WO2020009016A1 - 有機化合物の製造方法 - Google Patents
有機化合物の製造方法 Download PDFInfo
- Publication number
- WO2020009016A1 WO2020009016A1 PCT/JP2019/025811 JP2019025811W WO2020009016A1 WO 2020009016 A1 WO2020009016 A1 WO 2020009016A1 JP 2019025811 W JP2019025811 W JP 2019025811W WO 2020009016 A1 WO2020009016 A1 WO 2020009016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- acid
- compound
- group
- reaction
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/02—Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/64—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
- C07C233/77—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/64—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
- C07C233/81—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C273/00—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
- C07C273/18—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
- C07C273/1809—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety
- C07C273/1818—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety from -N=C=O and XNR'R"
- C07C273/1827—X being H
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C315/00—Preparation of sulfones; Preparation of sulfoxides
- C07C315/04—Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/14—Preparation of carboxylic acid esters from carboxylic acid halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/44—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
- C07D207/444—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
- C07D207/448—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3225—Polyamines
- C08G18/3237—Polyamines aromatic
- C08G18/3243—Polyamines aromatic containing two or more aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/34—Carboxylic acids; Esters thereof with monohydroxyl compounds
- C08G18/341—Dicarboxylic acids, esters of polycarboxylic acids containing two carboxylic acid groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
- C08G18/7671—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7678—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing condensed aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/32—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1035—Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1057—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
- C08G73/1064—Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1067—Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
- C08G73/1071—Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1085—Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/14—Polyamide-imides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2603/00—Systems containing at least three condensed rings
- C07C2603/02—Ortho- or ortho- and peri-condensed systems
- C07C2603/04—Ortho- or ortho- and peri-condensed systems containing three rings
- C07C2603/06—Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
- C07C2603/10—Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
- C07C2603/12—Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
- C07C2603/18—Fluorenes; Hydrogenated fluorenes
Definitions
- the present invention relates to a method for producing an organic compound utilizing a mechanochemical effect.
- the mechanochemical effect is such that when various mechanical energies (compression, shear, impact, grinding, etc.) are applied to a solid or a particle, those substances become active and change their physicochemical properties.
- the effects occurring here are collectively referred to as mechanochemical effects, and have been confirmed for many substances such as inorganic substances, organic substances, and metals.
- Non-Patent Documents 1 to 4 methods as described in Non-Patent Documents 1 to 4 are disclosed. However, it has been limited to polymer compounds produced by chain polymerization or living polymerization by radicals or ions.
- Patent Document 1 a technique of causing surface fusion between particles
- Patent Document 2 a technique of producing an acylated cellulose by performing a mechanochemical reaction between cellulose and an acylating agent
- An object of the present invention is to provide a method for producing an organic compound, in which a reaction between functional groups is performed without using a solvent.
- the present invention relates to a method for producing an organic compound, wherein a reaction between functional groups is performed by a mechanochemical effect.
- the present inventors have conducted intensive studies on the above-mentioned problems, and as a result, have found that the problems can be solved by expressing a mechanochemical effect by utilizing mechanical energy generated when pulverizing a raw material compound used in the reaction. Reached the present invention.
- the gist of the present invention is as follows.
- ⁇ 1> A method for producing an organic compound, wherein a reaction between functional groups is performed by a mechanochemical effect.
- ⁇ 2> The method for producing an organic compound according to ⁇ 1>, wherein the reaction is a condensation reaction, an addition reaction, or a composite reaction thereof.
- ⁇ 3> The reaction according to ⁇ 1> or ⁇ 2>, wherein the reaction is a reaction of two functional groups selected from the group consisting of a carboxyl group and a halide thereof, an acid anhydride group, an amino group, an isocyanate group, and a hydroxyl group.
- ⁇ 4> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 3>, wherein the reaction is one or more reactions selected from the group consisting of the following reactions: (A) a reaction in which (a1) an amide group and a carboxyl group, (a2) an imide group, (a3) an isoimide group, or (a4) a mixed group thereof are formed by a reaction between an acid anhydride group and an amino group; (B) a reaction in which an imide group is formed by a reaction between an acid anhydride group and an isocyanate group; (C) a reaction in which an amide group is formed by a reaction between a carboxyl group or a halide thereof and an amino group or an isocyanate group; (D) a reaction in which a carboxyl group or a halide thereof reacts with a hydroxyl group to form an ester group; (E) a reaction in which a urea group is formed by a reaction between an isocyanate
- ⁇ 5> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 4>, wherein the reaction between the functional groups occurs between two starting compound molecules.
- ⁇ 6> The method for producing an organic compound according to ⁇ 5>, wherein each of the raw material compounds is a compound having a molecular weight of 2000 or less.
- ⁇ 7> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 6>, wherein the reaction is accelerated by heating.
- ⁇ 8> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 7>, wherein the organic compound is a polymer compound containing a repeating unit.
- ⁇ 9> The method for producing an organic compound according to ⁇ 8>, wherein the reaction belongs to one or more reactions selected from the group consisting of a sequential polymerization reaction, a condensation polymerization reaction, and a polyaddition reaction.
- ⁇ 11> The method for producing an organic compound according to any one of ⁇ 8> to ⁇ 10>, wherein the reaction is performed in the presence of a terminal blocking agent.
- a polyamic acid-based compound, a polyimide-based compound, or a mixture thereof is produced as the organic compound by reacting a tetracarboxylic dianhydride component with a diamine component or a diisocyanate component.
- ⁇ 13> The reaction according to any one of ⁇ 1> to ⁇ 11>, wherein a polyamide compound is produced as the organic compound by reacting a dicarboxylic acid component or an acid halide component thereof with a diamine component or a diisocyanate component.
- ⁇ 14> Any of ⁇ 1> to ⁇ 11>, wherein a polyamideimide-based compound is produced as the organic compound by reacting a tricarboxylic anhydride component or an acid halide component thereof with a diamine component or a diisocyanate component. Or a method for producing an organic compound.
- ⁇ 15> The polyester according to any one of ⁇ 1> to ⁇ 11>, wherein a polyester-based compound is produced as the organic compound by reacting a dicarboxylic acid component or an acid halide component thereof with a polyhydroxy component. A method for producing an organic compound.
- ⁇ 16> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 11>, wherein a polyurea-based compound is produced as the organic compound by reacting a diisocyanate component with a diamine component.
- ⁇ 17> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 11>, wherein a polyurethane-based compound is produced as the organic compound by reacting a diisocyanate component with a polyhydroxy component.
- ⁇ 18> The component according to any one of ⁇ 12> to ⁇ 17>, wherein each of the components is used in an amount such that one component is 0.8 to 1.2 times the molar amount of the other component.
- a method for producing an organic compound is used in an amount such that one component is 0.8 to 1.2 times the molar amount of the other component.
- ⁇ 19> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 7>, wherein the organic compound is a low molecular compound containing no repeating unit.
- a diimidedicarboxylic acid-based compound is produced as the organic compound by reacting a tricarboxylic anhydride component with a diamine component in an amount of 0.1 to 0.7 times the molar amount of the component.
- 19> The method for producing an organic compound according to ⁇ 1>.
- diimide dicarboxylic acid is obtained as the organic compound by reacting a tetracarboxylic dianhydride component with a monoamino monocarboxylic acid component in an amount of 1.5 to 10.0 times the molar amount of the component.
- a diimide tricarboxylic acid compound is produced as the organic compound by reacting a tricarboxylic anhydride component with a diaminomonocarboxylic acid component in a molar amount of 0.1 to 0.7 times the amount of the component.
- the method for producing an organic compound according to ⁇ 19>, wherein ⁇ 23> The reaction is performed by reacting a tetracarboxylic dianhydride component with a monoamino dicarboxylic acid component in a molar amount of 1.5 to 10.0 times the amount of the component to obtain diimide tetracarboxylic acid as the organic compound.
- a monoimidedicarboxylic acid-based compound is obtained as the organic compound by reacting a tricarboxylic anhydride component with a monoaminomonocarboxylic acid component in a molar amount of 0.5 to 5.0 times the amount of the component.
- the method for producing an organic compound according to ⁇ 19>, wherein ⁇ 25> In the reaction, a monoimide tricarboxylic acid-based compound is obtained as the organic compound by reacting a tricarboxylic anhydride component with a monoaminodicarboxylic acid component in an amount of 0.5 to 5.0 moles per mole of the component.
- an amide group-containing monoimide is obtained as the organic compound by reacting a tricarboxylic anhydride halide component with a monoaminodicarboxylic acid component in an amount of 1.5 to 10.0 times the molar amount of the component.
- an ester group-containing monoimide tricarboxylic acid is used as the organic compound by reacting a tricarboxylic anhydride component with a monohydroxymonoamine component in a molar amount of 0.1 to 0.7 times the amount of the component.
- a diimidedihydroxy compound is used as the organic compound by reacting a tetracarboxylic dianhydride component with a monohydroxymonoamine component in a molar amount of 1.5 to 10.0 times the amount of the component.
- a diamide dicarboxylic acid compound is obtained as the organic compound by reacting a dicarboxylic acid halide component with a monoamino monocarboxylic acid component in a molar amount of 1.5 to 10.0 times the amount of the component.
- a diamide tetracarboxylic acid compound is obtained as the organic compound by reacting a dicarboxylic acid halide component with a monoaminodicarboxylic acid component in a molar amount of 1.5 to 10.0 times the amount of the component.
- a diester dicarboxylic acid-based compound is obtained as the organic compound by reacting a dicarboxylic acid halide component with a monohydroxymonocarboxylic acid component in an amount of 1.5 to 10.0 times the molar amount of the component.
- a diester tetracarboxylic acid compound is obtained as the organic compound by reacting a dicarboxylic acid halide component with a monohydroxydicarboxylic acid component in an amount of 1.5 to 10.0 times the molar amount of the component.
- a curable imide compound is produced as the organic compound by reacting an unsaturated dicarboxylic anhydride component with a diamine component in an amount of 0.1 to 0.7 times the molar amount of the component. , ⁇ 19>.
- ⁇ 36> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 35>, wherein the reaction is performed in the presence of a catalyst.
- ⁇ 37> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 36>, wherein the reaction is performed in the presence of an auxiliary agent.
- ⁇ 38> The method for producing an organic compound according to any one of ⁇ 1> to ⁇ 37>, wherein the reaction rate is increased by performing a heat treatment after the reaction by the mechanochemical effect.
- organic compounds ranging from low molecular weight compounds to high molecular weight compounds can be produced without using a solvent.
- the production method of the present invention is a method for obtaining an organic compound by exerting a mechanochemical effect by utilizing mechanical energy generated when pulverizing a raw material compound used in the reaction.
- the mechanochemical effect means that a raw material compound in a solid state in a reaction environment is subjected to mechanical energy (compression force, shear force, impact force, grinding force, etc.) to pulverize the raw material compound.
- This causes a reaction between the functional groups.
- the reaction between the functional groups usually occurs between two or more starting compound molecules.
- the reaction between functional groups may occur between two source compound molecules having different chemical structures, or may occur between two source compound molecules having the same chemical structure.
- the reaction between functional groups does not necessarily occur only between a limited set of two source compound molecules, but usually also occurs between another set of two source compound molecules.
- a new reaction between functional groups may occur between the compound molecule generated by the reaction between the functional groups and the raw material compound molecule.
- the reaction between the functional groups is usually a chemical reaction, whereby a bonding group (particularly a covalent bond) is formed between the two raw material compound molecules by the functional group of each raw material compound molecule, and another one is formed.
- Compound molecules are formed.
- the reaction environment means an environment in which the raw material compounds are placed for the reaction, that is, an environment to which mechanical energy is applied, and may be, for example, an environment in an apparatus.
- To be in a solid state in a reaction environment means to be in a solid state under an environment to which mechanical energy is applied (for example, under a temperature and a pressure in an apparatus).
- the raw material compound in a solid state under the reaction environment may be in a solid state under normal temperature (25 ° C.) and normal pressure (101.325 kPa).
- the starting compound in the solid state under the reaction environment may be in the solid state at the start of the application of mechanical energy.
- the present invention relates to a method for producing a raw material compound which is in a solid state in a reaction environment in a liquid state (for example, a molten state) during a reaction (or during a treatment) due to an increase in temperature and / or pressure accompanying the continuation of application of mechanical energy.
- a liquid state for example, a molten state
- the compound be continuously in a solid state during the reaction (or during the treatment) from the viewpoint of improving the reaction rate.
- Pulverization occurs by applying mechanical energy to one or more solid-state raw material compounds, the pulverization interface is activated by absorption of the mechanical energy. It is considered that a chemical reaction occurs between the two raw material compound molecules due to the surface active energy at the grinding interface. Pulverization means that the application of mechanical energy to the raw material compound particles causes the particles to absorb the mechanical energy, causing the particles to crack and renew the surface. Surface renewal means that a grinding interface is formed as a new surface.
- the state of the new surface formed by the renewal of the surface is not particularly limited as long as the activation of the pulverized interface by pulverization occurs, and may be in a dry state or in a wet state. Is also good.
- the new wet state of the surface due to the renewal of the surface is caused by the raw material compound in a different liquid state from the raw material compound in the solid state.
- the state of the raw material mixture is not particularly limited as long as the solid state raw material compound is crushed by the application of mechanical energy.
- the raw material mixture may be in a dry state due to all the raw material compounds contained in the raw material mixture being in a solid state.
- the raw material mixture may be in a wet state because at least one raw material compound contained in the raw material mixture is in a solid state and the remaining raw material compounds are in a liquid state.
- the raw material mixture includes only one raw material compound, the one raw material compound is in a solid state.
- the two raw material compounds may both be in a solid state, or one raw material compound is in a solid state and the other raw material compound is a liquid. You may be in a state.
- a functional group is a monovalent group (atomic group) that can cause reactivity in a molecular structure, and includes an unsaturated bond group such as a carbon-carbon double bond and a carbon-carbon triple bond (for example, Radical polymerizable group).
- Functional groups are groups containing carbon and heteroatoms.
- a heteroatom is one or more atoms selected from the group consisting of oxygen, nitrogen and sulfur, especially the group consisting of oxygen and nitrogen.
- the functional group may further contain a hydrogen atom.
- the functional groups subjected to the reaction are usually two functional groups, and the structure of the raw material compound molecule having one functional group may be different from that of the raw material compound molecule having the other functional group. Or the same.
- the reaction forms a bond (particularly a covalent bond) between the two raw material compound molecules, and achieves their monomolecularization. Due to the reaction between the functional groups, small molecules such as water, carbon dioxide, and / or alcohol may or may not be by-produced.
- the reaction between the functional groups may be a reaction between any functional groups (particularly monovalent functional groups) that can chemically react with each other.
- a carboxyl group and its halide (group) For example, a carboxyl group and its halide (group), an acid anhydride group, an amino group , An isocyanate group, and a hydroxyl group.
- the two functional groups are not particularly limited as long as a chemical reaction occurs, and may be, for example, two functional groups having different chemical structures or two functional groups having the same chemical structure.
- reaction between the functional groups examples include a condensation reaction, an addition reaction, and a composite reaction thereof.
- the “condensation reaction” refers to a reaction in which the bonding or linking between the raw material compound molecules is achieved while the elimination of small molecules such as water, carbon dioxide, and alcohol between the raw material compound molecules.
- Examples of the condensation reaction include a reaction in which an amide group is generated (amidation reaction), a reaction in which an imide group is generated (imidation reaction), and a reaction in which an ester group is generated (esterification reaction).
- the addition reaction is an addition reaction between functional groups, and is a reaction in which bonding or linking between raw material compound molecules is achieved between raw material compound molecules without elimination of small molecules.
- Examples of the addition reaction include a reaction in which a urea group is generated, a reaction in which a urethane group is generated, and a reaction in which a ring structure is opened (that is, a ring opening reaction).
- a ring opening reaction in a raw material compound having a cyclic structure (for example, an acid anhydride group-containing compound, a cyclic amide compound, a cyclic ester compound, or an epoxy compound), a part of the cyclic structure is cleaved, and the cleaved site and another site are cleaved.
- a ring opening reaction for example, an amide group, a carboxyl group, an ester group, and an ether group are generated.
- the acid anhydride group is opened to bond to another raw material compound molecule (amino group or hydroxyl group). Or a connection is achieved.
- an amide group or an ester group and a carboxyl group are simultaneously formed.
- the reaction between the functional groups may be more specifically, for example, one or more reactions selected from the group consisting of the following reactions: (A) a reaction in which (a1) an amide group and a carboxyl group, (a2) an imide group, (a3) an isoimide group, or (a4) a mixed group thereof are formed by a reaction between an acid anhydride group and an amino group; (B) a reaction in which an imide group is formed by a reaction between an acid anhydride group and an isocyanate group; (C) a reaction in which a carboxyl group or its halide (group) reacts with an amino group or an isocyanate group to form an amide group; (D) a reaction in which a carboxyl group or its halide (group) reacts with a hydroxyl group to form an ester group; (E) a reaction in which a urea group is formed by a reaction between an isocyanate group and an amino group; (F) a reaction in which a ure
- the raw material compound has one or more functional groups (for example, one to five), preferably two to five, more preferably two to three functional groups selected from the group consisting of the above functional groups per molecule.
- the molecular weight of the raw material compound is not particularly limited, and is preferably 2,000 or less, particularly 1500 to 30, and more preferably 1,000 to 30, from the viewpoint of further improving the reaction rate. It is not preferable to use a compound having a molecular weight larger than the above range as a raw material compound because the reaction rate is reduced. Although the details of the reason are not clear, the activation of the pulverized interface in the mechanochemical effect is based on the activity of the raw material compound molecule. Can be Alternatively, it is considered that when the molecular weight is large, the density of the functional groups per molecule becomes low, so that the probability of contact between the activated functional groups decreases.
- the reaction by the mechanochemical effect may be performed in one stage, or may be performed in two or more stages.
- the method of applying mechanical energy in one step can be referred to as a one-step mechanochemical method.
- a method of applying mechanical energy in two or more stages can be referred to as a multi-stage mechanochemical method.
- a device for example, a crushing device, a mixing device, or a stirring device
- a mechanochemical reaction is performed in a one-stage crushing process. Terminate.
- a raw material compound is charged at a target composition ratio into an apparatus described below, and then subjected to a first-stage pulverization process of coarse pulverization, followed by a second-stage pulverization process of fine pulverization. I do.
- ⁇ ⁇ From the viewpoint of further improving the reaction rate and operability, it is preferable to employ a multi-step mechanochemical method (particularly a two-step mechanochemical method). More specifically, when the pulverization process is carried out suddenly in the first stage, the sample adheres to and adheres to the device, which causes a problem in operability such as a decrease in the yield of the obtained product or a stoppage of the device during the process. There is also. Therefore, it is preferable to employ a multi-step mechanochemical method from the viewpoint of further improving the reaction rate and operability.
- the devices used in each stage may be independently selected from the devices described in detail below.
- the device used in the first stage coarse pulverization process and the device used in the second stage fine pulverization process are different.
- the efficiency can be improved by using a device in which the appropriate target particle size is different from each other in each stage in the multi-stage mechanochemical method. As a result, the reaction rate is further improved.
- the equipment used immediately after the appropriate target particle size is used immediately before It is preferable to use a device smaller than the appropriate target particle size of the device to be used. From the same viewpoint, for example, in the two-stage mechanochemical method, it is preferable to perform pulverization using a high-speed bottom-stirring mixer in the first step and pulverize using a medium stirring-type mill in the second step.
- the reaction between the functional groups due to the mechanochemical effect is achieved by subjecting a raw material mixture containing at least one or more raw material compounds in a solid state to a pulverization treatment as described above.
- the type and molecular weight of the organic compound to be produced can be controlled by adjusting or selecting the reaction conditions (for example, pulverization conditions) and / or the type and ratio of the raw material compounds.
- Organic compounds produced include high molecular compounds and low molecular compounds.
- the polymer compound is an organic compound containing a repeating unit.
- the organic compound containing a repeating unit means that in the structural formula of the organic compound, one or more types of structural units repeated twice or more continuously are included.
- the structural unit is a unit constituting a main chain, and is different from a unit constituting a side chain or a substituent.
- the reaction between the functional groups is a polymerization reaction.
- the polymerization reaction refers to a chemical reaction in which a monomer (monomer) or a polymer (polymer), particularly a monomer, is reacted and joined to synthesize a target polymer.
- the polymerization reaction is roughly classified into two, a sequential polymerization reaction and a chain polymerization reaction, depending on the reaction route.
- the polymerization reaction is a sequential polymerization reaction.
- the sequential polymerization reaction is a polymerization reaction in which a monomer or a polymer, particularly a functional group of the monomer, reacts with each other and gradually becomes a polymer, and includes a condensation polymerization reaction and a polyaddition reaction.
- the condensation polymerization reaction is a polymerization reaction in which the condensation reaction is repeatedly performed while generating small molecules such as water, alcohol, hydrogen halide, and / or carbon dioxide between functional groups.
- the polyaddition reaction is a polymerization reaction in which a covalent bond is formed by repeating an addition reaction between functional groups to generate a polymer.
- the sequential polymerization reaction is distinguished from an addition polymerization reaction of a vinyl compound or an olefin compound in which polymerization proceeds in a chain or a ring-opening polymerization reaction of a cyclic compound.
- the condensation polymerization reaction involves by-products of small molecules such as water, alcohols, hydrogen halides, and / or carbon dioxide when forming a covalent bond, whereas the polyaddition reaction has no by-products of small molecules.
- a chain polymerization reaction is a polymerization reaction in which polymerization active species react one after another by adding an initiator or the like to a monomer having no functional group or the like to promote the reaction. It includes a polymerization reaction and an ionic polymerization reaction.
- the radical polymerization reaction is a polymerization reaction used for polymerization of a vinyl compound using a highly active neutral radical species as a growing species.
- the term "ionic polymerization reaction” refers to a reaction in which the terminal of a growing chain is an ion such as an anion or a cation.
- Examples of the polymer compound that can be polymerized by a sequential polymerization reaction in the present invention include a polyamic acid compound, a polyimide compound, a polyamide compound, a polyamideimide compound, a polyurethane compound, a polyurea compound, and a polyester compound. .
- the polyamic acid-based compound is a precursor of a polyimide-based compound, which has an amide group and a carboxyl group in a molecular chain (particularly, a repeating unit), and is a compound that forms an imide group by a cyclization reaction. .
- a polyamic acid-based compound can also be called a polyamic acid.
- the polyimide compound is a compound having an imide group in a molecular chain (particularly, a repeating unit).
- the polyimide-based compound has no amide group in the molecular chain.
- the polyimide compound whose imidation ratio is not 100% is included in the polyamic acid compound.
- the polyimide compound includes a polyetherimide compound having an imide group and an ether group in a molecular chain (particularly, a repeating unit).
- the polyamide-based compound is a compound having an amide group in a molecular chain (particularly, a repeating unit).
- the polyamide-based compound has no imide group in the molecular chain.
- the polyamideimide-based compound is a compound having an imide group and an amide group in a molecular chain (particularly, a repeating unit).
- the polyurethane compound is a compound having a urethane group in a molecular chain (particularly, a repeating unit).
- the polyurethane compound may have an ester group in a molecular chain (particularly, a repeating unit).
- the polyurea-based compound is a compound having a urea group in a molecular chain (particularly, a repeating unit).
- the polyester compound is a compound having an ester group in a molecular chain (particularly, a repeating unit). Polyester compounds have no urethane groups in the molecular chain.
- the high molecular compound includes those containing two or more of the above high molecular compounds.
- the type of the obtained polymer compound can be controlled by selecting the type of the starting compound.
- a raw material compound for producing a polymer compound is usually a raw material compound having two or more (particularly two) functional groups selected from the group consisting of the above functional groups per molecule.
- the molecular weight of the starting compound is not particularly limited, and usually has a molecular weight within the above range.
- each component is used in an approximately equimolar amount with each other. Specifically, one component is used in an amount of 0.8 to 1 with respect to the other component. It is used in a molar amount of 0.2 times, especially 0.9 to 1.1 times, preferably 0.95 to 1.05 times.
- Polyamic acid-based compound and polyimide-based compound (Hereinafter, these compounds may be referred to as a polyamic acid-based compound, etc.)
- a polyamic acid-based compound, a polyimide-based compound, or a mixture thereof is produced by performing a reaction between functional groups by a mechanochemical effect. be able to.
- the reaction between the functional groups corresponds to the above-described reactions (A) and (B).
- a polyamic acid-based compound is mainly produced.
- a tetracarboxylic dianhydride component and a diisocyanate component are used as raw material compounds, mainly a polyimide compound is produced.
- the tetracarboxylic dianhydride component capable of forming a polyamic acid-based compound or the like is an aromatic tetracarboxylic dianhydride component containing an aromatic ring, an alicyclic group containing an aliphatic ring but not containing an aromatic ring.
- aromatic tetracarboxylic dianhydride component containing an aromatic ring, an alicyclic group containing an aliphatic ring but not containing an aromatic ring.
- the tetracarboxylic dianhydride component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are replaced with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). It may be.
- a halogen atom eg, a fluorine atom, a chlorine atom, a bromine atom.
- an ether group refers to an “—O—” group existing between carbon atoms.
- a thioether group is an "-S-" group that exists between carbon atoms.
- aromatic tetracarboxylic dianhydride component examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyl Tetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 3-fluoropyromellitic dianhydride, 3,6-difluoro Pyromellitic dianhydride, 3,6-bis (trifluoromethyl) pyromellitic dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 1,2,3,4-benzenetetra Carboxylic dianhydride, 2,2 ', 3,3'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-ethylene glycol dibenzoate
- Examples of the alicyclic tetracarboxylic dianhydride component include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, and cyclohexane-1,2,3,4- Tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, 3,3 ', 4,4'-bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'- Bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, methylene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,2-ethylene-4,4′-bis ( Cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,1-ethynylidene-4,4′-bis (cyclohexane-1
- Examples of the aliphatic tetracarboxylic dianhydride component include 1,2,3,4-butanetetracarboxylic dianhydride and 1,1,2,2-ethanetetracarboxylic dianhydride. One of these may be used alone, or two or more may be used as a mixture.
- the tetracarboxylic dianhydride component such as a polyamic acid compound preferably contains an aromatic tetracarboxylic dianhydride component from the viewpoint of heat resistance of the polyamic acid compound and the like (particularly, a polyimide compound).
- the tetracarboxylic dianhydride component such as a polyamic acid compound may contain only an aromatic tetracarboxylic dianhydride component from the viewpoint of further improving the heat resistance of the polyamic acid compound or the like (particularly, a polyimide compound). preferable.
- the tetracarboxylic dianhydride component such as a polyamic acid compound is an ether group or a thioether group among the above tetracarboxylic dianhydride components from the viewpoint of the solubility of the polyamic acid compound or the like (particularly, a polyimide compound).
- the tetracarboxylic dianhydride component such as a polyamic acid compound is a fluorine atom among the above tetracarboxylic dianhydride components from the viewpoint of further improving the solubility of the polyamic acid compound and the like (particularly, a polyimide compound). It is preferable to use an aromatic tetracarboxylic dianhydride or an alicyclic tetracarboxylic dianhydride component having (or a fluorine atom-containing substituent).
- the tetracarboxylic dianhydride component such as a polyamic acid compound is, from the viewpoint of non-coloring property of a polyamic acid compound or the like (especially a polyimide compound), a fluorine atom (or It is preferable to include an aromatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride or an aliphatic tetracarboxylic dianhydride having a fluorine atom-containing substituent).
- the tetracarboxylic dianhydride component such as a polyamic acid compound is selected from the above-mentioned tetracarboxylic dianhydride components from the viewpoint of further improving the non-coloring property of the polyamic acid compound and the like (particularly, a polyimide compound). It is preferable to include an aromatic tetracarboxylic dianhydride having an atom (or a fluorine atom-containing substituent).
- the tetracarboxylic dianhydride component such as a polyamic acid-based compound includes, among the above-mentioned tetracarboxylic dianhydride components, pyromellitic dianhydride, 3,3 ′, 4,4′- Biphenyltetracarboxylic dianhydride, 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthal Acid anhydride, 4,4 ′-(4,4′-isopropylidene diphenoxy) diphthalic anhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4 ′-( (Hexafluoroisopropylidene) diphthalic anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 4,
- the tetracarboxylic dianhydride component such as a polyamic acid-based compound includes only one or more compounds selected from the group H1 among the above tetracarboxylic dianhydride components. It is preferred to include.
- the diamine component that can constitute the polyamic acid-based compound is an aromatic diamine component containing an aromatic ring, an alicyclic diamine component containing an aliphatic ring but not containing an aromatic ring, and an aromatic ring is also alicyclic. Includes aliphatic diamine components that also contain no rings.
- the diamine component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms may be substituted with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). .
- the diamine component may have a side chain.
- aromatic diamine component examples include m-xylylenediamine, p-xylylenediamine, benzidine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-toluenediamine, and 2,6-toluene Diamine, m-aminobenzylamine, p-aminobenzylamine, bis (3-aminophenyl) sulfide, (3-aminophenyl) (4-aminophenyl) sulfide, bis (4-aminophenyl) sulfide, bis (3- (Aminophenyl) sulfoxide, (3-aminophenyl) (4-aminophenyl) sulfoxide, bis (3-aminophenyl) sulfone, (3-aminophenyl) (4-aminophenyl) sulfone, bis (4-aminophenyl)
- Examples of the alicyclic diamine component include trans-1,4-cyclohexanediamine, cis-1,4-cyclohexanediamine, 4,4′-methylenebis (cyclohexylamine)), 1,4-bis (aminomethyl) cyclohexane And isophoronediamine.
- trans-1,4-cyclohexanediamine cis-1,4-cyclohexanediamine
- 4,4′-methylenebis (cyclohexylamine) 4,4′-methylenebis (cyclohexylamine)
- 1,4-bis (aminomethyl) cyclohexane And isophoronediamine 1,4-bis (aminomethyl) cyclohexane And isophoronediamine.
- One of these may be used alone, or two or more may be used as a mixture.
- aliphatic diamine component examples include hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, 1,10-diaminodecane, 1,12-diaminododecane, and 1,10-diamino-1.
- 10-dimethyldecane bis (10-aminodecamethylene) tetramethyldisiloxane, ⁇ , ⁇ -bisaminopolydimethylsiloxane, ⁇ , ⁇ -bis (3-aminopropyl) polydimethylsiloxane, 1,3-bis ( 3-aminopropyl) tetramethyldisiloxane, 1,3-bis (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane, bis (10-aminodecamethylene) tetramethyldisiloxane, dimer diamine Is mentioned.
- One of these may be used alone, or two or more may be used as a mixture.
- Dimer diamine is a compound obtained by polymerizing unsaturated fatty acids such as oleic acid and linoleic acid to obtain dimer acid, and reducing and aminating (reductive amination). Depending on the purpose of use, the degree of unsaturation may be reduced by a hydrogenation reaction.
- dimer diamine commercially available products such as “Primamine 1074, 1075” (trade name, manufactured by Croda Japan) and “Versamine 551, 552” (trade name, manufactured by Cognis Japan) can be used.
- the diamine component of the polyamic acid-based compound preferably contains an aromatic diamine component and / or an alicyclic diamine component from the viewpoint of heat resistance of the polyamic acid-based compound and the like (particularly, a polyimide-based compound), and more preferably an aromatic diamine component.
- a diamine component preferably contains only an aromatic diamine component and / or an alicyclic diamine component from the viewpoint of further improving the heat resistance of the polyamic acid-based compound and the like (particularly, a polyimide-based compound). It preferably contains only an aromatic diamine component.
- the diamine component of the polyamic acid-based compound is, from the viewpoint of the solubility of the polyamic acid-based compound and the like (particularly, a polyimide-based compound), among the above diamine components, an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, It is preferable to use a diamine component having a methylene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the polyamic acid-based compound is, from the viewpoint of further improving the solubility of the polyamic acid-based compound or the like (particularly, a polyimide-based compound), among the above diamine components, an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, It is preferable to use only a diamine component having a methyl group, a methylene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the polyamic acid compound has a fluorine atom (or a fluorine atom-containing substituent) among the above diamine components from the viewpoint of heat resistance and non-coloring properties of the polyamic acid compound and the like (particularly, a polyimide compound). It preferably contains an aromatic diamine component, an alicyclic diamine component or an aliphatic diamine component, and more preferably contains an aromatic diamine component or an alicyclic diamine component having a fluorine atom (or a fluorine atom-containing substituent). .
- the diamine component of the polyamic acid-based compound is preferably an alicyclic diamine component and / or a fatty acid among the above-mentioned diamine components from the viewpoint of further improving heat resistance and non-coloring properties of the polyamic acid-based compound and the like (particularly, a polyimide-based compound). It preferably contains an aliphatic diamine component, and more preferably contains only an alicyclic diamine component and / or an aliphatic diamine component.
- the diamine component of the polyamic acid-based compound is selected from the diamine components described above, among 4,4′-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, 4'-diaminodiphenylmethane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3 1,3,3-hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, , 4'-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane
- the diisocyanate component that can constitute the polyimide-based compound is an aromatic diisocyanate component containing an aromatic ring, an alicyclic diisocyanate component containing an aliphatic ring but not containing an aromatic ring, and an aromatic ring is also an alicyclic ring. And an aliphatic diisocyanate component which does not contain any.
- the diisocyanate component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms may be substituted with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom).
- aromatic diisocyanate component examples include 4,4′-diphenylmethane diisocyanate, 3,3′-diphenylmethane diisocyanate, m-xylene diisocyanate, tetramethyl xylene diisocyanate, 2,6-tolylene diisocyanate, and 2,4-tolylene diisocyanate. , 1,4-phenylene diisocyanate and their adducts, biurets, isocyanurates and the like. One of these may be used alone, or two or more may be used as a mixture.
- alicyclic diisocyanate component examples include 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, norbornene diisocyanate, and adducts, biurets, and isocyanurates thereof. One of these may be used alone, or two or more may be used as a mixture.
- aliphatic diisocyanate component examples include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, dimer acid diisocyanate, and adducts, biurets, and isocyanurates thereof. One of these may be used alone, or two or more may be used as a mixture.
- the diisocyanate component of the polyimide compound preferably contains an aromatic diisocyanate component and / or an alicyclic diisocyanate component, and more preferably contains an aromatic diisocyanate component, from the viewpoint of heat resistance of the polyimide compound.
- the diisocyanate component of the polyimide-based compound preferably contains only an aromatic diisocyanate component and / or an alicyclic diisocyanate component, and more preferably contains only an aromatic diisocyanate component, from the viewpoint of further improving the heat resistance of the polyimide-based compound. .
- the diisocyanate component of the polyimide compound it is preferable to use an alicyclic diisocyanate component and / or an aliphatic diisocyanate component among the above diisocyanate components from the viewpoint of solubility of the polyimide compound.
- the diisocyanate component of the polyimide compound it is preferable to use only the alicyclic diisocyanate component and / or the aliphatic diisocyanate component among the above diisocyanate components from the viewpoint of further improving the solubility of the polyimide compound.
- the diisocyanate component of the polyimide-based compound preferably contains an alicyclic diisocyanate component and / or an aliphatic diisocyanate component among the above-mentioned diisocyanate components from the viewpoint of non-coloring property of the polyimide-based compound, and more preferably an alicyclic diisocyanate component.
- the diisocyanate component of the polyimide-based compound preferably contains only the alicyclic diisocyanate component and / or the aliphatic diisocyanate component, and more preferably, from the viewpoint of further improving the non-coloring property of the polyimide-based compound. Contains only an alicyclic diisocyanate component or an aliphatic diisocyanate component.
- the diisocyanate component of the polyimide-based compound is selected from the above-mentioned diisocyanate components from among 4,4′-diphenylmethane diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, 1,5-diisocyanate.
- a group consisting of isocyanatonaphthalene, 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, and their adducts, biurets, isocyanurates, and the like ( Hereinafter, it is preferable to include one or more compounds selected from Group H3).
- the diisocyanate component of the polyimide-based compound preferably contains only one or more compounds selected from the group H3 among the diisocyanate components from the viewpoint of further improving versatility.
- the tetracarboxylic dianhydride component and the diamine component are generally used in approximately equimolar amounts.
- the molar amount is usually 0.8 to 1.2 times, particularly 0.9 to 1.1 times, preferably 0.95 to 1.05 times the molar amount of the tetracarboxylic dianhydride component. Is used.
- the tetracarboxylic dianhydride component and the diisocyanate component are usually used in approximately equimolar amounts.
- the molar amount is usually 0.8 to 1.2 times, particularly 0.9 to 1.1 times, preferably 0.95 to 1.05 times the molar amount of the tetracarboxylic dianhydride component.
- An amount of the diisocyanate component is used.
- a polyamide-based compound By using a dicarboxylic acid component or an acid halide component thereof and a diamine component or a diisocyanate component as raw material compounds, a polyamide-based compound can be produced by reacting functional groups with each other by a mechanochemical effect.
- the reaction between the functional groups corresponds to the reaction (C) described above.
- a polyamide compound is produced by using a combination of an acid halide component of a dicarboxylic acid component and a diamine component, or using a combination of a dicarboxylic acid component and a diisocyanate component. Is preferred.
- the dicarboxylic acid component that can constitute the polyamide compound is an aromatic dicarboxylic acid component containing an aromatic ring, an alicyclic dicarboxylic acid component containing an aliphatic ring but not containing an aromatic ring, and an aromatic ring containing an aliphatic ring.
- An aliphatic dicarboxylic acid component containing no cyclic ring is included.
- the dicarboxylic acid component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms may be substituted with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom).
- a halogen atom eg, a fluorine atom, a chlorine atom, a bromine atom.
- the acid halide component of the dicarboxylic acid component is a compound in which the OH group of the carboxyl group has been replaced with a
- aromatic dicarboxylic acid component examples include terephthalic acid, isophthalic acid, phthalic acid (orthophthalic acid), 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, 5-sodium sulfoisophthalic acid, and hexahydro Terephthalic acid, hexahydroisophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, diphenoxybutane-4,4'-dicarboxylic acid, diphenylethane-4 4'-dicarboxylic acid, phenyl ether-2,2'-dicarboxylic acid, diphenyl ether-2,3'-dicarboxylic acid, diphenyl ether-2,4'-dicarboxylic acid, diphenyl ether-3,3'-dicarboxylic acid, dipheny
- Examples of the alicyclic dicarboxylic acid component include 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 2,5-norbornenedicarboxylic acid. One of these may be used alone, or two or more may be used as a mixture.
- aliphatic dicarboxylic acid component for example, oxalic acid, malonic acid, succinic acid, glutaric acid, succinic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecane diacid, dimer acid, hydrogenated dimer Acids, maleic anhydride, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid and the like.
- One of these may be used alone, or two or more may be used as a mixture.
- the dicarboxylic acid component of the polyamide compound preferably contains an aromatic dicarboxylic acid component and / or an alicyclic dicarboxylic acid component, and more preferably contains an aromatic dicarboxylic acid component, from the viewpoint of heat resistance of the polyamide compound.
- the dicarboxylic acid component of the polyamide compound preferably contains only the aromatic dicarboxylic acid component and / or the alicyclic dicarboxylic acid component, and more preferably the aromatic dicarboxylic acid, from the viewpoint of further improving the heat resistance of the polyamide compound. Contains only ingredients.
- the dicarboxylic acid component of the polyamide compound is, from the viewpoint of versatility, a group consisting of terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid (hereinafter, referred to as “dicarboxylic acid component”). (Referred to as group H4).
- the dicarboxylic acid component of the polyamide-based compound preferably contains only one or more compounds selected from the group H4 among the above dicarboxylic acid components.
- the diamine component that can constitute the polyamide-based compound is a diamine component similar to the diamine component that can constitute the polyamic acid-based compound, and more specifically, the same aromatic diamine as the diamine component that can constitute the polyamide acid-based compound.
- Component, an alicyclic diamine component, and an aliphatic diamine component are examples of diamine component similar to the diamine component that can constitute the polyamic acid-based compound, and more specifically, the same aromatic diamine as the diamine component that can constitute the polyamide acid-based compound.
- the diamine component of the polyamide compound preferably contains an aromatic diamine component and / or an alicyclic diamine component, and more preferably contains an aromatic diamine component, from the viewpoint of heat resistance of the polyamide compound. From the viewpoint of further improving the heat resistance of the polyamide-based compound, the diamine component of the polyamide-based compound preferably contains only an aromatic diamine component and / or an alicyclic diamine component, and more preferably contains only an aromatic diamine component. .
- the diamine component of the polyamide-based compound is, from the viewpoint of solubility of the polyamide-based compound, among the above-described diamine components, an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, a phenyl group, a fluorene structure, It is preferable to use a diamine component having a halogen atom (or a halogen atom-containing substituent) or a siloxane bond.
- the diamine component of the polyamide-based compound is, from the viewpoint of further improving the solubility of the polyamide-based compound, among the above-described diamine components, an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, a phenyl group, It is preferable to use only a diamine component having a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the polyamide-based compound preferably contains an aliphatic diamine and / or an alicyclic diamine component among the above-mentioned diamine components from the viewpoint of non-coloring property of the polyamide-based compound. From the viewpoint of further improving the non-coloring property of the polyamide-based compound, the diamine component of the polyamide-based compound preferably contains only an aliphatic diamine and / or an alicyclic diamine component among the above-described diamine components.
- the diamine component of the polyamide compound is selected from the diamine components described above, among 4,4′-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, 4,4 '-Diaminodiphenylmethane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3, 3,3-hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 4, 4'-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis (4-a Min
- the diisocyanate component that can constitute the polyamide-based compound is a diisocyanate component similar to the diisocyanate component that can constitute the polyimide-based compound and the like, specifically, the same as the diisocyanate component that can constitute the polyimide-based compound and the like, an aromatic diisocyanate component, An alicyclic diisocyanate component and an aliphatic diisocyanate component are included.
- the diisocyanate component of the polyamide compound preferably contains an aromatic diisocyanate component and / or an alicyclic diisocyanate component, and more preferably contains an aromatic diisocyanate component, from the viewpoint of heat resistance of the polyamide compound.
- the diisocyanate component of the polyamide compound preferably contains only the aromatic diisocyanate component and / or the alicyclic diisocyanate component, and more preferably contains only the aromatic diisocyanate component, from the viewpoint of further improving the heat resistance of the polyamide compound. .
- the diisocyanate component of the polyamide compound is selected from 4,4′-diphenylmethane diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, and 1,5-diisocyanate.
- a group consisting of isocyanatonaphthalene, 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, and their adducts, biurets, isocyanurates, and the like ( Hereafter, it is preferable to include one or more compounds selected from Group H6).
- the diisocyanate component of the polyamide compound preferably contains only one or more compounds selected from the group H6 among the diisocyanate components.
- the dicarboxylic acid component or its acid halide component and the diamine component or diisocyanate component are usually used in approximately equimolar amounts.
- the molar amount is usually 0.8 to 1.2 times, particularly 0.9 to 1.1 times, preferably 0.95 to 1.05 times the molar amount of the dicarboxylic acid component or its acid halide component.
- a molar amount of the diamine or diisocyanate component is used.
- a polyamideimide compound By using a tricarboxylic anhydride component or an acid halide component thereof and a diamine component or a diisocyanate component as a raw material compound, a polyamideimide compound can be produced by performing a reaction between functional groups by a mechanochemical effect.
- the reaction between the functional groups corresponds to the above-mentioned reactions (B) and (C).
- the use of a combination of an acid halide component of a tricarboxylic anhydride component and a diamine component, or the use of a combination of a tricarboxylic anhydride component and a diisocyanate component makes it possible to obtain polyamideimide-based compounds. It is preferred to prepare the compound.
- the tricarboxylic anhydride component capable of constituting a polyamideimide-based compound or the like is an aromatic tricarboxylic anhydride component containing an aromatic ring, an alicyclic tricarboxylic anhydride component containing an aliphatic ring but not containing an aromatic ring, and Includes aliphatic tricarboxylic anhydride components containing neither aromatic rings nor alicyclic rings.
- the tricarboxylic anhydride component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are substituted with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). Is also good.
- the acid halide component of the tricarboxylic anhydride component is a compound in which the OH group of the carboxyl group has been replaced with a halogen atom in the tricarboxylic anhydride component.
- aromatic tricarboxylic anhydride component examples include trimellitic anhydride, hemi-mellitic anhydride, 1,2,4-naphthalenetricarboxylic anhydride, 1,4,5-naphthalenetricarboxylic anhydride, 2,3,6 -Naphthalene tricarboxylic anhydride, 1,2,8-naphthalene tricarboxylic anhydride, 3,4,4'-benzophenone tricarboxylic anhydride, 3,4,4'-biphenyl ether tricarboxylic anhydride, 3,4 4'-biphenyltricarboxylic anhydride, 2,3,2'-biphenyltricarboxylic anhydride, 3,4,4'-biphenylmethanetricarboxylic anhydride, 3,4,4'-biphenylsulfonetricarboxylic anhydride, etc. Is mentioned. One of these may be used alone, or two or more may be used as a
- Examples of the alicyclic tricarboxylic anhydride component include 1,2,4-cyclopentanetricarboxylic anhydride, 1,2,3-cyclohexanetricarboxylic anhydride, 1,2,4-cyclohexanetricarboxylic anhydride, , 3,5-cyclohexanetricarboxylic anhydride.
- 1,2,4-cyclopentanetricarboxylic anhydride 1,2,3-cyclohexanetricarboxylic anhydride
- 1,2,4-cyclohexanetricarboxylic anhydride 1,2,4-cyclohexanetricarboxylic anhydride
- 3,5-cyclohexanetricarboxylic anhydride 3,5-cyclohexanetricarboxylic anhydride.
- One of these may be used alone, or two or more may be used as a mixture.
- Examples of the aliphatic tricarboxylic anhydride component include 3-carboxymethylglutaric anhydride, 1,2,4-butanetricarboxylic acid-1,2-anhydride, cis-propene-1,2,3-tricarboxylic acid- 1,2-anhydride and the like. One of these may be used alone, or two or more may be used as a mixture.
- the tricarboxylic anhydride component of the polyamideimide-based compound preferably contains an aromatic tricarboxylic anhydride component and / or an alicyclic tricarboxylic anhydride component from the viewpoint of the heat resistance of the polyamideimide-based compound.
- the tricarboxylic anhydride component of the polyamideimide-based compound preferably contains only an aromatic tricarboxylic anhydride component and / or an alicyclic tricarboxylic anhydride component from the viewpoint of further improving the heat resistance of the polyamideimide-based compound, more preferably. Contains only the aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the polyamideimide-based compound is, from the viewpoint of solubility and non-coloring property of the polyamideimide-based compound, among the above tricarboxylic anhydride components, an alicyclic tricarboxylic anhydride component and / or an aliphatic tricarboxylic anhydride. It is preferred to use components.
- the tricarboxylic anhydride component of the polyamideimide-based compound is preferably an alicyclic tricarboxylic anhydride component and / or an aliphatic one among the above-mentioned tricarboxylic anhydride components.
- the tricarboxylic anhydride component is used.
- the tricarboxylic anhydride component of the polyamideimide-based compound is, from the viewpoint of versatility, a group consisting of trimellitic anhydride and 1,2,4-cyclohexanetricarboxylic anhydride (hereinafter referred to as Group H7). ) Is preferably included. From the viewpoint of further improving versatility, the tricarboxylic anhydride component of the polyamideimide-based compound preferably contains only one or more compounds selected from the group H7 among the above tricarboxylic anhydride components.
- the diamine component capable of forming the polyamideimide-based compound is a diamine component similar to the diamine component capable of forming the polyamic acid-based compound and the like. It includes a diamine component, an alicyclic diamine component, and an aliphatic diamine component.
- the diamine component of the polyamideimide-based compound preferably contains an aromatic diamine component and / or an alicyclic diamine component from the viewpoint of heat resistance of the polyamideimide-based compound, and more preferably contains an aromatic diamine component.
- the diamine component of the polyamideimide-based compound preferably contains only an aromatic diamine component and / or an alicyclic diamine component, more preferably only an aromatic diamine component, from the viewpoint of further improving the heat resistance of the polyamideimide-based compound. including.
- the diamine component of the polyamideimide-based compound is an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, a phenyl group, a fluorene group among the above-mentioned diamine components from the viewpoint of solubility of the polyamideimide-based compound. It is preferable to use a diamine component having a structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the polyamideimide-based compound is, from the viewpoint of further improving the solubility of the polyamideimide-based compound, among the above diamine components, an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, and a phenyl group. It is preferable to use only a diamine component having a group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the polyamide-imide compound is an aromatic diamine component or an alicyclic diamine having a fluorine atom (or a fluorine atom-containing substituent) among the above-described diamine components from the viewpoint of non-coloring property of the polyamide-imide compound. It is preferable to include a component or an aliphatic diamine component.
- the diamine component of the polyamideimide-based compound includes, among the above-described diamine components, an aromatic diamine component having a fluorine atom (or a fluorine atom-containing substituent), It is preferable to include only a cyclic diamine component or an aliphatic diamine component.
- the diamine component of the polyamideimide-based compound is, among the above-mentioned diamine components, 4,4′-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, 4'-diaminodiphenylmethane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3 1,3,3-hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, , 4'-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) pheny
- the diisocyanate component that can constitute the polyamideimide-based compound is a diisocyanate component similar to the diisocyanate component that can constitute the polyimide-based compound, and more specifically, the same as the diisocyanate component that can constitute the polyimide-based compound, etc. , An alicyclic diisocyanate component, and an aliphatic diisocyanate component.
- the diisocyanate component of the polyamide-imide compound preferably contains an aromatic diisocyanate component and / or an alicyclic diisocyanate component, and more preferably contains an aromatic diisocyanate component, from the viewpoint of heat resistance of the polyamide-imide compound.
- the diisocyanate component of the polyamide-imide compound preferably contains only an aromatic diisocyanate component and / or an alicyclic diisocyanate component, more preferably only an aromatic diisocyanate component, from the viewpoint of further improving the heat resistance of the polyamide-imide compound. including.
- the diisocyanate component of the polyamideimide-based compound is selected from the above-mentioned diisocyanate components from among 4,4′-diphenylmethane diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, 1,5- Group consisting of diisocyanatonaphthalene, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,5-pentamethylene diisocyanate, and their adducts, biurets, isocyanurates, etc. (Hereinafter, referred to as group H9).
- the diisocyanate component of the polyamideimide-based compound preferably contains only one or more compounds selected from the group H9 among the diisocyanate components.
- the tricarboxylic anhydride component or its acid halide component and the diamine component or diisocyanate component are usually used in approximately equimolar amounts.
- the molar amount is usually 0.8 to 1.2 times, especially 0.9 to 1.1 times, preferably 0.95 to 1.05 times the molar amount of the tricarboxylic anhydride component or the acid halide component thereof.
- a double molar amount of the diamine or diisocyanate component is used.
- polyester compound By using a dicarboxylic acid component or an acid halide component thereof and a polyhydroxy component as a raw material compound, and reacting the functional groups with each other by a mechanochemical effect, a polyester compound can be produced.
- the reaction between the functional groups corresponds to the reaction (D) described above.
- the polyhydroxy component means a compound having two or more hydroxyl groups in one molecule, and includes a polyphenol component having two or more phenolic hydroxyl groups in one molecule. More specifically, from the viewpoint of further improving the reaction rate, it is preferable to produce a polyester-based compound by using a combination of an acid halide component of a dicarboxylic acid component and a polyhydroxy component (for example, a polyphenol component).
- the dicarboxylic acid component that can constitute the polyester-based compound is a dicarboxylic acid component similar to the dicarboxylic acid component that can constitute the polyamide-based compound. It includes an acid component, an alicyclic dicarboxylic acid component, and an aliphatic dicarboxylic acid component.
- the acid halide component of the dicarboxylic acid component is a compound in which the OH group of the carboxyl group has been replaced with a halogen atom in the dicarboxylic acid component.
- the dicarboxylic acid component of the polyester compound preferably contains an aromatic dicarboxylic acid component and / or an alicyclic dicarboxylic acid component, and more preferably contains an aromatic dicarboxylic acid component, from the viewpoint of heat resistance of the polyester compound.
- the dicarboxylic acid component of the polyester-based compound preferably contains only an aromatic dicarboxylic acid component and / or an alicyclic dicarboxylic acid component, more preferably an aromatic dicarboxylic acid, from the viewpoint of further improving the heat resistance of the polyester-based compound. Contains only ingredients.
- the dicarboxylic acid component of the polyester compound is, from the viewpoint of versatility, a group consisting of terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid (hereinafter, referred to as “dicarboxylic acid component”). It is preferable to include one or more compounds selected from Group H10). From the viewpoint of further improving versatility, the dicarboxylic acid component of the polyester compound preferably contains only one or more compounds selected from the group H10 among the above dicarboxylic acid components.
- the polyhydroxy component that can constitute the polyester-based compound includes an aromatic polyhydroxy component containing an aromatic ring (for example, a polyphenol component), an alicyclic polyhydroxy component containing an aliphatic ring but not containing an aromatic ring, And an aliphatic polyhydroxy component containing neither an aromatic ring nor an alicyclic ring.
- the polyhydroxy component may contain an ether group and / or a thioether group, and / or may have one or more hydrogen atoms replaced by halogen atoms (eg, fluorine, chlorine, bromine). Good.
- the polyhydroxy component includes, for example, a dihydroxy component, a trihydroxy component, a tetrahydroxy component and a polyvalent hydroxy component.
- the polyvalent hydroxy component is a hydroxy component having five or more hydroxyl groups in one molecule.
- the polyhydroxy component preferably contains a dihydroxy component, and more preferably contains only the dihydroxy component, from the viewpoint of obtaining a polymer compound having high melt fluidity and / or solubility in a solvent and having excellent processability.
- the aromatic polyhydroxy component includes an aromatic dihydroxy component, an aromatic trihydroxy component, an aromatic tetrahydroxy component and an aromatic polyhydroxy component. One of these may be used alone, or two or more may be used as a mixture.
- an aromatic dihydroxy component is preferable from the viewpoint of obtaining a polymer compound having high melt fluidity and / or solubility in a solvent and excellent in processability.
- the aromatic polyhydroxy component is preferably a polyphenol component having two or more phenolic hydroxyl groups in one molecule.
- the aromatic dihydroxy component is preferably a diphenol component having two phenolic hydroxyl groups in one molecule.
- the aromatic trihydroxy component is preferably a triphenol component having three phenolic hydroxyl groups in one molecule.
- the aromatic tetrahydroxy component is preferably a tetraphenol component having four phenolic hydroxyl groups in one molecule.
- the aromatic polyhydroxy component is preferably a polyphenol component having five or more phenolic hydroxyl groups in one molecule.
- aromatic dihydroxy component examples include 2,2′-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxy Diphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenylmethane, 4,4'-biphenol, 3,3'-dimethyl-4,4'-biphenol, , 3 ', 5,5'-Tetramethyl-4,4'-biphenol, 2,2', 3,3 ' 5,5′-hexamethyl-4,4′-biphenol, 3,3 ′, 5,5′-tetra-tert-but
- aromatic trihydroxy component examples include 1,3,5-trihydroxybenzene, 1,3,5-tris (4-hydroxyphenyl) benzene, and 1,3,3-tri (4 -Hydroxyphenyl) butane, 2- [bis (4-hydroxyphenyl) methyl] phenol, 4,4 '-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] Bisphenol, 4- [bis (4-hydroxyphenyl) methyl] -2-methoxyphenol, tris (3-methyl-4-hydroxyphenyl) methane, 4- [bis (3-methyl-4-hydroxyphenyl) methyl]- 2-methoxyphenol, 4- [bis (3,5-dimethyl-4-hydroxyphenyl) methyl] -2-methoxyphenol 1,1,1-tris (4-hydroxyphenyl) ethane, 1,1,1-tris (3-methyl-4-hydroxyphenyl) ethane, 1,1,1,1-tris (3-methyl
- aromatic tetrahydroxy component examples include, for example, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 1,1,2,2-tetra (3,5-dimethyl-4) -Hydroxyphenyl) ethane, 2,3,4,4'-tetrahydroxybenzophenone, 4- [bis (3,5-dimethyl-4-hydroxyphenyl) methyl] -1,2-dihydroxybenzene, 4- [bis ( 2-methyl-4-hydroxy-5-cyclohexylphenyl) methyl] -1,2-dihydroxybenzene, 4-[(4-hydroxyphenyl) methyl] -1,2,3-trihydroxybenzene, 4-[(3 , 5-Dimethyl-4-hydroxyphenyl) methyl] -1,2,3-trihydroxybenzene, 1,4-bis [1-bis (3,4- (Hydroxyphenyl) -1-methylethyl] benzene, 4- [
- aromatic polyhydroxy component examples include 1,4-bis [1-bis (2,3,4-trihydroxyphenyl) -1-methylethyl] benzene and 2,4-bis [1-bis (2,3,4-trihydroxyphenyl) -1-methylethyl] benzene Bis [(4-hydroxyphenyl) methyl] -1,3-dihydroxybenzene, 2- [bis (3-methyl-4-hydroxyphenyl) methyl] phenol, 4,6- [bis (3,5-dimethyl-4) -Hydroxyphenyl) methyl] -1,2,3-trihydroxybenzene, 2,4,6-tris [(4-hydroxyphenyl) methyl] -1,3-dihydroxybenzene and the like. One of these may be used alone, or two or more may be used as a mixture.
- the alicyclic polyhydroxy component includes an alicyclic dihydroxy component and an alicyclic trihydroxy component. One of these may be used alone, or two or more may be used as a mixture. Among the alicyclic polyhydroxy components, an alicyclic dihydroxy component is preferable from the viewpoint of obtaining a polymer compound having high melt fluidity and / or solubility in a solvent and excellent workability.
- Examples of the alicyclic dihydroxy component include 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, and tricyclodecanedimethanol. One of these may be used alone, or two or more may be used as a mixture.
- Examples of the alicyclic trihydroxy component include 1,2,3-cyclohexanetriol, 1,3,5-cyclohexanetriol, and 1,3,5-cyclohexanetrimethanol. One of these may be used alone, or two or more may be used as a mixture.
- the aliphatic polyhydroxy component includes an aliphatic dihydroxy component, an aliphatic trihydroxy component, an aliphatic tetrahydroxy component and an aliphatic polyhydroxy component.
- One of these may be used alone, or two or more may be used as a mixture. From the viewpoint of obtaining a polymer compound having a higher molecular weight among the aliphatic polyhydroxy components, an aliphatic dihydroxy component is preferable.
- Examples of the aliphatic dihydroxy component include ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, dipropylene glycol, 1,3-butanediol, and 1,4.
- Low molecular weight polyols polyether diols having a number average molecular weight of 2,000 or less; dimer diols obtained by converting carboxyl groups of dimer acid into hydroxyl groups, and alkylene oxide adducts and caprolactone adducts thereof.
- One of these may be used alone, or two or more may be used as a mixture.
- aliphatic trihydroxy component examples include glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxyalkylmethyl 1,4-butanediol, tris (2-hydroxyethyl) isocyanurate and alkylene oxides thereof.
- Adducts and caprolactone adducts One of these may be used alone, or two or more may be used as a mixture.
- aliphatic tetrahydroxy component examples include pentaerythritol, ditrimethylolpropane, and their alkylene oxide adducts and caprolactone adducts. One of these may be used alone, or two or more may be used as a mixture.
- aliphatic polyhydroxy component examples include, for example, sugars such as xylose, arabinose, ribulose, glucose, fructose, mannose, galactose, erythritol, trait, arabbit, rebit, xylit, sorbitol, mannitol, sucrose, and alkylene oxides thereof.
- sugars such as xylose, arabinose, ribulose, glucose, fructose, mannose, galactose, erythritol, trait, arabbit, rebit, xylit, sorbitol, mannitol, sucrose, and alkylene oxides thereof.
- Adduct, caprolactone adduct; and the like One of these may be used alone, or two or more may be used as a mixture.
- the polyhydroxy component of the polyester compound preferably contains an aromatic dihydroxy component (particularly a diphenol component) and / or an alicyclic dihydroxy component, and more preferably an aromatic hydroxy component, from the viewpoint of heat resistance of the polyester compound. (Especially a diphenol component).
- the polyhydroxy component of the polyester compound preferably contains only an aromatic dihydroxy component (particularly a diphenol component) and / or an alicyclic dihydroxy component, more preferably from the viewpoint of further improving the heat resistance of the polyester compound. Contains only aromatic dihydroxy components (particularly diphenol components).
- the polyhydroxy component of the polyester compound is selected from the above-mentioned polyhydroxy components and includes 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) -1-. Phenylethane, 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-hydroxyphenyl) butane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (3-methyl -4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxy-3-isopropylphenyl) propane, bis (4 -Hydroxyphenyl) sulfone, 1,3-bis (2- (4-hydroxyphenyl) -2-propyl Benzene, 1,4-bis (2- (4-hydroxyphenyl) -2-propyl) benzene, 1,1-bis (4-hydroxyphenyl)
- the dicarboxylic acid component or its acid halide component and the polyhydroxy component are usually used in approximately equimolar amounts.
- the molar amount is usually 0.8 to 1.2 times, particularly 0.9 to 1.1 times, preferably 0.95 to 1.05 times the molar amount of the dicarboxylic acid component or its acid halide component.
- a molar amount of the polyhydroxy component is used.
- Polyurea compound By using a diisocyanate component and a diamine component as raw material compounds and performing a reaction between functional groups by a mechanochemical effect, a polyurea-based compound can be produced.
- the reaction between the functional groups corresponds to the reaction (E) described above.
- the diisocyanate component that can constitute the polyurea-based compound is a diisocyanate component similar to the diisocyanate component that can constitute the polyimide-based compound.
- An aliphatic diisocyanate component and an aliphatic diisocyanate component are aliphatic diisocyanate component.
- the diisocyanate component of the polyurea-based compound preferably contains an aromatic diisocyanate component and / or an alicyclic diisocyanate component, and more preferably contains an aromatic diisocyanate component, from the viewpoint of heat resistance of the polyurea-based compound.
- the diisocyanate component of the polyurea-based compound preferably contains only the aromatic diisocyanate component and / or the alicyclic diisocyanate component, and more preferably contains only the aromatic diisocyanate component, from the viewpoint of further improving the heat resistance of the polyurea-based compound. .
- the diisocyanate component of the polyurea-based compound is selected from the above diisocyanate components among 4,4′-diphenylmethane diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, and 1,5-diisocyanate.
- At least one member selected from the group consisting of isocyanatonaphthalene, 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and 1,5-pentamethylene diisocyanate (hereinafter, referred to as group H12)
- group H12 isocyanatonaphthalene, 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and 1,5-pentamethylene diisocyanate
- group H12 a compound.
- the diisocyanate component of the polyurea-based compound preferably contains only one or more compounds selected from the group H12 among the diisocyanate components.
- the diamine component that can constitute the polyurea-based compound is a diamine component similar to the diamine component that can constitute the polyamic acid-based compound, and more specifically, the same aromatic diamine as the diamine component that can constitute the polyamic acid-based compound and the like.
- Component, an alicyclic diamine component, and an aliphatic diamine component are examples of diamine component similar to the diamine component that can constitute the polyamic acid-based compound, and more specifically, the same aromatic diamine as the diamine component that can constitute the polyamic acid-based compound and the like.
- the diamine component of the polyurea-based compound preferably contains an aromatic diamine component and / or an alicyclic diamine component, and more preferably contains an aromatic diamine component, from the viewpoint of heat resistance of the polyurea-based compound.
- the diamine component of the polyurea-based compound preferably contains only an aromatic diamine component and / or an alicyclic diamine component, and more preferably contains only an aromatic diamine component, from the viewpoint of further improving the heat resistance of the polyurea-based compound. .
- the diamine component of the polyurea-based compound is, from the viewpoint of the solubility of the polyurea-based compound, of the above diamine components, an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, a phenyl group, a fluorene structure, It is preferable to use a halogen atom (or a halogen atom-containing substituent) or a diamine component having a siloxane bond.
- the diamine component of the polyurea-based compound is, from the viewpoint of further improving the solubility of the polyurea-based compound, of the above diamine components, an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, a phenyl group, It is preferable to use only a diamine component having a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the polyurea-based compound is, from the viewpoint of imparting thermoplasticity to the polyurea-based compound, of the above diamine components, ether group, thioether group, methyl group, methylene group, methylene group, isopropylidene group, ketone group, sulfonyl group, phenyl It preferably contains a diamine component having a group or a siloxane bond.
- the diamine component of the polyurea-based compound is, from the viewpoint of more effectively imparting thermoplasticity to the polyurea-based compound, of the above diamine components, an ether group, a thioether group, a methyl group, a methylene group, an isopropylidene group, a ketone group, It preferably contains only a diamine component having a sulfonyl group, a phenyl group, or a siloxane bond.
- the diamine component of the polyurea-based compound is selected from the diamine components described above, among 4,4′-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, '-Diaminodiphenylmethane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3, 3,3-hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 4, 4'-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis (4-aminodipheny
- the diisocyanate component and the diamine component are generally used in approximately equimolar amounts. More specifically, the diamine component is used in an amount of usually 0.8 to 1.2 times, more preferably 0.9 to 1.1 times, preferably 0.95 to 1.05 times the mol of the diisocyanate component. Is done.
- Polyurethane compound By using a diisocyanate component and a polyhydroxy component as raw material compounds and performing a reaction between functional groups by a mechanochemical effect, a polyurethane-based compound can be produced.
- the reaction between the functional groups corresponds to the reaction (F) described above.
- the diisocyanate component capable of constituting the polyurethane-based compound is a diisocyanate component similar to the diisocyanate component capable of constituting the polyimide-based compound.
- An aliphatic diisocyanate component and an aliphatic diisocyanate component are aliphatic diisocyanate component.
- the diisocyanate component of the polyurethane compound preferably contains an aromatic diisocyanate component and / or an alicyclic diisocyanate component, and more preferably contains an aromatic diisocyanate component, from the viewpoint of heat resistance of the polyurethane compound.
- the diisocyanate component of the polyurethane compound preferably contains only the aromatic diisocyanate component and / or the alicyclic diisocyanate component, and more preferably contains only the aromatic diisocyanate component, from the viewpoint of further improving the heat resistance of the polyurethane compound. .
- the diisocyanate component of the polyurethane compound is selected from the above-mentioned diisocyanate components among 4,4′-diphenylmethane diisocyanate, 2,6-tolylene diisocyanate, 2,4-tolylene diisocyanate, and 1,5-diisocyanate.
- At least one member selected from the group consisting of isocyanatonaphthalene, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and 1,5-pentamethylene diisocyanate (hereinafter, referred to as group H14)
- group H14 isocyanatonaphthalene, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and 1,5-pentamethylene diisocyanate
- group H14 a compound.
- the diisocyanate component of the polyurethane compound preferably contains only one or more compounds selected from the group H14 among the diisocyanate components.
