WO2020170667A1 - 熱間プレス部材、熱間プレス用冷延鋼板およびそれらの製造方法 - Google Patents
熱間プレス部材、熱間プレス用冷延鋼板およびそれらの製造方法 Download PDFInfo
- Publication number
- WO2020170667A1 WO2020170667A1 PCT/JP2020/001584 JP2020001584W WO2020170667A1 WO 2020170667 A1 WO2020170667 A1 WO 2020170667A1 JP 2020001584 W JP2020001584 W JP 2020001584W WO 2020170667 A1 WO2020170667 A1 WO 2020170667A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- steel sheet
- rolled steel
- cold
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0405—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the present invention relates to a hot-pressed member, a cold-rolled steel sheet for hot-pressing, and a manufacturing method thereof.
- Hot pressing means that the steel sheet is heated to the temperature range of the austenite single phase and then formed (worked) at a high temperature to enable forming with high dimensional accuracy and quenching by cooling after forming. This is a molding method that enables higher strength. In this hot press, the residual stress after press forming is lower than that in the cold press, so that the delayed fracture resistance is also improved.
- Patent Document 1 discloses a technique for improving delayed fracture resistance by controlling the precipitation amount of alloy carbonitride and cementite.
- Patent Document 2 discloses a technique for improving delayed fracture resistance by forming retained austenite after hot pressing.
- the present invention was developed in view of the above circumstances, and a hot pressing member having high strength of TS of 1850 MPa or more and excellent delayed fracture resistance, and its manufacturing method are provided. And Another object of the present invention is to provide a cold-rolled steel sheet for hot pressing, which can provide the above hot-pressed member, together with its manufacturing method.
- the excellent delayed fracture resistance not only the base metal, also in the resistance spot welds, it means that the delayed fracture resistance is excellent, specifically, in the evaluation of the base metal of the example. Under a load of 1000 MPa, the base metal did not break even when immersed in the test liquid for 100 hours, and in the evaluation of the welded body of the example, no peeling was observed even after immersion in the test liquid after the load was applied. Say.
- the present inventors have obtained the following findings.
- hydrogen is electrochemically generated on the member due to rain or the like, and a part of the hydrogen penetrates into the member. If stress is not generated in the member, delayed fracture due to this hydrogen will not occur, but stress may occur due to resistance spot welding, so the concern of delayed fracture cannot be eliminated.
- the cathode reaction of the corrosion reaction due to rain or the like is mainly a reduction reaction of oxygen, but is partially responsible for a reduction reaction of hydrogen. Electrochemical generation of hydrogen is due to this reduction reaction.
- the present invention is based on the above findings, and its gist is as follows.
- the balance has a component composition consisting of Fe and unavoidable impurities, Former austenite average crystal grain size is 8 ⁇ m or less, martensite volume fraction is 95% or more, and the grain fraction of granular carbide with a grain size of 0.1 ⁇ m or more is 0.10% or more 4.0% or less microstructure
- a hot pressed member having a Ni diffusion region of 2.0 ⁇ m or more in the depth direction on the surface layer and a tensile strength of 1850 MPa or more.
- composition of the components is% by mass, and Mo: 0.005% or more and 0.35% or less, Cr: 0.005% or more and 0.35% or less, Nb: 0.001% or more and 0.05% or less, Ti: 0.001% or more and 0.050% or less, B: 0.0002% or more and 0.0050% or less, Ca: 0.005% or less, V: 0.05% or less, Sb: 0.001% or more and 0.020% or less, Ni: 0.50% or less, and Sn: 0.50% or less.
- the hot press member as described in [1] containing 1 type(s) or 2 or more types selected from the group consisting of.
- the balance has a component composition consisting of Fe and unavoidable impurities,
- a cold-rolled steel sheet for hot pressing which has a microstructure in which the volume fraction of granular carbide having a grain size of 0.1 ⁇ m or more is 1.0% or more and 25% or less.
- composition of components is% by mass, and Mo: 0.005% or more and 0.35% or less, Cr: 0.005% or more and 0.35% or less, Nb: 0.001% or more and 0.05% or less, Ti: 0.001% or more and 0.050% or less, B: 0.0002% or more and 0.0050% or less, Ca: 0.005% or less, V: 0.05% or less, Sb: 0.001% or more and 0.020% or less,
- a steel slab having the composition of [4] or [5] is hot-rolled at a finish rolling end temperature: 840°C or higher and 950°C or lower to form a hot rolled steel sheet,
- the hot-rolled steel sheet is cooled as primary cooling at a primary average cooling rate of 55°C/s or more to a cooling stop temperature of 700°C or less, and then as secondary cooling, 5°C/s or more.
- the cold-rolled steel sheet is heated to a soaking temperature of 550° C. to 680° C. at an average heating rate of 1° C./s or less, held at the temperature for 60 minutes to 3000 minutes, and then cooled to room temperature.
- a method for producing a cold-rolled steel sheet for hot pressing which is characterized.
- a method for manufacturing a hot-pressed member which comprises heating the cold-rolled steel sheet for hot pressing according to any one of [4] to [7] to a temperature range of 850°C to 1000°C, and then hot pressing.
- a hot press member having high strength of TS of 1850 MPa or more and excellent delayed fracture resistance is provided together with its manufacturing method.
- the cold-rolled steel plate for hot press which can bring the said hot press member is provided with its manufacturing method.
- C 0.31% or more and less than 0.55%
- C is an element effective for increasing the strength, and is important for ensuring a desired volume ratio of martensite after hot pressing and increasing the strength of the member. Further, in the present invention, C is important for allowing granular carbide serving as a hydrogen trap site to exist in the member and improving delayed fracture resistance. If the C content is less than 0.31%, it becomes difficult to secure the desired volume ratio of martensite, and the desired strength cannot be obtained. Furthermore, the desired volume fraction of granular carbides cannot be obtained after annealing and hot pressing, and the delayed fracture resistance of the base material and the welded portion deteriorates. Therefore, its content should be 0.31% or more. It is preferably 0.32% or more.
- the C content is 0.55% or more, the delayed fracture resistance of the base material deteriorates. Furthermore, after annealing and hot pressing, the volume fraction of granular carbide becomes excessive, and the delayed fracture resistance of the welded portion deteriorates. Therefore, its content should be less than 0.55%. It is preferably less than 0.45%, more preferably less than 0.42%.
- Si 0.01% or more and 1.0% or less Si is an element that contributes to strengthening by solid solution strengthening ferrite, but if the content is excessive, the chemical conversion treatability deteriorates. Therefore, its content should be 1.0% or less. It is preferably 0.8% or less.
- the lower limit is not particularly limited, but an extremely low Si content raises the cost, so it is made 0.01% or more.
- Mn 1.0% or more and 2.5% or less
- Mn is an element that contributes to the formation of martensite after hot pressing, that is, strengthening, because it enhances the hardenability during hot pressing. In order to obtain this effect, its content should be 1.0% or more. It is preferably 1.2% or more. On the other hand, if the content is excessive, Mn bands are excessively generated and the potential of the welded portion is inclined to the base, which may adversely affect the delayed fracture resistance. Therefore, its content should be 2.5% or less. It is preferably 2.2% or less, more preferably 2.0% or less.
- P 0.05% or less
- P is an element that contributes to strengthening by solid solution strengthening, but if the content is excessive, segregation to the grain boundary becomes significant and the grain boundary becomes brittle, so delayed fracture resistance The characteristics may be adversely affected. Therefore, the content is set to 0.05% or less. It is preferably 0.04% or less. The lower limit is not particularly limited, but an extremely low P content increases the steelmaking cost, so 0.0005% or more is preferable.
- the content of S is 0.005% or less. It is preferably 0.004% or less.
- the lower limit is not particularly limited, but an extremely low content of S increases the steelmaking cost similarly to P, so 0.0002% or more is preferable.
- Al 0.01% or more and 0.50% or less Al is an element necessary for deoxidation. To obtain this effect, its content is 0.01% or more. On the other hand, if it exceeds 0.50%, the effect is saturated, so the content is made 0.50% or less. It is preferably 0.40% or less.
- N 0.01% or less N forms coarse nitrides and deteriorates bending crush resistance. This tendency becomes remarkable when N exceeds 0.01%. Therefore, the content is 0.01% or less. It is preferably 0.008% or less.
- the lower limit is not particularly limited, but 0.0005% or more is preferable because extremely low N conversion increases cost.
- Cu 0.002% or more and 0.25% or less
- Cu is an element that contributes to strengthening by solid solution strengthening, and in the present invention, Cu increases hydrogen overvoltage and suppresses the generation of electrochemical hydrogen to form a base material. It is also an important element for improving delayed fracture resistance of welds. In order to obtain these effects, the content is 0.002% or more. It is preferably 0.005% or more. On the other hand, when the content exceeds 0.25%, the effect is saturated, and surface defects due to Cu are easily generated, which may adversely affect the delayed fracture resistance. Therefore, the content is 0.25% or less. It is preferably 0.23% or less.
- the hot-pressed member and the cold-rolled steel sheet for hot-pressing of the present invention may further contain one or more of the following components.
