WO2011132282A1 - リチウム回収装置及びその方法 - Google Patents
リチウム回収装置及びその方法 Download PDFInfo
- Publication number
- WO2011132282A1 WO2011132282A1 PCT/JP2010/057121 JP2010057121W WO2011132282A1 WO 2011132282 A1 WO2011132282 A1 WO 2011132282A1 JP 2010057121 W JP2010057121 W JP 2010057121W WO 2011132282 A1 WO2011132282 A1 WO 2011132282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- hydrochloric acid
- column
- aqueous solution
- solution
- Prior art date
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 154
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 150
- 238000000034 method Methods 0.000 title claims description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 130
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims abstract description 51
- 238000011084 recovery Methods 0.000 claims abstract description 43
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 32
- 238000001179 sorption measurement Methods 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000010828 elution Methods 0.000 claims abstract description 23
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 16
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 14
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims abstract description 13
- 238000004140 cleaning Methods 0.000 claims abstract description 9
- 239000012528 membrane Substances 0.000 claims abstract description 9
- 229910052808 lithium carbonate Inorganic materials 0.000 claims abstract description 8
- 239000011780 sodium chloride Substances 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 45
- 239000007864 aqueous solution Substances 0.000 claims description 38
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 18
- 239000003480 eluent Substances 0.000 claims description 16
- 239000013535 sea water Substances 0.000 claims description 13
- 238000004064 recycling Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000002699 waste material Substances 0.000 claims description 6
- 239000012267 brine Substances 0.000 claims description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 229960000443 hydrochloric acid Drugs 0.000 abstract 6
- 235000011167 hydrochloric acid Nutrition 0.000 abstract 6
- 238000000926 separation method Methods 0.000 abstract 1
- 235000017550 sodium carbonate Nutrition 0.000 description 12
- 238000005406 washing Methods 0.000 description 8
- 239000007791 liquid phase Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 150000002641 lithium Chemical class 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/10—Obtaining alkali metals
- C22B26/12—Obtaining lithium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/02—Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
- C22B3/06—Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
- C22B3/065—Nitric acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/22—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/22—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
- C22B3/24—Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Definitions
- the present invention relates to a lithium recovery apparatus and method for recovering lithium, and more particularly, to a lithium recovery apparatus and method for efficiently separating and recovering lithium with high purity.
- Lithium is a rare non-ferrous metal widely used in secondary batteries, special glasses, oxide single crystals, aviation, spring materials, etc.
- worldwide demand for lithium has increased, and it is expected that demand for lithium will continue to increase in the future.
- the country where lithium is produced is unevenly distributed, and it is desired to recover lithium in a stable manner in countries where there is no lithium ore resource.
- an aqueous solution is obtained by using a manganese oxide electrode obtained by concentrating lithium or magnesium from a lithium-containing manganese oxide or a magnesium-containing manganese oxide, respectively, and changing the applied voltage.
- a method for adsorbing and desorbing lithium ions therein see Patent Document 1.
- an adsorbent produced using ⁇ -diketone, a neutral organophosphorus compound and a vinyl monomer having a cyclic structure as raw materials and an aqueous solution containing at least lithium, sodium and calcium,
- the aqueous solution is brought into contact at a pH of 7 or more to adsorb the metal component in the aqueous solution to the adsorbent, and then contacted with water at pH 4 ⁇ 1.5 to desorb lithium.
- the conventional lithium recovery method has a problem that high cost is required for industrial scale-up when an electrochemical method is used.
- the conventional lithium recovery method has a problem that the purity of lithium is lowered because organic substances remain in the recovered lithium.
- the present invention has been made in order to solve the above-mentioned problems.
- the lithium recovery apparatus can efficiently recover high-purity lithium and can be easily scaled up industrially in terms of cost. And the provision of the method.
- an aqueous lithium solution containing lithium flows into a column made of a bioabsorbable membrane and / or manganese oxide, adsorbing means for adsorbing lithium to the column, and hydrochloric acid into the column.
- Concentration means for concentrating the lithium chloride aqueous solution obtained by the treatment, and collecting lithium as a concentrated lithium aqueous solution containing lithium carbonate and sodium chloride by adding sodium carbonate to the lithium chloride aqueous solution produced by the concentration means. Collecting means.
- the concentration means circulates the lithium eluent produced by the elution means in a cyclic manner by evaporating hydrochloric acid by heating, condensing the vapor, and an aqueous lithium chloride solution.