- the polyhydroxy component that can constitute the polyurethane compound is the same polyhydroxy component as the polyhydroxy component that can constitute the polyester compound, and more specifically, the same aromatic resin as the polyhydroxy component that can constitute the polyester compound. It includes a hydroxy component (particularly a polyphenol component), an alicyclic polyhydroxy component, and an aliphatic polyhydroxy component.
- the polyhydroxy component of the polyurethane compound preferably contains an aromatic polyhydroxy component (particularly a polyphenol component) and / or an alicyclic polyhydroxy component, and more preferably an aromatic polyhydroxy component, from the viewpoint of heat resistance of the polyurethane compound.
- the polyhydroxy component of the polyurethane compound preferably contains only an aromatic polyhydroxy component (particularly a polyphenol component) and / or an alicyclic polyhydroxy component from the viewpoint of further improving the heat resistance of the polyurethane compound, more preferably. Contains only aromatic polyhydroxy components (particularly polyphenol components).
- polyhydroxy component of the polyurethane compound it is preferable to use an aliphatic polyhydroxy component among the above polyhydroxy components from the viewpoint of the flexibility of the polyurethane compound.
- polyhydroxy component of the polyurethane compound it is preferable to use only an aliphatic polyhydroxy component among the above polyhydroxy components from the viewpoint of further improving the flexibility of the polyurethane compound.
- the polyhydroxy component of the polyurethane compound is selected from 2,2-bis (4-hydroxyphenyl) propane and 1,1-bis (4-hydroxyphenyl) -1- among the above polyhydroxy components.
- the diisocyanate component and the polyhydroxy component are usually used in approximately equimolar amounts. More specifically, the amount of the polyhydroxy component is usually 0.8 to 1.2 times, more preferably 0.9 to 1.1 times, preferably 0.95 to 1.05 times the mol of the diisocyanate component. used.
- a reaction between functional groups is performed by a mechanochemical effect using a raw material mixture containing a predetermined raw material compound.
- the predetermined raw material compounds are one or more, particularly two or more, raw material compounds (monomer components) for producing each of the above-mentioned polymer compounds, and at least one of the raw material compounds reacts as described above. It is a raw material compound that is in a solid state under the environment. Specifically, a raw material mixture containing such a raw material compound is subjected to a pulverizing treatment, so that the functional groups react with each other by a mechanochemical effect.
- the raw material compound in the liquid state is at least one solid raw material compound contained in the raw material mixture from the viewpoint of further improving the reaction rate. Is preferably mixed or added before or while pulverizing. At this time, from the viewpoint of further improving the reaction rate, the raw material compound in a liquid state is preferably added in a plurality of times, more preferably, dropwise added in an amount obtained by dividing the predetermined amount into two or more times, and more preferably, dropwise. Is preferred.
- the raw material compound particularly, a raw material compound which is in a solid state in a reaction environment
- one having a maximum length particle shape of usually 0.001 to 20.0 mm, particularly 0.01 to 10.0 mm is used.
- a cumulative 50% diameter was used as the maximum length.
- the maximum length is a value measured as a cumulative 50% particle size from a particle size distribution by a sieving test described in JISZ8815 in accordance with JISZ8815 when a particle size of 0.5 mm or more is included. did.
- the maximum length was determined to be the 50% cumulative diameter determined by a particle size distribution analyzer using a laser diffraction / scattering method.
- the pulverization treatment for producing the polymer compound can be performed by any apparatus (for example, a so-called pulverization apparatus, a mixing apparatus, and the like) as long as it can transmit mechanical energy to the raw material compound by compression, impact, shearing, and / or grinding. Device or stirring device).
- the crushing process includes a jaw crusher, a gyratory crusher, a cone crusher, an impact (hammer) crusher, a roll crusher, a cutter mill, a natural crusher, a stamp mill, a stone mill type mill, a mortar, a mill, a muller type mill, Eichrich Mill, Ring Mill, Roller Mill, Jet Mill, High Speed Bottom Stirred Mixer, High Speed Rotary Pulverizer (Hammer Mill, Pin Mill), Container Driven Mill (Rotary Mill, Vibration Mill, Planetary Mill), Medium Stirred Mill (Beads Mill) ), A high-speed fluidizing mixer, a Henschel mixer or the like.
- typical apparatuses include, for example, a high-speed bottom stirring mixer, a high-speed rotary pulverizer, a container driving mill, and a medium stirring mill.
- the high-speed bottom stirring type mixer has a structure in which large high-speed rotating blades are arranged at the bottom of a cylindrical container, and the rotating blades are generally two-stage upper and lower stages.
- a high-speed rotary crusher is a device that crushes a sample by colliding a sample with an impactor such as a hammer, a pin, or a bar on a rotating rotor.
- Container-driven mills rotary mills, vibratory mills, planetary mills
- a medium stirring mill is a device that uses balls or beads as a grinding medium, collides them, and crushes a sample between them.
- the reaction conditions ie, mixing, stirring, and pulverization conditions
- the reaction conditions for the production of the polymer compound are not particularly limited as long as the desired polymer compound is obtained by expressing the mechanochemical effect.
- the average particle diameter is 0.5 ⁇ Rm or less, particularly 0.1 ⁇ Rm.
- the pulverization process is performed until the value becomes ⁇ Rm or less.
- the capacity of a pulverizing tank (or tank) for pulverizing treatment is 4 to 6 L (particularly 5 L), and the weight of the raw material mixture is 0.5 to 1.5 kg (particularly 1 kg), when the material of the crushed ball is alumina, the ball diameter is 10.0 mm, and the input weight is 6.0 kg, the rotation speed is usually 115 rpm or more, particularly 115 to 504 rpm, and the crushing time is usually 1 Minutes or more, especially 1 to 60 minutes.
- the capacity of a grinding tank (or tank) for grinding processing is 0.08 to 0.5 L (particularly 0.25 L), and the weight of the raw material mixture is 4 to 6 g (particularly 5 g).
- the material of the crushed ball is zirconia, the ball diameter is 10.0 mm, and the input amount is 30 pieces, the rotation speed is usually 100 rpm or more, particularly 100 to 600 rpm, and the crushing time is usually 1 minute or more. Especially for 3 to 15 minutes.
- Such a pulverization treatment and a subsequent cooling treatment of the pulverized material may be repeated twice or more, for example, 2 to 10 times. Thereby, the mechanochemical effect is exhibited more effectively, the reaction rate is further improved, and the degree of polymerization of the obtained polymer compound is increased.
- the molecular weight can be controlled by adjusting the reaction conditions (mixing, stirring, and pulverization conditions). For example, the molecular weight increases as the grinding conditions are increased within a range in which the raw material mixture does not melt.
- the molecular weight of the obtained polymer compound is not particularly limited. For example, a polymer compound having an average degree of polymerization of 2 or more (eg, 2 to 100), particularly 2 to 20 can be obtained.
- the polymer compound obtained by the pulverization treatment preferably has an average particle diameter (D50) of 1000 ⁇ m or less, 0.01 to 1000 ⁇ m, particularly 0.1 to 100 ⁇ m.
- a terminal blocking agent may be contained in the raw material mixture in order to adjust the molecular weight.
- the terminal blocking agent include a monofunctional acid anhydride compound, a monofunctional amine compound, a monofunctional carboxylic acid compound or a halide thereof, a monofunctional alcohol compound, a monofunctional phenol compound, Monofunctional isocyanate compounds, monofunctional epoxy compounds and the like can be mentioned.
- Preferred terminal blocking agents are monofunctional acid anhydride compounds, monofunctional amine compounds, monofunctional carboxylic acid compounds or their acid halides, monofunctional alcohol compounds, and monofunctional phenol compounds. .
- Examples of the monofunctional carboxylic acid include, but are not limited to, the following. Acetic acid, propionic acid, octanoic acid, cyclohexanecarboxylic acid, toluic acid, phenylacetic acid, p-methoxyphenylacetic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p- tert-butylbenzoic acid. One of these may be used alone, or two or more may be used as a mixture.
- Examples of the monofunctional phenol include, but are not limited to, the following. Phenol, o-cresol, m-cresol, p-cresol, p-tert-butylphenol, o-phenylphenol, m-phenylphenol, p-phenylphenol, o-methoxyphenol, m-methoxyphenol, p-methoxyphenol, 2,3,6-trimethylphenol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2-phenyl-2 -(4-hydroxyphenyl) propane, 2-phenyl-2- (2-hydroxyphenyl) propane, 2-phenyl-2- (3-hydroxyphenyl) propane. One of these may be used alone, or two or more may be used as a mixture.
- the raw material mixture contains an auxiliary agent.
- auxiliary agent water, alcohol, water-soluble polymer, synthetic polymer, inorganic particles, surfactant, wax, and the like can be used.
- hexane solutions of water, methanol, ethanol, triethylamine, triethanolamine, and cetyl alcohol lower alcohols such as propyl alcohol; ethylene glycol, propylene glycol, neopentyl glycol, 1,3-butylene glycol, dipropylene glycol, Glycols such as 2,2-pentanediol and polyethylene glycol; glycerols such as glycerin, diglycerin and polyglycerin; cellulose derivatives such as methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose and carboxymethylcellulose; alginic acid Soda, carrageenan, quince seed gum, agar, gelatin, xanthan gum, -Natural polymers such as cast bean gum, pectin, gellan gum; polyvinyl alcohol, carboxyvinyl polymer, alkyl-added carboxyvinyl polymer,
- Synthetic polymers carbon black, titanium oxide, black titanium oxide, cerium oxide, konjo, ultramarine, red iron oxide, yellow oxide, black iron oxide, zinc oxide, aluminum oxide, silicic anhydride, magnesium oxide, zirconium oxide , Magnesium carbonate, calcium carbonate, calcium sulfate, chromium oxide, chromium hydroxide, carbon black, aluminum silicate, magnesium silicate, aluminum magnesium silicate, mica, synthetic mica, sericite, talc Inorganic powders such as kaolin, silicon carbide, barium sulfate, bentonite, smectite, boron nitride; bismuth oxychloride, titanium oxide-coated mica, iron oxide-coated mica, iron oxide-coated mica-titanium, organic pigment-coated mica-titanium, aluminum powder, etc.
- a catalyst may be contained in the raw material mixture to promote the reaction.
- any catalyst useful for the production of polymer compounds (acid catalyst, base catalyst, metal catalyst, metal oxide catalyst, complex catalyst, sulfide, chloride, metal organic salt, mineral acid, etc.) can be used. .
- the catalyst include, for example, paratoluenesulfonic acid, dimethyl sulfate, diethyl sulfate, sulfuric acid, hydrochloric acid, oxalic acid, acetic acid, phosphoric acid, phosphorous acid, hypophosphorous acid or salts thereof, sodium hydroxide, hydroxide Potassium, lithium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, pyridine, ammonia, triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, 3-ethoxypropylamine, 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, 3-methoxy Propylamine,
- the method for producing a polymer compound of the present invention can include a step of heating when the degree of polymerization of the obtained polymer compound is low.
- the heating step may be performed during the pulverizing treatment (ie, mechanochemical treatment) and / or after the pulverizing treatment (ie, mechanochemical treatment).
- a reaction between functional groups particularly, a polymerization reaction
- a temperature is, for example, 40-350 ° C.
- the heating temperature in the case of heating after the pulverizing treatment needs to be lower than the decomposition temperature of the obtained polymer compound.
- the heating temperature may be, for example, from 90 to 400 ° C, especially from 120 to 400 ° C.
- the heating time is not particularly limited, and may be, for example, 0.5 to 16 hours, particularly 0.5 to 8 hours.
- the heating may be performed in a stream of an inert gas such as nitrogen, or may be performed under pressure or under reduced pressure. In addition, heating may be performed while standing or while stirring.
- the heating step performed after the pulverization treatment may be performed in one step or may be performed in multiple steps.
- Performing the heating step in multiple stages means that the heating step having different heating temperatures is successively performed two or more times, preferably two to three times.
- the heating temperature of the heating step after the second heating step is preferably higher than the heating temperature of the immediately preceding heating step from the viewpoint of further improving the reaction rate and the degree of polymerization.
- the heating temperature in the second heating step is preferably higher than the heating temperature in the first heating step.
- the heating temperature in the third heating step is preferably higher than the heating temperature in the second heating step.
- a low molecular compound is an organic compound containing no repeating unit.
- An organic compound containing no repeating unit means that in the structural formula of the organic compound, no structural unit is continuously contained twice or more times.
- the low-molecular compound is an organic compound obtained by converting two or more, particularly two to five, preferably two to three raw material compound molecules into one molecule by a reaction between functional groups.
- the reaction between the functional groups is, as described above, a condensation reaction, an addition reaction, or a composite reaction thereof.
- Examples of the low-molecular compound that can be produced by such a reaction include, for example, a diimide dicarboxylic acid compound, a diimide tricarboxylic acid compound, a diimide tetracarboxylic acid compound, a monoimide dicarboxylic acid compound, a monoimide tricarboxylic acid compound, and an amide group.
- diimide dicarboxylic acid compound amide group-containing monoimide dicarboxylic acid compound, amide group-containing monoimide tetracarboxylic acid compound, ester group-containing monoimide tricarboxylic acid compound, diimide dihydroxy compound, diamide dicarboxylic acid compound, diamide
- diamide examples include tetracarboxylic acid compounds, diester dicarboxylic acid compounds, diester tetracarboxylic acid compounds, and curable diimide compounds.
- the type of the low-molecular compound obtained can be controlled by selecting the type and ratio of the raw material compounds.
- the raw material compound for producing the low molecular weight compound is generally a raw material compound having one or more, particularly two to three functional groups selected from the group consisting of the above functional groups per molecule.
- the molecular weight of the starting compound is not particularly limited, and usually has a molecular weight within the above range.
- a diimide dicarboxylic acid compound As a raw material compound, a tricarboxylic anhydride component and a diamine component are used, or a tetracarboxylic dianhydride component and a monoaminomonocarboxylic acid component are used, and a reaction between functional groups is performed by a mechanochemical effect.
- a diimidedicarboxylic acid-based compound can be produced by producing an acid-based compound and proceeding with an imidization reaction.
- the reaction between the functional groups corresponds to the reaction (A) described above.
- a diimide dicarboxylic acid compound is a compound having two imide groups and two carboxyl groups in one molecule.
- the diamine component is usually used in an amount of about 0.5 times the molar amount of the tricarboxylic anhydride component, for example, 0.1 to 0.7 times. It is used in a molar amount, preferably 0.3 to 0.7 times, more preferably 0.4 to 0.6 times, even more preferably 0.45 to 0.55 times.
- the tricarboxylic anhydride component that can constitute the diimide dicarboxylic acid compound is a tricarboxylic anhydride component similar to the tricarboxylic anhydride component that can constitute the polyamideimide compound, and more specifically, the tricarboxylic anhydride component that can constitute the polyamideimide compound. And an aromatic tricarboxylic anhydride component, an alicyclic tricarboxylic anhydride component, and an aliphatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the diimidedicarboxylic acid compound is an aromatic tricarboxylic anhydride component and / or an alicyclic anhydride tricarboxylic acid component from the viewpoint of heat resistance of the diimidedicarboxylic acid compound or, for example, a polymer compound obtained using the diimidedicarboxylic acid compound. It preferably contains an acid component, and more preferably contains an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the diimidedicarboxylic acid compound is an aromatic tricarboxylic anhydride component and / or an alicyclic compound from the viewpoint of further improving the heat resistance of the diimidedicarboxylic acid compound or, for example, a polymer compound obtained using the compound. It preferably contains only an aromatic tricarboxylic anhydride component, and more preferably contains only an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the diimide dicarboxylic acid compound is an alicyclic tricarboxylic anhydride component and / or an aliphatic tricarboxylic anhydride component of the above tricarboxylic anhydride components from the viewpoint of solubility of the diimide dicarboxylic acid compound. Preferably, it is used.
- the tricarboxylic anhydride component of the diimide dicarboxylic acid compound is preferably an alicyclic tricarboxylic anhydride component and / or an aliphatic tricarboxylic anhydride among the above tricarboxylic anhydride components.
- the acid component is used.
- the tricarboxylic anhydride component of the diimide dicarboxylic acid-based compound is a diimide dicarboxylic acid-based compound or, for example, from the viewpoint of non-coloring of a polymer compound obtained using the same, among the above tricarboxylic anhydride components, alicyclic anhydrides It preferably contains a tricarboxylic acid component and / or an aliphatic tricarboxylic anhydride component, and more preferably contains an alicyclic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the diimide dicarboxylic acid compound is a diimide dicarboxylic acid compound or, for example, from the viewpoint of further improving the non-coloring property of a polymer compound obtained by using the diimide dicarboxylic acid compound, It preferably contains only the cyclic tricarboxylic anhydride component and / or the aliphatic tricarboxylic anhydride component, and more preferably contains only the alicyclic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the diimidedicarboxylic acid-based compound is, from the viewpoint of versatility, a group consisting of trimellitic anhydride and 1,2,4-cyclohexanetricarboxylic anhydride (hereinafter, group). L1).
- group 1,2,4-cyclohexanetricarboxylic anhydride
- the tricarboxylic anhydride component of the diimidedicarboxylic acid compound preferably contains only one or more compounds selected from the group L1 among the above tricarboxylic anhydride components.
- the diamine component capable of forming the diimidedicarboxylic acid-based compound is a diamine component similar to the diamine component capable of forming the polyamic acid-based compound, and more specifically, the same aromatic diamine component as the diamine component capable of forming the polyamic acid-based compound.
- Aliphatic diamine component, alicyclic diamine component, and aliphatic diamine component are examples of aromatic diamine component.
- the diamine component of the diimidedicarboxylic acid-based compound may include an aromatic diamine component and / or an alicyclic diamine component from the viewpoint of heat resistance of the diimidedicarboxylic acid-based compound or, for example, a polymer compound obtained using the diimidedicarboxylic acid-based compound. It preferably contains an aromatic diamine component more preferably.
- the diamine component of the diimidedicarboxylic acid-based compound is only the aromatic diamine component and / or the alicyclic diamine component from the viewpoint of further improving the heat resistance of the diimidedicarboxylic acid-based compound or, for example, a polymer compound obtained using the diimidedicarboxylic acid-based compound. And more preferably only an aromatic diamine component.
- the diamine component of the diimide dicarboxylic acid compound is, from the viewpoint of the solubility of the diimide dicarboxylic acid compound, of the above diamine components, ether group, thioether group, sulfonyl group, sulfonic acid group, methyl group, methylene group, isopropylidene. It is preferable to use a diamine component having a group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the diimidedicarboxylic acid-based compound is an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, or a methylene group. It is preferable to use only a diamine component having an isopropylidene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the diimide dicarboxylic acid-based compound is an alicyclic diamine component and / or a diimide dicarboxylic acid-based compound or, for example, from the viewpoint of non-coloring of a polymer compound obtained using the diimide dicarboxylic acid-based compound. It preferably contains an aliphatic diamine component.
- the diamine component of the diimide dicarboxylic acid-based compound is a diimide dicarboxylic acid-based compound or, for example, an alicyclic diamine component among the above-described diamine components from the viewpoint of further improving the non-coloring property of a polymer compound obtained by using the diamine dicarboxylic acid-based compound. And / or preferably contains only an aliphatic diamine component.
- the diamine component of the diimidedicarboxylic acid-based compound is selected from the above-mentioned diamine components from among 4,4′-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, , 4'-Diaminodiphenylmethane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1, 3,3,3-hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy
- the monoaminomonocarboxylic acid component is usually added to the tetracarboxylic dianhydride component by about 2 parts.
- Molar amount for example, 1.5 to 10.0 molar amount, preferably 1.8 to 2.2 molar amount, more preferably 1.9 to 2.1 molar amount, still more preferably 1.95 to molar amount. It is used in a 2.05 molar amount.
- the tetracarboxylic dianhydride component capable of constituting the diimide dicarboxylic acid compound is a tetracarboxylic dianhydride component similar to the tetracarboxylic dianhydride component capable of constituting the polyamic acid compound and the like. Similar to the tetracarboxylic dianhydride component capable of constituting an acid compound or the like, an aromatic tetracarboxylic dianhydride component, an alicyclic tetracarboxylic dianhydride component, and an aliphatic tetracarboxylic dianhydride component Is included.
- the tetracarboxylic dianhydride component of the diimide dicarboxylic acid compound is an aromatic tetracarboxylic dianhydride component and / or a diimide dicarboxylic acid compound or, for example, from the viewpoint of heat resistance of a polymer compound obtained using the compound.
- the tetracarboxylic dianhydride component of the diimide dicarboxylic acid compound is a diimide dicarboxylic acid compound or, for example, an aromatic tetracarboxylic dianhydride from the viewpoint of further improving the heat resistance of a polymer compound obtained using the compound. It is preferable to include only the component and / or the alicyclic tetracarboxylic dianhydride component.
- the tetracarboxylic dianhydride component of the diimide dicarboxylic acid compound is, from the viewpoint of the solubility of the diimide dicarboxylic acid compound, an ether group, a thioether group, a sulfonyl group, and a ketone group among the above tetracarboxylic dianhydride components. It is preferable to use a tetracarboxylic dianhydride component having a methyl group, a methylene group, a isopropylidene group, a phenyl group, a fluorene structure, or a halogen atom (or a halogen atom-containing substituent).
- the tetracarboxylic dianhydride component of the diimide dicarboxylic acid compound is, from the viewpoint of further improving the solubility of the diimide dicarboxylic acid compound, of the above tetracarboxylic dianhydride components, an ether group, a thioether group, and a sulfonyl group. It is preferable to use only a tetracarboxylic dianhydride component having a ketone group, a methyl group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, or a halogen atom (or a halogen atom-containing substituent).
- the tetracarboxylic dianhydride component of the diimide dicarboxylic acid-based compound is a diimide dicarboxylic acid-based compound or, for example, from the viewpoint of heat resistance and non-coloring property of a polymer compound obtained using the same, the above tetracarboxylic dianhydride is used. It is preferable to include, among the product components, an aromatic tetracarboxylic dianhydride component and / or an alicyclic tetracarboxylic dianhydride component containing a fluorine atom.
- the tetracarboxylic dianhydride component of the diimide dicarboxylic acid compound is a diimide dicarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance and the non-coloring property of the polymer compound obtained using the same,
- the acid dianhydride components it is preferable to include only an aromatic tetracarboxylic dianhydride component and / or an alicyclic tetracarboxylic dianhydride component containing a fluorine atom.
- the tetracarboxylic dianhydride component of the diimide dicarboxylic acid-based compound is, among the above-mentioned tetracarboxylic dianhydride components, pyromellitic dianhydride, 3,3 ′, 4,4′-.
- Biphenyltetracarboxylic dianhydride 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthal Acid anhydride, 4,4 ′-(4,4′-isopropylidene diphenoxy) diphthalic anhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 4,4 ′-( Hexafluoroisopropylidene) diphthalic anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, 1,2,3,4 -butane
- the group consisting of tetracarboxylic acid dianhydride (hereinafter, referred to as the group L3) preferably comprises one or more
- the tetracarboxylic dianhydride component of the diimide dicarboxylic acid-based compound is, from the viewpoint of further improving versatility, only one or more compounds selected from the group L3 among the above tetracarboxylic dianhydride components. It is preferred to include.
- the monoaminomonocarboxylic acid component that can constitute the diimidedicarboxylic acid-based compound is an aromatic monoaminomonocarboxylic acid component containing an aromatic ring, an alicyclic monoamino acid containing an aliphatic ring but not containing an aromatic ring. Includes monocarboxylic acid components and aliphatic monoaminomonocarboxylic acid components containing no aromatic or alicyclic rings.
- the monoaminomonocarboxylic acid component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are replaced by a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). May be.
- aromatic monoaminomonocarboxylic acid component examples include phenylalanine, tryptophan, thyroxine, tyrosine, diiodotyrosine, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-amino-3-methyl Benzoic acid, 2-amino-4-methylbenzoic acid, 2-amino-5-methylbenzoic acid, 2-amino-6-methylbenzoic acid, 3-amino-2-methylbenzoic acid, 3-amino-4-methyl Benzoic acid, 4-amino-2-methylbenzoic acid, 4-amino-3-methylbenzoic acid, 5-amino-2-methylbenzoic acid, 2-amino-3,4-dimethylbenzoic acid, 2-amino-4 , 5-dimethylbenzoic acid, 2-amino-4-methoxybenzoic acid, 3-amino-4-methoxybenzoic acid, 4-amino-2-methoxy
- Examples of the alicyclic monoaminomonocarboxylic acid component include 4-aminocyclohexanecarboxylic acid, 3-aminocyclohexanecarboxylic acid, 1-aminocyclohexanecarboxylic acid, 2-cyclohexylglycine, 3-cyclohexylalanine, and 2-aminocyclohexanecarboxylic acid.
- Acid 4- (aminomethyl) cyclohexanecarboxylic acid, gabapetin, 1-aminocyclopentanecarboxylic acid, 1-aminocyclobutanecarboxylic acid and the like. One of these may be used alone, or two or more may be used as a mixture.
- Examples of the aliphatic monoaminomonocarboxylic acid component include glycine, alanine, valine, norvaline, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -alanine, serine, leucine, norleucine, isoleucine, threonine, proline, hydroxyproline, Methionine, cystine, cysteine, 5-aminopentanoic acid, 6-aminocaproic acid, 7-aminoheptanoic acid, 9-nonanoic acid, 11-aminoundecanoic acid, 12-aminolauric acid, 17-aminoheptadecanoic acid and the like Can be One of these may be used alone, or two or more may be used as a mixture.
- the monoaminomonocarboxylic acid component of the diimidedicarboxylic acid compound is an aromatic monoaminomonocarboxylic acid component and / or a fatty acid, from the viewpoint of heat resistance of the diimidedicarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains a cyclic monoaminomonocarboxylic acid component, and more preferably contains an aromatic monoaminomonocarboxylic acid component.
- the monoaminomonocarboxylic acid component of the diimidedicarboxylic acid compound is an aromatic monoaminomonocarboxylic acid component and / or a fatty acid, from the viewpoint of heat resistance of the diimidedicarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains only a cyclic monoaminomonocarboxylic acid component, and more preferably contains only an aromatic monoaminomonocarboxylic acid component.
- the monoaminomonocarboxylic acid component of the diimidedicarboxylic acid compound is glycine, alanine, valine, norvaline, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -Alanine, serine, leucine, isoleucine, threonine, proline, hydroxyproline, methionine, cysteine, 5-aminopentanoic acid, 6-aminocaproic acid, 7-aminoheptanoic acid, 9-nonanoic acid, 11-aminoundecanoic acid, 12- Aminolauric acid, 17-aminoheptadecanoic acid, phenylalanine, tryptophan, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-amino-3-methylbenzoic acid, 2-amino-4- Methylbenzoic acid, 2-
- the monoaminomonocarboxylic acid component of the diimidedicarboxylic acid-based compound contains only one or more compounds selected from the group L4 among the above monoaminomonocarboxylic acid components. Is preferred.
- a diimide tricarboxylic acid compound (Diimide tricarboxylic acid compound) Using a tricarboxylic anhydride component and a diaminomonocarboxylic acid component as raw material compounds, by reacting functional groups with each other by a mechanochemical effect, an amic acid-based compound is produced, and an imidization reaction is carried out to produce diimidetricarboxylic acid.
- a system compound can be produced.
- the reaction between the functional groups corresponds to the reaction (A) described above.
- a diimide tricarboxylic acid compound is a compound having two imide groups and three carboxyl groups in one molecule.
- the diaminomonocarboxylic acid component is usually about 0.5 times the molar amount of the tricarboxylic anhydride component, for example, 0.1 mol. 1 to 0.7 times by mole, preferably 0.3 to 0.7 times by mole, more preferably 0.4 to 0.6 times by mole, further preferably 0.45 to 0.55 times by mole. used.
- the tricarboxylic anhydride component that can constitute the diimitridicarboxylic acid-based compound is a tricarboxylic anhydride component similar to the tricarboxylic anhydride component that can constitute the polyamideimide-based compound, and more specifically, the tricarboxylic anhydride that can constitute the polyamideimide-based compound. It includes an aromatic tricarboxylic anhydride component, an alicyclic tricarboxylic anhydride component, and an aliphatic tricarboxylic anhydride component similar to the components.
- the tricarboxylic anhydride component of the diimide tricarboxylic acid compound is an aromatic tricarboxylic anhydride component and / or an alicyclic anhydride tricarboxylic acid compound from the viewpoint of heat resistance of the diimide tricarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains an acid component, and more preferably contains an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the diimide tricarboxylic acid compound is an aromatic tricarboxylic anhydride component and / or an alicyclic compound from the viewpoint of further improving the heat resistance of the diimide tricarboxylic acid compound or, for example, a polymer compound obtained using the compound. It preferably contains only an aromatic tricarboxylic anhydride component, and more preferably contains only an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the diimidetricarboxylic acid-based compound is, from the viewpoint of versatility, a group consisting of trimellitic anhydride and 1,2,4-cyclohexanetricarboxylic anhydride among the above tricarboxylic anhydride components. L5).
- the tricarboxylic anhydride component of the diimidetricarboxylic acid-based compound preferably contains only one or more compounds selected from the group L5 among the above tricarboxylic anhydride components.
- the diaminomonocarboxylic acid component which can constitute the diimidetricarboxylic acid-based compound is an aromatic diaminomonocarboxylic acid component containing an aromatic ring, an alicyclic diaminomonocarboxylic acid containing an aliphatic ring but not containing an aromatic ring And an aliphatic diaminomonocarboxylic acid component containing no aromatic or alicyclic rings.
- the diaminomonocarboxylic acid component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are substituted with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). You may.
- aromatic diaminomonocarboxylic acid component examples include 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, and 3,5-bis (4-aminophenoxy) benzoic acid. Is mentioned. One of these may be used alone, or two or more may be used as a mixture.
- Examples of the aliphatic diaminomonocarboxylic acid component include lysine, hydroxylysine, arginine, histidine and the like. One of these may be used alone, or two or more may be used as a mixture.
- the diaminomonocarboxylic acid component of the diimidetricarboxylic acid compound is an aromatic diaminomonocarboxylic acid component and / or an alicyclic compound from the viewpoint of heat resistance of the diimidetricarboxylic acid compound or, for example, a polymer compound obtained by using the same. It preferably contains a diaminomonocarboxylic acid component, and more preferably contains an aromatic diaminomonocarboxylic acid component.
- the diaminomonocarboxylic acid component of the diimidetricarboxylic acid-based compound is an aromatic diaminomonocarboxylic acid component and / or a diimidetricarboxylic acid-based compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the compound. It preferably contains only an alicyclic diaminomonocarboxylic acid component, and more preferably contains only an aromatic diaminomonocarboxylic acid component.
- the diaminomonocarboxylic acid component of the diimidetricarboxylic acid-based compound it is preferable to use an aliphatic diaminomonocarboxylic acid component among the diaminomonocarboxylic acid components from the viewpoint of solubility of the diimidetricarboxylic acid-based compound.
- the diaminomonocarboxylic acid component of the diimitridicarboxylic acid compound is to use only the aliphatic diaminomonocarboxylic acid component among the diaminomonocarboxylic acid components from the viewpoint of further improving the solubility of the diimidetricarboxylic acid compound. Is preferred.
- the diaminomonocarboxylic acid component of the diimidetricarboxylic acid-based compound is selected from the above diaminomonocarboxylic acid components from 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, and 2,5-diamino. It preferably contains at least one compound selected from the group consisting of benzoic acid, 3,5-bis (4-aminophenoxy) benzoic acid, lysine, hydroxylysine, arginine, and histidine (hereinafter, referred to as group L6).
- the diaminomonocarboxylic acid component of the diimidetricarboxylic acid-based compound preferably contains only one or more compounds selected from the group L6 among the diaminomonocarboxylic acid components. .
- the diimide tetracarboxylic acid compound is a compound having two imide groups and four carboxyl groups in one molecule.
- the monoaminodicarboxylic acid component is usually about twice as large as the tetracarboxylic dianhydride component.
- Molar amount for example, 1.5 to 10.0 times molar amount, preferably 1.8 to 2.2 times molar amount, more preferably 1.9 to 2.1 times molar amount, still more preferably 1.95 to 2 times molar amount. It is used in a molar amount of 0.05 times.
- the tetracarboxylic dianhydride component capable of constituting the diimide tetracarboxylic acid compound is a tetracarboxylic dianhydride component similar to the tetracarboxylic dianhydride component capable of constituting the polyamic acid compound and the like.
- the tetracarboxylic dianhydride component of the diimidetetracarboxylic acid compound is a diimidetetracarboxylic acid compound or, for example, an aromatic tetracarboxylic dianhydride component from the viewpoint of heat resistance of a polymer compound obtained using the compound. It is preferable to include
- the tetracarboxylic dianhydride component of the diimide tetracarboxylic acid compound is an aromatic tetracarboxylic dicarboxylic acid compound from the viewpoint of further improving the heat resistance of the diimide tetracarboxylic acid compound or, for example, a polymer compound obtained using the same. Preferably, it contains only the anhydride component.
- the tetracarboxylic dianhydride component of the diimide tetracarboxylic acid compound is, from the viewpoint of the solubility of the diimide tetracarboxylic acid compound, among the above tetracarboxylic dianhydride components, an ether group, a thioether group, a sulfonyl group, It is preferable to use a tetracarboxylic dianhydride component having a ketone group, a methyl group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, or a halogen atom (or a halogen atom-containing substituent).
- the tetracarboxylic dianhydride component of the diimide tetracarboxylic acid compound is, from the viewpoint of further improving the solubility of the diimide tetracarboxylic acid compound, among the above tetracarboxylic dianhydride components, an ether group, a thioether group, It is preferable to use only a tetracarboxylic dianhydride component having a sulfonyl group, a ketone group, a methyl group, a methylene group, a phenyl group, an isopropylidene group, a fluorene structure, or a halogen atom (or a halogen atom-containing substituent).
- the tetracarboxylic dianhydride component of the diimide tetracarboxylic acid compound is a diimide tetracarboxylic acid compound or, for example, the above tetracarboxylic acid from the viewpoint of heat resistance and non-coloring property of a polymer compound obtained using the same.
- the dianhydride components it is preferable to include an aromatic tetracarboxylic dianhydride component and / or an alicyclic tetracarboxylic dianhydride component containing a fluorine atom.
- the tetracarboxylic dianhydride component of the diimide tetracarboxylic acid compound is a diimide tetracarboxylic acid compound or, for example, the above tetracarboxylic acid from the viewpoint of heat resistance and non-coloring property of a polymer compound obtained using the same.
- the dianhydride components it is preferable to include only an aromatic tetracarboxylic dianhydride component and / or an alicyclic tetracarboxylic dianhydride component containing a fluorine atom.
- the tetracarboxylic dianhydride component of the diimidetetracarboxylic acid compound is pyromellitic dianhydride, 3,3 ′, 4,4 ′ among the above tetracarboxylic dianhydride components.
- the group consisting of down tetracarboxylic acid dianhydride (hereinafter, referred to as the group L7) preferably comprises one or more compounds selected from.
- the tetracarboxylic dianhydride component of the diimidetetracarboxylic acid-based compound is only one or more compounds selected from the group L7 among the above tetracarboxylic dianhydride components. It is preferable to include
- the monoaminodicarboxylic acid component that can constitute the diimidetetracarboxylic acid compound is an aromatic monoaminodicarboxylic acid component containing an aromatic ring, an alicyclic monoaminodicarboxylic acid containing an aliphatic ring but not containing an aromatic ring. It includes an acid component and an aliphatic monoaminodicarboxylic acid component containing neither an aromatic ring nor an alicyclic ring.
- the monoaminodicarboxylic acid component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are substituted with a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom). May be.
- a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom.
- aromatic monoaminodicarboxylic acid component examples include 2-aminoterephthalic acid, 2-aminoisophthalic acid, 4-aminoisophthalic acid, 5-aminoisophthalic acid, 3-aminophthalic acid, 4-aminophthalic acid, and 3-amino- 1,2-dicarboxynaphthalene, 4-amino-1,2-dicarboxynaphthalene, 5-amino-1,2-dicarboxynaphthalene, 6-amino-1,2-dicarboxynaphthalene, 7-amino-1, 2-dicarboxynaphthalene, 8-amino-1,2-dicarboxynaphthalene, 1-amino-2,3-dicarboxynaphthalene, 4-amino-2,3-dicarboxynaphthalene, 5-amino-2,3- Dicarboxynaphthalene, 6-amino-2,3-dicarboxynaphthalene, 7-amino-2,3-dicarbox
- Examples of the aliphatic monoaminodicarboxylic acid component include glutamic acid, aspartic acid, 2-aminopimelic acid, ⁇ -amino- ⁇ -oxypimelic acid, 2-aminosuberic acid, 2-aminoadipic acid, ⁇ -amino- ⁇ -oxy Adipic acid, ⁇ -aminosebacic acid, carbocysteine, aminomalonic acid, ⁇ -amino- ⁇ -methylsuccinic acid, ⁇ -oxyglutamic acid, ⁇ -oxyglutamic acid, ⁇ -methylglutamic acid, ⁇ -methyleneglutamic acid, ⁇ -methyl- ⁇ -Oxyglutamic acid and the like. One of these may be used alone, or two or more may be used as a mixture.
- the monoaminodicarboxylic acid component of the diimidetetracarboxylic acid-based compound may be an aromatic monoaminodicarboxylic acid component and / or a fatty acid from the viewpoint of heat resistance of the diimidetetracarboxylic acid-based compound or, for example, a polymer compound obtained by using the same. It preferably contains a cyclic monoaminodicarboxylic acid component, and more preferably contains an aromatic monoaminodicarboxylic acid component.
- the monoaminodicarboxylic acid component of the diimidetetracarboxylic acid compound is a diimidetetracarboxylic acid compound or, for example, an aromatic monoaminodicarboxylic acid component from the viewpoint of further improving the heat resistance of a polymer compound obtained using the compound. It preferably contains only an alicyclic monoaminodicarboxylic acid component, and more preferably contains only an aromatic monoaminodicarboxylic acid component.
- the monoaminodicarboxylic acid component of the diimidetetracarboxylic acid-based compound is, among the above-mentioned monoaminodicarboxylic acid components, 2-aminoterephthalic acid, 2-aminoisophthalic acid, 4-aminoisophthalic acid, and 5-aminoisophthalic acid.
- the monoaminodicarboxylic acid component of the diimidetetracarboxylic acid-based compound may include only one or more compounds selected from the group L8 among the above monoaminodicarboxylic acid components. preferable.
- the monoimide dicarboxylic acid compound is a compound having one imide group and two carboxyl groups in one molecule.
- the monoaminomonocarboxylic acid component is usually about 1 molar amount relative to the tricarboxylic anhydride component, for example, 0.5 to 5.0 times molar amount, preferably 0.8 to 1.2 times molar amount, more preferably 0.9 to 1.1 times molar amount, further preferably 0.95 to 1.05 times molar amount. Used in quantity.
- the tricarboxylic anhydride component that can form the monoimide dicarboxylic acid compound is a tricarboxylic anhydride component similar to the tricarboxylic anhydride component that can form the polyamideimide compound, and more specifically, the tricarboxylic anhydride that can form the polyamideimide compound. It includes an aromatic tricarboxylic anhydride component, an alicyclic tricarboxylic anhydride component, and an aliphatic tricarboxylic anhydride component similar to the components.
- the tricarboxylic anhydride component of the monoimide dicarboxylic acid compound is an aromatic tricarboxylic anhydride component and / or an alicyclic compound from the viewpoint of heat resistance of the monoimide dicarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains a tricarboxylic anhydride component, and more preferably contains an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the monoimide dicarboxylic acid-based compound is an aromatic tricarboxylic anhydride component and / or from the viewpoint of further improving the heat resistance of the monoimide dicarboxylic acid-based compound or, for example, a polymer compound obtained using the same. It preferably contains only an alicyclic tricarboxylic anhydride component, and more preferably contains only an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the monoimide dicarboxylic acid compound is, from the viewpoint of the solubility and non-coloring property of the monoimide dicarboxylic acid compound, an alicyclic tricarboxylic anhydride component and / or a fatty acid among the above tricarboxylic anhydride components. It is preferable to use a group III tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the monoimide dicarboxylic acid-based compound is, from the viewpoint of further improving the solubility and non-coloring properties of the monoimide dicarboxylic acid-based compound, of the above tricarboxylic anhydride components, an alicyclic tricarboxylic anhydride component and Preferably, only the aliphatic tricarboxylic anhydride component is used.
- the tricarboxylic anhydride component of the monoimide dicarboxylic acid compound is a group consisting of trimellitic anhydride and 1,2,4-cyclohexanetricarboxylic anhydride among the above-mentioned tricarboxylic anhydride components (hereinafter, referred to as “tricarboxylic anhydride component”). It is preferable to include one or more compounds selected from the group L9). From the viewpoint of further improving versatility, the tricarboxylic anhydride component of the monoimide dicarboxylic acid compound preferably contains only one or more compounds selected from the group L9 among the above tricarboxylic anhydride components.
- the monoaminomonocarboxylic acid component capable of constituting the monoimide dicarboxylic acid-based compound is the same monoamino monocarboxylic acid component as the monoamino monocarboxylic acid component capable of constituting the diimide dicarboxylic acid-based compound.
- the monoaminomonocarboxylic acid component of the monoimidedicarboxylic acid compound is an aromatic monoaminomonocarboxylic acid component and / or an aromatic monoaminodicarboxylic acid component from the viewpoint of heat resistance of the monoimidedicarboxylic acid compound or, for example, a polymer compound obtained using the same.
- it preferably contains an alicyclic monoaminomonocarboxylic acid component, and more preferably contains an aromatic monoaminomonocarboxylic acid component.
- the monoaminodicarboxylic acid component of the monoimidedicarboxylic acid compound is an aromatic monoaminodicarboxylic acid from the viewpoint of further improving the heat resistance of the monoimidedicarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains only the component and / or the alicyclic monoaminomonocarboxylic acid component, and more preferably contains only the aromatic monoaminomonocarboxylic acid component.
- the monoaminomonocarboxylic acid component of the monoimidedicarboxylic acid compound is an alicyclic monoaminomonocarboxylic acid among the above monoaminomonocarboxylic acid components from the viewpoint of the solubility and non-coloring property of the monoimidedicarboxylic acid compound. It is preferable to use an acid component and / or an aliphatic monoaminomonocarboxylic acid component.
- the monoaminomonocarboxylic acid component of the monoimidedicarboxylic acid compound is an alicyclic monocarboxylic acid component of the above monoaminomonocarboxylic acid components from the viewpoint of further improving the solubility and non-coloring property of the monoimidedicarboxylic acid compound. It is preferable to use only the aminomonocarboxylic acid component and / or the aliphatic monoaminomonocarboxylic acid component.
- the monoaminomonocarboxylic acid component of the monoimide dicarboxylic acid-based compound is glycine, alanine, valine, norvaline, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -alanine, serine, leucine, isoleucine, threonine, proline, hydroxyproline, methionine, cysteine, 5-aminopentanoic acid, 6-aminocaproic acid, 7-aminoheptanoic acid, 9-nonanoic acid, 11-aminoundecanoic acid, 12 -Aminolauric acid, 17-aminoheptadecanoic acid, phenylalanine, tryptophan, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-amino-3-methylbenzoic acid, 2-amino-4 -Methylbenzo
- the monoaminomonocarboxylic acid component of the monoimide dicarboxylic acid-based compound contains only one or more compounds selected from the group L10 among the above monoaminomonocarboxylic acid components. Is preferred.
- the monoimide tricarboxylic acid compound is a compound having one imide group and three carboxyl groups in one molecule.
- the monoaminodicarboxylic acid component is usually used in an amount of about 1 mole, for example, 0.1 mol per mole of the tricarboxylic anhydride component. 5 to 5.0 moles, preferably 0.8 to 1.2 moles, more preferably 0.9 to 1.1 moles, even more preferably 0.95 to 1.05 moles. used.
- the tricarboxylic anhydride component that can form the monoimide tricarboxylic acid compound is a tricarboxylic anhydride component similar to the tricarboxylic anhydride component that can form the polyamideimide compound, and more specifically, the tricarboxylic anhydride that can form the polyamideimide compound. It includes an aromatic tricarboxylic anhydride component, an alicyclic tricarboxylic anhydride component, and an aliphatic tricarboxylic anhydride component similar to the components.
- the tricarboxylic anhydride component of the monoimide tricarboxylic acid compound is an aromatic tricarboxylic anhydride component and / or an alicyclic compound from the viewpoint of heat resistance of the monoimide tricarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains a tricarboxylic anhydride component, and more preferably contains an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the monoimide tricarboxylic acid-based compound may be an aromatic tricarboxylic anhydride component and / or a monoimide tricarboxylic acid-based compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same. It preferably contains only an alicyclic tricarboxylic anhydride component, and more preferably contains only an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the monoimide tricarboxylic acid compound is selected from the alicyclic tricarboxylic anhydride components and / or fatty acids of the above tricarboxylic anhydride components from the viewpoint of the solubility and non-colorability of the monoimide tricarboxylic acid compound. It is preferable to use an aromatic tricarboxylic acid component.
- the tricarboxylic anhydride component of the monoimide tricarboxylic acid-based compound is, from the viewpoint of further improving the solubility and non-coloring properties of the monoimide tricarboxylic acid-based compound, of the above tricarboxylic anhydride components, an alicyclic tricarboxylic anhydride component and Preferably, only the aliphatic tricarboxylic anhydride component is used.
- the tricarboxylic anhydride component of the monoimide tricarboxylic acid-based compound is, from the viewpoint of versatility, a group consisting of trimellitic anhydride and 1,2,4-cyclohexanetricarboxylic anhydride among the above-mentioned tricarboxylic anhydride components (hereinafter, referred to as “tricarboxylic anhydride component”). It is preferable to include one or more compounds selected from the group L11). From the viewpoint of further improving versatility, the tricarboxylic anhydride component of the monoimide tricarboxylic acid compound preferably contains only one or more compounds selected from the group L11 among the above tricarboxylic anhydride components.
- the monoaminodicarboxylic acid component that can constitute the monoimide tricarboxylic acid compound is a monoaminodicarboxylic acid component similar to the monoaminodicarboxylic acid component that can constitute the diimide tetracarboxylic acid compound.
- An aromatic monoaminodicarboxylic acid component, an alicyclic monoaminodicarboxylic acid component, and an aliphatic monoaminodicarboxylic acid component similar to the monoaminodicarboxylic acid component that can constitute the compound are included.
- the monoaminodicarboxylic acid component of the monoimidetricarboxylic acid-based compound may be an aromatic monoaminodicarboxylic acid component and / or a fatty acid, from the viewpoint of heat resistance of the monoimidetricarboxylic acid-based compound or, for example, a polymer compound obtained using the same. It preferably contains a cyclic monoaminodicarboxylic acid component, and more preferably contains an aromatic monoaminodicarboxylic acid component.
- the monoaminodicarboxylic acid component of the monoimide tricarboxylic acid compound is a monoimide tricarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same, an aromatic monoamino dicarboxylic acid component and It preferably contains only an alicyclic monoaminodicarboxylic acid component, and more preferably contains only an aromatic monoaminodicarboxylic acid component.
- the monoaminodicarboxylic acid component of the monoimidetricarboxylic acid-based compound is, among the above-mentioned monoaminodicarboxylic acid components, 2-aminoterephthalic acid, 2-aminoisophthalic acid, 4-aminoisophthalic acid, and 5-aminoisophthalic acid.
- the monoaminodicarboxylic acid component of the monoimidetricarboxylic acid-based compound may contain only one or more compounds selected from the group L12 among the above monoaminodicarboxylic acid components. preferable.
- a diimide dicarboxylic acid compound is produced by performing a reaction between functional groups by a mechanochemical effect using a tricarboxylic anhydride component and a diamine component as raw material compounds.
- an amide group-containing diimide dicarboxylic acid-based compound can be produced by producing an amide acid-based compound using a diamine component containing an amide group as the diamine component and advancing the imidization reaction.
- the amide group-containing diimidedicarboxylic acid compound is a compound having one or more amide groups, two imide groups, and two carboxyl groups in one molecule.
- the amide group-containing diamine component is usually about 0.5 times the molar amount of the tricarboxylic anhydride component, For example, 0.1 to 0.7 times molar amount, preferably 0.3 to 0.7 times molar amount, more preferably 0.4 to 0.6 times molar amount, further preferably 0.45 to 0.55 times molar amount. Used in molar amounts.
- the tricarboxylic anhydride component that can form the amide group-containing diimide dicarboxylic acid compound is the same tricarboxylic anhydride component as the tricarboxylic anhydride component that can form the polyamideimide compound, and specifically, an anhydride that can form the polyamideimide compound.
- the tricarboxylic anhydride component of the amide group-containing diimide dicarboxylic acid compound is preferably an aromatic tricarboxylic anhydride component and / or an amide group-containing diimide dicarboxylic acid component, from the viewpoint of heat resistance of a polymer compound obtained using the amide group-containing diimide dicarboxylic acid compound.
- it preferably contains an alicyclic tricarboxylic anhydride component, and more preferably contains an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the amide group-containing diimidedicarboxylic acid compound is an amide group-containing diimidedicarboxylic acid compound or, for example, an aromatic tricarboxylic anhydride from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same. It preferably contains only the component and / or the alicyclic tricarboxylic anhydride component, and more preferably contains only the aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the amide group-containing diimide dicarboxylic acid compound is an alicyclic tricarboxylic anhydride component of the above tricarboxylic anhydride components from the viewpoint of the solubility and non-colorability of the amide group-containing diimide dicarboxylic acid compound. It is preferable to use an aliphatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the amide group-containing diimide dicarboxylic acid compound is an alicyclic tricarboxylic anhydride among the above tricarboxylic anhydride components from the viewpoint of further improving the solubility and non-coloring property of the monoimide tricarboxylic acid compound.
- the tricarboxylic anhydride component of the amide group-containing diimide dicarboxylic acid compound is, from the viewpoint of versatility, a group consisting of trimellitic anhydride and 1,2,4-cyclohexanetricarboxylic anhydride among the above tricarboxylic anhydride components ( Hereinafter, it is preferable to include one or more compounds selected from the group L13). From the viewpoint of further improving versatility, the tricarboxylic anhydride component of the amide group-containing diimidedicarboxylic acid compound may contain only one or more compounds selected from the group L13 among the above tricarboxylic anhydride components. preferable.
- the amide group-containing diamine component capable of constituting the amide group-containing diimidedicarboxylic acid-based compound includes an amide group and an amide group-containing aromatic diamine component containing an aromatic ring, and an amide group and an aliphatic ring.
- An amide group-containing alicyclic diamine component containing no amide group and an amide group-containing aliphatic diamine component containing an amide group but containing neither an aromatic ring nor an alicyclic ring are included.
- the amide group-containing diamine component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are substituted with a halogen atom (for example, a fluorine atom, a chlorine atom, or a bromine atom). May be.
- a halogen atom for example, a fluorine atom, a chlorine atom, or a bromine atom.
- amide group-containing aromatic diamine component examples include 4,4'-diaminobenzanilide. One of these may be used alone, or two or more may be used as a mixture.
- the amide group-containing diamine component of the amide group-containing diimide dicarboxylic acid compound is an amide group-containing aromatic diamine component from the viewpoint of heat resistance of the amide group-containing diimide dicarboxylic acid compound or, for example, a polymer compound obtained using the amide group-containing diimide dicarboxylic acid compound. And / or an amide group-containing alicyclic diamine component, and more preferably an amide group-containing aromatic diamine component.
- the amide group-containing diamine component of the amide group-containing diimide dicarboxylic acid compound is an amide group-containing aromatic compound from the viewpoint of further improving the heat resistance of the amide group-containing diimide dicarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains only an aromatic diamine component and / or an amide group-containing alicyclic diamine component, and more preferably contains only an amide group-containing aromatic diamine component.
- the amide group-containing diamine component of the amide group-containing diimidedicarboxylic acid compound is, from the viewpoint of versatility, a group consisting of 4,4′-diaminobenzanilide (hereinafter, referred to as group L14) among the above amide group-containing diamine components. It is preferable to include one or more compounds selected from The amide group-containing diamine component of the amide group-containing diimidedicarboxylic acid-based compound contains only one or more compounds selected from the group L14 among the amide group-containing diamine components from the viewpoint of further improving versatility. Is preferred.
- Amido group-containing monoimide dicarboxylic acid compound By using a tricarboxylic anhydride halide component and a monoaminomonocarboxylic acid component as a raw material compound and performing a reaction between functional groups by a mechanochemical effect, an amic acid-based compound is produced, and an imidization reaction is advanced. An amide group-containing monoimide dicarboxylic acid compound can be produced.
- the monoimide dicarboxylic acid-based compound contains an amide group, for example, the solubility, fluidity at the time of melting, heat resistance, and mechanical properties of a polymer compound obtained by using the amide group can be improved.
- the reaction between the functional groups corresponds to the above-described reactions (A) and (C).
- the amide group-containing monoimide dicarboxylic acid compound is a compound having one or more amide groups, one imide group and two carboxyl groups in one molecule.
- the monoaminomonocarboxylic acid component is usually used for the tricarboxylic anhydride halide component.
- the molar amount is about 2 times, for example, 1.5 to 10.0 times, preferably 1.8 to 2.2 times, more preferably 1.9 to 2.1 times, and further preferably 1. It is used in a molar amount of 95 to 2.05.
- the tricarboxylic anhydride halide component that can form the amide group-containing monoimide dicarboxylic acid compound is an acid halide of the same tricarboxylic anhydride component as the tricarboxylic anhydride component that can form the polyamideimide compound.
- An acid halide of an aromatic tricarboxylic anhydride component, an alicyclic tricarboxylic anhydride component, and an aliphatic tricarboxylic anhydride component, which are the same as the tricarboxylic anhydride component that can constitute the system compound, are included.
- the tricarboxylic anhydride halide component of the amide group-containing monoimide dicarboxylic acid compound is an amide group-containing monoimide dicarboxylic acid compound or, for example, an aromatic anhydride tricarboxylic acid from the viewpoint of heat resistance of a polymer compound obtained using the same. It preferably contains an acid halide of an acid component and / or an acid halide of an alicyclic tricarboxylic anhydride component, and more preferably an acid halide of an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride halide component of the amide group-containing monoimide dicarboxylic acid compound is an aromatic compound from the viewpoint of further improving the heat resistance of the amide group-containing monoimide dicarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains only an acid halide of an aromatic tricarboxylic anhydride component and / or an acid halide of an alicyclic tricarboxylic anhydride component, more preferably only an acid halide of an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride halide component of the amide group-containing monoimide dicarboxylic acid compound is, from the viewpoint of versatility, a group consisting of trimellitic anhydride chloride among the above tricarboxylic anhydride halide components (hereinafter, referred to as group L15). It is preferable to include one or more compounds selected from The tricarboxylic anhydride halide component of the amide group-containing monoimide dicarboxylic acid compound is one or more compounds selected from the group L15 among the above tricarboxylic anhydride halide components from the viewpoint of further improving versatility. It is preferred to include only
- the monoaminomonocarboxylic acid component that can constitute the amide group-containing monoimide dicarboxylic acid compound is the same monoamino monocarboxylic acid component as the monoamino monocarboxylic acid component that can constitute the diimide dicarboxylic acid compound.
- the monoamino monocarboxylic acid component of the amide group-containing monoimide dicarboxylic acid compound is an amide group-containing monoimide dicarboxylic acid compound or, for example, an aromatic monoamino acid from the viewpoint of heat resistance of a polymer compound obtained using the same. It preferably contains a monocarboxylic acid component and / or an alicyclic monoaminomonocarboxylic acid component, and more preferably contains an aromatic monoaminomonocarboxylic acid component.
- the monoaminomonocarboxylic acid component of the amide group-containing monoimide dicarboxylic acid compound is an amide group-containing monoimide dicarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the amide group, It preferably contains only an aromatic monoaminomonocarboxylic acid component and / or an alicyclic monoaminomonocarboxylic acid component, and more preferably contains only an aromatic monoaminomonocarboxylic acid component.
- the monoaminomonocarboxylic acid component of the amide group-containing monoimidedicarboxylic acid compound is glycine, alanine, valine, norvaline, ⁇ -aminobutyric acid, ⁇ - Aminobutyric acid, ⁇ -alanine, serine, leucine, isoleucine, threonine, proline, hydroxyproline, methionine, cysteine, 5-aminopentanoic acid, 6-aminocaproic acid, 7-aminoheptanoic acid, 9-nonanoic acid, 11-aminoundecane Acid, 12-aminolauric acid, 17-aminoheptadecanoic acid, phenylalanine, tryptophan, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-amino-3-methylbenzoic acid, 2- Amino-4-methylbenzoic acid, 2-
- the monoaminomonocarboxylic acid component of the amide group-containing monoimidedicarboxylic acid compound is one or more compounds selected from the group L16 among the above monoaminomonocarboxylic acid components from the viewpoint of further improving versatility. It is preferred to include only
- Amido group-containing monoimide tetracarboxylic acid compound By using a tricarboxylic anhydride halide component and a monoaminodicarboxylic acid component as raw material compounds, and reacting the functional groups with each other by a mechanochemical effect, an amide acid compound is produced, and the amide is produced by advancing the imidization reaction.
- a group-containing monoimide tetracarboxylic acid-based compound can be produced.
- the monoimide tetracarboxylic acid-based compound contains an amide group, for example, the solubility, the flowability at the time of melting, the heat resistance, and the mechanical properties of the polymer compound obtained by using the amide group can be improved.
- the reaction between the functional groups corresponds to the above-described reactions (A) and (C).
- the amide group-containing monoimide tetracarboxylic acid compound is a compound having one or more amide groups, one imide group, and four carboxyl groups in one molecule.
- the monoaminodicarboxylic acid component is usually added to the tricarboxylic anhydride halide component.
- Double molar amount for example, 1.5 to 10.0 molar amount, preferably 1.8 to 2.2 molar amount, more preferably 1.9 to 2.1 molar amount, further preferably 1.95. It is used in a molar amount of 2.02.05 times.
- the tricarboxylic anhydride halide component capable of forming an amide group-containing monoimide tetracarboxylic acid compound is an acid halide of a tricarboxylic anhydride component similar to the tricarboxylic anhydride component capable of forming a polyamideimide compound.
- Acid halides of an aromatic tricarboxylic anhydride component, an alicyclic tricarboxylic anhydride component, and an aliphatic tricarboxylic anhydride component, which are the same as the tricarboxylic anhydride component that can constitute the imide compound, are included.
- the tricarboxylic anhydride halide component of the amide group-containing monoimide tetracarboxylic acid compound is an aromatic compound from the viewpoint of heat resistance of the amide group-containing monoimide tetracarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains an acid halide of a tricarboxylic anhydride component and / or an acid halide of an alicyclic tricarboxylic anhydride component, more preferably an acid halide of an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride halide component of the amide group-containing monoimide tetracarboxylic acid compound is an amide group-containing monoimide tetracarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same. It preferably contains only an acid halide of an aromatic tricarboxylic anhydride component and / or an acid halide of an alicyclic tricarboxylic anhydride component, and more preferably contains only an acid halide of an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride halide component of the amide group-containing monoimide tetracarboxylic acid compound is, from the viewpoint of versatility, a group consisting of trimellitic anhydride chloride among the above tricarboxylic anhydride halide components (hereinafter referred to as group L17). )).
- group L17 trimellitic anhydride chloride among the above tricarboxylic anhydride halide components
- the tricarboxylic anhydride halide component of the amide group-containing monoimide tetracarboxylic acid compound is at least one member selected from the group L17 among the above tricarboxylic anhydride halide components. Preferably, it contains only the compound.
- the monoaminodicarboxylic acid component that can constitute the amide group-containing monoimide tetracarboxylic acid compound is the same monoaminodicarboxylic acid component as the monoaminodicarboxylic acid component that can constitute the diimide tetracarboxylic acid compound.
- the monoaminodicarboxylic acid component of the amide group-containing monoimide tetracarboxylic acid compound is an aromatic amide group-containing monoimide tetracarboxylic acid compound or, for example, from the viewpoint of heat resistance of a polymer compound obtained using the same. It preferably contains an aminodicarboxylic acid component and / or an alicyclic monoaminodicarboxylic acid component, and more preferably contains an aromatic monoaminodicarboxylic acid component.
- the monoaminodicarboxylic acid component of the amide group-containing monoimide tetracarboxylic acid compound is an amide group-containing monoimide tetracarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same. It preferably contains only an aromatic monoaminodicarboxylic acid component and / or an alicyclic monoaminodicarboxylic acid component, and more preferably contains only an aromatic monoaminodicarboxylic acid component.
- the monoaminodicarboxylic acid component of the amide group-containing monoimidetetracarboxylic acid-based compound is, among the above-mentioned monoaminodicarboxylic acid components, 2-aminoterephthalic acid, 2-aminoisophthalic acid, and 4-aminoisophthalic acid.
- Acid 5-aminoisophthalic acid, 3-aminophthalic acid, 4-aminophthalic acid, glutamic acid, aspartic acid, 2-aminopimelic acid, 2-aminosuberic acid, 2-aminoadipic acid, ⁇ -aminosebacic acid, aminomalonic acid
- group L18 one or more compounds selected from the following group (hereinafter, referred to as group L18).
- the monoaminodicarboxylic acid component of the amide group-containing monoimidetetracarboxylic acid-based compound is, from the viewpoint of further improving versatility, only one or more compounds selected from the group L18 among the above monoaminodicarboxylic acid components. It is preferable to include
- Ester group-containing monoimide tricarboxylic acid compound Using a tricarboxylic anhydride component and a monohydroxymonoamine component as raw material compounds, by reacting functional groups with each other by a mechanochemical effect, an amic acid-based compound is produced, and an imidization reaction is carried out to contain an ester group.
- a monoimide tricarboxylic acid compound can be produced.
- the monoimide tricarboxylic acid-based compound contains an ester group, for example, to improve the solubility and fluidity at the time of melting, heat resistance, low water absorption properties, and mechanical properties of a polymer compound obtained by using the ester group. Can be.
- the ester group-containing monoimide tricarboxylic acid-based compound is a compound having one or more ester groups, one imide group and three carboxyl groups in one molecule.
- the monohydroxymonoamine component is usually about 0.5 times the molar amount of the tricarboxylic anhydride component, For example, 0.1 to 0.7 times molar amount, preferably 0.3 to 0.7 times molar amount, more preferably 0.4 to 0.6 times molar amount, further preferably 0.45 to 0.55 times molar amount. Used in molar amounts.
- the tricarboxylic anhydride component capable of constituting the ester group-containing monoimide tricarboxylic acid compound is a tricarboxylic anhydride component similar to the tricarboxylic anhydride component capable of constituting the polyamideimide compound, and more specifically, may constitute the polyamideimide compound.
- An aromatic tricarboxylic anhydride component, an alicyclic tricarboxylic anhydride component, and an aliphatic tricarboxylic anhydride component similar to the tricarboxylic anhydride component are included.
- the tricarboxylic anhydride component of the ester group-containing monoimide tricarboxylic acid compound is an ester group-containing monoimide tricarboxylic acid compound or, for example, an aromatic tricarboxylic anhydride component from the viewpoint of heat resistance of a polymer compound obtained using the same. It preferably contains an alicyclic tricarboxylic anhydride component, and more preferably contains an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the ester group-containing monoimide tricarboxylic acid compound is an aromatic anhydride from the viewpoint of further improving the heat resistance of the ester group-containing monoimide tricarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains only a tricarboxylic acid component and / or an alicyclic tricarboxylic anhydride component, and more preferably contains only an aromatic tricarboxylic anhydride component.
- the tricarboxylic anhydride component of the ester group-containing monoimide tricarboxylic acid compound is, from the viewpoint of versatility, a group consisting of trimellitic anhydride and 1,2,4-cyclohexanetricarboxylic anhydride among the above tricarboxylic anhydride components. (Hereinafter, referred to as group L19). From the viewpoint of further improving versatility, the tricarboxylic anhydride component of the ester group-containing monoimide tricarboxylic acid compound contains only one or more compounds selected from the group L19 among the above tricarboxylic anhydride components. Is preferred.
- the monohydroxymonoamine component capable of constituting the ester group-containing monoimide tricarboxylic acid-based compound is an aromatic monohydroxymonoamine component containing an aromatic ring, an alicyclic monohydroxy component containing an aliphatic ring but not containing an aromatic ring. Includes monoamine components and aliphatic monohydroxymonoamines containing no aromatic or alicyclic rings.
- the monohydroxymonoamine component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are substituted with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). Is also good.
- aromatic monohydroxy monoamine component examples include 2-aminophenol, 3-aminophenol, 4-aminophenol, 2-amino-4-methylphenol, 2-amino-5-methylphenol, and 3-amino-2-methylphenol.
- Examples of the alicyclic monohydroxymonoamine component include 1-amino-1-cyclopentanemethanol, 2-aminocyclohexanol, 4-aminocyclohexanol, 4- (2-aminoethyl) cyclohexanol, and 1-aminomethyl- Examples include 1-cyclohexanol, 3-aminomethyl-3,5,5-trimethylcyclohexanol, 4-aminocyclohexaneethanol and the like. One of these may be used alone, or two or more may be used as a mixture.
- Examples of the aliphatic monohydroxy monoamine component include ethanolamine, 2-amino-1-propanol, 3-amino-1-propanol, 3-amino-2,2-dimethyl-1-propanol, and 2-amino-2-propanol.
- the monohydroxy monoamine component of the ester group-containing monoimide tricarboxylic acid compound is an aromatic monohydroxy monoamine component from the viewpoint of heat resistance of the ester group-containing monoimide tricarboxylic acid compound or, for example, a polymer compound obtained using the same. And / or an alicyclic monohydroxymonoamine component, and more preferably an aromatic monohydroxymonoamine component.
- the monohydroxymonoamine component of the ester group-containing monoimide tricarboxylic acid-based compound is an ester group-containing monoimide tricarboxylic acid-based compound or an aromatic monoimide tricarboxylic acid compound. It preferably contains only a hydroxymonoamine component and / or an alicyclic monohydroxymonoamine component, and more preferably contains only an aromatic monohydroxymonoamine component.
- the monohydroxymonoamine component of the ester group-containing monoimidetricarboxylic acid-based compound is, among the above monohydroxymonoamine components, ethanolamine, 2-amino-1-propanol, 3-amino-1-propanol, 3-amino-2,2-dimethyl-1-propanol, 2-amino-1-butanol, 3-amino-1-butanol, 4-amino-1-butanol, 4-amino-2-methyl-1-butanol, 5-amino-1-pentanol, 6-amino-1-hexanol, 8-amino-1-octanol, 10-amino-1-decanol, 12-amino-1-dodecanol, 2-aminocyclohexanol, 4-amino Cyclohexanol, 2-aminophenol, 3-aminophenol, 4-aminophenol 2-amino-4-methylphenol, 2-amino-5-methylphenol,
- the diimide dihydroxy compound By using a tetracarboxylic dianhydride component and a monohydroxymonoamine component as raw material compounds, by reacting functional groups with each other by a mechanochemical effect, an amic acid-based compound is produced, and an imidization reaction is carried out.