- Mo 0.005% or more and 0.35% or less Mo enhances the hardenability during hot pressing and is an element that contributes to the formation of martensite after hot pressing, that is, strengthening.
- Mo When Mo is contained, its content is 0.005% or more in order to obtain this effect. It is preferably 0.01% or more.
- its content should be 0.35% or less. It is preferably 0.30% or less.
- Cr 0.005% or more and 0.35% or less Cr, like Mo, also enhances the hardenability during hot pressing, and is an element that contributes to the formation of martensite after hot pressing, that is, strengthening.
- its content is set to 0.005% or more in order to obtain this effect. It is preferably 0.01% or more.
- its content should be 0.35% or less. It is preferably 0.30% or less.
- Nb 0.001% or more and 0.05% or less Nb contributes to strengthening by forming fine carbonitrides, and also improves the delayed fracture resistance by reducing the austenite grain size during hot pressing. Is an element that contributes to.
- Nb When Nb is contained, its content is 0.001% or more in order to obtain these effects. It is preferably 0.005% or more.
- the content is set to 0.05% or less. It is preferably 0.03% or less.
- Ti 0.001% or more and 0.050% or less Ti contributes to higher strength by forming fine carbonitrides, and also improves the delayed fracture resistance by reducing the austenite grain size during hot pressing. Is an element that contributes to.
- its content is 0.001% or more in order to obtain this effect. It is preferably 0.005% or more.
- its content is 0.050% or less. It is preferably 0.040% or less.
- B 0.0002% or more and 0.0050% or less B is an element that contributes to the formation of martensite after hot pressing, that is, strengthening, because it enhances the hardenability during hot pressing, and also segregates at grain boundaries. It is an element effective for delayed fracture resistance because it improves the grain boundary strength.
- B When B is contained, its content is 0.0002% or more in order to obtain these effects. It is preferably 0.0005% or more.
- the content is 0.0050% or less. It is preferably 0.0035% or less.
- Ca 0.005% or less Ca is an element effective in delayed fracture resistance because it controls the shapes of sulfides and oxides and suppresses the formation of coarse MnS.
- its content is preferably 0.0005% or more in order to obtain these effects. More preferably, it is 0.0008% or more.
- the content is 0.005% or less. It is preferably 0.0035% or less.
- V 0.05% or less
- V is an element that contributes to strength increase by forming fine carbonitrides.
- its content is preferably 0.01% or more in order to obtain this effect. It is more preferably 0.015% or more.
- the content is set to 0.05% or less. It is preferably 0.035% or less.
- Sb 0.001% or more and 0.020% or less Sb is effective in suppressing the decarburization layer in the surface layer during heating and cooling of the steel sheet, and since it makes the surface potential distribution uniform, it contributes to the improvement of delayed fracture resistance. It is an element.
- Sb When Sb is contained, its content is set to 0.001% or more in order to obtain these effects. It is preferably 0.002% or more.
- the content is 0.020% or less. It is preferably 0.018% or less.
- Ni 0.50% or less
- Ni is an element effective for delayed fracture resistance because it improves corrosion resistance and can reduce the potential difference between the weld and the nut or bolt.
- it When contained together with Cu, it has an effect of suppressing surface defects caused by Cu, and is an effective element in the present invention containing Cu as an essential component.
- its content When Ni is contained, its content is preferably 0.005% or more in order to obtain these effects. It is more preferably 0.05% or more.
- the content is too large, the bending crush resistance is lowered and the tensile shear stress is lowered. Therefore, its content should be 0.50% or less. It is preferably 0.35% or less.
- Sn 0.50% or less Sn improves the corrosion resistance and is an element effective in improving the delayed fracture resistance.
- its content is preferably 0.01% or more in order to obtain this effect. More preferably, it is 0.05% or more.
- the content should be 0.50% or less. It is preferably 0.35% or less.
- the balance other than the above is Fe and inevitable impurities.
- unavoidable impurities include Zn, Co, Zr, Ta, W, etc., and the permissible ranges of these contents are: Zn: 0.01% or less, Co: 0.10% or less, Zr: 0.10% or less, Ta : 0.10% or less, W: 0.10% or less.
- the hot pressed member of the present invention has a prior austenite average crystal grain size of 8 ⁇ m or less, a martensite volume fraction of 95% or more, and a grain size of 0.1 ⁇ m or more of a granular carbide volume fraction of 0.10 or more. % Of steel and 4.0% or less of steel microstructure.
- the volume fraction in the microstructure of the hot press member can be obtained as follows. From the hat top plate portion of the hot press member or a portion corresponding thereto, a structure observation test piece is sampled so that a plane parallel to the rolling direction and perpendicular to the hat top plate surface is the observation surface. The observation surface was polished, and the structure was exposed by corroding it with 3 vol.% Nital solution, and 10 fields (1 field was 30 ⁇ m ⁇ 25 ⁇ m) of the structure at the position where the plate thickness was 1/4 were taken with a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the area ratio of martensite and granular carbides with a grain size of 0.1 ⁇ m or more was measured by the point counting method (based on ASTM E562-83 (1988)), and the arithmetic mean was calculated for each. The area ratio of is calculated, and this area ratio is used as the volume fraction.
- the particle size of the granular carbide refers to the equivalent circle diameter of the carbide observed as granular in the SEM observation.
- the volume fraction thus obtained is the volume fraction of the entire hot press member.
- the prior austenite average crystal grain size of the microstructure of the hot press member can be determined as follows. From the hat top plate portion of the hot press member or a portion corresponding thereto, a structure observation test piece is sampled so that a plane parallel to the rolling direction and perpendicular to the hat top plate surface is the observation surface. The observation surface was polished and the structure was exposed by corroding it with 3 vol.% Nital solution, and 10 fields of view (1 field of view is 50 ⁇ m ⁇ 40 ⁇ m) were scanned with a scanning electron. Observe with a microscope (SEM, magnification: 3000 times), measure the circle equivalent diameter of the old austenite grains using Image-Pro of Media Cybernetics, and calculate the arithmetic mean to obtain the old austenite average crystal grain size.
- SEM magnification: 3000 times
- the volume fraction of martensite should be 95% or more. It is preferably 98% or more.
- the volume fraction of granular carbide with a particle size of 0.1 ⁇ m or more is less than 0.10%, it does not function as a hydrogen trap site, and the delayed fracture resistance deteriorates. Therefore, the volume fraction should be 0.10% or more. It is preferably 0.30% or more. When the volume fraction exceeds 4.0%, segregation excessively occurs in the heat-affected zone after resistance spot welding, which deteriorates the delayed fracture resistance. Therefore, the volume fraction should be 4.0% or less. It is preferably 3.2% or less.
- the microstructure of steel is basically composed of martensite and granular carbide, but as the remaining structure other than these, bainite, ferrite, cementite, pearlite, etc. may be contained in a small amount.
- the total volume fraction of these residual structures can be determined by subtracting the volume fraction of martensite and granular carbide having a grain size of 0.1 ⁇ m or more from 100%.
- the allowable amount of the balance tissue is less than 4.90% (including 0%), preferably 4% or less (including 0%).
- the average crystal grain size of prior austenite is set to 8 ⁇ m or less. It is preferably 7 ⁇ m or less.
- the lower limit is not particularly limited, but can be, for example, 3 ⁇ m or more, and more preferably 4 ⁇ m or more.
- Ni diffusion region on the surface of hot pressed parts The Ni diffusion region of the surface layer of the hot press member, which is an embodiment of the present invention, will be described in detail.
- the Ni diffusion region in the surface layer is 2.0 ⁇ m or more in the depth direction. This makes it possible to shift the potential to a noble level, suppress electrochemical generation of hydrogen, and improve the delayed fracture resistance.
- the thickness of the Ni diffusion region is preferably 2.5 ⁇ m or more.
- the thickness can be 200 ⁇ m or less, preferably 150 ⁇ m or less, from the viewpoint of weldability.
- the thickness may be 2.0 ⁇ m or more, and may be 50 ⁇ m or less.
- the Ni diffusion region of the surface layer of the hot press member can be obtained as follows. From the hat top plate part of the hot press member or a part corresponding to it, collect a test piece for microstructure observation so that the plate thickness cross section parallel to the rolling direction becomes the observation surface, polish the observation surface, and then electron microanalyzer (EPMA) maps the elemental distributions of Fe and Ni for the surface layer of 10 fields of view (one field of view is 200 ⁇ m ⁇ 200 ⁇ m). In the mapping, the area where Fe is detected as a matrix and the concentration of Ni is more concentrated than the surrounding area is the Ni diffusion area, and the average length in the depth direction can be obtained to obtain the thickness of the Ni diffusion area. ..
- the surface layer of the hot press member refers to the surface layer of the steel sheet forming the hot press member. A plating layer may be provided on the surface of the hot press member, but the surface layer of the steel sheet does not include this plating layer.
- the hot-pressed member may have a plating layer (for example, a Zn plating layer) on the surface.
- a hot press member can be obtained by hot pressing a cold rolled steel sheet having a plating layer on the surface.
