すときは、溶融亜鉛めっき処理後に、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施す。600℃を超える温度で合金化処理を行うと、未変態オーステナイトがパーライトへ変態し、所望の残留オーステナイトの体積率を確保できず、延性が低下する場合がある。したがって、亜鉛めっきの合金化処理を行うときは、470℃以上600℃以下の温度域で亜鉛めっきの合金化処理を施すことが好ましい。また、電気亜鉛めっき処理を施してもよい。
次いで、表2に示した条件で鋼板を冷間圧延した後、表2に示した条件で鋼板に2回または3回の焼鈍処理を施し、高強度冷延鋼板(CR)を得た。
さらに、一部の高強度冷延鋼板(CR)に亜鉛めっき処理を施し、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、電気亜鉛めっき鋼板(EG)などを得た。溶融亜鉛めっき浴はGIでは、Al:0.19質量%含有亜鉛浴を使用し、GAでは、Al:0.14質量%含有亜鉛浴を使用し、浴温は465℃とした。めっき付着量は片面あたり45g/m2(両面めっき)とし、GAは、めっき層中のFe濃度を9質量%以上12質量%以下とした。
なお、Ac1変態点(℃)は、以下の式を用いて求めた。
Ac1変態点(℃)=751-16×(%C)+11×(%Si)-28×(%Mn)-5.5×(%Cu)+13×(%Cr)
但し、(%X)は、元素Xの鋼中含有量(質量%)を示す。
なお、Ms点(℃)は、以下の式を用いて求め、表3に示した。
Ms点(℃)=550-361×(%C)×0.01×[2回目焼鈍処理の焼鈍直後のA分率(%)]-69×[残留オーステナイト中Mn量(%)]-20×(%Cr)-10×(%Cu)+30×(%Al)
但し、(%X)は、元素Xの鋼中含有量(質量%)を示す。
ここで云う2回目焼鈍処理の焼鈍直後のA分率(%)は、2回目の焼鈍処理(740℃以上840℃以下)の焼鈍直後に水焼入れ(室温までの平均冷却速度:800℃/s以上)を行い、その組織のマルテンサイトの面積率として定義した。なお、マルテンサイトの面積率は前述した手法により求めることができる。
なお、上記式中の残留オーステナイト中Mn量(%)は、最終の高強度鋼板についての残留オーステナイト中の平均Mn量(質量%)である。
引張試験は、引張試験片の長手が鋼板の圧延方向と垂直(C方向)になるようにサンプルを採取したJIS5号試験片を用いて、JIS Z 2241(2011年)に準拠して行い、TS(引張強度)、EL(全伸び)を測定した。なお、本発明では、TS:780MPa級ではEL≧34%、TS:980MPa級ではEL≧27%、TS:1180MPa級ではEL≧23%、そしてTS×EL≧27000MPa・%の場合を良好と判断した。
以上の評価結果を表3に示す。
Claims (5)
- 質量%で、C:0.08%以上0.35%以下、Si:0.50%以上2.50%以下、Mn:1.50%以上3.00%以下、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下およびN:0.0005%以上0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
面積率で、フェライトが20%以上50%以下、ベイニティックフェライトが5%以上25%以下、マルテンサイトが5%以上20%以下であって、体積率で、残留オーステナイトが10%以上であり、
上記残留オーステナイトの平均結晶粒径が2μm以下であって、
上記残留オーステナイト中の平均Mn量(質量%)が鋼中のMn量(質量%)の1.2倍以上であり、
上記残留オーステナイトの平均自由行程が1.2μm以下である鋼組織と、
を有することを特徴とする高強度鋼板。 - 前記成分組成がさらに、質量%で、Al:0.01%以上1.00%以下、Ti:0.005%以上0.100%以下、Nb:0.005%以上0.100%以下、B:0.0001%以上0.0050%以下、Cr:0.05%以上1.00%以下、Cu:0.05%以上1.00%以下、Sb:0.0020%以上0.2000%以下、Sn:0.0020%以上0.2000%以下、Ta:0.0010%以上0.1000%以下、Ca:0.0003%以上0.0050%以下、Mg:0.0003%以上0.0050%以下およびREM:0.0003%以上0.0050%以下のうちから選ばれる少なくとも1種の元素を含有することを特徴とする請求項1に記載の高強度鋼板。
- 請求項1または2に記載の成分組成を有する鋼スラブを、1100℃以上1300℃以下に加熱し、
仕上げ圧延出側温度を800℃以上1000℃以下として前記鋼スラブを熱間圧延して鋼板とし、
平均巻き取り温度を450℃以上700℃以下として前記鋼板を巻き取り、
前記鋼板に酸洗処理を施し、
その後、任意に、前記鋼板を450℃以上Ac1変態点以下の温度で900s以上36000s以下の間保持し、
その後、前記鋼板を圧下率:30%以上で冷間圧延し、
その後、前記鋼板を820℃以上950℃以下の温度に加熱する1回目の焼鈍処理を行い、
次いで、前記鋼板を、500℃までの平均冷却速度が15℃/s以上の条件で、Ms点以下の第1冷却停止温度まで冷却し、
その後、前記鋼板を740℃以上840℃以下の温度に再加熱する2回目の焼鈍処理を行い、
その後、1℃/s以上10℃/s以下の平均冷却速度で、300℃以上550℃以下の第2冷却停止温度域の温度まで冷却し、
前記鋼板を前記第2冷却停止温度域で10s以上の間保持して、
請求項1または2に記載の高強度鋼板を製造することを特徴とする高強度鋼板の製造方法。 - 前記2回目の焼鈍処理の第2冷却停止温度域で10s以上の間保持したのち、さらに100℃以上300℃以下の温度で3回目の焼鈍処理を施すことを特徴とする請求項3に記載の高強度鋼板の製造方法。
- 請求項1または2に記載の高強度鋼板に、亜鉛めっき処理を施すことを特徴とする高強度亜鉛めっき鋼板の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015559372A JP5943157B1 (ja) | 2014-08-07 | 2015-08-05 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
EP15830679.5A EP3178957B1 (en) | 2014-08-07 | 2015-08-05 | High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet |
CN201580042269.9A CN106574340B (zh) | 2014-08-07 | 2015-08-05 | 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法 |