- a dihydroxy compound (for example, a diimide diphenol compound) can be produced.
- the reaction between the functional groups corresponds to the reaction (A) described above.
- the diimide dihydroxy compound is a compound having two imide groups and two hydroxyl groups in one molecule, and preferably a diimide diphenol compound having two imide groups and two phenolic hydroxyl groups in one molecule. Is included.
- a diimide dihydroxy compound for example, a diimide diphenol compound
- a tetracarboxylic dianhydride component and a monohydroxy monoamine component the monohydroxy monoamine component is usually added to the tetracarboxylic dianhydride component.
- the tetracarboxylic dianhydride component capable of forming a diimide dihydroxy compound is a tetracarboxylic dianhydride component similar to the tetracarboxylic dianhydride component capable of forming a polyamic acid compound or the like.
- a tetracarboxylic dianhydride component capable of constituting a system compound, etc. an aromatic tetracarboxylic dianhydride component, an alicyclic tetracarboxylic dianhydride component, and an aliphatic tetracarboxylic dianhydride component Include.
- the tetracarboxylic dianhydride component of the diimide dihydroxy compound may include an aromatic tetracarboxylic dianhydride component from the viewpoint of heat resistance of the diimide dihydroxy compound or, for example, a polymer compound obtained using the compound.
- the tetracarboxylic dianhydride component of the diimide dihydroxy compound is a diimide dihydroxy compound or, for example, only an aromatic tetracarboxylic dianhydride component from the viewpoint of further improving the heat resistance of a polymer compound obtained using the compound. It is preferable to include
- the tetracarboxylic dianhydride component of the diimide dihydroxy compound is, from the viewpoint of solubility of the diimide dihydroxy compound, an ether group, a thioether group, a sulfonyl group, a ketone group, and a methyl group. It is preferable to use a tetracarboxylic dianhydride component having a group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, or a halogen atom (or a halogen atom-containing substituent).
- the tetracarboxylic dianhydride component of the diimide dihydroxy compound is, from the viewpoint of further improving the solubility of the diimide dihydroxy compound, an ether group, a thioether group, a sulfonyl group, and a ketone among the above tetracarboxylic dianhydride components. It is preferable to use only a tetracarboxylic dianhydride component having a group, a methyl group, a methylene group, an isopropylidene group, a phenyl group, a fluorene structure, or a halogen atom (or a halogen atom-containing substituent).
- the tetracarboxylic dianhydride component of the diimide dihydroxy compound is a diimide dihydroxy compound or, for example, from the viewpoint of heat resistance and non-coloring property of a polymer compound obtained using the same, the above tetracarboxylic dianhydride component Among them, it is preferable to include an aromatic tetracarboxylic dianhydride component and / or an alicyclic tetracarboxylic dianhydride component containing a fluorine atom.
- the tetracarboxylic dianhydride component of the diimide dihydroxy compound is a diimide dihydroxy compound or, for example, from the viewpoint of further improving the heat resistance and the non-coloring property of the polymer compound obtained by using the diimide dihydroxy compound,
- the anhydride components it is preferable to include only an aromatic tetracarboxylic dianhydride component and / or an alicyclic tetracarboxylic dianhydride component containing a fluorine atom.
- the tetracarboxylic dianhydride component of the diimide dihydroxy compound is, from the viewpoint of versatility, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyl among the above tetracarboxylic dianhydride components.
- Tetracarboxylic dianhydride 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthalic acid Anhydride, 4,4 '-(4,4'-isopropylidene diphenoxy) diphthalic anhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride, 4,4 '-(hex (Fluoroisopropylidene) diphthalic anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, 1,2,3,4- butane
- group consisting of tetracarboxylic acid dianhydride (hereinafter, referred to as group L21) preferably comprises one or more compounds selected from.
- the monohydroxymonoamine component capable of constituting the diimide dihydroxy compound is a monohydroxymonoamine component similar to the monohydroxymonoamine component capable of constituting the ester group-containing monoimide tricarboxylic acid compound, and more specifically, the ester group-containing monoimide tricarboxylic acid.
- the monohydroxymonoamine component of the diimidedihydroxy compound is an aromatic monohydroxymonoamine component and / or an alicyclic monohydroxymonoamine component from the viewpoint of heat resistance of the diimidedihydroxy compound or, for example, a polymer compound obtained using the same. And more preferably an aromatic monohydroxymonoamine component.
- the monohydroxymonoamine component of the diimidedihydroxy-based compound is an aromatic monohydroxymonoamine component and / or an alicyclic monoamine component from the viewpoint of further improving the heat resistance of the diimidedihydroxy-based compound or, for example, a polymer compound obtained by using the same. It preferably contains only a hydroxy monoamine component, and more preferably contains only an aromatic monohydroxy monoamine component.
- the monohydroxymonoamine component of the diimidedihydroxy compound is an alicyclic monohydroxymonoamine component and / or an aliphatic monohydroxymonoamine among the above monohydroxymonoamine components from the viewpoint of solubility and non-colorability of the diimidedihydroxy compound. It is preferred to use components.
- the monohydroxy monoamine component of the diimide dihydroxy compound is an alicyclic monohydroxy monoamine component and / or an aliphatic one of the above monohydroxy monoamine components from the viewpoint of further improving the solubility and non-coloring property of the diimide dihydroxy compound. It is preferable to use only a monohydroxy monoamine component.
- the monohydroxymonoamine component of the diimidedihydroxy-based compound is, among the above-mentioned monohydroxymonoamine components, ethanolamine, 2-amino-1-propanol, 3-amino-1-propanol, and 3-amino-2.
- a diamide dicarboxylic acid compound By using a dicarboxylic acid halide component and a monoaminomonocarboxylic acid component as raw material compounds and performing a reaction between functional groups by a mechanochemical effect, a diamide dicarboxylic acid compound can be produced.
- the reaction between the functional groups corresponds to the reaction (C) described above.
- a diamide dicarboxylic acid compound is a compound having two amide groups and two carboxyl groups in one molecule.
- the monoamino monocarboxylic acid component is usually about twice as much as the dicarboxylic acid halide component, For example, 1.5 to 10.0 times molar amount, preferably 1.8 to 2.2 times molar amount, preferably 1.9 to 2.1 times molar amount, more preferably 1.95 to 2.05 times molar amount. Used in quantity.
- the dicarboxylic acid halide component capable of forming the diamide dicarboxylic acid compound is an acid halide of the same dicarboxylic acid component as the dicarboxylic acid component capable of forming the polyamide compound, and more specifically, the dicarboxylic acid component capable of forming the polyamide compound. And an aromatic dicarboxylic acid component, an alicyclic dicarboxylic acid component, and an acid halide of an aliphatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diamide dicarboxylic acid compound is an acid halide and / or a fatty acid of the aromatic dicarboxylic acid component from the viewpoint of heat resistance of the diamide dicarboxylic acid compound or, for example, a polymer compound obtained using the compound. It preferably contains an acid halide of a cyclic dicarboxylic acid component, and more preferably contains an acid halide of an aromatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diamide dicarboxylic acid compound is a diamide dicarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the compound, an acid halide of an aromatic dicarboxylic acid component and It preferably contains only an acid halide of an alicyclic dicarboxylic acid component, and more preferably contains only an acid halide of an aromatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diamide dicarboxylic acid-based compound is, among the above dicarboxylic acid halide components, terephthalic acid chloride, isophthalic acid chloride, 1,4-cyclohexanedicarboxylic acid chloride, 1,3- It is preferable to include one or more compounds selected from the group consisting of cyclohexanedicarboxylic acid chloride (hereinafter, referred to as group L23). From the viewpoint of further improving versatility, the dicarboxylic acid halide component of the diamide dicarboxylic acid compound preferably contains only one or more compounds selected from the group L23 among the above dicarboxylic acid halide components.
- the monoaminomonocarboxylic acid component that can constitute the diamide dicarboxylic acid compound is a monoaminomonocarboxylic acid component similar to the monoaminomonocarboxylic acid component that can constitute the diimidedicarboxylic acid compound.
- An aromatic monoaminomonocarboxylic acid component, an alicyclic monoaminomonocarboxylic acid component, and an aliphatic monoaminomonocarboxylic acid component, which are the same as the monoaminomonocarboxylic acid component that can constitute the compound, are included.
- the monoaminomonocarboxylic acid component of the diamidedicarboxylic acid compound is an aromatic monoaminomonocarboxylic acid component and / or a fatty acid, from the viewpoint of heat resistance of the diamidedicarboxylic acid compound or, for example, a polymer compound obtained using the compound. It preferably contains a cyclic monoaminomonocarboxylic acid component, and more preferably contains an aromatic monoaminomonocarboxylic acid component.
- the monoamino monocarboxylic acid component of the diamide dicarboxylic acid compound is a diamide dicarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same, an aromatic monoamino monocarboxylic acid component and It preferably contains only an alicyclic monoaminomonocarboxylic acid component, and more preferably contains only an aromatic monoaminomonocarboxylic acid component.
- the monoaminomonocarboxylic acid component of the diamide dicarboxylic acid compound is glycine, alanine, valine, norvaline, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -Alanine, serine, leucine, isoleucine, threonine, proline, hydroxyproline, methionine, cysteine, 5-aminopentanoic acid, 6-aminocaproic acid, 7-aminoheptanoic acid, 9-nonanoic acid, 11-aminoundecanoic acid, 12- Aminolauric acid, 17-aminoheptadecanoic acid, phenylalanine, tryptophan, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-amino-3-methylbenzoic acid, 2-amino-4- Methylbenzoic acid, 2-a
- the monoaminomonocarboxylic acid component of the diamide dicarboxylic acid-based compound contains only one or more compounds selected from the group L24 among the above monoaminomonocarboxylic acid components. Is preferred.
- a diamide tetracarboxylic acid compound By using a dicarboxylic acid halide component and a monoaminodicarboxylic acid component as raw material compounds, and reacting the functional groups with each other by a mechanochemical effect, a diamidetetracarboxylic acid compound can be produced.
- the reaction between the functional groups corresponds to the reaction (C) described above.
- a diamide tetracarboxylic acid compound is a compound having two amide groups and four carboxyl groups in one molecule.
- the monoaminodicarboxylic acid component is usually about twice as much as the dicarboxylic acid halide component, for example, 1.5 to 10.0 moles, preferably 1.8 to 2.2 moles, more preferably 1.9 to 2.1 moles, still more preferably 1.95 to 2.05 moles. Used in quantity.
- the dicarboxylic acid halide component that can constitute the diamide tetracarboxylic acid compound is an acid halide of the same dicarboxylic acid component as the dicarboxylic acid component that can constitute the polyamide compound, and more specifically, the dicarboxylic acid component that can constitute the polyamide compound. It includes the aromatic dicarboxylic acid component, the alicyclic dicarboxylic acid component, and the acid halide of the aliphatic dicarboxylic acid component similar to the acid component.
- the dicarboxylic acid halide component of the diamide tetracarboxylic acid compound is an acid halide of the aromatic dicarboxylic acid component and / or an acid halide of the aromatic dicarboxylic acid component from the viewpoint of heat resistance of the diamide tetracarboxylic acid compound or, for example, a polymer compound obtained using the compound.
- it preferably contains an acid halide of an alicyclic dicarboxylic acid component, and more preferably contains an acid halide of an aromatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diamide tetracarboxylic acid compound is an acid halide of the aromatic dicarboxylic acid component from the viewpoint of further improving the heat resistance of the diamide tetracarboxylic acid compound or, for example, a polymer compound obtained using the compound. It preferably contains only an acid halide of a halide and / or an alicyclic dicarboxylic acid component, and more preferably contains only an acid halide of an aromatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diamide tetracarboxylic acid-based compound is, from the viewpoint of versatility, among the above dicarboxylic acid halide components, terephthalic acid chloride, isophthalic acid chloride, 1,4-cyclohexanedicarboxylic acid chloride, and 1,3. It is preferable to include one or more compounds selected from the group consisting of -cyclohexanedicarboxylic acid chloride (hereinafter, referred to as group L25).
- the dicarboxylic acid halide component of the diamide tetracarboxylic acid-based compound preferably contains only one or more compounds selected from the group L25 among the above dicarboxylic acid halide components.
- the monoaminodicarboxylic acid component capable of constituting the diamidetetracarboxylic acid compound is a monoaminodicarboxylic acid component similar to the monoaminodicarboxylic acid component capable of constituting the diimidetetracarboxylic acid compound, and more specifically, the diimidetetracarboxylic acid component.
- An aromatic monoaminodicarboxylic acid component, an alicyclic monoaminodicarboxylic acid component, and an aliphatic monoaminodicarboxylic acid component similar to the monoaminodicarboxylic acid component that can constitute the compound are included.
- the monoaminodicarboxylic acid component of the diamidetetracarboxylic acid compound may be an aromatic monoaminodicarboxylic acid component and / or a fatty acid from the viewpoint of heat resistance of the diamidetetracarboxylic acid compound or, for example, a polymer compound obtained using the compound. It preferably contains a cyclic monoaminodicarboxylic acid component, and more preferably contains an aromatic monoaminodicarboxylic acid component.
- the monoaminodicarboxylic acid component of the diamidetetracarboxylic acid-based compound is a diamidetetracarboxylic acid-based compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same, an aromatic monoaminodicarboxylic acid component and It preferably contains only an alicyclic monoaminodicarboxylic acid component, and more preferably contains only an aromatic monoaminodicarboxylic acid component.
- the monoaminodicarboxylic acid component of the diamidetetracarboxylic acid-based compound is, among the above-mentioned monoaminodicarboxylic acid components, 2-aminoterephthalic acid, 2-aminoisophthalic acid, 4-aminoisophthalic acid, and 5-aminoisophthalic acid.
- the monoaminodicarboxylic acid component of the diamidetetracarboxylic acid-based compound may contain only one or more compounds selected from the group L26 among the above monoaminodicarboxylic acid components. preferable.
- Diester dicarboxylic acid compound By using a dicarboxylic acid halide component and a monohydroxymonocarboxylic acid component as raw material compounds and performing a reaction between functional groups by a mechanochemical effect, a diester dicarboxylic acid-based compound can be produced.
- the reaction between the functional groups corresponds to the reaction (D) described above.
- a diester dicarboxylic acid compound is a compound having two ester groups and two carboxyl groups in one molecule.
- the monohydroxymonocarboxylic acid component is usually about twice as much as the dicarboxylic acid halide component, For example, 1.5 to 10.0 times molar amount, preferably 1.8 to 2.2 times molar amount, preferably 1.9 to 2.1 times molar amount, more preferably 1.95 to 2.05 times molar amount. Used in quantity.
- the dicarboxylic acid halide component that can form the diester dicarboxylic acid compound is an acid halide of the same dicarboxylic component as the dicarboxylic acid component that can form the polyamide compound, and more specifically, the dicarboxylic acid component that can form the polyamide compound. And an aromatic dicarboxylic acid component, an alicyclic dicarboxylic acid component, and an acid halide of an aliphatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diester dicarboxylic acid compound is an acid halide and / or a fatty acid of the aromatic dicarboxylic acid component from the viewpoint of heat resistance of the diester dicarboxylic acid compound or, for example, a polymer compound obtained using the diester dicarboxylic acid compound. It preferably contains an acid halide of a cyclic dicarboxylic acid component, and more preferably contains an acid halide of an aromatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diester dicarboxylic acid compound is a diester dicarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same, an acid halide of an aromatic dicarboxylic acid component and It preferably contains only an acid halide of an alicyclic dicarboxylic acid component, and more preferably contains only an acid halide of an aromatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diester dicarboxylic acid compound is, from the viewpoint of versatility, among the above dicarboxylic acid halide components, terephthalic acid chloride, isophthalic acid chloride, 1,4-cyclohexanedicarboxylic acid chloride, 1,3- It is preferable to include one or more compounds selected from the group consisting of cyclohexanedicarboxylic acid chloride (hereinafter, referred to as group L27). From the viewpoint of further improving versatility, the dicarboxylic acid halide component of the diester dicarboxylic acid-based compound preferably contains only one or more compounds selected from the group L27 among the above dicarboxylic acid halide components.
- the monohydroxymonocarboxylic acid component that can constitute the diester dicarboxylic acid compound is an aromatic monohydroxymonocarboxylic acid component containing an aromatic ring, an alicyclic monohydroxy acid containing an aliphatic ring but not containing an aromatic ring. Includes monocarboxylic acid components and aliphatic monohydroxymonocarboxylic acid components that contain no aromatic or alicyclic rings.
- the monohydroxymonocarboxylic acid component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are substituted with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). May be.
- aromatic monohydroxymonocarboxylic acid component examples include 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 4-hydroxy-2-methylbenzoic acid, and 4-hydroxy-3-methylbenzoic acid 4-hydroxy-3,5-dimethylbenzoic acid, 2-hydroxy-4-methoxybenzoic acid, 3-hydroxy-4-methoxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxy-3, 5-dimethoxybenzoic acid, 4-hydroxy-2,6-dimethoxybenzoic acid, 3,5-di-tert-butyl-4-hydroxybenzoic acid, 3-hydroxy-2-naphthoic acid, 5-hydroxy-1-naphthoic acid Acid, 5-hydroxy-2-naphthoic acid, 6-hydroxy-2-naphthoic acid, 7-hydroxy-2-naphthoic acid, 4- 4-hydroxyphenyl) benzoic acid, 4- (3-hydroxyphenyl) benzoic acid, 3- (4-hydroxyphenyl) benzo
- Examples of the alicyclic monohydroxymonocarboxylic acid component include 1-hydroxy-1-cyclopropanecarboxylic acid, 2-hydroxycyclohexanecarboxylic acid, 3-hydroxycyclohexanecarboxylic acid, 4-hydroxycyclohexanecarboxylic acid, and 3- (hydroxy Methyl) cyclohexanecarboxylic acid, 4- (hydroxymethyl) cyclohexanecarboxylic acid, 3-hydroxy-1-adamantanecarboxylic acid, 3-hydroxy-1-adamantaneacetic acid and the like.
- One of these may be used alone, or two or more may be used as a mixture.
- Examples of the aliphatic monohydroxymonocarboxylic acid component include lactic acid, hydroxyacetic acid, 2-hydroxybutanoic acid, 2-hydroxypentanoic acid, 2-hydroxyhexanoic acid, 2-hydroxyheptanoic acid, 2-hydroxyoctanoic acid and 2-hydroxyoctanoic acid.
- the monohydroxymonocarboxylic acid component of the diester dicarboxylic acid compound is an aromatic monohydroxymonocarboxylic acid component and / or a fatty acid from the viewpoint of heat resistance of the diester dicarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains a cyclic monohydroxymonocarboxylic acid component, and more preferably contains an aromatic monohydroxymonocarboxylic acid component.
- the monohydroxy monocarboxylic acid component of the diester dicarboxylic acid compound is an aromatic monohydroxy monocarboxylic acid component from the viewpoint of further improving the heat resistance of the diester dicarboxylic acid compound or, for example, a polymer compound obtained using the same. It preferably contains only an alicyclic monohydroxymonocarboxylic acid component, and more preferably contains only an aromatic monohydroxymonocarboxylic acid component.
- the monohydroxymonocarboxylic acid component of the diester dicarboxylic acid compound is 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, -Hydroxy-2-methylbenzoic acid, 4-hydroxy-3-methylbenzoic acid, 4-hydroxy-3,5, -dimethylbenzoic acid, 2-hydroxy-4-methoxybenzoic acid, 3-hydroxy-4-methoxybenzoic acid Acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxy-3,5-dimethoxybenzoic acid, 4-hydroxy-2,6-dimethoxybenzoic acid, 3,5-di-tert-butyl-4-hydroxybenzoic acid Acid, 3-hydroxy-2-naphthoic acid, 5-hydroxy-1-naphthoic acid, 5-hydroxy-2-naphthoic acid Acid, 6-hydroxy-2-naphthoic acid, 7-hydroxy-2-naphthoic acid, 4- (4-hydroxyphenyl) benzoic
- Diester tetracarboxylic acid compound By using a dicarboxylic acid halide component and a monohydroxydicarboxylic acid component as a raw material compound and performing a reaction between functional groups by a mechanochemical effect, a diester tetracarboxylic acid-based compound can be produced.
- the reaction between the functional groups corresponds to the reaction (D) described above.
- the diester tetracarboxylic acid compound is a compound having two ester groups and four carboxyl groups in one molecule.
- the monohydroxydicarboxylic acid component is usually about twice as much as the dicarboxylic acid halide component, for example, 1.5 to 10.0 moles, preferably 1.8 to 2.2 moles, more preferably 1.9 to 2.1 moles, still more preferably 1.95 to 2.05 moles. Used in quantity.
- the dicarboxylic acid halide component that can constitute the diester tetracarboxylic acid compound is an acid halide of the same dicarboxylic component as the dicarboxylic acid component that can constitute the polyamide compound, and more specifically, the dicarboxylic acid that can constitute the polyamide compound. It includes the aromatic dicarboxylic acid component, the alicyclic dicarboxylic acid component, and the acid halide of the aliphatic dicarboxylic acid component similar to the components.
- the dicarboxylic acid halide component of the diester tetracarboxylic acid compound is an acid halide of the aromatic dicarboxylic acid component and / or an acid dihalide component from the viewpoint of heat resistance of the diester tetracarboxylic acid compound or, for example, a polymer compound obtained by using the diester tetracarboxylic acid compound.
- it preferably contains an acid halide of an alicyclic dicarboxylic acid component, and more preferably contains an acid halide of an aromatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diester tetracarboxylic acid compound is an acid halide of the aromatic dicarboxylic acid component from the viewpoint of further improving the heat resistance of the diester tetracarboxylic acid compound or, for example, a polymer compound obtained by using the same. It preferably contains only an acid halide of a halide and / or an alicyclic dicarboxylic acid component, and more preferably contains only an acid halide of an aromatic dicarboxylic acid component.
- the dicarboxylic acid halide component of the diester tetracarboxylic acid-based compound is, from the viewpoint of versatility, terephthalic acid chloride, isophthalic acid chloride, 1,4-cyclohexanedicarboxylic acid chloride, 1,3 It is preferable to include one or more compounds selected from the group consisting of -cyclohexanedicarboxylic acid chloride (hereinafter, referred to as group L29). From the viewpoint of further improving versatility, the dicarboxylic acid halide component of the diester tetracarboxylic acid-based compound preferably contains only one or more compounds selected from the group L29 among the above dicarboxylic acid halide components. .
- the monohydroxydicarboxylic acid component which can constitute the diester tetracarboxylic acid compound is an aromatic monohydroxydicarboxylic acid component containing an aromatic ring, an alicyclic monohydroxydicarboxylic acid containing an aliphatic ring but not containing an aromatic ring. It includes an acid component and an aliphatic monohydroxydicarboxylic acid component containing neither an aromatic ring nor an alicyclic ring.
- the monohydroxydicarboxylic acid component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are substituted with a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). May be.
- aromatic monohydroxydicarboxylic acid component examples include 2-hydroxyterephthalic acid, 4-hydroxyisophthalic acid, 5-hydroxyisophthalic acid, and 4-hydroxyphthalic acid. One of these may be used alone, or two or more may be used as a mixture.
- Examples of the aliphatic monohydroxydicarboxylic acid component include 2-hydroxymalonic acid, malic acid, isomalic acid, 1-hydroxypropane-1,1-dicarboxylic acid, 1-hydroxybutane-1,1-dicarboxylic acid, Hydroxy-2-methylpropane-1,1-dicarboxylic acid, 2-hydroxyethane-1,1-dicarboxylic acid, 2-hydroxy-3-methylpropane-1,1-dicarboxylic acid, 1- (hydroxymethyl) propane- 1,1-dicarboxylic acid, ⁇ -methylmalic acid, ⁇ -hydroxy- ⁇ ′-methylsuccinic acid, ⁇ -hydroxy- ⁇ ′, ⁇ ′-dimethylsuccinic acid, ⁇ -hydroxy- ⁇ , ⁇ ′-dimethylsuccinic acid, ⁇ -hydroxy- ⁇ ′-ethylsuccinic acid, ⁇ -hydroxy- ⁇ ′-methyl- ⁇ -ethylsuccinic acid, trimethylmalic acid, ⁇ -hydro Shiguru
- the monohydroxydicarboxylic acid component of the diestertetracarboxylic acid compound is an aromatic monohydroxydicarboxylic acid component and / or a fatty acid from the viewpoint of heat resistance of the diestertetracarboxylic acid compound or, for example, a polymer compound obtained by using the same. It preferably contains a cyclic monohydroxydicarboxylic acid component, and more preferably contains an aromatic monohydroxydicarboxylic acid component.
- the monohydroxydicarboxylic acid component of the diester tetracarboxylic acid compound is a diester tetracarboxylic acid compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same, an aromatic monohydroxydicarboxylic acid component and It preferably contains only an alicyclic monohydroxydicarboxylic acid component, and more preferably contains only an aromatic monohydroxymonocarboxylic acid component.
- the monohydroxydicarboxylic acid component of the diester tetracarboxylic acid-based compound is, among the above-mentioned monohydroxydicarboxylic acid components, 2-hydroxyterephthalic acid, 4-hydroxyisophthalic acid, 5-hydroxyisophthalic acid, and 4-hydroxyisophthalic acid. It is preferable to include one or more compounds selected from the group consisting of hydroxyphthalic acid (hereinafter, referred to as group L30). From the viewpoint of further improving versatility, the monohydroxydicarboxylic acid component of the diester tetracarboxylic acid-based compound may contain only one or more compounds selected from the group L30 among the above monohydroxydicarboxylic acid components. preferable.
- a curable imide compound As a raw material compound, an unsaturated dicarboxylic anhydride component and a diamine component are used. By performing a reaction between functional groups by a mechanochemical effect, an amide acid compound is produced, and a curable imide compound is produced by advancing an imidization reaction. Compounds can be prepared. Here, the reaction between the functional groups corresponds to the reaction (A) described above.
- a curable imide compound is a compound containing one or more (especially one to four) imide groups and one or more curable unsaturated bonds (double bonds and / or triple bonds) in one molecule. A curable or photocurable compound.
- the diamine component is usually about 0.5 times the molar amount of the unsaturated dicarboxylic anhydride component, for example, 0.1 mol. Used in a molar amount of from 0.7 to 0.7 times, preferably from 0.3 to 0.7 times, more preferably from 0.4 to 0.6 times, even more preferably from 0.45 to 0.55 times. Is done.
- the unsaturated dicarboxylic anhydride component that can constitute the curable imide compound has one or more addition (polymerization) or radical reaction (polymerization) double bonds and / or triple bonds (particularly 1 ) And a compound having one or more (especially one) acid anhydride group).
- the unsaturated dicarboxylic anhydride component is an aromatic unsaturated dicarboxylic anhydride component containing an aromatic ring, an alicyclic unsaturated dicarboxylic anhydride component containing an aliphatic ring but not containing an aromatic ring, and an aromatic ring. And an aliphatically unsaturated dicarboxylic anhydride component containing no alicyclic ring.
- the unsaturated dicarboxylic anhydride component may contain an ether group and / or a thioether group, and / or one or more of the hydrogen atoms are replaced by a halogen atom (eg, a fluorine atom, a chlorine atom, a bromine atom). May be.
- aromatic unsaturated dicarboxylic anhydride component examples include 4-phenylethynylphthalic anhydride, 4- (1-propynyl) phthalic anhydride, and 4-ethynylphthalic anhydride. One of these may be used alone, or two or more may be used as a mixture.
- Examples of the alicyclic unsaturated dicarboxylic anhydride component include 5-norbornene-2,3-dicarboxylic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, and 3,4,5,6-tetrahydroanhydride. Phthalic anhydride, 2,5-norbornadiene-2,3-dicarboxylic anhydride, and the like. One of these may be used alone, or two or more may be used as a mixture.
- Examples of the aliphatic unsaturated dicarboxylic anhydride component include maleic anhydride, methyl maleic anhydride, 2,3-dimethyl maleic anhydride, 2-phenylmaleic anhydride, and 2- (diphenyl) maleic anhydride 2- (1-hydroxyhexyl) maleic anhydride, 2- (4-methylphenyl) maleic anhydride, 2- [2- (hexyloxy) ethyl] maleic anhydride, 2,5-dihydro-2 , 5-dioxo-3-furanacetic acid, methyl 2,5-dihydro-2,5-dioxofuran-3-carboxylate, and the like. One of these may be used alone, or two or more may be used as a mixture.
- the unsaturated dicarboxylic anhydride component of the curable imide compound may be an aromatic unsaturated dicarboxylic anhydride component and / or a fatty acid from the viewpoint of heat resistance of the curable imide compound or, for example, a polymer compound obtained by using the same. It preferably contains a cyclic unsaturated dicarboxylic anhydride component, and more preferably contains an aromatic unsaturated dicarboxylic anhydride component.
- the unsaturated dicarboxylic anhydride component of the curable imide compound is a curable imide compound or, for example, from the viewpoint of further improving the heat resistance of a polymer compound obtained using the same, an aromatic unsaturated dicarboxylic anhydride component and It preferably contains only an alicyclic unsaturated dicarboxylic anhydride component, and more preferably contains only an aromatic unsaturated dicarboxylic anhydride component.
- the unsaturated dicarboxylic anhydride component of the curable imide-based compound is, among the above unsaturated dicarboxylic anhydride components, 4-phenylethynylphthalic anhydride and 4- (1-propynyl) phthalic anhydride.
- At least one member selected from the group consisting of acetic anhydride, 4-ethynylphthalic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, maleic anhydride, and methylmaleic anhydride (hereinafter referred to as group L31) Preferably, it contains a compound.
- the unsaturated dicarboxylic anhydride component of the curable imide compound preferably contains only one or more compounds selected from the group L31 from the viewpoint of further improving versatility.
- the diamine component that can constitute the curable imide compound is a diamine component similar to the diamine component that can constitute the polyamic acid compound, and more specifically, the same aromatic diamine component as the diamine component that can constitute the polyamic acid compound.
- Aliphatic diamine component, alicyclic diamine component, and aliphatic diamine component are examples of aromatic diamine component.
- the diamine component of the curable imide compound may include an aromatic diamine component and / or an alicyclic diamine component from the viewpoint of heat resistance of the curable imide compound or, for example, a polymer compound obtained using the same. It preferably contains an aromatic diamine component more preferably.
- the diamine component of the curable imide compound is only an aromatic diamine component and / or an alicyclic diamine component from the viewpoint of further improving the heat resistance of the curable imide compound or, for example, a polymer compound obtained using the same. And more preferably only an aromatic diamine component.
- the diamine component of the curable imide compound is, from the viewpoint of the solubility of the curable imide compound, among the above diamine components, ether group, thioether group, sulfonyl group, sulfonic acid group, methyl group, methylene group, isopropylidene. It is preferable to use a diamine component having a group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the curable imide compound is an ether group, a thioether group, a sulfonyl group, a sulfonic acid group, a methyl group, a methylene group, among the above diamine components, from the viewpoint of further improving the solubility of the curable imide compound. It is preferable to use only a diamine component having an isopropylidene group, a phenyl group, a fluorene structure, a halogen atom (or a halogen atom-containing substituent), or a siloxane bond.
- the diamine component of the curable imide compound is a curable imide compound or, for example, from the viewpoint of non-colorability and solubility of a polymer compound obtained by using the same, among the above-described diamine components, an alicyclic diamine component And / or an aliphatic diamine component.
- the diamine component of the curable imide compound is a curable imide compound or, for example, from the above-described diamine component, from the viewpoint of further improving the non-coloring property and solubility of a polymer compound obtained using the same, It is preferable to include only the aliphatic diamine component and / or the aliphatic diamine component.
- the diamine component of the curable imide compound is selected from the diamine components described above, among 4,4′-diaminodiphenyl ether, p-phenylenediamine, m-phenylenediamine, 3,4′-diaminodiphenyl ether, , 4'-Diaminodiphenylmethane, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1, 3,3,3-hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, bis (4-
- a reaction between functional groups is performed by a mechanochemical effect using a raw material mixture containing a predetermined raw material compound.
- the predetermined raw material compounds are two or more raw material compounds (monomer components) for producing each of the low-molecular compounds described above, and at least one of the raw material compounds is in a solid state under the reaction environment as described above. Is a raw material compound. Specifically, a raw material mixture containing such a raw material compound is subjected to a pulverizing treatment, so that the functional groups react with each other by a mechanochemical effect.
- the raw material compound in the liquid state is at least one solid raw material compound contained in the raw material mixture from the viewpoint of further improving the reaction rate. Is preferably mixed or added before or while pulverizing. At this time, from the viewpoint of further improving the reaction rate, the raw material compound in a liquid state is preferably added in a plurality of times, more preferably, dropwise added in an amount obtained by dividing the predetermined amount into two or more times, and more preferably, dropwise. Is preferred.
- the raw material compound particularly, a raw material compound which is in a solid state in a reaction environment
- one having a maximum length particle shape of usually 0.001 to 20.0 mm, particularly 0.01 to 10.0 mm is used.
- a cumulative 50% diameter was used as the maximum length.
- the maximum length is a value measured as a cumulative 50% particle size from a particle size distribution by a sieving test described in JISZ8815 in accordance with JISZ8815 when a particle size of 0.5 mm or more is included. did.
- the maximum length was determined to be the 50% cumulative diameter determined by a particle size distribution analyzer using a laser diffraction / scattering method.
- the pulverization treatment for the production of the low-molecular compound can be performed by any device (for example, a so-called pulverization device, mixing device, etc.) as long as it can transmit mechanical energy to the raw material compound by compression, impact, shearing, and / or grinding.
- Device or stirring device for example, the pulverizing treatment can be performed using an apparatus similar to the apparatus exemplified in the description of the method for producing a polymer compound.
- a typical apparatus for producing a low-molecular compound for example, a high-speed bottom stirring mixer, a high-speed rotary pulverizer, a container-driven mill, a medium similar to the apparatus exemplified in the description of the method for producing a high-molecular compound, An agitation type mill is mentioned.
- the reaction conditions ie, mixing, stirring, and pulverization conditions
- the reaction conditions for the production of the low-molecular compound are not particularly limited as long as the mechanochemical effect is exhibited and the desired low-molecular compound is obtained.
- the average particle diameter is 0.5 ⁇ Rm or less, particularly 0.1 ⁇ Rm.
- the pulverization process is performed until the value becomes ⁇ Rm or less.
- the capacity of a pulverizing tank (or tank) for pulverizing treatment is 4 to 6 L (particularly 5 L), and the weight of the raw material mixture is 0.5 to 1.5 kg (particularly 1 kg), when the material of the crushed ball is alumina, the ball diameter is 10.0 mm, and the input weight is 6.0 kg, the rotation speed is usually 115 rpm or more, particularly 115 to 504 rpm, and the crushing time is usually 0 mm. 0.5 minutes or more, especially 0.5 to 60 minutes.
- the capacity of a mixing tank (or tank) for the pulverization treatment is 9 to 150 L (particularly 20 L), and the weight of the raw material mixture is 4 to 6 kg (particularly 5 kg).
- the rotation speed is usually 100 rpm or more, especially 500 to 5000 rpm, and the pulverization time is usually 1 minute or more, especially 1 to 60 minutes.
- the capacity of a pulverizing tank (or tank) for pulverization is 75 to 200 mL (particularly 150 mL), and the weight of the raw material mixture is 50 to 250 g (particularly 100 g).
- the rotation speed is usually 3000 rpm or more, especially 3000-14000 rpm, and the pulverization time is usually 1 minute or more, especially 2-10 minutes.
- Such a pulverization treatment and a subsequent cooling treatment of the pulverized material may be repeated twice or more, for example, 2 to 10 times.
- a standing cooling treatment for example, a standing cooling treatment
- the reaction rate can be improved by adjusting the reaction conditions (pulverization conditions). For example, the reaction rate increases as the grinding conditions are increased within a range in which the raw material mixture does not melt.
- the low-molecular compound obtained by the pulverization treatment preferably has an average particle diameter (D90) of 1000 ⁇ m or less, 0.01 to 1000 ⁇ m, particularly 0.1 to 100 ⁇ m.
- the raw material mixture contains an auxiliary agent.
- the auxiliary include the same auxiliary as the auxiliary exemplified in the description of the method for producing a polymer compound.
- a catalyst may be contained in the raw material mixture to promote the reaction.
- any catalyst (acid catalyst, base catalyst, metal catalyst, metal oxide catalyst, complex catalyst, sulfide, chloride, metal organic salt, mineral acid, etc.) useful for producing low molecular compounds can be used. .
- the catalyst include, for example, paratoluenesulfonic acid, dimethyl sulfate, diethyl sulfate, sulfuric acid, hydrochloric acid, oxalic acid, acetic acid, phosphoric acid, phosphorous acid, hypophosphorous acid or salts thereof, sodium hydroxide, hydroxide Potassium, lithium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, pyridine, ammonia, triethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, 3-ethoxypropylamine, 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, 3-methoxy Propylamine,
- the method for producing a low molecular compound of the present invention can include a heating step. Thereby, the reaction between the functional groups can be promoted, and as a result, a higher reaction rate can be achieved.
- the heating step may be performed during the pulverizing treatment (ie, mechanochemical treatment) and / or after the pulverizing treatment (ie, mechanochemical treatment).
- a temperature is, for example, 40-350 ° C.
- the heating temperature in the case of heating after the pulverization treatment needs to be lower than the decomposition temperature of the obtained low molecular compound.
- the heating temperature may be, for example, from 90 to 400 ° C, especially from 90 to 350 ° C.
- the heating time is not particularly limited, and may be, for example, 0.5 to 16 hours, particularly 0.5 to 8 hours.
- the heating may be performed in a stream of an inert gas such as nitrogen, or may be performed under pressure or under reduced pressure. In addition, heating may be performed while standing or while stirring.
- the heating step performed after the pulverization treatment may be performed in one stage or may be performed in multiple stages.
- Performing the heating step in multiple stages means that the heating step having different heating temperatures is successively performed two or more times, preferably two to three times.
- the heating temperature of the heating step after the second heating step is preferably higher than the heating temperature of the immediately preceding heating step from the viewpoint of further improving the reaction rate.
- the heating temperature in the second heating step is preferably higher than the heating temperature in the first heating step.
- the heating temperature in the third heating step is preferably higher than the heating temperature in the second heating step.
- Reaction rate 1-1 Reaction rate of acid dianhydride and diamine in polymer compound
- the sum of the integrated values of the peaks derived from the structure a1 in which both amino groups were amidated among the peaks derived from the diamine was A1 derived from the structure a2 in which one amino group was amidated.
- the reaction rate of the diamine was determined by the following equation, where A2 is the sum of the integrated values of the peaks and A3 is the sum of the integrated values of the peaks derived from the structure a3 in which both amino groups are not amidated.
- reaction rate (%) of diamine (A1 + A2 / 2) / (A1 + A2 + A3) ⁇ 100
- reaction rate of Unsaturated Acid Monoanhydride with Diamine in Low Molecular Weight Compound The reaction rate of the curable imide compound precursor powder obtained in each example of Example B14 (Table 22) was determined by 1 H-NMR measurement.
- the average particle diameter was measured by a laser diffraction method, and was defined as a value of a particle diameter (median diameter) with respect to a cumulative 50% of the obtained cumulative distribution. Specifically, 0.1 to 1.0 g of the powder obtained after the mechanochemical treatment was measured by a laser diffraction type particle size distribution analyzer (Mastersizer 3000 manufactured by Malvern) to obtain a particle size distribution. The value of the particle diameter (median diameter) with respect to the cumulative 50% of the obtained cumulative distribution was defined as the average particle diameter.
- Example A1-1 Method for producing polymer compound] (Method for producing polyamic acid compound (polyimide resin precursor and polyimide resin), solid / solid mechanochemical method)
- Example A1-1 6.0 kg of alumina balls were added to a pulverizing tank of a medium stirring mill (tank capacity: 5.0 L), and 521 parts by mass of pyromellitic dianhydride and 479 parts by mass of 4,4′-diaminodiphenyl ether were added. . The mixture was pulverized at 504 rpm for 3 minutes in a nitrogen atmosphere, and a mechanochemical reaction was performed to obtain a polyimide resin precursor (polyamic acid) powder.
- the reaction rate between the amino group derived from 4,4'-diaminodiphenyl ether and the acid anhydride group of pyromellitic anhydride in the obtained pulverized product was 78.2%, and the average degree of polymerization was 9. It was 2.
- the average particle diameter of the obtained pulverized product was 48.2 ⁇ m.
- Example A1-1 7.03 ppm (multiplet), 7.17 ppm (multiplet), 7.70 ppm (multiplet), 8.32 ppm (multiplet) in the 1 H-NMR spectrum were obtained.
- One amino group is amidated near 6.68 ppm (multiplet), 6.78 ppm (multiplet), or 6.89 ppm (multiplet), a peak derived from a reaction product in which both amino groups are amidated.
- a peak derived from an unreacted amine was detected at around 6.51 ppm (doublet) at 6.61 ppm (doublet).
- Example A1-2 to Example A1-80 Except for changing the diamine composition, the same operation as in Example A1-1 was performed to obtain a polyimide resin precursor powder.
- Example A1-1 In the NMR measurement of each Example, as in Example A1-1, in the 1 H-NMR spectrum, a peak derived from a reaction product in which both amino groups were amidated, and a reaction in which one amino group was amidated. And a peak derived from unreacted amine were respectively detected.
- Example A1-81 616 parts by mass of pyromellitic dianhydride was added to a mixing tank provided with a double helical stirring blade, and the mixture was stirred at 40 ° C. 384 parts by mass of m-xylylenediamine was added at a rate of 2.13 parts by mass / minute using a tube pump to obtain a mixed powder of two components. The reaction rate between the amino group derived from m-xylylenediamine in the resulting powder and the acid anhydride group of pyromellitic anhydride was measured and found to be 37.2%.
- Example A1-82 to Example A1-95 Except for changing the diamine composition, the same operation as in Example A1-81 was performed to obtain a polyimide resin precursor powder.
- a peak derived from a reaction product in which both amino groups were amidated in the 1 H-NMR spectrum, a peak derived from a reaction product in which both amino groups were amidated, and a reaction in which one amino group was amidated. And a peak derived from unreacted amine were respectively detected.
- the resulting pulverized product in a nitrogen stream, 300 ° C., for 2 hours under heating the obtained powder was subjected to IR measurement, observed absorption derived from the imide groups in the vicinity of 1750 ⁇ 1800 cm -1, polyimide It was confirmed that resin was generated.
- Example A2-1 To a pulverizing tank of a planetary mill (capacity: 0.25 L), 30 zirconia balls having a diameter of 10 mm were added, and 466 parts by mass of pyromellitic dianhydride and 534 parts by mass of diphenylmethane diisocyanate were added, for a total of 5.0 g. A cycle of pulverizing at 600 rpm for 5 minutes in the air and then cooling for 5 minutes was repeated 6 times to perform a mechanochemical reaction. The average particle size of the obtained pulverized product was 44.1 ⁇ m. The obtained pulverized product was subjected to IR measurement.
- Example A2-2 Except for changing the diisocyanate composition, the same operation as in Example A2-1 was performed to obtain a pulverized product (polyimide compound).
- the obtained pulverized product was subjected to IR measurement before and after heating in the same manner as in Example A2-1, and the following items were confirmed: -Before heating, it was confirmed that the polyimide compound was generated by the absorption derived from the imide group; absorption derived from the isocyanate group was recognized, and it was confirmed that the isocyanate group remained; -After heating, it was confirmed that while the absorption derived from the isocyanate group decreased, the absorption derived from the imide group increased, and the generation and molecular weight of the polyimide compound increased.
- Example A3-1 30 zirconia balls having a diameter of 10 mm were added to a pulverizing tank of a planetary mill (capacity: 0.25 L), and 652 parts by mass of terephthalic acid chloride and 348 parts by mass of paraphenylenediamine were added, for a total of 5.0 g.
- a cycle of pulverizing at 600 rpm for 5 minutes in the air and then cooling for 5 minutes was repeated 6 times to perform a mechanochemical reaction.
- the average particle diameter of the obtained pulverized product was 56.5 ⁇ m.
- the obtained pulverized product was subjected to IR measurement.
- Example A3-2 to Example A3-4 Except for changing the diamine composition, the same operation as in Example A3-1 was performed to obtain a polyamide compound.
- the obtained pulverized product was subjected to IR measurement before and after heating in the same manner as in Example A3-1, and the following items were confirmed: ⁇ Before heating, it was confirmed that the polyamide compound was generated by the absorption derived from the amide group; the absorption derived from the acid halide was recognized, and it was confirmed that the acid chloride remained. ; -After heating, it was confirmed that while the absorption derived from the acid halide decreased, the absorption derived from the amide group increased, and the production and the molecular weight of the polyamide compound increased.
- Example A3-5 To a pulverizing tank of a planetary mill (capacity: 0.25 L), 30 zirconia balls having a diameter of 10 mm were added, and 399 parts by mass of terephthalic acid and 601 parts by mass of diphenylmethane diisocyanate were added, for a total of 5.0 g. A cycle of pulverizing at 600 rpm for 5 minutes in the air and then cooling for 5 minutes was repeated 6 times to perform a mechanochemical reaction. The average particle size of the obtained pulverized product was 44.2 ⁇ m. The obtained pulverized product was subjected to IR measurement.
- Example A3-6 Except for changing the diisocyanate composition, the same operation as in Example A3-5 was performed to obtain a ground product (polyamide-based compound).
- the obtained pulverized product was subjected to IR measurement before and after heating in the same manner as in Example A3-1, and the following items were confirmed: -Before heating, it was confirmed that the polyamide compound was generated by the absorption derived from the amide group; absorption derived from the isocyanate group was observed, and it was confirmed that the isocyanate group remained; -After heating, it was confirmed that while the absorption derived from the isocyanate group was reduced, the absorption derived from the amide group was increased, and the generation and molecular weight of the polyamide compound were increased.
- Example A4-1 To a grinding tank of a planetary mill (capacity: 0.25 L), 30 zirconia balls having a diameter of 10 mm were added, and 513 parts by mass of trimellitic anhydride chloride and 487 parts by mass of 4,4′-diaminodiphenyl ether were added, for a total of 5.0 g. Was added. A cycle of pulverizing at 600 rpm for 5 minutes in the air and then cooling for 5 minutes was repeated 6 times to perform a mechanochemical reaction. The average particle size of the obtained pulverized product was 42.1 ⁇ m.
- the reaction rate between the amino group derived from 4,4′-diaminodiphenyl ether and the acid chloride and acid anhydride group derived from trimellitic anhydride chloride in the obtained pulverized product was measured by NMR. 0.3%. Therefore, the obtained pulverized material was heated under a nitrogen atmosphere at 100 ° C. for 1 hour, subsequently at 200 ° C. for 1 hour, and subsequently at 300 ° C. for 1 hour. The reaction rate of the obtained processed product was 95.7% as determined by NMR.
- Example A4-2 Except for changing the diamine composition, the same operation as in Example A4-1 was performed to obtain a polyamideimide-based compound.
- the reaction rate between the amino group derived from 3,4'-diaminodiphenyl ether and the acid chloride and acid anhydride group derived from trimellitic anhydride chloride in the obtained pulverized product was measured, and the reaction rate was 74.5. %Met. Therefore, the obtained pulverized material was heated under a nitrogen atmosphere at 100 ° C. for 1 hour, subsequently at 200 ° C. for 1 hour, and subsequently at 300 ° C. for 1 hour. The reaction rate of the obtained processed product was 94.3% as determined by NMR.
- Example A4-3 30 zirconia balls having a diameter of 10 mm were added to a crushing tank of a planetary mill (capacity: 0.25 L), and 434 parts by mass of trimellitic anhydride and 566 parts by mass of diphenylmethane diisocyanate were added, for a total of 5.0 g.
- the average particle size of the obtained pulverized product was 45.3 ⁇ m.
- the reaction rate between the isocyanate group derived from diphenylmethane diisocyanate and the carboxyl group and acid anhydride group derived from trimellitic anhydride in the obtained pulverized product was 36.2%. Therefore, the obtained pulverized material was heated under a nitrogen atmosphere at 100 ° C. for 1 hour, subsequently at 200 ° C. for 1 hour, and subsequently at 300 ° C. for 1 hour. The reaction rate of the obtained processed product was 92.1% as determined by NMR.
- Example A4-4 Except for changing the diisocyanate composition, the same operation as in Example A4-3 was performed to obtain a polyamideimide-based compound.
- the reaction rate of the isocyanate group derived from 1,5-isocyanatonaphthalene and the carboxyl group and acid anhydride group derived from trimellitic anhydride in the obtained pulverized product was measured, the reaction rate was 38.8%. Met. Therefore, the obtained pulverized material was heated under a nitrogen atmosphere at 100 ° C. for 1 hour, subsequently at 200 ° C. for 1 hour, and subsequently at 300 ° C. for 1 hour. The reaction rate of the obtained treated product was 92.3% as determined by NMR.
- Example A5-1 30 zirconia balls having a diameter of 10 mm were added to a grinding tank of a planetary mill (capacity: 0.25 L), and 471 parts by mass of terephthalic acid chloride and 529 parts by mass of 2,2′-bis (4-hydroxyphenyl) propane were added. 5.0 g were added. A cycle of pulverizing at 600 rpm for 5 minutes in the air and then cooling for 5 minutes was repeated 6 times to perform a mechanochemical reaction. The average particle diameter of the obtained pulverized product was 33.1 ⁇ m.
- the reaction rate between the hydroxyl group derived from 2,2'-bis (4-hydroxyphenyl) propane and the acid chloride derived from terephthalic acid chloride in the obtained ground product was measured, and the reaction rate was 70.1%. Met. Then, the obtained pulverized material was heated under a nitrogen atmosphere at 100 ° C. for 1 hour, and subsequently at 200 ° C. for 1 hour, 250 ° C. for 1 hour. The reaction rate of the obtained processed product was 94.5% as determined by NMR.
- Example A5-2 Except for changing the acid chloride composition, the same operation as in Example A5-1 was performed to obtain a polyamideimide-based compound.
- the reaction rate between the hydroxyl group derived from 2,2'-bis (4-hydroxyphenyl) propane and the acid chloride derived from isophthalic acid chloride in the obtained pulverized product was measured, the reaction rate was 71.3%. Met.
- the obtained pulverized material was heated under a nitrogen atmosphere at 100 ° C. for 1 hour, and subsequently at 200 ° C. for 1 hour, 250 ° C. for 1 hour.
- the reaction rate of the treated product was 93.8% as determined by NMR.
- Example A6-1 To a grinding tank of a planetary mill (capacity: 0.25 L), 30 zirconia balls having a diameter of 10 mm were added, and 556 parts by mass of diphenylmethane diisocyanate and 444 parts by mass of 4,4′-bisdiaminodiphenyl ether were added, for a total of 5.0 g. . A cycle of pulverizing at 600 rpm for 5 minutes in the air and then cooling for 5 minutes was repeated 6 times to perform a mechanochemical reaction. The average particle diameter of the obtained pulverized product was 53.4 ⁇ m. The obtained pulverized product was subjected to IR measurement.
- Example A6-2 Except for changing the diisocyanate and diamine compositions, the same operation as in Example 110 was performed to obtain a pulverized product (polyurea-based compound).
- the obtained pulverized product was subjected to IR measurement before and after heating in the same manner as in Example A6-1, and the following items were confirmed: ⁇ Before heating, it was confirmed that a polyurea-based compound was generated by absorption derived from a urea bond; absorption derived from an isocyanate group was observed, and it was confirmed that an isocyanate group remained; -After heating, it was confirmed that while the absorption derived from the isocyanate group decreased, the absorption derived from the urea bond increased, and the production and molecular weight of the polyurea compound increased.
- Example B1-1 Method for producing low molecular compound
- alumina balls were added to a pulverizing tank of a medium stirring mill (tank capacity: 5.0 L), and 657 parts by mass of trimellitic anhydride and 343 parts by mass of 4,4'-diaminodiphenyl ether were added.
- the mixture was pulverized under a nitrogen atmosphere at 504 rpm for 1 minute, and a mechanochemical reaction was performed to obtain a diimidedicarboxylic acid precursor powder.
- the reaction rate between the amino group derived from 4,4′-diaminodiphenyl ether and the acid anhydride group of trimellitic anhydride in the obtained ground product was 72.1%.
- Example B1-1 and Examples B-2 to B1-8 described below the reaction product in which both amino groups were amidated at about 6.98 ppm (doublet) in the 1 H-NMR spectrum was obtained. Derived peak, 7.00 ppm (doublet), 7.07 ppm (doublet), peak derived from a reaction product in which one amino group is amidated at around 7.35 ppm (doublet), 7.13 ppm (doublet) A peak derived from unreacted amine is detected at around 49 ppm (doublet).
- the obtained pulverized material was heated at 300 ° C. for 2 hours under a nitrogen stream, and the obtained powder was measured for a reaction rate of amino groups. As a result, it was 98.2%. Further, when IR measurement was performed on the obtained powder, absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1 , and it was confirmed that diimide dicarboxylic acid was generated.
- Example B1-2 to Example B1-13 A pulverized product (diimidedicarboxylic acid) was obtained by performing the same operation as in Example B1-1 except that the rotation speed of the apparatus or the pulverization time was changed.
- the obtained pulverized material was heated in the same manner as in Example B1-1 and then subjected to IR measurement, and the following items were confirmed: -After heating, absorption derived from the imide group was observed, and it was confirmed that diimidedicarboxylic acid was generated.
- Example B2-1 A total of 5.0 kg, 657 parts by mass of trimellitic anhydride and 343 parts by mass of 4,4'-diaminodiphenyl ether, were added to a pulverizing tank of a high-speed bottom stirring mixer (capacity: 20 L). Under a nitrogen atmosphere, the mixture was stirred at 362 rpm for 3 minutes, and a mechanochemical reaction was performed to obtain a diimidedicarboxylic acid precursor powder. The reaction rate between the amino group derived from 4,4'-diaminodiphenyl ether and the acid anhydride group of trimellitic anhydride in the obtained pulverized product was 41.9%. The obtained pulverized material was heated at 300 ° C.
- Example B2-2 to Example B2-10 Except for changing the rotation speed of the apparatus, the same operation as in Example B2-1 was performed to obtain a pulverized product (diimidedicarboxylic acid).
- the obtained pulverized product was heated in the same manner as in Example B2-1, and then subjected to IR measurement to confirm the following items: -After heating, absorption derived from the imide group was observed, and it was confirmed that diimidedicarboxylic acid was generated.
- Example B3-1 A total of 5.0 kg of 780 parts by mass of trimellitic anhydride and 220 parts by mass of p-phenylenediamine were added to a pulverizing tank of a high-speed bottom stirring mixer (capacity: 20 L). Under a nitrogen atmosphere, stirring was performed at 1452 rpm for 10 minutes, and a mechanochemical reaction was performed to obtain a diimidedicarboxylic acid precursor powder. The reaction rate between the amino group derived from p-phenylenediamine and the acid anhydride group of trimellitic anhydride in the obtained pulverized product was 57.5%. The obtained pulverized material was heated at 300 ° C.
- Example B3-2 to Example B3-15 Except for changing the diamine composition, the same operation as in Example B3-1 was performed to obtain a pulverized product (diimidedicarboxylic acid).
- the obtained pulverized product was heated in the same manner as in Example B3-1 and then subjected to IR measurement, and the following items were confirmed: -After heating, absorption derived from the imide group was observed, and it was confirmed that diimidedicarboxylic acid was generated.
- Example B3-16 738 parts by mass of trimellitic anhydride was added to a mixing tank equipped with a double helical stirring blade, and the mixture was stirred at 40 ° C.
- 262 parts by mass of m-xylylenediamine was added at a rate of 2.13 parts by mass / minute using a tube pump to obtain a mixed powder of two components.
- the reaction rate between the amino group derived from m-xylylenediamine in the resulting powder and the acid anhydride group of trimellitic anhydride was measured to be 30.8%.
- 5.0 kg of the above-mentioned mixed powder of the two components was added to a pulverizing tank of a high-speed bottom stirring mixer (capacity: 20 L).
- Example B3-17 to Example B3-18 Except for changing the diamine composition, the same operation as in Example 3-16 was performed to obtain a ground product (diimidedicarboxylic acid).
- the obtained pulverized product was heated in the same manner as in Example B3-16, and then subjected to IR measurement to confirm the following: -After heating, absorption derived from the imide group was observed, and it was confirmed that diimidedicarboxylic acid was generated.
- Example B4-1 A total of 100 g of 444 parts by mass of pyromellitic dianhydride and 556 parts by mass of 4-aminobenzoic acid was added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). Under an air atmosphere, the mixture was stirred at 14,000 rpm for 5 minutes, and a mechanochemical reaction was performed to obtain a diimidedicarboxylic acid precursor powder. The reaction rate between the amino group derived from 4-aminobenzoic acid and the acid anhydride group of pyromellitic dianhydride in the obtained pulverized product was 64.3%. The obtained pulverized material was heated at 300 ° C.
- Example B4-2 to Example B4-6 Except for changing the composition of the acid anhydride, the same operation as in Example B4-1 was performed to obtain a pulverized product (diimidedicarboxylic acid).
- the obtained pulverized product was heated in the same manner as in Example B4-1, and then subjected to IR measurement to confirm the following: -After heating, absorption derived from the imide group was observed, and it was confirmed that diimidedicarboxylic acid was generated.
- Example B5-1 A total of 100 g of 716 parts by mass of trimellitic anhydride and 284 parts by mass of 3,4-diaminobenzoic acid were added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). Under an air atmosphere, the mixture was stirred at 14,000 rpm for 5 minutes, and a mechanochemical reaction was performed to obtain a diimidetricarboxylic acid precursor powder. The reaction rate between the amino group derived from 3,4-diaminobenzoic acid and the acid anhydride group of trimellitic anhydride in the obtained ground product was 62.3%.
- the obtained pulverized material was heated at 300 ° C. for 2 hours under a nitrogen stream, and the obtained powder was measured for a reaction rate of amino groups. As a result, it was 98.2%. Further, when IR measurement was performed on the obtained powder, absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1 , and it was confirmed that diimide tricarboxylic acid was generated.
- Example B5-2 to Example B5-4 Except for changing the amine composition, the same operation as in Example B5-1 was performed to obtain a pulverized product (diimidetricarboxylic acid).
- the obtained pulverized product was heated in the same manner as in Example B5-1, and then subjected to IR measurement to confirm the following: -After heating, absorption derived from the imide group was observed, and it was confirmed that diimide tricarboxylic acid was generated.
- Example B6-1 A total of 100 g of 377 parts by mass of pyromellitic dianhydride and 623 parts by mass of 2-aminoterephthalic acid were added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). Under an air atmosphere, the mixture was stirred at 14,000 rpm for 5 minutes, and a mechanochemical reaction was performed to obtain a diimidetetracarboxylic acid precursor powder. The reaction rate between the amino group derived from 2-aminoterephthalic acid and the acid anhydride group of pyromellitic dianhydride in the obtained pulverized product was 63.3%.
- the obtained pulverized product was heated under a nitrogen stream at 300 ° C. for 2 hours, and the obtained powder was measured for a reaction rate of amino groups. As a result, it was 98.3%. Further, when IR measurement was performed on the obtained powder, absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1 , and it was confirmed that diimide tetracarboxylic acid was generated.
- Example B6-2 to Example B6-24 Except for changing the acid anhydride or amine composition, the same operation as in Example B6-1 was performed to obtain a pulverized product (diimidetetracarboxylic acid).
- the obtained pulverized material was heated in the same manner as in Example B6-1 and then subjected to IR measurement, and the following items were confirmed: -After heating, absorption derived from the imide group was observed, and it was confirmed that diimide tetracarboxylic acid was generated.
- Example B7-1 A total of 100 g of 584 parts by mass of trimellitic anhydride and 416 parts by mass of 2-aminobenzoic acid were added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). The mixture was stirred at 14,000 rpm for 5 minutes in an air atmosphere, and a mechanochemical reaction was performed to obtain a monoimidedicarboxylic acid precursor powder. The reaction rate between the amino group derived from 2-aminobenzoic acid and the acid anhydride group of trimellitic anhydride in the obtained pulverized product was 65.5%. The obtained pulverized material was heated at 300 ° C.
- Example B7-2 to Example B7-17 Except for changing the amine composition, the same operation as in Example B7-1 was performed to obtain a pulverized product (monoimidedicarboxylic acid). The obtained pulverized product was heated in the same manner as in Example B7-1, and then subjected to IR measurement to confirm the following items: -After heating, absorption derived from the imide group was observed, and it was confirmed that monoimide dicarboxylic acid was generated.
- Example B8-1 A total of 100 g, 515 parts by mass of trimellitic anhydride and 485 parts by mass of 2-aminoterephthalic acid, were added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). In an air atmosphere, the mixture was stirred at 14,000 rpm for 5 minutes, and a mechanochemical reaction was performed to obtain a monoimide tricarboxylic acid precursor powder. The reaction rate between the amino group derived from 2-aminoterephthalic acid and the acid anhydride group of trimellitic anhydride in the obtained pulverized product was 69.7%.
- the obtained pulverized material was heated at 300 ° C. for 2 hours under a nitrogen stream, and the obtained powder was measured for a reaction rate of amino groups. As a result, it was 99.4%. Further, when IR measurement was performed on the obtained powder, absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1 , and it was confirmed that monoimide tricarboxylic acid was generated.
- Example B8-2 to Example B8-4 Except for changing the amine composition, the same operation as in Example B8-1 was performed to obtain a ground product (monoimide tricarboxylic acid).
- the obtained pulverized material was heated in the same manner as in Example B8-1, and then subjected to IR measurement to confirm the following items: -After heating, absorption derived from the imide group was observed, and it was confirmed that monoimide tricarboxylic acid was generated.
- Example B9-1 Metal for producing amide group-containing imide compound (amide group-containing diimide dicarboxylic acid compound, amide group-containing monoimide dicarboxylic acid compound, amide group-containing monoimide tetracarboxylic acid compound))
- a pulverizing tank of a high-speed rotary pulverizer Capacity: 150 mL
- 628 parts by mass of trimellitic anhydride and 372 parts by mass of 4,4′-diaminobenzanilide containing an amide bond in the structure 100 g in total, were added.
- the mixture was stirred at 14,000 rpm for 5 minutes in an air atmosphere, and a mechanochemical reaction was performed to obtain an amide group-containing imide compound precursor powder (amide group-containing diimidedicarboxylic acid compound precursor powder).
- the reaction rate between the amino group derived from 4,4′-diaminobenzanilide and the acid anhydride group of trimellitic anhydride in the obtained ground product was 63.2%.
- the obtained pulverized material was heated at 300 ° C. for 2 hours under a nitrogen stream, and the obtained powder was measured for a reaction rate of amino groups. As a result, it was 98.4%. Further, an IR measurement was performed on the obtained powder.
- Example B9-2 A total of 100 g of 435 parts by mass of trimellitic anhydride chloride and 565 parts by mass of 2-aminobenzoic acid was added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). In an air atmosphere, the mixture was stirred at 14,000 rpm for 5 minutes, and a mechanochemical reaction was performed to obtain an amide group-containing imide compound precursor powder (amide group-containing monoimide dicarboxylic acid compound precursor powder). The reaction rate between the amino group derived from 2-aminobenzoic acid and the acid chloride group and acid anhydride group of trimellitic anhydride chloride in the obtained pulverized product was 71.3%.
- the obtained pulverized material was heated under a nitrogen stream at 300 ° C. for 2 hours, and the obtained powder was measured for a reaction rate of amino groups. As a result, it was 98.7%. Further, an IR measurement was performed on the obtained powder. As a result, an absorption derived from an amide group was observed around 1515 to 1650 cm ⁇ 1 , and an absorption derived from an imide group was observed near 1750 to 1800 cm ⁇ 1. It was confirmed that an imide-containing compound (an amide group-containing monoimide dicarboxylic acid-based compound) was produced.
- Example B9-3 to Example B9-6 An amide group-containing imide compound was obtained in the same manner as in Example B9-1, except for changing the amine composition.
- an amide group-containing imide compound precursor powder (an amide group-containing monoimide dicarboxylic acid compound precursor powder) was produced in the same manner as in Example B9-1. It was confirmed that a contained monoimide dicarboxylic acid compound was generated.
- an amide group-containing imide compound precursor powder (amide group-containing monoimide tetracarboxylic acid compound precursor powder) was obtained in the same manner as in Example B9-1.
- Example B9-3 to B9-6 the obtained pulverized material was heated in the same manner as in Example B9-1, and then subjected to IR measurement to confirm the following items: -After heating, absorption derived from the amide group and the imide group was observed, and it was confirmed that the predetermined amide group-containing imide compound was generated.
- Example B10-1 A total of 100 g of 778 parts by mass of trimellitic anhydride and 222 parts by mass of 2-aminophenol were added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). The mixture was stirred at 14,000 rpm for 5 minutes in an air atmosphere to perform a mechanochemical reaction, thereby obtaining an ester group-containing imide compound precursor powder (ester group-containing monoimide tricarboxylic acid compound precursor powder).
- the reaction rate between the amino group and hydroxyl group derived from 2-aminophenol in the obtained pulverized product and the acid anhydride group of trimellitic anhydride was measured and found to be 43.3%.
- the obtained pulverized material was heated at 200 ° C. for 1 hour and further heated to 270 ° C. for 1 hour under a nitrogen stream, and heated for 1 hour.
- the obtained powder was measured for the reaction rate of amino groups and hydroxyl groups. 0.3%. Further, when IR measurement was performed on the obtained powder, absorption derived from an ester group was observed around 1715 to 1730 cm ⁇ 1 and absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1. It was confirmed that an imide-containing compound (ester group-containing monoimide tricarboxylic acid-based compound) was produced.
- Example B10-2 to Example B10-16 Except for changing the amine composition, the same operation as in Example B10-1 was carried out to obtain an ester group-containing imide compound (ester group-containing monoimide tricarboxylic acid compound).
- an ester group-containing monoimide tricarboxylic acid-based compound precursor powder (ester group-containing monoimide tricarboxylic acid-based compound precursor powder) was passed through the same method as in Example B10-1. It was confirmed that a compound was formed.
- the obtained pulverized material was heated in the same manner as in Example B10-1, and then subjected to IR measurement to confirm the following items: -After heating, absorption derived from the ester group and the imide group was observed, and it was confirmed that a predetermined ester group-containing imide compound was generated.
- -After heating absorption derived from the ester group and the imide group was observed, and it was confirmed that a predetermined ester group-containing imide compound was generated.
- NMR measurement (before heating) of Example B10-3 it is derived from a reaction product in which an amino group is amidated at around 6.72 ppm (doublet) and 7.44 ppm (doublet) in the 1 H-NMR spectrum. A peak derived from unreacted amine is detected at around 6.44 ppm (doublet).
