[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2020022191A1 - 燃料電池のカソード触媒層および燃料電池 - Google Patents

燃料電池のカソード触媒層および燃料電池 Download PDF

Info

Publication number
WO2020022191A1
WO2020022191A1 PCT/JP2019/028329 JP2019028329W WO2020022191A1 WO 2020022191 A1 WO2020022191 A1 WO 2020022191A1 JP 2019028329 W JP2019028329 W JP 2019028329W WO 2020022191 A1 WO2020022191 A1 WO 2020022191A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
conductive member
mass
catalyst
anode
Prior art date
Application number
PCT/JP2019/028329
Other languages
English (en)
French (fr)
Inventor
真一郎 井村
武史 南浦
仁 石本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980019269.5A priority Critical patent/CN111868980B/zh
Priority to JP2020508629A priority patent/JP7437633B2/ja
Priority to US17/044,654 priority patent/US11799092B2/en
Publication of WO2020022191A1 publication Critical patent/WO2020022191A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a cathode catalyst layer of a fuel cell and a fuel cell.
  • the fuel cell includes a membrane electrode assembly having an electrolyte membrane and a pair of electrodes sandwiching the electrolyte membrane.
  • Each of the pair of electrodes includes a catalyst layer and a gas diffusion layer in order from the electrolyte membrane side.
  • Patent Literature 1 As a configuration of the catalyst layer, in Patent Literature 1, secondary particles formed by collecting a plurality of primary particles, which are carbon supporting a platinum catalyst, penetrate inside the secondary particles and cover the outside of the secondary particles. A catalyst layer containing an ionomer and having a secondary particle radius in the range of 105 nm to 200 nm is described. The ratio (I / C) of the mass I of the ionomer to the mass C of the carbon in the catalyst layer is set to 0.65 to 1.35.
  • the catalyst layer includes a catalyst layer and a polymer electrolyte, and the catalyst layer contains a fibrous substance having hydrophilicity or whose surface is subjected to hydrophilic treatment.
  • Patent Documents 1 and 2 the ionomer and the polymer electrolyte have proton conductivity. However, since proton conduction requires moisture, fuel gas or oxidizing gas is usually humidified and then supplied to the catalyst layer.
  • Patent Document 3 discloses that in a methanol fuel cell that supplies methanol to an anode, an anode catalyst layer contains an anode catalyst including a fibrous supported catalyst using carbon fibers as a carrier and a granular supported catalyst using carbon particles as a carrier. It is described that the ratio of the fibrous supported catalyst in the anode catalyst on the surface facing the anode gas diffusion layer is higher than the ratio of the fibrous supported catalyst in the anode catalyst on the surface facing the electrolyte membrane. . At this time, it has been proposed that the weight ratio of the electrolyte to the weight of the anode catalyst is 50 to 140% by weight on the surface facing the anode gas diffusion layer and 150 to 250% by weight on the surface facing the electrolyte membrane. I have.
  • Patent Document 4 discloses that in a polymer electrolyte fuel cell, 200.000 mass% to 80.000 mass% of composite particles in which catalyst particles are supported on conductive particles, and 19.999 mass% of a proton conductive polymer. % Or more and 60.000% by mass or less, and an electrode catalyst layer containing polytetrafluoroethylene of 0.001% by mass to 20.000% by mass or less. It is described that the equivalent weight (EW) of the proton conductive polymer is preferably from 250 to 2,000, and more preferably from 250 to 800.
  • EW equivalent weight
  • the fuel gas or the oxidizing gas is humidified in order to reduce the proton transfer resistance. Therefore, equipment (humidifier) for generating steam gas and humidifying the fuel gas or the oxidizing gas needs to be provided separately from the fuel cell.
  • One aspect of the present disclosure includes a first fibrous conductive member, a first particulate conductive member, a first catalyst particle, and a first proton conductive resin, and the first fibrous conductive member has a first proton conductive resin and a first proton conductive resin.
  • the mass ratio I 1 / C 1 of the proton conductive resin is in the range of 1.0 to 1.6, and the ratio of the first fibrous conductive member to 100 parts by mass of the first particulate conductive member is 30%. To 50 parts by mass, wherein the EW value of the first proton conductive resin is from 600 to 850.
  • Another aspect of the present disclosure relates to a fuel cell including a cathode having the cathode catalyst layer according to the above aspect, an anode, and an electrolyte membrane interposed between the anode and the cathode.
  • 1 is a cross-sectional view schematically illustrating a structure of a single cell of a fuel cell according to an embodiment of the present disclosure.
  • 5 is a graph showing the results of measuring the logarithmic differential pore volume distribution of the cathode catalyst layers used in the cell A1 of Example 1 and the cells B1 to B3 of Comparative Examples 1 to 3 by a mercury intrusion method.
  • the cathode catalyst layer of the fuel cell according to the embodiment of the present disclosure includes a fibrous conductive member (first fibrous conductive member), a particulate conductive member (first particulate conductive member), catalyst particles (first catalyst particles), And a proton conductive resin (first proton conductive resin).
  • the cathode catalyst layer satisfies the following conditions (1) to (3).
  • the ratio I 1 / C 1 of the mass of the first proton conductive resin to the mass of the first particulate conductive member is in the range of 1.0 to 1.6.
  • the ratio of the first fibrous conductive member to 30 parts by mass of the first particulate conductive member is 30 to 50 parts by mass.
  • the EW value of the first proton conductive resin is from 600 to 850.
  • the EW value means the mass (gram unit) of the proton-conductive resin in a dry state per 1 mol of proton exchange groups (for example, sulfonic acid groups).
  • proton exchange groups for example, sulfonic acid groups.
  • the ratio of I 1 / C 1 is in the range of 1.0 to 1.6 and the ratio of the first fibrous conductive member to 100 parts by mass of the first particulate conductive member is 30 to 50 parts by mass, the condition of low humidification is required. It is necessary to achieve both low proton transfer resistance and high gas diffusivity.
  • the thickness of the catalyst layer tends to increase.
  • the transfer resistance of protons tends to increase.
  • the EW value of the first proton conductive resin is preferably 600 or more from the viewpoint of easy production of the proton conductive resin.
  • the EW value of the first proton conductive resin may be from 600 to 850, may be from 600 to 800, and may be from 650 to 800.
  • the catalyst layer satisfying the above conditions (1) to (3) has a logarithmic differential pore volume dV / d (logD) distribution of 0.006 ⁇ m. It may have a peak in the range of 0.010.015 ⁇ m. Therefore, it is considered that the gas diffusion property is improved by forming a gas diffusion path through the fine pores having a pore diameter of 0.006 ⁇ m to 0.015 ⁇ m.
  • logD is a common logarithm of the pore diameter D ( ⁇ m). The peak in the range of 0.006 ⁇ m to 0.015 ⁇ m may have a maximum peak value of 0.4 (cc / g ⁇ log ⁇ m) or more.
  • the volume of the pores in the region where the pore diameter D is 0.006 ⁇ m to 0.015 ⁇ m may be 20% or more of the volume of the pores in the region of 0.006 ⁇ m to 0.2 ⁇ m.
  • a proton conductive resin having an EW value of 600 to 850 has a large number of side chains having a proton exchange group and has a bulky structure.
  • the above-mentioned catalyst layer is suitable for use as a cathode catalyst layer provided on the cathode side of a fuel cell because of its excellent gas diffusivity.
  • a fuel cell according to an embodiment of the present disclosure includes a cathode having the above-described cathode catalyst layer, an anode, and an electrolyte membrane interposed between the cathode and the anode.
  • the anode usually has an anode catalyst layer.
  • a fibrous conductive member (second fibrous conductive member), a particulate conductive member (second particulate conductive member), and catalyst particles (second catalyst particles) ) And a proton conductive resin (second proton conductive resin).
  • the materials and / or mixing ratios of the fibrous conductive member, the particulate conductive member, the catalyst particles, and the proton conductive resin in the anode catalyst layer need not be the same as those in the cathode catalyst layer, and may be as needed. It may be changed as appropriate.
  • the ratio I 2 / C 2 of the mass of the second proton conductive resin to the mass of the second particulate conductive member is determined by the first particulate conductive member in the cathode catalyst layer. It is preferable that the ratio of the mass of the first proton conductive resin to the mass of the member be larger than I 1 / C 1 .
  • the ratio of the second fibrous conductive member to 100 parts by mass of the second particulate conductive member is 30 to 60 parts by mass, and I 2 / C 2 is 1.2 to 2.5 (more preferably, 1.4). To 2.5). Thereby, it is easy to increase the humidity on the anode side, and it is easy to obtain high output even under low humidification operating conditions.
  • Fibrous conductive member examples include fibrous carbon materials such as vapor grown carbon fibers (VGCF (registered trademark)), carbon nanotubes, and carbon nanofibers.
  • the diameter DF of the fibrous conductive member is not particularly limited, but is preferably 200 nm or less, more preferably 5 nm or more and 200 nm or less, and still more preferably 10 nm or more and 170 nm or less. In this case, the gas path can be sufficiently ensured while the volume ratio of the fibrous conductive member occupying in the catalyst layer is reduced, and the gas diffusibility can be improved.
  • the diameter DF of the fibrous conductive member is determined by arbitrarily removing ten fibrous conductive members from the catalyst layer and averaging their diameters.
  • the diameter is a length in a direction perpendicular to the length direction of the fibrous conductive member.
  • the length L F of the fibrous conductive member is not particularly limited, but is preferably 0.2 ⁇ m or more and 20 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 10 ⁇ m or less.
  • the fibers become substantially linear, and at least a part of the fibrous conductive member is oriented along the thickness direction of the catalyst layer, so that it is easy to secure a gas diffusion path.
  • the length L F of the fibrous conductive member is the average fiber length, 10 present from the catalyst layer of fibrous conductive member optionally removed by averaging the fiber length of the fibrous conductive member, determined Can be In the case of a substantially linear fiber, the fiber length of the fibrous conductive member means the length of the straight line when one end of the fibrous conductive member is connected to the other end by a straight line.
  • the fibrous conductive member may have a hollow space (hollow portion) inside.
  • each of both ends in the length direction of the fibrous conductive member may be open in the catalyst layer. Opening each of both ends in the length direction of the fibrous conductive member means that the hollow portion communicates with the outside through the opening. That is, the openings at both ends of the fibrous conductive member are not closed by any of the electrolyte membrane and the gas diffusion layer, and gas can enter and exit from both ends.
  • the side wall of the fibrous conductive member having the hollow portion may be provided with a through hole communicating the hollow portion with the outside.
  • the catalyst particles can be arranged and fixed on the side wall of the fibrous conductive member so as to cover at least a part of the through hole. The catalyst particles supported on the side wall so as to cover at least a part of the through-hole are more efficiently contacted with the reaction gas, and the reaction efficiency of the catalyst layer can be greatly increased.