- the Ni diffusion region may be one in which Ni in the plating layer is diffused to the surface layer by hot-pressing a cold-rolled steel sheet having a Ni-containing plating layer (for example, a Ni-containing Zn-based plating layer). ..
- Microstructure of cold rolled steel sheet for hot pressing The microstructure and the like of the cold-rolled steel sheet for hot pressing according to the embodiment of the present invention will be described in detail.
- the hot pressed cold rolled steel sheet of the present invention has a grain size of The volume fraction of granular carbide of 0.1 ⁇ m or more is 1.0% or more and 25% or less.
- the microstructure of the cold-rolled steel sheet for hot pressing is not particularly limited as long as the volume fraction of granular carbide having a grain size of 0.1 ⁇ m or more is controlled in this way.
- volume fraction of granular carbide having a particle size of 0.1 ⁇ m or more is less than 1.0% or more than 25%, the desired volume fraction of granular carbide cannot be obtained after hot pressing, and the delayed fracture resistance deteriorates.
- the volume fraction is preferably 3.0% or more, and preferably 20% or less.
- the definition and measurement of the particle size and volume fraction are the same as the definition and measurement of the hot press member.
- the cold-rolled steel sheet for hot pressing has a plating layer on the surface.
- the cold-rolled steel sheet for hot pressing of the present invention can have a Ni-containing plating layer on the surface.
- Ni in the plating layer diffuses to the surface layer of the steel sheet, and a hot-pressed member having a Ni diffusion region in the surface layer is obtained.
- Ni-containing plating layer examples include a Zn-containing plating layer containing Ni.
- a plating layer containing 7% by mass or more and 25% by mass or less of Ni, and the balance Zn and unavoidable impurities can be mentioned.
- the Ni-containing Zn-based plating layer can be formed by a plating treatment such as a hot dip galvanizing treatment, an alloying zinc plating treatment, and an electrogalvanizing treatment.
- the Ni-containing plating layer can have a thickness of 0.5 ⁇ m or more, and preferably 1.0 ⁇ m or more, from the viewpoint of forming the Ni diffusion region of the hot press member. From the viewpoint of weldability, the thickness may be 200 ⁇ m or less, preferably 150 ⁇ m or less. The thickness may be 50 ⁇ m or less.
- the thickness of the Ni-containing plating layer can be obtained as follows. Samples for microstructure observation were taken so that the plate thickness cross section parallel to the rolling direction would be the observation surface, and after polishing the observation surface, 10 fields of view (1 field of view is 200 ⁇ m ⁇ 200 ⁇ m) with an electron beam microanalyzer (EPMA) The element distributions of Fe and Ni are mapped on the surface layer of. In the mapping, a region in which Ni is more concentrated than the surroundings is defined as a Ni-containing plating layer, and the average of the lengths in the depth direction can be obtained to obtain the thickness.
- EPMA electron beam microanalyzer
- a method for manufacturing a cold-rolled steel sheet for hot pressing is A steel slab having the above composition is a hot rolled steel sheet by hot rolling at a finish rolling end temperature: 840°C or higher and 950°C or lower, The hot-rolled steel sheet is cooled as primary cooling at a primary average cooling rate of 55°C/s or more to a cooling stop temperature of 700°C or less, and then as secondary cooling, 5°C/s or more.
- the hot rolling start temperature of the steel slab is preferably 1150°C or higher and 1270°C or higher.
- start hot rolling at a temperature of 1150°C or more and 1270°C or less without reheating, or after reheating to a temperature of 1150°C or more and 1270°C or less, hot rolling It is preferable to start rolling. That is, in the present invention, after the steel slab is manufactured, the steel slab is once cooled to room temperature and then reheated.
- An energy-saving process such as a method of immediately rolling after heating, or a method of direct-rolling/direct rolling in which casting is followed by rolling as it is can be applied without any problem.
- ⁇ Finish rolling end temperature 840°C or higher and 950°C or lower
- the finish rolling finish temperature is set to 840°C or higher. It is preferably 880°C or higher.
- the finish rolling end temperature exceeds 950°C, the hot rolled structure becomes coarse and the crystal grains after annealing also become coarse. Therefore, the finish rolling finish temperature is set to 950°C or lower. It is preferably 930°C or lower.
- the primary average cooling rate is set to 55°C/s or more. It is preferably 60°C/s or more.
- the upper limit is not particularly limited, it can be 150° C./s or less, and 130° C./s or less is preferable.
- the cooling stop temperature in the primary cooling exceeds 700°C, pearlite is excessively generated in the microstructure of the hot-rolled steel sheet, and finally the microstructure after annealing and hot pressing becomes heterogeneous and uniform fine grains are formed.
- the cooling stop temperature is 700°C or lower. It is preferably 680°C or lower.
- the -Secondary cooling step cooling to a winding start temperature of 650°C or less at a secondary average cooling rate of 5°C/s or more and 60°C/s or less, and as the secondary cooling, from the cooling stop temperature to the winding start temperature
- the secondary average cooling rate is set to 5°C/s or more. It is preferably 7°C/s or more.
- the second average cooling rate is 60°C/s or less. It is preferably 40°C/s or less.
- the delayed fracture resistance also deteriorates.
- cooling is performed to a winding start temperature of 650° C. or lower, and then winding is started.
- the lower limit of the winding start temperature is not particularly limited, but the temperature at the time of winding becomes too low, hard martensite is excessively generated, from the viewpoint of avoiding an increase in cold rolling load, 300 C. or higher is preferable.
- ⁇ Winding process> ⁇ Coiling temperature: 650°C or less
- the winding temperature is preferably 610°C or lower.
- the winding temperature is preferably 300°C or higher.
- pickling is performed to remove the scale on the surface layer of the hot-rolled steel sheet.
- This pickling treatment is not particularly limited and may be carried out according to a conventional method.
- a cold rolling step of rolling the obtained hot rolled steel sheet into a cold rolled steel sheet having a predetermined thickness is performed.
- This cold rolling step is not particularly limited and may be carried out according to a conventional method.
- the plate thickness is not particularly limited and can be 0.4 mm or more, preferably 0.5 mm or more, and can be 4.0 mm or less, preferably 3.8 mm or less.
- This annealing step is a step for advancing recrystallization after cold rolling and producing granular carbides, and heating at an average heating rate of 1°C/s or less to a soaking temperature of 550°C or more and 680°C or less. Then, the soaking temperature is maintained for 60 minutes or more and 3000 minutes or less, and then cooled to room temperature.
- the average heating rate can be 0.01°C/s or more, preferably 0.05°C/s or more.
- the soaking temperature is higher than the recrystallization temperature. If the soaking temperature is lower than 550°C, recrystallization is not sufficiently carried out and the granular carbide does not grow greatly, so that the desired volume fraction of the granular carbide cannot be obtained after annealing and hot pressing, and the mother after hot pressing is not obtained. The delayed fracture resistance of the material and welds is reduced. Therefore, the soaking temperature is set to 550°C or higher. It is preferably 570°C or higher.
- the soaking temperature is set to 680°C or lower. It is preferably 650°C or lower. More preferably, it is 620°C or lower.
- -A holding time of 60 minutes or more is required to generate sufficient granular carbides at the above-mentioned soaking temperature and to secure the delayed fracture resistance of the base material and weld after hot pressing. It is preferably 100 minutes or more.
- the holding time exceeds 3000 minutes, the volume fraction of granular carbides increases, and segregates excessively in the heat-affected zone after resistance spot welding, and the delayed fracture resistance of the weld zone deteriorates. It is preferably 2400 minutes or less.
- the cooling after the holding is not particularly limited, and can be allowed to cool (gradual cooling) or controlled cooling depending on the heating furnace used.
- the method for manufacturing a cold-rolled steel sheet for hot pressing further includes a plating treatment step with Ni-containing plating.
- a cold-rolled steel sheet for hot pressing is plated with Ni-containing plating to form a Ni-containing plated layer.
- Ni in the plating layer diffuses to the surface layer of the steel sheet, and a hot-pressed member having a Ni diffusion region in the surface layer is obtained.
- Ni-containing plating layer examples include a Zn-containing plating layer containing Ni, and a plating layer containing Ni in an amount of 10% by mass or more and 25% by mass or less, with the balance being Zn and inevitable impurities.
- a Zn-based plating layer can be formed by a plating treatment such as hot dip galvanizing treatment, galvannealing treatment, or electrogalvanizing treatment.
- the Ni-containing plating layer can have a thickness of 0.5 ⁇ m or more, preferably 0.8 ⁇ m or more, from the viewpoint of forming the Ni diffusion region of the hot press member. From the viewpoint of productivity, the thickness can be 100 ⁇ m or less, and preferably 70 ⁇ m or less.
- temper rolling may be performed on the cold rolled steel sheet.
- the preferable elongation rate is 0.05% or more and 2.0% or less.
- the method for producing a hot-pressed member of the present invention is characterized in that the cold-rolled steel sheet for hot-pressing is heated to a temperature range of 850° C. or higher and 1000° C. or lower, and then hot-pressed.