- Example B11-1 A total of 100 g of 501 parts by weight of pyromellitic dianhydride and 499 parts by weight of 3-aminophenol was added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). The mixture was stirred at 14,000 rpm for 5 minutes in an air atmosphere, and a mechanochemical reaction was performed to obtain a hydroxyl group-containing imide compound precursor powder (diimide diphenol compound precursor powder).
- the reaction rate between the amino group derived from 3-aminophenol and the acid anhydride group of pyromellitic dianhydride in the obtained pulverized product was 66.4%.
- the obtained pulverized material was heated at 200 ° C. for 1 hour and further at 270 ° C. for 1 hour under a nitrogen stream, and heated for 1 hour.
- the obtained powder was measured for the amino group reaction rate. Met. Further, a peak derived from a hydroxyl group was detected at about 5.0 to 5.5 ppm in the 1 H-NMR spectrum.
- Example B11-2 to Example B11-24 A hydroxyl group-containing imide compound (a diimide dihydroxy compound (particularly a diimide diphenol compound)) was obtained in the same manner as in Example B11-1, except that the acid anhydride composition and the amine composition were changed. In this example, it was confirmed that the diimidediphenol-based compound was produced via the hydroxyl group-containing imide-based compound precursor powder (diimidediphenol-based compound precursor powder) in the same manner as in Example B11-1. confirmed.
- the obtained pulverized material was heated in the same manner as in Example B11-1, and then subjected to 1 H-NMR measurement and IR measurement to confirm the following items: After heating, a peak derived from a hydroxyl group was observed in the 1 H-NMR spectrum. -After the heating, absorption derived from the imide group was observed in the IR spectrum, and it was confirmed that a predetermined hydroxyl group-containing imide compound was generated.
- Example B12-1 A total of 100 g of 426 parts by mass of terephthalic acid chloride and 574 parts by mass of 3-aminobenzoic acid was added to a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL). Under an air atmosphere, the mixture was stirred at 14,000 rpm for 5 minutes, and a mechanochemical reaction was carried out to obtain an amide group-containing carboxylic acid compound powder (a diamide dicarboxylic acid compound powder).
- the reaction rate between the amino group derived from 2-aminobenzoic acid and the acid chloride group of terephthalic acid chloride in the obtained pulverized product was 70.1%.
- the obtained pulverized material was heated under a stream of nitrogen at 100 ° C. for 1 hour, then at 150 ° C. for 1 hour, at 250 ° C. for 1 hour.
- the conversion of amino groups was determined for the obtained powder, it was 99.0%.
- IR measurement was performed on the obtained powder absorption derived from an amide group was observed around 1515 to 1650 cm ⁇ 1 , indicating that an amide group-containing carboxylic acid compound (diamidodicarboxylic acid compound) was formed. It could be confirmed.
- Example B12-2 to Example B12-10 An amide group-containing carboxylic acid compound (a diamide dicarboxylic acid compound or a diamide tetracarboxylic acid compound) was obtained in the same manner as in Example B12-1, except that the acid chloride composition and the amine composition were changed.
- the amide group-containing carboxylic acid-based compound powder (diamidodicarboxylic acid-based compound powder) was passed through the diamide by the same method as in Example B12-1. It was confirmed that a dicarboxylic acid compound was formed.
- Example B12-4 to B12-5 and B12-9 to B12-10 the amide group-containing carboxylic acid compound powder (diamidetetracarboxylic acid compound powder) was obtained in the same manner as in Example B12-1. It was confirmed that a diamide tetracarboxylic acid compound was generated.
- the obtained pulverized material was heated in the same manner as in Example B12-1, and then subjected to IR measurement to confirm the following items: -After heating, absorption derived from the amide group was observed, and it was confirmed that a predetermined amide group-containing carboxylic acid-based compound was generated.
- Example B13-1 A total of 100 g of 424 parts by mass of terephthalic acid chloride and 576 parts by mass of 4-hydroxybenzoic acid was added to a grinding tank of a high-speed rotary grinder (capacity: 150 mL). The mixture was stirred at 14,000 rpm for 5 minutes in an air atmosphere, and a mechanochemical reaction was performed to obtain an ester group-containing carboxylic acid compound powder (diester dicarboxylic acid compound powder).
- the reaction rate between the hydroxyl group derived from 4-hydroxybenzoic acid and the acid chloride group of terephthalic acid chloride in the obtained pulverized product was 66.2%.
- the obtained pulverized material was heated under a stream of nitrogen at 100 ° C. for 1 hour, subsequently at 150 ° C. for 1 hour, and at 250 ° C. for 1 hour.
- the obtained powder was found to have a hydroxyl group reaction rate of 97.8%.
- IR measurement was performed on the obtained powder, absorption derived from an ester group was observed around 1715 to 1730 cm ⁇ 1 , indicating that an ester group-containing carboxylic acid compound (a diester dicarboxylic acid compound) was formed. It could be confirmed.
- Example B13-2 to Example B13-22 An ester group-containing carboxylic acid compound (a diester dicarboxylic acid compound or a diester tetracarboxylic acid compound) was obtained in the same manner as in Example B13-1, except that the acid chloride composition and the hydroxy composition were changed.
- the diester was obtained through the ester group-containing carboxylic acid compound powder (diester dicarboxylic acid compound powder) in the same manner as in Example B13-1. It was confirmed that a dicarboxylic acid compound was formed.
- Examples B13-10 to B13-11 and B13-21 to B13-22 a carboxylic acid-based compound powder (diester tetracarboxylic acid-based compound powder) containing an ester group was obtained in the same manner as in Example B13-1. It was confirmed that a diester tetracarboxylic acid compound was generated.
- the obtained pulverized material was heated in the same manner as in Example B13-1, and then subjected to IR measurement to confirm the following items: -After heating, absorption derived from the ester group was observed, and it was confirmed that a predetermined ester group-containing carboxylic acid-based compound was generated.
- Example B14-1 To a pulverizing tank of a high-speed rotary pulverizer (capacity: 150 mL), 821 parts by mass of 4-phenylethynylphthalic anhydride and 179 parts by mass of p-phenylenediamine, 100 g in total, were added. The mixture was stirred at 14,000 rpm for 5 minutes in an air atmosphere, and a mechanochemical reaction was performed to obtain a curable diimide-based compound precursor powder.
- the reaction rate between the amino group derived from p-phenylenediamine and the acid anhydride group of 4-phenylethynylphthalic anhydride in the obtained pulverized product was measured and found to be 64.3%.
- the obtained pulverized product was heated under a nitrogen stream at 170 ° C. for 1 hour, followed by 210 ° C. for 1 hour, 270 ° C. for 1 hour.
- An IR measurement was performed on the obtained powder.
- Example B14-2 to Example B14-8 A curable diimide compound was obtained in the same manner as in Example B14-1, except that the acid anhydride composition and the amine composition were changed. In Examples B14-2 to B14-8, it was confirmed that the curable diimide-based compound was generated via the curable diimide-based compound precursor powder in the same manner as in Example B14-1. In each example, the obtained pulverized material was heated in the same manner as in Example B14-1, and then subjected to IR measurement to confirm the following items: -After heating, absorption derived from the unsaturated bond and the imide group was observed, and it was confirmed that a curable diimide compound was generated.
- Example C Production method of polymer compound (two-step mechanochemical method)] (Method for producing polyamic acid-based compound (polyimide resin precursor and polyimide resin))
- Example C1 First, the first stage mechanochemical treatment was performed. Specifically, 521 parts by mass of pyromellitic dianhydride and 479 parts by mass of 4,4'-diaminodiphenyl ether, a total of 5.0 kg, were added to a high-speed bottom stirring mixer (capacity: 20 L). The first-stage mechanochemical treatment was performed by performing pulverization at 5600 rpm for 3 minutes under a nitrogen atmosphere to obtain a polyimide resin precursor powder.
- a second stage mechanochemical treatment was performed. Specifically, 1.0 kg of the polyimide precursor powder obtained by the first stage mechanochemical treatment and 6.0 kg of alumina balls were added into a medium stirring type mill tank (capacity: 5.0 L). The second stage mechanochemical treatment was performed by pulverizing under a nitrogen atmosphere at 504 rpm for 30 minutes to obtain a polyimide resin precursor powder. The reaction rate between the amino group derived from 4,4′-diaminodiphenyl ether and the acid anhydride group of pyromellitic anhydride in the final ground product was 90.1%, and the average degree of polymerization was 10%. 0.3. The average particle size of the obtained pulverized product was 14.2 ⁇ m.
- Examples C2 to C4 A polyimide resin precursor powder was obtained by performing the same two-step mechanochemical operation as in Example C1, except for changing the acid component composition and the mixing ratio.
- the reaction rate, average polymerization degree, and average particle size of the obtained pulverized product were measured for the reaction rate between the amino group derived from 4,4'-diaminodiphenyl ether and the acid anhydride group of each acid component in the final pulverized product. .
- IR measurement was performed on the obtained powders of the respective examples, imidation did not proceed, and the imidization ratio was 0.0%.
- Example A1-1 In the NMR measurement of each Example, as in Example A1-1, in the 1 H-NMR spectrum, a peak derived from a reaction product in which both amino groups were amidated, and a reaction in which one amino group was amidated. And a peak derived from unreacted amine were respectively detected.
- the obtained pulverized product of each example was heated under a nitrogen stream at 300 ° C. for 2 hours and subjected to IR measurement. As a result, absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1 , and the polyimide resin was generated.
- Example D1 Production method of low molecular compound (two-step mechanochemical method)] (Production method of diimide dicarboxylic acid compound)
- Example D1 First, the first stage mechanochemical treatment was performed. More specifically, 657 parts by mass of trimellitic anhydride and 343 parts by mass of 4,4'-diaminodiphenyl ether were added to a high-speed bottom stirring mixer (capacity: 20 L), for a total of 5.0 kg. The first stage mechanochemical treatment was performed by pulverizing at 5600 rpm for 3 minutes in a nitrogen atmosphere to obtain a diimidedicarboxylic acid precursor powder. Next, a second stage mechanochemical treatment was performed.
- 1.0 kg of the diimidedicarboxylic acid precursor powder obtained by the first stage mechanochemical treatment and 6.0 kg of alumina balls were added to a medium stirring type mill tank (capacity: 5.0 L).
- the second stage mechanochemical treatment was performed by pulverizing under a nitrogen atmosphere at 504 rpm for 30 minutes to obtain a diimidedicarboxylic acid precursor powder.
- the reaction rate between the amino group derived from 4,4'-diaminodiphenyl ether and the acid anhydride group of trimellitic anhydride in the final ground product was 92.3%.
- the average particle diameter of the obtained pulverized product was 13.3 ⁇ m.
- the obtained powder was subjected to IR measurement, imidization did not proceed, and the imidization ratio was 0.0%.
- the obtained pulverized product was heated under a nitrogen stream at 300 ° C. for 2 hours, and the obtained powder was measured for a reaction rate of amino groups. As a result, it was 99.1%. Further, when IR measurement was performed on the obtained powder, absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1 , and it was confirmed that diimide dicarboxylic acid was generated.
- Example D2 Method for producing ester group-containing imide compound (ester group-containing monoimide tricarboxylic acid compound)
- Example D2 First, the first stage mechanochemical treatment was performed. Specifically, 778 parts by mass of trimellitic anhydride and 222 parts by mass of 4-aminophenol, a total of 5.0 kg, were added to a high-speed bottom stirring mixer (capacity: 20 L). The first stage mechanochemical treatment was performed by pulverizing at 5600 rpm for 3 minutes in a nitrogen atmosphere to obtain an ester group-containing imide compound precursor powder (ester group-containing monoimide tricarboxylic acid compound precursor powder). . Next, a second stage mechanochemical treatment was performed.
- an ester group-containing imide compound precursor powder obtained by the first stage mechanochemical treatment and 6.0 kg of alumina balls were added into a medium stirring type mill tank (capacity: 5.0 L).
- a second stage mechanochemical treatment was performed to obtain an ester group-containing imide compound precursor powder.
- the reaction rate between the amino group and hydroxyl group derived from 4-aminophenol in the final ground product and the acid anhydride group of trimellitic anhydride was measured to be 87.5%.
- the average particle diameter of the obtained pulverized product was 15.6 ⁇ m.
- the obtained powder was subjected to IR measurement, imidization did not proceed, and the imidization ratio was 0.0%.
- the obtained pulverized material was heated at 200 ° C. for 1 hour and further heated to 270 ° C. for 1 hour under a nitrogen stream, and heated for 1 hour. 0.7%. Further, when IR measurement was performed on the obtained powder, absorption derived from an ester group was observed around 1715 to 1730 cm ⁇ 1 and absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1. It was confirmed that an imide-containing compound (ester group-containing monoimide tricarboxylic acid-based compound) was produced.
- Example D3 Method for producing hydroxyl group-containing imide compound (diimide dihydroxy compound (especially diimide diphenol compound))
- Example D3 First, the first stage mechanochemical treatment was performed. Specifically, 597 parts by mass of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 403 parts by mass of 4-aminophenol, a total of 5.0 kg, were added to a high-speed bottom stirring mixer (capacity: 20 L). did. The first-stage mechanochemical treatment was performed by pulverizing at 5600 rpm for 3 minutes in a nitrogen atmosphere to obtain a hydroxyl group-containing imide compound precursor powder (diimide diphenol compound precursor powder).
- a second stage mechanochemical treatment was performed. Specifically, 1.0 kg of a hydroxyl group-containing imide-based compound precursor powder (diimide diphenol-based compound precursor powder) obtained by the first-stage mechanochemical treatment in a medium-stirred mill tank (capacity: 5.0 L). And 6.0 kg of alumina balls were added. A second stage mechanochemical treatment was performed by pulverizing under a nitrogen atmosphere at 504 rpm for 30 minutes to obtain a hydroxyl group-containing imide compound precursor powder (diimide diphenol compound precursor powder).
- the reaction rate between amino groups derived from 4-aminophenol and acid anhydride groups of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride in the final pulverized product was measured. 4%.
- the average particle diameter of the obtained pulverized product was 12.5 ⁇ m.
- imidization did not proceed, and the imidization ratio was 0.0%.
- the obtained pulverized material was heated at 200 ° C. for 1 hour and further heated to 270 ° C. for 1 hour under a nitrogen gas stream, and heated for 1 hour. Met.
- NMR analysis of the obtained powder showed that a peak derived from a hydroxyl group was detected at about 5.0 to 5.5 ppm in the 1 H-NMR spectrum. Further, when IR measurement was performed on the obtained powder, absorption derived from an imide group was observed around 1750 to 1800 cm ⁇ 1 , indicating that a hydroxyl group-containing imide compound (diimide diphenol compound) was formed. Was confirmed.
- the method for producing an organic compound of the present invention can produce an organic compound without using a solvent, and thus is useful in the field of producing an organic compound from the viewpoint of environmental load, working environment, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pyrrole Compounds (AREA)
- Polyurethanes Or Polyureas (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
Abstract
本発明は、溶媒を使用することなく、官能基同士の反応を行う、有機化合物の製造方法を提供する。本発明は、メカノケミカル効果により官能基同士の反応を行うことを特徴とする有機化合物の製造方法に関する。
Description
本発明は、メカノケミカル効果を利用した有機化合物の製造方法に関するものである。
ポリアミド、ポリエステル、ポリイミド等の逐次重合により得られる高分子化合物は、広く工業的に用いられている。これらの高分子化合物は、様々な方法で製造されているが、融点やガラス転移温度が高く、溶融重合が困難であるものは、有機溶媒中で重合することが一般的である。しかし、溶液中で反応を行う場合、得られる化合物を単離する際に精製を行う必要があり、工程が煩雑になるうえにコストがかかる。また、その工程で化合物の収率が低下してしまうといったデメリットもある。さらに、近年、環境負荷の低減といった観点から、溶媒を用いないクリーンなプロセスへの要求が高まっている。そこで、溶媒を使用することなく、煩雑な精製工程なども含まず、収率よく目的物が得られる高分子化合物の製造プロセスの開発が求められていた。
近年、有機溶媒を使用しない化合物の合成方法として、メカノケミカル効果を利用した方法が注目されている。メカノケミカル効果とは、固体または粒子に種々の機械的エネルギー(圧縮、せん断、衝撃、摩砕等)を与えると、それらの物質が活性になり、物理化学的性質を変化させるものである。ここで起こる効果を総称してメカノケミカル効果といい無機物、有機物、金属などの多くの物質で確認されている。
中でも、無機化合物や金属同士の反応、無機化合物または金属と有機物との反応においては、無機化合物や金属を溶かす溶媒が限られることや、熔融加工する際に莫大なエネルギーを消費するといった制約から、メカノケミカル効果を積極的に活用して反応を行う方法が数多く提案されている。
一方で、高分子化合物の重合反応についてメカノケミカル効果を用いた製造方法としては、例えば、非特許文献1~4のような方法が開示されている。しかし、ラジカルまたはイオンによる連鎖重合やリビング重合により製造される高分子化合物に限られていた。
他方で、高分子化合物中の官能基を他の化合物により修飾する方法が開示されており、フェノール樹脂成形材料の硬化物の粉砕物と特定のフェノール化合物について、メカノケミカル反応により、それらの成分の粒子間を表面融合させる技術(特許文献1)、およびセルロースとアシル化剤をメカノケミカル反応させてアシル化セルロースを製造する技術(特許文献2)が知られている。
薬学雑誌、120(12)、p1337(2000)
高分子学会予稿集、49(2)、p181(2000)
Polymer-Plastic Technology and Engineering、40(2)、p183(2001)
高分子材料における反応性プロセシング技術の最近の動向:微細構造を制御、ナノレベルでの研究開発が進む(住ベテクノリサーチ、2003.3)
本発明は、溶媒を使用することなく、官能基同士の反応を行う、有機化合物の製造方法を提供することを目的とする。
本発明は、メカノケミカル効果により官能基同士の反応を行うことを特徴とする有機化合物の製造方法に関する。
本発明者らは、上記課題について鋭意検討を行った結果、反応に用いる原料化合物を粉砕する際に生じる機械的エネルギーを利用することによりメカノケミカル効果を発現させることで前記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明の要旨は以下の通りである。
<1> メカノケミカル効果により官能基同士の反応を行うことを特徴とする有機化合物の製造方法。
<2> 前記反応が、縮合反応、付加反応またはこれらの複合反応である、<1>に記載の有機化合物の製造方法。
<3> 前記反応が、カルボキシル基およびそのハロゲン化物、酸無水物基、アミノ基、イソシアネート基、ならびにヒドロキシル基からなる群から選択される2つの官能基の反応である、<1>または<2>に記載の有機化合物の製造方法。
<4> 前記反応が、以下の反応からなる群から選択される1種以上の反応である、<1>~<3>のいずれかに記載の有機化合物の製造方法:
(A)酸無水物基と、アミノ基との反応により、(a1)アミド基およびカルボキシル基、(a2)イミド基、(a3)イソイミド基または(a4)これらの混合基が生成する反応;
(B)酸無水物基と、イソシアネート基との反応により、イミド基が生成する反応;
(C)カルボキシル基またはそのハロゲン化物と、アミノ基またはイソシアネート基との反応により、アミド基が生成する反応;
(D)カルボキシル基またはそのハロゲン化物と、ヒドロキシル基との反応により、エステル基が生成する反応;
(E)イソシアネート基と、アミノ基との反応により、ウレア基が生成する反応;
(F)イソシアネート基と、ヒドロキシル基との反応により、ウレタン基が生成する反応;
(G)酸無水物基と、ヒドロキシル基との反応により、エステル基およびカルボキシル基が生成する反応。
<5> 前記官能基同士の反応は2つの原料化合物分子間で起こる、<1>~<4>のいずれかに記載の有機化合物の製造方法。
<6> 前記原料化合物のそれぞれが分子量2000以下の化合物である、<5>に記載の有機化合物の製造方法。
<7> 前記反応を加熱により促進させる、<1>~<6>のいずれかに記載の有機化合物の製造方法。
<8> 前記有機化合物が、繰り返し単位を含有する高分子化合物である、<1>~<7>のいずれかに記載の有機化合物の製造方法。
<9> 前記反応が、逐次重合反応、縮合重合反応、重付加反応からなる群から選択される1つ以上の反応に属する、<8>に記載の有機化合物の製造方法。
<10> 前記高分子化合物が、ポリアミド酸系化合物、ポリイミド系化合物、ポリアミド系化合物、ポリアミドイミド系化合物、ポリウレタン系化合物、ポリウレア系化合物、ポリエステル系化合物である、<8>または<9>に記載の有機化合物の製造方法。
<11> 前記反応を、末端封鎖剤の存在下で行う、<8>~<10>のいずれかに記載の有機化合物の製造方法。
<12> 前記反応として、テトラカルボン酸二無水物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミド酸系化合物、ポリイミド系化合物またはこれらの混合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<13> 前記反応として、ジカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミド系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<14> 前記反応として、無水トリカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミドイミド系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<15> 前記反応として、ジカルボン酸成分またはその酸ハロゲン化物成分とポリヒドロキシ成分との反応により、前記有機化合物として、ポリエステル系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<16> 前記反応として、ジイソシアネート成分とジアミン成分との反応により、前記有機化合物として、ポリウレア系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<17> 前記反応として、ジイソシアネート成分とポリヒドロキシ成分との反応により、前記有機化合物として、ポリウレタン系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<18> 前記各成分は、一方の成分が他方の成分に対して0.8~1.2倍モル量となるような量で使用される、<12>~<17>のいずれかに記載の有機化合物の製造方法。
<19> 前記有機化合物が、繰り返し単位を含有しない低分子化合物である、<1>~<7>のいずれかに記載の有機化合物の製造方法。
<20> 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミン成分との反応により、前記有機化合物として、ジイミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<21> 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、ジイミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<22> 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミノモノカルボン酸成分との反応により、前記有機化合物として、ジイミドトリカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<23> 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、ジイミドテトラカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<24> 前記反応として、無水トリカルボン酸成分と該成分に対して0.5~5.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、モノイミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<25> 前記反応として、無水トリカルボン酸成分と該成分に対して0.5~5.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、モノイミドトリカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<26> 前記ジアミン成分としてアミド基を含有するジアミン成分を用いることにより、アミド基含有ジイミドジカルボン酸系化合物を製造する、<20>に記載の有機化合物の製造方法。
<27> 前記反応として、無水トリカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、アミド基含有モノイミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<28> 前記反応として、無水トリカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、アミド基含有モノイミドテトラカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<29> 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のモノヒドロキシモノアミン成分との反応により、前記有機化合物として、エステル基含有モノイミドトリカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<30> 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシモノアミン成分との反応により、前記有機化合物として、ジイミドジヒドロキシ系化合物を製造する、<19>に記載の有機化合物の製造方法。
<31> 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、ジアミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<32> 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、ジアミドテトラカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<33> 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシモノカルボン酸成分との反応により、前記有機化合物として、ジエステルジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<34> 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシジカルボン酸成分との反応により、前記有機化合物として、ジエステルテトラカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<35> 前記反応として、不飽和無水ジカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミン成分との反応により、前記有機化合物として、硬化性イミド系化合物を製造する、<19>に記載の有機化合物の製造方法。
<36> 前記反応を触媒の存在下で行う、<1>~<35>のいずれかに記載の有機化合物の製造方法。
<37> 前記反応を助剤の存在下で行う、<1>~<36>のいずれかに記載の有機化合物の製造方法。
<38> メカノケミカル効果による反応後に加熱処理を行うことで反応率を上げる、<1>~<37>のいずれかに記載の有機化合物の製造方法。
<1> メカノケミカル効果により官能基同士の反応を行うことを特徴とする有機化合物の製造方法。
<2> 前記反応が、縮合反応、付加反応またはこれらの複合反応である、<1>に記載の有機化合物の製造方法。
<3> 前記反応が、カルボキシル基およびそのハロゲン化物、酸無水物基、アミノ基、イソシアネート基、ならびにヒドロキシル基からなる群から選択される2つの官能基の反応である、<1>または<2>に記載の有機化合物の製造方法。
<4> 前記反応が、以下の反応からなる群から選択される1種以上の反応である、<1>~<3>のいずれかに記載の有機化合物の製造方法:
(A)酸無水物基と、アミノ基との反応により、(a1)アミド基およびカルボキシル基、(a2)イミド基、(a3)イソイミド基または(a4)これらの混合基が生成する反応;
(B)酸無水物基と、イソシアネート基との反応により、イミド基が生成する反応;
(C)カルボキシル基またはそのハロゲン化物と、アミノ基またはイソシアネート基との反応により、アミド基が生成する反応;
(D)カルボキシル基またはそのハロゲン化物と、ヒドロキシル基との反応により、エステル基が生成する反応;
(E)イソシアネート基と、アミノ基との反応により、ウレア基が生成する反応;
(F)イソシアネート基と、ヒドロキシル基との反応により、ウレタン基が生成する反応;
(G)酸無水物基と、ヒドロキシル基との反応により、エステル基およびカルボキシル基が生成する反応。
<5> 前記官能基同士の反応は2つの原料化合物分子間で起こる、<1>~<4>のいずれかに記載の有機化合物の製造方法。
<6> 前記原料化合物のそれぞれが分子量2000以下の化合物である、<5>に記載の有機化合物の製造方法。
<7> 前記反応を加熱により促進させる、<1>~<6>のいずれかに記載の有機化合物の製造方法。
<8> 前記有機化合物が、繰り返し単位を含有する高分子化合物である、<1>~<7>のいずれかに記載の有機化合物の製造方法。
<9> 前記反応が、逐次重合反応、縮合重合反応、重付加反応からなる群から選択される1つ以上の反応に属する、<8>に記載の有機化合物の製造方法。
<10> 前記高分子化合物が、ポリアミド酸系化合物、ポリイミド系化合物、ポリアミド系化合物、ポリアミドイミド系化合物、ポリウレタン系化合物、ポリウレア系化合物、ポリエステル系化合物である、<8>または<9>に記載の有機化合物の製造方法。
<11> 前記反応を、末端封鎖剤の存在下で行う、<8>~<10>のいずれかに記載の有機化合物の製造方法。
<12> 前記反応として、テトラカルボン酸二無水物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミド酸系化合物、ポリイミド系化合物またはこれらの混合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<13> 前記反応として、ジカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミド系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<14> 前記反応として、無水トリカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミドイミド系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<15> 前記反応として、ジカルボン酸成分またはその酸ハロゲン化物成分とポリヒドロキシ成分との反応により、前記有機化合物として、ポリエステル系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<16> 前記反応として、ジイソシアネート成分とジアミン成分との反応により、前記有機化合物として、ポリウレア系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<17> 前記反応として、ジイソシアネート成分とポリヒドロキシ成分との反応により、前記有機化合物として、ポリウレタン系化合物を製造する、<1>~<11>のいずれかに記載の有機化合物の製造方法。
<18> 前記各成分は、一方の成分が他方の成分に対して0.8~1.2倍モル量となるような量で使用される、<12>~<17>のいずれかに記載の有機化合物の製造方法。
<19> 前記有機化合物が、繰り返し単位を含有しない低分子化合物である、<1>~<7>のいずれかに記載の有機化合物の製造方法。
<20> 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミン成分との反応により、前記有機化合物として、ジイミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<21> 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、ジイミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<22> 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミノモノカルボン酸成分との反応により、前記有機化合物として、ジイミドトリカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<23> 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、ジイミドテトラカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<24> 前記反応として、無水トリカルボン酸成分と該成分に対して0.5~5.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、モノイミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<25> 前記反応として、無水トリカルボン酸成分と該成分に対して0.5~5.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、モノイミドトリカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<26> 前記ジアミン成分としてアミド基を含有するジアミン成分を用いることにより、アミド基含有ジイミドジカルボン酸系化合物を製造する、<20>に記載の有機化合物の製造方法。
<27> 前記反応として、無水トリカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、アミド基含有モノイミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<28> 前記反応として、無水トリカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、アミド基含有モノイミドテトラカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<29> 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のモノヒドロキシモノアミン成分との反応により、前記有機化合物として、エステル基含有モノイミドトリカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<30> 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシモノアミン成分との反応により、前記有機化合物として、ジイミドジヒドロキシ系化合物を製造する、<19>に記載の有機化合物の製造方法。
<31> 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、ジアミドジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<32> 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、ジアミドテトラカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<33> 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシモノカルボン酸成分との反応により、前記有機化合物として、ジエステルジカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<34> 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシジカルボン酸成分との反応により、前記有機化合物として、ジエステルテトラカルボン酸系化合物を製造する、<19>に記載の有機化合物の製造方法。
<35> 前記反応として、不飽和無水ジカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミン成分との反応により、前記有機化合物として、硬化性イミド系化合物を製造する、<19>に記載の有機化合物の製造方法。
<36> 前記反応を触媒の存在下で行う、<1>~<35>のいずれかに記載の有機化合物の製造方法。
<37> 前記反応を助剤の存在下で行う、<1>~<36>のいずれかに記載の有機化合物の製造方法。
<38> メカノケミカル効果による反応後に加熱処理を行うことで反応率を上げる、<1>~<37>のいずれかに記載の有機化合物の製造方法。
本発明によれば、溶媒を使用することなく、低分子化合物から高分子化合物までの有機化合物を製造することができる。
<有機化合物の製造方法>
本発明の製造方法は、反応に用いる原料化合物を粉砕する際に生じる機械的エネルギーを利用することによりメカノケミカル効果を発現させることで有機化合物を得る方法である。
本発明の製造方法は、反応に用いる原料化合物を粉砕する際に生じる機械的エネルギーを利用することによりメカノケミカル効果を発現させることで有機化合物を得る方法である。
本発明においてメカノケミカル効果とは、反応環境下において固体状態にある原料化合物に機械的エネルギー(圧縮力、せん断力、衝撃力、摩砕力等)を付与することにより、当該原料化合物を粉砕し、形成される粉砕界面を活性化させる効果(または現象)のことである。これにより、官能基同士の反応が起こる。官能基同士の反応は通常、2つ以上の原料化合物分子間で起こる。例えば、官能基同士の反応は化学構造の異なる2つの原料化合物分子間で起こってもよいし、または化学構造の同じ2つの原料化合物分子間で起こってもよい。官能基同士の反応は限定的な1組の2つの原料化合物分子間のみで起こるわけではなく、通常は他の組の2つの原料化合物分子間でも起こる。官能基同士の反応により生成した化合物分子と、原料化合物分子との間で、新たに官能基同士の反応が起こってもよい。官能基同士の反応は通常、化学反応であり、これにより、2つの原料化合物分子間で、各原料化合物分子が有する官能基により、結合基(特に共有結合)が形成されて、別の1つの化合物分子が生成する。
反応環境とは反応のために原料化合物が置かれる環境、すなわち機械的エネルギーが付与される環境という意味であり、例えば、装置内の環境であってもよい。反応環境下において固体状態にあるとは、機械的エネルギーが付与される環境下(例えば、装置内の温度および圧力下)において固体状態にあるという意味である。反応環境下において固体状態にある原料化合物は通常、常温(25℃)および常圧(101.325kPa)下で固体状態であればよい。反応環境下において固体状態にある原料化合物は、機械的エネルギーの付与の開始時において、固体状態にあればよい。本発明は、反応環境下において固体状態にある原料化合物が、機械的エネルギーの付与の継続に伴う温度および/または圧力等の上昇により、反応中(または処理中)に液体状態(例えば、溶融状態)に変化することを妨げるものではないが、反応率の向上の観点から、反応中(または処理中)、継続的に固体状態にあることが好ましい。
メカノケミカル効果の詳細は明らかではないが、以下の原理に従うものと考えられる。1種以上の固体状態の原料化合物に機械的エネルギーを付与して粉砕が起こると、当該機械的エネルギーの吸収により粉砕界面が活性化される。このような粉砕界面の表面活性エネルギーにより、2つの原料化合物分子間で化学反応が起こるものと考えられる。粉砕とは、原料化合物粒子への機械的エネルギーの付与により、当該粒子が当該機械的エネルギーを吸収して、当該粒子に亀裂が生じ、表面が更新されることをいう。表面が更新されるとは、新たな表面として粉砕界面が形成されることである。メカノケミカル効果において、表面の更新により形成される新たな表面の状態は、粉砕による粉砕界面の活性化が起こる限り、特に限定されず、乾燥状態にあってもよいし、または湿潤状態にあってもよい。表面の更新による新たな表面の湿潤状態は、固体状態の原料化合物とは別の液体状態にある原料化合物に起因する。
機械的エネルギーは、反応環境下において固体状態にある1種以上の原料化合物を含む原料混合物に対して付与される。原料混合物の状態は、機械的エネルギーの付与により、固体状態の原料化合物の粉砕が起こる限り、特に限定されない。例えば、原料混合物に含まれる全ての原料化合物が固体状態にあることに起因して、原料混合物は乾燥状態にあってもよい。また例えば、原料混合物に含まれる少なくとも1種の原料化合物が固体状態であり、かつ残りの原料化合物が液体状態であることに起因して、原料混合物は湿潤状態であってもよい。具体的には、例えば、原料混合物が1種のみの原料化合物を含む場合、当該1種の原料化合物は固体状態である。また例えば、原料混合物が2種の原料化合物を含む場合、当該2種の原料化合物はともに固体状態であってもよいし、または一方の原料化合物が固体状態にあり、かつ他方の原料化合物が液体状態にあってもよい。
本発明において、官能基は、分子構造の中で反応性の原因となり得る1価の基(原子団)のことであり、炭素間二重結合、炭素間三重結合等の不飽和結合基(例えばラジカル重合性基)を除く概念で用いるものとする。官能基は、炭素原子およびヘテロ原子を含有する基である。ヘテロ原子は、酸素原子、窒素原子および硫黄原子からなる群、特に酸素原子および窒素原子からなる群から選択される1つ以上の原子である。官能基は水素原子をさらに含有してもよい。反応に供される官能基は通常、2つの官能基であり、一方の官能基を有する原料化合物分子と、他方の官能基を有する原料化合物分子とは、構造が相互に異なっていてもよいし、または同一であってもよい。反応により、2つの原料化合物分子の結合(特に共有結合)が形成され、それらの1分子化が達成される。官能基同士の反応により、水、二酸化炭素、および/またはアルコール等の小分子が副生してもよいし、または副生しなくてもよい。
官能基同士の反応は、化学反応し得るあらゆる官能基(特に1価の官能基)同士の反応であってもよく、例えば、カルボキシル基およびそのハロゲン化物(基)、酸無水物基、アミノ基、イソシアネート基、ならびにヒドロキシル基等からなる群から選択される2つの官能基の反応である。当該2つの官能基は、化学反応が起こる限り、特に限定されず、例えば、化学構造の異なる2つの官能基であってもよいし、または化学構造の同じ2つの官能基であってもよい。
官能基同士の反応として、例えば、縮合反応、付加反応またはこれらの複合反応等が挙げられる。
縮合反応とは、原料化合物分子間で、水、二酸化炭素、アルコール等の小分子の脱離を伴いながら、原料化合物分子間の結合または連結が達成される反応のことである。縮合反応として、例えば、アミド基が生成する反応(アミド化反応)、イミド基が生成する反応(イミド化反応)、またはエステル基が生成する反応(エステル化反応)等が挙げられる。
付加反応は、官能基間での付加反応であり、原料化合物分子間で、小分子の脱離を伴うことなく、原料化合物分子間の結合または連結が達成される反応のことである。付加反応として、例えば、ウレア基が生成する反応、ウレタン基が生成する反応、および環状構造が開環する反応(すなわち、開環反応)等が挙げられる。開環反応は、環状構造を有する原料化合物(例えば、酸無水物基含有化合物、環状アミド化合物、環状エステル化合物、エポキシ化合物)において、環状構造の一部が開裂し、その開裂した部位と他の原料化合物の官能基との結合または連結が達成される反応のことである。開環反応により、例えば、アミド基、カルボキシル基、エステル基、エーテル基が生成する。特に、原料化合物としての酸無水物基含有化合物における酸無水物基の開環反応においては、当該酸無水物基が開環されて、別の原料化合物分子(アミノ基またはヒドロキシル基)との結合または連結が達成される。その結果として、例えば、アミド基またはエステル基と、カルボキシル基とが同時に生成する。
官能基同士の反応は、より詳しくは、例えば、以下の反応からなる群から選択される1種以上の反応であってもよい:
(A)酸無水物基と、アミノ基との反応により、(a1)アミド基およびカルボキシル基、(a2)イミド基、(a3)イソイミド基または(a4)これらの混合基が生成する反応;
(B)酸無水物基と、イソシアネート基との反応によりイミド基が生成する反応;
(C)カルボキシル基またはそのハロゲン化物(基)と、アミノ基またはイソシアネート基との反応により、アミド基が生成する反応;
(D)カルボキシル基またはそのハロゲン化物(基)と、ヒドロキシル基との反応により、エステル基が生成する反応;
(E)イソシアネート基と、アミノ基との反応により、ウレア基が生成する反応;
(F)イソシアネート基と、ヒドロキシル基との反応により、ウレタン基が生成する反応;および
(G)酸無水物基と、ヒドロキシル基との反応により、エステル基およびカルボキシル基が生成する反応。
(A)酸無水物基と、アミノ基との反応により、(a1)アミド基およびカルボキシル基、(a2)イミド基、(a3)イソイミド基または(a4)これらの混合基が生成する反応;
(B)酸無水物基と、イソシアネート基との反応によりイミド基が生成する反応;
(C)カルボキシル基またはそのハロゲン化物(基)と、アミノ基またはイソシアネート基との反応により、アミド基が生成する反応;
(D)カルボキシル基またはそのハロゲン化物(基)と、ヒドロキシル基との反応により、エステル基が生成する反応;
(E)イソシアネート基と、アミノ基との反応により、ウレア基が生成する反応;
(F)イソシアネート基と、ヒドロキシル基との反応により、ウレタン基が生成する反応;および
(G)酸無水物基と、ヒドロキシル基との反応により、エステル基およびカルボキシル基が生成する反応。
原料化合物は、1分子あたり、上記した官能基からなる群から選択される官能基を1つ以上(例えば1つ~5つ)、好ましくは2つ~5つ、より好ましくは2つ~3つ有する。原料化合物の分子量は特に限定されず、反応率のさらなる向上の観点から、好ましくは2000以下、特に1500~30であり、より好ましくは1000~30である。原料化合物として、分子量が上記範囲より大きい化合物を用いると、反応率が低下するため好ましくない。その理由の詳細は明らかではないが、メカノケミカル効果における粉砕界面の活性化は原料化合物分子の活性に基づくものであるところ、その分子量が大きいほど、当該活性が分子内で希薄化するためと考えられる。または、分子量が大きい場合、分子あたりの官能基の密度が低くなるため、活性化した官能基同士の接触確率が低下してしまうためであると考えられる。
メカノケミカル効果による反応(すなわち、機械的エネルギーの付与)は、1段階で行ってもよいし、または2段階以上の多段階で行ってもよい。機械的エネルギーを1段階で付与する方法を1段階メカノケミカル法と称することができる。機械的エネルギーを2段階以上の多段階で付与する方法を多段階メカノケミカル法と称することができる。例えば、1段階メカノケミカル法においては、原料化合物を目的の組成比にて、後述の装置(例えば、粉砕装置、混合装置または撹拌装置)に投入後、1段階の粉砕処理にてメカノケミカル反応を終了させる。また例えば、2段階メカノケミカル法においては、原料化合物を目的の組成比にて、後述の装置に投入後、粗粉砕する第1段階粉砕処理を行ったのち、さらに微粉砕する第2段階粉砕処理を行う。
反応率と操業性のさらなる向上の観点から、多段階メカノケミカル法(特に2段階メカノケミカル法)を採用することが好ましい。詳しくは、第1段階においていきなり微粉砕処理を行うと試料の装置への付着・固着が生じ、得られる生成物の収量の減少や、処理中に装置が停止するといった操業性の課題が生じる場合もある。そのため、反応率と操業性のさらなる向上の観点から多段階メカノケミカル法を採用されることが好ましい。
多段階メカノケミカル法において、各段階で使用される装置は、それぞれ独立して、後で詳述する装置から選択されてよい。特に2段階メカノケミカル法においては、第1段階の粗粉砕処理で使用する装置と第2段階の微粉砕処理で使用する装置は異なっていることが好ましい。装置には、適切な目標粒径(推奨される粉砕後の目標粒径)が存在するところ、多段階メカノケミカル法において各段階で適切な目標粒径が相互に異なる装置を用いることにより、効率的な粉砕を行うことができるため、結果として反応率がさらに向上する。このような効率的な粉砕(すなわち小粒径化)に基づく反応率のさらなる向上の観点から、多段階メカノケミカル法においては、直後に使用される装置は、適切な目標粒径が直前に使用される装置の適切な目標粒径より小さい装置を用いることが好ましい。同様の観点から、例えば、2段階メカノケミカル法においては、第1段階において高速底部攪拌式混合機を用いて粉砕を行い、第2段階において媒体攪拌型ミルを用いて粉砕を行うことが好ましい。
本発明においてメカノケミカル効果による官能基同士の反応は、上記したような固体状態にある少なくとも1種以上の原料化合物を含む原料混合物を粉砕処理に供することにより、達成される。
本発明においては、後述するように、反応条件(例えば、粉砕条件)および/または原料化合物の種類および比率を調整または選択することにより、製造される有機化合物の種類および分子量を制御することができる。製造される有機化合物は高分子化合物および低分子化合物を包含する。
[高分子化合物]
高分子化合物は繰り返し単位を含有する有機化合物である。繰り返し単位を含有する有機化合物とは、当該有機化合物の構造式において、2回以上、連続して繰り返されている1種類以上の構造単位が含まれている、という意味である。構造単位は主鎖を構成する単位であり、側鎖または置換基を構成する単位とは異なる。
高分子化合物は繰り返し単位を含有する有機化合物である。繰り返し単位を含有する有機化合物とは、当該有機化合物の構造式において、2回以上、連続して繰り返されている1種類以上の構造単位が含まれている、という意味である。構造単位は主鎖を構成する単位であり、側鎖または置換基を構成する単位とは異なる。
高分子化合物を製造する場合、官能基同士の反応は重合反応である。重合反応とはモノマー(単量体)やポリマー(重合体)、特にモノマーを反応させて繋ぎ合わせ、目的のポリマーを合成する化学反応のことをいう。重合反応は、反応経路の違いにより、逐次重合反応と連鎖重合反応の二つに大別されるところ、本発明において、重合反応は逐次重合反応である。
逐次重合反応とは、モノマーまたはポリマー、特にモノマーが有する官能基同士が反応し、次第に高分子化していく重合反応のことであり、縮合重合反応および重付加反応などが含まれる。
縮合重合反応とは、官能基間で、水、アルコール、ハロゲン化水素、および/または二酸化炭素などの小分子の生成を伴いながら縮合反応を繰り返して進行する重合反応のことである。
重付加反応は、官能基間の付加反応の繰り返しによって共有結合を形成し、高分子を生成する重合反応である。
重付加反応は、官能基間の付加反応の繰り返しによって共有結合を形成し、高分子を生成する重合反応である。
逐次重合反応は、連鎖的に重合が進行するビニル化合物やオレフィン化合物の付加重合反応や環状化合物の開環重合反応とは区別される。さらに、縮合重合反応では共有結合を形成するときに水、アルコール、ハロゲン化水素、および/または二酸化炭素などの小分子の副生を伴うが、重付加反応では小分子の副生がない。
一方、連鎖重合反応とは、官能基などを持たないモノマーに対して、開始剤などを添加して反応を促すことで、重合活性種が次々と反応していく重合反応のことであり、ラジカル重合反応やイオン重合反応などが含まれる。ラジカル重合反応は、活性の高い中性のラジカル種を生長種としてビニル化合物の重合に用いられる重合反応である。また、イオン重合反応とは、生長していく連鎖の末端がアニオンもしくはカチオンなどのイオンであるものをいう。
本発明において逐次重合反応により重合できる高分子化合物としては、例えば、ポリアミド酸系化合物、ポリイミド系化合物、ポリアミド系化合物、ポリアミドイミド系化合物、ポリウレタン系化合物、ポリウレア系化合物、ポリエステル系化合物等が挙げられる。
ポリアミド酸系化合物とは、ポリイミド系化合物の前駆体であり、分子鎖(特に繰り返し単位)中にアミド基およびカルボキシル基を有し、環化反応させることによりイミド基を形成する化合物のことである。ポリアミド酸系化合物はポリアミック酸とも呼ばれ得る。
ポリイミド系化合物とは、分子鎖(特に繰り返し単位)中にイミド基を有する化合物のことである。ポリイミド系化合物は、分子鎖中にアミド基を有さない。なお、イミド化率が100%でないポリイミド系化合物はポリアミド酸系化合物に包含されるものとする。ポリイミド系化合物は、分子鎖(特に繰り返し単位)中にイミド基およびエーテル基を有するポリエーテルイミド系化合物を包含する。
ポリアミド系化合物とは、分子鎖(特に繰り返し単位)中にアミド基を有する化合物のことである。ポリアミド系化合物は、分子鎖中にイミド基を有さない。
ポリアミドイミド系化合物とは、分子鎖(特に繰り返し単位)中にイミド基およびアミド基を有する化合物のことである。
ポリウレタン系化合物とは、分子鎖(特に繰り返し単位)中にウレタン基を有する化合物のことである。ポリウレタン系化合物は、分子鎖(特に繰り返し単位)中にエステル基を有してもよい。
ポリウレア系化合物とは、分子鎖(特に繰り返し単位)中に尿素基を有する化合物のことである。
ポリエステル系化合物とは、分子鎖(特に繰り返し単位)中にエステル基を有する化合物のことである。ポリエステル系化合物は、分子鎖中にウレタン基を有さない。
高分子化合物には、上記高分子化合物のうち、2種以上含むものも含まれる。
ポリイミド系化合物とは、分子鎖(特に繰り返し単位)中にイミド基を有する化合物のことである。ポリイミド系化合物は、分子鎖中にアミド基を有さない。なお、イミド化率が100%でないポリイミド系化合物はポリアミド酸系化合物に包含されるものとする。ポリイミド系化合物は、分子鎖(特に繰り返し単位)中にイミド基およびエーテル基を有するポリエーテルイミド系化合物を包含する。
ポリアミド系化合物とは、分子鎖(特に繰り返し単位)中にアミド基を有する化合物のことである。ポリアミド系化合物は、分子鎖中にイミド基を有さない。
ポリアミドイミド系化合物とは、分子鎖(特に繰り返し単位)中にイミド基およびアミド基を有する化合物のことである。
ポリウレタン系化合物とは、分子鎖(特に繰り返し単位)中にウレタン基を有する化合物のことである。ポリウレタン系化合物は、分子鎖(特に繰り返し単位)中にエステル基を有してもよい。
ポリウレア系化合物とは、分子鎖(特に繰り返し単位)中に尿素基を有する化合物のことである。
ポリエステル系化合物とは、分子鎖(特に繰り返し単位)中にエステル基を有する化合物のことである。ポリエステル系化合物は、分子鎖中にウレタン基を有さない。
高分子化合物には、上記高分子化合物のうち、2種以上含むものも含まれる。
本発明においては、原料化合物の種類を選択することにより、得られる高分子化合物の種類を制御することができる。高分子化合物を製造するための原料化合物は通常、1分子あたり、上記した官能基からなる群から選択される官能基を2つ以上(特に2つ)有する原料化合物である。当該原料化合物の分子量は特に限定されず、通常は上記した範囲内の分子量を有する。
高分子化合物の製造に際し、例えば、原料化合物として2成分が使用される場合、各成分は相互に略等モル量で使用され、詳しくは一方の成分が他方の成分に対して0.8~1.2倍モル量、特に0.9~1.1倍モル量、好ましくは0.95~1.05倍モル量となるような量で使用される。
(ポリアミド酸系化合物およびポリイミド系化合物)(以下、これらの化合物を包含してポリアミド酸系化合物等ということがある)
原料化合物として、テトラカルボン酸二無水物成分とジアミン成分またはジイソシアネート成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリアミド酸系化合物、ポリイミド系化合物またはこれらの混合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)および(B)に対応する。
より詳しくは、例えば、原料化合物として、テトラカルボン酸二無水物成分とジアミン成分とを用いる場合には、主として、ポリアミド酸系化合物が製造される。また例えば、原料化合物として、テトラカルボン酸二無水物成分とジイソシアネート成分とを用いる場合には、主として、ポリイミド系化合物が製造される。
原料化合物として、テトラカルボン酸二無水物成分とジアミン成分またはジイソシアネート成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリアミド酸系化合物、ポリイミド系化合物またはこれらの混合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)および(B)に対応する。
より詳しくは、例えば、原料化合物として、テトラカルボン酸二無水物成分とジアミン成分とを用いる場合には、主として、ポリアミド酸系化合物が製造される。また例えば、原料化合物として、テトラカルボン酸二無水物成分とジイソシアネート成分とを用いる場合には、主として、ポリイミド系化合物が製造される。
ポリアミド酸系化合物等を構成し得るテトラカルボン酸二無水物成分は、芳香族環を含有する芳香族テトラカルボン酸二無水物成分、脂肪族環を含有するが芳香族環は含有しない脂環族テトラカルボン酸二無水物成分、および芳香族環も脂環族環も含有しない脂肪族テトラカルボン酸二無水物成分を包含する。テトラカルボン酸二無水物成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。本明細書中、エーテル基とは、炭素原子間に存在する「-O-」基のことである。チオエーテル基とは、炭素原子間に存在する「-S-」基のことである。
芳香族テトラカルボン酸二無水物成分としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、3-フルオロピロメリット酸二無水物、3,6-ジフルオロピロメリット酸二無水物、3,6-ビス(トリフルオロメチル)ピロメリット酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-エチレングリコールジベンゾエートテトラカルボン酸二無水物、3,3’’,4,4’’-テルフェニルテトラカルボン酸二無水物、3,3’,4,4’-クァテルフェニルテトラカルボン酸二無水物、3,3’,4,4’-キンクフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチニリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-へキサフルオロプロパン二無水物、ジフルオロメチレン-4,4’-ジフタル酸二無水物、1,1,2,2-テトラフルオロ-1,2-エチレン-4,4’-ジフタル酸二無水物、1,1,2,2,3,3-ヘキサフルオロ-1,3-トリメチレン-4、4’-ジフタル酸二無水物、1,1,2,2,3,3,4,4-オクタフルオロ-1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,1,2,2,3,3,4,4,5,5-デカフルオロ-1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、オキシ-4,4’-ジフタル酸二無水物、チオ-4,4’-ジフタル酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルシロキサン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、1,4-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕メタン二無水物、ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕メタン二無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、2,2’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、6,6’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,5,5’,6,6’-ヘキサフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、6,6’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,5,5’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,6,6’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、5,5’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、6,6’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロオキシ-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、5,5’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、6,6’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、9-フェニル-9-(トリフルオロメチル)キサンテン-2,3,6,7-テトラカルボン酸二無水物、9,9-ビス(トリフルオロメチル)キサンテン-2,3,6,7-テトラカルボン酸二無水物、ビシクロ〔2,2,2〕オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、4,4’-(4、4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、9,9-ビス〔4-(3,4-ジカルボキシ)フェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシ)フェニル〕フルオレン二無水物が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族テトラカルボン酸二無水物成分としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチニリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族テトラカルボン酸二無水物成分としては、例えば、1,2,3,4-ブタンテトラカルボン酸二無水物、1,1,2,2-エタンテトラカルボン酸二無水物が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性の観点から、芳香族テトラカルボン酸二無水物成分を含むことが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性のさらなる向上の観点から、芳香族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性のさらなる向上の観点から、芳香族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の溶解性の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基またはフッ素原子(またはフッ素原子含有置換基)を有する、芳香族テトラカルボン酸二無水物または脂環族テトラカルボン酸二無水物成分を用いることが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の溶解性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する、芳香族テトラカルボン酸二無水物または脂環族テトラカルボン酸二無水物成分を用いることが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の溶解性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する、芳香族テトラカルボン酸二無水物または脂環族テトラカルボン酸二無水物成分を用いることが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の非着色性の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する、芳香族テトラカルボン酸二無水物、脂環族テトラカルボン酸二無水物または脂肪族テトラカルボン酸二無水物を含むことが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の非着色性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する芳香族テトラカルボン酸二無水物を含むことが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の非着色性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する芳香族テトラカルボン酸二無水物を含むことが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、汎用性の観点から、上記のテトラカルボン酸二無水物成分のうち、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、4,4’-(4、4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物からなる群(以下、群H1という)から選択される1種以上の化合物を含むことが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、汎用性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、上記群H1から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド酸系化合物等のテトラカルボン酸二無水物成分は、汎用性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、上記群H1から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド酸系化合物を構成し得るジアミン成分は、芳香族環を含有する芳香族ジアミン成分、脂肪族環を含有するが芳香族環は含有しない脂環族ジアミン成分、および芳香族環も脂環族環も含有しない脂肪族ジアミン成分を包含する。ジアミン成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。ジアミン成分は側鎖を有していてもよい。
芳香族ジアミン成分としては、例えば、m-キシリレンジアミン、p-キシリレンジアミン、ベンジジン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、2,4-トルエンジアミン、2,6-トルエンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、ビス(3-アミノフェニル)スルフィド、(3-アミノフェニル)(4-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、ビス(3-アミノフェニル)スルホキシド、(3-アミノフェニル)(4-アミノフェニル)スルホキシド、ビス(3-アミノフェニル)スルホン、(3-アミノフェニル)(4-アミノフェニル)スルホン、ビス(4-アミノフェニル)スルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンズアニリド、3,3’-ジメチル-3,4’-ジアミノビフェニル、2,2’-ジメチル-3,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェニキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ブタン、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンビス(4-アミノフェニル)スルホン、9,9-ビス(4-アミノフェニル)フルオレン、メタキシレンジアミン)、1,4’-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(アミノフェノキシ)フェニル]スルホキシド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス(3-(4-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(3-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(4-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(2-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(2-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(2-(4-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(3-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(3-(4-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(3-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(4-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(2-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(2-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,4-ビス(2-(4-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(3-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(3-(4-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(3-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(4-(4-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(4-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(4-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(2-(2-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(2-(3-アミノフェノキシ)フェノキシ)ベンゼン、1,2-ビス(2-(4-アミノフェノキシ)フェノキシ)ベンゼン、1,3-ビス(3-(3-アミノフェノキシ)フェノキシ)-2-メチルベンゼン、1,3-ビス(3-(4-アミノフェノキシ)フェノキシ)-4-メチルベンゼン、1,3-ビス(4-(3-アミノフェノキシ)フェノキシ)-2-エチルベンゼン、1,3-ビス(3-(2-アミノフェノキシ)フェノキシ)-5-sec-ブチルベンゼン、1,3-ビス(4-(3-アミノフェノキシ)フェノキシ)-2,5-ジメチルベンゼン、1,3-ビス(4-(2-アミノ-6-メチルフェノキシ)フェノキシ)ベンゼン、1,3-ビス(2-(2-アミノ-6-エチルフェノキシ)フェノキシ)ベンゼン、1,3-ビス(2-(3-アミノフェノキシ)-4-メチルフェノキシ)ベンゼン、1,3-ビス(2-(4-アミノフェノキシ)-4-tert-ブチルフェノキシ)ベンゼン、1,4-ビス(3-(3-アミノフェノキシ)フェノキシ)-2,5-ジ-tert-ブチルベンゼン、1,4-ビス(3-(4-アミノフェノキシ)フェノキシ)-2,3-ジメチルベンゼン、1,4-ビス(3-(2-アミノ-3-プロピルフェノキシ)フェノキシ)ベンゼン、1,2-ビス(3-(3-アミノフェノキシ)フェノキシ)-4-メチルベンゼン、1,2-ビス(3-(4-アミノフェノキシ)フェノキシ)-3-n-ブチルベンゼン、1,2-ビス(3-(2-アミノ-3-プロピルフェノキシ)フェノキシ)ベンゼンビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(3-アミノフェノキシメチル)テトラメチルジシロキサン、ビス(3-アミノフェノキシメチル)テトラメチルジシロキサン、α,ω-ビス(3-アミノプロピル)ポリメチルフェニルシロキサン、α,ω-ビス(3-アミノプロピル)ポリ(ジメチルシロキサン-ジフェニルシロキサン)コポリマー、および上記ジアミンの類似物が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族ジアミン成分としては、例えば、trans-1,4-シクロヘキサンジアミン、cis-1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン))、1,4-ビス(アミノメチル)シクロヘキサン、イソホロンジアミンが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族ジアミン成分としては、例えば、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、1,10-ジアミノデカン、1,12-ジアミノドデカン、1,10-ジアミノ-1,10-ジメチルデカン、ビス(10-アミノデカメチレン)テトラメチルジシロキサン、α,ω-ビスアミノポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン、ビス(10-アミノデカメチレン)テトラメチルジシロキサン、ダイマージアミンが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。ダイマージアミンは、例えばオレイン酸、リノール酸等の不飽和脂肪酸を重合させてダイマー酸とし、これを還元およびアミノ化(還元的アミノ化)することにより得られる化合物である。使用する目的に応じて、水素添加反応して不飽和度を低下させる場合等もある。ダイマージアミンは、「プリアミン1074、同1075」(クローダジャパン社製の商品名)、「バーサミン551、同552」(コグニスジャパン社製の商品名)等の市販品を用いることができる。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分を含むことが好ましく、より好ましくは芳香族ジアミン成分を含む。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の溶解性の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分を用いることが好ましい。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性および非着色性の観点から、上記のジアミン成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する、芳香族ジアミン成分、脂環族ジアミン成分または脂肪族ジアミン成分を含むことが好ましく、より好ましくはフッ素原子(またはフッ素原子含有置換基)を有する、芳香族ジアミン成分または脂環族ジアミン成分を含む。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性および非着色性のさらなる向上の観点から、上記のジアミン成分のうち、脂環族ジアミン成分および/または脂肪族ジアミン成分を含むことが好ましく、より好ましくは脂環族ジアミン成分および/または脂肪族ジアミン成分のみを含む。