- the collection means adds sodium carbonate to the lithium chloride aqueous solution produced by the concentration means and collects lithium as a precipitate containing lithium carbonate and sodium chloride. Therefore, high concentration lithium can be easily separated and recovered.
- the lithium recovery apparatus of the present invention cools the residual solution of the lithium chloride aqueous solution concentrated by the concentration means, if necessary, and recycles hydrochloric acid obtained by the cooling as hydrochloric acid flowing in by the elution means. It is equipped with hydrochloric acid recycling means.
- the hydrochloric acid recycling means evaporates the residual liquid of the lithium chloride aqueous solution concentrated by the concentration means, and cools and condenses the vapor obtained by the evaporation to produce hydrochloric acid.
- the hydrochloric acid obtained from the residual liquid is recycled as the inflowing hydrochloric acid by the elution means, the initial input amount of hydrochloric acid can be suppressed, and cost reduction and effective utilization of resources related to hydrochloric acid can be achieved.
- the lithium recovery device of the present invention distributes lithium-containing seawater, salt lake irrigation, geothermal water, or waste product solution as needed, to the filter membrane, and flows in the adsorbing means.
- Supply means for generating an aqueous solution is provided.
- the supply means distributes any of seawater, salt lake brine, geothermal water, or waste solution containing lithium to the filter membrane and flows in the adsorption means. Since the aqueous lithium solution is generated, the adsorption efficiency of lithium in the adsorption means is increased, and the adsorption of lithium can be performed at a higher concentration.
- the lithium recovery apparatus of the present invention comprises a cleaning means for cleaning the column in which lithium is eluted with hydrochloric acid by the elution means, if necessary.
- the washing means wash cleans the column in which lithium was adsorbed by the adsorption means with water, the adsorption of lithium in the adsorption means is maintained by maintaining the adsorption capacity of the column. Efficiency will be improved and lithium adsorption can be performed at a higher concentration.
- the lithium recovery apparatus of the present invention comprises a lithium aqueous solution mixing means for adding a pure lithium carbonate aqueous solution to the concentrated lithium aqueous solution produced by the collecting means as required.
- the lithium aqueous solution mixing means adds a pure lithium carbonate aqueous solution to the concentrated lithium aqueous solution generated by the collecting means, so that further lithium is added from the obtained concentrated lithium aqueous solution. Therefore, lithium can be recovered at a higher concentration.
- FIG. 1 is a schematic diagram of a lithium recovery apparatus according to the present invention
- FIG. 2 is an explanatory diagram showing a flowchart of a lithium recovery method according to the present invention.
- the lithium recovery apparatus circulates any of seawater, salt lake brine, geothermal water, or waste product solution containing lithium through a filter membrane to generate a lithium aqueous solution containing lithium.
- Supply means 1 and this lithium aqueous solution flow into a column made of manganese oxide, adsorbing means 2 for adsorbing lithium to this column, hydrochloric acid into this column, eluting the adsorbed lithium on this column,
- An elution means 3 for producing a lithium eluent containing hydrochloric acid and lithium chloride; a washing means 4 for washing the column in which lithium is eluted with hydrochloric acid by the elution means 3; and a lithium elution produced by the elution means 3
- Concentrating means 5 for circulating and evaporating hydrochloric acid by heating and condensing this vapor to produce a lithium chloride aqueous solution Sodium carbonate is added to the lithium chloride aqueous solution produced by the
- the supply unit 1 includes a storage tank 11 made of stainless steel that stores seawater, salt lake brine, geothermal water, or a waste product solution that is a lithium-containing solution, and a multistage filter 12.
- the filter 12 has at least a two-layer structure, and can remove impurities having a large particle size contained in the lithium-containing solution.
- the adsorption means 2 includes a plurality of stainless steel column adsorption tanks 21 filled with a bioabsorbable membrane or manganese oxide that selectively adsorbs lithium.
- the column adsorption tank 21 is composed of a plurality of tanks in order to disperse the processing amount per tank, but may be composed of one tank.
- This column adsorbing tank 21 is preferably a column containing ⁇ -type manganese oxide (particulate or film-like) having a high lithium adsorbing property as disclosed in, for example, Japanese Patent No. 3933785. Lithium adsorbent can be used.
- the elution means 3 includes a hydrochloric acid tank 31 for storing hydrochloric acid and an eluent tank 32 for storing a solution eluted from the column adsorption tank 21.