  • the particulate conductive member is not particularly limited, but carbon black is preferable in terms of excellent conductivity.
  • Examples of the carbon black include acetylene black, Ketjen black, thermal black, furnace black, and channel black.
  • the particle size (or the length of a structure composed of a plurality of connected primary particles) is not particularly limited, and those conventionally used for a catalyst layer of a fuel cell can be used.
  • the catalyst particles are not particularly limited, but may be selected from Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, lanthanoid series elements and actinoid series elements. Catalyst metals such as selected alloys and simple substances can be mentioned.
  • examples of the catalyst particles used for the anode include Pt and Pt-Ru alloy.
  • examples of the catalyst particles used for the cathode include Pt and Pt—Co alloy.
  • At least a part of the catalyst particles is supported on the particulate conductive member.
  • the catalyst particles may be carried on a fibrous conductive member in addition to the particulate conductive member. In this case, the catalyst particles easily come into contact with the gas, and the efficiency of the gas oxidation or reduction reaction can be increased.
  • the fibrous conductive member does not substantially carry the catalyst particles. That is, in the anode catalyst layer and / or the cathode catalyst layer, the catalyst particles may be substantially carried only on the particulate conductive member.
  • the lower the catalyst carrying density of the fibrous conductive member the higher the water repellency of the catalyst layer. Therefore, in this case, the drainage property of the catalyst layer is improved, and the gas diffusion property can be improved.
  • that the catalyst particles are not substantially supported on the fibrous conductive member means the following cases.
  • the number i of the catalyst particles supported on the fibrous conductive member is counted, and the number of catalyst particles supported on the fibrous conductive member per unit surface area of the fibrous conductive member is derived. I do.
  • the area of the fibrous conductive member occupied in the photograph is represented by S.
  • the average value of i / S is carried on the fibrous conductive member.
  • the number of catalyst particles per surface area of the fibrous conductive member can be estimated.
  • the catalyst particles are substantially supported on the fibrous conductive member. I can't say that.
  • the diameter X of the catalyst particles is preferably from 1 nm to 10 nm, more preferably from 2 nm to 5 nm.
  • X is 1 nm or more, a sufficient catalytic effect by the catalyst particles can be obtained.
  • X is 10 nm or less, the catalyst particles can be easily carried on the side walls of the particulate conductive member and the fibrous conductive member.
  • the diameter X of the catalyst particles is determined as follows. For any one catalyst particle observed in the TEM image of the catalyst layer, the particle size (equivalent circle diameter) when the particle is considered to be spherical is calculated. This is performed for 100 to 300 catalyst particles observed in the TEM image, and the respective particle sizes are calculated. The average value of these particle sizes is defined as the diameter X of the catalyst particles.
  • the proton conductive resin is not particularly limited, and examples thereof include a perfluorocarbon sulfonic acid polymer and a hydrocarbon polymer. Among them, a perfluorocarbon sulfonic acid polymer or the like is preferable in terms of excellent heat resistance and chemical stability.
  • the proton conductive resin covers at least a part of the fibrous conductive member and the catalyst particles.
  • the proton conductive resin may further cover at least a part of the particulate conductive member.
  • the proton conductive resin (first proton conductive resin) used for the cathode catalyst layer has an EW value of 600 to 850 in terms of maintaining low proton resistance and improving gas diffusivity even under low humidity operating conditions. Things are used.
  • the proton conductive resin having an EW value in the above range is likely to aggregate when preparing a catalyst dispersion containing the catalyst particles, the particulate conductive member and the proton conductive resin in forming the catalyst layer.
  • the fibrous conductive member and the proton conductive resin in the catalyst dispersion at a mixing ratio satisfying the above-described conditions, the aggregation of the proton conductive resin in the dispersion is suppressed, and the catalyst after application and drying is mixed.
  • the proton conductive resin and the fibrous conductive member are entangled, and fine pores suitable for gas diffusion can be formed.
  • the thickness T of the catalyst layer is desirably as thin as possible from the viewpoints of miniaturization of the fuel cell, maintaining low proton resistance even under low humidity conditions, and obtaining high output. On the other hand, from the viewpoint of strength, it is preferable not to be excessively thin. Generally, as the proportion of the fibrous conductive member increases, the thickness of the catalyst layer tends to increase.
  • the thickness T C of the cathode catalyst layer may be, for example, 4 ⁇ m or more and 20 ⁇ m or less, or may be 4 ⁇ m or more and 10 ⁇ m or less.
  • the thickness T A of the anode catalyst layer may be, for example, 2 ⁇ m or more and 10 ⁇ m or less.
  • the thicknesses T C and T A of the catalyst layer are average thicknesses, and a straight line along the thickness direction of the catalyst layer was drawn from one main surface to the other main surface at arbitrary 10 points in the cross section of the catalyst layer. It is obtained by averaging the distance at the time.
  • the supported density D 1 of the catalyst particles (first catalyst particles) supported on the particulate conductive member may be 20% to 50%.
  • the supported density D 2 of the catalyst particles (second catalyst particles) supported on the particulate conductive member may be 20% to 50%. Note that the loading density D 1 is the first catalyst particle supported on the first particulate conductive member, which accounts for the total mass of the first catalyst particles supported on the first particulate conductive member and the first particulate conductive member.
  • the loading density D 2 is the mass of the second catalyst particles supported on the second particulate conductive member, based on the total weight of the second catalyst particles supported on the second particulate conductive member and the second particulate conductive member. Is the ratio of
  • the ratio I 1 / C 1 of the mass of the proton conductive resin to the mass of the particulate conductive member is determined from the viewpoint of maintaining moisture even under low humidification operating conditions and maintaining low proton resistance. It is preferable that 1 / C 1 be 1.0 or more. On the other hand, as I 1 / C 1 is increased, depending on the compounding ratio of the fibrous conductive member, pores are difficult to be formed, and gas diffusibility tends to be reduced. From the viewpoint of obtaining sufficient gas diffusivity, I 1 / C 1 is preferably 1.6 or less.
  • the reaction produces water.
  • an anode in which no reaction water is generated is more likely to be dried and a low humidity environment than the cathode.
  • the anode catalyst layer is required to have higher moisture retention than the cathode catalyst layer, and a high I / C is likely to be required.
  • I 2 / C 2 is preferably 1.2 or more, more preferably 1.4 or more.
  • I 2 / C 2 is increased, the number of micropores in the catalyst layer is reduced, and the gas diffusivity is reduced. From the viewpoint of suppressing a decrease in gas diffusibility, I 2 / C 2 is preferably 2.5 or less.
  • I 2 / C 2 in the anode catalyst layer may be larger than I 1 / C 1 in the cathode catalyst layer.
  • the gaseous gas is contained in both the anode catalyst layer and the cathode catalyst layer because the fibrous conductive member is contained in an amount of 30 parts by mass or more based on 100 parts by mass of the particulate conductive member. Diffusivity can be increased. On the other hand, when the amount of the fibrous conductive member is increased, the thickness of the catalyst layer is increased, and the proton transfer resistance is easily increased. In addition, cracks easily occur in the catalyst layer.
  • the amount of the fibrous conductive member in the cathode catalyst layer may be 50 parts by mass or less based on 100 parts by mass of the particulate conductive member. In the anode catalyst layer, the amount may be 60 parts by mass or less based on 100 parts by mass of the particulate conductive member.
  • the catalyst layer is produced, for example, as follows. First, the catalyst particles and the particulate conductive member are mixed in a dispersion medium (for example, water, ethanol, propanol, or the like). Next, a proton conductive resin and a fibrous carbon material are sequentially added while stirring the obtained dispersion to obtain a catalyst dispersion.
  • the proton conductive resin may be added in two or more portions. In this case, the second and subsequent additions of the proton conductive resin may be performed together with the fibrous carbon material. Thereafter, the catalyst dispersion obtained is applied in a uniform thickness on the surface of an electrolyte membrane or a suitable transfer base sheet, and dried to obtain a catalyst layer.
  • Examples of the coating method include a conventional coating method, for example, a spray method, a screen printing method, and a coating method using various coaters such as a blade coater, a knife coater, and a gravure coater.
  • a transfer base sheet for example, a sheet having a smooth surface such as polyethylene terephthalate (PET) or polypropylene is preferably used.
  • PET polyethylene terephthalate
  • the obtained catalyst layer is transferred to an electrolyte membrane or a gas diffusion layer described later.
  • the transfer of the catalyst layer to the electrolyte membrane or gas diffusion layer is performed by bringing the surface of the catalyst layer facing the transfer base sheet into contact with the electrolyte membrane or gas diffusion layer.
  • the catalyst dispersion may be applied directly to the electrolyte layer.
  • FIG. 1 is a cross-sectional view schematically showing a structure of a single cell arranged in a fuel cell according to one embodiment.
  • a plurality of single cells are stacked and arranged in a fuel cell as a cell stack.
  • FIG. 1 shows one single cell for convenience.
  • the fuel cell according to the present embodiment uses hydrogen (H 2 ) as a fuel.
  • the single cell 200 includes an electrolyte membrane 110, a first catalyst layer 120A and a second catalyst layer 120B disposed so as to sandwich the electrolyte membrane 110, and a first catalyst layer 120A and a second catalyst layer 120B.
  • a membrane electrode assembly 100 having a first gas diffusion layer 130A and a second gas diffusion layer 130B arranged so as to sandwich the membrane 110 is provided.
  • the single cell 200 includes a first separator 240A and a second separator 240B that sandwich the membrane electrode assembly 100.
  • One of the first catalyst layer 120A and the second catalyst layer 120B functions as an anode, and the other functions as a cathode.
  • a gas containing hydrogen (H 2 ) may be supplied to the anode via the gas passage 260A or 260B.
  • the periphery of the electrolyte membrane 110 protrudes from the first catalyst layer 120A and the second catalyst layer 120B.
  • the periphery of the electrolyte membrane 110 is sandwiched between a pair of seal members 250A and 250B.
  • first catalyst layer 120A and the second catalyst layer 120B is an anode catalyst layer, and the other is a cathode catalyst layer.
  • the second catalyst layer 120B is an anode catalyst layer.
  • the first catalyst layer 120A is a cathode catalyst layer