MX2017001688A MX2017001688A (es) | 2014-08-07 | 2015-08-05 | Lamina de acero de alta resistencia, metodo de produccion para la misma y metodo de produccion para lamina de acero galvanizada de alta resistencia. |
US15/326,811 US10662496B2 (en) | 2014-08-07 | 2015-08-05 | High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-161682 | 2014-08-07 | ||
JP2014161682 | 2014-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021197A1 true WO2016021197A1 (ja) | 2016-02-11 |
Family
ID=55263488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/003948 WO2016021197A1 (ja) | 2014-08-07 | 2015-08-05 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10662496B2 (ja) |
EP (1) | EP3178957B1 (ja) |
JP (1) | JP5943157B1 (ja) |
CN (1) | CN106574340B (ja) |
MX (1) | MX2017001688A (ja) |
WO (1) | WO2016021197A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017169329A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
JP2017186647A (ja) * | 2016-03-31 | 2017-10-12 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
JP2018162495A (ja) * | 2017-03-27 | 2018-10-18 | Jfeスチール株式会社 | 高強度高延性鋼板およびその製造方法 |
JP6525125B1 (ja) * | 2017-12-26 | 2019-06-05 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
WO2019131189A1 (ja) * | 2017-12-26 | 2019-07-04 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
WO2019131188A1 (ja) * | 2017-12-26 | 2019-07-04 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
WO2019188640A1 (ja) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2019188643A1 (ja) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2019188642A1 (ja) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2020209276A1 (ja) * | 2019-04-11 | 2020-10-15 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
JP2022045922A (ja) * | 2020-09-09 | 2022-03-22 | Jfeスチール株式会社 | 鋼板 |
JP2022045923A (ja) * | 2020-09-09 | 2022-03-22 | Jfeスチール株式会社 | プレス成形品の製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6315044B2 (ja) * | 2016-08-31 | 2018-04-25 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
EP3508601B1 (en) * | 2016-08-31 | 2020-03-18 | JFE Steel Corporation | High-strength steel plate and production method thereof |
JP6683297B1 (ja) * | 2018-08-22 | 2020-04-15 | Jfeスチール株式会社 | 高強度鋼板及びその製造方法 |
KR102547459B1 (ko) * | 2018-12-21 | 2023-06-26 | 제이에프이 스틸 가부시키가이샤 | 강판, 부재 및 이것들의 제조 방법 |
CN113454244B (zh) * | 2019-02-25 | 2023-03-03 | 杰富意钢铁株式会社 | 高强度钢板及其制造方法 |
MX2021010854A (es) * | 2019-03-11 | 2021-10-22 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo para producir la misma. |
JP7036214B2 (ja) * | 2019-03-12 | 2022-03-15 | Jfeスチール株式会社 | 熱間プレス部材、熱間プレス用鋼板の製造方法、および、熱間プレス部材の製造方法 |
CN109972023B (zh) * | 2019-05-16 | 2020-09-01 | 武汉科技大学 | 一种具有高强塑积的贝氏体钢及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011038120A (ja) * | 2009-08-06 | 2011-02-24 | Nippon Steel Corp | 延性、溶接性及び表面性状に優れた高強度鋼板及びその製造方法 |
JP2012153957A (ja) * | 2011-01-27 | 2012-08-16 | Jfe Steel Corp | 延性に優れる高強度冷延鋼板およびその製造方法 |
WO2012118040A1 (ja) * | 2011-03-02 | 2012-09-07 | 株式会社神戸製鋼所 | 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 |
JP2013237917A (ja) * | 2012-05-17 | 2013-11-28 | Jfe Steel Corp | 加工性に優れる高降伏比高強度冷延鋼板およびその製造方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3231204B2 (ja) | 1995-01-04 | 2001-11-19 | 株式会社神戸製鋼所 | 疲労特性にすぐれる複合組織鋼板及びその製造方法 |