- the manufacturing method is not particularly limited, and a known method can be used. For example:
- Heating temperature 850°C or higher and 1000°C or lower
- the heating temperature should be 850°C or higher.
- Ac3 point or more is preferable.
- the heating temperature is set to 1000° C. or lower from the viewpoint of economy and suppression of oxide formation.
- the heating temperature is preferably 950°C or lower.
- the average heating rate to the heating temperature is not particularly limited and can be 1°C/s or more and 400°C/s or less. If the average heating rate is 1°C/s or more, productivity is not impaired, and if it is 400°C/s or less, instability of temperature control can be avoided.
- the average heating rate is preferably 10°C/s or more and 150°C/s or less.
- the retention time is not particularly limited and can be 1 second or more and 1000 seconds or less. If the holding time is 1 second or more, the hardenability can be sufficiently secured, and if the holding time is 1000 seconds or less, coarsening of the crystal grain size is suppressed.
- the holding time is preferably 5 seconds or more and 850 seconds or less.
- the heating method is not particularly limited, and examples include electric furnaces, gas furnaces, infrared heating, high-frequency heating, and direct current heating.
- the atmosphere at the time of heating is not particularly limited, and examples thereof include the atmosphere and an inert gas atmosphere.
- a hot-pressed member can be manufactured by setting the cold-rolled steel sheet heated in a die having a die and a punch, performing press molding, and cooling under desired cooling conditions.
- the cold-rolled steel sheet thus obtained was annealed in a batch annealing furnace (BAF) under the conditions shown in Table 2, A cold rolled steel plate (CR) was obtained.
- (CR) is a cold-rolled steel sheet (non-plated steel sheet) that has been subjected only to the annealing treatment in the batch annealing furnace (BAF) and not subjected to the plating treatment.
- a part of the cold-rolled steel sheet was subjected to batch annealing and then, in a continuous hot-dip galvanizing line (CGL), a hot dip galvanized steel sheet containing Ni (GI, Ni content: 12 mass %) was obtained.
- CGL continuous hot-dip galvanizing line
- Hot pressing was performed on the obtained cold-rolled steel sheet (plated steel sheet).
- the die used in the hot press has a punch width of 70 mm, a punch shoulder R4 mm, a die shoulder R4 mm, and a forming depth of 30 mm.
- the cold-rolled steel sheet was heated in the atmosphere using either an infrared heating furnace or an atmosphere heating furnace depending on the heating rate.
- the cooling after the pressing was performed by combining sandwiching of the steel sheet between the punch and die and air cooling on the die released from the sandwiching, and cooling from the press (start) temperature to 150°C.
- the hot press member, the microstructure of the cold rolled steel sheet, the Ni diffusion region, and the thickness of the plating layer were measured by the method described above. The results are shown in Table 3.
- TS tensile strength
- ⁇ Delayed fracture resistance Evaluation of base material> A JIS No. 5 tensile test piece was sampled from the position of the bottom of the hat of the hot press member, and a constant load test was carried out. A load was applied while immersed in a hydrochloric acid solution (pH 3) at room temperature, and the presence or absence of breakage was evaluated. When the load stress was 1000 MPa, the delayed fracture resistance was evaluated as good ( ⁇ ) when the fracture did not occur for 100 hours or more, and the delayed fracture resistance was inferior (x) when the fracture occurred in less than 100 hours.
- ⁇ Delayed fracture resistance Evaluation of welded body (after resistance spot welding)> Regarding delayed fracture after resistance spot welding, resistance welding (spot welding) was performed using two tensile shear test pieces from the position of the bottom of the hat of the hot press member obtained according to JIS Z 3136. As for the welding machine, resistance spot welding was carried out on a plate set of two stacked steel plates using a servomotor pressure type single-phase direct current (50 Hz) resistance welding machine attached to a welding gun. The welding conditions were a pressure of 4.5 kN and a hold time of 0.1 seconds. The welding current and welding time were adjusted so that the nugget diameter was 6.0 mm.
- the resulting welded body was subjected to a tensile shear test according to JIS Z 3136 to measure the load at which the steel sheet peeled off.
- the peel strength at this time was defined as FS
- a tensile shear test piece was prepared in the same manner as above, and a load of 0.6 ⁇ FS was applied. Then, it was immersed in a solution of hydrochloric acid having a pH of 3.0 at room temperature for 100 hours, and the presence or absence of peeling of the steel sheet was evaluated. No peeling was rated as good ( ⁇ ), and peeling was rated as poor (x).
- all of the invention examples are hot pressed members having both high strength of TS of 1850 MPa or more and excellent delayed fracture resistance (base material, welded body).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
また、本発明は、上記熱間プレス部材をもたらすことができる、熱間プレス用冷延鋼板を、その製造方法とともに提供することを目的とする。