  • the configurations of the first fibrous conductive member, the first particulate conductive member, and the first proton conductive resin satisfy the above conditions (1) to (3). Is full.
  • the second catalyst layer 120B serving as the anode catalyst layer a known material and a known structure can be adopted, and the second fibrous conductive member and the second particles can be formed so that I 2 / C 2 > I 1 / C 1.
  • the configuration of the above-described anode catalyst layer in which the conductive member and the second proton conductive resin are blended can be preferably employed.
  • Electrolyte membrane 110 As the electrolyte membrane 110, a polymer electrolyte membrane is preferably used. Examples of the material for the polymer electrolyte membrane include the polymer electrolytes exemplified as the proton conductive resin. The thickness of the electrolyte membrane is, for example, 5 to 30 ⁇ m.
  • the first gas diffusion layer 130A and the second gas diffusion layer 130B may have a structure having a base material layer or a structure having no base material layer.
  • the structure having the base material layer include a structure having a base material layer and a microporous layer provided on the catalyst layer side.
  • a conductive porous sheet such as carbon cloth or carbon paper is used.
  • a mixture of a water-repellent resin such as a fluororesin, a conductive carbon material, and a proton conductive resin (polymer electrolyte) is used.
  • the first separator 240A and the second separator 240B only need to have airtightness, electron conductivity and electrochemical stability, and their materials are not particularly limited. As such a material, a carbon material, a metal material, or the like is preferable. The metal material may be coated with carbon.
  • the first separator 240A and the second separator 240B are obtained by punching a metal plate into a predetermined shape and performing a surface treatment.
  • a gas passage 260A is formed on the surface of the first separator 240A on the side that contacts the first gas diffusion layer 130A.
  • a gas passage 260B is formed on the surface of the second separator 240B on the side in contact with the second gas diffusion layer 130B.
  • the shape of the gas flow path is not particularly limited, and may be a straight type, a serpentine type, or the like.
  • the seal members 250A and 250B are made of a material having elasticity, and prevent fuel and / or oxidant from leaking from the gas flow paths 260A and 260B.
  • the seal members 250A and 250B have, for example, a frame-like shape that surrounds the periphery of the first catalyst layer 120A and the second catalyst layer 120B in a loop shape.
  • Known materials and known configurations can be adopted as the seal members 250A and 250B, respectively.
  • Example 1 ⁇ Preparation of dispersion liquid for cathode catalyst layer> A particulate conductive member (carbon black) carrying catalyst particles (Pt—Co alloy) was added to an appropriate amount of water, stirred, and dispersed. After adding an appropriate amount of ethanol while stirring the resulting dispersion, fibrous conductive members (vapor-grown carbon fibers, average diameter 150 nm, average fiber length 10 ⁇ m) 40 with respect to 100 parts by mass of the particulate conductive members 40 A catalyst dispersion liquid for a cathode catalyst layer was prepared by adding parts by mass and 100 parts by mass of a proton conductive resin (perfluorocarbon sulfonic acid polymer, EW value: 700) and stirring.
  • a proton conductive resin perfluorocarbon sulfonic acid polymer, EW value: 700
  • a particulate conductive member (carbon black) supporting catalyst particles (Pt) was added to an appropriate amount of water, stirred, and dispersed. After adding an appropriate amount of ethanol while stirring the resulting dispersion, fibrous conductive members (vapor-grown carbon fibers, average diameter 150 nm, average fiber length 10 ⁇ m) 40 with respect to 100 parts by mass of the particulate conductive members 40
  • the obtained catalyst layers were transferred to both main surfaces of a 15 ⁇ m-thick electrolyte membrane to form a cathode on one surface and an anode on the other surface of the electrolyte membrane.
  • two porous conductive carbon sheets were prepared as gas diffusion layers, one of which was in contact with the anode and the other was in contact with the cathode.
  • a frame-shaped sealing member was arranged so as to surround the anode and the cathode. The whole was sandwiched between a pair of stainless steel flat plates (separators) each having a gas flow path in a portion in contact with the gas diffusion layer, thereby completing a test single cell A1.
  • the power generation performance of the single cell A1 of Example 1 was evaluated. Specifically, the single cell A1 was heated to 80 ° C., and a fuel gas (H 2 ) having a relative humidity of 20 to 40% was supplied to the anode, and an oxidizing gas (air) having a relative humidity of 20 to 40% was supplied to the cathode. . The fuel gas and the oxidizing gas were supplied at a pressure of 40 to 120 kPa at the cell inlet gas pressure. The load control device is controlled so that the current flows constantly, and the voltage (initial voltage) V, the resistance value R, and the output density P of the single cell A1 are changed while changing the current density with respect to the anode and cathode electrode areas. It was measured.
  • Example 2 30 parts by mass of fibrous conductive member (vapor-grown carbon fiber, average diameter 150 nm, average fiber length 10 ⁇ m) and proton conductive resin (perfluorocarbon sulfonic acid-based polymer, 100 parts by mass of particulate conductive member) (EW value 700) 100 parts by mass was added and stirred to prepare a catalyst dispersion for the cathode catalyst layer.
  • fibrous conductive member vapor-grown carbon fiber, average diameter 150 nm, average fiber length 10 ⁇ m
  • proton conductive resin perfluorocarbon sulfonic acid-based polymer, 100 parts by mass of particulate conductive member
  • Example 2 a catalyst dispersion liquid for an anode catalyst layer was prepared, and a test single cell A2 was completed.
  • I 1 / C 1 1.0 in the cathode catalyst layer.
  • Example 3 For 100 parts by mass of the particulate conductive member, 40 parts by mass of the fibrous conductive member (vapor-grown carbon fiber, average diameter 150 nm, average fiber length 10 ⁇ m), and proton conductive resin (perfluorocarbon sulfonic acid polymer, (EW value 850) 100 parts by mass were added and stirred to prepare a catalyst dispersion for the cathode catalyst layer.
  • the fibrous conductive member vapor-grown carbon fiber, average diameter 150 nm, average fiber length 10 ⁇ m
  • proton conductive resin perfluorocarbon sulfonic acid polymer, (EW value 850)
  • Example 2 a catalyst dispersion liquid for an anode catalyst layer was prepared, and a test single cell A3 was completed.
  • I 1 / C 1 1.0 in the cathode catalyst layer.
  • Example 2 a catalyst dispersion liquid for an anode catalyst layer was prepared, and a test single cell B1 was completed.
  • I 1 / C 1 1.2 in the cathode catalyst layer.
  • a catalyst dispersion for a cathode catalyst layer is prepared by adding 120 parts by mass of a proton conductive resin (perfluorocarbon sulfonic acid polymer, EW value 900) to 100 parts by mass of the particulate conductive member and stirring the mixture. did.
  • fibrous conductive member vapor-grown carbon fiber, average diameter 150 nm, average fiber length 10 ⁇ m
  • proton conductive resin perfluorocarbon sulfonic acid polymer, 100 parts by mass of particulate conductive member) (EW value 700) 100 parts by mass was added and stirred to prepare a catalyst dispersion for the cathode catalyst layer.
  • Example 2 a catalyst dispersion liquid for an anode catalyst layer was prepared, and a test single cell B4 was completed.
  • I 1 / C 1 1.0 in the cathode catalyst layer.
  • Table 1 shows the results of measuring the maximum output densities of the cells A1 to A3, B1, and B4.
  • the maximum output density is indicated by a relative value when the maximum output density of the cell B4 is 100.
  • the EW value of the first proton conductive resin exceeds 850, and the mixing ratio of the first fibrous conductive member to the first particulate conductive member is less than 30% by mass. Low. Further, in the cell B1, at a current density of 1.4 A / cm 2 or more, the output voltage decreased, and power generation was not possible. On the other hand, cells A1 to A3 could operate over a current density of up to 2.6 A / cm 2 . In the cells A1 to A3, the maximum output density was at least twice as high as that in the cell B1.
  • the cells A1 to A3 and B4 have the same value of the first proton conductive resin, I 1 / C 1 , and differ in the mixing ratio of the first fibrous conductive member to the first particulate conductive member. According to Table 1, in cells A1 and A2 in which the blending ratio of the first fibrous conductive member to the first particulate conductive member is 30% by mass or more, the blending ratio of the first fibrous conductive member to the first particulate conductive member is 20%. The output characteristics are remarkably improved as compared with the mass% cell B4.
  • FIG. 2 shows the pore diameter D of the logarithmic differential pore volume dV / d (logD) of the cathode catalyst layers used in the cell A1 of Example 1 and the cells B1 to B3 of Comparative Examples 1 to 3 by a mercury intrusion method.
  • 3 shows the results of measuring the distribution depending on.
  • Examples 4 to 7 In the preparation of the catalyst dispersion for the anode catalyst layer, the amount of the proton conductive resin added was changed from that in Example 1. The amount of the proton conductive resin (perfluorocarbon sulfonic acid-based polymer, EW value 900) was added to 140 parts by mass, 160 parts by mass, 180 parts by mass, and 200 parts by mass with respect to 100 parts by mass of the particulate conductive member. A catalyst dispersion liquid for the prepared anode catalyst layer was prepared.
  • EW value 900 perfluorocarbon sulfonic acid-based polymer
  • test single cells A4 to A7 were completed.
  • A4 to A7 are Examples 4 to 7, respectively.
  • the cells A4 to A7 were evaluated in the same manner as in Example 1.
  • Table 2 shows the results of measuring the maximum output densities of the cells A4 to A7.
  • the maximum output density is indicated by a relative value when the maximum output density of the cell A1 is 100.
  • high output was obtained under low humidification operating conditions.
  • cells A4 to A7 having I 2 / C 2 of 1.4 or more show a remarkable improvement in output compared to cell A1 having I 2 / C 2 of 1.2.
  • Example 8 to 10 In the preparation of the catalyst dispersion for the anode catalyst layer, the proton conductive resin and the amount of addition thereof were changed from those in Example 1. An anode catalyst layer in which the amount of the proton conductive resin (perfluorocarbon sulfonic acid polymer, EW value: 780) was set to 120 parts by mass, 140 parts by mass, and 160 parts by mass with respect to 100 parts by mass of the particulate conductive member. A catalyst dispersion was prepared.
  • EW value perfluorocarbon sulfonic acid polymer
  • test single cells A8 to A10 were completed.
  • A8 to A10 are Examples 8 to 10, respectively.
  • the cells A8 to A10 were evaluated in the same manner as in Example 1.
  • Table 3 shows the results of measuring the maximum output densities of the cells A8 to A10.
  • the maximum output density is indicated by a relative value when the maximum output density of the cell A1 is 100.
  • the fuel cell according to the present disclosure can be suitably used as a power supply for stationary home cogeneration systems and a power supply for vehicles.
  • the present disclosure is suitable for application to a polymer electrolyte fuel cell, but is not limited thereto, and can be generally applied to fuel cells.
  • 100 membrane electrode assembly
  • 110 electrolyte membrane
  • 120 catalyst layer
  • 120A first catalyst layer
  • 120B second catalyst layer
  • 130A first gas diffusion layer
  • 130B second gas diffusion layer
  • 200 fuel Battery (single cell)
  • 240A first separator
  • 240B second separator
  • 250A, 250B sealing member
  • 260A, 260B gas flow path