CA2387322C (en) | 2001-06-06 | 2008-09-30 | Kawasaki Steel Corporation | High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same |
JP4119758B2 (ja) | 2003-01-16 | 2008-07-16 | 株式会社神戸製鋼所 | 加工性および形状凍結性に優れた高強度鋼板、並びにその製法 |
JP4924052B2 (ja) | 2007-01-19 | 2012-04-25 | Jfeスチール株式会社 | 高降伏比高張力冷延鋼板ならびにその製造方法 |
JP5206244B2 (ja) | 2008-09-02 | 2013-06-12 | 新日鐵住金株式会社 | 冷延鋼板 |
JP5418047B2 (ja) | 2008-09-10 | 2014-02-19 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5270274B2 (ja) | 2008-09-12 | 2013-08-21 | 株式会社神戸製鋼所 | 伸びおよび伸びフランジ性に優れた高強度冷延鋼板 |
JP5493986B2 (ja) | 2009-04-27 | 2014-05-14 | Jfeスチール株式会社 | 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法 |
JP4924730B2 (ja) | 2009-04-28 | 2012-04-25 | Jfeスチール株式会社 | 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5504737B2 (ja) | 2009-08-04 | 2014-05-28 | Jfeスチール株式会社 | 鋼帯内における材質のバラツキが小さい成形性に優れた高強度溶融亜鉛めっき鋼帯およびその製造方法 |
JP5521444B2 (ja) | 2009-09-01 | 2014-06-11 | Jfeスチール株式会社 | 加工性に優れた高強度冷延鋼板およびその製造方法 |
JP5377232B2 (ja) | 2009-11-02 | 2013-12-25 | 三菱電機株式会社 | 超音波式センサモジュール取付装置及び取付方法 |
JP5786318B2 (ja) | 2010-01-22 | 2015-09-30 | Jfeスチール株式会社 | 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
WO2011093490A1 (ja) | 2010-01-29 | 2011-08-04 | 新日本製鐵株式会社 | 鋼板及び鋼板製造方法 |
JP5589893B2 (ja) | 2010-02-26 | 2014-09-17 | 新日鐵住金株式会社 | 伸びと穴拡げに優れた高強度薄鋼板およびその製造方法 |
US20130133792A1 (en) * | 2010-08-12 | 2013-05-30 | Jfe Steel Corporation | High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same |
ES2711891T3 (es) | 2010-09-16 | 2019-05-08 | Nippon Steel & Sumitomo Metal Corp | Lámina de acero de alta resistencia y lámina de acero recubierta con zinc de alta resistencia con excelente ductilidad y capacidad de estiramiento y método de fabricación de estas |
JP5679885B2 (ja) | 2010-11-12 | 2015-03-04 | 三菱電機株式会社 | レーダ装置 |
JP5825119B2 (ja) | 2011-04-25 | 2015-12-02 | Jfeスチール株式会社 | 加工性と材質安定性に優れた高強度鋼板およびその製造方法 |
JP5862052B2 (ja) | 2011-05-12 | 2016-02-16 | Jfeスチール株式会社 | 伸びおよび伸びフランジ性に優れる高強度冷延鋼板ならびにその製造方法 |
WO2013018741A1 (ja) | 2011-07-29 | 2013-02-07 | 新日鐵住金株式会社 | 形状凍結性に優れた高強度鋼板、高強度亜鉛めっき鋼板およびそれらの製造方法 |
BR112014001589B1 (pt) | 2011-07-29 | 2019-01-08 | Nippon Steel & Sumitomo Metal Corp | chapa de aço de alta resistência e chapa de aço galvanizada de alta resistência excelente em conformabilidade e métodos de produção das mesmas |
KR101624057B1 (ko) * | 2011-07-29 | 2016-05-24 | 신닛테츠스미킨 카부시키카이샤 | 성형성이 우수한 고강도 강판, 고강도 아연 도금 강판 및 그들의 제조 방법 |
CN103874776B (zh) | 2011-09-30 | 2016-05-18 | 新日铁住金株式会社 | 机械切断特性优良的高强度热浸镀锌钢板、高强度合金化热浸镀锌钢板以及它们的制造方法 |
KR101614230B1 (ko) * | 2011-09-30 | 2016-04-20 | 신닛테츠스미킨 카부시키카이샤 | 베이킹 경화성이 우수한 고강도 용융 아연 도금 강판, 고강도 합금화 용융 아연 도금 강판 및 그것들의 제조 방법 |
JP5454745B2 (ja) * | 2011-10-04 | 2014-03-26 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5348268B2 (ja) | 2012-03-07 | 2013-11-20 | Jfeスチール株式会社 | 成形性に優れる高強度冷延鋼板およびその製造方法 |
ES2651149T5 (es) * | 2012-03-30 | 2021-02-15 | Voestalpine Stahl Gmbh | Chapa de acero de alta resistencia laminada en frío y procedimiento de fabricación de dicha chapa de acero |