- the cleaning means 4 includes a pure water production plant 41 that produces pure water, and a pure water tank 42 that stores the pure water produced by the pure water production plant 41.
- the pure water production plant 41 various general pure water production plants can be used.
- a water supply / treatment system Japanese Patent Laid-Open No. 2010-029750
- the concentration means 5 includes a stainless steel concentration tank 51 that stores the eluent from the eluent tank 32, a drain separator 52 that separates and eliminates the hydrochloric acid aqueous solution contained in the vapor from the stored liquid in the concentration tank 51, A stainless steel liquid phase tank 53 for storing the liquid phase of the hydrochloric acid aqueous solution separated and removed by the drain separator 52 and a heater 54 for heating the stored liquid in the concentration tank 51 and returning to the concentration tank 51 are provided.
- Various drain separators that are commercially available can be used as the drain separator 52, but an in-line type separator that is built in between the compressor and the pipe may be used, or a baffle plate is installed in the pipe.
- a solution that excludes the aqueous hydrochloric acid solution flowing from the branch pipe into the trap may be used.
- the heater 54 can be heated by using surface seawater having a high water temperature. By using seawater which is a familiar and inexhaustible resource, cost and environmental load can be suppressed. Can be configured.
- the collecting means 6 includes a soda ash tank 61 made of stainless steel for storing sodium carbonate (Na 2 CO 3 ), a filter 63 for filtering the aqueous hydrochloric acid solution to which the sodium carbonate has been added, and this filtered And a stainless steel collection tank 62 for storing a lithium solution obtained by reacting with sodium carbonate.
- the hydrochloric acid recycling means 7 includes a condenser 71 for condensing the aqueous hydrochloric acid solution, a cooler 72 for cooling, and a hydrochloric acid tank 73 for storing hydrochloric acid obtained from the condenser 71.
- As the cooler 72 deep seawater having a low water temperature can be used as seawater. In this case, an apparatus that suppresses cost and environmental load can be configured by using seawater.
- the lithium recovery method of the present embodiment based on the above configuration will be described. The flow of the lithium recovery method according to the present invention is shown in FIG.
- a lithium-containing solution containing lithium (for example, any one of seawater, salt lake brine, geothermal water, and waste solution) is stored in the storage tank 11 (S1).
- the stored lithium-containing solution is passed through the filter 12 (S2).
- This filter 12 can remove impurities having a large particle size.
- the lithium-containing solution that has passed through the filter 12 is caused to flow into one column adsorption tank 21 that is empty among the plurality of column adsorption tanks 21 (S3).
- the lithium contained in the lithium-containing solution is adsorbed to the column specifically and selectively by this inflow.
- the process returns to S3 again, and the lithium-containing solution subsequently flows into the column adsorption tank 21.
- the inflow is stopped (S5).
- the lithium-containing solution collected in the collection tank 62 is mixed with a pure (100%) lithium carbonate (Li 2 CO 3 ) solution to increase the concentration of lithium carbonate ( Li 2 CO 3 ) can be produced.
- the supply means 1, the cleaning means 4 and the hydrochloric acid recycling means 7 are used. Even when these means are not used, the lithium recovery concentration is reduced and the cost of hydrochloric acid is increased. Compared with the lithium recovery method, sufficiently high-purity lithium recovery can be performed.