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

第1繊維状導電部材、第1粒子状導電部材、第1触媒粒子、および、第1プロトン伝導性樹脂を備えた燃料電池のカソード触媒層であって、第1粒子状導電部材の質量に対する第1プロトン伝導性樹脂の質量の割合I1/C1が、1.0~1.6の範囲にある。第1粒子状導電部材100質量部に対する第1繊維状導電部材の割合が、30~50質量部である。第1プロトン伝導性樹脂のEW値が、600~850である。

Description

燃料電池のカソード触媒層および燃料電池
 本開示は、燃料電池のカソード触媒層、および燃料電池に関する。
 燃料電池は、電解質膜およびそれを挟む一対の電極を有する膜電極接合体を備える。一対の電極は、それぞれ、電解質膜側から順に、触媒層およびガス拡散層を備える。
 触媒層の構成として、特許文献1では、プラチナ触媒を担持したカーボンである1次粒子が複数集まって形成される2次粒子と、2次粒子の内部に浸透するとともに2次粒子の外部を覆うアイオノマーとを含み、2次粒子の半径を105nm~200nmの範囲とした触媒層が記載されている。また、触媒層中のアイオノマーの質量Iとカーボンの質量Cとの比(I/C)を、0.65~1.35としている。
 また、特許文献2では、触媒層は、触媒層および高分子電解質を備え、触媒層中に、親水性を有するか、または表面が親水性処理されている繊維状物質を含有させている。
 上記特許文献1および2において、アイオノマーおよび高分子電解質は、プロトン伝導性を有する。しかしながら、プロトン伝導には水分が必要であるため、燃料ガスまたは酸化性ガスを加湿したうえで、触媒層に供給することが通常行われる。
 特許文献3には、アノードにメタノールを供給するメタノール型燃料電池において、アノード触媒層は炭素繊維を担体とする繊維状担持触媒と、炭素粒子を担体とする粒状担持触媒とを含むアノード触媒を含有し、アノードガス拡散層と対向する面におけるアノード触媒中の繊維状担持触媒の比率を、電解質膜と対向する面におけるアノード触媒中の繊維状担持触媒の比率よりも高くすることが記載されている。このとき、アノード触媒の重量に対する電解質の重量比率は、アノードガス拡散層と対向する面において50~140重量%であり、電解質膜と対向する面において150~250重量%とすることが提案されている。
 特許文献4には、固体高分子形燃料電池において、導電性粒子上に触媒粒子が担持された複合粒子を20.000質量%以上80.000質量%以下、プロトン伝導性ポリマーを19.999質量%以上60.000質量%以下、ポリテトラフルオロエチレンを0.001質量%以上20.000質量%以下含有する電極触媒層が記載されている。プロトン伝導性ポリマーの当量重量(EW)は、250以上2000以下が好ましく、250以上800以下がより好ましいと記載されている。
特開2012-243431号公報 特開2004-247316号公報 特開2009-117248号公報 特開2004-273257号公報
 上述の通り、燃料電池においては、プロトンの移動抵抗を低下させるために、燃料ガスまたは酸化性ガスを加湿することが行われる。このため、水蒸気ガスを生成し、燃料ガスまたは酸化性ガスを加湿するための設備(加湿器)を、燃料電池セルとは別に設ける必要がある。
 しかしながら、車載用などの移動体用途で燃料電池を用いる場合、加湿器を設置するための十分なスペースを確保できないことがある。このため、低加湿(例えば、相対湿度20%~40%)の条件において高い出力性能を有する燃料電池が望まれている。
 従来の燃料電池では、低加湿状態で動作させると、電解質膜および触媒層中のアイオノマーが乾燥し、プロトン移動抵抗が高くなる。結果、出力が低下する。一方、触媒層中のI/Cを高めることで保水性を高め、乾燥を抑えることができるが、ガス拡散性が低下する。結果、出力が低下してしまう。
 本開示の一局面は、第1繊維状導電部材、第1粒子状導電部材、第1触媒粒子、および、第1プロトン伝導性樹脂を備え、前記第1粒子状導電部材の質量に対する前記第1プロトン伝導性樹脂の質量の割合I1/C1が、1.0~1.6の範囲にあり、前記第1粒子状導電部材100質量部に対する前記第1繊維状導電部材の割合が、30~50質量部であり、前記第1プロトン伝導性樹脂のEW値が、600~850である、燃料電池のカソード触媒層に関する。
 本開示の他の局面は、上記局面のカソード触媒層を有するカソードと、アノードと、前記アノードと前記カソードの間に介在する電解質膜と、を備える燃料電池に関する。
 本開示によれば、低加湿の動作条件において、触媒層のガス拡散性とプロトン伝導性とを両立し、燃料電池の発電性能を高めることができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の実施形態に係る燃料電池の単セルの構造を模式的に示す断面図である。 実施例1のセルA1、および、比較例1~3のセルB1~B3で用いたカソード触媒層について、水銀圧入法により対数微分細孔容積分布を測定した結果を示すグラフである。
 本開示の実施形態に係る燃料電池のカソード触媒層は、繊維状導電部材(第1繊維状導電部材)、粒子状導電部材(第1粒子状導電部材)、触媒粒子(第1触媒粒子)、および、プロトン伝導性樹脂(第1プロトン伝導性樹脂)を備える。カソード触媒層は、下記の条件(1)~(3)を満たしている。
(1)第1粒子状導電部材の質量に対する第1プロトン伝導性樹脂の質量の割合I1/C1が、1.0~1.6の範囲にある。
(2)第1粒子状導電部材100質量部に対する第1繊維状導電部材の割合が、30~50質量部である。
(3)第1プロトン伝導性樹脂のEW値が、600~850である。
 ここで、EW値とは、プロトン交換基(例えば、スルホン酸基)1モル当たりの乾燥状態のプロトン伝導性樹脂の質量(グラム単位)を意味する。EW値が小さいほど、プロトン伝導性樹脂に占めるプロトン交換基の数が多く、プロトンの移動抵抗は低下する。
 第1粒子状導電部材の質量に対する第1プロトン伝導性樹脂の質量の割合I1/C1を高めることで、保水効果により、低加湿条件においても低いプロトン移動抵抗が得られる。一方で、ガス拡散性は低下する。しかしながら、第1粒子状導電部材に対する第1繊維状導電部材の割合を高くすることで、I1/C1が高い場合であっても、ガスの拡散経路を確保することが可能である。
 I1/C1を1.0~1.6の範囲とし、第1粒子状導電部材100質量部に対する第1繊維状導電部材の割合を30~50質量部とすることが、低加湿の条件において、低いプロトン移動抵抗と、高いガス拡散性とを両立するために必要となる。
 繊維状導電部材の割合を増やすことにより、触媒層の膜厚は厚くなり易い。触媒層の膜厚が厚くなることによって、プロトンの移動抵抗が増大し易くなる。しかしながら、EW値が850以下の第1プロトン伝導性樹脂を用いることによって、繊維状導電部材の導入により触媒層が厚膜化する場合においてもプロトン移動抵抗を低く抑えることができる。
 一方で、プロトン伝導性樹脂の作製の容易さから、第1プロトン伝導性樹脂のEW値は600以上であることが好ましい。
 さらに、第1プロトン伝導性樹脂として、EW値が600~850のものを用いることで、プロトン移動抵抗が低下するとともに、ガス拡散性を一層高めることができることが分かった。第1プロトン伝導性樹脂のEW値は、600~850であってもよく、600~800であってもよく、650~800であってもよい。
 水銀圧入法により触媒層の細孔径Dの分布を測定した結果、上記条件(1)~(3)を満たす触媒層は、対数微分細孔容積dV/d(logD)の分布が、0.006μm~0.015μmの範囲にピークを有し得る。よって、細孔径0.006μm~0.015μmの微細孔を介したガスの拡散経路が形成されることで、ガス拡散性が向上するものと考えられる。
 なお、logDは細孔径D(μm)の常用対数である。上記0.006μm~0.015μmの範囲におけるピークは、最大ピーク値が0.4(cc/g・logμm)以上であり得る。
 細孔容積分布において、細孔径Dが0.006μm~0.015μmの領域における細孔の体積は、0.006μm~0.2μmの領域における細孔の体積の20%以上であり得る。
 微細孔が形成される理由としては、現在解明中であり、限定されるものではないが、以下の点が考えられる。
 EW値が600~850のプロトン伝導性樹脂は、プロトン交換基を有する側鎖の数が多く、嵩高い構造を有している。繊維状導電部材と混合することによって、プロトン伝導性樹脂と繊維状導電部材とが絡み合った3次元ネットワークを形成し、このネットワークによりガス拡散が可能な微細孔を有する細孔構造が形成されていると考えられる。
 上記の触媒層は、ガス拡散性に優れることから、燃料電池のカソード側に設けられるカソード触媒層としての利用に適している。
 本開示の実施形態に係る燃料電池は、上記のカソード触媒層を有するカソードと、アノードと、カソードとアノードとの間に介在する電解質膜と、を備える。アノードは、通常、アノード触媒層を有する。
 アノード側に設けられるアノード触媒層については、カソード触媒層と同様、繊維状導電部材(第2繊維状導電部材)、粒子状導電部材(第2粒子状導電部材)、触媒粒子(第2触媒粒子)、および、プロトン伝導性樹脂(第2プロトン伝導性樹脂)を備えたものとすることができる。しかしながら、アノード触媒層における繊維状導電部材、粒子状導電部材、触媒粒子、および、プロトン伝導性樹脂の材質および/または配合比率については、カソード触媒層と同じである必要はなく、必要に応じて適宜変更してよい。