ここで、優れた耐遅れ破壊特性とは、母材のみならず、抵抗スポット溶接部においても、耐遅れ破壊特性が優れていることをいい、具体的には、実施例の母材の評価において、1000MPaの荷重下、母材を試験液に100時間浸漬しても破断が生じず、実施例の溶接体の評価において、荷重負荷後、試験液に浸漬しても剥離がみられなかったことをいう。
熱間プレス部材を利用して自動車車体を仕上げ、製造した自動車について、実際に走行を繰り返すと、雨等により電気化学的に水素が部材上に発生し、一部は部材に侵入する。部材に応力が発生していなければ、この水素を要因とした遅れ破壊は生じないが、抵抗スポット溶接により応力が生じている場合があるため、遅れ破壊の懸念を払拭できない。
ここで、雨等による腐食反応のカソード反応は酸素の還元反応が主であるところ、一部、水素の還元反応が担う。電気化学的な水素の発生は、この還元反応による。
これらに対しては、以下が有効である。
(1)部材に侵入した水素の影響を抑制するには、部材中に粒状炭化物を分散させて、水素のトラップサイトとすることが有効である。
(2)電気化学的な水素の発生を抑制するには、部材表層にNi拡散領域を存在させて、電位を貴にシフトさせるとともに、部材中にCuを含有させて水素過電圧を上昇させることの両方が有効である。
C:0.31%以上0.55%未満、
Si:0.01%以上1.0%以下、
Mn:1.0%以上2.5%以下、
P:0.05%以下、
S:0.005%以下、
Al:0.01%以上0.50%以下、
N:0.01%以下、および
Cu:0.002%以上0.25%以下を含有し、
残部はFeおよび不可避的不純物からなる成分組成を有し、
旧オーステナイト平均結晶粒径が8μm以下であり、マルテンサイトの体積分率が95%以上であり、かつ粒径が0.1μm以上の粒状炭化物の体積分率が0.10%以上4.0%以下であるミクロ組織を有し、
表層にNi拡散領域が深さ方向に2.0μm以上存在し、かつ
引張強さが1850MPa以上である、熱間プレス部材。
Mo:0.005%以上0.35%以下、
Cr:0.005%以上0.35%以下、
Nb:0.001%以上0.05%以下、
Ti:0.001%以上0.050%以下、
B:0.0002%以上0.0050%以下、
Ca:0.005%以下、
V:0.05%以下、
Sb:0.001%以上0.020%以下、Ni:0.50%以下およびSn:0.50%以下からなる群より選択される1種または2種以上を含有する、[1]に記載の熱間プレス部材。
C:0.31%以上0.55%未満、
Si:0.01%以上1.0%以下、
Mn:1.0%以上2.5%以下、
P:0.05%以下、
S:0.005%以下、
Al:0.01%以上0.50%以下、
N:0.01%以下、および
Cu:0.002%以上0.25%以下を含有し、
残部はFeおよび不可避的不純物からなる成分組成を有し、
粒径が0.1μm以上の粒状炭化物の体積分率が1.0%以上25%以下であるミクロ組織を有する、熱間プレス用冷延鋼板。
Mo:0.005%以上0.35%以下、
Cr:0.005%以上0.35%以下、
Nb:0.001%以上0.05%以下、
Ti:0.001%以上0.050%以下、
B:0.0002%以上0.0050%以下、
Ca:0.005%以下、
V:0.05%以下、
Sb:0.001%以上0.020%以下、
Ni:0.50%以下およびSn:0.50%以下からなる群より選択される1種または2種以上を含む、[4]の熱間プレス用冷延鋼板。
前記熱延鋼板を、第1次冷却として、55℃/s以上の第1次平均冷却速度で、700℃以下の冷却停止温度まで冷却し、次いで、第2次冷却として、5℃/s以上60℃/s以下の第2次平均冷却速度で、650℃以下の巻取り開始温度まで冷却した後、巻取り、酸洗を施し、
前記熱延鋼板を冷間圧延して冷延鋼板とし、
前記冷延鋼板を、1℃/s以下の平均加熱速度で、550℃以上680℃以下の均熱温度まで加熱し、前記温度で60分以上3000分以下保持し、次いで室温まで冷却することを特徴とする熱間プレス用冷延鋼板の製造方法。
また、本発明によれば、上記熱間プレス部材をもたらすことができる、熱間プレス用冷延鋼板が、その製造方法とともに提供される。
本発明の熱間プレス部材を自動車用部材に適用することで、車体軽量化による燃費改善を図ることができるため、本発明の産業的な利用価値は大きい。
本発明の一実施形態に係る熱間プレス部材および熱間プレス用冷延鋼板の成分組成について説明する。成分組成における単位はいずれも「質量%」であるが、特に断らない限り、単に「%」で示す。
Cは高強度化に有効な元素であり、熱間プレス後に所望のマルテンサイトの体積率を確保して、部材の強度を高めるのに重要である。さらに、本発明において、Cは水素のトラップサイトとなる粒状炭化物を部材中に存在させて、耐遅れ破壊特性を改善するのに重要である。
Cの含有量が0.31%未満であると、所望のマルテンサイトの体積率の確保が困難となり、所望の強度が得られない。さらに、焼鈍、熱間プレス後に所望の粒状炭化物の体積分率が得られず、母材および溶接部の耐遅れ破壊特性が低下する。このため、その含有量は0.31%以上とする。好ましくは0.32%以上である。
一方、Cの含有量が0.55%以上であると、母材の耐遅れ破壊特性が低下する。さらに、焼鈍、熱間プレス後に粒状炭化物の体積分率が過剰となり、溶接部の耐遅れ破壊特性が低下する。このため、その含有量は0.55%未満とする。好ましくは0.45%未満であり、さらに好ましくは0.42%未満である。
Siはフェライトを固溶強化することにより、高強度化に寄与する元素であるが、含有量が過剰であると、化成処理性が劣化する。このため、その含有量は1.0%以下とする。好ましくは0.8%以下である。下限は特に限定されないが、極めて低いSi化はコストを上昇させるため、0.01%以上とする。
Mnは熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイト形成、すなわち高強度化に寄与する元素である。この効果を得るため、その含有量は1.0%以上とする。好ましくは1.2%以上である。一方、含有量が過剰であると、Mnバンドが過剰に生成し、溶接部の電位が卑に傾く箇所ができるため、耐遅れ破壊特性に悪影響を与え得る。このため、その含有量は2.5%以下とする。好ましくは2.2%以下であり、さらに好ましくは2.0%以下である。
Pは固溶強化により高強度化に寄与する元素であるが、含有量が過剰であると、粒界への偏析が著しくなって粒界を脆化させるため、耐遅れ破壊特性に悪影響を与え得る。このため、その含有量は0.05%以下とする。好ましくは0.04%以下である。下限は特に限定されないが、極めて低いP化は製鋼コストを上昇させるため、0.0005%以上が好ましい。
Sは含有量が多くなると、MnS等の硫化物の生成が多くなり、その介在物が起点となって割れが発生するため、耐遅れ破壊特性に悪影響を与え得る。このため、その含有量は0.005%以下とする。好ましくは、0.004%以下である。下限は特に限定されないが、極めて低いS化はPと同様、製鋼コストを上昇させるため、0.0002%以上が好ましい。
Alは脱酸に必要な元素であり、この効果を得るため、その含有量は0.01%以上とする。一方、0.50%を超えると効果が飽和するため、その含有量は0.50%以下とする。好ましくは0.40%以下である。
Nは粗大な窒化物を形成して耐曲げ圧潰性を劣化させる。Nが0.01%を超えると、この傾向が顕著となる。このため、その含有量は0.01%以下とする。好ましくは0.008%以下である。下限は特に限定されないが、極めて低いN化はコストを上昇させるため、0.0005%以上が好ましい。
Cuは固溶強化により高強度化に寄与する元素であり、また、本発明において、Cuは水素過電圧を上昇させ、電気化学的な水素の発生抑制を通して、母材および溶接部の耐遅れ破壊特性を改善するため、重要な元素である。これらの効果を得るため、その含有量は0.002%以上とする。好ましくは、0.005%以上である。一方、含有量が0.25%を超えると効果が飽和し、また、Cuに起因する表面欠陥が発生しやすくなり、耐遅れ破壊特性に悪影響を与え得る。このため、その含有量は0.25%以下とする。好ましくは、0.23%以下である。
Moは熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイト形成、すなわち高強度化に寄与する元素である。Moを含有させる場合、この効果を得るため、その含有量は0.005%以上とする。好ましくは0.01%以上である。一方、多量に含有させても効果は飽和し、かえってコストの増加を招き、また、化成処理性が劣化し得る。このため、その含有量は0.35%以下とする。好ましくは0.30%以下である。
CrもMoと同様に熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイト形成、すなわち高強度化に寄与する元素である。Crを含有させる場合、この効果を得るため、その含有量は0.005%以上とする。好ましくは0.01%以上である。一方、多量に含有させても効果は飽和し、また、表面酸化物を形成することからめっき性が劣化し得る。このため、その含有量は0.35%以下とする。好ましくは0.30%以下である。
Nbは微細な炭窒化物を形成することで、高強度化に寄与するとともに、熱間プレス時のオーステナイト粒径を微細化することから、耐遅れ破壊特性の向上に寄与する元素である。Nbを含有させる場合、これらの効果を得るため、その含有量は0.001%以上とする。好ましくは0.005%以上である。一方、多量に含有させても効果は飽和し、コストの増加を招く。このため、その含有量は0.05%以下とする。好ましくは0.03%以下である。
Tiは微細な炭窒化物を形成することで、高強度化に寄与するとともに、熱間プレス時のオーステナイト粒径を微細化することから、耐遅れ破壊特性の向上に寄与する元素である。Tiを含有させる場合、この効果を得るため、その含有量は0.001%以上とする。好ましくは0.005%以上である。一方、多量に含有すると、熱間プレス後の伸びが著しく低下する。このため、その含有量は0.050%以下とする。好ましく0.040%以下である。
Bは熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイト形成、すなわち高強度化に寄与する元素であり、また、粒界に偏析することで粒界強度を向上させるため、耐遅れ破壊特性に有効な元素である。Bを含有させる場合、これらの効果を得るため、その含有量は0.0002%以上とする。好ましくは0.0005%以上である。一方、多量に含有すると、Nとともに粗大な析出物を生成し、耐遅れ破壊特性に悪影響を与え得る。このため、その含有量は0.0050%以下とする。好ましくは0.0035%以下である。
Caは硫化物および酸化物の形状を制御し、粗大なMnSの生成を抑制するため耐遅れ破壊性に有効な元素である。Caを含有させる場合、これらの効果を得るため、その含有量は0.0005%以上が好ましい。より好ましくは0.0008%以上である。一方、含有量が多量であると、加工性を劣化させる。このため、その含有量は0.005%以下とする。好ましくは0.0035%以下である。
Vは微細な炭窒化物を形成することで、強度上昇に寄与する元素である。Vを含有させる場合、この効果を得るため、その含有量は0.01%以上が好ましい。より好ましくは0.015%以上である。一方、含有量が多量であると、耐遅れ破壊特性に悪影響を与え得る。このため、その含有量は0.05%以下とする。好ましくは0.035%以下である。
Sbは鋼板の加熱、冷却に際し、表層における脱炭層を抑制するのに有効であり、表面の電位分布を均一とすることから、耐遅れ破壊特性の向上に寄与する元素である。Sbを含有させる場合、これらの効果を得るため、その含有量を0.001%以上とする。好ましくは0.002%以上である。一方、含有量が多量であると、圧延負荷荷重を増大させ、生産性を低下させる。このため、含有量は0.020%以下とする。好ましくは、0.018%以下である。