ポリアミド酸系化合物のジアミン成分は、ポリアミド酸系化合物等(特にポリイミド系化合物)の耐熱性および非着色性のさらなる向上の観点から、上記のジアミン成分のうち、脂環族ジアミン成分および/または脂肪族ジアミン成分を含むことが好ましく、より好ましくは脂環族ジアミン成分および/または脂肪族ジアミン成分のみを含む。
ポリアミド酸系化合物のジアミン成分は、汎用性の観点から、上記のジアミン成分のうち、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス(4-アミノフェニル)スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン、trans-1,4-シクロヘキサンジアミン、cis-1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、1,10-ジアミノデカン、1,12-ジアミノドデカン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(アミノメチル)シクロヘキサン、ダイマージアミンからなる群(以下、群H2という)から選択される1種以上の化合物を含むことが好ましい。
ポリアミド酸系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群H2から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド酸系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群H2から選択される1種以上の化合物のみを含むことが好ましい。
ポリイミド系化合物を構成し得るジイソシアネート成分は、芳香族環を含有する芳香族ジイソシアネート成分、脂肪族環を含有するが芳香族環は含有しない脂環族ジイソシアネート成分、および芳香族環も脂環族環も含有しない脂肪族ジイソシアネート成分を包含する。ジイソシアネート成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
芳香族ジイソシアネート成分としては、例えば、4,4’-ジフェニルメタンジイソシアネート、3,3’-ジフェニルメタンジイソシアネート、m-キシレンジイソシアネート、テトラメチルキシレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、1,4-フェニレンジイソシアネート、およびこれらのアダクト体、ビウレット体、イソシアヌレート体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族ジイソシアネート成分としては、例えば、4,4’-ジシクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、ノルボルネンジイソシアネート、およびこれらのアダクト体、ビウレット体、イソシアヌレート体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族ジイソシアネート成分としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、ダイマー酸ジイソシアネート、およびこれらのアダクト体、ビウレット体、イソシアヌレート体等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の耐熱性の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分を含むことが好ましく、より好ましくは芳香族ジイソシアネート成分を含む。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の溶解性の観点から、上記のジイソシアネート成分のうち、脂環族ジイソシアネート成分および/または脂肪族ジイソシアネート成分を用いることが好ましい。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の溶解性のさらなる向上の観点から、上記のジイソシアネート成分のうち、脂環族ジイソシアネート成分および/または脂肪族ジイソシアネート成分のみを用いることが好ましい。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の溶解性のさらなる向上の観点から、上記のジイソシアネート成分のうち、脂環族ジイソシアネート成分および/または脂肪族ジイソシアネート成分のみを用いることが好ましい。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の非着色性の観点から、上記のジイソシアネート成分のうち、脂環族ジイソシアネート成分および/または脂肪族ジイソシアネート成分を含むことが好ましく、より好ましくは脂環族ジイソシアネート成分または脂肪族ジイソシアネート成分を含む。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の非着色性のさらなる向上の観点から、上記のジイソシアネート成分のうち、脂環族ジイソシアネート成分および/または脂肪族ジイソシアネート成分のみを含むことが好ましく、より好ましくは脂環族ジイソシアネート成分または脂肪族ジイソシアネート成分のみを含む。
ポリイミド系化合物のジイソシアネート成分は、ポリイミド系化合物の非着色性のさらなる向上の観点から、上記のジイソシアネート成分のうち、脂環族ジイソシアネート成分および/または脂肪族ジイソシアネート成分のみを含むことが好ましく、より好ましくは脂環族ジイソシアネート成分または脂肪族ジイソシアネート成分のみを含む。
ポリイミド系化合物のジイソシアネート成分は、汎用性の観点から、上記のジイソシアネート成分のうち、4,4’-ジフェニルメタンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、1,5-ジイソシアナトナフタレン、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、およびこれらのアダクト体、ビウレット体、イソシアヌレート体等からなる群(以下、群H3という)から選択される1種以上の化合物を含むことが好ましい。
ポリイミド系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H3から選択される1種以上の化合物のみを含むことが好ましい。
ポリイミド系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H3から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド酸系化合物の製造に際し、テトラカルボン酸二無水物成分とジアミン成分とは通常、略等モル量で使用される。詳しくは、テトラカルボン酸二無水物成分に対して通常は0.8~1.2倍モル量、特に0.9~1.1倍モル量、好ましくは0.95~1.05倍モル量のジアミン成分が使用される。
ポリイミド系化合物の製造に際し、テトラカルボン酸二無水物成分とジイソシアネート成分とは通常、略等モル量で使用される。詳しくは、テトラカルボン酸二無水物成分に対して通常は、0.8~1.2倍モル量、特に0.9~1.1倍モル量、好ましくは0.95~1.05倍モル量のジイソシアネート成分が使用される。
(ポリアミド系化合物)
原料化合物として、ジカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリアミド系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(C)に対応する。
より詳しくは、反応率のさらなる向上の観点からは、ジカルボン酸成分の酸ハロゲン化物成分とジアミン成分との組合せの使用、またはジカルボン酸成分とジイソシアネート成分との組合せの使用により、ポリアミド系化合物を製造することが好ましい。
原料化合物として、ジカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリアミド系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(C)に対応する。
より詳しくは、反応率のさらなる向上の観点からは、ジカルボン酸成分の酸ハロゲン化物成分とジアミン成分との組合せの使用、またはジカルボン酸成分とジイソシアネート成分との組合せの使用により、ポリアミド系化合物を製造することが好ましい。
ポリアミド系化合物を構成し得るジカルボン酸成分は、芳香族環を含有する芳香族ジカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族ジカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族ジカルボン酸成分を包含する。ジカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。なお、ジカルボン酸成分の酸ハロゲン化物成分とは、ジカルボン酸成分において、カルボキシル基のOH基がハロゲン原子で置換された化合物のことである。
芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸(オルトフタル酸)、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、ジフェノキシブタン-4,4’-ジカルボン酸、ジフェニルエタン-4,4’-ジカルボン酸、フェニルエーテル-2,2’-ジカルボン酸、ジフェニルエーテル-2,3’-ジカルボン酸、ジフェニルエーテル-2,4’-ジカルボン酸、ジフェニルエーテル-3,3’-ジカルボン酸、ジフェニルエーテル-3,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸ジフェノキシエーテル-3,3’-ジカルボン酸、ジフェニルエタン-3,3’-ジカルボン酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族ジカルボン酸成分としては、例えば、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族ジカルボン酸成分としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、スクシン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸、水添ダイマー酸、無水マレイン酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、メサコン酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ポリアミド系化合物のジカルボン酸成分は、ポリアミド系化合物の耐熱性の観点から、芳香族ジカルボン酸成分および/または脂環族ジカルボン酸成分を含むことが好ましく、より好ましくは芳香族ジカルボン酸成分を含む。
ポリアミド系化合物のジカルボン酸成分は、ポリアミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分および/または脂環族ジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分のみを含む。
ポリアミド系化合物のジカルボン酸成分は、ポリアミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分および/または脂環族ジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分のみを含む。
ポリアミド系化合物のジカルボン酸成分は、汎用性の観点から、上記のジカルボン酸成分のうち、テレフタル酸、イソフタル酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸からなる群(以下、群H4という)から選択される1種以上の化合物を含むことが好ましい。
ポリアミド系化合物のジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸成分のうち、上記群H4から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド系化合物のジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸成分のうち、上記群H4から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド系化合物を構成し得るジアミン成分は、ポリアミド酸系化合物等を構成し得るジアミン成分と同様のジアミン成分であり、詳しくはポリアミド酸系化合物等を構成し得るジアミン成分と同様の、芳香族ジアミン成分、脂環族ジアミン成分、および脂肪族ジアミン成分を包含する。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の耐熱性の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分を含むことが好ましく、より好ましくは芳香族ジアミン成分を含む。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の溶解性の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分を用いることが好ましい。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の非着色性の観点から、上記のジアミン成分のうち、脂肪族ジアミンおよび/または脂環族ジアミン成分を含むことが好ましい。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の非着色性のさらなる向上の観点から、上記のジアミン成分のうち、脂肪族ジアミンおよび/または脂環族ジアミン成分のみを含むことが好ましい。
ポリアミド系化合物のジアミン成分は、ポリアミド系化合物の非着色性のさらなる向上の観点から、上記のジアミン成分のうち、脂肪族ジアミンおよび/または脂環族ジアミン成分のみを含むことが好ましい。
ポリアミド系化合物のジアミン成分は、汎用性の観点から、上記のジアミン成分のうち、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス(4-アミノフェニル)スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン、trans-1,4-シクロヘキサンジアミン、cis-1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、1,10-ジアミノデカン、1,12-ジアミノドデカン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(アミノメチル)シクロヘキサン、ダイマージアミンからなる群(以下、群H5という)から選択される1種以上の化合物を含むことが好ましい。
ポリアミド系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群H5から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群H5から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド系化合物を構成し得るジイソシアネート成分は、ポリイミド系化合物等を構成し得るジイソシアネート成分と同様のジイソシアネート成分であり、詳しくはポリイミド系化合物等を構成し得るジイソシアネート成分と同様の、芳香族ジイソシアネート成分、脂環族ジイソシアネート成分、および脂肪族ジイソシアネート成分を包含する。
ポリアミド系化合物のジイソシアネート成分は、ポリアミド系化合物の耐熱性の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分を含むことが好ましく、より好ましくは芳香族ジイソシアネート成分を含む。
ポリアミド系化合物のジイソシアネート成分は、ポリアミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリアミド系化合物のジイソシアネート成分は、ポリアミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリアミド系化合物のジイソシアネート成分は、汎用性の観点から、上記のジイソシアネート成分のうち、4,4’-ジフェニルメタンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、1,5-ジイソシアナトナフタレン、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、およびこれらのアダクト体、ビウレット体、イソシアヌレート体等からなる群(以下、群H6という)から選択される1種以上の化合物を含むことが好ましい。
ポリアミド系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H6から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H6から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミド系化合物の製造に際し、ジカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分とは通常、略等モル量で使用される。詳しくは、ジカルボン酸成分またはその酸ハロゲン化物成分に対して通常は0.8~1.2倍モル量、特に0.9~1.1倍モル量、好ましくは0.95~1.05倍モル量のジアミン成分またはジイソシアネート成分が使用される。
(ポリアミドイミド系化合物)
原料化合物として、無水トリカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリアミドイミド系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(B)および(C)に対応する。
より詳しくは、反応率のさらなる向上の観点からは、無水トリカルボン酸成分の酸ハロゲン化物成分とジアミン成分との組合せの使用、または無水トリカルボン酸成分とジイソシアネート成分との組合せの使用により、ポリアミドイミド系化合物を製造することが好ましい。
原料化合物として、無水トリカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリアミドイミド系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(B)および(C)に対応する。
より詳しくは、反応率のさらなる向上の観点からは、無水トリカルボン酸成分の酸ハロゲン化物成分とジアミン成分との組合せの使用、または無水トリカルボン酸成分とジイソシアネート成分との組合せの使用により、ポリアミドイミド系化合物を製造することが好ましい。
ポリアミドイミド系化合物等を構成し得る無水トリカルボン酸成分は、芳香族環を含有する芳香族無水トリカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族無水トリカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族無水トリカルボン酸成分を包含する。無水トリカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。なお、無水トリカルボン酸成分の酸ハロゲン化物成分とは、無水トリカルボン酸成分において、カルボキシル基のOH基がハロゲン原子で置換された化合物のことである。
芳香族無水トリカルボン酸成分としては、例えば、無水トリメリット酸、無水ヘミメリット酸、1,2,4-ナフタレントリカルボン酸無水物、1,4,5-ナフタレントリカルボン酸無水物、2,3,6-ナフタレントリカルボン酸無水物、1,2,8-ナフタレントリカルボン酸無水物、3,4,4’-ベンゾフェノントリカルボン酸無水物、3,4,4’-ビフェニルエーテルトリカルボン酸無水物、3,4,4’-ビフェニルトリカルボン酸無水物、2,3,2’-ビフェニルトリカルボン酸無水物、3,4,4’-ビフェニルメタントリカルボン酸無水物、3,4,4’-ビフェニルスルホントリカルボン酸無水物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族無水トリカルボン酸成分としては、例えば、1,2,4-シクロペンタントリカルボン酸無水物、1,2,3-シクロヘキサントリカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸無水物、1,3,5-シクロヘキサントリカルボン酸無水物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族無水トリカルボン酸成分としては、例えば、3-カルボキシメチルグルタル酸無水物、1,2,4-ブタントリカルボン酸-1,2-無水物、cis-プロペン-1,2,3-トリカルボン酸-1,2-無水物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、ポリアミドイミド系化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分を含む。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、ポリアミドイミド系化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、ポリアミドイミド系化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、ポリアミドイミド系化合物の溶解性および非着色性の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分を用いることが好ましい。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、ポリアミドイミド系化合物の溶解性および非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、ポリアミドイミド系化合物の溶解性および非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、汎用性の観点から、上記の無水トリカルボン酸成分のうち、無水トリメリット酸、1,2,4-シクロヘキサントリカルボン酸無水物からなる群(以下、群H7という)から選択される1種以上の化合物を含むことが好ましい。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群H7から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミドイミド系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群H7から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミドイミド系化合物を構成し得るジアミン成分は、ポリアミド酸系化合物等を構成し得るジアミン成分と同様のジアミン成分であり、詳しくはポリアミド酸系化合物等を構成し得るジアミン成分と同様の、芳香族ジアミン成分、脂環族ジアミン成分、および脂肪族ジアミン成分を包含する。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の耐熱性の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分を含むことが好ましく、より好ましくは芳香族ジアミン成分を含む。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の溶解性の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分を用いることが好ましい。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の非着色性の観点から、上記のジアミン成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する、芳香族ジアミン成分、脂環族ジアミン成分または脂肪族ジアミン成分を含むことが好ましい。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の非着色性のさらなる向上の観点から、上記のジアミン成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する、芳香族ジアミン成分、脂環族ジアミン成分または脂肪族ジアミン成分のみを含むことが好ましい。
ポリアミドイミド系化合物のジアミン成分は、ポリアミドイミド系化合物の非着色性のさらなる向上の観点から、上記のジアミン成分のうち、フッ素原子(またはフッ素原子含有置換基)を有する、芳香族ジアミン成分、脂環族ジアミン成分または脂肪族ジアミン成分のみを含むことが好ましい。
ポリアミドイミド系化合物のジアミン成分は、汎用性の観点から、上記のジアミン成分のうち、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス(4-アミノフェニル)スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン、trans-1,4-シクロヘキサンジアミン、cis-1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、1,10-ジアミノデカン、1,12-ジアミノドデカン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(アミノメチル)シクロヘキサン、ダイマージアミンからなる群(以下、群H8という)から選択される1種以上の化合物を含むことが好ましい。
ポリアミドイミド系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群H8から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミドイミド系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群H8から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミドイミド系化合物を構成し得るジイソシアネート成分は、ポリイミド系化合物等を構成し得るジイソシアネート成分と同様のジイソシアネート成分であり、詳しくはポリイミド系化合物等を構成し得るジイソシアネート成分と同様の、芳香族ジイソシアネート成分、脂環族ジイソシアネート成分、および脂肪族ジイソシアネート成分を包含する。
ポリアミドイミド系化合物のジイソシアネート成分は、ポリアミドイミド系化合物の耐熱性の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分を含むことが好ましく、より好ましくは芳香族ジイソシアネート成分を含む。
ポリアミドイミド系化合物のジイソシアネート成分は、ポリアミドイミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリアミドイミド系化合物のジイソシアネート成分は、ポリアミドイミド系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリアミドイミド系化合物のジイソシアネート成分は、汎用性の観点から、上記のジイソシアネート成分のうち、4,4’-ジフェニルメタンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、1,5-ジイソシアナトナフタレン、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、およびこれらのアダクト体、ビウレット体、イソシアヌレート体等からなる群(以下、群H9という)から選択される1種以上の化合物を含むことが好ましい。
ポリアミドイミド系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H9から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミドイミド系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H9から選択される1種以上の化合物のみを含むことが好ましい。
ポリアミドイミド系化合物の製造に際し、無水トリカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分とは通常、略等モル量で使用される。詳しくは、無水トリカルボン酸成分またはその酸ハロゲン化物成分に対して通常は0.8~1.2倍モル量、特に0.9~1.1倍モル量、好ましくは0.95~1.05倍モル量のジアミン成分またはジイソシアネート成分が使用される。
(ポリエステル系化合物)
原料化合物として、ジカルボン酸成分またはその酸ハロゲン化物成分とポリヒドロキシ成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリエステル系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(D)に対応する。ポリヒドロキシ成分は、1分子中、ヒドロキシル基を2つ以上有する化合物を意味し、1分子中、フェノール性のヒドロキシル基を2つ以上有するポリフェノール成分を包含する。
より詳しくは、反応率のさらなる向上の観点からは、ジカルボン酸成分の酸ハロゲン化物成分とポリヒドロキシ成分(例えば、ポリフェノール成分)との組合せの使用により、ポリエステル系化合物を製造することが好ましい。
原料化合物として、ジカルボン酸成分またはその酸ハロゲン化物成分とポリヒドロキシ成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリエステル系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(D)に対応する。ポリヒドロキシ成分は、1分子中、ヒドロキシル基を2つ以上有する化合物を意味し、1分子中、フェノール性のヒドロキシル基を2つ以上有するポリフェノール成分を包含する。
より詳しくは、反応率のさらなる向上の観点からは、ジカルボン酸成分の酸ハロゲン化物成分とポリヒドロキシ成分(例えば、ポリフェノール成分)との組合せの使用により、ポリエステル系化合物を製造することが好ましい。
ポリエステル系化合物を構成し得るジカルボン酸成分は、ポリアミド系化合物を構成し得るジカルボン酸成分と同様のジカルボン酸成分であり、詳しくはポリアミド系化合物を構成し得るジカルボン酸成分と同様の、芳香族ジカルボン酸成分、脂環族ジカルボン酸成分、および脂肪族ジカルボン酸成分を包含する。なお、ジカルボン酸成分の酸ハロゲン化物成分とは、ジカルボン酸成分において、カルボキシル基のOH基がハロゲン原子で置換された化合物のことである。
ポリエステル系化合物のジカルボン酸成分は、ポリエステル系化合物の耐熱性の観点から、芳香族ジカルボン酸成分および/または脂環族ジカルボン酸成分を含むことが好ましく、より好ましくは芳香族ジカルボン酸成分を含む。
ポリエステル系化合物のジカルボン酸成分は、ポリエステル系化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分および/または脂環族ジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分のみを含む。
ポリエステル系化合物のジカルボン酸成分は、ポリエステル系化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分および/または脂環族ジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分のみを含む。
ポリエステル系化合物のジカルボン酸成分は、汎用性の観点から、上記のジカルボン酸成分のうち、テレフタル酸、イソフタル酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸からなる群(以下、群H10という)から選択される1種以上の化合物を含むことが好ましい。
ポリエステル系化合物のジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸成分のうち、上記群H10から選択される1種以上の化合物のみを含むことが好ましい。
ポリエステル系化合物のジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸成分のうち、上記群H10から選択される1種以上の化合物のみを含むことが好ましい。
ポリエステル系化合物を構成し得るポリヒドロキシ成分は、芳香族環を含有する芳香族ポリヒドロキシ成分(例えば、ポリフェノール成分)、脂肪族環を含有するが芳香族環は含有しない脂環族ポリヒドロキシ成分、および芳香族環も脂環族環も含有しない脂肪族ポリヒドロキシ成分を包含する。ポリヒドロキシ成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。なお、ポリヒドロキシ成分は、例えば、ジヒドロキシ成分、トリヒドロキシ成分、テトラヒドロキシ成分および多価ヒドロキシ成分を包含する。多価ヒドロキシ成分は、1分子中、ヒドロキシル基を5つ以上有するヒドロキシ成分のことである。ポリヒドロキシ成分は、溶融流動性および/または溶媒への溶解性が高く、加工性に優れる高分子化合物を得る観点からは、ジヒドロキシ成分を含むことが好ましく、ジヒドロキシ成分のみを含むことがより好ましい。
芳香族ポリヒドロキシ成分は、芳香族ジヒドロキシ成分、芳香族トリヒドロキシ成分および、芳香族テトラヒドロキシ成分および芳香族多価ヒドロキシ成分を含む。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。芳香族ポリヒドロキシ成分のうち、溶融流動性および/または溶媒への溶解性が高く、加工性に優れる高分子化合物を得る観点からは、芳香族ジヒドロキシ成分が好ましい。芳香族ポリヒドロキシ成分は、1分子中、フェノール性のヒドロキシル基を2つ以上有するポリフェノール成分が好ましい。芳香族ジヒドロキシ成分は、1分子中、フェノール性のヒドロキシル基を2つ有するジフェノール成分が好ましい。芳香族トリヒドロキシ成分は、1分子中、フェノール性のヒドロキシル基を3つ有するトリフェノール成分が好ましい。芳香族テトラヒドロキシ成分は、1分子中、フェノール性のヒドロキシル基を4つ有するテトラフェノール成分が好ましい。芳香族多価ヒドロキシ成分は、1分子中、フェノール性のヒドロキシル基を5つ以上有する多価フェノール成分が好ましい。
芳香族ジヒドロキシ成分(特にジフェノール成分)としては、例えば、2,2’-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルメタン、4,4’-ビフェノール、3,3’-ジメチル-4,4’-ビフェノール、3,3’,5,5’-テトラメチル-4,4’-ビフェノール、2,2’,3,3’,5,5’-ヘキサメチル-4,4’-ビフェノール、3,3’,5,5’-テトラ-tert-ブチル-2,2’-ビフェノール、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-2-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)オクタン、1,1-ビス(4-ヒドロキシフェニル)-3-メチルブタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-メチル-2-ヒドロキシフェニル)メタン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルメタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-sec-ブチル-4-ヒドロキシフェニル)プロパン、ビスフェノールフルオレン、1,1-ビス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)-2-メチルプロパン、4,4’-[1,4-フェニレン-ビス(2-プロピリデン)-ビス(3-メチル-4-ヒドロキシフェニル)]、1,1-ビス(3-フェニル-4-ヒドロキシフェニル)シクロヘキサン、4,4’-ジヒドロキシフェニルエーテル、ビス(2-ヒドロキシフェニル)メタン、2,4’-メチレンビスフェノール、ビス(3-メチル-4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(2-ヒドロキシ-5-メチルフェニル)エタン、ビス(2-ヒドロキシ-3,5-ジメチルフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロペンタン、3,3-ビス(3-メチル-4-ヒドロキシフェニル)ペンタン、3,3-ビス(3,5-ジメチル-4-ヒドロキシフェニル)ペンタン、2,2-ビス(2-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ノナン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)デカン、ビス(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)メタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、テルペンジフェノール、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)-2-メチルプロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)メタン、1,1-ビス(3,5-ジ-sec-ブチル-4-ヒドロキシフェニル)メタン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)エタン、ビス(3-ノニル-4-ヒドロキシフェニル)メタン、2,2-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパン、ビス(2-ヒドロキシ-3,5-ジ-tert-ブチル-6-メチルフェニル)メタン、1,1-ビス(3-フェニル-4-ヒドロキシフェニル)-1-フェニルエタン、ビス(3-フルオロ-4-ヒドロキシフェニル)メタン、ビス(2-ヒドロキシ-5-フルオロフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(3-フルオロ-4-ヒドロキシフェニル)プロパン、ビス(3-フルオロ-4-ヒドロキシフェニル)-フェニルメタン、ビス(3-フルオロ-4-ヒドロキシフェニル)-(p-フルオロフェニル)メタン、ビス(4-ヒドロキシフェニル)-(p-フルオロフェニル)メタン、2,2-ビス(3-クロロ-4-ヒドロキシ-5-メチルフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)プロパン、1,1-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)メタン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ニトロ-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)ジメチルシラン、ビス(3-メチル-4-ヒドロキシフェニル)エーテル、ビス(3,5-ジメチル-4-ヒドロキシフェニル)エーテル、ビス(2,3,5-トリメチル-4-ヒドロキシフェニル)-フェニルメタン、2,2-ビス(4-ヒドロキシフェニル)ドデカン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)ドデカン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)ドデカン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(2-メチル-4-ヒドロキシ-5-シクロヘキシルフェニル)-2-メチルプロパン、1,1-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)エタン、イサチンビスフェノール、イサチンビスクレゾール、ビス(2-ヒドロキシフェニル)メタン、2,4’-メチレンビスフェノール、1,2-ビス(4-ヒドロキシフェニル)エタン、2-(4-ヒドロキシフェニル)-2-(2-ヒドロキシフェニル)プロパン、ビス(2-ヒドロキシ-3-アリルフェニル)メタン、1,1-ビス(2-ヒドロキシ-3,5-ジメチルフェニル)-2-メチルプロパン、1,1-ビス(2ーヒドロキシ-5-tert-ブチルフェニル)エタン、ビス(2-ヒドロキシ-5-フェニルフェニル)メタン、1,1-ビス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、ビス(2-メチル-4-ヒドロキシ-5-シクロヘキシルフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ペンタデカン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)ペンタデカン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)ペンタデカン、1,2-ビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)エタン、ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)メタン、2,2-ビス(3-スチリル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-(p-ニトロフェニル)エタン、ビス(3,5-ジフルオロ-4-ヒドロキシフェニル)メタン、ビス(3,5-ジフルオロ-4-ヒドロキシフェニル)フェニルメタン、ビス(3,5-ジフルオロ-4-ヒドロキシフェニル)ジフェニルメタン、ビス(3-フルオロ-4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5,5-テトラメチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,4-トリメチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチル-5-エチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロペンタン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス(3,5-ジフェニル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス(3-フェニル-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9、9-ビス(3-メチル-4-ヒドロキシフェニル)フルオレン、1,1-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)-3,3,5-トリメチル-シクロヘキサン、ビス(4-ヒドロキシフェニル)スルホン、ビス(2-ヒドロキシフェニル)スルホン、ビス(3,5-ジメチル-4-ヒドロキシフェニル)スルホン、ビス(3,5-ジエチル-4-ヒドロキシフェニル)スルホン、ビス(3-メチル-4-ヒドロキシフェニル)スルホン、ビス(3-エチル-4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(3,5-ジメチル-4-ヒドロキシフェニル)スルフィド、ビス(3,5-ジエチル-4-ヒドロキシフェニル)スルフィド、ビス(3-メチル-4-ヒドロキシフェニル)スルフィド、ビス(3-エチル-4-ヒドロキシフェニル)スルフィド、2,4-ジヒドロキシジフェニルスルホン、1,4-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、1,2-ジヒドロキシベンゼンが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
芳香族トリヒドロキシ成分(特にトリフェノール成分)としては、例えば、1,3,5-トリヒドロキシベンゼン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,3,3-トリ(4-ヒドロキシフェニル)ブタン、2-[ビス(4-ヒドロキシフェニル)メチル]フェノール、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、4-[ビス(4-ヒドロキシフェニル)メチル]-2-メトキシフェノール、トリス(3-メチル-4-ヒドロキシフェニル)メタン、4-[ビス(3-メチル-4ーヒドロキシフェニル)メチル]-2-メトキシフェノール、4-[ビス(3,5-ジメチル-4ーヒドロキシフェニル)メチル]-2-メトキシフェノール、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3-メチル-4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、トリス(3-メチル-4-ヒドロキシフェニル)メタン、トリス(3,5-ジメチル-4-ヒドロキシフェニル)メタン、2,6-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-4-メチルフェノール、2-[ビス(2-メチル-4-ヒドロキシ-5-シクロヘキシルフェニル)メチル]-フェノール、4-メチルフェニル-1,2,3-トリヒドロキシベンゼン、4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]-1,3-ジヒドロキシベンゼン、4-[ビス(3-メチル-4-ヒドロキシフェニル)メチル]フェノール、2-[ビス(2-メチル-4-ヒドロキシフェニル)メチル]フェノール、4-[ビス(4-ヒドロキシフェニル)メチル]-2-エトキシフェノール、2-[ビス(2,3-ジメチル-4-ヒドロキシフェニル)メチル]フェノール、4-[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]フェノール、3-[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]フェノール、2-[ビス(2-ヒドロキシ-3,6-ジメチルフェニル)メチル]フェノール、4-[ビス(2-ヒドロキシ-3,6-ジメチルフェニル)メチル]フェノール、4-[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-2-メトキシフェノール、2-[ビス(2,3,6-トリメチル-4-ヒドロキシフェニル)メチル]フェノール、2-[ビス(2,3,5-トリメチル-4-ヒドロキシフェニル)メチル]フェノール、3-[ビス(2,3,5-トリメチル-4-ヒドロキシフェニル)メチル]フェノール、4-[ビス(2,3,5-トリメチル-4-ヒドロキシフェニル)メチル]フェノール、3-[ビス(2-メチル-4-ヒドロキシ-5-シクロヘキシルフェニル)メチル]フェノール、4-[ビス(2-メチル-4-ヒドロキシ-5-シクロヘキシルフェニル)メチル]フェノール、4-[ビス(2-メチル-4-ヒドロキシ-5-シクロヘキシルフェニル)メチル]-2-メトキシフェノール、(2,4-ジヒドロキシフェニル)(4-ヒドロキシフェニル)ケトン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプテン-2、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、2,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプテン-3が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
芳香族テトラヒドロキシ成分(特にテトラフェノール成分)としては、例えば、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、1,1,2,2-テトラ(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,3,4,4’-テトラヒドロキシベンゾフェノン、4-[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-1,2-ジヒドロキシベンゼン、4-[ビス(2-メチル-4-ヒドロキシ-5-シクロヘキシルフェニル)メチル]-1,2-ジヒドロキシベンゼン、4-[(4-ヒドロキシフェニル)メチル]-1,2,3-トリヒドロキシベンゼン、4-[(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-1,2,3-トリヒドロキシベンゼン、1,4-ビス[1-ビス(3,4-ジヒドロキシフェニル)-1-メチルエチル]ベンゼン、4-[ビス(3-メチル-4-ヒドロキシフェニル)メチル]-1,2-ジヒドロキシベンゼン、3,6-[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-1,2-ジヒドロキシベンゼン、4-[ビス(2,3,5-トリメチル-4-ヒドロキシフェニル)メチル]-1,2-ジヒドロキシベンゼン、1,4-ジ[ビス(4-ヒドロキシフェニル)メチル]ベンゼン、1,4-ジ[ビス(3-メチル-4-ヒドロキシフェニル)メチル]ベンゼン、1,4-ジ[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]ベンゼン、テトラキス{メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}メタンが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
芳香族多価ヒドロキシ成分(特に多価フェノール成分)としては、例えば、1,4-ビス[1-ビス(2,3,4-トリヒドロキシフェニル)-1-メチルエチル]ベンゼン、2,4-ビス[(4-ヒドロキシフェニル)メチル]-1,3-ジヒドロキシベンゼン、2-[ビス(3-メチル-4-ヒドロキシフェニル)メチル]フェノール、4,6-[ビス(3,5-ジメチル-4-ヒドロキシフェニル)メチル]-1,2,3-トリヒドロキシベンゼン、2,4,6-トリス[(4-ヒドロキシフェニル)メチル]-1,3-ジヒドロキシベンゼン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族ポリヒドロキシ成分は、脂環族ジヒドロキシ成分および脂環族トリヒドロキシ成分を含む。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。脂環族ポリヒドロキシ成分のうち、溶融流動性および/または溶媒への溶解性が高く、加工性に優れる高分子化合物を得る観点からは、脂環族ジヒドロキシ成分が好ましい。
脂環族ジヒドロキシ成分としては、例えば、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、トリシクロデカンジメタノールが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族トリヒドロキシ成分としては、例えば、1,2,3-シクロヘキサントリオール、1,3,5-シクロヘキサントリオール、1,3,5-シクロヘキサントリメタノールが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族ポリヒドロキシ成分は、脂肪族ジヒドロキシ成分、脂肪族トリヒドロキシ成分、脂肪族テトラヒドロキシ成分および脂肪族多価ヒドロキシ成分を含む。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。脂肪族ポリヒドロキシ成分のうち、分子量がより高い高分子化合物を得る観点からは、脂肪族ジヒドロキシ成分が好ましい。
脂肪族ジヒドロキシ成分としては、例えば、エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ジエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコール、ポリエチレングリコール等の低分子量ポリオール類;数平均分子量が2000以下のポリエーテルジオール類;ダイマー酸のカルボキシル基を水酸基に転化したダイマージオール、およびそれらのアルキレンオキサイド付加物、カプロラクトン付加物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族トリヒドロキシ成分としては、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシアルキルメチル1,4-ブタンジオール、トリス(2-ヒドロキシエチル)イソシアヌレートおよびそれらのアルキレンオキサイド付加物、カプロラクトン付加物が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族テトラヒドロキシ成分としては、例えば、ペンタエリスリトール、ジトリメチロールプロパンおよびそれらのアルキレンオキサイド付加物、カプロラクトン付加物が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族多価ヒドロキシ成分としては、例えば、キシロース、アラビノース、リブロース、グルコース、フルクトース、マンノース、ガラクトース、エリトリット、トレイット、アラビット、リビット、キシリット、ソルビット、マンニット、シュクロース等の糖類およびそれらのアルキレンオキサイド付加物、カプロラクトン付加物;等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ポリエステル系化合物のポリヒドロキシ成分は、ポリエステル系化合物の耐熱性の観点から、芳香族ジヒドロキシ成分(特にジフェノール成分)および/または脂環族ジヒドロキシ成分を含むことが好ましく、より好ましくは芳香族ヒドロキシ成分(特にジフェノール成分)を含む。
ポリエステル系化合物のポリヒドロキシ成分は、ポリエステル系化合物の耐熱性のさらなる向上の観点から、芳香族ジヒドロキシ成分(特にジフェノール成分)および/または脂環族ジヒドロキシ成分のみを含むことが好ましく、より好ましくは芳香族ジヒドロキシ成分(特にジフェノール成分)のみを含む。
ポリエステル系化合物のポリヒドロキシ成分は、ポリエステル系化合物の耐熱性のさらなる向上の観点から、芳香族ジヒドロキシ成分(特にジフェノール成分)および/または脂環族ジヒドロキシ成分のみを含むことが好ましく、より好ましくは芳香族ジヒドロキシ成分(特にジフェノール成分)のみを含む。
ポリエステル系化合物のポリヒドロキシ成分は、汎用性の観点から、上記のポリヒドロキシ成分のうち、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)へキサフルオロプロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ジエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、ネオペンチグリコール、トリエチレングリコール、ポリエチレングリコール等の低分子量ポリオール類、数平均分子量が2000以下のポリエーテルジオール類、ダイマー酸のカルボキシル基を水酸基に転化したダイマージオール、トリメチロールプロパン、トリメチロールエタン、トリメチロールブタン、2-ヒドロキシアルキルメチル1,4-ブタンジオール、グリセリン、ペンタエリスリトール、ジトリメチロールプロパンからなる群(以下、群H11という)から選択される1種以上の化合物を含むことが好ましい。
ポリエステル系化合物のポリヒドロキシ成分は、汎用性のさらなる向上の観点から、上記のポリヒドロキシ成分のうち、上記群H11から選択される1種以上の化合物のみを含むことが好ましい。
ポリエステル系化合物のポリヒドロキシ成分は、汎用性のさらなる向上の観点から、上記のポリヒドロキシ成分のうち、上記群H11から選択される1種以上の化合物のみを含むことが好ましい。
ポリエステル系化合物の製造に際し、ジカルボン酸成分またはその酸ハロゲン化物成分とポリヒドロキシ成分とは通常、略等モル量で使用される。詳しくは、ジカルボン酸成分またはその酸ハロゲン化物成分に対して通常は0.8~1.2倍モル量、特に0.9~1.1倍モル量、好ましくは0.95~1.05倍モル量のポリヒドロキシ成分が使用される。
(ポリウレア系化合物)
原料化合物として、ジイソシアネート成分とジアミン成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリウレア系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(E)に対応する。
原料化合物として、ジイソシアネート成分とジアミン成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリウレア系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(E)に対応する。
ポリウレア系化合物を構成し得るジイソシアネート成分は、ポリイミド系化合物を構成し得るジイソシアネート成分と同様のジイソシアネート成分であり、詳しくはポリイミド系化合物を構成し得るジイソシアネート成分と同様の、芳香族ジイソシアネート成分、脂環族ジイソシアネート成分、および脂肪族ジイソシアネート成分を包含する。
ポリウレア系化合物のジイソシアネート成分は、ポリウレア系化合物の耐熱性の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分を含むことが好ましく、より好ましくは芳香族ジイソシアネート成分を含む。
ポリウレア系化合物のジイソシアネート成分は、ポリウレア系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリウレア系化合物のジイソシアネート成分は、ポリウレア系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリウレア系化合物のジイソシアネート成分は、汎用性の観点から、上記のジイソシアネート成分のうち、4,4’-ジフェニルメタンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、1,5-ジイソシアナトナフタレン、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネートからなる群(以下、群H12という)から選択される1種以上の化合物を含むことが好ましい。
ポリウレア系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H12から選択される1種以上の化合物のみを含むことが好ましい。
ポリウレア系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H12から選択される1種以上の化合物のみを含むことが好ましい。
ポリウレア系化合物を構成し得るジアミン成分は、ポリアミド酸系化合物等を構成し得るジアミン成分と同様のジアミン成分であり、詳しくはポリアミド酸系化合物等を構成し得るジアミン成分と同様の、芳香族ジアミン成分、脂環族ジアミン成分、および脂肪族ジアミン成分を包含する。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物の耐熱性の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分を含むことが好ましく、より好ましくは芳香族ジアミン成分を含む。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物の溶解性の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分を用いることが好ましい。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物に熱可塑性を付与する観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、メチル基、メチレン基、イソプロピリデン基、ケトン基、スルホニル基、フェニル基、またはシロキサン結合を有するジアミン成分を含むことが好ましい。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物に熱可塑性をより効果的に付与する観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、メチル基、メチレン基、イソプロピリデン基、ケトン基、スルホニル基、フェニル基、またはシロキサン結合を有するジアミン成分のみを含むことが好ましい。
ポリウレア系化合物のジアミン成分は、ポリウレア系化合物に熱可塑性をより効果的に付与する観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、メチル基、メチレン基、イソプロピリデン基、ケトン基、スルホニル基、フェニル基、またはシロキサン結合を有するジアミン成分のみを含むことが好ましい。
ポリウレア系化合物のジアミン成分は、汎用性の観点から、上記のジアミン成分のうち、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス(4-アミノフェニル)スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン、trans-1,4-シクロヘキサンジアミン、cis-1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、1,10-ジアミノデカン、1,12-ジアミノドデカン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(アミノメチル)シクロヘキサン、ダイマージアミンからなる群(以下、群H13という)から選択される1種以上の化合物を含むことが好ましい。
ポリウレア系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群H13から選択される1種以上の化合物のみを含むことが好ましい。
ポリウレア系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群H13から選択される1種以上の化合物のみを含むことが好ましい。
ポリウレア系化合物の製造に際し、ジイソシアネート成分とジアミン成分とは通常、略等モル量で使用される。詳しくは、ジイソシアネート成分に対して通常は0.8~1.2倍モル量、特に0.9~1.1倍モル量、好ましくは0.95~1.05倍モル量のジアミン成分が使用される。
(ポリウレタン系化合物)
原料化合物として、ジイソシアネート成分とポリヒドロキシ成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリウレタン系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(F)に対応する。
原料化合物として、ジイソシアネート成分とポリヒドロキシ成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ポリウレタン系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(F)に対応する。
ポリウレタン系化合物を構成し得るジイソシアネート成分は、ポリイミド系化合物を構成し得るジイソシアネート成分と同様のジイソシアネート成分であり、詳しくはポリイミド系化合物を構成し得るジイソシアネート成分と同様の、芳香族ジイソシアネート成分、脂環族ジイソシアネート成分、および脂肪族ジイソシアネート成分を包含する。
ポリウレタン系化合物のジイソシアネート成分は、ポリウレタン系化合物の耐熱性の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分を含むことが好ましく、より好ましくは芳香族ジイソシアネート成分を含む。
ポリウレタン系化合物のジイソシアネート成分は、ポリウレタン系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリウレタン系化合物のジイソシアネート成分は、ポリウレタン系化合物の耐熱性のさらなる向上の観点から、芳香族ジイソシアネート成分および/または脂環族ジイソシアネート成分のみを含むことが好ましく、より好ましくは芳香族ジイソシアネート成分のみを含む。
ポリウレタン系化合物のジイソシアネート成分は、汎用性の観点から、上記のジイソシアネート成分のうち、4,4’-ジフェニルメタンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、1,5-ジイソシアナトナフタレン、4,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネートからなる群(以下、群H14という)から選択される1種以上の化合物を含むことが好ましい。
ポリウレタン系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H14から選択される1種以上の化合物のみを含むことが好ましい。
ポリウレタン系化合物のジイソシアネート成分は、汎用性のさらなる向上の観点から、上記のジイソシアネート成分のうち、上記群H14から選択される1種以上の化合物のみを含むことが好ましい。
ポリウレタン系化合物を構成し得るポリヒドロキシ成分は、ポリエステル系化合物を構成し得るポリヒドロキシ成分と同様のポリヒドロキシ成分であり、詳しくはポリエステル系化合物を構成し得るポリヒドロキシ成分と同様の、芳香族ポリヒドロキシ成分(特にポリフェノール成分)、脂環族ポリヒドロキシ成分、および脂肪族ポリヒドロキシ成分を包含する。
ポリウレタン系化合物のポリヒドロキシ成分は、ポリウレタン系化合物の耐熱性の観点から、芳香族ポリヒドロキシ成分(特にポリフェノール成分)成分および/または脂環族ポリヒドロキシ成分を含むことが好ましく、より好ましくは芳香族ポリヒドロキシ成分(特にポリフェノール成分)を含む。
ポリウレタン系化合物のポリヒドロキシ成分は、ポリウレタン系化合物の耐熱性のさらなる向上の観点から、芳香族ポリヒドロキシ成分(特にポリフェノール成分)および/または脂環族ポリヒドロキシ成分のみを含むことが好ましく、より好ましくは芳香族ポリヒドロキシ成分(特にポリフェノール成分)のみを含む。
ポリウレタン系化合物のポリヒドロキシ成分は、ポリウレタン系化合物の耐熱性のさらなる向上の観点から、芳香族ポリヒドロキシ成分(特にポリフェノール成分)および/または脂環族ポリヒドロキシ成分のみを含むことが好ましく、より好ましくは芳香族ポリヒドロキシ成分(特にポリフェノール成分)のみを含む。
ポリウレタン系化合物のポリヒドロキシ成分は、ポリウレタン系化合物の柔軟性の観点から、上記のポリヒドロキシ成分のうち、脂肪族ポリヒドロキシ成分を用いることが好ましい。
ポリウレタン系化合物のポリヒドロキシ成分は、ポリウレタン系化合物の柔軟性のさらなる向上の観点から、上記のポリヒドロキシ成分のうち、脂肪族ポリヒドロキシ成分のみを用いることが好ましい。
ポリウレタン系化合物のポリヒドロキシ成分は、ポリウレタン系化合物の柔軟性のさらなる向上の観点から、上記のポリヒドロキシ成分のうち、脂肪族ポリヒドロキシ成分のみを用いることが好ましい。
ポリウレタン系化合物のポリヒドロキシ成分は、汎用性の観点から、上記のポリヒドロキシ成分のうち、2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)へキサフルオロプロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ジエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、ネオペンチグリコール、トリエチレングリコール、ポリエチレングリコール等の低分子量ポリオール類、数平均分子量が2000以下のポリエーテルジオール類、ダイマー酸のカルボキシル基を水酸基に転化したダイマージオール、トリメチロールプロパン、トリメチロールエタン、トリメチロールブタン、2-ヒドロキシアルキルメチル1,4-ブタンジオール、グリセリン、ペンタエリスリトール、ジトリメチロールプロパンからなる群(以下、群H15という)から選択される1種以上の化合物を含むことが好ましい。
ポリウレタン系化合物のポリヒドロキシ成分は、汎用性のさらなる向上の観点から、上記のポリヒドロキシ成分のうち、上記群H15から選択される1種以上の化合物のみを含むことが好ましい。
ポリウレタン系化合物のポリヒドロキシ成分は、汎用性のさらなる向上の観点から、上記のポリヒドロキシ成分のうち、上記群H15から選択される1種以上の化合物のみを含むことが好ましい。
ポリウレタン系化合物の製造に際し、ジイソシアネート成分とポリヒドロキシ成分とは通常、略等モル量で使用される。詳しくは、ジイソシアネート成分に対して通常は0.8~1.2倍モル量、特に0.9~1.1倍モル量、好ましくは0.95~1.05倍モル量のポリヒドロキシ成分が使用される。
[高分子化合物の製造方法]
本発明における高分子化合物の製造方法においては、所定の原料化合物を含む原料混合物を用いて、メカノケミカル効果により官能基同士の反応を行う。所定の原料化合物とは、上記した各高分子化合物を製造するための1種以上、特に2種以上の原料化合物(モノマー成分)であり、そのうち少なくとも1種以上の原料化合物は上記したように反応環境下において固体状態にある原料化合物である。詳しくは、そのような原料化合物を含む原料混合物を、粉砕処理に供することにより、メカノケミカル効果により官能基同士の反応を行う。原料化合物として、反応環境下において液体状態にある原料化合物を用いる場合、当該液体状態の原料化合物は、反応率のさらなる向上の観点から、原料混合物に含まれる少なくとも1種の固体状態にある原料化合物を粉砕する前もしくは粉砕しながら、混合または添加することが好ましい。このとき、液体状態の原料化合物は、反応率のさらなる向上の観点から、所定の添加量を2回以上に分割した量で、複数回に分けて添加されることが好ましく、より好ましくは滴下することが好ましい。
本発明における高分子化合物の製造方法においては、所定の原料化合物を含む原料混合物を用いて、メカノケミカル効果により官能基同士の反応を行う。所定の原料化合物とは、上記した各高分子化合物を製造するための1種以上、特に2種以上の原料化合物(モノマー成分)であり、そのうち少なくとも1種以上の原料化合物は上記したように反応環境下において固体状態にある原料化合物である。詳しくは、そのような原料化合物を含む原料混合物を、粉砕処理に供することにより、メカノケミカル効果により官能基同士の反応を行う。原料化合物として、反応環境下において液体状態にある原料化合物を用いる場合、当該液体状態の原料化合物は、反応率のさらなる向上の観点から、原料混合物に含まれる少なくとも1種の固体状態にある原料化合物を粉砕する前もしくは粉砕しながら、混合または添加することが好ましい。このとき、液体状態の原料化合物は、反応率のさらなる向上の観点から、所定の添加量を2回以上に分割した量で、複数回に分けて添加されることが好ましく、より好ましくは滴下することが好ましい。
原料化合物(特に反応環境下において固体状態にある原料化合物)は通常、0.001~20.0mm、特に0.01~10.0mmの最大長の粒子形状を有するものが使用される。最大長として累積50%径を用いた。詳しくは、最大長は、粒子径が0.5mm以上のものが含まれる場合は、JISZ8815に準拠し、JISZ8815に記載された篩分け試験による粒度分布から累積50%の粒径として測定した値とした。また、粒子径が0.5mm以上のものが含まれない場合は、レーザー回折・散乱法による粒度分布測定装置により求められた累積50%径を最大長とした。
高分子化合物の製造のための粉砕処理は、原料化合物に、圧縮、衝撃、せん断および/または摩砕などにより、機械的エネルギーを伝達できる装置であれば、あらゆる装置(例えば、いわゆる粉砕装置、混合装置または撹拌装置)によって達成されてもよい。例えば、粉砕処理は、ジョークラッシャー、ジャイレトリークラッシャー、コーンクラッシャー、インパクト(ハンマー)クラッシャー、ロールクラッシャー、カッターミル、自生粉砕機、スタンプミル、石臼型ミル、乳鉢、らいかい機、マラー型ミル、アイリッヒミル、リングミル、ローラーミル、ジェットミル、高速底部攪拌式混合機、高速回転式粉砕機(ハンマーミル、ピンミル)、容器駆動型ミル(回転ミル、振動ミル、遊星ミル)、媒体撹拌型ミル(ビーズミル)、高速流動型ミキサー、ヘンシェルミキサー等の装置を用いて行うことができる。このような装置のうち、代表的な装置としては、例えば、高速底部攪拌式混合機、高速回転式粉砕機、容器駆動型ミル、媒体攪拌型ミルが挙げられる。
高速底部攪拌式混合機は、円筒容器の底部に大型の高速回転羽根を配した構造で、回転羽根は上下2段になっているものが一般的な装置である。 高速回転式粉砕機は、回転するロータ上のハンマやピン、バーといった衝撃子に試料を衝突させて粉砕させる装置である。 容器駆動型ミル(回転ミル、振動ミル、遊星ミル)は、回転する容器の中にボールなどの媒体を入れて容器を回転させ、原料を粉砕する装置である。 媒体攪拌型ミルは、粉砕媒体としてボールやビーズを用いて、これらを衝突させてその間で試料を粉砕する装置である。
高分子化合物の製造のための反応条件(すなわち、混合・撹拌・粉砕条件)は、メカノケミカル効果が発現して所望の高分子化合物が得られる限り特に限定されない。
例えば、粒子形状を有する原料化合物(特に反応環境下において固体状態にある原料化合物)の上記した最大長をRm(μm)としたとき、平均粒子径が0.5×Rm以下、特に0.1×Rm以下になるまで、粉砕処理を行う。
詳しくは、例えば、媒体攪拌型ミルを用い、粉砕処理のための粉砕槽(またはタンク)の容量が4~6L(特に5L)であり、原料混合物の重量が0.5~1.5kg(特に1kg)、粉砕ボールの材質がアルミナであり、ボール径が10.0mm、投入重量が6.0kgである場合、回転速度は通常、115rpm以上、特に115~504rpmであり、粉砕時間は通常、1分間以上、特に1~60分間である。
また例えば、遊星ミルを用い、粉砕処理のための粉砕槽(またはタンク)の容量が0.08~0.5L(特に0.25L)であり、原料混合物の重量が4~6g(特に5g)、粉砕ボールの材質がジルコニアであり、ボール径が10.0mm、投入量が30個である場合、回転速度は通常、100rpm以上、特に100~600rpmであり、粉砕時間は通常、1分間以上、特に3~15分間である。
このような粉砕処理とその後の粉砕物の冷却処理(例えば放置冷却処理)を2回以上、例えば2~10回繰り返してもよい。これにより、メカノケミカル効果がより一層、効果的に発現し、反応率のさらなる向上が達成され、得られる高分子化合物の重合度が増大する。
高分子化合物の製造方法においては、反応条件(混合・撹拌・粉砕条件)を調整することにより、分子量を制御することができる。例えば、原料混合物の溶融が起こらない範囲内で、粉砕条件を強めるほど、分子量は増加する。得られる高分子化合物の分子量は特に限定されないが、例えば、平均重合度2以上(例えば、2~100)、特に2~20の高分子化合物を得ることができる。
本発明において粉砕処理により得られる高分子化合物は、1000μm以下、0.01~1000μm、特に0.1~100μmの平均粒子径(D50)を有することが好ましい。
高分子化合物の製造方法においては、分子量を調節するため、原料混合物に末端封鎖剤を含有させてもよい。末端封鎖剤としては、例えば、1官能性酸無水物系化合物、1官能性アミン系化合物、1官能性カルボン酸系化合物またはそのハロゲン化物、1官能性アルコール系化合物、1官能性フェノール系化合物、1官能性イソシアネート系化合物、1官能性エポキシ系化合物が等挙げられる。好ましい末端封鎖剤は、1官能性酸無水物系化合物、1官能性アミン系化合物、1官能性カルボン酸系化合物またはその酸ハロゲン化物、1官能性アルコール系化合物、1官能性フェノール系化合物である。
1官能性酸無水物としては以下のものが挙げられるが、何ら以下のものに限定されるものではない。無水フタル酸、無水マレイン酸、メチルマレイン酸無水物、2,3-ジメチルマレイン酸無水物、無水トリメリット酸、2,3-ベンゾフェノンジカルボン酸無水物、3,4-ベンゾフェノンジカルボン酸無水物、2,3-ジカルボキシフェニルフェニルエーテル無水物、2,3-ビフェニルジカルボン酸無水物、3,4-ビフェニルジカルボン酸無水物、2,3-ジカルボキシフェニルフェニルスルホン無水物、3,4-ジカルボキシフェニルフェニルスルホン無水物、2,3-ジカルボキシフェニルフェニルスルフィド無水物、1,2-ナフタレンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、1,8-ナフタレンジカルボン酸無水物、1,2-アントラセンジカルボン酸無水物、2,3-アントラセンジカルボン酸無水物、1,9-アントラセンジカルボン酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、4-エチニルフタル酸無水物、4-(1-プロピニル)フタル酸無水物、4-フェニルエチニルフタル酸無水物。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
1官能性アミンとしては以下のものが挙げられるが、何ら以下のものに限定されるものではない。アニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,3-キシリジン、2,4-キシリジン、2,5-キシリジン、2,6-キシリジン、3,4-キシリジン、3,5-キシリジン、o-クロロアニリン,m-クロロアニリン、p-クロロアニリン、o-ニトロアニリン、o-ブロモアニリン、m-ブロモアニリン、o-ニトロアニリン、m-ニトロアニリン、p-ニトロアニリン、o-アミノフェノール、m-アミノフェノール、p-アミノフェノール、o-アニリジン、m-アニリジン、p-アニリジン、o-フェネチジン、m-フェネチジン、p-フェネチジン、o-アミノベンツアルデヒド、m-アミノベンツアルデヒド、p-アミノベンツアルデヒド、o-アミノベンゾニトリル、m-アミノベンゾニトリル、p-アミノベンゾニトリル、2-アミノビフェニル、3-アミノビフェニル、4-アミノビフェニル、2-アミノフェノールフェニルエーテル、3-アミノフェノールフェニルエーテル、4-アミノフェノールフェニルエーテル、2-アミノベンゾフェノン、3-アミノベンゾフェノン、4-アミノベンゾフェノン、2-アミノフェノールフェニルスルフィド、3-アミノフェノールフェニルスルフィド、4-アミノフェノールフェニルスルフィド、2-アミノフェノールフェニルスルホン、3-アミノフェノールフェニルスルホン、4-アミノフェノールフェニルスルホン、α-ナフチルアミン、β-ナフチルアミン、1-アミノ-2-ナフトール、2-アミノ-1-ナフトール、4-アミノ-1-ナフトール、5-アミノ-1-ナフトール、5-アミノ-1-ナフトール、5-アミノ-2-ナフトール、7-アミノ-2-ナフトール、8-アミノ-2-ナフトール、1-アミノアントラセン、2-アミノアントラセン、9-アミノアントラセン、4-アミノスチレン、4-アミノスチルベン、3-エチニルアニリン、4-エチニルアニリン。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
1官能性カルボン酸としては以下のものが挙げられるが、何ら以下のものに限定されるものではない。酢酸、プロピオン酸、オクタン酸、シクロヘキサンカルボン酸、トルイル酸、フェニル酢酸、p-メトキシフェニル酢酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、安息香酸、p-tert-ブチル安息香酸。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
1官能性アルコールとしては以下のものが挙げられるが、何ら以下のものに限定されるものではない。メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、ペンタノール、ヘキサノール、ドデシルアルコール、ステアリルアルコール、オクチルアルコール、デシルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、2-フェノキシエタノール、ベンジルアルコール、フェネチルアルコール。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
1官能性フェノールとしては以下のものが挙げられるが、何ら以下のものに限定されるものではない。フェノール、o-クレゾール、m-クレゾール、p-クレゾール、p-tert-ブチルフェノール、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、o-メトキシフェノール、m-メトキシフェノール、p-メトキシフェノール、2,3,6-トリメチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2-フェニル-2-(4-ヒドロキシフェニル)プロパン、2-フェニル-2-(2-ヒドロキシフェニル)プロパン、2-フェニル-2-(3-ヒドロキシフェニル)プロパン。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる
本発明においては、混合槽、撹拌槽および粉砕槽の内壁への粒子の付着を抑制する、粒子の粉砕効率を高める、粒子へのエネルギー伝達効率を高めるために、原料混合物に助剤を含有させてもよい。助剤としては、水、アルコール、水溶性高分子、合成高分子、無機粒子、界面活性剤、ワックス類などを用いることができる。例えば、水、メタノール、エタノール、トリエチルアミン、トリエタノールアミン、セチルアルコールのヘキサン溶液;プロピルアルコール等の低級アルコール類;エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,3-ブチレングリコール、ジプロピレングリコール、1,2-ペンタンジオール、ポリエチレングリコール等のグリコール類;グリセリン、ジグリセリン、ポリグリセリン等のグリセロール類;メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース等のセルロース誘導体類;アルギン酸ソーダ、カラギーナン、クインスシードガム、寒天、ゼラチン、キサンタンガム、ローカストビーンガム、ペクチン、ジェランガム等の天然高分子類;ポリビニルアルコール、カルボシキビニルポリマー、アルキル付加カルボシキビニルポリマー、ポリアクリル酸ソーダ、ポリメタクリル酸ソーダ、ポリアクリル酸グリセリンエステル、ポリビニルピロリドン等の合成高分子類;カーボンブラック、酸化チタン、黒色酸化チタン、酸化セリウム、コンジョウ、群青、ベンガラ、酸化鉄、黄色酸化鉄、黒色酸化鉄、酸化亜鉛、酸化アルミニウム、無水ケイ酸、酸化マグネシウム、酸化ジルコニウム、炭酸マグネシウム、炭酸カルシウム、硫酸カルシウム、酸化クロム、水酸化クロム、カーボンブラック、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウムマグネシウム、マイカ、合成マイカ、セリサイト、タルク、カオリン、炭化珪素、硫酸バリウム、ベントナイト、スメクタイト、窒化硼素等の無機粉体類;オキシ塩化ビスマス、酸化チタン被覆マイカ、酸化鉄被覆マイカ、酸化鉄被覆マイカチタン、有機顔料被覆マイカチタン、アルミニウムパウダー等の光輝性粉体類;ナイロンパウダー、ポリメチルメタクリレートパウダー、アクリロニトリル-メタクリル酸共重合体パウダー、塩化ビニリデン-メタクリル酸共重合体パウダー、ポリエチレンパウダー、ポリスチレンパウダー、(ジメチコン/ビニルジメチコン)クロスポリマーパウダー、(ビニルジメチコン/メチコンシルセスキオキサン)クロスポリマーパウダー、(ジフェニルジメチコン/ビニルジフェニルジメチコン/シルセスキオキサン)クロスポリマーパウダー、ポリメチルシルセスキオキサンパウダー、ポリウレタンパウダー、ウールパウダー、シルクパウダー、N-アシルリジン等の有機粉体類;有機タール系顔料、有機色素のレーキ顔料等の色素粉体類;微粒子酸化チタン被覆マイカチタン、微粒子酸化亜鉛被覆マイカチタン、硫酸バリウム被覆マイカチタン、酸化チタン含有シリカ、酸化亜鉛含有シリカ等の複合粉体類;グリセリン脂肪酸エステルおよびそのアルキレングリコール付加物、ポリグリセリン脂肪酸エステルおよびそのアルキレングリコール付加物、プロピレングリコール脂肪酸エステルおよびそのアルキレングリコール付加物、ソルビタン脂肪酸エステルおよびそのアルキレングリコール付加物、ソルビトールの脂肪酸エステルおよびそのアルキレングリコール付加物、ポリアルキレングリコール脂肪酸エステル、ポリオキシアルキレン変性シリコーン、ポリオキシアルキレンアルキル共変性シリコーン等の非イオン性界面活性剤類;ステアリン酸、ラウリン酸のような脂肪酸及びそれらの無機または有機塩;アルキルベンゼン硫酸塩、アルキルスルホン酸塩、α-オレフィンスルホン酸塩、ジアルキルスルホコハク酸塩、α-スルホン化脂肪酸塩、アシルメチルタウリン塩、N-メチル-N-アルキルタウリン塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキル燐酸塩、ポリオキシエチレンアルキルエーテル燐酸塩、ポリオキシエチレンアルキルフェニルエーテル燐酸塩、N-アシル-N-アルキルアミノ酸塩等の陰イオン性界面活性剤類;アルキルアミン塩、ポリアミンおよびアルカノイルアミン脂肪酸誘導体、アルキルアンモニウム塩、脂環式アンモニウム塩等の陽イオン性界面活性剤類;リン脂質、N,N-ジメチル-N-アルキル-N-カルボキシメチルアンモニウムベタイン等の両性界面活性剤;パラフィンワックス、セレシンワックス、オゾケライト、マイクロクリスタリンワックス、モンタンワックス、フィッシャトロプスワックス、ポリエチレンワックス、流動パラフィン、スクワラン、ワセリン、ポリイソブチレン、ポリブテン等の炭化水素系類;カルナウバロウ、ミツロウ、ラノリンワックス、キャンデリラ等の天然ロウ類;2-エチルヘキサン酸グリセリル、ロジン酸ペンタエリトリットエステル、イソオクタン酸セチル、ミリスチン酸イソプロピル、トリイソステアリン酸ジグリセリル、ジペンタエリトリット脂肪酸エステル、リンゴ酸ジイソステアアリル、ダイマージリノール酸(フィトステリル/イソステアリル/セチル/ステアリル/ベヘニル)等のエステル類;ステアリン酸、ベヘニン酸、12-ヒドロキシステアリン酸等の脂肪酸類;セタノール、ステアリルアルコール、ベヘニルアルコール等の高級アルコール類;ラノリン脂肪酸イソプロピル、ラノリンアルコール等のラノリン誘導体類;N-ラウロイルーL-グルタミン酸ジ(コレステリル・ベヘニル・オクチルドデシル)等のアミノ酸誘導体類;パーフルオロポリエーテル、パーフルオロデカン、パーフルオロオクタン等のフッ素系油剤類等が挙げられる。これらを一種又は二種以上を用いることができる。
本発明の高分子化合物の製造方法においては、反応の促進のために、原料混合物に触媒を含有させてもよい。触媒として、高分子化合物の製造に有用なあらゆる触媒(酸触媒、塩基触媒、金属触媒、金属酸化物触媒、錯体触媒、硫化物、塩化物、金属有機塩、鉱酸など)が使用可能である。触媒の具体例として、例えば、パラトルエンスルホン酸、ジメチル硫酸、ジエチル硫酸、硫酸、塩酸、シュウ酸、酢酸、リン酸、亜リン酸、次亜リン酸またはそれらの塩、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、ピリジン、アンモニア、トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルエタノールアミン、アミノエタノールアミン、N-メチル-N,N-ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3-エトキシプロピルアミン、3-ジエチルアミノプロピルアミン、sec-ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、3-メトキシプロピルアミン、モノエタノールアミン、モルホリン、N-メチルモルホリン、N-エチルモルホリン、1-メチルイミダゾール、2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-エチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール化合物;三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・モノエチルアミン錯体、三フッ化ホウ素・トリエタノールアミン錯体、三塩化ホウ素・オクチルアミン錯体等のハロゲン化ホウ素等のルイス酸錯体;ジシアンジアミド誘導体;アンモニウム塩やホスホニウム塩等のオニウム塩;N,N-ジメチル-N’-(3-クロロ-4-メチルフェニル)尿素、N,N-ジメチル-N’-(4-クロロフェニル)尿素、N,N-ジメチル-N’-(3,4-ジクロロフェニル)尿素、N,N-ジメチル-N’-(3,4-ジクロロメチルフェニル)尿素、2,4-(N',N’-ジメチルウレイド)トルエン、1,4-ビス(N',N’-ジメチルウレイド)ベンゼン、トリ-n-ブチルベンジルアンモニウムハライド、テトラ-n-ブチルアンモニウムハライド、トリメチルベンジルアンモニウムハライド、トリエチルベンジルアンモニウムハライド等の第四級アンモニウム塩;およびトリ-n-ブチルベンジルホスホニウムハライド、テトラ-n-ブチルホスホニウムハライド、トリメチルベンジルホスホニウムハライド、トリエチルベンジルホスホニウムハライド等の第四級ホスホニウム塩、マグネシウム、マンガン、亜鉛、カルシウム、リチウム、チタン、アンチモン、ゲルマニウム等の酸化物、酢酸塩等が挙げられる。
メカノケミカル処理を終えた後の反応物の重合度は通常、原料化合物の種類および処理条件(粉砕条件)によって異なる。そのため、本発明の高分子化合物の製造方法は、得られた高分子化合物の重合度が低い場合において、加熱する工程を含むことができる。加熱工程は、粉砕処理(すなわちメカノケミカル処理)中および/または粉砕処理(すなわちメカノケミカル処理)後に行ってもよい。加熱工程により、官能基同士の反応(特に重合反応)を促進させることができ、結果としてさらなる高分子量化を達成することができる。粉砕処理中に加熱する場合には、原料混合物および/または生成する高分子化合物の溶融が起こらないような温度で加熱する必要がある。そのような温度は、例えば、40~350℃である。
粉砕処理後に加熱する場合における加熱温度としては、得られる高分子化合物の分解温度未満とすることが必要である。加熱温度は、例えば、90~400℃、特に120~400℃であってもよい。加熱時間については特に限定されず、例えば、0.5~16時間、特に0.5~8時間であってもよい。加熱は、窒素等の不活性ガス気流中で行ってもよく、加圧下または減圧下で行ってもよい。また、加熱は、静置して行ってもよく、撹拌しながら行ってもよい。
高分子化合物の製造方法において、粉砕処理後に行う加熱工程は、1段階で行ってもよいし、または多段階で行ってもよい。加熱工程を多段階で行うとは、加熱温度が異なる加熱工程を連続的に2回以上、好ましくは2~3回行うということである。加熱工程を多段階で行う場合、反応率および重合度のさらなる向上の観点から、第2加熱工程以降の加熱工程の加熱温度は、直前の加熱工程の加熱温度よりも高いことが好ましい。例えば、第2加熱工程の加熱温度は第1加熱工程の加熱温度より高いことが好ましい。また例えば、第3加熱工程の加熱温度は第2加熱工程の加熱温度より高いことが好ましい。
[低分子化合物]
低分子化合物は繰り返し単位を含有しない有機化合物のことである。繰り返し単位を含有しない有機化合物とは、当該有機化合物の構造式において、2回以上、連続して繰り返されている構造単位は1つも含まれていないという意味である。低分子化合物は、2つ以上、特に2つ~5つ、好ましくは2つ~3つの原料化合物分子が官能基同士の反応により1分子化して得られる有機化合物である。
低分子化合物は繰り返し単位を含有しない有機化合物のことである。繰り返し単位を含有しない有機化合物とは、当該有機化合物の構造式において、2回以上、連続して繰り返されている構造単位は1つも含まれていないという意味である。低分子化合物は、2つ以上、特に2つ~5つ、好ましくは2つ~3つの原料化合物分子が官能基同士の反応により1分子化して得られる有機化合物である。
低分子化合物を製造する場合、官能基同士の反応は、上記したように、縮合反応、付加反応またはこれらの複合反応等である。
このような反応により製造され得る低分子化合物として、例えば、ジイミドジカルボン酸系化合物、ジイミドトリカルボン酸系化合物、ジイミドテトラカルボン酸系化合物、モノイミドジカルボン酸系化合物、モノイミドトリカルボン酸系化合物、アミド基含有ジイミドジカルボン酸系化合物、アミド基含有モノイミドジカルボン酸系化合物、アミド基含有モノイミドテトラカルボン酸系化合物、エステル基含有モノイミドトリカルボン酸系化合物、ジイミドジヒドロキシ系化合物、ジアミドジカルボン酸系化合物、ジアミドテトラカルボン酸系化合物、ジエステルジカルボン酸化合物、ジエステルテトラカルボン酸系化合物、および硬化性ジイミド系化合物が挙げられる。
本発明においては、原料化合物の種類および比率を選択することにより、得られる低分子化合物の種類を制御することができる。低分子化合物を製造するための原料化合物は通常、1分子あたり、上記した官能基からなる群から選択される官能基を1つ以上、特に2つ~3つ有する原料化合物である。当該原料化合物の分子量は特に限定されず、通常は上記した範囲内の分子量を有する。
(ジイミドジカルボン酸系化合物)
原料化合物として、無水トリカルボン酸成分とジアミン成分とを用いるか、またはテトラカルボン酸二無水物成分とモノアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。ジイミドジカルボン酸系化合物は、1分子中、2つのイミド基および2つのカルボキシル基を有する化合物である。
原料化合物として、無水トリカルボン酸成分とジアミン成分とを用いるか、またはテトラカルボン酸二無水物成分とモノアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。ジイミドジカルボン酸系化合物は、1分子中、2つのイミド基および2つのカルボキシル基を有する化合物である。
無水トリカルボン酸成分とジアミン成分とを用いたジイミドジカルボン酸系化合物の製造に際し、ジアミン成分は、無水トリカルボン酸成分に対して通常は約0.5倍モル量、例えば0.1~0.7倍モル量、好ましくは0.3~0.7倍モル量、より好ましくは0.4~0.6倍モル量、さらに好ましくは0.45~0.55倍モル量で使用される。