 特に、低加湿条件で動作させる場合、アノード触媒層において、第2粒子状導電部材の質量に対する第2プロトン伝導性樹脂の質量の割合I2/C2を、カソード触媒層における第1粒子状導電部材の質量に対する第1プロトン伝導性樹脂の質量の割合I1/C1よりも大きくするのが好ましい。
 カソードでは、酸化性ガスとの反応により水が生成される。これに対し、水が生成されないアノードでは、カソードと比べてより乾燥し、低湿度の環境になり易い。しかしながら、アノード触媒層におけるI2/C2を、カソード触媒層におけるI1/C1よりも大きくすることで、カソードで生成された水をアノード側に拡散し易くなる。これにより、低加湿の動作条件において一層の出力向上を望める。
 第2粒子状導電部材100質量部に対する第2繊維状導電部材の割合を、30~60質量部とし、かつ、I2/C2を1.2~2.5(より好ましくは、1.4~2.5)の範囲としてもよい。これにより、アノード側の湿度を高め易く、低加湿の稼働条件においても高い出力を得易い。
 以下に、触媒層(アノード触媒層およびカソード触媒層)に共通の要素について、詳細に説明する。
(繊維状導電部材)
 繊維状導電部材としては、例えば、気相成長炭素繊維(VGCF(登録商標))、カーボンナノチューブ、カーボンナノファイバー等の繊維状炭素材料が挙げられる。繊維状導電部材の直径DFについては、特に限定されないが、好ましくは200nm以下であり、より好ましくは5nm以上200nm以下であり、更に好ましくは10nm以上170nm以下である。この場合、触媒層中に占める繊維状導電部材の体積割合を小さくしながら、ガス経路を十分に確保することができ、ガス拡散性を高めることができる。繊維状導電部材の直径DFは、触媒層から繊維状導電部材を任意に10本取り出し、これらの直径を平均化することにより求められる。直径は、繊維状導電部材の長さ方向に垂直な方向の長さである。
 繊維状導電部材の長さLFについても、特に限定されないが、好ましくは0.2μm以上20μm以下であり、より好ましくは0.2μm以上10μm以下であるとよい。この場合、繊維が略直線状となり、繊維状導電部材の少なくとも一部が触媒層の厚み方向に沿って配向し、ガス拡散経路を確保しやすい。繊維状導電部材の長さLFは、平均繊維長さであり、触媒層から繊維状導電部材を任意に10本取り出し、これらの繊維状導電部材の繊維長さを平均化することにより、求められる。なお、略直線状の繊維の場合、上記の繊維状導電部材の繊維長さとは、繊維状導電部材の一端と、その他端とを直線で結んだときのその直線の長さを意味する。
 繊維状導電部材は、内部に中空の空間(中空部)を有していてもよい。この場合、触媒層内において、繊維状導電部材の長さ方向の両端のそれぞれが開口していてもよい。繊維状導電部材の長さ方向の両端のそれぞれが開口しているとは、当該開口により中空部と外部とが連通していることを意味する。すなわち、繊維状導電部材の両端の開口は、電解質膜およびガス拡散層のいずれによっても塞がれておらず、ガスが両端から出入り可能である。
 中空部を有する繊維状導電部材の側壁には、中空部と外部とを連通する貫通孔が設けられてもよい。貫通孔の少なくとも一部を塞ぐように、触媒粒子を繊維状導電部材の側壁に配し、固定化することができる。貫通孔の少なくとも一部を塞ぐように側壁に担持された触媒粒子は、反応ガスとの接触がより効率的に行われ、触媒層の反応効率を大幅に高められる。
(粒子状導電部材)
 粒子状導電部材としては特に限定されないが、導電性に優れる点で、カーボンブラックが好ましい。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、サーマルブラック、ファーネスブラック、チャンネルブラックなどが挙げられる。その粒径(あるいは、複数の連結した一次粒子で構成されたストラクチャーの長さ)は特に限定されず、従来、燃料電池の触媒層に用いられるものを使用することができる。
(触媒粒子)
 触媒粒子としては特に限定されないが、Sc、Y、Ti、Zr、V、Nb、Fe、Co、Ni、Ru、Rh、Pd、Pt、Os、Ir、ランタノイド系列元素やアクチノイド系列の元素の中から選ばれる合金や単体といった触媒金属が挙げられる。例えば、アノードに用いられる触媒粒子としては、Pt、Pt-Ru合金等が挙げられる。カソードに用いられる触媒粒子としては、Pt、Pt-Co合金等が挙げられる。触媒粒子の少なくとも一部は、粒子状導電部材に担持されている。触媒粒子は、粒子状導電部材に加えて、繊維状導電部材に担持されていてもよい。この場合、触媒粒子がガスに接触し易くなり、ガスの酸化反応あるいは還元反応の効率を高めることができる。
 一方で、繊維状導電部材に触媒粒子が実質的に担持されていない構成も可能である。すなわち、アノード触媒層および/またはカソード触媒層において、触媒粒子は、実質的に粒子状導電部材にのみ担持されていてもよい。繊維状導電部材の触媒担持密度が低いほど、触媒層の撥水性が高まる。よって、この場合、触媒層の排水性が向上し、ガス拡散性を高めることができる。ここで、繊維状導電部材に触媒粒子が実質的に担持されていないとは、以下の場合をいう。
 繊維状導電部材の電子顕微鏡による写真から、繊維状導電部材に担持された触媒粒子の個数iをカウントし、繊維状導電部材の単位表面積当たりの繊維状導電部材に担持された触媒粒子数を導出する。写真内で占める繊維状導電部材の面積をSとする。触媒粒子数iをSで除算し、写真内の複数の領域(例えば、50箇所以上)についてi/Sの平均を求めると、i/Sの平均値から、繊維状導電部材に担持されている触媒粒子の繊維状導電部材の表面積当たりの数を推定できる。i/Sの平均値が0.01μm2当たり5個以下(すなわち、一辺100nmの正方形の領域内に5個以下)である場合、触媒粒子は、繊維状導電部材には実質的に担持されていないといえる。
 触媒粒子の固定化の観点から、触媒粒子の直径Xは、好ましくは1nm以上10nm以下であり、より好ましくは2nm以上5nm以下である。Xが1nm以上である場合、触媒粒子による触媒効果が十分に得られる。Xが10nm以下である場合、触媒粒子を粒子状導電部材および繊維状導電部材の側壁に担持させ易い。
 触媒粒子の直径Xは、以下のようにして求められる。
 触媒層のTEM画像で観察される任意の1個の触媒粒子について、当該粒子を球状と見なした際の粒径(相当円の直径)を算出する。これを、TEM画像で観察される100~300個の触媒粒子に対して行い、それぞれの粒径を算出する。これらの粒径の平均値を触媒粒子の直径Xとする。
(プロトン伝導性樹脂)
 プロトン伝導性樹脂としては特に限定されないが、パーフルオロカーボンスルホン酸系高分子、炭化水素系高分子等が例示される。なかでも、耐熱性と化学的安定性に優れる点で、パーフルオロカーボンスルホン酸系高分子等が好ましい。
 プロトン伝導性樹脂は、繊維状導電部材および触媒粒子の少なくとも一部を被覆している。プロトン伝導性樹脂は、さらに、粒子状導電部材の少なくとも一部を被覆していてもよい。
 低湿度の動作条件においてもプロトン抵抗を低く維持し、かつガス拡散性を高める点から、カソード触媒層に用いられるプロトン伝導性樹脂(第1プロトン伝導性樹脂)は、EW値が600~850のものが用いられる。通常、上記範囲のEW値を有するプロトン伝導性樹脂は、触媒層の形成において、触媒粒子、粒子状導電部材およびプロトン伝導性樹脂を含む触媒分散液を調製する際に、凝集し易い。一方、触媒分散液に繊維状導電部材、およびプロトン伝導性樹脂を上述の条件を満たす配合比で混合することによって、分散液におけるプロトン伝導性樹脂の凝集が抑制されるとともに、塗布乾燥後の触媒層においては、プロトン伝導性樹脂と繊維状導電部材が絡み合い、ガス拡散に適した微細孔が形成され得る。
 触媒層の厚みTは、燃料電池の小型化、および、低湿度条件においてもプロトン抵抗を低く維持し、高出力を得る観点から、可能な限り薄いことが望ましい。一方で、強度の観点から、過度に薄くないことが好ましい。一般に、繊維状導電部材の配合割合が多くなると、触媒層の厚みは厚くなり易い。
 カソード触媒層の厚みTCは、例えば、4μm以上20μm以下であってもよく、4μm以上10μm以下であってもよい。アノード触媒層の厚みTAは、例えば、2μm以上10μm以下であってもよい。触媒層の厚みTCおよびTAは、平均厚みであり、触媒層の断面における任意の10箇所について、一方の主面から他方の主面まで、触媒層の厚み方向に沿った直線を引いたときの距離を平均化することにより、求められる。
 カソード触媒層において、粒子状導電部材に担持された触媒粒子(第1触媒粒子)の担持密度D1は、20%~50%であってもよい。同様に、アノード触媒層において、粒子状導電部材に担持された触媒粒子(第2触媒粒子)の担持密度D2は、20%~50%であってもよい。なお、担持密度D1は、第1粒子状導電部材に担持された第1触媒粒子と第1粒子状導電部材との合計質量に占める、第1粒子状導電部材に担持された第1触媒粒子の質量の割合である。担持密度D2は、第2粒子状導電部材に担持された第2触媒粒子と第2粒子状導電部材との合計質量に占める、第2粒子状導電部材に担持された第2触媒粒子の質量の割合である。
 カソード触媒層において、粒子状導電部材の質量に対するプロトン伝導性樹脂の質量の割合I1/C1については、低加湿の動作条件においても水分を保持し、プロトン抵抗を低く維持する観点から、I1/C1を1.0以上とするのが好ましい。一方で、I1/C1を高めるに伴って、繊維状導電部材の配合割合にもよるが、細孔が形成され難く、ガス拡散性が低下し易くなる。十分なガス拡散性を得る観点から、I1/C1は1.6以下が好ましい。