Niは耐食性を向上させ、かつ、溶接部とナットやボルトの電位差を低減できることから、耐遅れ破壊特性に有効な元素である。Cuと同時に含有させると、Cu起因の表面欠陥を抑制する効果があるため、Cuを必須の成分とする本発明において有効な元素である。Niを含有させる場合、これらの効果を得るため、その含有量は0.005%以上が好ましい。より好ましくは0.05%以上である。一方、含有量が多量であると、耐曲げ圧潰性が低下して引張せん断応力が低下する。このため、その含有量は0.50%以下とする。好ましくは0.35%以下である。
Snは耐食性を向上させることから、耐遅れ破壊特性の向上に有効な元素である。Snを含有させる場合、この効果を得るため、その含有量は0.01%以上が好ましい。より好ましくは、0.05%以上である。一方、含有量が多量であると、耐遅れ破壊特性に悪影響を与え得る。このため、その含有量は0.50%以下とする。好ましくは0.35%以下である。
本発明の一実施形態である熱間プレス部材のミクロ組織等について、詳細に説明する。本発明の熱間プレス部材は、旧オーステナイト平均結晶粒径が8μm以下であり、マルテンサイトの体積分率が95%以上であり、かつ粒径が0.1μm以上の粒状炭化物の体積分率が0.10%以上4.0%以下である鋼のミクロ組織を有する。
熱間プレス部材のハット天板部またはそれに準ずる部分から、圧延方向に平行で、かつハット天板面に垂直な面が観察面となるように、組織観察用試験片を採取する。観察面を研磨し、3vol.%ナイタール液で腐食して組織を現出し、板厚1/4となる位置の組織について、10視野(1視野は30μm×25μm)を、走査型電子顕微鏡(SEM、倍率:5000倍)で観察し、ポイントカウント法(ASTM E562-83(1988)に準拠)により、マルテンサイトおよび粒径が0.1μm以上の粒状炭化物の面積率を測定し、それぞれについて、算術平均の面積率を求め、この面積率を体積分率とする。
ここで、粒状炭化物の粒径は、上記SEM観察において、粒状物として観察される炭化物に関し、その円相当直径をいう。
このようにして求められる体積分率は、熱間プレス部材の全体に対する体積分率である。
熱間プレス部材のハット天板部またはそれに準ずる部分から、圧延方向に平行で、かつハット天板面に垂直な面が観察面となるように、組織観察用試験片を採取する。観察面を研磨し、3vol.%ナイタール液で腐食して組織を現出し、表面から板厚方向に1/4の位置の組織について、10視野(1視野は50μm×40μm)を、走査型電子顕微鏡(SEM、倍率:3000倍)で観察し、Media Cybernetics社のImage-Proを用いて、旧オーステナイト粒の円相当直径を測定し、算術平均を求め、旧オーステナイト平均結晶粒径とする。
本発明の一実施形態である熱間プレス部材の表層のNi拡散領について、詳細に説明する。本発明の熱間プレス部材は、表層にNi拡散領域が深さ方向に2.0μm以上存在する。これにより、電位を貴にシフトさせ、電気化学的な水素の発生を抑制し、ひいては、耐遅れ破壊特性を改善することができる。Ni拡散領域の厚さは、好ましくは2.5μm以上である。また、厚さは、溶接性の点から、200μm以下とすることができ、好ましくは150μm以下である。厚さは2.0μm以上であればよく、50μm以下であってもよい。
熱間プレス部材のハット天板部またはそれに準ずる部分から、圧延方向に平行な板厚断面が観察面となるように、組織観察用試験片を採取、観察面を研磨後、電子線マイクロアナライザ(EPMA)にて、10視野(1視野は200μm×200μm)の表層についてFeおよびNiの元素分布をマッピングする。マッピングにおいて、Feがマトリックスとして検出され、かつNiの濃度が周囲より濃化している領域をNi拡散領域とし、その深さ方向の長さの平均を求め、Ni拡散領域の厚さとすることができる。熱間プレス部材における表層は、熱間プレス部材を構成する鋼板の表層をいうこととする。熱間プレス部材の表面にはめっき層が設けられていてもよいが、鋼板の表層には、このめっき層は含まれないものとする。
本発明の一実施形態に係る熱間プレス用冷延鋼板のミクロ組織等について、詳細に説明する。
本発明の熱間プレス用冷延鋼板は、表面にNi含有めっき層を備えることができる。Ni含有めっき層を備える冷延鋼板を熱間プレスすることにより、めっき層中のNiが鋼板の表層に拡散し、表層にNi拡散領域が存在する熱間プレス部材が得られる。
Ni含有めっき層の厚さは、以下のようにして求めることができる。
圧延方向に平行な板厚断面が観察面となるように、組織観察用試験片を採取、観察面を研磨後、電子線マイクロアナライザ(EPMA)にて、10視野(1視野は200μm×200μm)の表層についてFeおよびNiの元素分布をマッピングする。マッピングにおいて、Niが周囲より濃化している領域をNi含有めっき層とし、その深さ方向の長さの平均を求め、厚さとすることができる。
本発明の一実施形態に係る熱間プレス用冷延鋼板の製造方法について、詳細に説明する。この製造方法は、
上記の成分組成を有する鋼スラブを、仕上げ圧延終了温度:840℃以上950℃以下で熱間圧延して熱延鋼板とし、
前記熱延鋼板を、第1次冷却として、55℃/s以上の第1次平均冷却速度で、700℃以下の冷却停止温度まで冷却し、次いで、第2次冷却として、5℃/s以上60℃/s以下の第2次平均冷却速度で、650℃以下の巻取り開始温度まで冷却した後、巻取り、酸洗を施し、
前記熱延鋼板を冷間圧延して冷延鋼板とし、
前記冷延鋼板を、1℃/s以下の平均加熱速度で、550℃以上680℃以下の均熱温度まで加熱し、前記温度で60分以上3000分以下保持し、次いで室温まで冷却する
ことを特徴とするものである。
上記成分組成の鋼スラブを製造した後、熱間圧延する。鋼スラブの熱間圧延開始温度は、好ましくは、1150℃以上1270℃以上である。本発明においては、鋼スラブを鋳造後、再加熱することなく1150℃以上1270℃以下の温度で熱間圧延を開始するか、あるいは1150℃以上1270℃以下の温度に再加熱した後、熱間圧延を開始することが好ましい。すなわち、本発明においては、鋼スラブを製造した後、いったん室温まで冷却し、その後、再加熱する従来法に加え、冷却することなく、温片のままで加熱炉に装入する方法、あるいは保熱を行った後に直ちに圧延する方法、あるいは鋳造後そのまま圧延する直送圧延・直接圧延する方法等の省エネルギープロセスも問題なく適用できる。
熱間圧延は、鋼板内の組織均一微細化、材質の異方性低減により、焼鈍、熱間プレス後の母材および熱間プレス部材の溶接部の耐遅れ破壊特性を向上させるため、オーステナイト単相域にて終了する必要がある。このため、仕上げ圧延終了温度は840℃以上とする。好ましくは880℃以上である。一方、仕上げ圧延終了温度が950℃超では、熱延組織が粗大になり、焼鈍後の結晶粒も粗大化する。このため、仕上げ圧延終了温度は950℃以下とする。好ましくは930℃以下である。
・第1次冷却工程:55℃/s以上の第1次平均冷却速度で700℃以下の冷却停止温度まで冷却
熱間圧延終了後の冷却過程でオーステナイトがフェライト変態するが、高温ではフェライトが粗大化するため、熱間圧延終了後は急冷することで、組織をできるだけ均質微細化する。このため、まず、第1次冷却として、55℃/s以上の第1次平均冷却速度で、仕上げ圧延終了温度から700℃以下の冷却停止温度まで冷却する。
第2次冷却として、上記冷却停止温度から巻取り開始温度まで冷却するが、第2次平均冷却速度が5℃/s未満では、熱延鋼板のミクロ組織にフェライトもしくはパーライトが過剰に生成し、焼鈍、熱間プレス後のミクロ組織が不均質となり、均一微細粒が得られず、母材および溶接部の耐遅れ破壊特性が低下する。このため、第2次平均冷却速度は5℃/s以上とする。好ましくは7℃/s以上である。一方、第2次平均冷却速度が60℃/sを超えると、フェライトもしくはパーライトの過剰な生成を抑制する効果は飽和する。このため、第2次平均冷却速度は、60℃/s以下とする。好ましくは40℃/s以下である。
・巻取り温度:650℃以下
巻取り温度が650℃超では、熱延鋼板のミクロ組織にフェライトおよびパーライトが粗大化し、最終的な鋼板組織が不均質となり、焼鈍、熱間プレス後に所望の粒状炭化物の体積分率が得られず、母材および溶接部の耐遅れ破壊特性が低下する。巻取り温度は、好ましくは610℃以下である。また、巻取り温度は、300℃以上が好ましい。
巻取り後、酸洗を実施し、熱延鋼板表層のスケールを除去する。この酸洗処理は特に限定されず、常法に従って実施すればよい。
得られた熱延鋼板を、所定の板厚の冷延鋼板に圧延する冷間圧延工程を行う。この冷間圧延工程は特に限定されず、常法に従って実施すればよい。板厚は特に限定されず、0.4mm以上とすることができ、好ましくは0.5mm以上であり、また、4.0mm以下とすることができ、好ましくは3.8mm以下である。
この焼鈍工程は、冷間圧延後の再結晶を進行させるとともに、粒状炭化物を生成するための工程であり、1℃/s以下の平均加熱速度で550℃以上680℃以下の均熱温度まで加熱し、前記均熱温度で60分以上3000分以下保持し、次いで室温まで冷却する。
焼鈍工程における加熱速度を制御することによって、焼鈍後の結晶粒を微細化させることができる。急速に加熱すると粒状炭化物の生成が不十分となり、焼鈍、熱間プレス後に所望の粒状炭化物の体積分率が得られず、母材および溶接部の耐遅れ破壊特性が低下するため、平均加熱速度は1℃/s以下とする。好ましくは0.8℃/s以下である。また、生産効率の点から、平均加熱速度は0.01℃/s以上とすることができ、好ましくは0.05℃/s以上である。
均熱温度は、再結晶温度より高い温度とする。この均熱温度が550℃未満では再結晶が十分に行われず、粒状炭化物も大きく成長しないため、焼鈍、熱間プレス後に所望の粒状炭化物の体積分率が得られず、熱間プレス後の母材および溶接部の耐遅れ破壊特性が低下する。このため、均熱温度は550℃以上とする。好ましくは570℃以上である。一方、均熱温度が高すぎると、結晶粒が粗大化、焼鈍、熱間プレス後に所望の粒状炭化物の体積分率が得られず、熱間プレス後の母材および溶接部の耐遅れ破壊特性が低下する。このため、均熱温度は680℃以下とする。好ましくは650℃以下である。より好ましくは620℃以下である。
熱間プレス用冷延鋼板をNi含有めっきでめっき処理し、Ni含有めっき層を形成する。Ni含有めっき層を備える冷延鋼板を熱間プレスすることにより、めっき層中のNiが鋼板の表層に拡散し、表層にNi拡散領域が存在する熱間プレス部材が得られる。
次に、本発明の一実施形態に係る熱間プレス部材の製造方法について詳細に説明する。本発明の熱間プレス部材の製造方法は、熱間プレス用冷延鋼板を850℃以上1000℃以下の温度域に加熱した後、熱間プレスすることを特徴とする。製造方法は、特に限定されず、公知の方法で行うことができる。例えば、以下が挙げられる。
十分な鋼板の焼入れを行うため、加熱温度は、850℃以上とする。十分なオーステナイト化を図りマルテンサイト量を確保するため、好ましくはAc3点以上である。一方、経済性および酸化物の形成の抑制の点から、加熱温度は1000℃以下とする。加熱温度は、好ましくは950℃以下である。
次いで、得られた熱延鋼板を、酸洗後、表2に示す圧下率で冷間圧延を施して、同表に示す熱処理を行い、冷延鋼板(板厚:1.4mm)とした。
冷延鋼板(CR)を得た。表中、(CR)は、バッチ焼鈍炉(BAF)で焼鈍処理のみ実施し、めっき処理を施していない冷延鋼板(めっきなし鋼板)である。冷延鋼板の一部については、バッチ焼鈍した後に連続溶融めっきライン(CGL)において、Niを含有する溶融亜鉛めっき鋼板(GI、Ni含有量:12質量%)を得た。なお、CGLを通過した鋼板の一部については、溶融亜鉛めっき処理を施した後、さらに550℃で合金化処理を行い、合金化溶融亜鉛めっき鋼板(GA、Ni含有量:12質量%)を得た。さらに、一部はバッチ焼鈍した後に電気亜鉛めっきライン(EGL)において、電気亜鉛ニッケルめっき鋼板(EZN、Ni含有量:12質量%)を得た。