ジイミドジカルボン酸系化合物を構成し得る無水トリカルボン酸成分は、ポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の無水トリカルボン成分であり、詳しくはポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、および脂肪族無水トリカルボン酸成分を包含する。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分を含む。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物の溶解性の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分を用いることが好ましい。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物の溶解性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物の溶解性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の非着色性の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分を含むことが好ましく、より好ましくは脂環族無水トリカルボン酸成分を含む。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは脂環族無水トリカルボン酸成分のみを含む。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは脂環族無水トリカルボン酸成分のみを含む。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性の観点から、上記の無水トリカルボン酸成分のうち、無水トリメリット酸、1,2,4-シクロヘキサントリカルボン酸無水物からなる群(以下、群L1という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L1から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L1から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジカルボン酸系化合物を構成し得るジアミン成分は、ポリアミド酸系化合物等を構成し得るジアミン成分と同様のジアミン成分であり、詳しくはポリアミド酸系化合物等を構成し得るジアミン成分と同様の、芳香族ジアミン成分、脂環族ジアミン成分、および脂肪族ジアミン成分を包含する。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分を含むことが好ましく、より好ましくは芳香族ジアミン成分を含む。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物の溶解性の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分を用いることが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の非着色性の観点から、上記のジアミン成分のうち、脂環族ジアミン成分および/または脂肪族ジアミン成分を含むことが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の非着色性のさらなる向上の観点から、上記のジアミン成分のうち、脂環族ジアミン成分および/または脂肪族ジアミン成分のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の非着色性のさらなる向上の観点から、上記のジアミン成分のうち、脂環族ジアミン成分および/または脂肪族ジアミン成分のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、汎用性の観点から、上記のジアミン成分のうち、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス(4-アミノフェニル)スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン、trans-1,4-シクロヘキサンジアミン、cis-1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、1,10-ジアミノデカン、1,12-ジアミノドデカン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(アミノメチル)シクロヘキサン、ダイマージアミンからなる群(以下、群L2という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群L2から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群L2から選択される1種以上の化合物のみを含むことが好ましい。
テトラカルボン酸二無水物成分とモノアミノモノカルボン酸成分とを用いたジイミドジカルボン酸系化合物の製造に際し、モノアミノモノカルボン酸成分は、テトラカルボン酸二無水物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、より好ましくは1.9~2.1倍モル量、さらに好ましくは1.95~2.05倍モル量で使用される。
ジイミドジカルボン酸系化合物を構成し得るテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等を構成し得るテトラカルボン酸二無水物成分と同様のテトラカルボン酸二無水物成分であり、詳しくはポリアミド酸系化合物等を構成し得るテトラカルボン酸二無水物成分と同様の、芳香族テトラカルボン酸二無水物成分、脂環族テトラカルボン酸二無水物成分、および脂肪族テトラカルボン酸二無水物成分を包含する。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分を含むことが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物の溶解性の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分を用いることが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分のみを用いることが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分のみを用いることが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分を含むことが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、汎用性の観点から、上記のテトラカルボン酸二無水物成分のうち、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、4,4’-(4、4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物からなる群(以下、群L3という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、汎用性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、上記群L3から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のテトラカルボン酸二無水物成分は、汎用性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、上記群L3から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分は、芳香族環を含有する芳香族モノアミノモノカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族モノアミノモノカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族モノアミノモノカルボン酸成分を包含する。モノアミノモノカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
芳香族モノアミノモノカルボン酸成分としては、例えば、フェニルアラニン、トリプトファン、チロキシン、チロシン、ジヨードチロシン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノ-3-メチル安息香酸、2-アミノ-4-メチル安息香酸、2-アミノ-5-メチル安息香酸、2-アミノ-6-メチル安息香酸、3-アミノ-2-メチル安息香酸、3-アミノ-4-メチル安息香酸、4-アミノ-2-メチル安息香酸、4-アミノ-3-メチル安息香酸、5-アミノ-2-メチル安息香酸、2-アミノ-3,4-ジメチル安息香酸、2-アミノ-4,5-ジメチル安息香酸、2-アミノ-4-メトキシ安息香酸、3-アミノ-4-メトキシ安息香酸、4-アミノ-2-メトキシ安息香酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族モノアミノモノカルボン酸成分としては、例えば、4-アミノシクロヘキサンカルボン酸、3-アミノシクロヘキサンカルボン酸、1-アミノシクロヘキサンカルボン酸、2-シクロヘキシルグリシン、3-シクロヘキシルアラニン、2-アミノシクロヘキサンカルボン酸、4-(アミノメチル)シクロヘキサンカルボン酸、ガバペチン、1-アミノシクロペンタンカルボン酸、1-アミノシクロブタンカルボン酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族モノアミノモノカルボン酸成分としては、例えば、グリシン、アラニン、バリン、ノルバリン、α-アミノ酪酸、γ-アミノ酪酸、β-アラニン、セリン、ロイシン、ノルロイシン、イソロイシン、トレオニン、プロリン、ヒドロキシプロリン、メチオニン、シスチン、システイン、5-アミノペンタン酸、6-アミノカプロン酸、7-アミノヘプタン酸、9-ノナノン酸、11-アミノウンデカン酸、12-アミノラウリン酸、17-アミノヘプタデカノン酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ジイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分を含む。
ジイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分のみを含む。
ジイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分のみを含む。
ジイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性の観点から、上記のモノアミノモノカルボン酸成分のうち、グリシン、アラニン、バリン、ノルバリン、α-アミノ酪酸、γ-アミノ酪酸、β-アラニン、セリン、ロイシン、イソロイシン、トレオニン、プロリン、ヒドロキシプロリン、メチオニン、システイン、5-アミノペンタン酸、6-アミノカプロン酸、7-アミノヘプタン酸、9-ノナノン酸、11-アミノウンデカン酸、12-アミノラウリン酸、17-アミノヘプタデカノン酸、フェニルアラニン、トリプトファン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノ-3-メチル安息香酸、2-アミノ-4-メチル安息香酸、2-アミノ-5-メチル安息香酸、2-アミノ-6-メチル安息香酸、3-アミノ-2-メチル安息香酸、3-アミノ-4-メチル安息香酸、4-アミノ-2-メチル安息香酸、4-アミノ-3-メチル安息香酸、5-アミノ-2-メチル安息香酸、2-アミノ-3,4-ジメチル安息香酸、2-アミノ-4,5-ジメチル安息香酸、2-アミノ-4-メトキシ安息香酸、3-アミノ-4-メトキシ安息香酸、4-アミノ-2-メトキシ安息香酸、6-アミノ-2-ナフタレンカルボン酸、3-アミノ-2-ナフタレンカルボン酸からなる群(以下、群L4という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、上記群L4から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、上記群L4から選択される1種以上の化合物のみを含むことが好ましい。
(ジイミドトリカルボン酸系化合物)
原料化合物として、無水トリカルボン酸成分とジアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドトリカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。ジイミドトリカルボン酸系化合物は、1分子中、2つのイミド基および3つのカルボキシル基を有する化合物である。
原料化合物として、無水トリカルボン酸成分とジアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドトリカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。ジイミドトリカルボン酸系化合物は、1分子中、2つのイミド基および3つのカルボキシル基を有する化合物である。
無水トリカルボン酸成分とジアミノモノカルボン酸とを用いたジイミドトリカルボン酸系化合物の製造に際し、ジアミノモノカルボン酸成分は、無水トリカルボン酸成分に対して通常は、約0.5倍モル量、例えば0.1~0.7倍モル量、好ましくは0.3~0.7倍モル量、より好ましくは0.4~0.6倍モル量、さらに好ましくは0.45~0.55倍モル量で使用される。
ジイミトリジカルボン酸系化合物を構成し得る無水トリカルボン酸成分は、ポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の無水トリカルボン成分であり、詳しくはポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、および脂肪族無水トリカルボン酸成分を包含する。
ジイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分を含む。
ジイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
ジイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、ジイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
ジイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性の観点から、上記の無水トリカルボン酸成分のうち、無水トリメリット酸、1,2,4-シクロヘキサントリカルボン酸無水物からなる群(以下、群L5という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L5から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L5から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドトリカルボン酸系化合物を構成し得るジアミノモノカルボン酸成分は、芳香族環を含有する芳香族ジアミノモノカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族ジアミノモノカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族ジアミノモノカルボン酸成分を包含する。ジアミノモノカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
芳香族ジアミノモノカルボン酸成分としては、例えば、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ビス(4-アミノフェノキシ)安息香酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族ジアミノモノカルボン酸成分としては、例えば、リジン、ヒドロキシリジン、アルギニン、ヒスチジン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ジイミドトリカルボン酸系化合物のジアミノモノカルボン酸成分は、ジイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族ジアミノモノカルボン酸成分および/または脂環族ジアミノモノカルボン酸成分を含むことが好ましく、より好ましくは芳香族ジアミノモノカルボン酸成分を含む。
ジイミドトリカルボン酸系化合物のジアミノモノカルボン酸成分は、ジイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジアミノモノカルボン酸成分および/または脂環族ジアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族ジアミノモノカルボン酸成分のみを含む。
ジイミドトリカルボン酸系化合物のジアミノモノカルボン酸成分は、ジイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジアミノモノカルボン酸成分および/または脂環族ジアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族ジアミノモノカルボン酸成分のみを含む。
ジイミドトリカルボン酸系化合物のジアミノモノカルボン酸成分は、ジイミドトリカルボン酸系化合物の溶解性の観点から、上記のジアミノモノカルボン酸成分のうち、脂肪族ジアミノモノカルボン酸成分を用いることが好ましい。
ジイミトリジカルボン酸系化合物のジアミノモノカルボン酸成分は、ジイミドトリカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のジアミノモノカルボン酸成分のうち、脂肪族ジアミノモノカルボン酸成分のみを用いることが好ましい。
ジイミトリジカルボン酸系化合物のジアミノモノカルボン酸成分は、ジイミドトリカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のジアミノモノカルボン酸成分のうち、脂肪族ジアミノモノカルボン酸成分のみを用いることが好ましい。
ジイミドトリカルボン酸系化合物のジアミノモノカルボン酸成分は、汎用性の観点から、上記のジアミノモノカルボン酸成分のうち、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ビス(4-アミノフェノキシ)安息香酸、リジン、ヒドロキシリジン、アルギニン、ヒスチジンからなる群(以下、群L6という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドトリカルボン酸系化合物のジアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のジアミノモノカルボン酸成分のうち、上記群L6から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドトリカルボン酸系化合物のジアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のジアミノモノカルボン酸成分のうち、上記群L6から選択される1種以上の化合物のみを含むことが好ましい。
(ジイミドテトラカルボン酸系化合物)
原料化合物として、テトラカルボン酸二無水物成分とモノアミノジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドテトラカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。ジイミドテトラカルボン酸系化合物は、1分子中、2つのイミド基および4つのカルボキシル基を有する化合物である。
原料化合物として、テトラカルボン酸二無水物成分とモノアミノジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドテトラカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。ジイミドテトラカルボン酸系化合物は、1分子中、2つのイミド基および4つのカルボキシル基を有する化合物である。
テトラカルボン酸二無水物成分とモノアミノジカルボン酸成分とを用いたジイミドテトラカルボン酸系化合物の製造に際し、モノアミノジカルボン酸成分は、テトラカルボン酸二無水物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、より好ましくは1.9~2.1倍モル量、さらに好ましくは1.95~2.05倍モル量で使用される。
ジイミドテトラカルボン酸系化合物を構成し得るテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等を構成し得るテトラカルボン酸二無水物成分と同様のテトラカルボン酸二無水物成分であり、詳しくはポリアミド酸系化合物等を構成し得るテトラカルボン酸二無水物成分と同様の、芳香族テトラカルボン酸二無水物成分、脂環族テトラカルボン酸二無水物成分、および脂肪族テトラカルボン酸二無水物成分を包含する。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族テトラカルボン酸二無水物成分を含むことが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物の溶解性の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分を用いることが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、フェニル基、イソプロピリデン基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分のみを用いることが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物の溶解性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、フェニル基、イソプロピリデン基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分のみを用いることが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分を含むことが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、汎用性の観点から、上記のテトラカルボン酸二無水物成分のうち、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、4,4’-(4、4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物からなる群(以下、群L7という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、汎用性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、上記群L7から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドテトラカルボン酸系化合物のテトラカルボン酸二無水物成分は、汎用性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、上記群L7から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分は、芳香族環を含有する芳香族モノアミノジカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族モノアミノジカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族モノアミノジカルボン酸成分を包含する。モノアミノジカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
芳香族モノアミノジカルボン酸成分としては、例えば、2-アミノテレフタル酸、2-アミノイソフタル酸、4-アミノイソフタル酸、5-アミノイソフタル酸、3-アミノフタル酸、4-アミノフタル酸、3-アミノ-1,2-ジカルボキシナフタレン、4-アミノ-1,2-ジカルボキシナフタレン、5-アミノ-1,2-ジカルボキシナフタレン、6-アミノ-1,2-ジカルボキシナフタレン、7-アミノ-1,2-ジカルボキシナフタレン、8-アミノ-1,2-ジカルボキシナフタレン、1-アミノ-2,3-ジカルボキシナフタレン、4-アミノ-2,3-ジカルボキシナフタレン、5-アミノ-2,3-ジカルボキシナフタレン、6-アミノ-2,3-ジカルボキシナフタレン、7-アミノ-2,3-ジカルボキシナフタレン、8-アミノ-2,3-ジカルボキシナフタレン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族モノアミノジカルボン酸成分としては、例えば、グルタミン酸、アスパラギン酸、2-アミノピメリン酸、α-アミノ-γ-オキシピメリン酸、2-アミノスベリン酸、2-アミノアジピン酸、α-アミノ-γ-オキシアジピン酸、α-アミノセバシン酸、カルボシステイン、アミノマロン酸、α-アミノ-α-メチルコハク酸、β-オキシグルタミン酸、γ-オキシグルタミン酸、γ-メチルグルタミン酸、γ-メチレングルタミン酸、γ-メチル-γ-オキシグルタミン酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ジイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分を含む。
ジイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分のみを含む。
ジイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、ジイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分のみを含む。
ジイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性の観点から、上記のモノアミノジカルボン酸成分のうち、2-アミノテレフタル酸、2-アミノイソフタル酸、4-アミノイソフタル酸、5-アミノイソフタル酸、3-アミノフタル酸、4-アミノフタル酸、グルタミン酸、アスパラギン酸、2-アミノピメリン酸、2-アミノスベリン酸、2-アミノアジピン酸、α-アミノセバシン酸、アミノマロン酸からなる群(以下、群L8という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノジカルボン酸成分のうち、上記群L8から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノジカルボン酸成分のうち、上記群L8から選択される1種以上の化合物のみを含むことが好ましい。
(モノイミドジカルボン酸系化合物)
原料化合物として、無水トリカルボン酸成分とモノアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりモノイミドジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。モノイミドジカルボン酸系化合物は、1分子中、1つのイミド基および2つのカルボキシル基を有する化合物である。
原料化合物として、無水トリカルボン酸成分とモノアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりモノイミドジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。モノイミドジカルボン酸系化合物は、1分子中、1つのイミド基および2つのカルボキシル基を有する化合物である。
無水トリカルボン酸成分とモノアミノモノカルボン酸成分とを用いたモノイミドジカルボン酸系化合物の製造に際し、モノアミノモノカルボン酸成分は、無水トリカルボン酸成分に対して通常は、約1倍モル量、例えば0.5~5.0倍モル量、好ましくは0.8~1.2倍モル量、より好ましくは0.9~1.1倍モル量、さらに好ましくは0.95~1.05倍モル量で使用される。
モノイミドジカルボン酸系化合物を構成し得る無水トリカルボン酸成分は、ポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の無水トリカルボン成分であり、詳しくはポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、および脂肪族無水トリカルボン酸成分を包含する。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分を含む。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドジカルボン酸系化合物の溶解性および非着色性の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分を用いることが好ましい。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドジカルボン酸系化合物の溶解性および非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドジカルボン酸系化合物の溶解性および非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性の観点から、上記の無水トリカルボン酸成分のうち、無水トリメリット酸、1,2,4-シクロヘキサントリカルボン酸無水物からなる群(以下、群L9という)から選択される1種以上の化合物を含むことが好ましい。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L9から選択される1種以上の化合物のみを含むことが好ましい。
モノイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L9から選択される1種以上の化合物のみを含むことが好ましい。
モノイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分は、ジイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分と同様のモノアミノモノカルボン酸成分であり、詳しくはジイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分と同様の、芳香族モノアミノモノカルボン酸成分、脂環族モノアミノモノカルボン酸成分、および脂肪族モノアミノモノカルボン酸成分を包含する。
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分を含む。
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分のみを含む。
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分のみを含む。
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、モノイミドジカルボン酸系化合物の溶解性および非着色性の観点から、上記のモノアミノモノカルボン酸成分のうち、脂環族モノアミノモノカルボン酸成分および/または脂肪族モノアミノモノカルボン酸成分を用いることが好ましい。
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、モノイミドジカルボン酸系化合物の溶解性および非着色性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、脂環族モノアミノモノカルボン酸成分および/または脂肪族モノアミノモノカルボン酸成分のみを用いることが好ましい。)
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、モノイミドジカルボン酸系化合物の溶解性および非着色性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、脂環族モノアミノモノカルボン酸成分および/または脂肪族モノアミノモノカルボン酸成分のみを用いることが好ましい。)
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性の観点から、上記のモノアミノモノカルボン酸成分のうち、グリシン、アラニン、バリン、ノルバリン、α-アミノ酪酸、γ-アミノ酪酸、β-アラニン、セリン、ロイシン、イソロイシン、トレオニン、プロリン、ヒドロキシプロリン、メチオニン、システイン、5-アミノペンタン酸、6-アミノカプロン酸、7-アミノヘプタン酸、9-ノナノン酸、11-アミノウンデカン酸、12-アミノラウリン酸、17-アミノヘプタデカノン酸、フェニルアラニン、トリプトファン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノ-3-メチル安息香酸、2-アミノ-4-メチル安息香酸、2-アミノ-5-メチル安息香酸、2-アミノ-6-メチル安息香酸、3-アミノ-2-メチル安息香酸、3-アミノ-4-メチル安息香酸、4-アミノ-2-メチル安息香酸、4-アミノ-3-メチル安息香酸、5-アミノ-2-メチル安息香酸、2-アミノ-3,4-ジメチル安息香酸、2-アミノ-4,5-ジメチル安息香酸、2-アミノ-4-メトキシ安息香酸、3-アミノ-4-メトキシ安息香酸、4-アミノ-2-メトキシ安息香酸、6-アミノ-2-ナフタレンカルボン酸、3-アミノ-2-ナフタレンカルボン酸からなる群(以下、群L10という)から選択される1種以上の化合物を含むことが好ましい。
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、上記群L10から選択される1種以上の化合物のみを含むことが好ましい。
モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、上記群L10から選択される1種以上の化合物のみを含むことが好ましい。
(モノイミドトリカルボン酸系化合物)
原料化合物として、無水トリカルボン酸成分とモノアミノジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりモノイミドトリカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。モノイミドトリカルボン酸系化合物は、1分子中、1つのイミド基および3つのカルボキシル基を有する化合物である。
原料化合物として、無水トリカルボン酸成分とモノアミノジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりモノイミドトリカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。モノイミドトリカルボン酸系化合物は、1分子中、1つのイミド基および3つのカルボキシル基を有する化合物である。
無水トリカルボン酸成分とモノアミノジカルボン酸成分とを用いたモノイミドトリカルボン酸系化合物の製造に際し、モノアミノジカルボン酸成分は、無水トリカルボン酸成分に対して通常は、約1倍モル量、例えば0.5~5.0倍モル量、好ましくは0.8~1.2倍モル量、より好ましくは0.9~1.1倍モル量、さらに好ましくは0.95~1.05倍モル量で使用される。
モノイミドトリカルボン酸系化合物を構成し得る無水トリカルボン酸成分は、ポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の無水トリカルボン成分であり、詳しくはポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、および脂肪族無水トリカルボン酸成分を包含する。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分を含む。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドトリカルボン酸系化合物の溶解性および非着色性の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分を用いることが好ましい。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドトリカルボン酸系化合物の溶解性および非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドトリカルボン酸系化合物の溶解性および非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性の観点から、上記の無水トリカルボン酸成分のうち、無水トリメリット酸、1,2,4-シクロヘキサントリカルボン酸無水物からなる群(以下、群L11という)から選択される1種以上の化合物を含むことが好ましい。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L11から選択される1種以上の化合物のみを含むことが好ましい。
モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L11から選択される1種以上の化合物のみを含むことが好ましい。
モノイミドトリカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分は、ジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分と同様のモノアミノジカルボン酸成分であり、詳しくはジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分と同様の、芳香族モノアミノジカルボン酸成分、脂環族モノアミノジカルボン酸成分、および脂肪族モノアミノジカルボン酸成分を包含する。
モノイミドトリカルボン酸系化合物のモノアミノジカルボン酸成分は、モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分を含む。
モノイミドトリカルボン酸系化合物のモノアミノジカルボン酸成分は、モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分のみを含む。
モノイミドトリカルボン酸系化合物のモノアミノジカルボン酸成分は、モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分のみを含む。
モノイミドトリカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性の観点から、上記のモノアミノジカルボン酸成分のうち、2-アミノテレフタル酸、2-アミノイソフタル酸、4-アミノイソフタル酸、5-アミノイソフタル酸、3-アミノフタル酸、4-アミノフタル酸、グルタミン酸、アスパラギン酸、2-アミノピメリン酸、2-アミノスベリン酸、2-アミノアジピン酸、α-アミノセバシン酸、アミノマロン酸からなる群(以下、群L12という)から選択される1種以上の化合物を含むことが好ましい。
モノイミドトリカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノジカルボン酸成分のうち、上記群L12から選択される1種以上の化合物のみを含むことが好ましい。
モノイミドトリカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノジカルボン酸成分のうち、上記群L12から選択される1種以上の化合物のみを含むことが好ましい。
(アミド基含有ジイミドジカルボン酸系化合物)
前記したジイミドジカルボン酸系化合物の製造方法において、原料化合物として、無水トリカルボン酸成分とジアミン成分とを用いて、メカノケミカル効果により官能基同士の反応を行うことにより、ジイミドジカルボン酸系化合物を製造するに際し、ジアミン成分としてアミド基を含有するジアミン成分を用い、アミド酸系化合物を製造し、イミド化反応を進めることによりアミド基含有ジイミドジカルボン酸系化合物を製造することができる。ジイミドジカルボン酸系化合物がアミド基を含有することにより、例えば、これを用いて得られる高分子化合物の溶解性や溶融時の流動性、耐熱性、機械的特性を向上させることができる。ここで官能基同士の反応は、前記した反応(A)に対応する。アミド基含有ジイミドジカルボン酸系化合物は、1分子中、1つ以上のアミド基、2つのイミド基および2つのカルボキシル基を有する化合物である。
前記したジイミドジカルボン酸系化合物の製造方法において、原料化合物として、無水トリカルボン酸成分とジアミン成分とを用いて、メカノケミカル効果により官能基同士の反応を行うことにより、ジイミドジカルボン酸系化合物を製造するに際し、ジアミン成分としてアミド基を含有するジアミン成分を用い、アミド酸系化合物を製造し、イミド化反応を進めることによりアミド基含有ジイミドジカルボン酸系化合物を製造することができる。ジイミドジカルボン酸系化合物がアミド基を含有することにより、例えば、これを用いて得られる高分子化合物の溶解性や溶融時の流動性、耐熱性、機械的特性を向上させることができる。ここで官能基同士の反応は、前記した反応(A)に対応する。アミド基含有ジイミドジカルボン酸系化合物は、1分子中、1つ以上のアミド基、2つのイミド基および2つのカルボキシル基を有する化合物である。
無水トリカルボン酸成分とアミド基含有ジアミン成分とを用いたアミド基含有ジイミドジカルボン酸系化合物の製造に際し、アミド基含有ジアミン成分は、無水トリカルボン酸成分に対して通常は約0.5倍モル量、例えば0.1~0.7倍モル量、好ましくは0.3~0.7倍モル量、より好ましくは0.4~0.6倍モル量、さらに好ましくは0.45~0.55倍モル量で使用される。
アミド基含有ジイミドジカルボン酸系化合物を構成し得る無水トリカルボン酸成分は、ポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の無水トリカルボン成分であり、詳しくはポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、および脂肪族無水トリカルボン酸成分を包含する。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、アミド基含有ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分を含む。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、アミド基含有ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、アミド基含有ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、アミド基含有ジイミドジカルボン酸系化合物の溶解性および非着色性の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分を用いることが好ましい。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドトリカルボン酸系化合物の溶解性および非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、モノイミドトリカルボン酸系化合物の溶解性および非着色性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、脂環族無水トリカルボン酸成分および/または脂肪族無水トリカルボン酸成分のみを用いることが好ましい。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性の観点から、上記の無水トリカルボン酸成分のうち、無水トリメリット酸、1,2,4-シクロヘキサントリカルボン酸無水物からなる群(以下、群L13という)から選択される1種以上の化合物を含むことが好ましい。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L13から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有ジイミドジカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L13から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有ジイミドジカルボン酸系化合物を構成し得るアミド基含有ジアミン成分は、アミド基および芳香族環を含有するアミド基含有芳香族ジアミン成分、アミド基および脂肪族環を含有するが芳香族環は含有しないアミド基含有脂環族ジアミン成分、およびアミド基を含有するが、芳香族環も脂環族環も含有しないアミド基含有脂肪族ジアミン成分を包含する。アミド基含有ジアミン成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
アミド基含有芳香族ジアミン成分としては、例えば、4,4’-ジアミノベンズアニリド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
アミド基含有ジイミドジカルボン酸系化合物のアミド基含有ジアミン成分は、アミド基含有ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、アミド基含有芳香族ジアミン成分および/またはアミド基含有脂環族ジアミン成分を含むことが好ましく、より好ましくはアミド基含有芳香族ジアミン成分を含む。
アミド基含有ジイミドジカルボン酸系化合物のアミド基含有ジアミン成分は、アミド基含有ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、アミド基含有芳香族ジアミン成分および/またはアミド基含有脂環族ジアミン成分のみを含むことが好ましく、より好ましくはアミド基含有芳香族ジアミン成分のみを含む。
アミド基含有ジイミドジカルボン酸系化合物のアミド基含有ジアミン成分は、アミド基含有ジイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、アミド基含有芳香族ジアミン成分および/またはアミド基含有脂環族ジアミン成分のみを含むことが好ましく、より好ましくはアミド基含有芳香族ジアミン成分のみを含む。
アミド基含有ジイミドジカルボン酸系化合物のアミド基含有ジアミン成分は、汎用性の観点から、上記のアミド基含有ジアミン成分のうち、4,4’-ジアミノベンズアニリドからなる群(以下、群L14という)から選択される1種以上の化合物を含むことが好ましい。
アミド基含有ジイミドジカルボン酸系化合物のアミド基含有ジアミン成分は、汎用性のさらなる向上の観点から、上記のアミド基含有ジアミン成分のうち、上記群L14から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有ジイミドジカルボン酸系化合物のアミド基含有ジアミン成分は、汎用性のさらなる向上の観点から、上記のアミド基含有ジアミン成分のうち、上記群L14から選択される1種以上の化合物のみを含むことが好ましい。
(アミド基含有モノイミドジカルボン酸系化合物)
原料化合物として、無水トリカルボン酸ハロゲン化物成分とモノアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりアミド基含有モノイミドジカルボン酸系化合物を製造することができる。モノイミドジカルボン酸系化合物がアミド基を含有することにより、例えば、これを用いて得られる高分子化合物の溶解性や溶融時の流動性、耐熱性、機械的特性を向上させることができる。ここで官能基同士の反応は、前記した反応(A)および(C)に対応する。アミド基含有モノイミドジカルボン酸系化合物は、1分子中、1つ以上のアミド基、1つのイミド基および2つのカルボキシル基を有する化合物である。
原料化合物として、無水トリカルボン酸ハロゲン化物成分とモノアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりアミド基含有モノイミドジカルボン酸系化合物を製造することができる。モノイミドジカルボン酸系化合物がアミド基を含有することにより、例えば、これを用いて得られる高分子化合物の溶解性や溶融時の流動性、耐熱性、機械的特性を向上させることができる。ここで官能基同士の反応は、前記した反応(A)および(C)に対応する。アミド基含有モノイミドジカルボン酸系化合物は、1分子中、1つ以上のアミド基、1つのイミド基および2つのカルボキシル基を有する化合物である。
無水トリカルボン酸ハロゲン化物成分とモノアミノモノカルボン酸成分とを用いたアミド基含有モノイミドジカルボン酸系化合物の製造に際し、モノアミノモノカルボン酸成分は、無水トリカルボン酸ハロゲン化物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、より好ましくは1.9~2.1倍モル量、さらに好ましくは1.95~2.05倍モル量で使用される。
アミド基含有モノイミドジカルボン酸系化合物を構成し得る無水トリカルボン酸ハロゲン化物成分は、ポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の無水トリカルボン成分の酸ハロゲン化物であり、詳しくはポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、および脂肪族無水トリカルボン酸成分の酸ハロゲン化物を包含する。
アミド基含有モノイミドジカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、アミド基含有モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分の酸ハロゲン化物および/または脂環族無水トリカルボン酸成分の酸ハロゲン化物を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分の酸ハロゲン化物を含む。
アミド基含有モノイミドジカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、アミド基含有モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分の酸ハロゲン化物および/または脂環族無水トリカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分の酸ハロゲン化物のみを含む。
アミド基含有モノイミドジカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、アミド基含有モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分の酸ハロゲン化物および/または脂環族無水トリカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分の酸ハロゲン化物のみを含む。
アミド基含有モノイミドジカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、汎用性の観点から、上記の無水トリカルボン酸ハロゲン化物成分のうち、無水トリメリット酸クロライドからなる群(以下、群L15という)から選択される1種以上の化合物を含むことが好ましい。
アミド基含有モノイミドジカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸ハロゲン化物成分のうち、上記群L15から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有モノイミドジカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸ハロゲン化物成分のうち、上記群L15から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有モノイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分は、ジイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分と同様のモノアミノモノカルボン酸成分であり、詳しくはジイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分と同様の、芳香族モノアミノモノカルボン酸成分、脂環族モノアミノモノカルボン酸成分、および脂肪族モノアミノモノカルボン酸成分を包含する。
アミド基含有モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、アミド基含有モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分を含む。
アミド基含有モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、アミド基含有モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分のみを含む。
アミド基含有モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、アミド基含有モノイミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分のみを含む。
アミド基含有モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性の観点から、上記のモノアミノモノカルボン酸成分のうち、グリシン、アラニン、バリン、ノルバリン、α-アミノ酪酸、γ-アミノ酪酸、β-アラニン、セリン、ロイシン、イソロイシン、トレオニン、プロリン、ヒドロキシプロリン、メチオニン、システイン、5-アミノペンタン酸、6-アミノカプロン酸、7-アミノヘプタン酸、9-ノナノン酸、11-アミノウンデカン酸、12-アミノラウリン酸、17-アミノヘプタデカノン酸、フェニルアラニン、トリプトファン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノ-3-メチル安息香酸、2-アミノ-4-メチル安息香酸、2-アミノ-5-メチル安息香酸、2-アミノ-6-メチル安息香酸、3-アミノ-2-メチル安息香酸、3-アミノ-4-メチル安息香酸、4-アミノ-2-メチル安息香酸、4-アミノ-3-メチル安息香酸、5-アミノ-2-メチル安息香酸、2-アミノ-3,4-ジメチル安息香酸、2-アミノ-4,5-ジメチル安息香酸、2-アミノ-4-メトキシ安息香酸、3-アミノ-4-メトキシ安息香酸、4-アミノ-2-メトキシ安息香酸、6-アミノ-2-ナフタレンカルボン酸、3-アミノ-2-ナフタレンカルボン酸からなる群(以下、群L16という)から選択される1種以上の化合物を含むことが好ましい。
アミド基含有モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、上記群L16から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有モノイミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、上記群L16から選択される1種以上の化合物のみを含むことが好ましい。
(アミド基含有モノイミドテトラカルボン酸系化合物)
原料化合物として、無水トリカルボン酸ハロゲン化物成分とモノアミノジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりアミド基含有モノイミドテトラカルボン酸系化合物を製造することができる。モノイミドテトラカルボン酸系化合物がアミド基を含有することにより、例えば、これを用いて得られる高分子化合物の溶解性や溶融時の流動性、耐熱性、機械的特性を向上させることができる。ここで官能基同士の反応は、前記した反応(A)および(C)に対応する。アミド基含有モノイミドテトラカルボン酸系化合物は、1分子中、1つ以上のアミド基、1つのイミド基および4つのカルボキシル基を有する化合物である。
原料化合物として、無水トリカルボン酸ハロゲン化物成分とモノアミノジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりアミド基含有モノイミドテトラカルボン酸系化合物を製造することができる。モノイミドテトラカルボン酸系化合物がアミド基を含有することにより、例えば、これを用いて得られる高分子化合物の溶解性や溶融時の流動性、耐熱性、機械的特性を向上させることができる。ここで官能基同士の反応は、前記した反応(A)および(C)に対応する。アミド基含有モノイミドテトラカルボン酸系化合物は、1分子中、1つ以上のアミド基、1つのイミド基および4つのカルボキシル基を有する化合物である。
無水トリカルボン酸ハロゲン化物成分とモノアミノジカルボン酸成分とを用いたアミド基含有モノイミドテトラカルボン酸系化合物の製造に際し、モノアミノジカルボン酸成分は、無水トリカルボン酸ハロゲン化物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、より好ましくは1.9~2.1倍モル量、さらに好ましくは1.95~2.05倍モル量で使用される。
アミド基含有モノイミドテトラカルボン酸系化合物を構成し得る無水トリカルボン酸ハロゲン化物成分は、ポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の無水トリカルボン成分の酸ハロゲン化物であり、詳しくはポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、および脂肪族無水トリカルボン酸成分の酸ハロゲン化物を包含する。
アミド基含有モノイミドテトラカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、アミド基含有モノイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分の酸ハロゲン化物および/または脂環族無水トリカルボン酸成分の酸ハロゲン化物を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分の酸ハロゲン化物を含む。
アミド基含有モノイミドテトラカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、アミド基含有モノイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分の酸ハロゲン化物および/または脂環族無水トリカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分の酸ハロゲン化物のみを含む。
アミド基含有モノイミドテトラカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、アミド基含有モノイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分の酸ハロゲン化物および/または脂環族無水トリカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分の酸ハロゲン化物のみを含む。
アミド基含有モノイミドテトラカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、汎用性の観点から、上記の無水トリカルボン酸ハロゲン化物成分のうち、無水トリメリット酸クロライドからなる群(以下、群L17という)から選択される1種以上の化合物を含むことが好ましい。
アミド基含有モノイミドテトラカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸ハロゲン化物成分のうち、上記群L17から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有モノイミドテトラカルボン酸系化合物の無水トリカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸ハロゲン化物成分のうち、上記群L17から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有モノイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分は、ジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分と同様のモノアミノジカルボン酸成分であり、詳しくはジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分と同様の、芳香族モノアミノジカルボン酸成分、脂環族モノアミノジカルボン酸成分、および脂肪族モノアミノジカルボン酸成分を包含する。
アミド基含有モノイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、アミド基含有モノイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分を含む。
アミド基含有モノイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、アミド基含有モノイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分のみを含む。
アミド基含有モノイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、アミド基含有モノイミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分のみを含む。
アミド基含有モノイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性の観点から、上記のモノアミノジカルボン酸成分のうち、2-アミノテレフタル酸、2-アミノイソフタル酸、4-アミノイソフタル酸、5-アミノイソフタル酸、3-アミノフタル酸、4-アミノフタル酸、グルタミン酸、アスパラギン酸、2-アミノピメリン酸、2-アミノスベリン酸、2-アミノアジピン酸、α-アミノセバシン酸、アミノマロン酸からなる群(以下、群L18という)から選択される1種以上の化合物を含むことが好ましい。
アミド基含有モノイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノジカルボン酸成分のうち、上記群L18から選択される1種以上の化合物のみを含むことが好ましい。
アミド基含有モノイミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノジカルボン酸成分のうち、上記群L18から選択される1種以上の化合物のみを含むことが好ましい。
(エステル基含有モノイミドトリカルボン酸系化合物)
原料化合物として、無水トリカルボン酸成分とモノヒドロキシモノアミン成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることにより、エステル基含有モノイミドトリカルボン酸系化合物を製造することができる。モノイミドトリカルボン酸系化合物がエステル基を含有することにより、例えば、これを用いて得られる高分子化合物の溶解性や溶融時の流動性、耐熱性、低吸水特性、機械的特性を向上させることができる。ここで官能基同士の反応は、前記した反応(A)および(G)に対応する。エステル基含有モノイミドトリカルボン酸系化合物は、1分子中、1つ以上のエステル基、1つのイミド基および3つのカルボキシル基を有する化合物である。
原料化合物として、無水トリカルボン酸成分とモノヒドロキシモノアミン成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることにより、エステル基含有モノイミドトリカルボン酸系化合物を製造することができる。モノイミドトリカルボン酸系化合物がエステル基を含有することにより、例えば、これを用いて得られる高分子化合物の溶解性や溶融時の流動性、耐熱性、低吸水特性、機械的特性を向上させることができる。ここで官能基同士の反応は、前記した反応(A)および(G)に対応する。エステル基含有モノイミドトリカルボン酸系化合物は、1分子中、1つ以上のエステル基、1つのイミド基および3つのカルボキシル基を有する化合物である。
無水トリカルボン酸成分とモノヒドロキシモノアミン成分とを用いたエステル基含有モノイミドトリカルボン酸系化合物の製造に際し、モノヒドロキシモノアミン成分は、無水トリカルボン酸成分に対して通常は、約0.5倍モル量、例えば0.1~0.7倍モル量、好ましくは0.3~0.7倍モル量、より好ましくは0.4~0.6倍モル量、さらに好ましくは0.45~0.55倍モル量で使用される。
エステル基含有モノイミドトリカルボン酸系化合物を構成し得る無水トリカルボン酸成分は、ポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の無水トリカルボン成分であり、詳しくはポリアミドイミド系化合物を構成し得る無水トリカルボン酸成分と同様の、芳香族無水トリカルボン酸成分、脂環族無水トリカルボン酸成分、および脂肪族無水トリカルボン酸成分を包含する。
エステル基含有モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、エステル基含有モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分を含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分を含む。
エステル基含有モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、エステル基含有モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
エステル基含有モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、エステル基含有モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族無水トリカルボン酸成分および/または脂環族無水トリカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族無水トリカルボン酸成分のみを含む。
エステル基含有モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性の観点から、上記の無水トリカルボン酸成分のうち、無水トリメリット酸、1,2,4-シクロヘキサントリカルボン酸無水物からなる群(以下、群L19という)から選択される1種以上の化合物を含むことが好ましい。
エステル基含有モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L19から選択される1種以上の化合物のみを含むことが好ましい。
エステル基含有モノイミドトリカルボン酸系化合物の無水トリカルボン酸成分は、汎用性のさらなる向上の観点から、上記の無水トリカルボン酸成分のうち、上記群L19から選択される1種以上の化合物のみを含むことが好ましい。
エステル基含有モノイミドトリカルボン酸系化合物を構成し得るモノヒドロキシモノアミン成分は、芳香族環を含有する芳香族モノヒドロキシモノアミン成分、脂肪族環を含有するが芳香族環は含有しない脂環族モノヒドロキシモノアミン成分、および芳香族環も脂環族環も含有しない脂肪族モノヒドロキシモノアミンを包含する。モノヒドロキシモノアミン成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
芳香族モノヒドロキシモノアミン成分としては、例えば、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノ-4-メチルフェノール、2-アミノ-5-メチルフェノール、3-アミノ-2-メチルフェノール、3-アミノ-4-メチルフェノール、4-アミノ-2-メチルフェノール、5-アミノ-2-メチルフェノール、4-アミノ-2-メトキシフェノール、3-ヒドロキシ-4-メトキシアニリン、4-アミノ-3,5-キシレノール、2-アミノベンジルアルコール、3-アミノベンジルアルコール、4-アミノベンジルアルコール、2-(4-アミノフェニル)エタノール、2-アミノ-4-フェニルフェノール、4-アミノ-2,6-ジフェニルフェノール等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族モノヒドロキシモノアミン成分としては、例えば、1-アミノ-1-シクロペンタンメタノール、2-アミノシクロヘキサノール、4-アミノシクロヘキサノール、4-(2-アミノエチル)シクロヘキサノール、1-アミノメチル-1-シクロヘキサノール、3-アミノメチル-3,5,5-トリメチルシクロヘキサノール、4-アミノシクロヘキサンエタノール等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族モノヒドロキシモノアミン成分としては、例えば、エタノールアミン、2-アミノ-1-プロパノール、3-アミノ-1-プロパノール、3-アミノ-2,2-ジメチル-1-プロパノール、2-アミノ-2-メチル-1-プロパノール、2-アミノ-1-ブタノール、3-アミノ-1-ブタノール、4-アミノ-1-ブタノール、4-アミノ-2-メチル-1-ブタノール、5-アミノ-1-ペンタノール、6-アミノ-1-ヘキサノール、3-ピロリジノール、2-ピロリジンメタノール、2-ピペリジンメタノール、3-ピペリジンメタノール、3-ヒドロキシピペリジン、4-ヒドロキシピペリジン、ピペラジンエタノール、4-アミノ-1-ピペラジンエタノール、8-アミノ-1-オクタノール、10-アミノ-1-デカノール、12-アミノ-1-ドデカノール等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
エステル基含有モノイミドトリカルボン酸系化合物のモノヒドロキシモノアミン成分は、エステル基含有モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノヒドロキシモノアミン成分および/または脂環族モノヒドロキシモノアミン成分を含むことが好ましく、より好ましくは芳香族モノヒドロキシモノアミン成分を含む。
エステル基含有モノイミドトリカルボン酸系化合物のモノヒドロキシモノアミン成分は、エステル基含有モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノヒドロキシモノアミン成分および/または脂環族モノヒドロキシモノアミン成分のみを含むことが好ましく、より好ましくは芳香族モノヒドロキシモノアミン成分のみを含む。
エステル基含有モノイミドトリカルボン酸系化合物のモノヒドロキシモノアミン成分は、エステル基含有モノイミドトリカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノヒドロキシモノアミン成分および/または脂環族モノヒドロキシモノアミン成分のみを含むことが好ましく、より好ましくは芳香族モノヒドロキシモノアミン成分のみを含む。
エステル基含有モノイミドトリカルボン酸系化合物のモノヒドロキシモノアミン成分は、汎用性の観点から、上記のモノヒドロキシモノアミン成分のうち、エタノールアミン、2-アミノ-1-プロパノール、3-アミノ-1-プロパノール、3-アミノ-2,2-ジメチル-1-プロパノール、2-アミノ-1-ブタノール、3-アミノ-1-ブタノール、4-アミノ-1-ブタノール、4-アミノ-2-メチル-1-ブタノール、5-アミノ-1-ペンタノール、6-アミノ-1-ヘキサノール、8-アミノ-1-オクタノール、10-アミノ-1-デカノール、12-アミノ-1-ドデカノール、2-アミノシクロヘキサノール、4-アミノシクロヘキサノール、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノ-4-メチルフェノール、2-アミノ-5-メチルフェノール、3-アミノ-2-メチルフェノール、3-アミノ-4-メチルフェノール、4-アミノ-2-メチルフェノール、5-アミノ-2-メチルフェノール、4-アミノ-2-メトキシフェノール、3-ヒドロキシ-4-メトキシアニリン、4-アミノ-3,5-キシレノール、2-アミノベンジルアルコール、3-アミノベンジルアルコール、4-アミノベンジルアルコール、2-(4-アミノフェニル)エタノール、2-アミノ-4-フェニルフェノール、4-アミノ-2,6-ジフェニルフェノールからなる群(以下、群L20という)から選択される1種以上の化合物を含むことが好ましい。
エステル基含有モノイミドトリカルボン酸系化合物のモノヒドロキシモノアミン成分は、汎用性のさらなる向上の観点から、上記のモノヒドロキシモノアミン成分のうち、上記群L20から選択される1種以上の化合物のみを含むことが好ましい。
エステル基含有モノイミドトリカルボン酸系化合物のモノヒドロキシモノアミン成分は、汎用性のさらなる向上の観点から、上記のモノヒドロキシモノアミン成分のうち、上記群L20から選択される1種以上の化合物のみを含むことが好ましい。
(ジイミドジヒドロキシ系化合物)
原料化合物として、テトラカルボン酸二無水物成分とモノヒドロキシモノアミン成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドジヒドロキシ系化合物(例えば、ジイミドジフェノール系化合物)を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。ジイミドジヒドロキシ系化合物は、1分子中、2つのイミド基および2つのヒドロキシル基を有する化合物であり、好ましくは1分子中、2つのイミド基および2つのフェノール性のヒドロキシル基を有するジイミドジフェノール系化合物を包含する。
原料化合物として、テトラカルボン酸二無水物成分とモノヒドロキシモノアミン成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることによりジイミドジヒドロキシ系化合物(例えば、ジイミドジフェノール系化合物)を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。ジイミドジヒドロキシ系化合物は、1分子中、2つのイミド基および2つのヒドロキシル基を有する化合物であり、好ましくは1分子中、2つのイミド基および2つのフェノール性のヒドロキシル基を有するジイミドジフェノール系化合物を包含する。
テトラカルボン酸二無水物成分とモノヒドロキシモノアミン成分とを用いたジイミドジヒドロキシ系化合物(例えば、ジイミドジフェノール系化合物)の製造に際し、モノヒドロキシモノアミン成分は、テトラカルボン酸二無水物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、好ましくは1.9~2.1倍モル量、より好ましくは1.95~2.05倍モル量で使用される。
ジイミドジヒドロキシ系化合物を構成し得るテトラカルボン酸二無水物成分は、ポリアミド酸系化合物等を構成し得るテトラカルボン酸二無水物成分と同様のテトラカルボン酸二無水物成分であり、詳しくはポリアミド酸系化合物等を構成し得るテトラカルボン酸二無水物成分と同様の、芳香族テトラカルボン酸二無水物成分、脂環族テトラカルボン酸二無水物成分、および脂肪族テトラカルボン酸二無水物成分を包含する。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族テトラカルボン酸二無水物成分を含むことが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物の溶解性の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分を用いることが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物の溶解性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分のみを用いることが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物の溶解性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、エーテル基、チオエーテル基、スルホニル基、ケトン基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、またはハロゲン原子(またはハロゲン原子含有置換基)を有するテトラカルボン酸二無水物成分のみを用いることが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分を含むことが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性および非着色性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、フッ素原子を含有する、芳香族テトラカルボン酸二無水物成分および/または脂環族テトラカルボン酸二無水物成分のみを含むことが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、汎用性の観点から、上記のテトラカルボン酸二無水物成分のうち、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、4,4’-(4、4’-イソプロピリデンジフェノキシ)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物からなる群(以下、群L21という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、汎用性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、上記群L21から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジヒドロキシ系化合物のテトラカルボン酸二無水物成分は、汎用性のさらなる向上の観点から、上記のテトラカルボン酸二無水物成分のうち、上記群L21から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジヒドロキシ系化合物を構成し得るモノヒドロキシモノアミン成分は、エステル基含有モノイミドトリカルボン酸系化合物を構成し得るモノヒドロキシモノアミン成分と同様のモノヒドロキシモノアミン成分であり、詳しくはエステル基含有モノイミドトリカルボン酸系化合物を構成し得るモノヒドロキシモノアミン成分と同様の、芳香族モノヒドロキシモノアミン成分、脂環族モノヒドロキシモノアミン成分、および脂肪族モノヒドロキシモノアミンを包含する。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノヒドロキシモノアミン成分および/または脂環族モノヒドロキシモノアミン成分を含むことが好ましく、より好ましくは芳香族モノヒドロキシモノアミン成分を含む。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノヒドロキシモノアミン成分および/または脂環族モノヒドロキシモノアミン成分のみを含むことが好ましく、より好ましくは芳香族モノヒドロキシモノアミン成分のみを含む。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、ジイミドジヒドロキシ系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノヒドロキシモノアミン成分および/または脂環族モノヒドロキシモノアミン成分のみを含むことが好ましく、より好ましくは芳香族モノヒドロキシモノアミン成分のみを含む。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、ジイミドジヒドロキシ系化合物の溶解性および非着色性の観点から、上記のモノヒドロキシモノアミン成分のうち、脂環族モノヒドロキシモノアミン成分および/または脂肪族モノヒドロキシモノアミン成分を用いることが好ましい。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、ジイミドジヒドロキシ系化合物の溶解性および非着色性のさらなる向上の観点から、上記のモノヒドロキシモノアミン成分のうち、脂環族モノヒドロキシモノアミン成分および/または脂肪族モノヒドロキシモノアミン成分のみを用いることが好ましい。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、ジイミドジヒドロキシ系化合物の溶解性および非着色性のさらなる向上の観点から、上記のモノヒドロキシモノアミン成分のうち、脂環族モノヒドロキシモノアミン成分および/または脂肪族モノヒドロキシモノアミン成分のみを用いることが好ましい。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、汎用性の観点から、上記のモノヒドロキシモノアミン成分のうち、エタノールアミン、2-アミノ-1-プロパノール、3-アミノ-1-プロパノール、3-アミノ-2,2-ジメチル-1-プロパノール、2-アミノ-1-ブタノール、3-アミノ-1-ブタノール、4-アミノ-1-ブタノール、4-アミノ-2-メチル-1-ブタノール、5-アミノ-1-ペンタノール、6-アミノ-1-ヘキサノール、8-アミノ-1-オクタノール、10-アミノ-1-デカノール、12-アミノ-1-ドデカノール、2-アミノシクロヘキサノール、4-アミノシクロヘキサノール、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノ-4-メチルフェノール、2-アミノ-5-メチルフェノール、3-アミノ-2-メチルフェノール、3-アミノ-4-メチルフェノール、4-アミノ-2-メチルフェノール、5-アミノ-2-メチルフェノール、4-アミノ-2-メトキシフェノール、3-ヒドロキシ-4-メトキシアニリン、4-アミノ-3,5-キシレノール、2-アミノベンジルアルコール、3-アミノベンジルアルコール、4-アミノベンジルアルコール、2-(4-アミノフェニル)エタノール、2-アミノ-4-フェニルフェノール、4-アミノ-2,6-ジフェニルフェノールからなる群(以下、群L22という)から選択される1種以上の化合物を含むことが好ましい。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、汎用性のさらなる向上の観点から、上記のモノヒドロキシモノアミン成分のうち、上記群L22から選択される1種以上の化合物のみを含むことが好ましい。
ジイミドジヒドロキシ系化合物のモノヒドロキシモノアミン成分は、汎用性のさらなる向上の観点から、上記のモノヒドロキシモノアミン成分のうち、上記群L22から選択される1種以上の化合物のみを含むことが好ましい。
(ジアミドジカルボン酸系化合物)
原料化合物として、ジカルボン酸ハロゲン化物成分とモノアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ジアミドジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(C)に対応する。ジアミドジカルボン酸系化合物は、1分子中、2つのアミド基および2つのカルボキシル基を有する化合物である。
原料化合物として、ジカルボン酸ハロゲン化物成分とモノアミノモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ジアミドジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(C)に対応する。ジアミドジカルボン酸系化合物は、1分子中、2つのアミド基および2つのカルボキシル基を有する化合物である。
ジカルボン酸ハロゲン化物成分とモノアミノモノカルボン酸成分とを用いたジアミドジカルボン酸系化合物の製造に際し、モノアミノモノカルボン酸成分は、ジカルボン酸ハロゲン化物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、好ましくは1.9~2.1倍モル量、より好ましくは1.95~2.05倍モル量で使用される。
ジアミドジカルボン酸系化合物を構成し得るジカルボン酸ハロゲン化物成分は、ポリアミド系化合物を構成し得るジカルボン酸成分と同様のジカルボン成分の酸ハロゲン化物であり、詳しくはポリアミド系化合物を構成し得るジカルボン酸成分と同様の、芳香族ジカルボン酸成分、脂環族ジカルボン酸成分、および脂肪族ジカルボン酸成分の酸ハロゲン化物を包含する。
ジアミドジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジアミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物を含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物を含む。
ジアミドジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジアミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物のみを含む。
ジアミドジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジアミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物のみを含む。
ジアミドジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性の観点から、上記のジカルボン酸ハロゲン化物成分のうち、テレフタル酸クロライド、イソフタル酸クロライド、1,4-シクロヘキサンジカルボン酸クロライド、1,3-シクロヘキサンジカルボン酸クロライドからなる群(以下、群L23という)から選択される1種以上の化合物を含むことが好ましい。
ジアミドジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸ハロゲン化物成分のうち、群L23から選択される1種以上の化合物のみを含むことが好ましい。
ジアミドジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸ハロゲン化物成分のうち、群L23から選択される1種以上の化合物のみを含むことが好ましい。
ジアミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分は、ジイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分と同様のモノアミノモノカルボン酸成分であり、詳しくはジイミドジカルボン酸系化合物を構成し得るモノアミノモノカルボン酸成分と同様の、芳香族モノアミノモノカルボン酸成分、脂環族モノアミノモノカルボン酸成分、および脂肪族モノアミノモノカルボン酸成分を包含する。
ジアミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、ジアミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分を含む。
ジアミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、ジアミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分のみを含む。
ジアミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、ジアミドジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノモノカルボン酸成分および/または脂環族モノアミノモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノモノカルボン酸成分のみを含む。
ジアミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性の観点から、上記のモノアミノモノカルボン酸成分のうち、グリシン、アラニン、バリン、ノルバリン、α-アミノ酪酸、γ-アミノ酪酸、β-アラニン、セリン、ロイシン、イソロイシン、トレオニン、プロリン、ヒドロキシプロリン、メチオニン、システイン、5-アミノペンタン酸、6-アミノカプロン酸、7-アミノヘプタン酸、9-ノナノン酸、11-アミノウンデカン酸、12-アミノラウリン酸、17-アミノヘプタデカノン酸、フェニルアラニン、トリプトファン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノ-3-メチル安息香酸、2-アミノ-4-メチル安息香酸、2-アミノ-5-メチル安息香酸、2-アミノ-6-メチル安息香酸、3-アミノ-2-メチル安息香酸、3-アミノ-4-メチル安息香酸、4-アミノ-2-メチル安息香酸、4-アミノ-3-メチル安息香酸、5-アミノ-2-メチル安息香酸、2-アミノ-3,4-ジメチル安息香酸、2-アミノ-4,5-ジメチル安息香酸、2-アミノ-4-メトキシ安息香酸、3-アミノ-4-メトキシ安息香酸、4-アミノ-2-メトキシ安息香酸、6-アミノ-2-ナフタレンカルボン酸、3-アミノ-2-ナフタレンカルボン酸からなる群(以下、群L24という)から選択される1種以上の化合物を含むことが好ましい。
ジアミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、上記群L24から選択される1種以上の化合物のみを含むことが好ましい。
ジアミドジカルボン酸系化合物のモノアミノモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノモノカルボン酸成分のうち、上記群L24から選択される1種以上の化合物のみを含むことが好ましい。
(ジアミドテトラカルボン酸系化合物)
原料化合物として、ジカルボン酸ハロゲン化物成分とモノアミノジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ジアミドテトラカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(C)に対応する。ジアミドテトラカルボン酸系化合物は、1分子中、2つのアミド基および4つのカルボキシル基を有する化合物である。
原料化合物として、ジカルボン酸ハロゲン化物成分とモノアミノジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ジアミドテトラカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(C)に対応する。ジアミドテトラカルボン酸系化合物は、1分子中、2つのアミド基および4つのカルボキシル基を有する化合物である。
ジカルボン酸ハロゲン化物成分とモノアミノジカルボン酸成分とを用いたジアミドテトラカルボン酸系化合物の製造に際し、モノアミノジカルボン酸成分は、ジカルボン酸ハロゲン化物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、より好ましくは1.9~2.1倍モル量、さらに好ましくは1.95~2.05倍モル量で使用される。
ジアミドテトラカルボン酸系化合物を構成し得るジカルボン酸ハロゲン化物成分は、ポリアミド系化合物を構成し得るジカルボン酸成分と同様のジカルボン酸成分の酸ハロゲン化物であり、詳しくはポリアミド系化合物を構成し得るジカルボン酸成分と同様の、芳香族ジカルボン酸成分、脂環族ジカルボン酸成分、および脂肪族ジカルボン酸成分の酸ハロゲン化物を包含する。
ジアミドテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジアミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物を含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物を含む。
ジアミドテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジアミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物のみを含む。
ジアミドテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジアミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物のみを含む。
ジアミドテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性の観点から、上記のジカルボン酸ハロゲン化物成分のうち、テレフタル酸クロライド、イソフタル酸クロライド、1,4-シクロヘキサンジカルボン酸クロライド、1,3-シクロヘキサンジカルボン酸クロライドからなる群(以下、群L25という)から選択される1種以上の化合物を含むことが好ましい。
ジアミドテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸ハロゲン化物成分のうち、群L25から選択される1種以上の化合物のみを含むことが好ましい。
ジアミドテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸ハロゲン化物成分のうち、群L25から選択される1種以上の化合物のみを含むことが好ましい。
ジアミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分は、ジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分と同様のモノアミノジカルボン酸成分であり、詳しくはジイミドテトラカルボン酸系化合物を構成し得るモノアミノジカルボン酸成分と同様の、芳香族モノアミノジカルボン酸成分、脂環族モノアミノジカルボン酸成分、および脂肪族モノアミノジカルボン酸成分を包含する。
ジアミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、ジアミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分を含む。
ジアミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、ジアミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分のみを含む。
ジアミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、ジアミドテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノアミノジカルボン酸成分および/または脂環族モノアミノジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノアミノジカルボン酸成分のみを含む。
ジアミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性の観点から、上記のモノアミノジカルボン酸成分のうち、2-アミノテレフタル酸、2-アミノイソフタル酸、4-アミノイソフタル酸、5-アミノイソフタル酸、3-アミノフタル酸、4-アミノフタル酸、グルタミン酸、アスパラギン酸、2-アミノピメリン酸、2-アミノスベリン酸、2-アミノアジピン酸、α-アミノセバシン酸、アミノマロン酸からなる群(以下、群L26という)から選択される1種以上の化合物を含むことが好ましい。
ジアミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノジカルボン酸成分のうち、上記群L26から選択される1種以上の化合物のみを含むことが好ましい。
ジアミドテトラカルボン酸系化合物のモノアミノジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノアミノジカルボン酸成分のうち、上記群L26から選択される1種以上の化合物のみを含むことが好ましい。
(ジエステルジカルボン酸系化合物)
原料化合物として、ジカルボン酸ハロゲン化物成分とモノヒドロキシモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ジエステルジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(D)に対応する。ジエステルジカルボン酸系化合物は、1分子中、2つのエステル基および2つのカルボキシル基を有する化合物である。
原料化合物として、ジカルボン酸ハロゲン化物成分とモノヒドロキシモノカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ジエステルジカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(D)に対応する。ジエステルジカルボン酸系化合物は、1分子中、2つのエステル基および2つのカルボキシル基を有する化合物である。
ジカルボン酸ハロゲン化物成分とモノヒドロキシモノカルボン酸成分とを用いたジエステルジカルボン酸系化合物の製造に際し、モノヒドロキシモノカルボン酸成分は、ジカルボン酸ハロゲン化物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、好ましくは1.9~2.1倍モル量、より好ましくは1.95~2.05倍モル量で使用される。
ジエステルジカルボン酸系化合物を構成し得るジカルボン酸ハロゲン化物成分は、ポリアミド系化合物を構成し得るジカルボン酸成分と同様のジカルボン成分の酸ハロゲン化物であり、詳しくはポリアミド系化合物を構成し得るジカルボン酸成分と同様の、芳香族ジカルボン酸成分、脂環族ジカルボン酸成分、および脂肪族ジカルボン酸成分の酸ハロゲン化物を包含する。
ジエステルジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジエステルジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物を含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物を含む。
ジエステルジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジエステルジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物のみを含む。
ジエステルジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジエステルジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物のみを含む。
ジエステルジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性の観点から、上記のジカルボン酸ハロゲン化物成分のうち、テレフタル酸クロライド、イソフタル酸クロライド、1,4-シクロヘキサンジカルボン酸クロライド、1,3-シクロヘキサンジカルボン酸クロライドからなる群(以下、群L27という)から選択される1種以上の化合物を含むことが好ましい。
ジエステルジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸ハロゲン化物成分のうち、群L27から選択される1種以上の化合物のみを含むことが好ましい。
ジエステルジカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸ハロゲン化物成分のうち、群L27から選択される1種以上の化合物のみを含むことが好ましい。