 カソードでは、反応により水が生成される。これに対し、反応水が生成されないアノードでは、カソードと比べてより乾燥し、低湿度の環境になり易い。このため、アノード触媒層はカソード触媒層よりも高い保湿性が要求され、高いI/Cが必要になり易い。
 アノード触媒層において、粒子状導電部材の質量に対するプロトン伝導性樹脂の質量の割合I2/C2については、低加湿の動作条件においても水分を保持し、プロトン移動抵抗を低く維持する観点から、I2/C2を1.2以上とするのが好ましく、1.4以上がより好ましい。一方で、I2/C2を高めるに伴って、触媒層中の微細孔が減少し、ガス拡散性が低下する。ガス拡散性の低下を抑制する観点からは、I2/C2は2.5以下が好ましい。
 アノード触媒層においてプロトン移動抵抗を低く維持する観点から、アノード触媒層におけるI2/C2を、カソード触媒層におけるI1/C1よりも大きくしてもよい。これにより、カソードで生成された水をアノード側に拡散し易くして、アノード触媒層の保湿性を高め、プロトン移動抵抗を低く維持できる。
 触媒層における繊維状導電部材の配合割合については、アノード触媒層およびカソード触媒層ともに、繊維状導電部材が、粒子状導電部材100質量部に対して30質量部以上含まれていることにより、ガス拡散性を高めることができる。一方で、繊維状導電部材の配合量を高めると、触媒層の膜厚が厚くなり、プロトン移動抵抗が増大し易くなる。また、触媒層にクラックが生じ易くなる。プロトン移動抵抗の増大を抑制し、クラックを抑制する観点から、繊維状導電部材の配合量は、カソード触媒層においては、粒子状導電部材100質量部に対して50質量部以下であればよく、アノード触媒層においては、粒子状導電部材100質量部に対して60質量部以下であればよい。
 触媒層は、例えば、以下のようにして作製される。
 まず、触媒粒子および粒子状導電部材を、分散媒(例えば、水、エタノール、プロパノール等)中で混合する。次いで、得られた分散液を撹拌しながら、プロトン伝導性樹脂および繊維状炭素材料を順次添加して、触媒分散液を得る。プロトン伝導性樹脂は、2回以上に分けて添加してもよい。この場合、プロトン伝導性樹脂の2回目以降の添加は、繊維状炭素材料と共に行ってもよい。その後、得られた触媒分散液を、電解質膜または適当な転写用基材シートの表面に均一な厚さで塗布し、乾燥させることにより、触媒層が得られる。
 塗布法としては、慣用の塗布方法、例えば、スプレー法、スクリーン印刷法、および、ブレードコーター、ナイフコーター、グラビアコーターなどの各種コーターを利用するコーティング法等が挙げられる。転写用基材シートとしては、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレンなどの平滑表面を有するシートを用いることが好ましい。転写用基材シートを用いる場合、得られた触媒層は、後述する電解質膜またはガス拡散層に転写される。
 触媒層の電解質膜またはガス拡散層への転写は、触媒層の転写用基材シートに対向していた面を、電解質膜またはガス拡散層に当接させることにより行われる。触媒層の平滑な面を電解質膜またはガス拡散層に当接させることにより、触媒層との界面抵抗が減少し、燃料電池の性能が向上する。電解質層に直接、触媒分散液を塗布してもよい。
 以下、本実施形態に係る燃料電池の構造の一例を、図1を参照しながら説明する。図1は、一実施形態に係る燃料電池に配置される単セルの構造を模式的に示す断面図である。通常、複数の単セルは積層されて、セルスタックとして燃料電池に配置される。図1では、便宜上、1つの単セルを示している。本実施形態に係る燃料電池は、水素(H2)を燃料に用いる。
 単セル200は、電解質膜110と、電解質膜110を挟むように配置された第1触媒層120Aおよび第2触媒層120Bと、第1触媒層120Aおよび第2触媒層120Bをそれぞれ介して、電解質膜110を挟むように配置された第1ガス拡散層130Aおよび第2ガス拡散層130Bと、を有する膜電極接合体100を備える。また、単セル200は、膜電極接合体100を挟む第1セパレータ240Aおよび第2セパレータ240Bを備える。第1触媒層120Aおよび第2触媒層120Bのうちの一方はアノードとして機能し、他方は、カソードとして機能する。アノードには、ガス流路260Aまたは260Bを介して、水素(H2)を含むガスが供給され得る。電解質膜110は、第1触媒層120Aおよび第2触媒層120Bより一回り大きいため、電解質膜110の周縁部は、第1触媒層120Aおよび第2触媒層120Bからはみ出している。電解質膜110の周縁部は、一対のシール部材250A、250Bで挟持されている。
 第1触媒層120Aおよび第2触媒層120Bのいずれか一方は、アノード触媒層であり、他方はカソード触媒層である。ここでは、第2触媒層120Bをアノード触媒層とする。この場合、第1触媒層120Aがカソード触媒層であり、第1繊維状導電部材、第1粒子状導電部材、および、第1プロトン伝導性樹脂の構成が上記条件(1)~(3)を満している。アノード触媒層である第2触媒層120Bとしては、公知の材質および公知の構成を採用できるほか、I2/C2>I1/C1となるように第2繊維状導電部材、第2粒子状導電部材、および、第2プロトン伝導性樹脂を配合した上述のアノード触媒層の構成を好ましく採用できる。
(電解質膜)
 電解質膜110として、高分子電解質膜が好ましく用いられる。高分子電解質膜の材料としては、プロトン伝導性樹脂として例示した高分子電解質が挙げられる。電解質膜の厚みは、例えば5~30μmである。
(ガス拡散層)
 第1ガス拡散層130Aおよび第2ガス拡散層130Bとしては、基材層を有する構造でもよく、基材層を有さない構造でもよい。基材層を有する構造としては、例えば、基材層と、その触媒層側に設けられた微多孔層とを有する構造体が挙げられる。基材層には、カーボンクロスやカーボンペーパー等の導電性多孔質シートが用いられる。微多孔層には、フッ素樹脂等の撥水性樹脂と、導電性炭素材料と、プロトン伝導性樹脂(高分子電解質)との混合物等が用いられる。
(セパレータ)
 第1セパレータ240Aおよび第2セパレータ240Bは、気密性、電子伝導性および電気化学的安定性を有すればよく、その材質は特に限定されない。このような材質としては、炭素材料、金属材料等が好ましい。金属材料には、カーボンを被覆してもよい。例えば、金属板を所定形状に打ち抜き、表面処理を施すことにより、第1セパレータ240Aおよび第2セパレータ240Bが得られる。
 本実施形態においては、第1セパレータ240Aの第1ガス拡散層130Aと当接する側の面には、ガス流路260Aが形成されている。一方、第2セパレータ240Bの第2ガス拡散層130Bと当接する側の面には、ガス流路260Bが形成されている。ガス流路の形状は特に限定されず、ストレート型、サーペンタイン型等に形成すればよい。
(シール部材)
 シール部材250A、250Bは、弾性を有する材料であり、ガス流路260A、260Bから燃料および/または酸化剤がリークすることを防止している。シール部材250A、250Bは、例えば、第1触媒層120Aおよび第2触媒層120Bの周縁部をループ状に取り囲むような枠状の形状を有する。シール部材250A、250Bとしては、それぞれ、公知の材質および公知の構成が採用できる。
 以下、本開示を実施例に基づいて、更に詳細に説明する。ただし、本開示は以下の実施例に限定されるものではない。
[実施例1]
<カソード触媒層用の分散液の調製>
 触媒粒子(Pt-Co合金)を担持した粒子状導電部材(カーボンブラック)を適量の水に添加、撹拌して、分散させた。得られた分散液を撹拌しながら適量のエタノールを加えた後、上記粒子状導電部材100質量部に対して、繊維状導電部材(気相成長炭素繊維、平均直径150nm、平均繊維長10μm)40質量部、および、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値700)100質量部を添加し、撹拌することにより、カソード触媒層用の触媒分散液を調製した。
<アノード触媒層用の分散液の調製>
 触媒粒子(Pt)を担持した粒子状導電部材(カーボンブラック)を適量の水に添加、撹拌して、分散させた。得られた分散液を撹拌しながら適量のエタノールを加えた後、上記粒子状導電部材100質量部に対して、繊維状導電部材(気相成長炭素繊維、平均直径150nm、平均繊維長10μm)40質量部、および、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値900)120質量部を添加し、撹拌することにより、アノード触媒層用の触媒分散液を調製した。
 カソード触媒層におけるI1/C1=1.0であり、アノード触媒層におけるI2/C2=1.2である。
<単セルの作製>
 次に、2枚のPETシートを準備した。スクリーン印刷法を用いて、一方のPETシートの平滑な表面に、得られたカソード触媒層用の触媒分散液を均一な厚さで塗布し、他方のPETシートの平滑な表面に、得られたアノード触媒層用の触媒分散液を均一な厚さで塗布した。その後、乾燥して、2つの触媒層を形成した。カソード触媒層の膜厚は7μmであり、アノード触媒層の膜厚は3μmであった。
 厚さ15μmの電解質膜の両方の主面に得られた触媒層をそれぞれ転写して、電解質膜の一方の表面にカソードを、他方の表面にアノードを形成した。また、ガス拡散層として多孔質導電性カーボンシートを2枚準備し、一方をアノードに、他方をカソードに、それぞれ当接させた。