熱間プレスで使用した金型は、パンチ幅70mm、パンチ肩R4mm、ダイ肩R4mmで、成形深さは30mmである。冷延鋼板に対する加熱は、加熱速度に応じて赤外線加熱炉または雰囲気加熱炉のいずれかを用い、大気中で行った。また、プレス後の冷却は、鋼板のパンチ・ダイ間での挟み込みと挟み込みから開放したダイ上での空冷とを組み合わせて行い、プレス(開始)温度から150℃まで冷却した。
熱間プレス部材のハット底部の位置からJIS 5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い、引張強さ(TS)を測定した。
熱間プレス部材のハット底部の位置からJIS 5号引張試験片を採取し、定荷重試験を実施した。室温で塩酸の溶液(pH3)に浸漬しながら荷重をかけて、破断有無を評価した。負荷応力を1000MPaとして、100時間以上破断しない場合は耐遅れ破壊特性を良好(○)、100時間未満で破断した場合は耐遅れ破壊特性を劣(×)とした。
抵抗スポット溶接後の遅れ破壊に関しては、JIS Z 3136に準拠して得られた熱間プレス部材のハット底部の位置からの引張せん断試験片を2枚用いて抵抗溶接(スポット溶接)を実施した。溶接機は2枚の鋼板を重ねた板組について、溶接ガンに取付けられたサーボモータ加圧式で単相直流(50Hz)の抵抗溶接機を用いて抵抗スポット溶接を実施した。溶接条件は加圧力を4.5kN、ホールドタイムは0.1秒とした。溶接電流と溶接時間はナゲット径が6.0mmになるように調整した。
得られた溶接体をJIS Z 3136に準拠した引張せん断試験によって鋼板が剥離するときの荷重を測定した。このときの剥離強度をFSとし、上記と同様の方法で引張せん断試験片を作製し、0.6×FSの荷重を負荷させた。その後に、室温でpH=3.0の塩酸の溶液に100時間浸漬して鋼板の剥離の有無を評価した。剥離なしを良好(○)、剥離ありを劣(×)とした。
Claims (10)
- 質量%で、
C:0.31%以上0.55%未満、
Si:0.01%以上1.0%以下、
Mn:1.0%以上2.5%以下、
P:0.05%以下、
S:0.005%以下、
Al:0.01%以上0.50%以下、
N:0.01%以下、および
Cu:0.002%以上0.25%以下を含有し、
残部はFeおよび不可避的不純物からなる成分組成を有し、
旧オーステナイト平均結晶粒径が8μm以下であり、マルテンサイトの体積分率が95%以上であり、かつ粒径が0.1μm以上の粒状炭化物の体積分率が0.10%以上4.0%以下であるミクロ組織を有し、
表層にNi拡散領域が深さ方向に2.0μm以上存在し、かつ
引張強さが1850MPa以上である、熱間プレス部材。 - 前記成分組成が、質量%で、さらに
Mo:0.005%以上0.35%以下、
Cr:0.005%以上0.35%以下、
Nb:0.001%以上0.05%以下、
Ti:0.001%以上0.050%以下、
B:0.0002%以上0.0050%以下、
Ca:0.005%以下、
V:0.05%以下、
Sb:0.001%以上0.020%以下、
Ni:0.50%以下および
Sn:0.50%以下からなる群より選択される1種または2種以上を含有する、請求項1に記載の熱間プレス部材。 - 表面に、さらにNi含有Zn系めっき層を備える、請求項1または請求項2に記載の熱間プレス部材。
- 質量%で、
C:0.31%以上0.55%未満、
Si:0.01%以上1.0%以下、
Mn:1.0%以上2.5%以下、
P:0.05%以下、
S:0.005%以下、
Al:0.01%以上0.50%以下、
N:0.01%以下、および
Cu:0.002%以上0.25%以下を含有し、
残部はFeおよび不可避的不純物からなる成分組成を有し、
粒径が0.1μm以上の粒状炭化物の体積分率が1.0%以上25%以下であるミクロ組織を有する、熱間プレス用冷延鋼板。 - 前記成分組成が、質量%で、さらに
Mo:0.005%以上0.35%以下、
Cr:0.005%以上0.35%以下、
Nb:0.001%以上0.05%以下、
Ti:0.001%以上0.050%以下、
B:0.0002%以上0.0050%以下、
Ca:0.005%以下、
V:0.05%以下、
Sb:0.001%以上0.020%以下、
Ni:0.50%以下および
Sn:0.50%以下からなる群より選択される1種または2種以上を含む、請求項4に記載の熱間プレス用冷延鋼板。 - 表面に、さらに厚さ0.5μm以上のNi含有めっき層を備える、請求項4または5に記載の熱間プレス用冷延鋼板。
- Ni含有めっき層が、Ni含有Zn系めっき層である、請求項6に記載の熱間プレス用冷延鋼板。
- 請求項4または5に記載の成分組成を有する鋼スラブを、仕上げ圧延終了温度:840℃以上950℃以下で熱間圧延して熱延鋼板とし、
前記熱延鋼板を、第1次冷却として、55℃/s以上の第1次平均冷却速度で、700℃以下の冷却停止温度まで冷却し、次いで、第2次冷却として、5℃/s以上60℃/s以下の第2次平均冷却速度で、650℃以下の巻取り開始温度まで冷却した後、巻取り、酸洗を施し、
前記酸洗を施した熱延鋼板を冷間圧延して冷延鋼板とし、
前記冷延鋼板を、1℃/s以下の平均加熱速度で、550℃以上680℃以下の均熱温度まで加熱し、前記温度で60分以上3000分以下保持し、次いで室温まで冷却する、熱間プレス用冷延鋼板の製造方法。 - 前記冷延鋼板の表面に、Ni含有めっきでめっき処理を施す、請求項8記載の熱間プレス用冷延鋼板の製造方法。
- 請求項4~7のいずれか一項に記載の熱間プレス用冷延鋼板を850℃以上1000℃以下の温度域に加熱した後、熱間プレスする、熱間プレス部材の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020526635A JP6841382B2 (ja) | 2019-02-21 | 2020-01-17 | 熱間プレス部材、熱間プレス用冷延鋼板およびそれらの製造方法 |
EP20758909.4A EP3929321B1 (en) | 2019-02-21 | 2020-01-17 | Hot-pressed member, cold-rolled steel sheet for hot pressing, and manufacturing methods therefor |
MX2021010128A MX2021010128A (es) | 2019-02-21 | 2020-01-17 | Miembro prensado en caliente, chapa de acero laminada en frio para prensado en caliente y metodo de fabricacion de los mismos. |
US17/432,218 US20220186339A1 (en) | 2019-02-21 | 2020-01-17 | Hot-pressed member, cold-rolled steel sheet for hot pressing, and manufacturing methods therefor |
CN202080015482.1A CN113490758B (zh) | 2019-02-21 | 2020-01-17 | 热压部件、热压用冷轧钢板及其制造方法 |
KR1020217027752A KR102569628B1 (ko) | 2019-02-21 | 2020-01-17 | 열간 프레스 부재, 열간 프레스용 냉연 강판 및 그들의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019029806 | 2019-02-21 | ||
JP2019-029806 | 2019-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020170667A1 true WO2020170667A1 (ja) | 2020-08-27 |
Family
ID=72145050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001584 WO2020170667A1 (ja) | 2019-02-21 | 2020-01-17 | 熱間プレス部材、熱間プレス用冷延鋼板およびそれらの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220186339A1 (ja) |
EP (1) | EP3929321B1 (ja) |
JP (1) | JP6841382B2 (ja) |
KR (1) | KR102569628B1 (ja) |
CN (1) | CN113490758B (ja) |
MX (1) | MX2021010128A (ja) |
WO (1) | WO2020170667A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7028378B1 (ja) * | 2020-08-28 | 2022-03-02 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法 |
WO2023008002A1 (ja) * | 2021-07-28 | 2023-02-02 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
JP7226672B1 (ja) * | 2021-07-28 | 2023-02-21 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
WO2024147276A1 (ja) * | 2023-01-05 | 2024-07-11 | Jfeスチール株式会社 | 鋼板、抵抗スポット溶接方法、抵抗スポット溶接部材、および鋼板の製造方法 |
WO2024214788A1 (ja) * | 2023-04-13 | 2024-10-17 | 日本製鉄株式会社 | ホットスタンプ成形体 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3940091B1 (en) * | 2019-03-12 | 2024-06-26 | JFE Steel Corporation | Hot press member, production method for steel sheet for hot press, and production method for hot press member |
DE102021118765A1 (de) | 2021-07-20 | 2023-01-26 | Kamax Holding Gmbh & Co. Kg | Bauteil mit integrierter Nickeldiffusionsschicht |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014118613A (ja) * | 2012-12-18 | 2014-06-30 | Nippon Steel & Sumitomo Metal | 強度と耐水素脆性に優れたホットスタンプ成形体及びその製造方法 |
JP2014122398A (ja) | 2012-12-21 | 2014-07-03 | Nippon Steel & Sumitomo Metal | 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法 |
JP2015113500A (ja) | 2013-12-12 | 2015-06-22 | 株式会社神戸製鋼所 | 熱間プレス部品 |
WO2016152163A1 (ja) * | 2015-03-25 | 2016-09-29 | Jfeスチール株式会社 | 冷延鋼板およびその製造方法 |
WO2019003539A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 |
WO2019003543A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4313507B2 (ja) | 2000-08-23 | 2009-08-12 | 新日本製鐵株式会社 | 自動車客室構造部品用高強度鋼板とその製造方法 |
JP2002322539A (ja) | 2001-01-31 | 2002-11-08 | Nkk Corp | プレス成形性に優れた薄鋼板およびその加工方法 |
US20050199322A1 (en) | 2004-03-10 | 2005-09-15 | Jfe Steel Corporation | High carbon hot-rolled steel sheet and method for manufacturing the same |
JP5257233B2 (ja) | 2008-05-19 | 2013-08-07 | 新日鐵住金株式会社 | 低降伏比高強度電縫鋼管及びその製造方法 |
KR101027285B1 (ko) | 2008-05-29 | 2011-04-06 | 주식회사 포스코 | 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리경화형 부재 및 이들의 제조방법 |
EP2290133B1 (de) * | 2009-08-25 | 2012-04-18 | ThyssenKrupp Steel Europe AG | Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil |
WO2013002575A2 (ko) * | 2011-06-28 | 2013-01-03 | 주식회사 포스코 | 도금층의 안정성이 우수한 열간 프레스 성형용 도금강판 |
JP5835624B2 (ja) * | 2012-08-21 | 2015-12-24 | 新日鐵住金株式会社 | 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法 |
KR101568549B1 (ko) | 2013-12-25 | 2015-11-11 | 주식회사 포스코 | 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법 |
WO2016016676A1 (fr) * | 2014-07-30 | 2016-02-04 | ArcelorMittal Investigación y Desarrollo, S.L. | Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé |
KR101931041B1 (ko) * | 2014-10-24 | 2018-12-19 | 제이에프이 스틸 가부시키가이샤 | 고강도 핫 프레스 부재 및 그 제조 방법 |
WO2019003445A1 (ja) | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
WO2019003448A1 (ja) | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
WO2019003449A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
WO2019003450A1 (ja) | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板 |
EP3680359B1 (en) | 2017-11-13 | 2022-01-05 | JFE Steel Corporation | Hot-pressed steel sheet member and method for producing same |
MX2020004927A (es) | 2017-11-13 | 2020-08-27 | Jfe Steel Corp | Miembro de lamina de acero prensado en caliente y metodo para la produccion del mismo. |
CN113366135A (zh) * | 2019-01-31 | 2021-09-07 | 杰富意钢铁株式会社 | 热压构件、热压构件用冷轧钢板以及它们的制造方法 |
-
2020
- 2020-01-17 JP JP2020526635A patent/JP6841382B2/ja active Active
- 2020-01-17 CN CN202080015482.1A patent/CN113490758B/zh active Active
- 2020-01-17 US US17/432,218 patent/US20220186339A1/en active Pending
- 2020-01-17 WO PCT/JP2020/001584 patent/WO2020170667A1/ja unknown
- 2020-01-17 EP EP20758909.4A patent/EP3929321B1/en active Active
- 2020-01-17 MX MX2021010128A patent/MX2021010128A/es unknown
- 2020-01-17 KR KR1020217027752A patent/KR102569628B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014118613A (ja) * | 2012-12-18 | 2014-06-30 | Nippon Steel & Sumitomo Metal | 強度と耐水素脆性に優れたホットスタンプ成形体及びその製造方法 |
JP2014122398A (ja) | 2012-12-21 | 2014-07-03 | Nippon Steel & Sumitomo Metal | 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法 |
JP2015113500A (ja) | 2013-12-12 | 2015-06-22 | 株式会社神戸製鋼所 | 熱間プレス部品 |
WO2016152163A1 (ja) * | 2015-03-25 | 2016-09-29 | Jfeスチール株式会社 | 冷延鋼板およびその製造方法 |
WO2019003539A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 |
WO2019003543A1 (ja) * | 2017-06-30 | 2019-01-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7028378B1 (ja) * | 2020-08-28 | 2022-03-02 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法 |
WO2022044510A1 (ja) * | 2020-08-28 | 2022-03-03 | Jfeスチール株式会社 | 熱間プレス部材およびその製造方法 |
EP4180547A4 (en) * | 2020-08-28 | 2023-08-30 | JFE Steel Corporation | HOT PRESSED ELEMENT AND METHOD OF MANUFACTURING IT |
WO2023008002A1 (ja) * | 2021-07-28 | 2023-02-02 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
JP7226672B1 (ja) * | 2021-07-28 | 2023-02-21 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
JP7226673B1 (ja) * | 2021-07-28 | 2023-02-21 | Jfeスチール株式会社 | 鋼板、部材およびそれらの製造方法 |
EP4350015A4 (en) * | 2021-07-28 | 2024-10-16 | Jfe Steel Corp | STEEL SHEET, ELEMENT AND METHOD FOR PRODUCING THE STEEL SHEET AND SAID ELEMENT |
EP4350016A4 (en) * | 2021-07-28 | 2024-10-23 | Jfe Steel Corp | STEEL SHEET, ELEMENT, AND METHODS OF MANUFACTURING THE SAME |
WO2024147276A1 (ja) * | 2023-01-05 | 2024-07-11 | Jfeスチール株式会社 | 鋼板、抵抗スポット溶接方法、抵抗スポット溶接部材、および鋼板の製造方法 |
WO2024214788A1 (ja) * | 2023-04-13 | 2024-10-17 | 日本製鉄株式会社 | ホットスタンプ成形体 |
Also Published As
Publication number | Publication date |
---|---|
US20220186339A1 (en) | 2022-06-16 |
KR20210120089A (ko) | 2021-10-06 |
MX2021010128A (es) | 2021-09-23 |
EP3929321B1 (en) | 2023-09-27 |
CN113490758B (zh) | 2023-06-09 |
EP3929321A4 (en) | 2021-12-29 |
KR102569628B1 (ko) | 2023-08-23 |
JP6841382B2 (ja) | 2021-03-10 |
CN113490758A (zh) | 2021-10-08 |
EP3929321A1 (en) | 2021-12-29 |
JPWO2020170667A1 (ja) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6501046B1 (ja) | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 | |
US11085101B2 (en) | Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same | |
KR102569628B1 (ko) | 열간 프레스 부재, 열간 프레스용 냉연 강판 및 그들의 제조 방법 | |
JP6501045B1 (ja) | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 | |
JP6540908B2 (ja) | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 | |
JP6504323B1 (ja) | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 | |
JP6540910B2 (ja) | 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 | |
JP7028378B1 (ja) | 熱間プレス部材およびその製造方法 | |
WO2020158285A1 (ja) | 熱間プレス部材、熱間プレス部材用冷延鋼板、およびそれらの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020526635 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20758909 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217027752 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020758909 Country of ref document: EP Effective date: 20210921 |