ジエステルジカルボン酸系化合物を構成し得るモノヒドロキシモノカルボン酸成分は、芳香族環を含有する芳香族モノヒドロキシモノカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族モノヒドロキシモノカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族モノヒドロキシモノカルボン酸成分を包含する。モノヒドロキシモノカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
芳香族モノヒドロキシモノカルボン酸成分としては、例えば、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、4-ヒドロキシ-2-メチル安息香酸、4-ヒドロキシ-3-メチル安息香酸、4-ヒドロキシ-3,5,-ジメチル安息香酸、2-ヒドロキシ-4-メトキシ安息香酸、3-ヒドロキシ-4-メトキシ安息香酸、4-ヒドロキシ-3-メトキシ安息香酸、4-ヒドロキシ-3,5-ジメトキシ安息香酸、4-ヒドロキシ-2,6-ジメトキシ安息香酸、3,5-ジ-tert-ブチル-4-ヒドロキシ安息香酸、3-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、5-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、7-ヒドロキシ-2-ナフトエ酸、4-(4-ヒドロキシフェニル)安息香酸、4-(3-ヒドロキシフェニル)安息香酸、3-(4-ヒドロキシフェニル)安息香酸、3-クロロ-4-ヒドロキシ安息香酸、3,5-ジクロロ-4-ヒドロキシ安息香酸、2,5-ジクロロ-4-ヒドロキシ安息香酸、3-フェニル-4-ヒドロキシ安息香酸、2-フェニル-4-ヒドロキシ安息香酸、3-フェノキシ-4-ヒドロキシ安息香酸6-ヒドロキシ-5-クロロ-2-ナフトエ酸、6-ヒドロキシ-5-メチル-2-ナフトエ酸、7-ヒドロキシ-5-メトキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル、3-ブロモ-4-ヒドロキシ安息香酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族モノヒドロキシモノカルボン酸成分としては、例えば、1-ヒドロキシ-1-シクロプロパンカルボン酸、2-ヒドロキシシクロヘキサンカルボン酸、3-ヒドロキシシクロヘキサンカルボン酸、4-ヒドロキシシクロヘキサンカルボン酸、3-(ヒドロキシメチル)シクロヘキサンカルボン酸、4-(ヒドロキシメチル)シクロヘキサンカルボン酸、3-ヒドロキシ-1-アダマンタンカルボン酸、3-ヒドロキシ-1-アダマンタン酢酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族モノヒドロキシモノカルボン酸成分としては、例えば、乳酸、ヒドロキシ酢酸、2-ヒドロキシブタン酸、2 -ヒドロキシペンタン酸、2-ヒドロキシヘキサン酸、2-ヒドロキシヘプタン酸、2-ヒドロキシオクタン酸、 2-ヒドロキシ-2-メチルプロパン酸、2-ヒドロキシ-2-メチルブタン酸、2-ヒドロキシ-2-エチルブタン酸、2-ヒドロキシ-2-メチルペンタン酸、2-ヒドロキシ-2-エチルペンタン酸、2-ヒドロキシ-2-プロピルペンタン酸、2-ヒドロキシ-2-ブチルペンタン酸、2-ヒドロキシ-2-メチルヘキサン酸、2-ヒドロキシ-2-エチルヘキサン酸、2-ヒドロキシ-2-プロピルヘキサン酸、2-ヒドロキシ-2-ブチルヘキサン酸、2-ヒドロキシ-2-ペンチルヘキサン酸、2-ヒドロキシ-2-メチルヘプタン酸、2-ヒドロキシ-2-メチルヘプタン酸、2-ヒドロキシ-2-エチルヘプタン酸、2-ヒドロキシ-2-プロピルヘプタン酸、2-ヒドロキシ-2-ブチルヘプタン酸、2-ヒドロキシ-2-ペンチルヘプタン酸、2-ヒドロキシ-2-ヘキシルヘプタン酸、2-ヒドロキシ-2-メチルオクタン酸、2-ヒドロキシ-2-エチルオクタン酸、2-ヒドロキシ-2-プロピルオクタン酸、2-ヒドロキシ-2-ブチルオクタン酸、2-ヒドロキシ-2-ペンチルオクタン酸、2-ヒドロキシ-2-ヘキシルオクタン酸、2-ヒドロキシ-2-ヘプチルオクタン酸、3-ヒドロキシプロパン酸、3-ヒドロキシブタン酸、3-ヒドロキシペンタン酸、3-ヒドロキシヘキサン酸、3-ヒドロキシヘプタン酸、3-ヒドロキシオクタン酸、3-ヒドロキシ-3-メチルブタン酸、3-ヒドロキシ-3-メチルペンタン酸、3-ヒドロキシ-3-エチルペンタン酸、3-ヒドロキシ-3-メチルヘキサン酸、3-ヒドロキシ-3-エチルヘキサン酸、3-ヒドロキシ-3-プロピルヘキサン酸、3-ヒドロキシ-3-メチルヘプタン酸、3-ヒドロキシ-3-エチルヘプタン酸、3-ヒドロキシ-3-プロピルヘプタン酸、3-ヒドロキシ-3-ブチルヘプタン酸、3-ヒドロキシ-3-メチルオクタン酸、3-ヒドロキシ-3-エチルオクタン酸、3-ヒドロキシ-3-プロピルオクタン酸、3-ヒドロキシ-3-ブチルオクタン酸、3-ヒドロキシ-3-ペンチルオクタン酸、4-ヒドロキシブタン酸、4-ヒドロキシペンタン酸、4-ヒドロキシヘキサン酸、4-ヒドロキシヘプタン酸、4-ヒドロキシオクタン酸、4-ヒドロキシ-4-メチルペンタン酸、4-ヒドロキシ-4-メチルヘキサン酸、4-ヒドロキシ-4-エチルヘキサン酸、4-ヒドロキシ-4-メチルヘプタン酸、4-ヒドロキシ-4-エチルヘプタン酸、4-ヒドロキシ-4-プロピルヘプタン酸、4-ヒドロキシ-4-メチルオクタン酸、4-ヒドロキシ-4-エチルオクタン酸、4-ヒドロキシ-4-プロピルオクタン酸、4-ヒドロキシ-4-ブチルオクタン酸、5-ヒドロキシペンタン酸、5-ヒドロキシヘキサン酸、5-ヒドロキシヘプタン酸、5-ヒドロキシオクタン酸、5-ヒドロキシ-5-メチルヘキサン酸、5-ヒドロキシ-5-メチルヘプタン酸、5-ヒドロキシ-5-エチルヘプタン酸、5-ヒドロキシ-5-メチルオクタン酸、5-ヒドロキシ-5-エチルオクタン酸、5-ヒドロキシ-5-プロピルオクタン酸、6-ヒドロキシヘキサン酸、6-ヒドロキシヘプタン酸、6-ヒドロキシオクタン酸、6-ヒドロキシ-6-メチルヘプタン酸、6-ヒドロキシ-6-メチルオクタン酸、6-ヒドロキシ-6-エチルオクタン酸、7-ヒドロキシヘプタン酸、7-ヒドロキシオクタン酸、7-ヒドロキシ-7-メチルオクタン酸、8-ヒドロキシオクタン酸、9-ヒドロキシノナン酸、10-ヒドロキシデカン酸、11-ヒドロキシウンデカン酸、10-ヒドロキシドデカン酸、12-ヒドロキシドデカン酸、13-ヒドロキシトリデカン酸、10-ヒドロキシテトラデカン酸、12-ヒドロキシテトラデカン酸、14-ヒドロキシテトラデカン酸、15-ヒドロキシペンタデカン酸、10-ヒドロキシヘキサデカン酸、12-ヒドロキシヘキサデカン酸、16-ヒドロキシヘキサデカン酸、17-ヒドロキシヘプタデカン酸、10-ヒドロキシオクタデカン酸、12-ヒドロキシオクタデカン酸、18-ヒドロキシオクタデカン酸、19-ヒドロキシノナデカン酸、12-ヒドロキシイコサン酸、14-ヒドロキシイコサン酸、20-ヒドロキシイコサン酸、21-ヒドロキシヘンイコサン酸、22-ヒドロキシドコサン酸、23-ヒドロキシトリコサン酸、2-ヒドロキシエトキシ酢酸、2-ヒドロキシプロポキシ酢酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ジエステルジカルボン酸系化合物のモノヒドロキシモノカルボン酸成分は、ジエステルジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノヒドロキシモノカルボン酸成分および/または脂環族モノヒドロキシモノカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノヒドロキシモノカルボン酸成分を含む。
ジエステルジカルボン酸系化合物のモノヒドロキシモノカルボン酸成分は、ジエステルジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノヒドロキシモノカルボン酸成分および/または脂環族モノヒドロキシモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノヒドロキシモノカルボン酸成分のみを含む。
ジエステルジカルボン酸系化合物のモノヒドロキシモノカルボン酸成分は、ジエステルジカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノヒドロキシモノカルボン酸成分および/または脂環族モノヒドロキシモノカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノヒドロキシモノカルボン酸成分のみを含む。
ジエステルジカルボン酸系化合物のモノヒドロキシモノカルボン酸成分は、汎用性の観点から、上記のモノヒドロキシモノカルボン酸成分のうち、2-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、4-ヒドロキシ安息香酸、4-ヒドロキシ-2-メチル安息香酸、4-ヒドロキシ-3-メチル安息香酸、4-ヒドロキシ-3,5,-ジメチル安息香酸、2-ヒドロキシ-4-メトキシ安息香酸、3-ヒドロキシ-4-メトキシ安息香酸、4-ヒドロキシ-3-メトキシ安息香酸、4-ヒドロキシ-3,5-ジメトキシ安息香酸、4-ヒドロキシ-2,6-ジメトキシ安息香酸、3,5-ジ-tert-ブチル-4-ヒドロキシ安息香酸、3-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-1-ナフトエ酸、5-ヒドロキシ-2-ナフトエ酸、6-ヒドロキシ-2-ナフトエ酸、7-ヒドロキシ-2-ナフトエ酸、4-(4-ヒドロキシフェニル)安息香酸、4-(3-ヒドロキシフェニル)安息香酸、3-(4-ヒドロキシフェニル)安息香酸、3-フェニル-4-ヒドロキシ安息香酸、2-フェニル-4-ヒドロキシ安息香酸、3-フェノキシ-4-ヒドロキシ安息香酸6-ヒドロキシ-5-クロロ-2-ナフトエ酸、6-ヒドロキシ-5-メチル-2-ナフトエ酸、7-ヒドロキシ-5-メトキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル、2-ヒドロキシシクロヘキサンカルボン酸、3-ヒドロキシシクロヘキサンカルボン酸、4-ヒドロキシシクロヘキサンカルボン酸、および脂肪族モノヒドロキシモノカルボン酸からなる群(以下、群L28という)から選択される1種以上の化合物を含むことが好ましい。
ジエステルジカルボン酸系化合物のモノヒドロキシモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノヒドロキシモノカルボン酸成分のうち、上記群L28から選択される1種以上の化合物のみを含むことが好ましい。
ジエステルジカルボン酸系化合物のモノヒドロキシモノカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノヒドロキシモノカルボン酸成分のうち、上記群L28から選択される1種以上の化合物のみを含むことが好ましい。
(ジエステルテトラカルボン酸系化合物)
原料化合物として、ジカルボン酸ハロゲン化物成分とモノヒドロキシジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ジエステルテトラカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(D)に対応する。ジエステルテトラカルボン酸系化合物は、1分子中、2つのエステル基および4つのカルボキシル基を有する化合物である。
原料化合物として、ジカルボン酸ハロゲン化物成分とモノヒドロキシジカルボン酸成分とを用い、メカノケミカル効果により官能基同士の反応を行うことにより、ジエステルテトラカルボン酸系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(D)に対応する。ジエステルテトラカルボン酸系化合物は、1分子中、2つのエステル基および4つのカルボキシル基を有する化合物である。
ジカルボン酸ハロゲン化物成分とモノヒドロキシジカルボン酸成分とを用いたジエステルテトラカルボン酸系化合物の製造に際し、モノヒドロキシジカルボン酸成分は、ジカルボン酸ハロゲン化物成分に対して通常は、約2倍モル量、例えば1.5~10.0倍モル量、好ましくは1.8~2.2倍モル量、より好ましくは1.9~2.1倍モル量、さらに好ましくは1.95~2.05倍モル量で使用される。
ジエステルテトラカルボン酸系化合物を構成し得るジカルボン酸ハロゲン化物成分は、ポリアミド系化合物を構成し得るジカルボン酸成分と同様のジカルボン成分の酸ハロゲン化物であり、詳しくはポリアミド系化合物を構成し得るジカルボン酸成分と同様の、芳香族ジカルボン酸成分、脂環族ジカルボン酸成分、および脂肪族ジカルボン酸成分の酸ハロゲン化物を包含する。
ジエステルテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジエステルテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物を含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物を含む。
ジエステルテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジエステルテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物のみを含む。
ジエステルテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、ジエステルテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジカルボン酸成分の酸ハロゲン化物および/または脂環族ジカルボン酸成分の酸ハロゲン化物のみを含むことが好ましく、より好ましくは芳香族ジカルボン酸成分の酸ハロゲン化物のみを含む。
ジエステルテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性の観点から、上記のジカルボン酸ハロゲン化物成分のうち、テレフタル酸クロライド、イソフタル酸クロライド、1,4-シクロヘキサンジカルボン酸クロライド、1,3-シクロヘキサンジカルボン酸クロライドからなる群(以下、群L29という)から選択される1種以上の化合物を含むことが好ましい。
ジエステルテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸ハロゲン化物成分のうち、群L29から選択される1種以上の化合物のみを含むことが好ましい。
ジエステルテトラカルボン酸系化合物のジカルボン酸ハロゲン化物成分は、汎用性のさらなる向上の観点から、上記のジカルボン酸ハロゲン化物成分のうち、群L29から選択される1種以上の化合物のみを含むことが好ましい。
ジエステルテトラカルボン酸系化合物を構成し得るモノヒドロキシジカルボン酸成分は、芳香族環を含有する芳香族モノヒドロキシジカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族モノヒドロキシジカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族モノヒドロキシジカルボン酸成分を包含する。モノヒドロキシジカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
芳香族モノヒドロキシジカルボン酸成分としては、例えば、2-ヒドロキシテレフタル酸、4-ヒドロキシイソフタル酸、5-ヒドロキシイソフタル酸、4-ヒドロキシフタル酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族モノヒドロキシジカルボン酸成分としては、例えば、2-ヒドロキシマロン酸、リンゴ酸、イソリンゴ酸、1-ヒドロキシプロパン-1,1-ジカルボン酸、1-ヒドロキシブタン-1,1-ジカルボン酸、1-ヒドロキシ-2-メチルプロパン-1,1-ジカルボン酸、2-ヒドロキシエタン-1,1-ジカルボン酸、2-ヒドロキシ-3-メチルプロパン-1,1-ジカルボン酸、1-(ヒドロキシメチル)プロパン-1,1-ジカルボン酸、α-メチルリンゴ酸、α-ヒドロキシ-α’-メチルコハク酸、α-ヒドロキシ-α’,α’-ジメチルコハク酸、α-ヒドロキシ-α,α’-ジメチルコハク酸、α-ヒドロキシ-α’-エチルコハク酸、α-ヒドロキシ-α’-メチル-α-エチルコハク酸、トリメチルリンゴ酸、α-ヒドロキシグルタル酸、β-ヒドロキシグルタル酸、β-ヒドロキシ-β-メチルグルタル酸、β-ヒドロキシ-α,α-ジメチルグルタル酸、α-ヒドロキシスベリン酸、α-ヒドロキシセバシン酸等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
ジエステルテトラカルボン酸系化合物のモノヒドロキシジカルボン酸成分は、ジエステルテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族モノヒドロキシジカルボン酸成分および/または脂環族モノヒドロキシジカルボン酸成分を含むことが好ましく、より好ましくは芳香族モノヒドロキシモノカルボン酸成分を含む。
ジエステルテトラカルボン酸系化合物のモノヒドロキシジカルボン酸成分は、ジエステルテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノヒドロキシジカルボン酸成分および/または脂環族モノヒドロキシジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノヒドロキシモノカルボン酸成分のみを含む。
ジエステルテトラカルボン酸系化合物のモノヒドロキシジカルボン酸成分は、ジエステルテトラカルボン酸系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族モノヒドロキシジカルボン酸成分および/または脂環族モノヒドロキシジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族モノヒドロキシモノカルボン酸成分のみを含む。
ジエステルテトラカルボン酸系化合物のモノヒドロキシジカルボン酸成分は、汎用性の観点から、上記のモノヒドロキシジカルボン酸成分のうち、2-ヒドロキシテレフタル酸、4-ヒドロキシイソフタル酸、5-ヒドロキシイソフタル酸、4-ヒドロキシフタル酸からなる群(以下、群L30という)から選択される1種以上の化合物を含むことが好ましい。
ジエステルテトラカルボン酸系化合物のモノヒドロキシジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノヒドロキシジカルボン酸成分のうち、上記群L30から選択される1種以上の化合物のみを含むことが好ましい。
ジエステルテトラカルボン酸系化合物のモノヒドロキシジカルボン酸成分は、汎用性のさらなる向上の観点から、上記のモノヒドロキシジカルボン酸成分のうち、上記群L30から選択される1種以上の化合物のみを含むことが好ましい。
(硬化性イミド系化合物)
原料化合物として、不飽和無水ジカルボン酸成分とジアミン成分とを用いる、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることにより硬化性イミド系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。硬化性イミド系化合物とは、1分子中、1つ以上(特に1つ~4つ)のイミド基および1つ以上の硬化性不飽和結合(二重結合および/または三重結合)を含有する熱硬化性または光硬化性の化合物のことである。
原料化合物として、不飽和無水ジカルボン酸成分とジアミン成分とを用いる、メカノケミカル効果により官能基同士の反応を行うことにより、アミド酸系化合物を製造し、イミド化反応を進めることにより硬化性イミド系化合物を製造することができる。ここで官能基同士の反応は、前記した反応(A)に対応する。硬化性イミド系化合物とは、1分子中、1つ以上(特に1つ~4つ)のイミド基および1つ以上の硬化性不飽和結合(二重結合および/または三重結合)を含有する熱硬化性または光硬化性の化合物のことである。
不飽和無水ジカルボン酸成分とジアミン成分とを用いた硬化性イミド系化合物の製造に際し、ジアミン成分は、不飽和無水ジカルボン酸成分に対して通常は、約0.5倍モル量、例えば0.1~0.7倍モル量、好ましくは0.3~0.7倍モル量、より好ましくは0.4~0.6倍モル量、さらに好ましくは0.45~0.55倍モル量で使用される。
硬化性イミド系化合物を構成し得る不飽和無水ジカルボン酸成分は、1分子中、付加反応(重合)性またはラジカル反応(重合)性の二重結合および/または三重結合を1つ以上(特に1つ)および酸無水物基を1つ以上(特に1つ)有する化合物であれば、特に限定されない)。
不飽和無水ジカルボン酸成分は、芳香族環を含有する芳香族不飽和無水ジカルボン酸成分、脂肪族環を含有するが芳香族環は含有しない脂環族不飽和無水ジカルボン酸成分、および芳香族環も脂環族環も含有しない脂肪族不飽和無水ジカルボン酸成分を包含する。不飽和無水ジカルボン酸成分は、エーテル基および/またはチオエーテル基を含有してもよいし、かつ/または水素原子の1つ以上がハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)に置換されていてもよい。
芳香族不飽和無水ジカルボン酸成分としては、例えば、4-フェニルエチニルフタル酸無水物、4-(1-プロピニル)フタル酸無水物、4-エチニルフタル酸無水物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂環族不飽和無水ジカルボン酸成分としては、例えば、5-ノルボルネン-2,3-ジカルボン酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、2,5-ノルボルナジエン-2,3-ジカルボン酸無水物、等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
脂肪族不飽和無水ジカルボン酸成分としては、例えば、無水マレイン酸、メチルマレイン酸無水物、2,3‐ジメチルマレイン酸無水物、2-フェニルマレイン酸無水物、2-(ジフェニル)マレイン酸無水物、2-(1-ヒドロキシヘキシル)マレイン酸無水物、2-(4-メチルフェニル)マレイン酸無水物、2-[2-(ヘキシルオキシ)エチル]マレイン酸無水物、2,5-ジヒドロ-2,5-ジオキソ-3-フラン酢酸、2,5-ジヒドロ-2,5-ジオキソフラン-3-カルボン酸メチル等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合物として用いることもできる。
硬化性イミド系化合物の不飽和無水ジカルボン酸成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族不飽和無水ジカルボン酸成分および/または脂環族不飽和無水ジカルボン酸成分を含むことが好ましく、より好ましくは芳香族不飽和無水ジカルボン酸成分を含む。
硬化性イミド系化合物の不飽和無水ジカルボン酸成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族不飽和無水ジカルボン酸成分および/または脂環族不飽和無水ジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族不飽和無水ジカルボン酸成分のみを含む。
硬化性イミド系化合物の不飽和無水ジカルボン酸成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族不飽和無水ジカルボン酸成分および/または脂環族不飽和無水ジカルボン酸成分のみを含むことが好ましく、より好ましくは芳香族不飽和無水ジカルボン酸成分のみを含む。
硬化性イミド系化合物の不飽和無水ジカルボン酸成分は、汎用性の観点から、上記の不飽和無水ジカルボン酸成分のうち、4-フェニルエチニルフタル酸無水物、4-(1-プロピニル)フタル酸無水物、4-エチニルフタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、無水マレイン酸、メチルマレイン酸無水物からなる群(以下、群L31という)から選択される1種以上の化合物を含むことが好ましい。
硬化性イミド系化合物の不飽和無水ジカルボン酸成分は、汎用性のさらなる向上の観点から、上記の群L31から選択される1種以上の化合物のみを含むことが好ましい。
硬化性イミド系化合物の不飽和無水ジカルボン酸成分は、汎用性のさらなる向上の観点から、上記の群L31から選択される1種以上の化合物のみを含むことが好ましい。
硬化性イミド系化合物を構成し得るジアミン成分は、ポリアミド酸系化合物等を構成し得るジアミン成分と同様のジアミン成分であり、詳しくはポリアミド酸系化合物等を構成し得るジアミン成分と同様の、芳香族ジアミン成分、脂環族ジアミン成分、および脂肪族ジアミン成分を包含する。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分を含むことが好ましく、より好ましくは芳香族ジアミン成分を含む。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の耐熱性のさらなる向上の観点から、芳香族ジアミン成分および/または脂環族ジアミン成分のみを含むことが好ましく、より好ましくは芳香族ジアミン成分のみを含む。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物の溶解性の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分を用いることが好ましい。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物の溶解性のさらなる向上の観点から、上記のジアミン成分のうち、エーテル基、チオエーテル基、スルホニル基、スルホン酸基、メチル基、メチレン基、イソプロピリデン基、フェニル基、フルオレン構造、ハロゲン原子(またはハロゲン原子含有置換基)、またはシロキサン結合を有するジアミン成分のみを用いることが好ましい。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の非着色性および溶解性の観点から、上記のジアミン成分のうち、脂環族ジアミン成分および/または脂肪族ジアミン成分を含むことが好ましい。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の非着色性および溶解性のさらなる向上の観点から、上記のジアミン成分のうち、脂環族ジアミン成分および/または脂肪族ジアミン成分のみを含むことが好ましい。
硬化性イミド系化合物のジアミン成分は、硬化性イミド系化合物または、例えばこれを用いて得られる高分子化合物の非着色性および溶解性のさらなる向上の観点から、上記のジアミン成分のうち、脂環族ジアミン成分および/または脂肪族ジアミン成分のみを含むことが好ましい。
硬化性イミド系化合物のジアミン成分は、汎用性の観点から、上記のジアミン成分のうち、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミン、m-フェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス(4-アミノフェニル)スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレン、trans-1,4-シクロヘキサンジアミン、cis-1,4-シクロヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)、1,10-ジアミノデカン、1,12-ジアミノドデカン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(アミノメチル)シクロヘキサン、ダイマージアミンからなる群(以下、群L32という)から選択される1種以上の化合物を含むことが好ましい。
硬化性イミド系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群L32から選択される1種以上の化合物のみを含むことが好ましい。
硬化性イミド系化合物のジアミン成分は、汎用性のさらなる向上の観点から、上記のジアミン成分のうち、上記群L32から選択される1種以上の化合物のみを含むことが好ましい。
[低分子化合物の製造方法]
本発明における低分子化合物の製造方法においては、所定の原料化合物を含む原料混合物を用いて、メカノケミカル効果により官能基同士の反応を行う。所定の原料化合物とは、上記した各低分子化合物を製造するための2種以上の原料化合物(モノマー成分)であり、そのうち少なくとも1種以上の原料化合物は上記したように反応環境下において固体状態にある原料化合物である。詳しくは、そのような原料化合物を含む原料混合物を、粉砕処理に供することにより、メカノケミカル効果により官能基同士の反応を行う。原料化合物として、反応環境下において液体状態にある原料化合物を用いる場合、当該液体状態の原料化合物は、反応率のさらなる向上の観点から、原料混合物に含まれる少なくとも1種の固体状態にある原料化合物を粉砕する前もしくは粉砕しながら、混合または添加することが好ましい。このとき、液体状態の原料化合物は、反応率のさらなる向上の観点から、所定の添加量を2回以上に分割した量で、複数回に分けて添加されることが好ましく、より好ましくは滴下することが好ましい。
本発明における低分子化合物の製造方法においては、所定の原料化合物を含む原料混合物を用いて、メカノケミカル効果により官能基同士の反応を行う。所定の原料化合物とは、上記した各低分子化合物を製造するための2種以上の原料化合物(モノマー成分)であり、そのうち少なくとも1種以上の原料化合物は上記したように反応環境下において固体状態にある原料化合物である。詳しくは、そのような原料化合物を含む原料混合物を、粉砕処理に供することにより、メカノケミカル効果により官能基同士の反応を行う。原料化合物として、反応環境下において液体状態にある原料化合物を用いる場合、当該液体状態の原料化合物は、反応率のさらなる向上の観点から、原料混合物に含まれる少なくとも1種の固体状態にある原料化合物を粉砕する前もしくは粉砕しながら、混合または添加することが好ましい。このとき、液体状態の原料化合物は、反応率のさらなる向上の観点から、所定の添加量を2回以上に分割した量で、複数回に分けて添加されることが好ましく、より好ましくは滴下することが好ましい。
原料化合物(特に反応環境下において固体状態にある原料化合物)は通常、0.001~20.0mm、特に0.01~10.0mmの最大長の粒子形状を有するものが使用される。最大長として累積50%径を用いた。詳しくは、最大長は、粒子径が0.5mm以上のものが含まれる場合は、JISZ8815に準拠し、JISZ8815に記載された篩分け試験による粒度分布から累積50%の粒径として測定した値とした。また、粒子径が0.5mm以上のものが含まれない場合は、レーザー回折・散乱法による粒度分布測定装置により求められた累積50%径を最大長とした。
低分子化合物の製造のための粉砕処理は、原料化合物に、圧縮、衝撃、せん断および/または摩砕などにより、機械的エネルギーを伝達できる装置であれば、あらゆる装置(例えば、いわゆる粉砕装置、混合装置または撹拌装置)によって達成されてもよい。例えば、粉砕処理は、高分子化合物の製造方法の説明で例示した装置と同様の装置を用いて行うことができる。低分子化合物の製造のための代表的な装置として、例えば、高分子化合物の製造方法の説明で例示した装置と同様の高速底部攪拌式混合機、高速回転式粉砕機、容器駆動型ミル、媒体攪拌型ミルが挙げられる。
低分子化合物の製造のための反応条件(すなわち、混合・撹拌・粉砕条件)は、メカノケミカル効果が発現して所望の低分子化合物が得られる限り特に限定されない。
例えば、粒子形状を有する原料化合物(特に反応環境下において固体状態にある原料化合物)の上記した最大長をRm(μm)としたとき、平均粒子径が0.5×Rm以下、特に0.1×Rm以下になるまで、粉砕処理を行う。
詳しくは、例えば、媒体攪拌型ミルを用い、粉砕処理のための粉砕槽(またはタンク)の容量が4~6L(特に5L)であり、原料混合物の重量が0.5~1.5kg(特に1kg)、粉砕ボールの材質がアルミナであり、ボール径が10.0mm、投入重量が6.0kgである場合、回転速度は通常、115rpm以上、特に115~504rpmであり、粉砕時間は通常、0.5分間以上、特に0.5~60分間である。
また例えば、高速底部攪拌式混合機を用い、粉砕処理のための混合槽(またはタンク)の容量が9~150L(特に20L)であり、原料混合物の重量が4~6kg(特に5kg)である場合、回転速度は通常、100rpm以上、特に500~5000rpmであり、粉砕時間は通常、1分間以上、特に1~60分間である。
また例えば、高速回転式粉砕機を用い、粉砕処理のための粉砕槽(またはタンク)の容量が75~200mL(特に150mL)であり、原料混合物の重量が50~250g(特に100g)である場合、回転速度は通常、3000rpm以上、特に3000~14000rpmであり、粉砕時間は通常、1分間以上、特に2~10分間である。
このような粉砕処理とその後の粉砕物の冷却処理(例えば放置冷却処理)を2回以上、例えば2~10回繰り返してもよい。これにより、メカノケミカル効果がより一層、効果的に発現し、反応率のさらなる向上が達成される。
低分子化合物の製造方法においては、反応条件(粉砕条件)を調整することにより、反応率を向上させることができる。例えば、原料混合物の溶融が起こらない範囲内で、粉砕条件を強めるほど、反応率は増加する。
本発明において粉砕処理により得られる低分子化合物は、1000μm以下、0.01~1000μm、特に0.1~100μmの平均粒子径(D90)を有することが好ましい。
本発明においては、混合槽、撹拌槽および粉砕槽の内壁への粒子の付着を抑制する、粒子の粉砕効率を高める、粒子へのエネルギー伝達効率を高めるために、原料混合物に助剤を含有させてもよい。助剤としては、高分子化合物の製造方法の説明で例示した助剤と同様の助剤が挙げられる。
本発明の低分子化合物の製造方法においては、反応の促進のために、原料混合物に触媒を含有させてもよい。触媒として、低分子化合物の製造に有用なあらゆる触媒(酸触媒、塩基触媒、金属触媒、金属酸化物触媒、錯体触媒、硫化物、塩化物、金属有機塩、鉱酸など)が使用可能である。触媒の具体例として、例えば、パラトルエンスルホン酸、ジメチル硫酸、ジエチル硫酸、硫酸、塩酸、シュウ酸、酢酸、リン酸、亜リン酸、次亜リン酸またはそれらの塩、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、ピリジン、アンモニア、トリエチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルエタノールアミン、アミノエタノールアミン、N-メチル-N,N-ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3-エトキシプロピルアミン、3-ジエチルアミノプロピルアミン、sec-ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、3-メトキシプロピルアミン、モノエタノールアミン、モルホリン、N-メチルモルホリン、N-エチルモルホリン、1-メチルイミダゾール、2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-エチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール化合物;三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・モノエチルアミン錯体、三フッ化ホウ素・トリエタノールアミン錯体、三塩化ホウ素・オクチルアミン錯体等のハロゲン化ホウ素等のルイス酸錯体;ジシアンジアミド誘導体;アンモニウム塩やホスホニウム塩等のオニウム塩;N,N-ジメチル-N’-(3-クロロ-4-メチルフェニル)尿素、N,N-ジメチル-N’-(4-クロロフェニル)尿素、N,N-ジメチル-N’-(3,4-ジクロロフェニル)尿素、N,N-ジメチル-N’-(3,4-ジクロロメチルフェニル)尿素、2,4-(N',N’-ジメチルウレイド)トルエン、1,4-ビス(N',N’-ジメチルウレイド)ベンゼン、トリ-n-ブチルベンジルアンモニウムハライド、テトラ-n-ブチルアンモニウムハライド、トリメチルベンジルアンモニウムハライド、トリエチルベンジルアンモニウムハライド等の第四級アンモニウム塩;およびトリ-n-ブチルベンジルホスホニウムハライド、テトラ-n-ブチルホスホニウムハライド、トリメチルベンジルホスホニウムハライド、トリエチルベンジルホスホニウムハライド等の第四級ホスホニウム塩、マグネシウム、マンガン、亜鉛、カルシウム、リチウム、チタン、アンチモン、ゲルマニウム等の酸化物、酢酸塩等が挙げられる。
本発明の低分子化合物の製造方法は、加熱する工程を含むことができる。これにより、官能基同士の反応を促進させることができ、結果としてさらに高い反応率を達成することができる。加熱工程は、粉砕処理(すなわちメカノケミカル処理)中および/または粉砕処理(すなわちメカノケミカル処理)後に行ってもよい。粉砕処理中に加熱する場合には、原料混合物および/または生成する低分子化合物の溶融が起こらないような温度で加熱する必要がある。そのような温度は、例えば、40~350℃である。
粉砕処理後に加熱する場合における加熱温度としては、得られる低分子化合物の分解温度未満とすることが必要である。加熱温度は、例えば、90~400℃、特に90~350℃であってもよい。加熱時間については特に限定されず、例えば、0.5~16時間、特に0.5~8時間であってもよい。加熱は、窒素等の不活性ガス気流中で行ってもよく、加圧下または減圧下で行ってもよい。また、加熱は、静置して行ってもよく、撹拌しながら行ってもよい。
低分子化合物の製造方法において、粉砕処理後に行う加熱工程は、1段階で行ってもよいし、または多段階で行ってもよい。加熱工程を多段階で行うとは、加熱温度が異なる加熱工程を連続的に2回以上、好ましくは2~3回行うということである。加熱工程を多段階で行う場合、反応率のさらなる向上の観点から、第2加熱工程以降の加熱工程の加熱温度は、直前の加熱工程の加熱温度よりも高いことが好ましい。例えば、第2加熱工程の加熱温度は第1加熱工程の加熱温度より高いことが好ましい。また例えば、第3加熱工程の加熱温度は第2加熱工程の加熱温度より高いことが好ましい。
以下、実施例に基づき本発明を具体的に説明するが、本発明はこれらによって限定されるものではない。なお、本発明の有機化合物の製造方法に関する測定は以下の方法により行った。
1.反応率
1-1.高分子化合物における酸二無水物とジアミンとの反応率
実施例A1シリーズ(表1A~表1Eおよび表2)の各実施例により得られたポリイミド樹脂前駆体粉末について1H-NMR測定により反応率を求めた。ポリイミド樹脂前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
1-1.高分子化合物における酸二無水物とジアミンとの反応率
実施例A1シリーズ(表1A~表1Eおよび表2)の各実施例により得られたポリイミド樹脂前駆体粉末について1H-NMR測定により反応率を求めた。ポリイミド樹脂前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、ジアミン由来のピークのうち両アミノ基がアミド化した構造a1に由来するピークの積分値の合計をA1、1つのアミノ基がアミド化した構造a2に由来するピークの積分値の合計をA2、両アミノ基がアミド化されていない構造a3に由来するピークの積分値の合計をA3として、ジアミンの反応率を次式として求めた。例えば、構造a1に由来するピークは7.03ppm(マルチプレット)、7.17ppm(マルチプレット)、7.70ppm(マルチレット)および8.32ppm(マルチプレット)付近に検出され、構造a2に由来するピークは6.68ppm(マルチプレット)、6.78ppm(マルチプレット)および6.89ppm(マルチプレット)付近に検出され、構造a3に由来するピークは6.51ppm(ダブレット)および6.61ppm(ダブレット)付近に検出される。
ジアミンの反応率(%)=(A1+A2/2)/(A1+A2+A3)×100
ジアミンの反応率(%)=(A1+A2/2)/(A1+A2+A3)×100
また、ピークの重複等により上記の3通りの構造に各ピークを帰属できない場合は、ジアミンの構造中で反応により生成したアミド結合に近接するプロトンb1に由来するピークの積分値の合計をB1、未反応のアミノ基に近接するプロトンb2に由来するピークの積分値の合計をB2として、ジアミンの反応率を次式として求めた。
ジアミンの反応率(%)=B1/(B1+B2)×100
ジアミンの反応率(%)=B1/(B1+B2)×100
1-2.高分子化合物における酸二無水物とジイソシアネートとの反応率
実施例A2シリーズ(表2)の各実施例により得られたポリイミド系化合物は溶媒に不溶であるため反応率を評価することはできなかった。しかしながら、メカノケミカル処理を行った後に、試料の大部分が溶媒へ不溶化すること、および後述するようなIR測定の結果から、定性的に反応が進んでいることが明らかである。なお、試料とは、メカノケミカル処理後であって、加熱処理前の粉砕物のことである。
実施例A2シリーズ(表2)の各実施例により得られたポリイミド系化合物は溶媒に不溶であるため反応率を評価することはできなかった。しかしながら、メカノケミカル処理を行った後に、試料の大部分が溶媒へ不溶化すること、および後述するようなIR測定の結果から、定性的に反応が進んでいることが明らかである。なお、試料とは、メカノケミカル処理後であって、加熱処理前の粉砕物のことである。
1-3.高分子化合物における酸ハロゲン化物とジアミンまたはジイソシアネートとの反応率
実施例A3シリーズ(表4)の実施例A3-3およびA3-4により得られたポリアミド樹脂粉末について1H-NMR測定により反応率を求めた。ポリアミド樹脂粉末およそ10mgを重水素化トリフルオロ酢酸/重水(=98.0/2.0 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例A3シリーズ(表4)の実施例A3-3およびA3-4により得られたポリアミド樹脂粉末について1H-NMR測定により反応率を求めた。ポリアミド樹脂粉末およそ10mgを重水素化トリフルオロ酢酸/重水(=98.0/2.0 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、ジアミン由来のピークのうち両アミノ基がアミド化した構造a1に由来するピークの積分値の合計をA1、1つのアミノ基がアミド化した構造a2に由来するピークの積分値の合計をA2、両アミノ基がアミド化されていない構造a3に由来するピークの積分値の合計をA3として、ジアミンの反応率を次式として求めた。
ジアミンの反応率(%)=(A1+A2/2)/(A1+A2+A3)×100
ジアミンの反応率(%)=(A1+A2/2)/(A1+A2+A3)×100
実施例A3シリーズ(表4)の実施例A3-1、A3-2、A3-5およびA3-6により得られたポリアミド樹脂粉末は溶媒に不溶であるため反応率を評価することはできなかった。しかしながら、メカノケミカル処理を行った後に、試料の大部分が溶媒へ不溶化すること、および後述するようなIR測定の結果から、定性的に反応が進んでいることが明らかである。なお、試料とは、メカノケミカル処理後であって、加熱処理前の粉砕物のことである。
1-4.高分子化合物における無水トリメリット酸またはそのハロゲン化物とジアミンまたはジイソシアネートとの反応率
実施例A4シリーズ(表5)の各実施例により得られたポリアミドイミド樹脂粉末について1H-NMR測定により反応率を求めた。ポリアミドイミド樹脂粉末およそ10mgを重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。なお、反応率の測定は、メカノケミカル処理後であって、加熱処理前の粉砕物および加熱処理後の粉砕物について行った。
実施例A4シリーズ(表5)の各実施例により得られたポリアミドイミド樹脂粉末について1H-NMR測定により反応率を求めた。ポリアミドイミド樹脂粉末およそ10mgを重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。なお、反応率の測定は、メカノケミカル処理後であって、加熱処理前の粉砕物および加熱処理後の粉砕物について行った。
実施例A4-1およびA4-2については、得られた1H-NMRスペクトルにおいて、ジアミン由来のピークのうち両アミノ基がアミド化した構造a1に由来するピークの積分値の合計をA1、1つのアミノ基がアミド化した構造a2に由来するピークの積分値の合計をA2、両アミノ基がアミド化されていない構造a3に由来するピークの積分値の合計をA3として、ジアミンの反応率を次式として求めた。
ジアミンの反応率(%)=(A1+A2/2)/(A1+A2+A3)×100
ジアミンの反応率(%)=(A1+A2/2)/(A1+A2+A3)×100
実施例A4-3およびA4-4については、得られた1H-NMRスペクトルにおいて、イソシアネート由来のピークのうちイソシアネート基がアミド化した構造c1に由来するピークの積分値の合計をC1、イミド化した構造c2に由来するピークの積分値をC2、未反応のイソシアネート基およびそれから生じるアミノ基の構造c3に由来するピークの積分値をC3として、イソシアネートの反応率を次式として求めた。
イソシアネートの反応率(%)=(C1+C2)/(C1+C2+C3)×100
イソシアネートの反応率(%)=(C1+C2)/(C1+C2+C3)×100
1-5.高分子化合物における酸ハロゲン化物とジオールとの反応率
実施例A5シリーズ(表6)の各実施例により得られたポリエステル樹脂粉末について1H-NMR測定により反応率を求めた。ポリエステル樹脂粉末およそ10mgを重水素化テトラクロロエタン/トリフルオロ酢酸(=99.0/1.0 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。なお、反応率の測定は、メカノケミカル処理後であって、加熱処理前の粉砕物および加熱処理後の粉砕物について行った。
実施例A5シリーズ(表6)の各実施例により得られたポリエステル樹脂粉末について1H-NMR測定により反応率を求めた。ポリエステル樹脂粉末およそ10mgを重水素化テトラクロロエタン/トリフルオロ酢酸(=99.0/1.0 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。なお、反応率の測定は、メカノケミカル処理後であって、加熱処理前の粉砕物および加熱処理後の粉砕物について行った。
得られた1H-NMRスペクトルにおいて、ジオール由来のピークのうち両ヒドロキシル基がエステル化した構造d1に由来するピークの積分値の合計をD1、1つのヒドロキシル基がエステル化した構造d2に由来するピークの積分値の合計をD2、両ヒドロキシル基がエステル化されていない構造d3に由来するピークの積分値の合計をD3として、ジアミンの反応率を次式として求めた。
ジオールの反応率(%)=(D1+D2/2)/(D1+D2+D3)×100
ジオールの反応率(%)=(D1+D2/2)/(D1+D2+D3)×100
1-6.高分子化合物におけるジイソシアネートとジアミンとの反応率
実施例A6シリーズ(表7)の各実施例により得られたポリウレア系化合物は溶媒に不溶であるため反応率を評価することはできなかった。しかしながら、メカノケミカル処理を行った後に、試料の大部分が溶媒へ不溶化すること、および後述するようなIR測定の結果から、定性的に反応が進んでいることが明らかである。なお、試料とは、メカノケミカル処理後であって、加熱処理前の粉砕物のことである。
実施例A6シリーズ(表7)の各実施例により得られたポリウレア系化合物は溶媒に不溶であるため反応率を評価することはできなかった。しかしながら、メカノケミカル処理を行った後に、試料の大部分が溶媒へ不溶化すること、および後述するようなIR測定の結果から、定性的に反応が進んでいることが明らかである。なお、試料とは、メカノケミカル処理後であって、加熱処理前の粉砕物のことである。
1-7.低分子化合物における酸一無水物とジアミンとの反応率
実施例B1~B3シリーズ(表8~表11)、B9シリーズ(表17)のB9-1の各実施例により得られたジイミドジカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドジカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B1~B3シリーズ(表8~表11)、B9シリーズ(表17)のB9-1の各実施例により得られたジイミドジカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドジカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、ジアミン由来のピークのうち両アミノ基がアミド化した構造e1に由来するピークの積分値の合計をE1、1つのアミノ基がアミド化した構造e2に由来するピークの積分値の合計をE2、両アミノ基がアミド化されていない構造e3に由来するピークの積分値の合計をE3として、アミンの反応率を次式として求めた。
アミンの反応率(%)=(E1+E2/2)/(E1+E2+E3)×100
アミンの反応率(%)=(E1+E2/2)/(E1+E2+E3)×100
また、ピークの重複等により上記の3通りの構造に各ピークを帰属できない場合は、ジアミンの構造中で反応により生成したアミド結合に近接するプロトンf1に由来するピークの積分値の合計をF1、未反応のアミノ基に近接するプロトンf2に由来するピークの積分値の合計をF2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=F1/(F1+F2)×100
1-8.低分子化合物における酸二無水物とモノアミノモノカルボン酸との反応率
実施例B4シリーズ(表12)の各実施例により得られたジイミドジカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドジカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B4シリーズ(表12)の各実施例により得られたジイミドジカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドジカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノアミノモノカルボン酸由来のピークのうちアミノ基がアミド化した構造g1に由来するピークの積分値の合計をG1、アミノ基がアミド化されていない構造g2に由来するピークの積分値の合計をG2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=G1/(G1+G2)×100
1-9.低分子化合物における酸一無水物とジアミノモノカルボン酸との反応率
実施例B5シリーズ(表13)の各実施例により得られたジイミドトリカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドトリカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B5シリーズ(表13)の各実施例により得られたジイミドトリカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドトリカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、ジアミノモノカルボン酸由来のピークのうち両アミノ基がアミド化した構造h1に由来するピークの積分値の合計をH1、1つのアミノ基がアミド化した構造h2に由来するピークの積分値の合計をH2、両アミノ基がアミド化されていない構造h3に由来するピークの積分値の合計をH3として、アミンの反応率を次式として求めた。 アミンの反応率(%)=(H1+H2/2)/(H1+H2+H3)×100
また、ピークの重複等により上記の3通りの構造に各ピークを帰属できない場合は、ジアミノモノカルボン酸の構造中で反応により生成したアミド結合に近接するプロトンi1に由来するピークの積分値の合計をI1、未反応のアミノ基に近接するプロトンi2に由来するピークの積分値の合計をI2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=I1/(I1+I2)×100
1-10.低分子化合物における酸二無水物とモノアミノジカルボン酸との反応率
実施例B6シリーズ(表14)の各実施例により得られたジイミドテトラカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドテトラカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B6シリーズ(表14)の各実施例により得られたジイミドテトラカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドテトラカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノアミノジカルボン酸由来のピークのうちアミノ基がアミド化した構造j1に由来するピークの積分値の合計をJ1、アミノ基がアミド化されていない構造j2に由来するピークの積分値の合計をJ2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=J1/(J1+J2)×100
1-11.低分子化合物における酸一無水物とモノアミノモノカルボン酸との反応率
実施例B7シリーズ(表15)の各実施例により得られたモノイミドジカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。モノイミドジカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B7シリーズ(表15)の各実施例により得られたモノイミドジカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。モノイミドジカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノアミノモノカルボン酸由来のピークのうちアミノ基がアミド化した構造k1に由来するピークの積分値の合計をK1、アミノ基がアミド化されていない構造k2に由来するピークの積分値の合計をK2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=K1/(K1+K2)×100
1-12.低分子化合物における酸一無水物とモノアミノジカルボン酸との反応率
実施例B8シリーズ(表16)の各実施例により得られたモノイミドトリカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。モノイミドトリカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B8シリーズ(表16)の各実施例により得られたモノイミドトリカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。モノイミドトリカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノアミノジカルボン酸由来のピークのうちアミノ基がアミド化した構造l1に由来するピークの積分値の合計をL1、アミノ基がアミド化されていない構造l2に由来するピークの積分値の合計をL2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=L1/(L1+L2)×100
1-13.低分子化合物における酸一無水物クロライドとモノアミノモノカルボン酸またはモノアミノジカルボン酸との反応率
実施例B9シリーズ(表17)のB9-2~B9-6の各実施例により得られたアミド基含有モノイミドジカルボン酸前駆体粉末またはアミド基含有モノイミドテトラカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。アミド基含有モノイミドジカルボン酸前駆体粉末またはアミド基含有モノイミドテトラカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B9シリーズ(表17)のB9-2~B9-6の各実施例により得られたアミド基含有モノイミドジカルボン酸前駆体粉末またはアミド基含有モノイミドテトラカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。アミド基含有モノイミドジカルボン酸前駆体粉末またはアミド基含有モノイミドテトラカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノアミノモノカルボン酸またはモノアミノジカルボン酸由来のピークのうちアミノ基がアミド化した構造m1に由来するピークの積分値の合計をM1、アミノ基がアミド化されていない構造m2に由来するピークの積分値の合計をM2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=M1/(M1+M2)×100
1-14.低分子化合物における酸一無水物とモノヒドロキシモノアミンとの反応率
実施例B10シリーズ(表18)の各実施例により得られたエステル基含有モノイミドトリカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。エステル基含有モノイミドトリカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B10シリーズ(表18)の各実施例により得られたエステル基含有モノイミドトリカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。エステル基含有モノイミドトリカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノヒドロキシモノアミン酸由来のピークのうちアミノ基がアミド化した構造n1に由来するピークの積分値の合計をN1、アミノ基がアミド化されていない構造n2に由来するピークの積分値の合計をN2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=N1/(N1+N2)×100
1-15.低分子化合物における酸二無水物とモノヒドロキシモノアミンとの反応率
実施例B11シリーズ(表19)の各実施例により得られたジイミドジフェノール前駆体粉末またはジイミドジヒドロキシ前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドジフェノール前駆体粉末またはジイミドジヒドロキシ前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B11シリーズ(表19)の各実施例により得られたジイミドジフェノール前駆体粉末またはジイミドジヒドロキシ前駆体粉末について1H-NMR測定により反応率を求めた。ジイミドジフェノール前駆体粉末またはジイミドジヒドロキシ前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノヒドロキシモノアミン酸由来のピークのうちアミノ基がアミド化した構造o1に由来するピークの積分値の合計をO1、アミノ基がアミド化されていない構造o2に由来するピークの積分値の合計をO2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=O1/(O1+O2)×100
1-16.低分子化合物におけるジカルボン酸クロライドとモノアミノモノカルボン酸またはモノアミノジカルボン酸との反応率
実施例B12シリーズ(表20)の各実施例により得られたジアミドジカルボン酸前駆体粉末またはジアミドテトラカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジアミドジカルボン酸前駆体粉末またはジアミドテトラカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B12シリーズ(表20)の各実施例により得られたジアミドジカルボン酸前駆体粉末またはジアミドテトラカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジアミドジカルボン酸前駆体粉末またはジアミドテトラカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノアミノモノカルボン酸またはモノアミノジカルボン酸由来のピークのうちアミノ基がアミド化した構造p1に由来するピークの積分値の合計をP1、アミノ基がアミド化されていない構造p2に由来するピークの積分値の合計をP2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=P1/(P1+P2)×100
1-17.低分子化合物におけるジカルボン酸クロライドとモノヒドロキシモノカルボン酸またはモノヒドロキシジカルボン酸との反応率
実施例B13シリーズ(表21)の各実施例により得られたジエステルジカルボン酸前駆体粉末またはジエステルテトラカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジエステルジカルボン酸前駆体粉末またはジエステルテトラカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水素化トリフルオロ酢酸(=96.5/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B13シリーズ(表21)の各実施例により得られたジエステルジカルボン酸前駆体粉末またはジエステルテトラカルボン酸前駆体粉末について1H-NMR測定により反応率を求めた。ジエステルジカルボン酸前駆体粉末またはジエステルテトラカルボン酸前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水素化トリフルオロ酢酸(=96.5/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、モノヒドロキシモノカルボン酸またはモノヒドロキシジカルボン酸由来のピークのうちヒドロキシル基がエステル化した構造q1に由来するピークの積分値の合計をQ1、ヒドロキシル基がエステル化されていない構造q2に由来するピークの積分値の合計をQ2として、ヒドロキシル基の反応率を次式として求めた。 ヒドロキシル基の反応率(%)=Q1/(Q1+Q2)×100
1-18.低分子化合物における不飽和酸一無水物とジアミンとの反応率
実施例B14(表22)の各実施例により得られた硬化性イミド系化合物前駆体粉末について1H-NMR測定により反応率を求めた。硬化性イミド系化合物前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
実施例B14(表22)の各実施例により得られた硬化性イミド系化合物前駆体粉末について1H-NMR測定により反応率を求めた。硬化性イミド系化合物前駆体粉末およそ10mgを、重水素化ジメチルスルホキシド/重水/重水素化トリフルオロ酢酸(=91.5/5.0/3.5 wt%)の混合溶液およそ1mLに溶解させ、30分間超音波処理を行ったのち1H-NMR測定を行った。
得られた1H-NMRスペクトルにおいて、ジアミン由来のピークのうち両アミノ基がアミド化した構造r1に由来するピークの積分値の合計をR1、1つのアミノ基がアミド化した構造r2に由来するピークの積分値の合計をR2、両アミノ基がアミド化されていない構造r3に由来するピークの積分値の合計をR3として、アミンの反応率を次式として求めた。 アミンの反応率(%)=(R1+R2/2)/(R1+R2+R3)×100
また、ピークの重複等により上記の3通りの構造に各ピークを帰属できない場合は、ジアミンの構造中で反応により生成したアミド結合に近接するプロトンs1に由来するピークの積分値の合計をS1、未反応のアミノ基に近接するプロトンs2に由来するピークの積分値の合計をS2として、アミンの反応率を次式として求めた。 アミンの反応率(%)=S1/(S1+S2)×100
2.高分子化合物における平均重合度
実施例A1シリーズ(実施例A1-1~実施例A1-95)について、上記の方法で求めたアミン反応率から次式により求めた。
平均重合度(n)=[アミン反応率/(100-アミン反応率)]×2+2
実施例A1シリーズ(実施例A1-1~実施例A1-95)について、上記の方法で求めたアミン反応率から次式により求めた。
平均重合度(n)=[アミン反応率/(100-アミン反応率)]×2+2
3.高分子化合物および低分子化合物における平均粒子径の測定
平均粒子径は、レーザー回折法で測定し、得られた累積分布の累積50%に対する粒子径(メジアン径)の値とした。具体的には、メカノケミカル処理後に得られた粉末0.1~1.0gをレーザー回折式粒度分布測定装置(マルバーン社製 マスターサイザー3000)にて測定を行い、粒度分布を得た。得られた累積分布の累積50%に対する粒子径(メジアン径)の値を平均粒子径とした。
平均粒子径は、レーザー回折法で測定し、得られた累積分布の累積50%に対する粒子径(メジアン径)の値とした。具体的には、メカノケミカル処理後に得られた粉末0.1~1.0gをレーザー回折式粒度分布測定装置(マルバーン社製 マスターサイザー3000)にて測定を行い、粒度分布を得た。得られた累積分布の累積50%に対する粒子径(メジアン径)の値を平均粒子径とした。
[実験例A:高分子化合物の製造方法]
(ポリアミド酸系化合物(ポリイミド樹脂前駆体およびポリイミド系樹脂)の製造方法、固体/固体によるメカノケミカル法)
実施例A1-1
媒体攪拌型ミル(タンク容量5.0L)の粉砕槽に、6.0kgのアルミナボールを加え、ピロメリット酸二無水物を521質量部、4,4’-ジアミノジフェニルエーテルを479質量部、添加した。窒素雰囲気下で504rpm、3分間の粉砕し、メカノケミカル反応を行って、ポリイミド樹脂前駆体(ポリアミド酸)粉末を得た。
得られた粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水ピロメリット酸の酸無水物基との反応率を測定したところ78.2%であり、平均重合度は9.2であった。また、得られた粉砕物の平均粒子径は48.2μmであった。
(ポリアミド酸系化合物(ポリイミド樹脂前駆体およびポリイミド系樹脂)の製造方法、固体/固体によるメカノケミカル法)
実施例A1-1
媒体攪拌型ミル(タンク容量5.0L)の粉砕槽に、6.0kgのアルミナボールを加え、ピロメリット酸二無水物を521質量部、4,4’-ジアミノジフェニルエーテルを479質量部、添加した。窒素雰囲気下で504rpm、3分間の粉砕し、メカノケミカル反応を行って、ポリイミド樹脂前駆体(ポリアミド酸)粉末を得た。
得られた粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水ピロメリット酸の酸無水物基との反応率を測定したところ78.2%であり、平均重合度は9.2であった。また、得られた粉砕物の平均粒子径は48.2μmであった。
なお、実施例A1-1のNMR測定では、1H-NMRスペクトル中の7.03ppm(マルチプレット)、7.17ppm(マルチプレット)、7.70ppm(マルチレット)、8.32ppm(マルチプレット)付近に両アミノ基がアミド化された反応物に由来するピーク、6.68ppm(マルチプレット)、6.78ppm(マルチプレット)、6.89ppm(マルチプレット)付近に1つのアミノ基がアミド化された反応物に由来するピーク、6.51ppm(ダブレット)6.61ppm(ダブレット)付近に未反応アミンに由来するピークが検出された。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
実施例A1-2~実施例A1-80
ジアミン組成を変更する以外は、実施例A1-1と同様の操作をおこなって、ポリイミド樹脂前駆体粉末を得た。
ジアミン組成を変更する以外は、実施例A1-1と同様の操作をおこなって、ポリイミド樹脂前駆体粉末を得た。
各実施例のNMR測定では、実施例A1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
(ポリアミド酸系化合物(ポリイミド樹脂前駆体およびポリイミド系樹脂)の製造方法、固体/液体によるメカノケミカル法)
実施例A1-81
ダブルヘリカル型の撹拌翼を備えた混合槽に、ピロメリット酸二無水物616質量部を添加し、40℃で撹拌を行った。m-キシリレンジアミン384質量部を、チューブポンプを用いて、2.13質量部/分の速度で添加し二成分の混合粉末を得た。得られたに粉末中のm-キシリレンジアミンに由来するアミノ基と無水ピロメリット酸の酸無水物基との反応率を測定したところ37.2%であった。
次に、得られた混合粉末1.0kgを媒体攪拌型ミル(タンク容量5.0L)の粉砕槽に添加し、6.0kgのアルミナボールを加え、窒素雰囲気下で504rpm、3分間の粉砕し、メカノケミカル反応を行って、ポリイミド樹脂前駆体粉末を得た。
得られた粉砕物中のm-キシレンジアミンに由来するアミノ基と無水ピロメリット酸の酸無水物基との反応率を測定したところ65.7%であり、平均重合度は5.8であった。また、得られた粉砕物の平均粒子径は46.1μmであった。
実施例A1-81
ダブルヘリカル型の撹拌翼を備えた混合槽に、ピロメリット酸二無水物616質量部を添加し、40℃で撹拌を行った。m-キシリレンジアミン384質量部を、チューブポンプを用いて、2.13質量部/分の速度で添加し二成分の混合粉末を得た。得られたに粉末中のm-キシリレンジアミンに由来するアミノ基と無水ピロメリット酸の酸無水物基との反応率を測定したところ37.2%であった。
次に、得られた混合粉末1.0kgを媒体攪拌型ミル(タンク容量5.0L)の粉砕槽に添加し、6.0kgのアルミナボールを加え、窒素雰囲気下で504rpm、3分間の粉砕し、メカノケミカル反応を行って、ポリイミド樹脂前駆体粉末を得た。
得られた粉砕物中のm-キシレンジアミンに由来するアミノ基と無水ピロメリット酸の酸無水物基との反応率を測定したところ65.7%であり、平均重合度は5.8であった。また、得られた粉砕物の平均粒子径は46.1μmであった。
本実施例のNMR測定では、実施例A1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
実施例A1-82~実施例A1-95
ジアミン組成を変更する以外は、実施例A1-81と同様の操作をおこなって、ポリイミド樹脂前駆体粉末を得た。
各実施例のNMR測定では、実施例A1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
ジアミン組成を変更する以外は、実施例A1-81と同様の操作をおこなって、ポリイミド樹脂前駆体粉末を得た。
各実施例のNMR測定では、実施例A1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
(ポリイミド系化合物の製造方法)
実施例A2-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、ピロメリット酸二無水物を466質量部、ジフェニルメタンジイソシアネートを534質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は44.1μmであった。
得られた粉砕物について、IR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド系化合物が生成していることが確認できた。また、2200~2300cm-1付近にイソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された。
そこで、得られた粉砕物を窒素雰囲気下で150℃、1時間、続いて250℃、1時間の条件で加熱することにより、イソシアネート基に由来する吸収が減少する一方で、イミド基由来の吸収が増加し、ポリイミド系化合物の生成および分子量が増加していることが確認できた。
実施例A2-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、ピロメリット酸二無水物を466質量部、ジフェニルメタンジイソシアネートを534質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は44.1μmであった。
得られた粉砕物について、IR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド系化合物が生成していることが確認できた。また、2200~2300cm-1付近にイソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された。
そこで、得られた粉砕物を窒素雰囲気下で150℃、1時間、続いて250℃、1時間の条件で加熱することにより、イソシアネート基に由来する吸収が減少する一方で、イミド基由来の吸収が増加し、ポリイミド系化合物の生成および分子量が増加していることが確認できた。
実施例A2-2
ジイソシアネート組成を変更する以外は、実施例A2-1と同様の操作をおこなって、粉砕物(ポリイミド系化合物)を得た。
得られた粉砕物について、実施例A2-1と同様の方法により、加熱の前後でIR測定を行い、以下の事項を確認した:
・加熱前において、イミド基に由来する吸収により、ポリイミド系化合物が生成していることが確認できた;イソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された;
・加熱後において、イソシアネート基に由来する吸収が減少する一方で、イミド基由来の吸収が増加し、ポリイミド系化合物の生成および分子量が増加していることが確認できた。
ジイソシアネート組成を変更する以外は、実施例A2-1と同様の操作をおこなって、粉砕物(ポリイミド系化合物)を得た。
得られた粉砕物について、実施例A2-1と同様の方法により、加熱の前後でIR測定を行い、以下の事項を確認した:
・加熱前において、イミド基に由来する吸収により、ポリイミド系化合物が生成していることが確認できた;イソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された;
・加熱後において、イソシアネート基に由来する吸収が減少する一方で、イミド基由来の吸収が増加し、ポリイミド系化合物の生成および分子量が増加していることが確認できた。
(ポリアミド系化合物の製造方法)
実施例A3-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、テレフタル酸クロライドを652質量部、パラフェニレンジアミンを348質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は56.5μmであった。
得られた粉砕物について、IR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が認められ、ポリアミド系化合物が生成していることが確認できた。また、1785~1815cm-1付近に酸ハロゲン化物に由来する吸収が認められ、酸クロライドが残存していることが確認された。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて150℃、1時間、250℃、1時間の条件で加熱することにより、酸ハロゲン化物に由来する吸収が減少する一方で、アミド基由来の吸収が増加し、ポリアミド系化合物の生成および分子量が増加していることが確認できた。
実施例A3-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、テレフタル酸クロライドを652質量部、パラフェニレンジアミンを348質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は56.5μmであった。
得られた粉砕物について、IR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が認められ、ポリアミド系化合物が生成していることが確認できた。また、1785~1815cm-1付近に酸ハロゲン化物に由来する吸収が認められ、酸クロライドが残存していることが確認された。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて150℃、1時間、250℃、1時間の条件で加熱することにより、酸ハロゲン化物に由来する吸収が減少する一方で、アミド基由来の吸収が増加し、ポリアミド系化合物の生成および分子量が増加していることが確認できた。
実施例A3-2~実施例A3-4
ジアミン組成を変更する以外は、実施例A3-1と同様の操作をおこなって、ポリアミド系化合物を得た。
得られた粉砕物について、実施例A3-1と同様の方法により、加熱の前後でIR測定を行い、以下の事項を確認した:
・加熱前において、アミド基に由来する吸収により、ポリアミド系化合物が生成していることが確認できた;酸ハロゲン化物に由来する吸収が認められ、酸クロライドが残存していることが確認された;
・加熱後において、酸ハロゲン化物に由来する吸収が減少する一方で、アミド基由来の吸収が増加し、ポリアミド系化合物の生成および分子量が増加していることが確認できた。
ジアミン組成を変更する以外は、実施例A3-1と同様の操作をおこなって、ポリアミド系化合物を得た。
得られた粉砕物について、実施例A3-1と同様の方法により、加熱の前後でIR測定を行い、以下の事項を確認した:
・加熱前において、アミド基に由来する吸収により、ポリアミド系化合物が生成していることが確認できた;酸ハロゲン化物に由来する吸収が認められ、酸クロライドが残存していることが確認された;
・加熱後において、酸ハロゲン化物に由来する吸収が減少する一方で、アミド基由来の吸収が増加し、ポリアミド系化合物の生成および分子量が増加していることが確認できた。
実施例A3-5
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、テレフタル酸を399質量部、ジフェニルメタンジイソシアネートを601質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は44.2μmであった。
得られた粉砕物について、IR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が認められ、ポリアミド系化合物が生成していることが確認できた。また、2200~2300cm-1付近にイソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された。
そこで、得られた粉砕物を窒素雰囲気下で150℃、1時間、続いて250℃、1時間の条件で加熱することにより、イソシアネート基に由来する吸収が減少する一方で、アミド基由来の吸収が増加し、ポリアミド系化合物の生成および分子量が増加していることが確認できた。
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、テレフタル酸を399質量部、ジフェニルメタンジイソシアネートを601質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は44.2μmであった。
得られた粉砕物について、IR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が認められ、ポリアミド系化合物が生成していることが確認できた。また、2200~2300cm-1付近にイソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された。
そこで、得られた粉砕物を窒素雰囲気下で150℃、1時間、続いて250℃、1時間の条件で加熱することにより、イソシアネート基に由来する吸収が減少する一方で、アミド基由来の吸収が増加し、ポリアミド系化合物の生成および分子量が増加していることが確認できた。
実施例A3-6
ジイソシアネート組成を変更する以外は、実施例A3-5と同様の操作をおこなって、粉砕物(ポリアミド系化合物)を得た。
得られた粉砕物について、実施例A3-1と同様の方法により、加熱の前後でIR測定を行い、以下の事項を確認した:
・加熱前において、アミド基に由来する吸収により、ポリアミド系化合物が生成していることが確認できた;イソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された;
・加熱後において、イソシアネート基に由来する吸収が減少する一方で、アミド基由来の吸収が増加し、ポリアミド系化合物の生成および分子量が増加していることが確認できた。
ジイソシアネート組成を変更する以外は、実施例A3-5と同様の操作をおこなって、粉砕物(ポリアミド系化合物)を得た。
得られた粉砕物について、実施例A3-1と同様の方法により、加熱の前後でIR測定を行い、以下の事項を確認した:
・加熱前において、アミド基に由来する吸収により、ポリアミド系化合物が生成していることが確認できた;イソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された;
・加熱後において、イソシアネート基に由来する吸収が減少する一方で、アミド基由来の吸収が増加し、ポリアミド系化合物の生成および分子量が増加していることが確認できた。
(ポリアミドイミド系化合物の製造方法)
実施例A4-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、無水トリメリット酸クロライドを513質量部、4,4’-ジアミノジフェニルエーテルを487質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は42.1μmであった。
得られた粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸クロライドに由来する酸クロライドおよび酸無水物基との反応率をNMRより測定したところ、反応率は73.3%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、さらに続いて300℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、95.7%であった。
実施例A4-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、無水トリメリット酸クロライドを513質量部、4,4’-ジアミノジフェニルエーテルを487質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は42.1μmであった。
得られた粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸クロライドに由来する酸クロライドおよび酸無水物基との反応率をNMRより測定したところ、反応率は73.3%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、さらに続いて300℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、95.7%であった。
実施例A4-2
ジアミン組成を変更する以外は、実施例A4-1と同様の操作をおこなって、ポリアミドイミド系化合物を得た。
得られた粉砕物中の3,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸クロライドに由来する酸クロライドおよび酸無水物基との反応率を測定したところ、反応率は74.5%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、さらに続いて300℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、94.3%であった。
ジアミン組成を変更する以外は、実施例A4-1と同様の操作をおこなって、ポリアミドイミド系化合物を得た。
得られた粉砕物中の3,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸クロライドに由来する酸クロライドおよび酸無水物基との反応率を測定したところ、反応率は74.5%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、さらに続いて300℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、94.3%であった。
実施例A4-3
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、無水トリメリット酸を434質量部、ジフェニルメタンジイソシアネートを566質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は45.3μmであった。
得られた粉砕物中のジフェニルメタンジイソシアネートに由来するイソシアネート基と無水トリメリット酸に由来するカルボキシル基および酸無水物基との反応率を測定したところ、反応率は36.2%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、さらに続いて300℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、92.1%であった。
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、無水トリメリット酸を434質量部、ジフェニルメタンジイソシアネートを566質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は45.3μmであった。
得られた粉砕物中のジフェニルメタンジイソシアネートに由来するイソシアネート基と無水トリメリット酸に由来するカルボキシル基および酸無水物基との反応率を測定したところ、反応率は36.2%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、さらに続いて300℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、92.1%であった。
実施例A4-4
ジイソシアネート組成を変更する以外は、実施例A4-3と同様の操作をおこなって、ポリアミドイミド系化合物を得た。
得られた粉砕物中の1,5-イソシアナトナフタレンに由来するイソシアネート基と無水トリメリット酸に由来するカルボキシル基および酸無水物基との反応率を測定したところ、反応率は38.8%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、さらに続いて300℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、92.3%であった。
ジイソシアネート組成を変更する以外は、実施例A4-3と同様の操作をおこなって、ポリアミドイミド系化合物を得た。
得られた粉砕物中の1,5-イソシアナトナフタレンに由来するイソシアネート基と無水トリメリット酸に由来するカルボキシル基および酸無水物基との反応率を測定したところ、反応率は38.8%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、さらに続いて300℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、92.3%であった。
(ポリエステル系化合物の製造方法)
実施例A5-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、テレフタル酸クロライドを471質量部、2,2’-ビス(4-ヒドロキシフェニル)プロパンを529質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は33.1μmであった。
得られた粉砕物中の2,2’-ビス(4-ヒドロキシフェニル)プロパンに由来するヒドロキシル基とテレフタル酸クロライドに由来する酸クロライドとの反応率を測定したところ、反応率は70.1%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、250℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、94.5%であった。
実施例A5-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、テレフタル酸クロライドを471質量部、2,2’-ビス(4-ヒドロキシフェニル)プロパンを529質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は33.1μmであった。
得られた粉砕物中の2,2’-ビス(4-ヒドロキシフェニル)プロパンに由来するヒドロキシル基とテレフタル酸クロライドに由来する酸クロライドとの反応率を測定したところ、反応率は70.1%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、250℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、94.5%であった。
実施例A5-2
酸クロライド組成を変更する以外は、実施例A5-1と同様の操作をおこなって、ポリアミドイミド系化合物を得た。
得られた粉砕物中の2,2’-ビス(4-ヒドロキシフェニル)プロパンに由来するヒドロキシル基とイソフタル酸クロライドに由来する酸クロライドとの反応率を測定したところ、反応率は71.3%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、250℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、93.8%であった。
酸クロライド組成を変更する以外は、実施例A5-1と同様の操作をおこなって、ポリアミドイミド系化合物を得た。
得られた粉砕物中の2,2’-ビス(4-ヒドロキシフェニル)プロパンに由来するヒドロキシル基とイソフタル酸クロライドに由来する酸クロライドとの反応率を測定したところ、反応率は71.3%であった。
そこで、得られた粉砕物を窒素雰囲気下で100℃、1時間、続いて200℃、1時間、250℃、1時間の条件で加熱した。得られた処理物の反応率をNMRにより求めたところ、93.8%であった。
(ポリウレア系化合物の製造方法)
実施例A6-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、ジフェニルメタンジイソシアネートを556質量部、4,4’-ビスジアミノジフェニルエーテルを444質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は53.4μmであった。
得られた粉砕物について、IR測定を行ったところ、1500~1700cm-1付近にウレア結合に由来する吸収が認められ、ポリウレア系化合物が生成していることが確認できた。また、2200~2300cm-1付近にイソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された。
そこで、得られた粉砕物を窒素雰囲気下で150℃、1時間、続いて250℃、1時間の条件で加熱することにより、イソシアネート基に由来する吸収が減少する一方で、ウレア結合由来の吸収が増加し、ポリウレア系化合物の生成および分子量が増加していることが確認できた。
実施例A6-1
遊星ミル(容量0.25L)の粉砕槽に、直径10mmのジルコニアボールを30個加え、ジフェニルメタンジイソシアネートを556質量部、4,4’-ビスジアミノジフェニルエーテルを444質量部、合計5.0gを添加した。空気下で600rpm、5分間の粉砕したのち、5分間冷却を行うサイクルを6回繰り返し、メカノケミカル反応を行った。得られた粉砕物の平均粒子径は53.4μmであった。
得られた粉砕物について、IR測定を行ったところ、1500~1700cm-1付近にウレア結合に由来する吸収が認められ、ポリウレア系化合物が生成していることが確認できた。また、2200~2300cm-1付近にイソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された。
そこで、得られた粉砕物を窒素雰囲気下で150℃、1時間、続いて250℃、1時間の条件で加熱することにより、イソシアネート基に由来する吸収が減少する一方で、ウレア結合由来の吸収が増加し、ポリウレア系化合物の生成および分子量が増加していることが確認できた。
実施例A6-2
ジイソシアネートおよびジアミン組成を変更する以外は、実施例110と同様の操作をおこなって、粉砕物(ポリウレア系化合物)を得た。
得られた粉砕物について、実施例A6-1と同様の方法により、加熱の前後でIR測定を行い、以下の事項を確認した:
・加熱前において、ウレア結合に由来する吸収により、ポリウレア系化合物が生成していることが確認できた;イソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された;
・加熱後において、イソシアネート基に由来する吸収が減少する一方で、ウレア結合由来の吸収が増加し、ポリウレア系化合物の生成および分子量が増加していることが確認できた。
ジイソシアネートおよびジアミン組成を変更する以外は、実施例110と同様の操作をおこなって、粉砕物(ポリウレア系化合物)を得た。
得られた粉砕物について、実施例A6-1と同様の方法により、加熱の前後でIR測定を行い、以下の事項を確認した:
・加熱前において、ウレア結合に由来する吸収により、ポリウレア系化合物が生成していることが確認できた;イソシアネート基に由来する吸収が認められ、イソシアネート基が残存していることが確認された;
・加熱後において、イソシアネート基に由来する吸収が減少する一方で、ウレア結合由来の吸収が増加し、ポリウレア系化合物の生成および分子量が増加していることが確認できた。
[実験例B:低分子化合物の製造方法]
(ジイミドジカルボン酸系化合物の製造方法)
実施例B1-1
媒体攪拌型ミル(タンク容量5.0L)の粉砕槽に、6.0kgのアルミナボールを加え、無水トリメリット酸を657質量部、4,4’-ジアミノジフェニルエーテルを343質量部、添加した。窒素雰囲気下で504rpm、1分間の粉砕し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ72.1%であった。
(ジイミドジカルボン酸系化合物の製造方法)
実施例B1-1
媒体攪拌型ミル(タンク容量5.0L)の粉砕槽に、6.0kgのアルミナボールを加え、無水トリメリット酸を657質量部、4,4’-ジアミノジフェニルエーテルを343質量部、添加した。窒素雰囲気下で504rpm、1分間の粉砕し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ72.1%であった。
なお、実施例B1-1および後述の実施例B-2~B1-8のNMR測定では、1H-NMRスペクトル中の6.98ppm(ダブレット)付近に両アミノ基がアミド化された反応物に由来するピーク、7.00ppm(ダブレット)、7.07ppm(ダブレット)、7.35ppm(ダブレット)付近に1つのアミノ基がアミド化された反応物に由来するピーク、7.13ppm(ダブレット)4.49ppm(ダブレット)付近に未反応アミンに由来するピークが検出される。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B1-2~実施例B1-13
装置の回転速度、または粉砕時間を変更する以外は、実施例B1-1と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
各実施例のNMR測定では、実施例B1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた粉砕物について、実施例B1-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
装置の回転速度、または粉砕時間を変更する以外は、実施例B1-1と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
各実施例のNMR測定では、実施例B1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた粉砕物について、実施例B1-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B2-1
高速底部攪拌式混合機(容量20L)の粉砕槽に、無水トリメリット酸を657質量部、4,4’-ジアミノジフェニルエーテルを343質量部、合計5.0kgを添加した。窒素雰囲気下で362rpm、3分間の撹拌し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ41.9%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、97.1%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
高速底部攪拌式混合機(容量20L)の粉砕槽に、無水トリメリット酸を657質量部、4,4’-ジアミノジフェニルエーテルを343質量部、合計5.0kgを添加した。窒素雰囲気下で362rpm、3分間の撹拌し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ41.9%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、97.1%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B2-2~実施例B2-10
装置の回転速度を変更する以外は、実施例B2-1と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B2-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
装置の回転速度を変更する以外は、実施例B2-1と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B2-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B3-1