 次に、アノードおよびカソードを囲むように枠状シール部材を配置した。ガス拡散層に接する部分にガス流路を有する一対のステンレス鋼製平板(セパレータ)で全体を挟持して、試験用単セルA1を完成させた。
<評価>
 実施例1の単セルA1の発電性能を評価した。具体的には、単セルA1を80℃に加熱し、相対湿度20~40%の燃料ガス(H2)をアノードに、相対湿度20~40%の酸化剤ガス(空気)をカソードに供給した。燃料ガス、および、酸化剤ガスは、セル入口ガス圧力40~120kPaに加圧して供給した。そして、電流が一定に流れるように負荷制御装置を制御し、アノードおよびカソードの電極面積に対する電流密度を変化させながら、単セルA1の電圧(初期電圧)V、抵抗値R、および出力密度Pを測定した。
[実施例2]
 粒子状導電部材100質量部に対して、繊維状導電部材(気相成長炭素繊維、平均直径150nm、平均繊維長10μm)30質量部、および、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値700)100質量部を添加し、撹拌することにより、カソード触媒層用の触媒分散液を調製した。
 これ以外については、実施例1と同様にして、アノード触媒層用の触媒分散液を調製し、試験用単セルA2を完成させた。
 単セルA2において、カソード触媒層におけるI1/C1=1.0である。
[実施例3]
 粒子状導電部材100質量部に対して、繊維状導電部材(気相成長炭素繊維、平均直径150nm、平均繊維長10μm)40質量部、および、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値850)100質量部を添加し、撹拌することにより、カソード触媒層用の触媒分散液を調製した。
 これ以外については、実施例1と同様にして、アノード触媒層用の触媒分散液を調製し、試験用単セルA3を完成させた。
 単セルA3において、カソード触媒層におけるI1/C1=1.0である。
[比較例1]
 カソード触媒層用の分散液の調製において、プロトン伝導性樹脂としてEW値が900のパーフルオロカーボンスルホン酸系高分子を用いた。
 粒子状導電部材100質量部に対して、繊維状導電部材(気相成長炭素繊維、平均直径150nm、平均繊維長10μm)20質量部、および、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値900)120質量部を添加し、撹拌することにより、カソード触媒層用の触媒分散液を調製した。
 これ以外については、実施例1と同様にして、アノード触媒層用の触媒分散液を調製し、試験用単セルB1を完成させた。
 単セルB1において、カソード触媒層におけるI1/C1=1.2である。
[比較例2]
 カソード触媒層用の分散液の調製において、繊維状導電部材を添加しなかった。
 粒子状導電部材100質量部に対して、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値900)120質量部を添加し、撹拌することにより、カソード触媒層用の触媒分散液を調製した。
 これ以外については、比較例1と同様にして、アノード触媒層用の触媒分散液を調製し、試験用単セルB2を完成させた。
 単セルB2において、カソード触媒層におけるI1/C1=1.2である。
[比較例3]
 粒子状導電部材100質量部に対して、繊維状導電部材(気相成長炭素繊維、平均直径150nm、平均繊維長10μm)20質量部、および、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値700)120質量部を添加し、撹拌することにより、カソード触媒層用の触媒分散液を調製した。
 これ以外については、実施例1と同様にして、アノード触媒層用の触媒分散液を調製し、試験用単セルB3を完成させた。
 単セルB3において、カソード触媒層におけるI1/C1=1.2である。
[比較例4]
 粒子状導電部材100質量部に対して、繊維状導電部材(気相成長炭素繊維、平均直径150nm、平均繊維長10μm)20質量部、および、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値700)100質量部を添加し、撹拌することにより、カソード触媒層用の触媒分散液を調製した。
 これ以外については、実施例1と同様にして、アノード触媒層用の触媒分散液を調製し、試験用単セルB4を完成させた。
 単セルB4において、カソード触媒層におけるI1/C1=1.0である。
 表1に、セルA1~A3、B1、B4の最大の出力密度を測定した結果を示す。最大出力密度は、セルB4の最大出力密度を100としたときの相対値で示されている。
 セルB1では、第1プロトン伝導性樹脂のEW値が850を超えており、且つ、第1粒子状導電部材に対する第1繊維状導電部材の配合割合が30質量%未満であるため、出力密度が低い。また、セルB1では、1.4A/cm2以上の電流密度では出力電圧が低下し、発電ができなかった。これに対し、セルA1~A3では、2.6A/cm2までの電流密度に渡って動作が可能であった。セルA1~A3では、セルB1と比較して2倍以上の最大出力密度が得られた。
 セルA1~A3、B4は、第1プロトン伝導性樹脂、I1/C1の値は同じであり、第1粒子状導電部材に対する第1繊維状導電部材の配合割合が異なっている。表1より、第1粒子状導電部材に対する第1繊維状導電部材の配合割合が30質量%以上のセルA1およびA2では、第1粒子状導電部材に対する第1繊維状導電部材の配合割合が20質量%のセルB4と比較して、出力特性が顕著に改善している。
Figure JPOXMLDOC01-appb-T000001
 図2に、実施例1のセルA1、および、比較例1~3のセルB1~B3で用いたカソード触媒層について、水銀圧入法により対数微分細孔容積dV/d(logD)の細孔径Dに依存した分布を測定した結果を示す。
 比較例1のセルB1と比較例2のセルB2では、0.006μm~0.015μmの範囲に若干の対数微分細孔容積が存在する。しかしながら、第1プロトン伝導性樹脂のEW値が850を超えているために、上記範囲内に明確なピークが現れていない。また、比較例3のセルB3では、第1プロトン伝導性樹脂のEW値は850以下であるが、第1粒子状導電部材に対する第1繊維状導電部材の配合割合が30質量%未満であるため、0.006μm~0.015μmの範囲にピークは見られない。
[実施例4~7]
 アノード触媒層用の触媒分散液の調製において、プロトン伝導性樹脂の添加量を実施例1から変更した。
 粒子状導電部材100質量部に対して、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値900)の添加量を、それぞれ140質量部、160質量部、180質量部、200質量部としたアノード触媒層用の触媒分散液を調製した。
 これ以外は実施例1と同様にして、試験用単セルA4~A7を完成させた。A4~A7は、それぞれ、実施例4~7である。セルA4~A7について、実施例1と同様に評価した。
 セルA4~A7において、アノード触媒層におけるI2/C2は、それぞれ、I2/C2=1.4、1.6、1.8、および2.0である。
 表2に、セルA4~A7の最大出力密度を測定した結果を示す。最大出力密度は、セルA1の最大出力密度を100としたときの相対値で示されている。セルA1、A4~A7のいずれも、低加湿の動作条件において高い出力が得られた。特に、I2/C2が1.4以上のセルA4~A7は、I2/C2が1.2のセルA1と比較して、出力の改善度合が顕著である。
Figure JPOXMLDOC01-appb-T000002
[実施例8~10]
 アノード触媒層用の触媒分散液の調製において、プロトン伝導性樹脂およびその添加量を実施例1から変更した。
 粒子状導電部材100質量部に対して、プロトン伝導性樹脂(パーフルオロカーボンスルホン酸系高分子、EW値780)の添加量を、それぞれ120質量部、140質量部、160質量部としたアノード触媒層用の触媒分散液を調製した。
 これ以外は実施例1と同様にして、試験用単セルA8~A10を完成させた。A8~A10は、それぞれ、実施例8~10である。セルA8~A10について、実施例1と同様に評価した。
 セルA8~A10において、アノード触媒層におけるI2/C2は、それぞれ、I2/C2=1.2、1.4、および1.6である。
 表3に、セルA8~A10の最大出力密度を測定した結果を示す。最大出力密度は、セルA1の最大出力密度を100としたときの相対値で示されている。
Figure JPOXMLDOC01-appb-T000003
 本開示に係る燃料電池は、定置型の家庭用コジェネレーションシステム用電源や、車両用電源として、好適に用いることができる。本開示は、高分子電解質型燃料電池への適用に好適であるが、これに限定されるものではなく、燃料電池一般に適用することができる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 100:膜電極接合体、110:電解質膜、120:触媒層、120A:第1触媒層、120B:第2触媒層、130A:第1ガス拡散層、130B:第2ガス拡散層、200:燃料電池(単セル)、240A:第1セパレータ、240B:第2セパレータ、250A,250B:シール部材、260A,260B:ガス流路