- the present invention is not limited by this example.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Water Treatment By Sorption (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
以下、前記構成に基づく本実施形態のリチウム回収方法について説明する。本発明に係るリチウム回収方法の流れを図2に示す。
まず、図2に示すように、リチウムを含有するリチウム含有溶液(例えば、海水、塩湖鹹水、地熱水、及び廃品溶解液のうちのいずれか)を貯留タンク11に貯蔵する(S1)。この貯留されたリチウム含有溶液をフィルタ12に通過させる(S2)。このフィルタ12により粒子径の大きい不純物を除去することができる。
フィルタ12に通過させたリチウム含有溶液を、複数のカラム吸着タンク21のうち空き状態となっている1つのカラム吸着タンク21に流入させる(S3)。リチウム含有溶液に含まれるリチウムは、この流入により、特異選択的にカラムに吸着される。この流入に関して、所定の流入量に達していない場合、及び所定時間が経過していない場合(S4)には、再度、上記のS3に戻り、引き続き、このリチウム含有溶液をカラム吸着タンク21に流入させる。この流入に関して、所定の流入量に達した場合、又は所定時間が経過した場合(S4)には、この流入を停止する(S5)。
濃度1mol/Lの塩酸を貯蔵する塩酸タンクから、このカラム吸着タンク21に流入させてリチウムを溶離させる(S6)。以下の化学式1に示すように、このS6によりカラム吸着タンク21に吸着したリチウムと塩酸が反応し、塩化リチウム(LiCl)及び塩酸(HCl)の混合溶液である溶離液が溶離する。得られた溶離液を溶離液タンク32に貯蔵する(S7)。このS1により貯留タンク11に貯蔵されたリチウム含有溶液が、カラム吸着タンク21からその全量を排出されていない場合(S8)には、再度、上記S7に戻り、溶離液タンク32への貯蔵を引き続き行う。
このリチウム含有溶液が、カラム吸着タンク21から全量排出された場合(S8)には、洗浄工程及び濃縮工程が同時に実施される。まず洗浄工程において、純水でこのカラム吸着タンク21に充填されたカラムを洗浄する(S9)。この洗浄は、純水製造プラント41で製造した純水を純水タンク42に貯蔵し、カラム吸着タンク21に流入させることで実施することができる。この洗浄後、洗浄された複数カラムのうちの一つを選択し(S10)、上記S3に戻り、S3以降の処理を繰り返す。このように、複数のカラムを連携させることで、純水洗浄により常にフレッシュな状態のカラムを使用することができる。
上記のS8において、このリチウム含有溶液が、カラム吸着タンク21から全量排出された場合には、濃縮工程において、生成された塩化リチウム含有溶液を濃縮タンク51に貯蔵し、加熱器54を用いて90℃で0.8気圧程度まで減圧して加熱し、濃縮タンク51に還流して塩化リチウム含有溶液を循環させる(S11)。この濃縮タンク51に貯蔵された溶液をドレンセパレータ52で塩酸水溶液を除去した液相を液相タンク53に貯蔵してリチウム含有溶液を貯蔵する(S12)。
このS11によりドレンセパレータ52で分離された液相の場合(S13)、この液相として液相タンク53に貯蔵されたリチウム含有溶液に、ソーダ灰[炭酸ナトリウム(Na2CO3)〕を貯蔵するソーダ灰タンク61からソーダ灰を添加する(S14)。この添加された溶液をフィルタ63により濾過する(S15)。この濾過された溶液から、S14の添加により炭酸リチウム(Li2CO3)が主に沈殿し、この他には、塩化ナトリウム(NaCl)が部分的に共沈する。これらの沈殿物を含有するリチウム含有溶液を採収タンク62に採収する(S16)。
上記のS13においてドレンセパレータ52で分離された気相の場合、この塩酸を含有する気体をコンデンサ(凝縮器)で0.8気圧程度まで減圧して冷却濃縮する(S17)。この冷却濃縮により生成された濃塩酸溶液を、溶離工程で使用した塩酸タンク31へ還流する(S18)。塩酸タンク31内の塩酸濃度は、カラムに吸着したリチウムを効率的に溶離しやすい濃度として約1mol/lを維持することが好ましい。この還流後、上記のS6に戻り、S6以降の処理を繰り返す。このS18における還流によりこの塩酸タンク31に必要な塩酸の初期投入量を抑制できることとなり、塩酸に関連するコスト削減及び資源の有効利用を図ることができる。
また、上記では、供給手段1、洗浄手段4および塩酸リサイクル手段7を使用したが、これらの手段を使用しない場合にも、リチウム回収濃度は低下し塩酸のコストが高くなるものの、従来から公知なリチウム回収方法と比較して、十分に高純度なリチウム回収を行うことができる。
以下、本発明に従い実験を行った結果を実施例として説明するが、本発明はこの実施例によって制限されるものではない。
上記に記載した図1と同様の構成にて、本発明に従うリチウム回収装置を用いて、日本海沿岸で汲み取った海水に対してリチウム回収を行ったところ、上記採収タンク62に濃度90%のリチウム含有溶液を採収した。さらに、このリチウム含有溶液に対して、純粋(すなわち100%)の炭酸リチウム(Li2CO3)溶液を混合し、濃度95%の炭酸リチウム(Li2CO3)を生成した。このように、本発明のリチウム回収装置は、海水に対して、従来よりも高いリチウム回収率が実現できることが示された。
11 貯留タンク
12 フィルタ
2 吸着手段
21 カラム吸着タンク
3 溶離手段
31 塩酸タンク
32 溶離液タンク
4 洗浄手段
41 純水製造プラント
42 純水タンク
5 濃縮手段
51 濃縮タンク
52 ドレンセパレータ
53 液相タンク
54 加熱器
6 採収手段
61 ソーダ灰タンク
62 採収タンク
63 フィルタ
7 塩酸リサイクル手段
71 コンデンサ
72 冷却器
Claims (6)
- リチウムを含有するリチウム水溶液を、生体吸収膜および/またはマンガン酸化物から成るカラムに流入し、当該カラムにリチウムを吸着させる吸着手段と、
前記カラムに塩酸を流入し、前記カラムに吸着したリチウムを溶離し、塩酸及び塩化リチウムを含有するリチウム溶離液を生成する溶離手段と、
前記溶離手段により生成されたリチウム溶離液を循環的に加熱及び塩酸水溶液除去処理し、当該処理により得られる塩化リチウム水溶液を濃縮する濃縮手段と、
前記濃縮手段により生成された塩化リチウム水溶液に、炭酸ナトリウムを加え、炭酸リチウムおよび塩化ナトリウムを含有する濃縮リチウム水溶液としてリチウムを採収する採収手段とを備えることを特徴とする
リチウム回収装置。 - 請求項1に記載のリチウム回収装置において、
前記濃縮手段で濃縮された塩化リチウム水溶液の残液を冷却し、当該冷却により得られる塩酸を、前記溶離手段で流入する塩酸としてリサイクルする塩酸リサイクル手段を備えることを特徴とする
リチウム回収装置。 - 請求項1または請求項2に記載のリチウム回収装置において、
リチウムを含有する海水、塩湖鹹水、地熱水、または廃品溶解液のいずれかをフィルタ膜に流通し、前記吸着手段で流入するリチウム水溶液を生成する供給手段を備えることを特徴とする
リチウム回収装置。 - 請求項1ないし請求項3のいずれかに記載のリチウム回収装置において、
前記溶離手段により塩酸でリチウムを溶離したカラムを水で洗浄する洗浄手段を備えることを特徴とする
リチウム回収装置。 - 請求項1ないし請求項4のいずれかに記載のリチウム回収装置において、
前記採収手段により生成された濃縮リチウム水溶液に、純粋な炭酸リチウム水溶液を加えるリチウム水溶液混合手段を備えることを特徴とする
リチウム回収装置。 - リチウムを含有するリチウム水溶液を、生体吸収膜および/またはマンガン酸化物から成るカラムに流入し、当該カラムにリチウムを吸着させる吸着工程と、
前記カラムに塩酸を流入し、前記カラムに吸着したリチウムを溶離し、塩酸及び塩化リチウムを含有するリチウム溶離液を生成する溶離工程と、
前記溶離工程により生成されたリチウム溶離液を循環的に加熱及び塩酸水溶液除去処理し、当該処理により得られる塩化リチウム水溶液を濃縮する濃縮工程と、
前記濃縮工程により生成された塩化リチウム水溶液に、炭酸ナトリウムを加え、炭酸リチウムおよび塩化ナトリウムを含有する濃縮リチウム水溶液としてリチウムを採収する採収工程とを備えることを特徴とする
リチウム回収方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/057121 WO2011132282A1 (ja) | 2010-04-22 | 2010-04-22 | リチウム回収装置及びその方法 |
EP10850223A EP2562276A1 (en) | 2010-04-22 | 2010-04-22 | Device and method for recovering lithium |
KR1020127024573A KR101623437B1 (ko) | 2010-04-22 | 2010-04-22 | 리튬 회수 장치 및 그 방법 |
CN201080066309.0A CN102906287B (zh) | 2010-04-22 | 2010-04-22 | 锂回收装置及其回收方法 |
JP2012511455A JP5209147B2 (ja) | 2010-04-22 | 2010-04-22 | リチウム回収装置及びその方法 |
US13/656,165 US9243308B2 (en) | 2010-04-22 | 2012-10-19 | Apparatus and method for recovering lithium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/057121 WO2011132282A1 (ja) | 2010-04-22 | 2010-04-22 | リチウム回収装置及びその方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/656,165 Continuation US9243308B2 (en) | 2010-04-22 | 2012-10-19 | Apparatus and method for recovering lithium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011132282A1 true WO2011132282A1 (ja) | 2011-10-27 |
Family
ID=44833838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057121 WO2011132282A1 (ja) | 2010-04-22 | 2010-04-22 | リチウム回収装置及びその方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9243308B2 (ja) |
EP (1) | EP2562276A1 (ja) |
JP (1) | JP5209147B2 (ja) |
KR (1) | KR101623437B1 (ja) |
CN (1) | CN102906287B (ja) |
WO (1) | WO2011132282A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140082065A (ko) * | 2012-12-21 | 2014-07-02 | 재단법인 포항산업과학연구원 | 해수 내 리튬을 회수하는 방법 |
KR101843797B1 (ko) * | 2011-12-30 | 2018-04-02 | 재단법인 포항산업과학연구원 | 해수 내 리튬을 회수하는 방법 |
JP2018172775A (ja) * | 2017-03-31 | 2018-11-08 | コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ | リチウムイオン吸脱着工程のための陸上型リチウム回収装置及びこれを用いたリチウム回収方法 |
WO2020171009A1 (ja) * | 2019-02-20 | 2020-08-27 | 株式会社ササクラ | リチウム回収方法 |
JP2020132952A (ja) * | 2019-02-20 | 2020-08-31 | 株式会社ササクラ | リチウム回収方法 |
JP2020132951A (ja) * | 2019-02-20 | 2020-08-31 | 株式会社ササクラ | リチウム回収方法 |
JP2021017627A (ja) * | 2019-07-22 | 2021-02-15 | 株式会社ササクラ | リチウム回収方法 |
JP2021050133A (ja) * | 2019-09-25 | 2021-04-01 | エコスター−ノーテック カンパニー リミテッドEcostar−Nautech Co., Ltd | 鹹水からの水酸化リチウム一水和物の製造方法 |
CN115180639A (zh) * | 2022-08-08 | 2022-10-14 | 湖南五创循环科技有限公司 | 一种硫酸锂溶液净化除杂及生产碳酸锂的方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101335364B1 (ko) * | 2013-04-17 | 2013-12-02 | 한국지질자원연구원 | 리튬 회수장치 및 회수방법 |
CN105555978B (zh) * | 2013-09-12 | 2018-06-12 | 韩国地质资源研究院 | 海水锂回收装置、锂回收站以及利用曝气的脱锂装置 |
CN103482660B (zh) * | 2013-09-13 | 2015-06-24 | 西藏金睿资产管理有限公司 | 高纯度碳酸锂的制备方法及系统 |
CN104338441B (zh) * | 2014-10-17 | 2017-04-05 | 南京格洛特环境工程股份有限公司 | 沉锂母液处理工艺 |
KR101659800B1 (ko) * | 2015-09-04 | 2016-09-27 | 재단법인 포항산업과학연구원 | 금속 리튬의 제조 방법 |
CN105506310B (zh) * | 2016-01-07 | 2017-12-08 | 李震祺 | 一种从含锂卤水中提取锂的方法 |
MX2019001913A (es) * | 2016-08-18 | 2020-01-30 | Stanford Res Inst Int | Extracción de iones de metal de la salmuera. |
KR101915684B1 (ko) * | 2018-07-06 | 2018-11-06 | 한국지질자원연구원 | 리튬 흡탈착 장치 및 이를 이용한 리튬 흡탈착 방법 |
FR3087356B1 (fr) * | 2018-10-18 | 2021-04-23 | Geolith | Installation et procede de separation d’au moins une espece ionique a partir d’une solution comprenant au moins ladite espece ionique et du lithium |
CN112079368A (zh) * | 2019-06-12 | 2020-12-15 | 中能实用小微科学科技有限公司 | 多级回收的低能耗高纯度提取锂的方法 |
TWI745703B (zh) * | 2019-06-12 | 2021-11-11 | 中能實用小微科學科技有限公司 | 多級回收的低能耗高純度提鋰方法 |
CN111792744A (zh) * | 2020-07-16 | 2020-10-20 | 德兰梅勒(北京)分离技术股份有限公司 | 一种回收盐酸的膜分离方法 |
CN115558798B (zh) * | 2021-07-02 | 2023-12-01 | 浙江新化化工股份有限公司 | 锂化合物的制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04247834A (ja) * | 1991-01-25 | 1992-09-03 | Showa Denko Kk | リチウムの回収方法 |
JPH0688277A (ja) | 1991-03-04 | 1994-03-29 | Agency Of Ind Science & Technol | リチウム回収方法及びそれに用いる電極 |
JP2002088420A (ja) * | 2000-09-13 | 2002-03-27 | Mitsubishi Heavy Ind Ltd | 海中リチウム採取装置 |
JP2002167628A (ja) * | 2000-11-28 | 2002-06-11 | National Institute Of Advanced Industrial & Technology | リチウム回収装置および方法 |
JP3937865B2 (ja) | 2002-02-22 | 2007-06-27 | 財団法人北九州産業学術推進機構 | リチウム吸着剤の製造方法 |
JP2009161794A (ja) | 2007-12-28 | 2009-07-23 | Kumamoto Technology & Industry Foundation | リチウムを回収する方法、および該方法を用いたリチウム回収装置 |
JP2010029750A (ja) | 2008-07-25 | 2010-02-12 | Haruo Uehara | 水供給・処理システム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100343399C (zh) * | 2002-12-27 | 2007-10-17 | 中国科学院青海盐湖研究所 | 二氧化锰法从盐湖卤水中提锂的方法 |
JP4247834B2 (ja) | 2004-05-19 | 2009-04-02 | 三菱電機株式会社 | 観測装置及び観測システム |
UA93991C2 (uk) * | 2005-11-28 | 2011-03-25 | Англо Оперейшенс Лимитед | Спосіб вилуговування металу з руди |
-
2010
- 2010-04-22 EP EP10850223A patent/EP2562276A1/en not_active Withdrawn
- 2010-04-22 KR KR1020127024573A patent/KR101623437B1/ko not_active IP Right Cessation
- 2010-04-22 JP JP2012511455A patent/JP5209147B2/ja not_active Expired - Fee Related
- 2010-04-22 WO PCT/JP2010/057121 patent/WO2011132282A1/ja active Application Filing
- 2010-04-22 CN CN201080066309.0A patent/CN102906287B/zh not_active Expired - Fee Related
-
2012
- 2012-10-19 US US13/656,165 patent/US9243308B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04247834A (ja) * | 1991-01-25 | 1992-09-03 | Showa Denko Kk | リチウムの回収方法 |
JPH0688277A (ja) | 1991-03-04 | 1994-03-29 | Agency Of Ind Science & Technol | リチウム回収方法及びそれに用いる電極 |
JP2002088420A (ja) * | 2000-09-13 | 2002-03-27 | Mitsubishi Heavy Ind Ltd | 海中リチウム採取装置 |
JP2002167628A (ja) * | 2000-11-28 | 2002-06-11 | National Institute Of Advanced Industrial & Technology | リチウム回収装置および方法 |
JP3937865B2 (ja) | 2002-02-22 | 2007-06-27 | 財団法人北九州産業学術推進機構 | リチウム吸着剤の製造方法 |
JP2009161794A (ja) | 2007-12-28 | 2009-07-23 | Kumamoto Technology & Industry Foundation | リチウムを回収する方法、および該方法を用いたリチウム回収装置 |
JP2010029750A (ja) | 2008-07-25 | 2010-02-12 | Haruo Uehara | 水供給・処理システム |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101843797B1 (ko) * | 2011-12-30 | 2018-04-02 | 재단법인 포항산업과학연구원 | 해수 내 리튬을 회수하는 방법 |
KR20140082065A (ko) * | 2012-12-21 | 2014-07-02 | 재단법인 포항산업과학연구원 | 해수 내 리튬을 회수하는 방법 |
KR101983235B1 (ko) * | 2012-12-21 | 2019-05-28 | 재단법인 포항산업과학연구원 | 해수 내 리튬을 회수하는 방법 |
JP2018172775A (ja) * | 2017-03-31 | 2018-11-08 | コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ | リチウムイオン吸脱着工程のための陸上型リチウム回収装置及びこれを用いたリチウム回収方法 |
JP2020132951A (ja) * | 2019-02-20 | 2020-08-31 | 株式会社ササクラ | リチウム回収方法 |
JP2020132952A (ja) * | 2019-02-20 | 2020-08-31 | 株式会社ササクラ | リチウム回収方法 |
WO2020171009A1 (ja) * | 2019-02-20 | 2020-08-27 | 株式会社ササクラ | リチウム回収方法 |
JP7051114B2 (ja) | 2019-02-20 | 2022-04-11 | 株式会社ササクラ | リチウム回収方法 |
JP7101995B2 (ja) | 2019-02-20 | 2022-07-19 | 株式会社ササクラ | リチウム回収方法 |
JP2021017627A (ja) * | 2019-07-22 | 2021-02-15 | 株式会社ササクラ | リチウム回収方法 |
JP2021050133A (ja) * | 2019-09-25 | 2021-04-01 | エコスター−ノーテック カンパニー リミテッドEcostar−Nautech Co., Ltd | 鹹水からの水酸化リチウム一水和物の製造方法 |
JP7083875B2 (ja) | 2019-09-25 | 2022-06-13 | エコスター-ノーテック カンパニー リミテッド | 鹹水からの水酸化リチウム一水和物の製造方法 |
US11578414B2 (en) | 2019-09-25 | 2023-02-14 | Ecostar-Nautech Co., Ltd. | Method for producing lithium hydroxide monohydrate from brines |
CN115180639A (zh) * | 2022-08-08 | 2022-10-14 | 湖南五创循环科技有限公司 | 一种硫酸锂溶液净化除杂及生产碳酸锂的方法 |
CN115180639B (zh) * | 2022-08-08 | 2023-12-15 | 湖南五创循环科技有限公司 | 一种硫酸锂溶液净化除杂及生产碳酸锂的方法 |
Also Published As
Publication number | Publication date |
---|---|
US9243308B2 (en) | 2016-01-26 |
US20130108527A1 (en) | 2013-05-02 |
EP2562276A1 (en) | 2013-02-27 |
KR20130061666A (ko) | 2013-06-11 |
JP5209147B2 (ja) | 2013-06-12 |
JPWO2011132282A1 (ja) | 2013-07-18 |
KR101623437B1 (ko) | 2016-05-23 |
CN102906287B (zh) | 2014-11-12 |
CN102906287A (zh) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5209147B2 (ja) | リチウム回収装置及びその方法 | |
Naidu et al. | Rubidium extraction from seawater brine by an integrated membrane distillation-selective sorption system | |
Ihsanullah et al. | Waste to wealth: A critical analysis of resource recovery from desalination brine | |
US20230019776A1 (en) | Ion exchange system and method for conversion of aqueous lithium solution | |
JP2021050133A (ja) | 鹹水からの水酸化リチウム一水和物の製造方法 | |
WO2019221932A1 (en) | Process for selective adsorption and recovery of lithium from natural and synthetic brines | |
JP2004142986A (ja) | リチウム含有水溶液からのリチウム濃縮液の製造方法 | |
EP2526213A1 (en) | Hydrometallurgical process and method for recovering metals | |
JP2012213767A (ja) | K及びMgの回収方法及び装置 | |
CN104230082B (zh) | 一种高盐含甘油高浓度有机废水中氯化钠及甘油的回收装置 | |
CN113026003A (zh) | 一种化学镀镍老化液还原再生方法 | |
JP5373067B2 (ja) | アミン含有廃水からのアミン回収方法 | |
CN110106356A (zh) | 一种粉末型钛系离子交换剂分离盐湖卤水中锂的方法 | |
CN117303633A (zh) | 一种盐湖卤水中锂钾钠资源综合回收系统及方法 | |
CN104230084B (zh) | 高盐含甘油高浓度有机废水中氯化钠及甘油的回收装置 | |
CN109850919A (zh) | 一种回收精制有机化工废水中氯化钾的工艺 | |
CN116425353A (zh) | 一种三元前躯体废水处理方法 | |
WO2023022627A1 (en) | Method for lithium sorption extraction from lithium-containing brines | |
CN118649560B (zh) | 一种用于制备氢氧化锂的方法与装置 | |
US20230373803A1 (en) | Lithium recovery from precipitated solids | |
JP4446426B2 (ja) | タリウム含有液処理方法と処理設備 | |
CN117305583A (zh) | 一种基于膜分离耦合吸附的盐湖提锂系统及方法 | |
CN108314113B (zh) | 一种含铵盐废水处理的方法 | |
Sorour et al. | Towards lithium recovery from desalination brines via an integrated scheme. | |
WO1995000443A1 (en) | Process for the desalinization of sea water and for obtaining the raw materials contained in sea water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080066309.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10850223 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012511455 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127024573 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3128/KOLNP/2012 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010850223 Country of ref document: EP |