JP5860354B2 (ja) | 2012-07-12 | 2016-02-16 | 株式会社神戸製鋼所 | 降伏強度と成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5943156B1 (ja) | 2014-08-07 | 2016-06-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
-
2015
- 2015-08-05 US US15/326,811 patent/US10662496B2/en not_active Expired - Fee Related
- 2015-08-05 MX MX2017001688A patent/MX2017001688A/es unknown
- 2015-08-05 CN CN201580042269.9A patent/CN106574340B/zh active Active
- 2015-08-05 WO PCT/JP2015/003948 patent/WO2016021197A1/ja active Application Filing
- 2015-08-05 EP EP15830679.5A patent/EP3178957B1/en not_active Not-in-force
- 2015-08-05 JP JP2015559372A patent/JP5943157B1/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011038120A (ja) * | 2009-08-06 | 2011-02-24 | Nippon Steel Corp | 延性、溶接性及び表面性状に優れた高強度鋼板及びその製造方法 |
JP2012153957A (ja) * | 2011-01-27 | 2012-08-16 | Jfe Steel Corp | 延性に優れる高強度冷延鋼板およびその製造方法 |
WO2012118040A1 (ja) * | 2011-03-02 | 2012-09-07 | 株式会社神戸製鋼所 | 室温および温間での深絞り性に優れた高強度鋼板およびその温間加工方法 |
JP2013237917A (ja) * | 2012-05-17 | 2013-11-28 | Jfe Steel Corp | 加工性に優れる高降伏比高強度冷延鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3178957A4 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017186647A (ja) * | 2016-03-31 | 2017-10-12 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
WO2017169329A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
EP3438309A4 (en) * | 2016-03-31 | 2019-10-09 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | HIGH STRENGTH STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF |
JP2018162495A (ja) * | 2017-03-27 | 2018-10-18 | Jfeスチール株式会社 | 高強度高延性鋼板およびその製造方法 |
CN111527223A (zh) * | 2017-12-26 | 2020-08-11 | 杰富意钢铁株式会社 | 高强度冷轧钢板及其制造方法 |
JP6525125B1 (ja) * | 2017-12-26 | 2019-06-05 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
WO2019131189A1 (ja) * | 2017-12-26 | 2019-07-04 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
WO2019131188A1 (ja) * | 2017-12-26 | 2019-07-04 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
US11459647B2 (en) | 2017-12-26 | 2022-10-04 | Jfe Steel Corporation | High-strength cold rolled steel sheet and method for manufacturing same |
US11359256B2 (en) | 2017-12-26 | 2022-06-14 | Jfe Steel Corporation | High-strength cold-rolled steel sheet and method for manufacturing same |
JPWO2019131189A1 (ja) * | 2017-12-26 | 2019-12-26 | Jfeスチール株式会社 | 高強度冷延鋼板及びその製造方法 |
WO2019188643A1 (ja) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2019188640A1 (ja) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JPWO2019188643A1 (ja) * | 2018-03-30 | 2020-04-30 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JPWO2019188642A1 (ja) * | 2018-03-30 | 2020-04-30 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
US11788163B2 (en) | 2018-03-30 | 2023-10-17 | Jfe Steel Corporation | High-strength steel sheet and method for manufacturing same |
KR20200124286A (ko) * | 2018-03-30 | 2020-11-02 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
KR20200124739A (ko) * | 2018-03-30 | 2020-11-03 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