Claims (5)

  1.  第1繊維状導電部材、第1粒子状導電部材、第1触媒粒子、および、第1プロトン伝導性樹脂を備え、
     前記第1粒子状導電部材の質量に対する前記第1プロトン伝導性樹脂の質量の割合I1/C1が、1.0~1.6の範囲にあり、
     前記第1粒子状導電部材100質量部に対する前記第1繊維状導電部材の割合が、30~50質量部であり、
     前記第1プロトン伝導性樹脂のEW値が、600~850である、燃料電池のカソード触媒層。
  2.  水銀圧入法にて測定される対数微分細孔容積dV/d(logD)の分布が、細孔径Dが0.006μm~0.015μmの範囲にピークを有している、請求項1に記載のカソード触媒層。
  3.  請求項1または2に記載のカソード触媒層を有するカソードと、
     アノードと、
     前記カソードと前記アノードの間に介在する電解質膜と、を備える燃料電池。
  4.  前記アノードは、アノード触媒層を有し、
     前記アノード触媒層は、第2繊維状導電部材、第2粒子状導電部材、第2触媒粒子、および、第2プロトン伝導性樹脂を備え、
     前記第2粒子状導電部材の質量に対する前記第2プロトン伝導性樹脂の質量の割合I2/C2が、前記I1/C1よりも大きい、請求項3に記載の燃料電池。
  5.  前記アノード触媒層は、
     前記第2粒子状導電部材100質量部に対する前記第2繊維状導電部材の割合が、30~60質量部であり、
     前記I2/C2が1.2~2.5である、請求項4に記載の燃料電池。
PCT/JP2019/028329 2018-07-25 2019-07-18 燃料電池のカソード触媒層および燃料電池 WO2020022191A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980019269.5A CN111868980B (zh) 2018-07-25 2019-07-18 燃料电池的阴极催化剂层及燃料电池
JP2020508629A JP7437633B2 (ja) 2018-07-25 2019-07-18 燃料電池のカソード触媒層および燃料電池
US17/044,654 US11799092B2 (en) 2018-07-25 2019-07-18 Cathode catalyst layer of fuel cells, and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139803 2018-07-25
JP2018139803 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020022191A1 true WO2020022191A1 (ja) 2020-01-30

Family

ID=69180560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028329 WO2020022191A1 (ja) 2018-07-25 2019-07-18 燃料電池のカソード触媒層および燃料電池

Country Status (4)

Country Link
US (1) US11799092B2 (ja)
JP (1) JP7437633B2 (ja)
CN (1) CN111868980B (ja)
WO (1) WO2020022191A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023040454A (ja) * 2021-09-10 2023-03-23 株式会社Screenホールディングス 膜電極接合体、固体高分子形燃料電池、触媒インクの製造方法、および膜電極接合体の製造方法
JP7516825B2 (ja) 2020-04-02 2024-07-17 Toppanホールディングス株式会社 固体高分子形燃料電池用触媒層、膜電極接合体及び固体高分子形燃料電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154185A (zh) * 2022-12-15 2023-05-23 中国科学院大连化学物理研究所 一种燃料电池电极催化层及包含其的膜电极

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193106A (ja) * 2002-11-25 2004-07-08 Honda Motor Co Ltd 膜−電極構造体及びそれを用いる固体高分子型燃料電池
JP2005302339A (ja) * 2004-04-07 2005-10-27 Honda Motor Co Ltd 固体高分子型燃料電池
WO2005124912A1 (ja) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2006040633A (ja) * 2004-07-23 2006-02-09 Hitachi Chem Co Ltd 燃料電池用電極、その製造方法及びそれを用いた燃料電池
JP2006216385A (ja) * 2005-02-03 2006-08-17 Nissan Motor Co Ltd 燃料電池用電極触媒層、および、これを用いた燃料電池
JP2008258057A (ja) * 2007-04-06 2008-10-23 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体
JP2010146965A (ja) * 2008-12-22 2010-07-01 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池用触媒層形成用塗工液、および固体高分子形燃料電池用膜電極接合体の製造方法
JP2015176863A (ja) * 2014-03-18 2015-10-05 トヨタ自動車株式会社 燃料電池用触媒インクの評価方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3561250B2 (ja) * 2001-09-21 2004-09-02 株式会社日立製作所 燃料電池
JP4780902B2 (ja) 2003-03-07 2011-09-28 旭化成イーマテリアルズ株式会社 燃料電池用の電極触媒層
JP4065862B2 (ja) 2004-04-20 2008-03-26 本田技研工業株式会社 固体高分子型燃料電池用電極
JP4031463B2 (ja) * 2004-04-26 2008-01-09 株式会社東芝 液体燃料型固体高分子燃料電池用アノード電極、液体燃料型固体高分子燃料電池用膜電極複合体及び液体燃料型固体高分子燃料電池
JP2009117248A (ja) 2007-11-08 2009-05-28 Toshiba Corp 燃料電池
JP5582092B2 (ja) 2011-05-17 2014-09-03 トヨタ自動車株式会社 燃料電池
WO2016063922A1 (ja) * 2014-10-24 2016-04-28 三井金属鉱業株式会社 燃料電池用電極触媒層及びその製造方法、膜電極接合体並びに固体高分子形燃料電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193106A (ja) * 2002-11-25 2004-07-08 Honda Motor Co Ltd 膜−電極構造体及びそれを用いる固体高分子型燃料電池
JP2005302339A (ja) * 2004-04-07 2005-10-27 Honda Motor Co Ltd 固体高分子型燃料電池
WO2005124912A1 (ja) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2006040633A (ja) * 2004-07-23 2006-02-09 Hitachi Chem Co Ltd 燃料電池用電極、その製造方法及びそれを用いた燃料電池
JP2006216385A (ja) * 2005-02-03 2006-08-17 Nissan Motor Co Ltd 燃料電池用電極触媒層、および、これを用いた燃料電池
JP2008258057A (ja) * 2007-04-06 2008-10-23 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体
JP2010146965A (ja) * 2008-12-22 2010-07-01 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池用触媒層形成用塗工液、および固体高分子形燃料電池用膜電極接合体の製造方法
JP2015176863A (ja) * 2014-03-18 2015-10-05 トヨタ自動車株式会社 燃料電池用触媒インクの評価方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7516825B2 (ja) 2020-04-02 2024-07-17 Toppanホールディングス株式会社 固体高分子形燃料電池用触媒層、膜電極接合体及び固体高分子形燃料電池
JP2023040454A (ja) * 2021-09-10 2023-03-23 株式会社Screenホールディングス 膜電極接合体、固体高分子形燃料電池、触媒インクの製造方法、および膜電極接合体の製造方法
JP7401493B2 (ja) 2021-09-10 2023-12-19 株式会社Screenホールディングス 触媒インクの製造方法、および膜電極接合体の製造方法

Also Published As

Publication number Publication date
US20210098797A1 (en) 2021-04-01
CN111868980B (zh) 2024-05-24
US11799092B2 (en) 2023-10-24
JP7437633B2 (ja) 2024-02-26
CN111868980A (zh) 2020-10-30
JPWO2020022191A1 (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
CA2839646C (en) Gas diffusion layer for fuel cell and method for manufacturing the same
US9601793B2 (en) Electrolyte film—electrode assembly
CN113544884B (zh) 燃料电池的阴极催化剂层及燃料电池
US11569519B2 (en) Membrane electrode assembly and fuel cell
JP7544203B2 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP7546242B2 (ja) 膜電極接合体および燃料電池
WO2020022191A1 (ja) 燃料電池のカソード触媒層および燃料電池
JP2008204664A (ja) 燃料電池用膜電極接合体、およびこれを用いた燃料電池
JP2020057516A (ja) 電極層ならびに当該電極層を用いた膜電極接合体および燃料電池
US12095099B2 (en) Catalyst layer and method for producing the same
JP2013175368A (ja) アノードガス拡散層
US20220149409A1 (en) Membrane electrode assembly and fuel cell
JPWO2019131707A1 (ja) 燃料電池用触媒層および燃料電池
JP2022181252A (ja) 触媒層
JP2021009777A (ja) 触媒層、膜電極接合体および燃料電池
WO2024018802A1 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
US20220336834A1 (en) Membrane electrode assembly and fuel cell
JP2023022654A (ja) 膜電極接合体、固体高分子形燃料電池、および膜電極接合体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020508629

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840977

Country of ref document: EP

Kind code of ref document: A1