高速底部攪拌式混合機(容量20L)の粉砕槽に、無水トリメリット酸を780質量部、p-フェニレンジアミンを220質量部、合計5.0kgを添加した。窒素雰囲気下で1452rpm、10分間の撹拌し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中のp-フェニレンジアミンに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ57.5%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、97.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
高速底部攪拌式混合機(容量20L)の粉砕槽に、無水トリメリット酸を780質量部、p-フェニレンジアミンを220質量部、合計5.0kgを添加した。窒素雰囲気下で1452rpm、10分間の撹拌し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中のp-フェニレンジアミンに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ57.5%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、97.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B3-2~実施例B3-15
ジアミン組成を変更する以外は、実施例B3-1と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B3-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
ジアミン組成を変更する以外は、実施例B3-1と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B3-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B3-16
ダブルヘリカル型の撹拌翼を備えた混合槽に、無水トリメリット酸738質量部を添加し、40℃で撹拌を行った。m-キシリレンジアミン262質量部を、チューブポンプを用いて、2.13質量部/分の速度で添加し二成分の混合粉末を得た。得られたに粉末中のm-キシリレンジアミンに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ30.8%であった。
次に高速底部攪拌式混合機(容量20L)の粉砕槽に、上記の二成分の混合粉末5.0kgを添加した。窒素雰囲気下で1452rpm、10分間の撹拌し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中のp-フェニレンジアミンに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ55.7%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.9%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
ダブルヘリカル型の撹拌翼を備えた混合槽に、無水トリメリット酸738質量部を添加し、40℃で撹拌を行った。m-キシリレンジアミン262質量部を、チューブポンプを用いて、2.13質量部/分の速度で添加し二成分の混合粉末を得た。得られたに粉末中のm-キシリレンジアミンに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ30.8%であった。
次に高速底部攪拌式混合機(容量20L)の粉砕槽に、上記の二成分の混合粉末5.0kgを添加した。窒素雰囲気下で1452rpm、10分間の撹拌し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中のp-フェニレンジアミンに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ55.7%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.9%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B3-17~実施例B3-18
ジアミン組成を変更する以外は、実施例3-16と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B3-16と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
ジアミン組成を変更する以外は、実施例3-16と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B3-16と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B4-1
高速回転式粉砕機(容量150mL)の粉砕槽に、ピロメリット酸二無水物を444質量部、4-アミノ安息香酸を556質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中の4-アミノ安息香酸に由来するアミノ基とピロメリット酸二無水物の酸無水物基との反応率を測定したところ64.3%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、99.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
高速回転式粉砕機(容量150mL)の粉砕槽に、ピロメリット酸二無水物を444質量部、4-アミノ安息香酸を556質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中の4-アミノ安息香酸に由来するアミノ基とピロメリット酸二無水物の酸無水物基との反応率を測定したところ64.3%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、99.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
実施例B4-2~実施例B4-6
酸無水物の組成を変更する以外は、実施例B4-1と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B4-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
酸無水物の組成を変更する以外は、実施例B4-1と同様の操作をおこなって、粉砕物(ジイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B4-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
(ジイミドトリカルボン酸の製造方法)
実施例B5-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を716質量部、3,4-ジアミノ安息香酸を284質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、ジイミドトリカルボン酸前駆体粉末を得た。
得られた粉砕物中の3,4-ジアミノ安息香酸に由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ62.3%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドトリカルボン酸が生成していることが確認できた。
実施例B5-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を716質量部、3,4-ジアミノ安息香酸を284質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、ジイミドトリカルボン酸前駆体粉末を得た。
得られた粉砕物中の3,4-ジアミノ安息香酸に由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ62.3%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドトリカルボン酸が生成していることが確認できた。
実施例B5-2~実施例B5-4
アミン組成を変更する以外は、実施例B5-1と同様の操作をおこなって、粉砕物(ジイミドトリカルボン酸)を得た。
得られた粉砕物について、実施例B5-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドトリカルボン酸が生成していることが確認できた。
アミン組成を変更する以外は、実施例B5-1と同様の操作をおこなって、粉砕物(ジイミドトリカルボン酸)を得た。
得られた粉砕物について、実施例B5-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドトリカルボン酸が生成していることが確認できた。
(ジイミドテトラカルボン酸の製造方法)
実施例B6-1
高速回転式粉砕機(容量150mL)の粉砕槽に、ピロメリット酸二無水物を377質量部、2-アミノテレフタル酸を623質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、ジイミドテトラカルボン酸前駆体粉末を得た。
得られた粉砕物中の2-アミノテレフタル酸に由来するアミノ基とピロメリット酸二無水物の酸無水物基との反応率を測定したところ63.3%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.3%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドテトラカルボン酸が生成していることが確認できた。
実施例B6-1
高速回転式粉砕機(容量150mL)の粉砕槽に、ピロメリット酸二無水物を377質量部、2-アミノテレフタル酸を623質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、ジイミドテトラカルボン酸前駆体粉末を得た。
得られた粉砕物中の2-アミノテレフタル酸に由来するアミノ基とピロメリット酸二無水物の酸無水物基との反応率を測定したところ63.3%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.3%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドテトラカルボン酸が生成していることが確認できた。
実施例B6-2~実施例B6-24
酸無水物またはアミン組成を変更する以外は、実施例B6-1と同様の操作をおこなって、粉砕物(ジイミドテトラカルボン酸)を得た。
得られた粉砕物について、実施例B6-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドテトラカルボン酸が生成していることが確認できた。
酸無水物またはアミン組成を変更する以外は、実施例B6-1と同様の操作をおこなって、粉砕物(ジイミドテトラカルボン酸)を得た。
得られた粉砕物について、実施例B6-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、ジイミドテトラカルボン酸が生成していることが確認できた。
(モノイミドジカルボン酸の製造方法)
実施例B7-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を584質量部、2-アミノ安息香酸を416質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、モノイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中の2-アミノ安息香酸に由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ65.5%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、モノイミドジカルボン酸が生成していることが確認できた。
実施例B7-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を584質量部、2-アミノ安息香酸を416質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、モノイミドジカルボン酸前駆体粉末を得た。
得られた粉砕物中の2-アミノ安息香酸に由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ65.5%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.2%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、モノイミドジカルボン酸が生成していることが確認できた。
実施例B7-2~実施例B7-17
アミン組成を変更する以外は、実施例B7-1と同様の操作をおこなって、粉砕物(モノイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B7-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、モノイミドジカルボン酸が生成していることが確認できた。
アミン組成を変更する以外は、実施例B7-1と同様の操作をおこなって、粉砕物(モノイミドジカルボン酸)を得た。
得られた粉砕物について、実施例B7-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、モノイミドジカルボン酸が生成していることが確認できた。
(モノイミドトリカルボン酸の製造方法)
実施例B8-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を515質量部、2-アミノテレフタル酸を485質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、モノイミドトリカルボン酸前駆体粉末を得た。
得られた粉砕物中の2-アミノテレフタル酸に由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ69.7%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、99.4%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、モノイミドトリカルボン酸が生成していることが確認できた。
実施例B8-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を515質量部、2-アミノテレフタル酸を485質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、モノイミドトリカルボン酸前駆体粉末を得た。
得られた粉砕物中の2-アミノテレフタル酸に由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ69.7%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、99.4%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、モノイミドトリカルボン酸が生成していることが確認できた。
実施例B8-2~実施例B8-4
アミン組成を変更する以外は、実施例B8-1と同様の操作をおこなって、粉砕物(モノイミドトリカルボン酸)を得た。
得られた粉砕物について、実施例B8-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、モノイミドトリカルボン酸が生成していることが確認できた。
アミン組成を変更する以外は、実施例B8-1と同様の操作をおこなって、粉砕物(モノイミドトリカルボン酸)を得た。
得られた粉砕物について、実施例B8-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、イミド基に由来する吸収が認められ、モノイミドトリカルボン酸が生成していることが確認できた。
(アミド基含有イミド系化合物(アミド基含有ジイミドジカルボン酸系化合物、アミド基含有モノイミドジカルボン酸系化合物、アミド基含有モノイミドテトラカルボン酸系化合物)の製造方法)
実施例B9-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を628質量部、構造内にアミド結合を含有する4,4’-ジアミノベンズアニリドを372質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、アミド基含有イミド系化合物前駆体粉末(アミド基含有ジイミドジカルボン酸系化合物前駆体粉末)を得た。
得られた粉砕物中の4,4’-ジアミノベンズアニリドに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ63.2%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.4%であった。さらに、得られた粉末についてIR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が、また、1750~1800cm-1付近にイミド基に由来する吸収が認められ、アミド基含有イミド系化合物(アミド基含有ジイミドジカルボン酸系化合物)が生成していることが確認できた。
実施例B9-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を628質量部、構造内にアミド結合を含有する4,4’-ジアミノベンズアニリドを372質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、アミド基含有イミド系化合物前駆体粉末(アミド基含有ジイミドジカルボン酸系化合物前駆体粉末)を得た。
得られた粉砕物中の4,4’-ジアミノベンズアニリドに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ63.2%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.4%であった。さらに、得られた粉末についてIR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が、また、1750~1800cm-1付近にイミド基に由来する吸収が認められ、アミド基含有イミド系化合物(アミド基含有ジイミドジカルボン酸系化合物)が生成していることが確認できた。
実施例B9-2
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸クロライドを435質量部、2-アミノ安息香酸を565質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、アミド基含有イミド系化合物前駆体粉末(アミド基含有モノイミドジカルボン酸系化合物前駆体粉末)を得た。
得られた粉砕物中の2-アミノ安息香酸に由来するアミノ基と無水トリメリット酸クロライドの酸クロライド基および酸無水物基との反応率を測定したところ71.3%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.7%であった。さらに、得られた粉末についてIR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が、また、1750~1800cm-1付近にイミド基に由来する吸収が認められ、アミド基含有イミド系化合物(アミド基含有モノイミドジカルボン酸系化合物)が生成していることが確認できた。
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸クロライドを435質量部、2-アミノ安息香酸を565質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、アミド基含有イミド系化合物前駆体粉末(アミド基含有モノイミドジカルボン酸系化合物前駆体粉末)を得た。
得られた粉砕物中の2-アミノ安息香酸に由来するアミノ基と無水トリメリット酸クロライドの酸クロライド基および酸無水物基との反応率を測定したところ71.3%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.7%であった。さらに、得られた粉末についてIR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が、また、1750~1800cm-1付近にイミド基に由来する吸収が認められ、アミド基含有イミド系化合物(アミド基含有モノイミドジカルボン酸系化合物)が生成していることが確認できた。
実施例B9-3~実施例B9-6
アミン組成を変更する以外は、実施例B9-1と同様の操作をおこなって、アミド基含有イミド系化合物を得た。
実施例B9-3および9-4では、実施例B9-1と同様の方法により、アミド基含有イミド系化合物前駆体粉末(アミド基含有モノイミドジカルボン酸系化合物前駆体粉末)を経て、アミド基含有モノイミドジカルボン酸系化合物が生成していることを確認した。
実施例B9-5およびB9-6では、実施例B9-1と同様の方法により、アミド基含有イミド系化合物前駆体粉末(アミド基含有モノイミドテトラカルボン酸系化合物前駆体粉末)を経て、アミド基含有モノイミドテトラカルボン酸系化合物が生成していることを確認した。
なお、実施例B9-3~実施例B9-6においては、得られた粉砕物について、実施例B9-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、アミド基およびイミド基に由来する吸収が認められ、所定のアミド基含有イミド系化合物が生成していることが確認できた。
アミン組成を変更する以外は、実施例B9-1と同様の操作をおこなって、アミド基含有イミド系化合物を得た。
実施例B9-3および9-4では、実施例B9-1と同様の方法により、アミド基含有イミド系化合物前駆体粉末(アミド基含有モノイミドジカルボン酸系化合物前駆体粉末)を経て、アミド基含有モノイミドジカルボン酸系化合物が生成していることを確認した。
実施例B9-5およびB9-6では、実施例B9-1と同様の方法により、アミド基含有イミド系化合物前駆体粉末(アミド基含有モノイミドテトラカルボン酸系化合物前駆体粉末)を経て、アミド基含有モノイミドテトラカルボン酸系化合物が生成していることを確認した。
なお、実施例B9-3~実施例B9-6においては、得られた粉砕物について、実施例B9-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、アミド基およびイミド基に由来する吸収が認められ、所定のアミド基含有イミド系化合物が生成していることが確認できた。
(エステル基含有イミド系化合物(エステル基含有モノイミドトリカルボン酸系化合物)の製造方法)
実施例B10-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を778質量部、2-アミノフェノールを222質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、エステル基含有イミド系化合物前駆体粉末(エステル基含有モノイミドトリカルボン酸系化合物前駆体粉末)を得た。
得られた粉砕物中の2-アミノフェノールに由来するアミノ基およびヒドロキシル基と、無水トリメリット酸の酸無水物基との反応率を測定したところ43.3%であった。
得られた粉砕物を窒素気流下で、200℃で1時間、さらに270℃に昇温し1時間、加熱を行い、得られた粉末についてアミノ基およびヒドロキシル基の反応率を求めたところ、97.3%であった。さらに、得られた粉末についてIR測定を行ったところ、1715~1730cm-1付近にエステル基に由来する吸収が、また、1750~1800cm-1付近にイミド基に由来する吸収が認められ、エステル基含有イミド系化合物(エステル基含有モノイミドトリカルボン酸系化合物)が生成していることが確認できた。
実施例B10-1
高速回転式粉砕機(容量150mL)の粉砕槽に、無水トリメリット酸を778質量部、2-アミノフェノールを222質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、エステル基含有イミド系化合物前駆体粉末(エステル基含有モノイミドトリカルボン酸系化合物前駆体粉末)を得た。
得られた粉砕物中の2-アミノフェノールに由来するアミノ基およびヒドロキシル基と、無水トリメリット酸の酸無水物基との反応率を測定したところ43.3%であった。
得られた粉砕物を窒素気流下で、200℃で1時間、さらに270℃に昇温し1時間、加熱を行い、得られた粉末についてアミノ基およびヒドロキシル基の反応率を求めたところ、97.3%であった。さらに、得られた粉末についてIR測定を行ったところ、1715~1730cm-1付近にエステル基に由来する吸収が、また、1750~1800cm-1付近にイミド基に由来する吸収が認められ、エステル基含有イミド系化合物(エステル基含有モノイミドトリカルボン酸系化合物)が生成していることが確認できた。
実施例B10-2~実施例B10-16
アミン組成を変更する以外は、実施例B10-1と同様の操作をおこなって、エステル基含有イミド系化合物(エステル基含有モノイミドトリカルボン酸系化合物)を得た。
当該実施例では、実施例B10-1と同様の方法により、エステル基含有イミド系化合物前駆体粉末(エステル基含有モノイミドトリカルボン酸系化合物前駆体粉末)を経て、エステル基含有モノイミドトリカルボン酸系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B10-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、エステル基およびイミド基に由来する吸収が認められ、所定のエステル基含有イミド系化合物が生成していることが確認できた。
特に、実施例B10-3のNMR測定(加熱前)では、1H-NMRスペクトル中の6.72ppm(ダブレット)、7.44ppm(ダブレット)付近にアミノ基がアミド化された反応物に由来するピーク、6.44ppm(ダブレット)付近に未反応アミンに由来するピークが検出される。
アミン組成を変更する以外は、実施例B10-1と同様の操作をおこなって、エステル基含有イミド系化合物(エステル基含有モノイミドトリカルボン酸系化合物)を得た。
当該実施例では、実施例B10-1と同様の方法により、エステル基含有イミド系化合物前駆体粉末(エステル基含有モノイミドトリカルボン酸系化合物前駆体粉末)を経て、エステル基含有モノイミドトリカルボン酸系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B10-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、エステル基およびイミド基に由来する吸収が認められ、所定のエステル基含有イミド系化合物が生成していることが確認できた。
特に、実施例B10-3のNMR測定(加熱前)では、1H-NMRスペクトル中の6.72ppm(ダブレット)、7.44ppm(ダブレット)付近にアミノ基がアミド化された反応物に由来するピーク、6.44ppm(ダブレット)付近に未反応アミンに由来するピークが検出される。
(ヒドロキシル基含有イミド系化合物(ジイミドジヒドロキシ系化合物(特にジイミドジフェノール系化合物))の製造方法)
実施例B11-1
高速回転式粉砕機(容量150mL)の粉砕槽に、ピロメリット酸二無水物を501質量部、3-アミノフェノールを499質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、ヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)を得た。
得られた粉砕物中の3-アミノフェノールに由来するアミノ基とピロメリット酸二無水物の酸無水物基との反応率を測定したところ66.4%であった。
得られた粉砕物を窒素気流下で、200℃で1時間、さらに270℃に昇温し1時間、加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、99.0%であった。また、1H-NMRスペクトル中の5.0~5.5ppm付近にはヒドロキシル基由来のピークが検出されていた。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ヒドロキシル基含有イミド系化合物(ジイミドジフェノール系化合物)が生成していることが確認できた。
実施例B11-1
高速回転式粉砕機(容量150mL)の粉砕槽に、ピロメリット酸二無水物を501質量部、3-アミノフェノールを499質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、ヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)を得た。
得られた粉砕物中の3-アミノフェノールに由来するアミノ基とピロメリット酸二無水物の酸無水物基との反応率を測定したところ66.4%であった。
得られた粉砕物を窒素気流下で、200℃で1時間、さらに270℃に昇温し1時間、加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、99.0%であった。また、1H-NMRスペクトル中の5.0~5.5ppm付近にはヒドロキシル基由来のピークが検出されていた。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ヒドロキシル基含有イミド系化合物(ジイミドジフェノール系化合物)が生成していることが確認できた。
実施例B11-2~実施例B11-24
酸無水物組成およびアミン組成を変更する以外は、実施例B11-1と同様の操作をおこなって、ヒドロキシル基含有イミド系化合物(ジイミドジヒドロキシ系化合物(特にジイミドジフェノール系化合物))を得た。
当該実施例では、実施例B11-1と同様の方法により、ヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)を経て、ジイミドジフェノール系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B11-1と同様の方法により、加熱した後、1H-NMR測定およびIR測定を行い、以下の事項を確認した:
・加熱後において、1H-NMRスペクトル中にヒドロキシル基に由来するピークが認められた。
・加熱後において、IRスペクトル中にイミド基に由来する吸収が認められ、所定のヒドロキシル基含有イミド系化合物が生成していることが確認できた。
酸無水物組成およびアミン組成を変更する以外は、実施例B11-1と同様の操作をおこなって、ヒドロキシル基含有イミド系化合物(ジイミドジヒドロキシ系化合物(特にジイミドジフェノール系化合物))を得た。
当該実施例では、実施例B11-1と同様の方法により、ヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)を経て、ジイミドジフェノール系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B11-1と同様の方法により、加熱した後、1H-NMR測定およびIR測定を行い、以下の事項を確認した:
・加熱後において、1H-NMRスペクトル中にヒドロキシル基に由来するピークが認められた。
・加熱後において、IRスペクトル中にイミド基に由来する吸収が認められ、所定のヒドロキシル基含有イミド系化合物が生成していることが確認できた。
(アミド基含有カルボン酸系化合物(ジアミドジカルボン酸系化合物およびジアミドテトラカルボン酸系化合物)の製造方法)
実施例B12-1
高速回転式粉砕機(容量150mL)の粉砕槽に、テレフタル酸クロライドを426質量部、3-アミノ安息香酸を574質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、アミド基含有カルボン酸系化合物粉末(ジアミドジカルボン酸系化合物粉末)を得た。
得られた粉砕物中の2-アミノ安息香酸に由来するアミノ基とテレフタル酸クロライドの酸クロライド基との反応率を測定したところ70.1%であった。
得られた粉砕物を窒素気流下で、100℃、1時間、続いて150℃、1時間、250℃、1時間の条件で加熱を行った。得られた粉末についてアミノ基の反応率を求めたところ、99.0%であった。得られた粉末についてIR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が認められ、アミド基含有カルボン酸系化合物(ジアミドジカルボン酸系化合物)が生成していることが確認できた。
実施例B12-1
高速回転式粉砕機(容量150mL)の粉砕槽に、テレフタル酸クロライドを426質量部、3-アミノ安息香酸を574質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、アミド基含有カルボン酸系化合物粉末(ジアミドジカルボン酸系化合物粉末)を得た。
得られた粉砕物中の2-アミノ安息香酸に由来するアミノ基とテレフタル酸クロライドの酸クロライド基との反応率を測定したところ70.1%であった。
得られた粉砕物を窒素気流下で、100℃、1時間、続いて150℃、1時間、250℃、1時間の条件で加熱を行った。得られた粉末についてアミノ基の反応率を求めたところ、99.0%であった。得られた粉末についてIR測定を行ったところ、1515~1650cm-1付近にアミド基に由来する吸収が認められ、アミド基含有カルボン酸系化合物(ジアミドジカルボン酸系化合物)が生成していることが確認できた。
実施例B12-2~実施例B12-10
酸クロライド組成およびアミン組成を変更する以外は、実施例B12-1と同様の操作をおこなって、アミド基含有カルボン酸系化合物(ジアミドジカルボン酸系化合物またはジアミドテトラカルボン酸系化合物)を得た。
実施例B12-2~B12-3、B12-6~B12-8では、実施例B12-1と同様の方法により、アミド基含有カルボン酸系化合物粉末(ジアミドジカルボン酸系化合物粉末)を経て、ジアミドジカルボン酸系化合物が生成していることを確認した。
実施例B12-4~B12-5、B12-9~B12-10では、実施例B12-1と同様の方法により、アミド基含有カルボン酸系化合物粉末(ジアミドテトラカルボン酸系化合物粉末)を経て、ジアミドテトラカルボン酸系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B12-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、アミド基に由来する吸収が認められ、所定のアミド基含有カルボン酸系化合物が生成していることが確認できた。
酸クロライド組成およびアミン組成を変更する以外は、実施例B12-1と同様の操作をおこなって、アミド基含有カルボン酸系化合物(ジアミドジカルボン酸系化合物またはジアミドテトラカルボン酸系化合物)を得た。
実施例B12-2~B12-3、B12-6~B12-8では、実施例B12-1と同様の方法により、アミド基含有カルボン酸系化合物粉末(ジアミドジカルボン酸系化合物粉末)を経て、ジアミドジカルボン酸系化合物が生成していることを確認した。
実施例B12-4~B12-5、B12-9~B12-10では、実施例B12-1と同様の方法により、アミド基含有カルボン酸系化合物粉末(ジアミドテトラカルボン酸系化合物粉末)を経て、ジアミドテトラカルボン酸系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B12-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、アミド基に由来する吸収が認められ、所定のアミド基含有カルボン酸系化合物が生成していることが確認できた。
(エステル基含有カルボン酸系化合物(ジエステルジカルボン酸系化合物、ジエステルテトラカルボン酸系化合物)の製造方法)
実施例B13-1
高速回転式粉砕機(容量150mL)の粉砕槽に、テレフタル酸クロライドを424質量部、4-ヒドロキシ安息香酸を576質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、エステル基含有カルボン酸系化合物粉末(ジエステルジカルボン酸系化合物粉末)を得た。
得られた粉砕物中の4-ヒドロキシ安息香酸に由来するヒドロキシル基とテレフタル酸クロライドの酸クロライド基との反応率を測定したところ66.2%であった。
得られた粉砕物を窒素気流下で、100℃、1時間、続いて150℃、1時間、および250℃、1時間の条件で加熱を行った。得られた粉末についてヒドロキシル基の反応率を求めたところ、97.8%であった。得られた粉末についてIR測定を行ったところ、1715~1730cm-1付近にエステル基に由来する吸収が認められ、エステル基含有カルボン酸系化合物(ジエステルジカルボン酸系化合物)が生成していることが確認できた。
実施例B13-1
高速回転式粉砕機(容量150mL)の粉砕槽に、テレフタル酸クロライドを424質量部、4-ヒドロキシ安息香酸を576質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、エステル基含有カルボン酸系化合物粉末(ジエステルジカルボン酸系化合物粉末)を得た。
得られた粉砕物中の4-ヒドロキシ安息香酸に由来するヒドロキシル基とテレフタル酸クロライドの酸クロライド基との反応率を測定したところ66.2%であった。
得られた粉砕物を窒素気流下で、100℃、1時間、続いて150℃、1時間、および250℃、1時間の条件で加熱を行った。得られた粉末についてヒドロキシル基の反応率を求めたところ、97.8%であった。得られた粉末についてIR測定を行ったところ、1715~1730cm-1付近にエステル基に由来する吸収が認められ、エステル基含有カルボン酸系化合物(ジエステルジカルボン酸系化合物)が生成していることが確認できた。
実施例B13-2~実施例B13-22
酸クロライド組成およびヒドロキシ組成を変更する以外は、実施例B13-1と同様の操作をおこなって、エステル基含有カルボン酸系化合物(ジエステルジカルボン酸系化合物またはジエステルテトラカルボン酸系化合物)を得た。
実施例B13-2~B13-9、B13-12~B13-20では、実施例B13-1と同様の方法により、エステル基含有カルボン酸系化合物粉末(ジエステルジカルボン酸系化合物粉末)を経て、ジエステルジカルボン酸系化合物が生成していることを確認した。
実施例B13-10~B13-11、B13-21~B13-22では、実施例B13-1と同様の方法により、エステル基含有カルボン酸系化合物粉末(ジエステルテトラカルボン酸系化合物粉末)を経て、ジエステルテトラカルボン酸系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B13-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、エステル基に由来する吸収が認められ、所定のエステル基含有カルボン酸系化合物が生成していることが確認できた。
酸クロライド組成およびヒドロキシ組成を変更する以外は、実施例B13-1と同様の操作をおこなって、エステル基含有カルボン酸系化合物(ジエステルジカルボン酸系化合物またはジエステルテトラカルボン酸系化合物)を得た。
実施例B13-2~B13-9、B13-12~B13-20では、実施例B13-1と同様の方法により、エステル基含有カルボン酸系化合物粉末(ジエステルジカルボン酸系化合物粉末)を経て、ジエステルジカルボン酸系化合物が生成していることを確認した。
実施例B13-10~B13-11、B13-21~B13-22では、実施例B13-1と同様の方法により、エステル基含有カルボン酸系化合物粉末(ジエステルテトラカルボン酸系化合物粉末)を経て、ジエステルテトラカルボン酸系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B13-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、エステル基に由来する吸収が認められ、所定のエステル基含有カルボン酸系化合物が生成していることが確認できた。
(硬化性イミド系化合物の製造方法)
実施例B14-1
高速回転式粉砕機(容量150mL)の粉砕槽に、4-フェニルエチニルフタル酸無水物を821質量部、p-フェニレンジアミンを179質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、硬化性ジイミド系化合物前駆体粉末を得た。
得られた粉砕物中のp-フェニレンジアミンに由来するアミノ基と4-フェニルエチニルフタル酸無水物の酸無水物基との反応率を測定したところ64.3%であった。
得られた粉砕物を窒素気流下で、170℃、1時間、続いて210℃、1時間、270℃、1時間の条件で加熱を行った。得られた粉末についてアミノ基の反応率を求めたところ、98.0%であった。得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収および2100~2260cm-1付近にエチニル基に由来する吸収が認められ、硬化性ジイミド系化合物が生成していることが確認できた。
実施例B14-1
高速回転式粉砕機(容量150mL)の粉砕槽に、4-フェニルエチニルフタル酸無水物を821質量部、p-フェニレンジアミンを179質量部、合計100gを添加した。空気雰囲気下で14,000rpm、5分間の撹拌し、メカノケミカル反応を行って、硬化性ジイミド系化合物前駆体粉末を得た。
得られた粉砕物中のp-フェニレンジアミンに由来するアミノ基と4-フェニルエチニルフタル酸無水物の酸無水物基との反応率を測定したところ64.3%であった。
得られた粉砕物を窒素気流下で、170℃、1時間、続いて210℃、1時間、270℃、1時間の条件で加熱を行った。得られた粉末についてアミノ基の反応率を求めたところ、98.0%であった。得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収および2100~2260cm-1付近にエチニル基に由来する吸収が認められ、硬化性ジイミド系化合物が生成していることが確認できた。
実施例B14-2~実施例B14-8
酸無水物組成およびアミン組成を変更する以外は、実施例B14-1と同様の操作をおこなって、硬化性ジイミド系化合物を得た。
実施例B14-2~B14-8では、実施例B14-1と同様の方法により、硬化性ジイミド系化合物前駆体粉末を経て、硬化性ジイミド系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B14-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、不飽和結合およびイミド基に由来する吸収が認められ、硬化性ジイミド系化合物が生成していることが確認できた。
酸無水物組成およびアミン組成を変更する以外は、実施例B14-1と同様の操作をおこなって、硬化性ジイミド系化合物を得た。
実施例B14-2~B14-8では、実施例B14-1と同様の方法により、硬化性ジイミド系化合物前駆体粉末を経て、硬化性ジイミド系化合物が生成していることを確認した。
なお、各実施例においては、得られた粉砕物について、実施例B14-1と同様の方法により、加熱した後、IR測定を行い、以下の事項を確認した:
・加熱後において、不飽和結合およびイミド基に由来する吸収が認められ、硬化性ジイミド系化合物が生成していることが確認できた。
[実験例C:高分子化合物の製造方法(2段階メカノケミカル法)]
(ポリアミド酸系化合物(ポリイミド樹脂前駆体およびポリイミド系樹脂)の製造方法)
実施例C1
まず、第1段階メカノケミカル処理を行った。詳しくは、高速底部攪拌式混合機(容量20L)に無水ピロメリット酸二無水物を521質量部、4,4’-ジアミノジフェニルエーテルを479質量部、合計5.0kg添加した。窒素雰囲気下で5600rpm、3分間の粉砕を行うことにより、第1段階メカノケミカル処理を行って、ポリイミド樹脂前駆体粉末を得た。
次いで、第2段階メカノケミカル処理を行った。詳しくは、媒体攪拌型ミル槽(容量5.0L)内に、第1段階メカノケミカル処理にて得られたポリイミド前駆体粉末1.0kgとアルミナボール6.0kgを加えた。窒素雰囲気下で504rpm、30分間粉砕することにより、第2段階メカノケミカル処理を行って、ポリイミド樹脂前駆体粉末を得た。
得られた最終粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水ピロメリット酸の酸無水物基との反応率を測定したところ90.1%であり、平均重合度は10.3であった。また、得られた粉砕物の平均粒子径は14.2μmであった。得られた粉末についてIR測定を行ったところイミド化は進行しておらず、イミド化率は0.0%であった。
本実施例のNMR測定では、実施例A1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
(ポリアミド酸系化合物(ポリイミド樹脂前駆体およびポリイミド系樹脂)の製造方法)
実施例C1
まず、第1段階メカノケミカル処理を行った。詳しくは、高速底部攪拌式混合機(容量20L)に無水ピロメリット酸二無水物を521質量部、4,4’-ジアミノジフェニルエーテルを479質量部、合計5.0kg添加した。窒素雰囲気下で5600rpm、3分間の粉砕を行うことにより、第1段階メカノケミカル処理を行って、ポリイミド樹脂前駆体粉末を得た。
次いで、第2段階メカノケミカル処理を行った。詳しくは、媒体攪拌型ミル槽(容量5.0L)内に、第1段階メカノケミカル処理にて得られたポリイミド前駆体粉末1.0kgとアルミナボール6.0kgを加えた。窒素雰囲気下で504rpm、30分間粉砕することにより、第2段階メカノケミカル処理を行って、ポリイミド樹脂前駆体粉末を得た。
得られた最終粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水ピロメリット酸の酸無水物基との反応率を測定したところ90.1%であり、平均重合度は10.3であった。また、得られた粉砕物の平均粒子径は14.2μmであった。得られた粉末についてIR測定を行ったところイミド化は進行しておらず、イミド化率は0.0%であった。
本実施例のNMR測定では、実施例A1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
実施例C2~C4
酸成分組成および混合比を変更する以外は、実施例C1と同様の2段階メカノケミカル操作をおこなって、ポリイミド樹脂前駆体粉末を得た。
得られた最終粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と各酸成分の酸無水物基との反応率、平均重合度、得られた粉砕物の平均粒子径を測定した。
得られた各実施例の粉末についてIR測定を行ったところ、イミド化は進行しておらず、イミド化率は0.0%であった。
各実施例のNMR測定では、実施例A1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた各実施例の粉砕物を窒素気流下で、300℃、2時間加熱を行い、IR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
酸成分組成および混合比を変更する以外は、実施例C1と同様の2段階メカノケミカル操作をおこなって、ポリイミド樹脂前駆体粉末を得た。
得られた最終粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と各酸成分の酸無水物基との反応率、平均重合度、得られた粉砕物の平均粒子径を測定した。
得られた各実施例の粉末についてIR測定を行ったところ、イミド化は進行しておらず、イミド化率は0.0%であった。
各実施例のNMR測定では、実施例A1-1と同様に、1H-NMRスペクトル中において、両アミノ基がアミド化された反応物に由来するピーク、1つのアミノ基がアミド化された反応物に由来するピーク、および未反応アミンに由来するピークがそれぞれ検出された。
得られた各実施例の粉砕物を窒素気流下で、300℃、2時間加熱を行い、IR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ポリイミド樹脂が生成していることが確認できた。
[実験例D:低分子化合物の製造方法(2段階メカノケミカル法)]
(ジイミドジカルボン酸系化合物の製造方法)
実施例D1
まず、第1段階メカノケミカル処理を行った。詳しくは、高速底部攪拌式混合機(容量20L)に無水トリメリット酸を657質量部、4,4’-ジアミノジフェニルエーテルを343質量部、合計5.0kg添加した。窒素雰囲気下で5600rpm、3分間の粉砕を行うことにより、第1段階メカノケミカル処理を行って、ジイミドジカルボン酸前駆体粉末を得た。
次いで、第2段階メカノケミカル処理を行った。詳しくは、媒体攪拌型ミル槽(容量5.0L)内に、第1段階メカノケミカル処理にて得られたジイミドジカルボン酸前駆体粉末1.0kgとアルミナボール6.0kgを加えた。窒素雰囲気下で504rpm、30分間粉砕することにより、第2段階メカノケミカル処理を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた最終粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ92.3%であった。また、得られた粉砕物の平均粒子径は13.3μmであった。得られた粉末についてIR測定を行ったところイミド化は進行しておらず、イミド化率は0.0%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、99.1%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
(ジイミドジカルボン酸系化合物の製造方法)
実施例D1
まず、第1段階メカノケミカル処理を行った。詳しくは、高速底部攪拌式混合機(容量20L)に無水トリメリット酸を657質量部、4,4’-ジアミノジフェニルエーテルを343質量部、合計5.0kg添加した。窒素雰囲気下で5600rpm、3分間の粉砕を行うことにより、第1段階メカノケミカル処理を行って、ジイミドジカルボン酸前駆体粉末を得た。
次いで、第2段階メカノケミカル処理を行った。詳しくは、媒体攪拌型ミル槽(容量5.0L)内に、第1段階メカノケミカル処理にて得られたジイミドジカルボン酸前駆体粉末1.0kgとアルミナボール6.0kgを加えた。窒素雰囲気下で504rpm、30分間粉砕することにより、第2段階メカノケミカル処理を行って、ジイミドジカルボン酸前駆体粉末を得た。
得られた最終粉砕物中の4,4’-ジアミノジフェニルエーテルに由来するアミノ基と無水トリメリット酸の酸無水物基との反応率を測定したところ92.3%であった。また、得られた粉砕物の平均粒子径は13.3μmであった。得られた粉末についてIR測定を行ったところイミド化は進行しておらず、イミド化率は0.0%であった。
得られた粉砕物を窒素気流下で、300℃、2時間加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、99.1%であった。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ジイミドジカルボン酸が生成していることが確認できた。
(エステル基含有イミド系化合物(エステル基含有モノイミドトリカルボン酸系化合物)の製造方法)
実施例D2
まず、第1段階メカノケミカル処理を行った。詳しくは、高速底部攪拌式混合機(容量20L)に無水トリメリット酸を778質量部、4-アミノフェノールを222質量部、合計5.0kg添加した。窒素雰囲気下で5600rpm、3分間の粉砕を行うことにより、第1段階メカノケミカル処理を行って、エステル基含有イミド系化合物前駆体粉末(エステル基含有モノイミドトリカルボン酸系化合物前駆体粉末を得た。
次いで、第2段階メカノケミカル処理を行った。詳しくは、媒体攪拌型ミル槽(容量5.0L)内に、第1段階メカノケミカル処理にて得られたエステル基含有イミド系化合物前駆体粉末1.0kgとアルミナボール6.0kgを加えた。窒素雰囲気下で504rpm、30分間粉砕することにより、第2段階メカノケミカル処理を行って、エステル基含有イミド系化合物前駆体粉末を得た。
得られた最終粉砕物中の4-アミノフェノールに由来するアミノ基およびヒドロキシル基と、無水トリメリット酸の酸無水物基との反応率を測定したところ87.5%であった。また、得られた粉砕物の平均粒子径は15.6μmであった。得られた粉末についてIR測定を行ったところイミド化は進行しておらず、イミド化率は0.0%であった。
得られた粉砕物を窒素気流下で、200℃で1時間、さらに270℃に昇温し1時間、加熱を行い、得られた粉末についてアミノ基およびヒドロキシル基の反応率を求めたところ、98.7%であった。さらに、得られた粉末についてIR測定を行ったところ、1715~1730cm-1付近にエステル基に由来する吸収が、また、1750~1800cm-1付近にイミド基に由来する吸収が認められ、エステル基含有イミド系化合物(エステル基含有モノイミドトリカルボン酸系化合物)が生成していることが確認できた。
実施例D2
まず、第1段階メカノケミカル処理を行った。詳しくは、高速底部攪拌式混合機(容量20L)に無水トリメリット酸を778質量部、4-アミノフェノールを222質量部、合計5.0kg添加した。窒素雰囲気下で5600rpm、3分間の粉砕を行うことにより、第1段階メカノケミカル処理を行って、エステル基含有イミド系化合物前駆体粉末(エステル基含有モノイミドトリカルボン酸系化合物前駆体粉末を得た。
次いで、第2段階メカノケミカル処理を行った。詳しくは、媒体攪拌型ミル槽(容量5.0L)内に、第1段階メカノケミカル処理にて得られたエステル基含有イミド系化合物前駆体粉末1.0kgとアルミナボール6.0kgを加えた。窒素雰囲気下で504rpm、30分間粉砕することにより、第2段階メカノケミカル処理を行って、エステル基含有イミド系化合物前駆体粉末を得た。
得られた最終粉砕物中の4-アミノフェノールに由来するアミノ基およびヒドロキシル基と、無水トリメリット酸の酸無水物基との反応率を測定したところ87.5%であった。また、得られた粉砕物の平均粒子径は15.6μmであった。得られた粉末についてIR測定を行ったところイミド化は進行しておらず、イミド化率は0.0%であった。
得られた粉砕物を窒素気流下で、200℃で1時間、さらに270℃に昇温し1時間、加熱を行い、得られた粉末についてアミノ基およびヒドロキシル基の反応率を求めたところ、98.7%であった。さらに、得られた粉末についてIR測定を行ったところ、1715~1730cm-1付近にエステル基に由来する吸収が、また、1750~1800cm-1付近にイミド基に由来する吸収が認められ、エステル基含有イミド系化合物(エステル基含有モノイミドトリカルボン酸系化合物)が生成していることが確認できた。
(ヒドロキシル基含有イミド系化合物(ジイミドジヒドロキシ系化合物(特にジイミドジフェノール系化合物))の製造方法)
実施例D3
まず、第1段階メカノケミカル処理を行った。詳しくは、高速底部攪拌式混合機(容量20L)に、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物597質量部、4-アミノフェノールを403質量部、合計5.0kg添加した。窒素雰囲気下で5600rpm、3分間の粉砕を行うことにより、第1段階メカノケミカル処理を行って、ヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)を得た。
次いで、第2段階メカノケミカル処理を行った。詳しくは、媒体攪拌型ミル槽(容量5.0L)内に、第1段階メカノケミカル処理にて得られたヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)1.0kgとアルミナボール6.0kgを加えた。窒素雰囲気下で504rpm、30分間粉砕することにより、第2段階メカノケミカル処理を行って、ヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)を得た。
得られた最終粉砕物中の4-アミノフェノールに由来するアミノ基と3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物の酸無水物基との反応率を測定したところ93.4%であった。また、得られた粉砕物の平均粒子径は12.5μmであった。得られた粉末についてIR測定を行ったところイミド化は進行しておらず、イミド化率は0.0%であった。
得られた粉砕物を窒素気流下で、200℃で1時間、さらに270℃に昇温し1時間、加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.9%であった。また、得られた粉末についてNMR測定を行ったところ、1H-NMRスペクトル中の5.0~5.5ppm付近にはヒドロキシル基由来のピークが検出されていた。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ヒドロキシル基含有イミド系化合物(ジイミドジフェノール系化合物)が生成していることが確認できた。
実施例D3
まず、第1段階メカノケミカル処理を行った。詳しくは、高速底部攪拌式混合機(容量20L)に、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物597質量部、4-アミノフェノールを403質量部、合計5.0kg添加した。窒素雰囲気下で5600rpm、3分間の粉砕を行うことにより、第1段階メカノケミカル処理を行って、ヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)を得た。
次いで、第2段階メカノケミカル処理を行った。詳しくは、媒体攪拌型ミル槽(容量5.0L)内に、第1段階メカノケミカル処理にて得られたヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)1.0kgとアルミナボール6.0kgを加えた。窒素雰囲気下で504rpm、30分間粉砕することにより、第2段階メカノケミカル処理を行って、ヒドロキシル基含有イミド系化合物前駆体粉末(ジイミドジフェノール系化合物前駆体粉末)を得た。
得られた最終粉砕物中の4-アミノフェノールに由来するアミノ基と3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物の酸無水物基との反応率を測定したところ93.4%であった。また、得られた粉砕物の平均粒子径は12.5μmであった。得られた粉末についてIR測定を行ったところイミド化は進行しておらず、イミド化率は0.0%であった。
得られた粉砕物を窒素気流下で、200℃で1時間、さらに270℃に昇温し1時間、加熱を行い、得られた粉末についてアミノ基の反応率を求めたところ、98.9%であった。また、得られた粉末についてNMR測定を行ったところ、1H-NMRスペクトル中の5.0~5.5ppm付近にはヒドロキシル基由来のピークが検出されていた。さらに、得られた粉末についてIR測定を行ったところ、1750~1800cm-1付近にイミド基に由来する吸収が認められ、ヒドロキシル基含有イミド系化合物(ジイミドジフェノール系化合物)が生成していることが確認できた。
本発明の有機化合物の製造方法は、溶媒を使用することなく、有機化合物を製造することができるので、有機化合物の製造分野において、環境負荷、作業環境等の観点から有用である。
Claims (38)
- メカノケミカル効果により官能基同士の反応を行うことを特徴とする有機化合物の製造方法。
- 前記反応が、縮合反応、付加反応またはこれらの複合反応である、請求項1に記載の有機化合物の製造方法。
- 前記反応が、カルボキシル基およびそのハロゲン化物、酸無水物基、アミノ基、イソシアネート基、ならびにヒドロキシル基からなる群から選択される2つの官能基の反応である、請求項1または2に記載の有機化合物の製造方法。
- 前記反応が、以下の反応からなる群から選択される1種以上の反応である、請求項1~3のいずれかに記載の有機化合物の製造方法:
(A)酸無水物基と、アミノ基との反応により、(a1)アミド基およびカルボキシル基、(a2)イミド基、(a3)イソイミド基または(a4)これらの混合基が生成する反応;
(B)酸無水物基と、イソシアネート基との反応により、イミド基が生成する反応;
(C)カルボキシル基またはそのハロゲン化物と、アミノ基またはイソシアネート基との反応により、アミド基が生成する反応;
(D)カルボキシル基またはそのハロゲン化物と、ヒドロキシル基との反応により、エステル基が生成する反応;
(E)イソシアネート基と、アミノ基との反応により、ウレア基が生成する反応;
(F)イソシアネート基と、ヒドロキシル基との反応により、ウレタン基が生成する反応;
(G)酸無水物基と、ヒドロキシル基との反応により、エステル基およびカルボキシル基が生成する反応。 - 前記官能基同士の反応は2つ以上の原料化合物分子間で起こる、請求項1~4のいずれかに記載の有機化合物の製造方法。
- 前記原料化合物のそれぞれが分子量2000以下の化合物である、請求項5に記載の有機化合物の製造方法。
- 前記反応を加熱により促進させる、請求項1~6のいずれかに記載の有機化合物の製造方法。
- 前記有機化合物が、繰り返し単位を含有する高分子化合物である、請求項1~7のいずれかに記載の有機化合物の製造方法。
- 前記反応が、逐次重合反応、縮合重合反応、重付加反応からなる群から選択される1つ以上の反応に属する、請求項8に記載の有機化合物の製造方法。
- 前記高分子化合物が、ポリアミド酸系化合物、ポリイミド系化合物、ポリアミド系化合物、ポリアミドイミド系化合物、ポリウレタン系化合物、ポリウレア系化合物、またはポリエステル系化合物である、請求項8または9に記載の有機化合物の製造方法。
- 前記反応を、末端封鎖剤の存在下で行う、請求項8~10のいずれかに記載の有機化合物の製造方法。
- 前記反応として、テトラカルボン酸二無水物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミド酸系化合物、ポリイミド系化合物またはこれらの混合物を製造する、請求項1~11のいずれかに記載の有機化合物の製造方法。
- 前記反応として、ジカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミド系化合物を製造する、請求項1~11のいずれかに記載の有機化合物の製造方法。
- 前記反応として、無水トリカルボン酸成分またはその酸ハロゲン化物成分とジアミン成分またはジイソシアネート成分との反応により、前記有機化合物として、ポリアミドイミド系化合物を製造する、請求項1~11のいずれかに記載の有機化合物の製造方法。
- 前記反応として、ジカルボン酸成分またはその酸ハロゲン化物成分とポリヒドロキシ成分との反応により、前記有機化合物として、ポリエステル系化合物を製造する、請求項1~11のいずれかに記載の有機化合物の製造方法。
- 前記反応として、ジイソシアネート成分とジアミン成分との反応により、前記有機化合物として、ポリウレア系化合物を製造する、請求項1~11のいずれかに記載の有機化合物の製造方法。
- 前記反応として、ジイソシアネート成分とポリヒドロキシ成分との反応により、前記有機化合物として、ポリウレタン系化合物を製造する、請求項1~11のいずれかに記載の有機化合物の製造方法。
- 前記各成分は、一方の成分が他方の成分に対して0.8~1.2倍モル量となるような量で使用される、請求項12~17のいずれかに記載の有機化合物の製造方法。
- 前記有機化合物が、繰り返し単位を含有しない低分子化合物である、請求項1~7のいずれかに記載の有機化合物の製造方法。
- 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミン成分との反応により、前記有機化合物として、ジイミドジカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、ジイミドジカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミノモノカルボン酸成分との反応により、前記有機化合物として、ジイミドトリカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、ジイミドテトラカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、無水トリカルボン酸成分と該成分に対して0.5~5.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、モノイミドジカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、無水トリカルボン酸成分と該成分に対して0.5~5.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、モノイミドトリカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記ジアミン成分としてアミド基を含有するジアミン成分を用いることにより、アミド基含有ジイミドジカルボン酸系化合物を製造する、請求項20に記載の有機化合物の製造方法。
- 前記反応として、無水トリカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、アミド基含有モノイミドジカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、無水トリカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、アミド基含有モノイミドテトラカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、無水トリカルボン酸成分と該成分に対して0.1~0.7倍モル量のモノヒドロキシモノアミン成分との反応により、前記有機化合物として、エステル基含有モノイミドトリカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、テトラカルボン酸二無水物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシモノアミン成分との反応により、前記有機化合物として、ジイミドジヒドロキシ系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノモノカルボン酸成分との反応により、前記有機化合物として、ジアミドジカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノアミノジカルボン酸成分との反応により、前記有機化合物として、ジアミドテトラカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシモノカルボン酸成分との反応により、前記有機化合物として、ジエステルジカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、ジカルボン酸ハロゲン化物成分と該成分に対して1.5~10.0倍モル量のモノヒドロキシジカルボン酸成分との反応により、前記有機化合物として、ジエステルテトラカルボン酸系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応として、不飽和無水ジカルボン酸成分と該成分に対して0.1~0.7倍モル量のジアミン成分との反応により、前記有機化合物として、硬化性イミド系化合物を製造する、請求項19に記載の有機化合物の製造方法。
- 前記反応を触媒の存在下で行う、請求項1~35のいずれかに記載の有機化合物の製造方法。
- 前記反応を助剤の存在下で行う、請求項1~36のいずれかに記載の有機化合物の製造方法。
- 前記メカノケミカル効果による反応後に加熱処理を行うことで反応率を上げる、請求項1~37のいずれかに記載の有機化合物の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980044868.2A CN112384489A (zh) | 2018-07-05 | 2019-06-28 | 有机化合物的制造方法 |
JP2020512752A JP6733985B2 (ja) | 2018-07-05 | 2019-06-28 | 有機化合物の製造方法 |
EP19830751.4A EP3819283A4 (en) | 2018-07-05 | 2019-06-28 | METHOD OF MAKING AN ORGANIC COMPOUND |
US17/257,199 US20210139390A1 (en) | 2018-07-05 | 2019-06-28 | Production method of organic compound |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018128473 | 2018-07-05 | ||
JP2018-128473 | 2018-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020009016A1 true WO2020009016A1 (ja) | 2020-01-09 |
Family
ID=69060982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025811 WO2020009016A1 (ja) | 2018-07-05 | 2019-06-28 | 有機化合物の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210139390A1 (ja) |
EP (1) | EP3819283A4 (ja) |
JP (2) | JP6733985B2 (ja) |
CN (1) | CN112384489A (ja) |
TW (1) | TW202012496A (ja) |
WO (1) | WO2020009016A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020012104A (ja) * | 2018-07-05 | 2020-01-23 | ユニチカ株式会社 | ポリアミドイミド樹脂の製造方法 |
EP3725773A1 (en) * | 2019-04-16 | 2020-10-21 | Shin-Etsu Chemical Co., Ltd. | Compounds and materials for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process |
WO2021117686A1 (ja) * | 2019-12-10 | 2021-06-17 | ユニチカ株式会社 | イミド基含有化合物、イミド基含有硬化剤ならびにエポキシ樹脂硬化物およびそれを用いた電気絶縁性材料 |
CN114181134A (zh) * | 2020-09-15 | 2022-03-15 | 航天特种材料及工艺技术研究所 | 降冰片烯封端的酰亚胺小分子化合物及其制备方法、用途 |
WO2022092260A1 (ja) * | 2020-10-30 | 2022-05-05 | 国立大学法人北海道大学 | 反応方法及びその反応に用いる装置 |
CN114853995A (zh) * | 2022-04-29 | 2022-08-05 | 四川东方绝缘材料股份有限公司 | 一种耐紫外聚酯树脂及薄膜的制备方法 |
US11692066B2 (en) | 2019-04-16 | 2023-07-04 | Shin-Etsu Chemical Co., Ltd. | Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film |
WO2023167321A1 (ja) * | 2022-03-04 | 2023-09-07 | 国立大学法人北海道大学 | メカノケミカル反応用添加剤、メカノケミカル方法、配位子化合物及び錯体 |
WO2024142966A1 (ja) * | 2022-12-28 | 2024-07-04 | 国立大学法人北海道大学 | 高分子メカノラジカル開始剤及び高分子メカノラジカル開始剤を用いる反応方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2014005742A (es) | 2011-11-15 | 2014-07-09 | Koninkl Philips Nv | Dispositivo de interfaz de paciente con mecanismo de ajuste de angulo de inclinacion. |
CN113604043B (zh) * | 2021-05-11 | 2023-12-12 | 中山新高电子材料股份有限公司 | 一种具有低吸湿和高粘结性的聚酰亚胺薄膜及其制备方法 |
CN114057979B (zh) * | 2021-12-16 | 2023-10-03 | 江西师范大学 | 一种环糊精多孔聚合物及其机械化学制备方法与应用 |
CN115304741B (zh) * | 2022-08-30 | 2023-09-01 | 兴宇汽车零部件股份有限公司 | 一种聚氨酯防渗密封圈及其制备方法 |
CN117247539B (zh) * | 2023-09-28 | 2024-03-22 | 中国科学院宁波材料技术与工程研究所 | 一种超支化聚酯酰胺多元醇及其制备方法和应用 |
CN117666224B (zh) * | 2023-11-30 | 2024-09-17 | 江西理工大学 | 一种在柔性膜上电沉积制备亚胺型共价有机框架的储能电致变色薄膜的方法 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS504063A (ja) * | 1973-05-17 | 1975-01-16 | ||
JPS5050362A (ja) * | 1973-09-06 | 1975-05-06 | ||
JPS51125477A (en) * | 1975-04-08 | 1976-11-01 | Mitsubishi Electric Corp | Curable resin |
JPS5927921A (ja) * | 1982-08-10 | 1984-02-14 | Hitachi Chem Co Ltd | 耐熱性樹脂の製造法 |
WO1992007884A1 (fr) * | 1990-10-24 | 1992-05-14 | Eisai Co., Ltd. | Compose polymere organique et sa production |
JPH08325376A (ja) * | 1995-05-31 | 1996-12-10 | Toray Ind Inc | ポリアミド樹脂の製造方法 |
JPH0977872A (ja) * | 1995-09-12 | 1997-03-25 | Ube Ind Ltd | 芳香族ポリアミドイミドおよびその製法 |
JPH09295961A (ja) * | 1996-05-07 | 1997-11-18 | Tosoh Corp | 芳香族エステルアミドの製造方法 |
JPH11333836A (ja) | 1998-05-27 | 1999-12-07 | Sumitomo Bakelite Co Ltd | フェノール樹脂成形材料 |
WO2003066548A2 (en) * | 2002-02-06 | 2003-08-14 | Iowa State University Research Foundation, Inc. | Solvent-free mechanochemical preparation of phosphonium salts, phosphorus ylides, and olefins |
JP2004191760A (ja) | 2002-12-12 | 2004-07-08 | Nippon Telegr & Teleph Corp <Ntt> | フォトニック結晶ファイバの融着接続方法 |
JP2004292760A (ja) * | 2003-03-28 | 2004-10-21 | National Institute Of Advanced Industrial & Technology | アシル化セルロースの製造方法 |
WO2006001076A1 (ja) * | 2004-06-25 | 2006-01-05 | Agri Future Joetsu Co.,Ltd. | 熱可塑性セルロース系組成物、その製造方法及びその成形品 |
JP2006071765A (ja) * | 2004-08-31 | 2006-03-16 | Hitachi Chem Co Ltd | エレクトロクロミック材料、その製造方法及びカラーリライタブル表示装置 |
CN101440080A (zh) * | 2008-12-11 | 2009-05-27 | 浙江工业大学 | 一种黄酮类化合物的机械化学制备方法 |
JP2014080494A (ja) * | 2012-10-16 | 2014-05-08 | Mitsubishi Gas Chemical Co Inc | 硬化性イミド化合物、その製造方法、硬化性樹脂組成物、および硬化物 |
US9006488B1 (en) * | 2014-03-20 | 2015-04-14 | Muhammad Amin | Solvent free synthesis of acetaminophen |
WO2016163412A1 (ja) * | 2015-04-07 | 2016-10-13 | ユニチカ株式会社 | ビスイミドジカルボン酸の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103261278B (zh) * | 2011-01-07 | 2014-11-19 | 东丽株式会社 | 聚酰胺酸树脂组合物及其制造方法 |
JP2013001872A (ja) * | 2011-06-20 | 2013-01-07 | Hitachi Cable Ltd | ポリアミドイミド樹脂絶縁塗料、絶縁電線、及びコイル |
JP2013049843A (ja) * | 2011-08-02 | 2013-03-14 | Hitachi Cable Ltd | ポリアミドイミド樹脂絶縁塗料及びその製造方法、絶縁電線、並びにコイル |
KR20150126812A (ko) * | 2013-03-08 | 2015-11-13 | 유니버시티 오브 센트럴 플로리다 리서치 파운데이션, 인코포레이티드 | 중합체-함유 재료의 기계촉매적 산화 해중합 반응을 위한 촉매 및 이를 사용한 산화 반응 생성물의 제조 방법 |
JP6230308B2 (ja) * | 2013-07-16 | 2017-11-15 | ソマール株式会社 | 透明ポリイミド共重合体、ポリイミド樹脂組成物及び成形体、並びにこの共重合体の製造方法 |
US11478424B2 (en) * | 2015-09-30 | 2022-10-25 | Grace Gmbh | Mechanochemcial activated dry amorphisation by milling equilibrium between AP mesoporous silica |
US20170355820A1 (en) * | 2016-06-10 | 2017-12-14 | Polyone Corporation | Aromatic polyimides suitable for aerospace parts via 3d printing processes |
-
2019
- 2019-06-28 WO PCT/JP2019/025811 patent/WO2020009016A1/ja active Application Filing
- 2019-06-28 JP JP2020512752A patent/JP6733985B2/ja active Active
- 2019-06-28 EP EP19830751.4A patent/EP3819283A4/en not_active Withdrawn
- 2019-06-28 TW TW108122921A patent/TW202012496A/zh unknown
- 2019-06-28 US US17/257,199 patent/US20210139390A1/en not_active Abandoned
- 2019-06-28 CN CN201980044868.2A patent/CN112384489A/zh active Pending
-
2020
- 2020-07-06 JP JP2020116552A patent/JP2020176126A/ja active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS504063A (ja) * | 1973-05-17 | 1975-01-16 | ||
JPS5050362A (ja) * | 1973-09-06 | 1975-05-06 | ||
JPS51125477A (en) * | 1975-04-08 | 1976-11-01 | Mitsubishi Electric Corp | Curable resin |
JPS5927921A (ja) * | 1982-08-10 | 1984-02-14 | Hitachi Chem Co Ltd | 耐熱性樹脂の製造法 |
WO1992007884A1 (fr) * | 1990-10-24 | 1992-05-14 | Eisai Co., Ltd. | Compose polymere organique et sa production |
JPH08325376A (ja) * | 1995-05-31 | 1996-12-10 | Toray Ind Inc | ポリアミド樹脂の製造方法 |
JPH0977872A (ja) * | 1995-09-12 | 1997-03-25 | Ube Ind Ltd | 芳香族ポリアミドイミドおよびその製法 |
JPH09295961A (ja) * | 1996-05-07 | 1997-11-18 | Tosoh Corp | 芳香族エステルアミドの製造方法 |
JPH11333836A (ja) | 1998-05-27 | 1999-12-07 | Sumitomo Bakelite Co Ltd | フェノール樹脂成形材料 |
WO2003066548A2 (en) * | 2002-02-06 | 2003-08-14 | Iowa State University Research Foundation, Inc. | Solvent-free mechanochemical preparation of phosphonium salts, phosphorus ylides, and olefins |
JP2004191760A (ja) | 2002-12-12 | 2004-07-08 | Nippon Telegr & Teleph Corp <Ntt> | フォトニック結晶ファイバの融着接続方法 |
JP2004292760A (ja) * | 2003-03-28 | 2004-10-21 | National Institute Of Advanced Industrial & Technology | アシル化セルロースの製造方法 |
WO2006001076A1 (ja) * | 2004-06-25 | 2006-01-05 | Agri Future Joetsu Co.,Ltd. | 熱可塑性セルロース系組成物、その製造方法及びその成形品 |
JP2006071765A (ja) * | 2004-08-31 | 2006-03-16 | Hitachi Chem Co Ltd | エレクトロクロミック材料、その製造方法及びカラーリライタブル表示装置 |
CN101440080A (zh) * | 2008-12-11 | 2009-05-27 | 浙江工业大学 | 一种黄酮类化合物的机械化学制备方法 |
JP2014080494A (ja) * | 2012-10-16 | 2014-05-08 | Mitsubishi Gas Chemical Co Inc | 硬化性イミド化合物、その製造方法、硬化性樹脂組成物、および硬化物 |
US9006488B1 (en) * | 2014-03-20 | 2015-04-14 | Muhammad Amin | Solvent free synthesis of acetaminophen |
WO2016163412A1 (ja) * | 2015-04-07 | 2016-10-13 | ユニチカ株式会社 | ビスイミドジカルボン酸の製造方法 |
Non-Patent Citations (11)
Title |
---|
"Recent Trends in Reactive Processing Technology in Polymer Materials (Sumibe Techno Research, 2003.3", CONTROLLING MICROSTRUCTURES, RESEARCH AND DEVELOPMENT AT THE NANO LEVEL ADVANCES |
LAURE KONNERT; FRÉDÉRIC LAMATY; JEAN MARTINEZ; EVELINA COLACINO: "Solventless Mechanosynthesis of N-Protected Amino Esters", JOURNAL OF ORGANIC CHEMISTRY, vol. 79, no. 9, 2 May 2014 (2014-05-02), pages 4008 - 4017, XP055672387, ISSN: 0022-3263, DOI: 10.1021/jo500463y * |
MELWIN COLAÇO, DUBOIS JEAN, WOUTERS JOHAN: "Mechanochemical synthesis of phthalimides with crystal structures of intermediates and products", CRYSTENGCOMM, vol. 17, no. 12, 1 January 2015 (2015-01-01), pages 2523 - 2528, XP055764365, DOI: 10.1039/C5CE00038F * |
MIKHAIL A MIKHAILENKO , TATIANA SHAKHTSHNEIDER , VLADIMIR V BOLDYREV : "Acylation of sulfathiazole with maleic anhydride under mechanochemical activation", MENDELEEV COMMUNICATIONS, vol. 17, no. 6, 3 December 2007 (2007-12-03), pages 315 - 317, XP022371764, ISSN: 0959-9436, DOI: 10.1016/j.mencom.2007.11.004 * |
MIKHAILENKO M A; SHAKHTSHNEIDER T P; BOLDYREV V V: "On the mechanism of mechanochemical synthesis of phthalylsulphathiazole", JOURNAL OF MATERIALS SCIENCE, vol. 39, no. 16-17, 1 August 2004 (2004-08-01), pages 5435 - 5439, XP019209968, ISSN: 1573-4803, DOI: 10.1023/B:JMSC.0000039261.66084.a3 * |
PHARMACEUTICAL JOURNAL, vol. 120, no. 12, 2000, pages 1337 |
POLYMER-PLASTIC TECHNOLOGY AND ENGINEERING, vol. 40, no. 2, 2001, pages 183 |
PROCEEDINGS OF THE SOCIETY OF POLYMER SCIENCE, vol. 49, no. 2, 2000, pages 181 |
See also references of EP3819283A4 |
THE SOCIETY OF POLYMER SCIENCE: "Basics of polymer chemistry, 2nd ed.", 25 March 1994, THE SOCIETY OF POLYMER SCIENCE, JP, ISBN: 4-8079-0405-1, article ANONYMOUS: "Basics of polymer chemistry ", pages: 284 - 295, XP009524885 * |
YANG YANG; FANXING BU; JINGJING LIU; IMRAN SHAKIR; YUXI XU: "Mechanochemical synthesis of two-dimensional aromatic polyamides", CHEMICAL COMMUNICATIONS, vol. 53, no. 54, 1 January 2017 (2017-01-01), pages 7481 - 7484, XP055672389, ISSN: 1359-7345, DOI: 10.1039/C7CC02648J * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7232521B2 (ja) | 2018-07-05 | 2023-03-03 | ユニチカ株式会社 | ポリアミドイミド樹脂の製造方法 |
JP2020012104A (ja) * | 2018-07-05 | 2020-01-23 | ユニチカ株式会社 | ポリアミドイミド樹脂の製造方法 |
EP3725773A1 (en) * | 2019-04-16 | 2020-10-21 | Shin-Etsu Chemical Co., Ltd. | Compounds and materials for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, and patterning process |
US11692066B2 (en) | 2019-04-16 | 2023-07-04 | Shin-Etsu Chemical Co., Ltd. | Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film |
US11500292B2 (en) | 2019-04-16 | 2022-11-15 | Shin-Etsu Chemical Co., Ltd. | Material for forming organic film, substrate for manufacturing semiconductor device, method for forming organic film, patterning process, and compound for forming organic film |
WO2021117686A1 (ja) * | 2019-12-10 | 2021-06-17 | ユニチカ株式会社 | イミド基含有化合物、イミド基含有硬化剤ならびにエポキシ樹脂硬化物およびそれを用いた電気絶縁性材料 |
CN114728903A (zh) * | 2019-12-10 | 2022-07-08 | 尤尼吉可株式会社 | 含有酰亚胺基的化合物、含有酰亚胺基的固化剂以及环氧树脂固化物和使用它的电绝缘性材料 |
CN114728903B (zh) * | 2019-12-10 | 2023-04-28 | 尤尼吉可株式会社 | 含有酰亚胺基的化合物、含有酰亚胺基的固化剂以及环氧树脂固化物和使用它的电绝缘性材料 |
CN114181134A (zh) * | 2020-09-15 | 2022-03-15 | 航天特种材料及工艺技术研究所 | 降冰片烯封端的酰亚胺小分子化合物及其制备方法、用途 |
CN114181134B (zh) * | 2020-09-15 | 2024-01-05 | 航天特种材料及工艺技术研究所 | 降冰片烯封端的酰亚胺小分子化合物及其制备方法、用途 |
WO2022092260A1 (ja) * | 2020-10-30 | 2022-05-05 | 国立大学法人北海道大学 | 反応方法及びその反応に用いる装置 |
WO2023167321A1 (ja) * | 2022-03-04 | 2023-09-07 | 国立大学法人北海道大学 | メカノケミカル反応用添加剤、メカノケミカル方法、配位子化合物及び錯体 |
CN114853995A (zh) * | 2022-04-29 | 2022-08-05 | 四川东方绝缘材料股份有限公司 | 一种耐紫外聚酯树脂及薄膜的制备方法 |
CN114853995B (zh) * | 2022-04-29 | 2023-10-24 | 四川东方绝缘材料股份有限公司 | 一种耐紫外聚酯树脂及薄膜的制备方法 |
WO2024142966A1 (ja) * | 2022-12-28 | 2024-07-04 | 国立大学法人北海道大学 | 高分子メカノラジカル開始剤及び高分子メカノラジカル開始剤を用いる反応方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210139390A1 (en) | 2021-05-13 |
TW202012496A (zh) | 2020-04-01 |
JP2020176126A (ja) | 2020-10-29 |
EP3819283A1 (en) | 2021-05-12 |
CN112384489A (zh) | 2021-02-19 |
EP3819283A4 (en) | 2022-03-16 |
JP6733985B2 (ja) | 2020-08-05 |
JPWO2020009016A1 (ja) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6733985B2 (ja) | 有機化合物の製造方法 | |
JP7232521B2 (ja) | ポリアミドイミド樹脂の製造方法 | |
Gao et al. | Hyperbranched polymers: from synthesis to applications | |
JP4078508B2 (ja) | 液晶配向処理剤及びそれを用いた液晶素子並びに液晶の配向方法 | |
TWI324169B (en) | Hybrid polymer materials for liquid crystal alignment layers | |
TWI510519B (zh) | A liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device using the same | |
Rong et al. | Synthesis of poly (ε-caprolactone)-b-poly (γ-benzyl-l-glutamic acid) block copolymer using amino organic calcium catalyst | |
TWI441801B (zh) | Diamine compounds, polyamic acid, polyimide and liquid crystal alignment treatment agent | |
TWI284650B (en) | Novel polyimide compositions and novel acid dianhydrides to be used therein | |
JPS5871920A (ja) | 乳化重合法による縮合ポリマ−の製造法 | |
TW201527846A (zh) | 液晶配向處理劑及使用其之液晶顯示元件 | |
JP2020012103A (ja) | ポリイミド樹脂前駆体粉末、ポリイミド樹脂、ならびにそれらの製造方法および溶液 | |
TWI407214B (zh) | A liquid crystal alignment agent and a liquid crystal display device using the liquid crystal display device | |
TW201932508A (zh) | 液晶配向劑、液晶配向膜,及液晶顯示元件 | |
JP3267707B2 (ja) | 光架橋性ポリイミドアンモニウム塩 | |
JP2008007623A (ja) | ナノインプリント用組成物 | |
Antolín‐Cerón et al. | Synthesis, characterization, and mechanical performance of various functionalized carbon nanotubes‐polyurethanes nanocomposites | |
JP7250593B2 (ja) | 粒子状イミドオリゴマーおよびその製造方法 | |
JP2008070893A (ja) | 液晶配向処理剤及びそれを用いた液晶素子並びに液晶の配向方法 | |
JP3638340B2 (ja) | ポリイミド樹脂組成物 | |
JP2001002782A (ja) | 結晶性ポリイミドの製造方法 | |
JP7510317B2 (ja) | イミド基を持つアミド酸オリゴマーを含有する不定形粒子およびその製造方法 | |
JP2001270943A (ja) | ポリイミドの製造方法 | |
TW201219450A (en) | Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same | |
JP2009173847A (ja) | 熱可塑性樹脂組成物および成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19830751 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020512752 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019830751 Country of ref document: EP |