US11661642B2 (en) | 2018-03-30 | 2023-05-30 | Jfe Steel Corporation | High-strength steel sheet and method for manufacturing same |
US11643700B2 (en) | 2018-03-30 | 2023-05-09 | Jfe Steel Corporation | High-strength steel sheet and production method thereof |
JPWO2019188640A1 (ja) * | 2018-03-30 | 2020-04-30 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
KR102385480B1 (ko) | 2018-03-30 | 2022-04-12 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
WO2019188642A1 (ja) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
KR102437795B1 (ko) * | 2018-03-30 | 2022-08-29 | 제이에프이 스틸 가부시키가이샤 | 고강도 강판 및 그 제조 방법 |
JP7173303B2 (ja) | 2019-04-11 | 2022-12-08 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
JPWO2020209276A1 (ja) * | 2019-04-11 | 2021-12-09 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
WO2020209276A1 (ja) * | 2019-04-11 | 2020-10-15 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
JP2022045923A (ja) * | 2020-09-09 | 2022-03-22 | Jfeスチール株式会社 | プレス成形品の製造方法 |
JP2022045922A (ja) * | 2020-09-09 | 2022-03-22 | Jfeスチール株式会社 | 鋼板 |
JP7375794B2 (ja) | 2020-09-09 | 2023-11-08 | Jfeスチール株式会社 | 鋼板 |
JP7375795B2 (ja) | 2020-09-09 | 2023-11-08 | Jfeスチール株式会社 | プレス成形品の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5943157B1 (ja) | 2016-06-29 |
US20170211163A1 (en) | 2017-07-27 |
US10662496B2 (en) | 2020-05-26 |
EP3178957A1 (en) | 2017-06-14 |
CN106574340B (zh) | 2018-04-10 |
JPWO2016021197A1 (ja) | 2017-04-27 |
MX2017001688A (es) | 2017-04-27 |
EP3178957A4 (en) | 2018-01-03 |
EP3178957B1 (en) | 2018-12-19 |
CN106574340A (zh) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5943156B1 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5943157B1 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5983895B2 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5967320B2 (ja) | 高強度鋼板およびその製造方法 | |
JP5983896B2 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP6179675B2 (ja) | 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 | |
JP5967319B2 (ja) | 高強度鋼板およびその製造方法 | |
JP6179677B2 (ja) | 高強度鋼板およびその製造方法 | |
JP6179676B2 (ja) | 高強度鋼板およびその製造方法 | |
JP6179674B2 (ja) | 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 | |
JP5709151B2 (ja) | 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
WO2017183349A1 (ja) | 鋼板、めっき鋼板、およびそれらの製造方法 | |
JP6372633B1 (ja) | 高強度鋼板およびその製造方法 | |
WO2018043473A1 (ja) | 高強度鋼板およびその製造方法 | |
WO2018151023A1 (ja) | 高強度鋼板およびその製造方法 | |
JP6315160B1 (ja) | 高強度鋼板およびその製造方法 | |
WO2017183348A1 (ja) | 鋼板、めっき鋼板、およびそれらの製造方法 | |
JP5870861B2 (ja) | 疲労特性と延性に優れ、且つ延性の面内異方性の小さい高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP6372632B1 (ja) | 高強度鋼板およびその製造方法 | |
WO2017131052A1 (ja) | 温間加工用高強度鋼板およびその製造方法 | |
JP6210184B1 (ja) | 鋼板、めっき鋼板、およびそれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015559372 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15830679 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15326811 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015830679 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015830679 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/001688 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |